
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-18-2016 12:00 AM

IOT Stream Analytics Platform IOT Stream Analytics Platform

Xing Zhou
The University of Western Ontario

Supervisor

Hanan Lutfiyya

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Xing Zhou 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Zhou, Xing, "IOT Stream Analytics Platform" (2016). Electronic Thesis and Dissertation Repository. 4036.
https://ir.lib.uwo.ca/etd/4036

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61691552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4036?utm_source=ir.lib.uwo.ca%2Fetd%2F4036&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

I

Abstract

 The Internet of Things (IoT) is changing people’s surrounding physical world into

an information ecosystem that facilitate our everyday life. Billions of smart objects

will become data-generating “things” that can sense environmental changes and report

their sensed data in near future. Leveraging the huge amount of sensory information is

a key issue to realize the IoT solutions in many areas. Adequate technologies are

required for data collection, transmission, data processing, analysis, reporting, and

advanced querying.

 In this thesis, an IoT Stream Analytics Platform that supports IoT application and

service development is proposed: it provides user applications a way to capture

flowing data from multitudes of data sources and provide analytical insights in real

time based on user needs. Developers can conveniently build their IoT applications on

this platform without having to consider the diversity and complexity of smart devices

and their underlying networks.

Keywords

Internet of Things, Stream Data Analysis, Platform as a Service, Cloud Computing

II

Acknowledgments

 Foremost, I would like to express my sincere gratitude to my advisor Prof. Hanan

Lutfiyya for the continuous support of my study and research, for his patience,

motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the

time of research and writing of this thesis.

 Finally, I would like to thank my family, my friends for giving me support

throughout my career.

