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In uncertain environments with robot input saturation, both model-based

reinforcement learning (MBRL) and traditional controllers struggle to perform

control tasks optimally. In this study, an algorithmic framework of Curiosity

Model Policy Optimization (CMPO) is proposed by combining curiosity and

model-based approach, where tracking errors are reduced via training agents

on control gains for traditional model-free controllers. To begin with, a metric

for judging positive and negative curiosity is proposed. Constrained optimization

is employed to update the curiosity ratio, which improves the e�ciency of agent

training. Next, the novelty distance bu�er ratio is defined to reduce bias between

the environment and the model. Finally, CMPO is simulated with traditional

controllers and baseline MBRL algorithms in the robotic environment designed

with non-linear rewards. The experimental results illustrate that the algorithm

achieves superior tracking performance and generalization capabilities.
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1 Introduction

Robotic manipulator trajectory tracking control as a classical control task has been
broadly discussed in academia and industry. Previous knowledge of the kinematic and
dynamic model of the robotic manipulator is required by most traditional controllers
(Thuruthel et al., 2019). Several estimation methods such as parameter identification
(Zhang et al., 2024) and state estimation (Wei et al., 2023) have been proposed to
alleviate the tolerance of the robot model. However, it is still essential to have knowledge
of the fundamental model and recalibrate the parameters for various types of robotic
manipulators (Íñigo Elguea-Aguinaco et al., 2023). Reinforcement Learning (RL) achieves
maximum reward by training agents in an environment, without knowing the specific
robot model. Model-Free Reinforcement Learning (MFRL) can accomplish these types of
skills rather than just programming a fixed task through a procedure (Hu et al., 2020).
Therefore, controller tuning time can be saved by using an agent to operate. The primary
limitations lie in the high cost of training due to model-free methods, requiring extensive
data and inefficient interaction with the real world (Luo et al., 2022).

The emerging model-based methods deliver higher sampling efficiency than model-
free methods through learning a dynamic model (called the world model in this study) of
the environment (Peng et al., 2018; Luo et al., 2022). Enormous amount of environmental
simulation data is generated from the world model for agent training, which remarkably
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reduces the cost of data generation by interacting with real robotic
manipulators (Hu et al., 2020). This advantage offers compelling
potential for applications in many complex environments, such
as robotic manipulators (Pane et al., 2019; Thuruthel et al.,
2019; Lu et al., 2021). However, due to the robotic uncertainties,
it is difficult to train the world model with limited prior
knowledge. Furthermore, as elaborated in the study by Guo et al.
(2021), another challenge for robot learning control may be
input saturation and external disturbance, which are frequently
encountered and unavoidable in mechanical systems. An effective
way to mitigate these problems is to increase the agent’s ability to
explore. Well-optimized agents can discover the general shape of
these challenges and provide control methods accordingly.

Intrinsic motivation maps novelty-based rewards via digging
into implicit features of the environment to sweeten the efficiency
of agent exploration in unknown environments (Sun et al.,
2022b). Curiosity-driven, as its offshoot, evaluates the novelty of
states through self-supervised learning, which is later used to
compute intrinsic rewards (Burda et al., 2018a). This technique
uses standalone modules that can be easily integrated into
reinforcement learning frameworks. Hence, it has been widely
discussed and applied to improve sampling efficiency (Sun et al.,
2022b). Various applications have demonstrated the effectiveness
of curiosity-driven approaches in both dense and sparse reward
scenarios (Gao et al., 2023). Nevertheless, inappropriate ratio
design can interfere with expressing extrinsic rewards in dense
reward settings (Zhelo et al., 2018). Some references have explored
more complex relevance (Wu et al., 2022) and contrastive learning
(Sun et al., 2022a) to mitigate the instability of pure-state
features. Unfortunately, these attempts have limited effectiveness
in enhancing robot environments that only provide physical
information. Curiosity-driven expression of intrinsic rewards can
be augmented by using dynamically shifting ratios instead of
irrationally fixed designs, which require a rational evaluation
metric.

In this study, MBRL is adopted to strengthen the efficiency
of agent training. Meanwhile, integrating intrinsic curiosity with
world models is proposed as a scheme to elevate performance
in uncertain environments with robot input saturation. Based
on the above, the Curiosity Model Policy Optimization (CMPO)
framework is proposed, which efficiently blends curiosity with
the world model by adaptively adjusting the changes in intrinsic
rewards and reward ratios through rich evaluation metrics. The
agent is responsible for configuring the controller gain to provide
the necessary inputs to the roboticmanipulator in the environment.

The CMPO algorithmic framework offers the benefits of
fast data collection and curiosity-driven exploration for world
model. This means that agents trained using this framework can
work alongside traditional controllers to significantly enhance
the performance of robotic manipulators. The main work and
contributions are summarized below:

• Unlike the approach in which intrinsic rewards are always
defined as positive in the study by Pathak et al. (2017), a
positive–negative intrinsic evaluation approach is defined,
which adopts the world model to predict the effects of
intrinsic rewards. Motivated by Haarnoja et al. (2019), by
simply designing the intrinsic reward target, the adaptive

ratio is proposed to be automatically tuned during curiosity
exploration. These two modules work together to improve the
sampling efficiency of the world model and agent.

• Inspired by the FVI bound theory (Lai et al., 2021) and the
use of curiosity (Pathak et al., 2017), the data novelty distance
is designed to adjust the ratio of data sampled from the
environment buffer andmodel buffer in each training episode,
reducing the influence of external disturbance. Additionally, a
non-linear reward system is created to enhance agent training.
Sensible data buffer scheduling and the use of reward systems
increase the training speed of the agent.

• Building upon the foundation of MBPO (Janner et al.,
2021), CMPO overcomes the obstacles of world model
fitting in uncertain environments with robot input saturation.
Training performance comparison exhibits superior control
performance and generalization ability. Ablation experiments
demonstrated the help provided by each module. Moreover,
parameter sensitivity experiments provide valuable references
for CMPO hyperparameter selection.