III

Contents

Abstract ... I

Acknowledgments ... II

Contents .. III

List of Figures ... V

1. Introduction .. - 1 -

1.1 The Definition for Internet of Things ... - 1 -

1.2 Internet of Things applications .. - 2 -

1.3 Big Data Explosion .. - 3 -

1.4. State of the art .. - 4 -

1.5 Problem Statement .. - 5 -

2 Related Work ... - 7 -

2.1 Database management system ... - 7 -

2.2 Data Stream Management Systems and Query Languages - 8 -

2.3 Commercial Platforms ... - 10 -

3. System Design Requirements .. - 12 -

3.1 Requirement: Real-time Analysis of Stream Data .. - 12 -

3.2 Requirement: Stream Filtering .. - 13 -

3.3 Requirement: Temporal Analysis and Aggregation .. - 13 -

3.4 Requirement: Multiple Stream Correlation ... - 14 -

3.5 Requirement: Data shared by multiple users ... - 14 -

4. Query Language ... - 15 -

4.1 Query Assumptions ... - 15 -

4.2 Format of Queries ... - 16 -

4.3 Examples of Queries .. - 17 -

4.4 Interpreting the query message.. - 18 -

5 IoT Event Stream Processing Platform .. - 21 -

5.1 Platform Introduction ... - 21 -

5.2 Platform Architecture .. - 22 -

IV

5.3 Information Model .. - 24 -

5.3.1 Sensor Data Model .. - 24 -

5.3.2 Stream Map .. - 25 -

5.3.3 Stream Queues .. - 25 -

5.3.4 An Information Model Example .. - 25 -

5.4 Interactions ... - 26 -

6 Software Demonstration .. - 33 -

6.1 Software implementation ... - 33 -

6.2 Verification of the functionality ... - 33 -

6.2.1 Health care application example ... - 33 -

6.2.2 Smart road application example .. - 39 -

6.2.3 Smart agriculture application example .. - 41 -

7 Conclusion and Future Work ... - 43 -

References .. - 46 -

Appendix .. - 49 -

Appendix1 ... - 49 -

V

List of Figures

Figure 1 Syntax Tree 1 .. - 19 -

Figure 2 Syntax Tree 2 .. - 19 -

Figure 3 Syntax Tree 3 .. - 20 -

Figure 4 Syntax Tree 4 .. - 20 -

Figure 5 Platform overview diagram .. - 22 -

Figure 6 Platform architecture diagram ... - 22 -

Figure 7 Issue queries and parse queries .. - 27 -

Figure 8 Start a query task ... - 28 -

Figure 9 Distribute data among query tasks .. - 29 -

Figure 10 Execute each query task .. - 29 -

Figure 11 Publisher-Subscriber Chanel .. - 31 -

Figure 12 Receive query results ... - 32 -

Figure 13 start a simulator ... - 34 -

Figure 14 sensor configuration... - 34 -

Figure 15 sensor configuration... - 34 -

Figure 16 sensor simulator ... - 35 -

Figure 17 start query engine .. - 35 -

Figure 18 invalid query ... - 36 -

Figure 19 issue query .. - 36 -

Figure 20 receive query result .. - 37 -

Figure 21 issue another query .. - 37 -

Figure 22 issue third query... - 38 -

Figure 23 issue fourth query .. - 39 -

Figure 24 sensor configuration... - 39 -

Figure 25 issue a query ... - 40 -

Figure 26 existing query list ... - 40 -

Figure 27 issue existing query .. - 41 -

Figure 28 sensor configuration... - 41 -

Figure 29 issue a query ... - 42 -

Figure 30 issue a query ... - 42 -

- 1 -

Chapter 1

1. Introduction

 In this chapter, the concept of Internet of Things (IoT) is introduced. We will then

discuss the potential IoT application areas and the expected data explosion brought by

IoT. Finally we will discuss the state of art and identify data management challenges

that could complicate IoT application development.

1.1 The Definition for Internet of Things

 The Internet of Things (IoT) [1] is a major wave in computing, where we not only

connect traditional end-user devices such as smart phones and tablets, but also

physical objects embedded with sensors, actuators, and network connectivity. These

“things” typically provide data, act on the environment and/or encompass points of

control. For example, lighting can be adjusted based on data from an occupancy

sensor and time of day, and chillers can be adjusted based on temperature sensors. As

the cost of sensors and network connectivity becomes less expensive there is an

increased interest in applications. Sensor data is seen as opening up the opportunities

for new services, improved efficiency and possibly more competitive business

models.

 In a recent white paper [2] the Information Technology Association of Canada

(ITAC) stressed that IoT will increase the competitiveness of Canadian businesses.

Research from IDC Canada projects spending on IoT in Canada will reach as high as

$6.5-billion (Canadian) by 2018, up from $2.8-billion in 2013. Cisco [3] predicts that

the global Internet of Things market will be $14.4 trillion by 2022. In the future, smart

computing devices and applications will surround us in an environment where the

physical and virtual worlds are constantly connected. Instead of today’s billion-node

- 2 -

Internet network, the future Internet will be used by trillions of devices, people,

organizations and places [4].

1.2 Internet of Things applications

 Typical IoT applications and services are or can be applied in a variety of

application domains such as smart grids, smart homes, e-health, automotive, transport,

logistics and environmental monitoring [5]. Major application sectors are presented in

this section.

Building and home automation

 Through monitoring and control of intelligent buildings and smart homes, building

and home automation applications can accomplish tasks from enhancing security, to

reducing energy and maintenance costs. Examples include intrusion detection systems,

light and temperature control, energy optimization, predictive maintenance, and

remotely control appliances [5].

Smart cities

 Smart city applications use digital technologies or information and communication

technologies to enhance quality and performance of urban services, to reduce costs

and resource consumption, and to engage more effectively and actively with its

citizens. Examples include smart waste management, smart lightning, pipeline leak

detection, traffic control, smart roads, surveillance cameras etc. [5].

Health care

 Health care applications are devoted to improving the functionality and

accessibility of digital products that are revolutionizing the health and fitness

industries. Application examples include patient surveillance, sportsmen care, medical

fridges, and hospital asset tracking [5].

http://www.ti.com/solution/docs/appsolution.tsp?appId=407
http://www.ti.com/solution/chemical_gas_sensor?keyMatch=chemical/gas%20sensor&tisearch=Search-EN
http://www.ti.com/solution/chemical_gas_sensor?keyMatch=chemical/gas%20sensor&tisearch=Search-EN
http://www.ti.com/solution/camera_surveillance_ip_network

- 3 -

Smart manufacturing

 The applications of smart manufacturing provide opportunities to improve

efficiency across labor, materials and energy in the manufacturing industry. Examples

include flow optimization, real time inventory, asset tracking, employee safety,

predictive maintenance and firmware updates [5].

Retail and Logistics

 The Internet of Things can also be beneficial for the retail and logistics industry by

optimizing information flows along the entire supply chain or tracking goods during

transportation. Examples are Supply Chain Control, NFC payment, intelligent

shopping applications, quality of shipment conditions, item location, and fleet

tracking [5].

Smart Agriculture

 For farmers and growers, the Internet of Things has opened up extremely

productive ways to cultivate soil and raise livestock. Prospering on this prolific

build-up of the Internet of Things in agriculture, smart agriculture applications are

gaining ground with the promise to deliver 24/7 visibility into soil and crop health,

machinery in use, storage conditions, animal behavior, and energy consumption level

[5].

1.3 Big Data Explosion

 Most analysts agree that that the Internet of Things will be huge. For example,

Accenture’s survey states that by 2019 two-thirds of consumers expect to buy

connected technology for their homes; and nearly half expect to buy wearable

technology [6]. Cisco predicts that by 2020 there will be approximately 50 billion

connected devices [6] and that the sensor data will often flow as a constant stream

from the device to the network. The amount of data generated can be huge. For

- 4 -

example airliners can have more than 300,000 sensors on board which generates 20

TB of data every hour during a flight [7]. Cisco estimates that the amount of data

generated by Internet of Things devices will be 403Zetta byte by 2018 which equals

47 times of the predicted total data center traffic and 267 times the predicted amount

flowing between data centers and users [8]. Indeed, the Internet of Things

communication generates enormous amounts of Internet traffic.

1.4. State of the art

 Sensors can be built small enough to be embedded into many physical objects and

wireless communication technologies have improved to provide data connectivity that

allows data to be produced frequently. These sensors will massively increase the

amount of data available for analysis. Developing applications that make use of this

data is challenging since application developers have to deal with heterogeneous

devices and the underlying network for accessing the sensor data. After capturing the

raw sensor data, the application has to transform the data to a proper format and apply

analytics to data in order to extract valuable information.

 IoT provides massive opportunities but also poses data management challenges.

One of these challenges is that many IoT applications require that queries are

long-running over data streams where the data is continuously generated. There are

some variations of database management systems such as pipelinedb[10],

EP-SPARQL[11], and Nile[12] devoted to addressing this issue. These systems allow

streaming data to be entered into the database directly or through a loading

application. A collection of applications can then manipulate DBMS data by running

SQL queries to compute metrics accurate up to the last event [9].

Data streams are not unique to the Internet of Things with examples seen in

automated stock trading, land monitoring, meteorological surveillance, logistic

services, and transaction management. Recently a new class of data-intensive

applications called data stream management systems has been widely adopted.

- 5 -

Research on stream processing started in the late 1990’s with the development of

several academic platforms e.g. Aurora[11], Borealis[12], TelegraphCQ[13],

NiagaraCQ[14], OpenCQ[15], Tribeca[16], CQL and Stream[17], GSQL and

Gigascope[18], Perla[19] and SteamMill[20].

 Compared to traditional queries, which are referred to as ad-hoc queries, data

stream management systems queries may be executed continuously over the data

passed to the systems. These are referred to as continuous or standing queries. Data

stream management systems consider data stream elements as tuples and require

stream operators. Queries may be specified declaratively using an SQL-like language

or graphically using a graph of data operations that support the continuous query

paradigm. For each operator, there are queues for buffering input. Execution plans of

registered queries are combined into one big plan to reuse results of common

operators for multiple queries. This enables real-time analysis [14]. Much of the work

focuses on algorithms for stream analysis, e.g., filtering, finding subsequences, that

can be done in memory. Little of this work addresses challenges associated with the

sharing of sensor data by multiple applications.

1.5 Problem Statement

 This work focuses on the development of a data stream systems that have several

properties. Firstly IoT applications often require real-time processing of high-volume

stream data. The processing logic should satisfy the requirements of IoT applications

in various domains. Secondly, IoT scenarios require a decoupling of data consumers

and data producers. We assume that data streams from different sensors are available

to multiple applications. Essentially it should be possible for a sensor’s data to be

shared. Any application should be able to connect or disconnect to any desired stream

data at any time. Furthermore, it should be possible to share the data such that the data

is only sent once and ideally if two applications require the same subset of a data

stream then the subset only has to be generated once. Finally, IoT will be pervasive in

- 6 -

the near future. IoT application developers should be able to specify the data required

through an easy to understand interface.