2 Related works

2.1 Model-based RL

Within the realm of MBRL, Dyna-Q-like methods (Peng et al.,
2018) constitute a distinct category. Rather than relying on a
single model, ME-TRPO (Kurutach et al., 2018) employs a B-
length bootstrap model, which is trained in SLBO (Luo et al.,
2021), utilizing a multi-step L2 loss function. During the same
period, PETS (Chua et al., 2018) systematically interpreted the
ensemble model as resolving aleatoric uncertainty. MBPO (Janner
et al., 2021) exploits their advantages to effectively improve model
sampling efficiency by proving monotonic lower bound guarantees
for branch prediction. Subsequently, BMPO (Lai et al., 2020)
further extends MBPO to bidirectional branching forecasts. AMPO
(Shen et al., 2020) reduces the mismatch between the model
and environment data. Nevertheless, frequent updates distort the
predictions of the network and the appropriate start-stop scheme is
not given in the study by Luo et al. (2022). In this study, MBPO is
utilized in the CMPO to ensure monotonic bounds, and scheduling
theory (Lai et al., 2021) is employed to ensure that training data can
be sampled correctly.

2.2 RL with traditional controller

Combining reinforcement learning with controllers
can facilitate task execution by exploiting their advantages
simultaneously. By exporting the control gain for the traditional
controller via RL, Wang et al. (2020) uses DQN to control the
trajectory tracking of the mobile robot. Unlike the method of the
study by Lu et al. (2021), the agent output is linearized with the
controller output in the study by Xu et al. (2019) and a non-linear
fuzzy reward system is designed for DDPG. Hu et al. (2020) further
employs the RL approach with kernel model to elevate sampling
efficiency and tracking capability. In this study, a similar view in
the study by Xu et al. (2019) is utilized to design the non-linear
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rewards and follow the simulation experiment design methodology
in the study by Hu et al. (2020).

2.3 Curiosity-driven exploration

Curiosity-driven exploration maps novelty-based intrinsic
rewards by mining implicit features of the environment and
the agent (Stadie et al., 2015). At the outset, Li et al. (2020)
allocates rewards through static and dynamic encoders. Instead of
focusing on individual states (Burda et al., 2018b), the approach
in the study by Yang et al. (2019) evaluates intrinsic rewards by
extracting characteristics of changes between states. It is worth
noting that the ICM framework in the study by Pathak et al. (2017)
concurrently employs forward and inverse dynamic encoding of
state features, which significantly triggers intrinsic rewards for
changes. By combining previous work, Huang et al. (2022) proposes
a unified curiosity architecture. Recent research has focused on re-
evaluating the novelty of states using novel methods such as context
learning (Lee et al., 2020), contrastive learning (Huang et al., 2022;
Sun et al., 2022a), and relevance (Grill et al., 2020; Wu et al., 2022).
These approaches are unable to assist with robot physical states that
lack redundant information. Therefore, the classical self-supervised
exploration (Pathak et al., 2017; Li et al., 2020) is employed for state
feature extraction and evaluation of curiosity in this study.

3 Problem description

In this section, the trajectory tracking problem is presented for
an n-joint robotic manipulator. Consider a dynamic model for a
robotic manipulator (Cao et al., 2021) operating in an uncertain
environment:

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ (t)+ d(t) (1)

where q ∈ R
n, q̇ ∈ R

n, and q̈ ∈ R
n denote the joint angles,

velocities, and accelerations, respectively; τ (t) ∈ R
n denote the

joint torques; d(t) ∈ R
n denote the external disturbance force.

M(q) ∈ R
n×n expresses the inertial matrix; C(q, q̇) ∈ R

n×n

represents the centrifugal-Coriolis matrix; G(q) ∈ R
n is the gravity

potential force, and each of them consists of known and unknown
parts (Lu et al., 2021):















M(q) = M0(q)+M1(q)

C(q, q̇) = C0(q, q̇)+ C1(q, q̇)

G(q) = G0(q)+ G1(q)

(2)

where (·)0 denotes the known part and (·)1 denotes the
unknown part, which is caused by environmental variations or
measurement errors. In the actual training environment, all the
dynamic parameters are unknown to the agent.

Define x1(t) = q(t), x2(t) = q̇(t). Subsisting (2) into (1) and
then rewriting it with x gives:

{

ẋ1 = x2

ẋ2 = M−10 τ +M−1d + l
(3)

where l(t) = M−1[−C(q, q̇)q̇−G(q)]+ M̄1τ is the uncertainty
modeling depends on the system state, where M̄1 = M−1 −M−10 .
The uncertainty l and the disturbance d are unknown and are
assumed to be bounded (Guo et al., 2021).

Trajectory tracking errors can then be defined as follows:

{

e1 = x1 − xd
e2 = ẋ1 − ẋd = x2 − ẋd

(4)

where xd is the desired trajectory, e1 mean the tracking position
error, and e2 indicate the tracking velocity error. x1, xd, x2, and
ẋd are assumed to be bounded in the control system and can be
observed precisely.

Consider an optimal control problem with finite time horizon
length N. Given an initial state s0, the following minimum
optimization problem is expected to solve (Brunke et al., 2022):

Jπ
∗

(s0) = min
t0 :N−1

J(st , ut) = min
t0 :N−1

∑

t

e1(t)+ ut

s.t. st+1 is derived recursively from Equation 3 ,

ut = τ t + dt

(5)

where u denotes the control input and is assumed to be
bounded, i.e., u ≤ ū, where ū is a known vector; π⋆ depicts the
optimal policy. According to Equation 5, the objective is to design a
controller that achieves the dynamic iteration process of Equation 3
by minimizing the sum of the tracking error e1 and input cost u.