 The primary contribution of this work is that a programming abstraction is provided

through the use of an SQL-like syntax to be used by application programmers. An

architecture of a platform is proposed that manages the data flows for application

programmers that allows for sharing of a single data stream from a sensor.

- 7 -

Chapter 2

2 Related Work

 This chapter describes some of the representative work related to handling

streaming data.

2.1 Database management system

 This section describes representative examples of database management system.

 PipelineDB [10] is an open-source relational streaming-SQL database based on

PostgreSQL. It added extra functionality to PostgreSQL such as continuous SQL

queries, probabilistic data structures, sliding windows, and stream-table joins.

PipelineDB’s fundamental abstraction is called a continuous view, which is very

similar to regular SQL views, except that their defining SELECT queries can include

streams as a source to read from. PipelineDB runs SQL queries continuously on

streams and incrementally stores results in tables.

 Although previous work on query languages were useful for automated stock trading,

logistic services, transaction management and business intelligence, they were not

well suited for applications that use web structured data and ontologies. SPARQL [11]

partially addresses this by allowing for the specification of queries for “key-value”

data. EP-SPARQL [12] is based on SPARQL to provide a unified language for event

processing and stream reasoning devoted for streaming databases. It uses SQL-line

syntax and execution models adapted to process streaming data.

- 8 -

 Nile [13] extends the query processor engine of an object-relational database

management system to support data streams. This project is motivated by many

emerging applications, particularly in pervasive computing, sensor-based

environments, retail transactions, and video processing which continuously report

up-to-the-minute readings of sensor values, locations, and status updates. The initial

prototype implementation was based on an object-relational DBMS called Predator.

Predator added data streams as a special data type and implemented a stream query

interface through stream-scan and stream manager components. Nile uses traditional

SQL operators and consider window execution as an approach to restrict the size of

stored state in operators such as join.

 Tribeca [14] is an extensible, stream-oriented DBMS designed to support network

traffic analysis. It combines ideas from temporal and sequence databases with an

implementation optimized for databases stored on high speed ID-1 tapes or arriving in

real time from the network.

 Traditional storage based data processing infrastructures can deal with stream data.

However, the amount of data generated is huge and may come quickly. DBMS

assumes that the query is continuously applied to streams with results incrementally

stored on a disk for retrieval by applications. For real-time analysis of high-volume,

the bottleneck associated with writing to disk and then reading is not suitable.

2.2 Data Stream Management Systems and Query

Languages

 This section describes representative examples of academic data stream

management systems and query languages. Many of these form the basis for

commercial systems.

- 9 -

 Research on stream processing started in the late 1990’s with the development of

several academic platforms e.g., Aurora [15], Borealis [16], NiagaraCQ [17], CQL

and Stream [18], GSQL and Gigascope [18], and SteamMill [20].

 Aurora [15] is a general-purpose data stream manager that was designed and

implemented at Brandeis University, Brown University, and M.I.T. to efficiently

support a variety of real-time monitoring applications. Aurora users can build

continuous queries out of a small set of well-defined operators that implement

standard filtering, mapping, and windowed aggregate and join operations. Each

Aurora application can also define one or more Quality of Service (QoS)

functions/graphs, each defining the utility of query results in terms of a performance

or quality metric. Other key components of the Aurora run-time system are the

scheduler, the storage manager, and the load shedder. The scheduler decides which

operators to execute and in which order to execute them.

 Borealis [16] is a second-generation distributed stream processing engine that

inherits core stream processing functionality from Aurora [15] and distribution

functionality from Medusa that supports three fundamental functions including

dynamic revision of query results, dynamic query modification and flexible and

highly-scalable optimization.

 NiagaraCQ [17] is the continuous query system developed at the University of

Wisconsin and Oregon Graduate Institute. The goal for this continuous query system

is to transform a passive web into an active environment and therefore needs to be

able to support millions of queries due to the scale of the Internet. No existing systems

have achieved this level of scalability. NiagaraCQ addresses this problem by grouping

continuous queries based on the observation that many web queries share similar

structures. Grouped queries can share the common computation, tend to fit in memory

and can reduce the I/O cost significantly.

- 10 -

 CQL [18] is a Continuous Query Language that supported by the STREAM

prototype Data Stream Management System at Stanford. It is an expressive

SQL-based declarative language for registering continuous queries against streams

and updatable relations. From the “black box” mappings among streams and relations

they define a precise and general interpretation for continuous queries.