4 Preliminaries

4.1 Reinforcement learning

As a continuous action space problem, robotic trajectory
tracking control can be defined in a time-limited Markov decision
process, which can be described by a quaternion set (S,A,P,R)
(Mnih et al., 2013; Brunke et al., 2022; Kapturowski et al., 2022).
The state space S and the action space A are continuous, and the
policy π provides a probability of transition from current state st ∈
S with current action at ∈ A to next state st+1 ∈ S: p(st+1|at , st) =
π(at|st) ∈ P(A). The emits result r(at , st) ∈ Rmeans the reward of
each transit step, the sum of which denotes the reward of episodes.
Our goal is to train a policy π to obtain the most expected rewards
from every episode, which can be defined as follows:

π⋆ = argmax
π

∑

t

E(at ,st)∈π(at |st)
[

r(at , st)
]

(6)

where π⋆ denotes the optimal policy.

4.2 Soft actor critic

Soft Actor Critic (SAC) (Haarnoja et al., 2019) is an off-policy
method based on the actor-critic algorithm. This approach uses the
idea of maximum entropy to enhance the ability to explore policy:

π⋆ = argmax
π

∑

E(st ,at)∼ρπ [r (st , at)+ αH (π (· | st))] (7)
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where ρπ denotes the quaternion set of the Markov decision
process. The actor network exports the action policy and updates
its parameters θa using Equation 8.

Lθa = Est∼ρπ

[

Eat∼πθa

[

α log (πθa (at | st))− Q (st , at)
]]

(8)

where Q (st , at) denotes the critic network, which adopts the
Equation 9 to update the parameter θQ.

LθQ = E(st ,at)∼ρπ

[

1

2

(

QθQ (st , at)−
(

r(st , at)

+ γEst+1∼ρπ

[

V
θ Q̂
(st+1)

]))2
]

(9)

In practice, the target critic network Q̂(st+1, at+1) is used to
approximate value network V(st+1), which avoids overestimating
the state value. Finally, the maximum entropy adaptive exploration
of Equation 7 is achieved by the adaptive temperature coefficient α.

Lα = Eat∼ρπ

[

−α logπθa (at | st)− αH
]

(10)

whereH is a lower bound on the entropy expectation. Once the
network parameters have been updated, all target networks are soft
updated.

4.3 Dyna-Q-like MBRL

To simulate the real world, consider a dynamic model
fθ :R

|S|+|A| 7→ R
|S|. For continuous states and actions, a

probability distribution sampling method is proposed so that the
world model can be output as a probabilistic form as follows:

f̃θ (st+1|at , st) = P(st+1|at , st; θ) (11)

The learning objective of f̃ is to fit the real-world model
f ⋆ and give unbias output st+1, which is trained by using the
dataset Denv = {an, sn, sn+1}Nn=1 of length N, collected from the
environment (Chua et al., 2018; Kurutach et al., 2018).

4.4 Controller saturation

To ensure accurate trajectory tracking, it is essential to provide
sufficient input assistance with the robotic manipulator’s pose
transitions. However, saturated inputs can occasionally result in
actual inputs being smaller than desired values, leading to poor
tracking performance. Consequently, devising a controller that
prevents such occurrences become an important issue. Suppose the
joint torque τ is the only control input, then the input saturation
can be described as follows:

τi =















τmax , if τi ≥ τmax

τi , if τmin < τi < τmax

τmin , if τi ≤ τmin

, i = 1, 2, ..., n (12)

where τmax is the maximum of torque and τmin is the minimum
of torque.

5 CMPO framework design

5.1 Architecture summary

The CMPO framework contains an environment, a world
model, an agent, and reply buffers. The control gain derived by
the agent is input to the environment. The robotic manipulator will
solve the dynamics based on the input and eventually output error
and state information from the environment, which will stored
in the environment buffer. Next, the environment buffer data are
used to train both the world model and the curiosity network.
Before training the world model, the environment buffer data
are divided into training and evaluation datasets. After training
the world model and the curiosity network, the world model
generates simulation data and stores it in the world model buffer.
Finally, the data from the environment buffer and model buffer
are uniformly collected by the buffer scheduler, which is used to
train the agent’s actor network and Q network. The agent will
continuously follow this loop to interact with the environment
and train until convergence, and more detailed frameworks are
shown in Figure 1. Specific implementation details are shown in
Algorithm 1.

5.2 MBRL design

The MBPO technique supplements the branch prediction and
ensemble model based on the Dyna-Q-like MBRL method, which
increases the model sampling efficiency and training speed (Janner
et al., 2021). Therefore, MBPO is used to design the world model
under the CMPO algorithm. To better express and generalize the
complex dynamic environment in a continuous Markov process,
the Gaussian probabilistic neural network models are used to fit
the environment to cope with the aleatoric uncertainty (Chua et al.,
2018). Departing from Equation 11, the world model will predict
the next state and reward. Thus, the model can be rewritten as
follows:

f̃θ (ŝt+1, r̂t|at , st) = P(ŝt+1, r̂t|at , st; θ)

= N (µθ (st , at) ,6θ (st , at))
(13)

whereN(·) denote the gaussian distribution.
Since the states in the actual environment are less dimensional,

the feature network in curiosity is used along with the model
to encode its states, augmenting the feature extraction capability.
Given that the environment changes slightly from step to step, the
deterministic network (Luo et al., 2022) is applied to describe the
predicted output of the world model. With the combination of the
above changes, Equation 13 can be rewritten to satisfy the iterative
output of the next state in Equation 5:

(

ŝt+1, r̂t
)

= (st+1, rt)+ f̃θ (1ŝt+1,1r̂t|at , st)

= (st+1, rt)+N(µθ

(

ϕ(st), at
)

,6θ (ϕ(st), at))
(14)

where ϕ(·) denote the feature network and 1(·) means the
magnitude of change.

Using the basis of Equation 14 as the particle, the B-length

bootstrap ensemble model f̃ =
{

f̃ 1θ , f̃
2
θ , · · · , f̃

B
θ

}

is adopted as the

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1376215
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1376215

FIGURE 1

Schematic of the CMPO architecture. The agent interacts with the environment to store environment bu�er data. The world model selects particles

in the ensemble network to store generated model bu�er data. In addition, the environment bu�er data are used to train the curiosity network.

Ultimately, the agent’s actor network and Q network are trained using the bu�er data evaluated via curiosity.

final world model, and then, a sum of negative log-likelihood loss is
used as follows (Chua et al., 2018) :

Lθ =

N
∑

t=1

[µθ (ϕ (st) , at)− st+1]
T ·6−1

θ
(ϕ (st) , at)

· [µθ (ϕ (st) , at)− st+1]+ log det6θ (ϕ (st) , at)

(15)

In practice, the output is obtained randomly from a particle by
designing short trajectory sampling frequencies (TS1method; Chua
et al., 2018 ). At every environmental timestep, the TS-1 method
selects a new particle f̃ iθ from the ensemble model f̃ to serve as the
branching prediction output for the next timestep. Branch rollouts
are used to recursively generate new data from the world model by
means of Equation 14 and store it in world model buffer Dmodel.
Theory (Shen et al., 2020) suggests that incremental branch lengths
can ensure advancements in real training, and the model returns
are increased enough to guarantee the progression of base returns.
For the agent, the SAC (Haarnoja et al., 2019) algorithm is used
to optimize the policy with data collected from mixed Denv and
Dmodel.

5.3 Curiosity model design

5.3.1 Self-supervised exploration
The curiosity network provides the agent with additional

intrinsic rewards to overcome the uncertainty of the environment
through more exploration, whereas the networks look for potential

patterns in the environment through self-supervised learning.
The self-supervised exploration of curiosity is inspired by the
earlier structure (Pathak et al., 2017), which consists of a forward
network and an inverse network. Due to the simplicity of the robot
information, the states are encoded by the same feature networks
before being fed into them.

The inverse network takes in the current and next state as
inputs and outputs the current action. This allows the inverse
network to learn how to derive the correct control gain. The loss
function of the inverse network can be expressed as the mean
squared error between the predicted and actual action (Pathak et al.,
2017):

LInverse =
1

B

B
∑

n=1

(an − ân)
2 (16)

where B is the batch size of each train step. The main task of the
inverse network is to learn potential feature encodings so that they
provide more feature semantics in the inputs for both the world
model and the forward network.

The input of the forward network is identical to the world
model, which uses a residual network (Li et al., 2020) to predict the
feature encoding of the next state ϕ̂(st+1). The disparity between
the predicted and actual encodings is used to measure curiosity and
is defined as the loss function of the forward network:

LForward = ro =
∥

∥ϕ̂(st+1)− ϕ(st+1)
∥

∥

2
2 (17)

where ro is the output intrinsic reward, as measured by coded
differences. Combining Equations 16, 17 mentions in the study by
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Pathak et al. (2017):

LCuriosity = βLForward + (1− β)LInverse (18)

where 1 ≥ β ≥ 0 is a scalar to balance LForward and LInverse.
Curiosity encourages the agent to look for new states (Li et al.,
2020), which improves the agent’s sampling efficiency. However,
in uncertain environments, pessimistic incentives can lead robots
to undertake risky actions. Hence, providing a method to evaluate
intrinsic rewards plays a crucial role. The next part of this study
provides a valuation and conversion strategy for intrinsic rewards.

5.3.2 Positive–negative intrinsic
To further upgrade the sampling efficiency in uncertain

environments with input saturation, an approach is proposed to
strengthen the expression of curiosity, which is distinguished as
positive and negative.

Let X denotes the sample of quaternion corresponding to the
Markov process, and its two subscripts (·)e and (·)m denote the
samples of the quaternion in Denv and Dmodel, respectively, then
F denotes the distribution function of these two datasets. Assuming
that the trained world model is plausible according to the theory
by Janner et al. (2021). Given the inputs in Denv, the model output
distribution will also follow the distribution pattern in Denv. It can
be further deduced that the generated datasetDmodel should exhibit
similarity to the distribution ofDenv as follows:

Fe(Xe) ≈ Fm(Xm) (19)

After training in Denv, data input in Denv will produce small
intrinsic rewards based on the convergence law of curiosity.
Concerning Denv and Dmodel, it is known from Equation 19
that curiosity still produces little reward when the world model
produces the same distribution of data inputs. Based on the above,
the current world model is ventured to use as a baseline for
measuring curiosity.

Denv becomes D′env after collecting new data and no longer
satisfies the Equation 19. Assuming that the distribution of Dmodel

follows the principle of being nearest and most similar to that of
D′env. The predictive rewards of the world model are designed as
a baseline so that the curiosity of Dmodel is defined as positive.
D′env compares actual and predicted reward differences to assess
whether curiosity is positive or negative. Taken together, the output
positive–negative intrinsic reward can be rewritten as follows:

ro =

{

sgn
(

rt − r̂t
)

·
∥

∥ϕ̂ (st+1)− ϕ (st+1)
∥

∥

2
2 , if (rt , st+1) ∈ D′env

+1 ·
∥

∥ϕ̂ (st+1)− ϕ (st+1)
∥

∥

2
2 , if (rt , st+1) ∈ Dmodel

(20)
where sgn(·) denote the signal function. In practice, the sign is

used instead of the difference to account for the mismatch between
the model and the environmental data (Shen et al., 2020). Empirical
evidence reveals that the sign is adequately robust to information
bias. The specific flow of the algorithm is shown in Figure 2.
Intrinsic rewards serve as appraisals of the agent’s exploration
process and, together with extrinsic rewards for environmental
interactions, constitute rewards for the actual output. However,
a terrible proportion of intrinsic rewards in an intensive reward

environment can lead to the nullification of extrinsic rewards. In
the next section, a method for adjusting the amount of intrinsic and
extrinsic rewards is developed.

Remark 1. Curiosity is sensitive to state changes due to its state
novelty design (Burda et al., 2018a). Research (Brunke et al., 2022)
suggests that curiosity can have a negative effect when bad states
are received. Equation 20 dynamically adjusts intrinsic rewards
based on the quality of the state. When the environmental state
is unfavorable, pessimistic curiosity hinders the exploration of
the agent in that direction. Compared with the single method of
evaluating state differences in the study by Pathak et al. (2017)
and Burda et al. (2018b), positive–negative intrinsic helps the agent
explore in a relatively better direction which improves the model
sampling efficiency.