 Operators of large networks and providers of network services need to monitor and

analyze the network traffic flowing through their systems. They use monitoring tools

built into routers, such as SNMP, RMON, or NetFlow. The problem with these tools

is their lack of a query interface. Gigascope [19] provides an SQL interface to the

network monitoring system, greatly simplifying the task of managing and interpreting

a stream of data.

 Stream Mill [20] system’s Expressive Stream Language(ESL) efficiently supports a

wide range of applications—including data stream mining, streaming XML

processing, time-series queries, and RFID event processing. ESL supports physical

and logical windows on both built-in aggregates and user-defined aggregates (UDAs),

using a simple framework that applies uniformly to both aggregate functions written

in an external procedural language and those natively written in ESL. The constructs

introduced in ESL extend the power and generality of data stream management

system.

2.3 Commercial Platforms

 Data stream management systems have been applied in many industrial domains

that require network monitoring, fraud detection, intelligence and surveillance, risk

management, e-commerce, market data management, algorithmic trading and so on. A

stream processing product might solve issues out-of-the-box, as it is noted that such

products require less self-coding and the Total Cost of Ownership is not high [21]

compared to non-commercial frameworks. Several stream processing commercial

platforms are introduced in this section.

- 11 -

 Apache Storm [22] is an open source stream processing framework created by

Twitter, and it provides the functions for transforming data streams into a new data

stream in a distributed and reliable way. A Storm cluster runs "topologies" in a similar

fashion to a Hadoop cluster that runs "MapReduce jobs". The key difference is that a

“MapReduce job” will eventually finish, whereas a “topology” processes stream data

forever until it is stopped. A “topology” is a graph of computation where each node

from the graph contains processing logic, and links between nodes indicate how data

should be passed around among nodes. Each processing node consumes any number

of input streams, does some processing, and emits new streams, one example can be

compute a stream of trending topics from a stream of tweets [23]. Storm’s website

shows some reference use cases for stream processing at companies such as Groupon,

Twitter, Spotify, HolidayCheck, Alibaba, and others.

 Samza [24] plays a role similar to MapReduce yet it is unlike batch processing

systems such as Hadoop. Samza’s goal is to provide an elastic, fault-tolerant

processing on top of real-time feeds. Samza continuously computes results as data

arrives which makes sub-second response times possible.

 The Cedr stream research project [25] proposes novel architectures, processing

techniques, models, and applications to support time-oriented queries over temporal

and real-time data streams. This research shipped in 2010 as Microsoft StreamInsight

[26] - a commercial stream processing system that is part of SQL Server. Microsoft

StreamInsight is a comprehensive platform for building event-driven applications.

StreamInsight adopts a deterministic stream model that leverages a temporal algebra

as the underlying basis for processing long-running continuous queries.

 These systems are designed to provide resources to analyze streaming data.

However, these stream processing systems typically assume that the data streams are

to be analyzed by one task and there is a one-to-one relationships between the data

producers (sensors) and the applications (consumers that require the data). This does

https://storm.incubator.apache.org/
http://storm.incubator.apache.org/documentation/Powered-By.html

- 12 -

not satisfy the requirement of the decoupling of data consumers and data producers.

Because we want to achieve more effective stream data sharing.

Chapter 3

3. System Design Requirements

 This chapter presents data management requirements for stream-processing

systems which are motivated by IoT applications.

3.1 Requirement: Real-time Analysis of Stream Data

 Smart roads applications [9] can help make traffic control more effective by

monitoring live trends in traffic flow. The traffic flow information, usually detected by

vehicles or road side units, is broadcast among all vehicles when it is close to its

occurrence. Getting this information received with minimum latency, real-time action

can be taken, instructing ways to avoid traffic bottlenecks or even potential accidents.

 From the above example, we can identify that a requirement for a stream

processing system is to spot useful events as close to the occurrence of the event as

possible. This requirement was also noted in M. Stonebraker et al [8], where it was

noted that a system should be able to avoid costly storage operations when necessary.

For smart road applications, the traffic flow information changes frequently, and a

delayed transmission of traffic information will be no longer useful. Storing all the

data before it could be processed increases the amount of time to analyze and make

decisions. Upon arrival of data, instead of storage, a better solution is to analyze the

captured data without having to store it. We can choose to save the data in storage

only when history data need to be traced.