Remark 2. In the statement above, the nearest-similarity principle
refers to a reasonable assumption that the input data generated by
the next episode are also available in Dmodel and have been used to
train the agent recently. The reasonableness of the assumption is
based on the phenomenon that each agent training samples a much
higher proportion of model data than environment data. Moreover,
the world model extrapolates predictions from the initial states
within Denv, underlining the similarity between the distribution of
D′env andDmodel.

5.3.3 Curiosity expansion
The ICM (Pathak et al., 2017) moderates the impact of agent

curiosity exploration using a fixed intrinsic reward ratio and is
subsequently followed study by Burda et al. (2018b) and Yang et al.
(2019). Nonetheless, the intrinsic reward decreases significantly
with agent updates. It is difficult to tune an appropriate ratio for
intrinsic reward. Instead of utilizing the fixed ratio, the acquisition
of intrinsic rewards is treated as a constrained problem, where the
mean value of intrinsic rewards is constrained, allowing intrinsic
rewards to change adaptively during training. A similar approach
is mentioned in the study by Boyd and Vandenberghe (2004) and
Haarnoja et al. (2019), where it is applied to adaptively constrain
the temperature coefficient in maximum entropy optimization.
However, the curiosity-agent complexity association makes the
optimization problematic.

In Equation 19, the relationship between the model data and
the environment data has been mentioned, which has been shown
the world model boosting for the agent. Thus, the maximum return
of rewards from the agent in the intrinsic reward ratio constraint
problem is equivalent to solving for the optimal fit of the curiosity
and world model to the environment. Formally, the following
constrained optimization problem is concerned:

min
f̃ b0 : bT

E(st ,st+1 ,at)∼Denv

[

ϕ̂(st+1)− ϕ(st+1)
]

+E(st ,at)∼Denv

[

f̃ (st , at)− f ⋆(st , at)
]

s.t. E(st ,st+1 ,at)∼Denv

[

ro(st , st+1, at)
]

≥ R̄

(21)

where R̄ is the lower bound of target intrinsic reward and b(·)
denotes the training batch size index. There is no need to impose
a constrained upper bound, as the output intrinsically rewards
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FIGURE 2

Flowchart of the algorithm for the curiosity model. The world model outputs predicted current rewards and predicted next states after inputting

feature codes and actions for the current state. Meanwhile, the forward and inverse networks output the predicted current state features and current

actions, respectively. The sign of the di�erence between the predicted reward and the current reward is referred to as the assessment of curiosity.

The predicted features along with the actual features computed as intrinsic rewards are finally used as current intrinsic rewards along with the

evaluation results.

decreasing convergence during world model training. Similar to
the method of Haarnoja et al. (2019), an iterative scheme is
used to optimize from the last batch, modifying the constrained
optimization of Equation 21 to minimize its dual problem as
follows:

max
ηbT
≥0

min
f̃ bT

E(st ,at)∼Denv

[

f̃ (st , at)− f ⋆ (st , at)
]

+ E(st ,st+1 ,at)∼Denv

[(

1− ηbT

)

· ro (st , st+1, at)
]

+ ηbTR

(22)

where ηbT is the dual variable. The variable ηbT to be optimized
in Equation 22 corresponds to the ratio variable when the world
model is trained to fit the environment. The optimal dual variables
are addressed as follows:

η⋆
bT
= argmax

η
E(st ,st+1 ,at)∼Denv

[

(1− η) · ro(st , st+1, at)+ ηR̄
]

(23)

An iterative approach is adopted to batch optimization for η⋆
bT
,

since approximate optimization using neural networks is still valid.
Equation 23 is rewritten as the optimized minimum loss function
to facilitate consistent formatting:

Lη = (η − 1)ro − ηR̄ (24)

The ratio optimized by η⋆
bT

may be lower than the manually
designed one at the beginning. Nevertheless, as curiosity and ratio
adapt competition converge, this method will still vary in the later
steps, providing a boost for the agent. The detailed variation process
is shown in Figure 7D.

After using the adaptive ratio variable, intrinsic reward ri and
total reward r are defined as follows:

ri = η · ro

r = re + ri
(25)

where re is the extrinsic reward that can be obtained from the
environment. Substituting this new reward r, the critic network
update Equation 9 of SAC is made better. In addition, the critic
network also allows for better evaluation and training of the actor
network, increasing the overall training speed of the agent.

Remark 3. Differing from the previous intrinsic reward design
(Pathak et al., 2017), ri in Equation 25 has a lower bound R̄.
With the gradient optimization method, the ratio of intrinsic
rewards is updated along with the curiosity network to ensure
a pessimistic lower bound on intrinsic rewards. Furthermore,
ri converges toward reduction as indicated by the Equation 17.
Through the interaction of decreasing convergence and expansive
updates, intrinsic rewards remain influential despite the later stages
of agent training. Subsequent experiments demonstrated the ability
of the ratios to have a sustained impact, as shown in Figure 7D.

5.3.4 Adaptive bu�er schedule
Previous model optimization theories (Janner et al., 2021;

Luo et al., 2021) provide a reliable basis for branch length
enhancements, but they lack a method for selecting the buffer
ratio. The buffer ratio helps the agent to sample a quota of
environment data and model data, which are used for agent
training. The environmental data are accurate, but the total amount
of it is much less than the model data, which is not enough to
train the agent. Conversely, the model data are sufficient, yet the
insufficiently trained world model generates fatally biased data,

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1376215
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2024.1376215

leading to difficulties in convergence of agent training. The recent
FVI bounds theory (Lai et al., 2021) provides the missing ratio
theory, showing that a dynamically increasing ratio of environment
buffer is beneficial for agent augment. Inspired by this remark, the
specificmethod for judging the ratio is provided under the curiosity
model.

The curiosity that converged for Denv before training may be
different forD′env, and thus, novelty ratio ξ is defined as follows:

ξ = clip

(

exp−

(

∑

Denv

∣

∣ro (st , st+1, at)
∣

∣

−
∑

Dmodel

ro
(

st , ŝt+1, at
)

)2

, ξmin, ξmax

) (26)

where clip(·) denotes the clip function, its first parameter is the
raw value, which will clip to the lower bound value ξmin and the
upper bound value ξmax. The ratio ξ is defined as the proportion of
data sampled fromDenv in each agent training step.

Remark 4. Effectively organizing environment and model buffer
data is a challenging endeavor (Lai et al., 2021). Although the
relevant theory (Lai et al., 2021) proves the importance of
scheduling and provides a method for calculating the ratio, it
uses an additional agent implementation that requires additional
training, resulting in high implementation costs. The novelty
distance uses known world models and buffer data for calculation,
without requiring additional computational costs. In addition, the
corresponding experimental ratio changes exhibit similarity to the
theory, as shown in Figure 7C.

Remark 5. At the beginning of the training iterations, the agent will
continue to explore novel data, and the difference in Equation 26
will be amplified, hence the ratio will be at its minimum value. As
the number of iterations increases and the curiosity model learns
more data, the agent gradually encounters less novel data, and
accordingly the difference in Equation 26 is scaled down so that
the ratio gradually increases to the maximum value. More detailed
trends are shown in Figure 7C. This ratio, which reduces the bias of
the world model toward the agent, is in line with this theory’s main
thrust.

6 Controller design

Curiosity model can help the agent to solve complex dynamic
problems, but in practice, further assurance is essential that the
agent will explore the robotic manipulator in safety (Brunke et al.,
2022), which happens to be the strength of traditional controllers.
PID is a simplemodel-free controller that can accomplish trajectory
tracking tasks by giving suitable parameters (Wang et al., 2020). In
this section, the CMPO is combinedwith PID controllers to provide
suitable control gains to make the controllers achieve performance
even in uncertain environments with input saturation.

6.1 Reward design

According to the definition of the dynamic equations shown
in Equation 3, it is known that updating the system is related to
position and velocity (Hu et al., 2020). Hence, non-linear rewards
are designed for the positional factors, while the auxiliary speed
factors use linear rewards, which are designed as follows:

re =

(

1−
2

exp(−ς · (e1 − σ ))

)

+ eT2Ae2 (27)

where σ denotes the benefit threshold, ς > 0 denotes the
sensitive scale, and A is a semi-positive definite constant matrix
that denotes the weight of velocity in extrinsic reward. σ is used
to indicate the limit of positive and negative rewards, allowing the
agent’s capability to be as good as possible for that bound. To allow
the agent to have a fast exploratory ramp-up period in rewards, ς
can set the ratio of increase so that the agent can obtain rewards
quickly after a certain level of performance is achieved.

6.2 Tracking controller design

The general definition of PID controller is as follows (Xu et al.,
2019):

τ (t) = Kpe(t)+ Ki

∫ T

0
e(t)dt + Kd

d

dt
e(t) (28)

Discretizing Equation 28 and applying it to the robotic
manipulator environment, it can be rewritten as follows:

τ (t) =Kpe1(t)+ Ki

(

δ · e1(t − 1)+ (1− δ) · e1(t)
)

+ Kde2(t) (29)

where Kp,Ki, and Kd ∈ R
n denote the proportional, integral,

and differential gains of the n-joint dimension, respectively, and the
integral term is approximated by proportional smoothing, which
has a proportional value δ that denotes the memory of past errors.
Equation 29 is used as a traditional control, which becomes the link
between the action inputs and the conversion of the inputs from the
robotic manipulator system.

The τ and d generated by the environment are iterated
according to Equation 5, and new environment data are generated
as a means of cyclic execution in the environment. In the CMPO
framework, the environment steps are completed, and data are
collected by interacting with the environment, inputting the
current state st = {x, xd, ẋ, ẋd} to the agent and obtaining the
action at = {Kp,Ki,Kd} as controller gain input to the traditional
controller.

After the PID has obtained the controller gain, the torque is
calculated based on the error input serves as the input of the force
at each joint of the robotic manipulator. The robot manipulator
calculates the position for the next step, which is used to determine
the next state and the new error. Finally, the reward system gives
an evaluation and updates the critic network and actor network
sequentially. Figure 3 contains specific details regarding the control
of environmental and updating cycles.

More details of the parameter update are shown in Figures 1, 3.
Once the environment and model buffers have accumulated
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var (θa, θQ{1,2}, θ , θ
icm) ← random_normal ⊲ Initialize network parameters

var θ̄
Q
{1,2} ← θ

Q
{1,2} ⊲ Initialize target network parameters

var λa, λQ, λα , λθ , λη , λicm, τ ,α, η, ξ ⊲ Initialize learning rate and training parameters

buffer (Denv,Dmodel)←⊘ ⊲ Initialize environment and model buffers

for each train iteration do

repeat each environment step ⊲ Collect environment data

at ∼ πθa (at |st) ⊲ Get action from actor network

use Equation 29 to obtain joint torques

sample the st+1 by dynamic Equation 1 and reward system of Equation 27

Denv ← Denv ∪ {(st , st+1, at , rot )} ⊲ Store the data denv

if |Denv ∪Dmodel| > Ntrain and achieve training network frequency then

calculate buffer ratio ξ by Equation 26 ⊲ Schedule buffer ratios

sample ξ · Nsample of denv ∈ Denv

sample (1-ξ ) · Nsample of dmodel ∈ Dmodel

calculate the total reward rt by Equation 25 for D
sample
env ⊲ Evaluate the novelty of environment

buffer

for batch dtrain ∈ (Dsample
env ∪D

sample
model ) do

θa ← θa − λa∇θaLθa ⊲ Update actor network by Equation 8

θ
Q
i ← θ

Q
i − λQ∇θ

Q
i
L

θ
Q
i

for i ∈ {1, 2} ⊲ Update critic network by Equation 9

α← α − λα∇αLα ⊲ Adjust temperature by Equation 10

θ̄
Q
i ← τθ

Q
i + (1− τ )θ̄Qi for i ∈ {1, 2} ⊲ Soft update the target network

end for

end if

until environment DONE

if achieve training world model frequency then

Update environment buffer ratio ξ by Equation 26

for batch denv ∈ Denv do

θ ← θ − λθ∇θLθ ⊲ Update ensemble networks by Equation 15

end for

Dmodel ← Dmodel ∪ {(st , ŝt+1, ât , r̂t)batch} ⊲ Store the batch data dmodel

calculate the total reward rt by Equation 25 for Dmodel ⊲ Add the novelty of model buffer

for batch denv ∈ Denv do

θicm ← θicm − λicm∇θicmLCuriosity ⊲ Update curiosity network by Equation 18

η← η − λη∇ηLη ⊲ adjust curiosity expansion by Equation 24

end for

end if

end for

Algorithm 1. CMPO training algorithm.