- 13 -

3.2 Requirement: Stream Filtering

 In the Automatic NFC payment application scenario [9], payment is processed

based on location or activity duration for places such as public transport, gyms, theme

parks, etc. The application should track a user’s location information and charge only

when that information is relevant to payment activity. For example, when a user is

using public transport, the application will record the distance traveled and

automatically charge the transportation fee.

 As seen with this example, filtering the sensor data is required since the huge

amount of sensor data and instantaneous response demand has made it unrealistic to

process all the data. Much of the generated data is regarded as “unconcerned” and will

not be used by user applications. For example, the period that a person is not in a train

or in theme park is not relevant for payment. Stream analytics systems should handle

irrelevant data by applying transformations and rules to determine if further

processing needs to take place. If not necessary, the data should be discarded

immediately.

3.3 Requirement: Temporal Analysis and Aggregation

 Patient surveillance [9] requires monitoring of conditions of patients inside

hospitals and in old people's home. A variety of sensors attached to patients should

keep tracking of body data: pulse rate, breathing airflow, body temperature,

glucometer, blood pressure, etc. Health care applications should continuously monitor

the sensor data along a time line and compute the aggregate value within the time

window. For example, the average blood pressure for every 15 minutes or the

maximum body temperature for half an hour can be detected by the health care

application, so that patients and doctors can identify potential problems.

 Stonebraker et al [8] claims that one unique feature of event stream analytics is to

take the concept of time stamp as a primary computing element, which is crucial for a

user application to identify certain events at a specific time. Unlike traditional

- 14 -

computing models which are designed to summarize historical data, stream analytics

continuously process the data as it is generated. The system should also be able to do

continuous aggregation across sliding time windows in order to understand real-time

trends over a period of time.

3.4 Requirement: Multiple Stream Correlation

 Waste management applications [9] are used for detection of waste levels in

containers to optimize the trash collection routes. The application will analyze

multiple streams of sensor data from all waste containers, and create a customized

overall waste collection plan that guarantees that there are no overflows or over

collect the wastes.

 From this example we can see that figuring out whether or not trash cans need to be

emptied obviously cannot only consider one particular trash can. The stream

processing system should allow user applications to connect to multiple data streams

that are from different sources. A user application might be wish to identify that a

series of events occurred, e.g., all the trash cans contain waste above certain level. Or

the user application will be interested as long as any event from a series of events

occurs e.g. there is one trash can exceed the maximum overflow level.

3.5 Requirement: Data shared by multiple users

 In the smart roads application [9] example, when poor weather conditions or

unexpected events like accidents or traffic jams are detected, the warning messages

and diversions should be advertised to all vehicles. The sensor data would be useful

for different applications. In another example, home automation applications often

focus on the use and control of home appliances remotely or automatically. Suppose

the heating and cooling are two separate systems and that both heating and cooling

applications are interested in the same temperature data.

https://en.wikipedia.org/wiki/Home_appliance

- 15 -

 The above examples show that one data stream could be shared by multiple user

applications who subscribe to this stream in real-time. Multiple user applications

could be interested in one stream of raw sensor data, but may apply different

strategies for downstream analysis. This system should be designed to satisfy this

requirement.

Chapter 4

4. Query Language

 In order to address the requirements of stream processing for IoT applications, it is

crucial to design a query specification that allows the user to perform queries.

4.1 Query Assumptions

 A stream S is a bag (multiset) of elements (D, t) where D is the data and t

represents the timestamp associated with the data. There is considerable existing work

in query languages for streams such as NiagaraCQ[15], OpenCQ [16], CQL[18] and

Gigascope[19]. This work uses a subset of operators found in CQL [18]. Most work

assumes that the application issuing the query has knowledge of the available sensors

and can specify the desired stream though a sensor stream identifier. This work differs

in that the application that issues the query does not necessarily have knowledge of

available sensors. Instead the approach taken is to allow the user to specify the type of

data and the location from which it needs this data. This is sufficient for identifying

the data when a sensor type maps to a unique sensor location. However if there are

several sensors of the same type at the same location, we need to distinguish each

sensor by adding an extra identifier. For example, if there are three temperature

sensors in a room, a user should be able to query by sensor type e.g., temperature1,

temperature2, temperature3, for representing each temperature at one location or the

sensors are returned to the user and the user selects one. Future work will investigate

this issue further.