FIGURE 3

Schematic diagram of how robotic manipulator control works with reinforcement learning combined with a conventional controller. The PID

controller calculates the joint torque based on the control gain of the actor network. Next, the robotic manipulator receives the torque and obtains

the next state information. This information is used to calculate the next control gain and the error from the actual trajectory position. The input error

is then utilized by the reward system to update the critic network, which, in turn, updates the actor network.
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FIGURE 4

Comparison of tracking performance between CMPO and conventional PID controllers in the basic environment. (A, B) represent the curves of the

position tracking over time for joint 0 and joint 1; (C, D) represent the curves of the tracking error over time for joint 0 and joint 1; (E, F) represent the

curves of the input torque magnitude over time for joint 0 and joint 1.

enough data, the agent will be updated in steps. Similarly, the
world model is updated in episodes with all the data from the
environment buffer. These two processes make up the update cycle
of the controller. The pseudocode for the CMPO controller is
shown in Algorithm 1.

7 Experimental results and analysis

7.1 Environmental configurations

Based on the scheme and methodology shown in the study
by Hu et al. (2020), a simulation environment is set up for
the tracking control of a two-link (2-DOF) manipulator in an
uncertain environment with robot input saturation. The format
of the parameters, inertial matrix, centrifugal and Coriolis force
matrix, gravitational force effect of the robot, and their internal
specific parameters are shown in Appendix A.

The control performance experiments of CMPO is compared
with cutting-edge controllers. Advanced controllers not only
use robotic models to improve control accuracy but also
counteract environmental uncertainties through a sliding mode
robust approach (Islam and Liu, 2011; Chertopolokhov et al.,
2023). Unlike model-free controllers, model-based controller
performance relies on the accuracy of the robotic model. In
uncertain environments, robotic arm models potentially exist
errors. Thus, different robotic model errors are employed in
advanced controllers to compare the control performance with the
CMPO algorithm.

In the environment, the individual states of the parameters of
the robotic manipulator will be initially set as q1(0) = q2(0) = −0.5
and q̇1(0) = q̇2(0) = 0.0. The curves required to be tracked
are designed as qd1(t) = sin(t) and qd2(t) = cos(t), thereby the
tracking velocity is designed as q̇d1(t) = cos(t) and q̇d2(t) =

− sin(t). Then, the extrinsic reward is set as σ = 0.35, ς = 2.0,
and A = 0, and the parameter of the PID controller is set as
δ = 0.5. The step size is limited to 5, 000 for each episode of the
environment, and the time variance of each step is limited to 0.01 s.
Each episode of the environment simulates real-time information
about the robot’s trajectory for 50 s in agent training and the same
step gap for 30 s in checkpoint simulation.

Depending on the experiment, the environments are
categorized into three types, which are: basic, small-change,
and large-change environments. Each of them adds saturation and
disturbance, which are set as τmax = 60, τmin = −60, and |d| ≤ 2.
Each of the three settings adds saturation and disturbance, with
disturbance being uniform noise occurring 75% of the time. For
more specific settings of the robot parameters in each environment,
refer to Appendix A.

7.2 Evaluation of algorithm

7.2.1 Generalization ability
In this experiment, the performance of CMPO is compared

with traditional PID (Wang et al., 2020) controller.
The trained CMPO and the completed parameter-tuning

PID algorithms are first simulated in the basic environment.
The results are presented in Figure 4. It can be observed from
Figures 4A, B that agent boosts the speed of the convergence
afterward by sacrificing the performance of link 1 at the beginning.
With this policy, it is obvious from Figures 4C, D that the
converged tracking error CMPO is significantly better than that
of PID.

The same models and parameters are then applied to simulate
the small-change environment. This experiment compares their
generalization abilities in a robotic environment with high
tolerance. The results are shown in Figure 5. The tracking
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FIGURE 5

Comparison of tracking performance between CMPO and conventional PID controllers in the small-change environment with the same parameters

in basic environment. The display content of each component image is similar to that of Figure 4.

FIGURE 6

Comparison of tracking performance between CMPO and fine-tuning CMPO in the big-change environment. The display content of each

component image is similar to that of Figure 4.

trajectories and errors of Figures 5A–D in this environment are
similar to those of the basic environment, demonstrating the
admirable generalization capabilities of traditional controllers.
However, the input costs are shown to be different in Figures 5E,
F, with CMPO having lower input than PID. This comparison
empirically suggests that the agent input policy further enhances
the control performance.

Finally, a CMPO with the same parameters is simulated in the
big-change environment, which is then compared with the fine-
tuned CMPO. The tracking results are shown in Figure 6. The
original CMPO takes longer to converge in performance, which is
shown in Figure 6A. Based on the data presented in Figure 6E, it is

evident that the cause of the issue lies in the input saturation being
more severe. Fine-tuning CMPO requires only approximately 20%
of the original training cost, as shown in Figure 7B, demonstrating
the value of generalization.

7.2.2 Training performance
In this experiment, the CMPO is performed with other RL

algorithms, including SAC, MBPO, and AMPO in the basic
environment. The detailed parameter settings are shown in
Appendix B.
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FIGURE 7

Visualization of agents training metrics in the basic environment. (A) is the reward curve for CMPO compared with baseline RL, obtained by taking the

mean and standard deviation of five times training in the basic environment; (B) compares the reward curves trained in the basic environment with

that from fine-tuning the model in big change; (C) is a visualization of the basic environmental reward curve vs. the adaptive environment bu�er

ratio; (D) visualizes the agents using fixed and adaptive ratios to output intrinsic rewards in the basic environment.