- 16 -

4.2 Format of Queries

The general form of a query is the following:

SELECT <attribute-list> when [<conditional expression>] from <location>

[<groupBy Time Window>]

Components of the query within brackets are optional. The components of the query

are described below:

 attribute-list: This may consist of one or more attributes. An attribute is either

data from a sensor or an aggregation function on a set of data of a particular

attribute. The set of aggregation assumptions include average, maximum and

minimum. One query is allowed to contain both aggregation and

non-aggregation attributes and the attributes are from multiple sensors.

 conditional-expression: This may be a single condition such as temperature

> 20 or a series of conditions connected by a logical operator (AND or OR)

such as temperature>20&&humidity<20 . Sensor data that does not satisfy the

condition is not sent to the user. Basically if a condition is defined a subset of

the stream is returned to the user.

 location: This represents the sensor location. The location can be in different

forms. For example, in most cases it could be a location tag e.g., Room 240,

MC Building. If the sensor can move such as a person who is carrying the

sensor, then the location of the person is considered as the location in this

query.

 groupBy time-window: This defines the window of data to be retained before

the data is analyzed e.g. timeWindow(5 minutes). All sensor readings (or data

records) produced within every 5 minutes will be analyzed and returned to the

user. This requires that when the time window is used, an aggregation function

must be applied to attributes in the attribute-list. For queries which returns

- 17 -

data once the data is produced, the time window is not required for

aggregating data.

The query results is a tuple with two elements:

 Attribute-value pair: This includes the sensor type and measurement value of

returned data e.g. (Temperature, 20 degree). One query result tuple contains

one or more attribute-value pairs according to attribute-list specified in the

issued query.

 time stamp: This is the time when the sensor data entry is produced. It uses

the following format: [Month Day hh:mm:ss Year TZ] where Month refers to

an abbreviation for month (Jan through Dec), Day refers to a two-digit day of

the month (01 through 31), hh refers to two digits that represents an hour (00

through 23), mm represents two digits of a minute (00 through 59), ss

represents two digits of a second (00 through 59), YYYY represents a

four-digit year; and TZ represents a time zone.

4.3 Examples of Queries

 This section presents several query examples and demonstrates how the queries

satisfy the addressed requirements.

Example 1: SELECT Temperature when Temperature>25 from Room240;

 This query returns Room 240’s temperature value when it is more than 25. The

temperature values that are less than 25 are filtered out.

Example 2: SELECT avg(Temperature) when avg(Temperature)>20 from Room215

groupBy timeWindow(10min);

 This query is used to return the average temperature calculated for each 10 minute

time window. This satisfies the requirement of temporal analysis and aggregation.

- 18 -

Example3: SELECT Temperature, Light when Temperature>25 && Humidity<10

from Building1;

 This query returns temperature and humidity from location Building1 when the

temperature measured is greater than 25 and the light is less than 10. This query uses

two streams and thus satisfies the requirement of multiple stream correlation.

4.4 Interpreting the query message

 A corresponding interpreter is needed for the proposed query language. This

interpreter recognizesFigure 1 Syntax Tree 1 the query string’s grammar specification

to determine whether it is a valid query and also converts the query string to

information that can be executed by a query task.

 The syntax tree is shown as Figure 1 Syntax Tree 1to interpret the query string. The

string without angle brackets indicates one expression, which is composed of several

tokens. Each token is the one with angle brackets and should be matched to a string or

character as specified in Appendix 1.

 The syntax tree also follows the same rule as used in regular expression, where

question mark (?) indicates zero or one occurrences of the preceding element, the

asterisk (*) indicates one or more occurrences of the preceding element, and the

operator ‘OR’ means this expression can be either one from two tokens.

 In Figure 1 a query is composed of several expressions including SelectList,

SelectConditions, SensorLocation, and can have a TimeWindow expression. A

semicolon denotes the end of a query.

- 19 -

Figure 1 Syntax Tree 1

 In Figure 2 the SelectList starts with a SELECT token, followed by one or more

SelectAttribute expressions, separated by a COMMA token. A SelectAttribute can be

a SensorType token, or an AggregateSensorType expression. The

AggregateSensorType expression starts with an AggregateFunction followed by a

SensorType which is surrounded by a left parentheses and a right parentheses.