FIGURE 8

Comparison of the tracking e�ectiveness of CMPO with other baseline RL in the basic environment. (A, B) represent the curves of the position

tracking over time for joint 0 and joint 1; (C, D) respectively represent the curves of the tracking error over time for joint 0 and joint 1.

FIGURE 9

Comparison of the tracking e�ectiveness of CMPO in the same parameters with cutting-edge controller in the basic environment. The display

content of each component image is similar to that of Figure 4.

The reward curves are shown in Figure 7A. It can be observed
that CMPO trains faster than all baselines in the basic environment,
indicating that the curiosity model plays an important role in

enhancing sampling efficiency and robustness. In addition, the
trajectory tracking performance of the algorithms is compared
and can be accessed in Figure 8. It is found that CMPO tracking
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FIGURE 10

Comparison of the tracking e�ectiveness of CMPO in the same parameters with di�erent input disturbance frequency in the basic environment. The

display content of each component image is similar to that of Figure 4.

FIGURE 11

The results of the ablation experiment of CMPO. After removing the

individual modules of CMPO separately, the training is performed in

the basic environment with a step size of 100K. Comparison of

ablated modules includes curiosity expansion, positive-negative

curiosity, and adaptive scheduling bu�er ratio.

outperforms all the baseline algorithms while achieving asymptotic
performance slightly better than that of SAC.

To further validate the effect of the ratios, the simultaneous
change in the ratios with the rewards is shown in Figures 7C, D.
In each episode of agent training, Figure 7C shows the variation
of the environment buffer sampling ratio with rewards. The ratios
reflect a general upward trend throughout training. But in detail,
a trend of decreasing rewards is repeatedly predicted to elevate the
ratios, which is consistent with the theoretical remarks (Lai et al.,

2021). The intrinsic reward for curiosity with a fixed ratio has much
larger outputs than the adaptive ratio at the beginning, as shown in
Figure 7D. In addition, the adaptive ratio still maintains an effective
curiosity reward output in the later stages.

Figure 9 illustrates the control performance of the advanced
controller with different robotic model errors and the CMPO
in the basic environment. The advanced controller demonstrates
optimal control performance in error-free conditions, as shown in
Figures 9A–D. However, as shown in Figures 9E, F, the advanced
controller exhibits the highest input fluctuation and associated
input cost at this juncture. Conversely, the CMPO approach
achieves comparable control performance while minimizing input
costs. Due to the advanced controller’s high sensitivity to variations
in the robotic model, its control performance diminishes with
increasing model error, ultimately falling behind that of the
CMPO algorithm.

In uncertain environments, low-frequency or high-frequency
disturbance inputs can reveal controller’s immunity to interference.
Figure 10 depicts the control performance of the CMPO
algorithm under varying disturbance probabilities. Figures 10A–D
demonstrate that disturbances within bounded ranges exhibit
negligible impact on control performance, irrespective of
their frequency characteristics. Notably, Figures 10E, F reveal
discernible differences in moment inputs generated under differing
disturbance scenarios. Specifically, with increasing disturbance
probability, greater input magnitudes are employed to mitigate the
disturbance effects.

7.2.3 Ablation experiment
To demonstrate the effect of model enhancement across

modules, an ablation experiment is performed. The result is
shown in Figure 11. Reward convergence is less stable when
curiosity expansion is no longer applied, although the reward
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FIGURE 12

Training reward curves for the CMPO parameter sensitivity experiment. Reward changes for agent training are obtained by increasing and decreasing

the learning rate of the current gates and after training once in the base environment with a step size of 500K. (A) demonstrates the e�ect of di�erent

learning rates of the agent on training, (B) exhibits the impact of di�erent learning rates of the world model on training, and (C) compares the

influence of di�erent learning rates of the curiosity network on training.

ascends slightly faster than before. The rate of convergence of
rewards is substantially reduced if positive–negative intrinsic is
removed. It also causes the same distress when the buffer scheduler
is hidden. Moreover, the convergence results deteriorated. This
experiment demonstrates the beneficial effects of all three
modules in CMPO, improving the sampling efficiency of
the model.

7.2.4 Hyperparametric sensitivity experiment
Parameter sensitivity experiments offer valuable insights into

the impact of parameter variations on the efficacy of model
training. Figure 12 shows the simultaneous testing of the agent
learning rate λa, λQ, λα (denoted as agent_lr), the curiosity
network learning rate λicm (denoted as curiosity_lr), and
the world model learning rate λθ (denoted as model_lr). As
shown in Figure 12A, it is evident that the agent’s performance
showsminimal sensitivity to changes in the learning rate parameter.
Despite fluctuations in the reward curve corresponding to
different parameters, the overall trend toward eventual convergence
remains consistent. Conversely, Figures 12B, C illustrate that
both the world model and curiosity network exhibit sensitivity
to changes in the learning rate. Particularly in the world
model shown in Figure 12B, excessively small learning rates
can lead to failure in achieving convergence during agent
training.

8 Conclusion

This study investigates agent-efficient sampling and training
for robot manipulators with input saturation in uncertain
environments. The combination of the curiosity model and
a traditional model-free controller is developed to strengthen
trajectory tracking performance. Specifically, a notion of
positive–negative intrinsic is defined and used in conjunction
with adaptive ratios. The gain policies implemented by the

agent based on CMPO are empirically concluded to effectively
potentiate control performance. In addition, the framework
can achieve low-cost fine-tuning to boost tracking capabilities
in different scenarios, which facilitates the application. By
virtue of these experimental results, augmented model
sampling efficiency and competitive control performance are
exhibited.

The aforementioned procedure is executed via numerical
simulations. In forthcoming advancements, experimental
endeavors will leverage robotic manipulators equipped with
expanded input–output capacities and augmented degrees of
freedom. Correspondingly, the creation of increasingly intricate
application environments is envisaged.
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