Figure 2 Syntax Tree 2

 The SelectConditions expression starts with a WHEN token, followed by one or

more Condition expressions, connected using a LogicOperator. One condition

expression is composed of a CompareAttribute expression, a RelationalOperator

token, and a Number token. The CompareAttribute can be a SensorType or an

AggregateSensorType. The AggregateSensorType starts with an AggregateFunction

- 20 -

followed by a SensorType, which is surrounded by a left parentheses and a right

parentheses.

Figure 3 Syntax Tree 3

 Finally we have SensorLocation expression composed of a FROM and a Location

token. The TimeWindow expression contains a GroupBy token and a Time token that

is surrounded by a left parentheses and a right parentheses

Figure 4 Syntax Tree 4

- 21 -

Chapter 5

5 IoT Event Stream Processing Platform

 In order to support the query language, an IoT Event Stream Processing Platform is

proposed. In this chapter the overall architecture and each of its components are

introduced.

5.1 Platform Introduction

 The framework is designed to be available via the Platform as a Service (PaaS)

model: Platform as a Service is a cloud computing model that delivers applications

over the Internet. In a PaaS Model a cloud provider delivers hardware and software

tools, usually those needed for application development, to its users as a service [27].

The platform is licensed on a subscription basis and is hosted on a server. Sensor data

can be accessed by a client IoT application using a TCP connection. Various kinds of

IoT applications can be developed by leveraging this platform. The platform provides

two main services to its users: executes basic analytics on sensor data based on the

user query and dispatches processed sensor data to applications who subscribe to this

information.

 Figure 5 shows a general architecture of the Event Stream Processing Platform. The

platform gathers data generated by data sources and sends data to IoT applications.

The rest of this chapter describes this platform in detail.

- 22 -

Figure 5 Platform overview diagram

5.2 Platform Architecture

 This section describes the functionality of each component of the platform as

illustrated in Figure 6. This platform assumes that there is a queue for each data

stream coming from a data source. The Stream Manager maintains these queues.

Figure 6 Platform architecture diagram

- 23 -

Data Sources

 The Data Sources refers to sensors attached to smart devices, which are used to

sense the surrounding environment, periodically produce sensor data and send sensed

data to the cloud platform. In general, the devices or things can be categorized into

two groups: constrained and standard devices. Constrained devices may be very small

and have very few resources in terms of compute power storage, etc., and may be able

to communicate only via networks that are unable to reach cloud platform directly

(e.g., over Bluetooth Low Energy, or BLE). Standard devices more likely resemble

small computers and can route data directly over networks to cloud platform. In order

for the data from constrained devices to reach the cloud platform, the data needs to go

through some type of gateway device.

User Applications

 This refers to IoT applications that need to make use of the sensor data. The

platform provides each user application an interface to issue queries and receive query

results in real-time. The applications do not have to be concerned with the

configuration of the query engine that allows the data to be delivered to it.

Query Parser

 This component is used for receiving and parsing query messages issued by user

applications. Only after parsing the query message successfully, can the query can be

executed by the query engine.

Stream Manager

 This component maintains a list of queues, where each queue represents a data

stream where the queue contains data from this stream. A data stream can be used by

more than one query, and therefore we have multiple queues associated with this data

stream with each belonging to a query. Since a query may need data from multiple

streams, we associate multiple queues with each query.

- 24 -

Data Dispatcher

 This component is aware of the information of all the active queries, including the

streams that each query is interested in. Using this information, the sensor data can be

dispatched to corresponding queues at the Stream Manager, so that each query has

access to its requested stream data from the queues at the Stream Manager.

Query Processing Task

 Each Query Processing Task is started for handling one query. As all data streams

required by this query is handled by the Stream Manager, the task is able to

continuously receive data from the corresponding queues. Upon receiving the data,

the task will apply analysis to the streaming data including aggregate, calculate

average and filter on the stream data according to user needs, and generate final query

results.

Task Manager

 This component is used to manage a group of Query Processing Tasks. There is one

task per user query. The tasks can be started or removed based on user requirements.

Query Result Publisher

 This component is responsible for publishing the query results on a query topic,

the query topic is the query string. It allows users who subscribe to that query topic to

receive the query results.

5.3 Information Model

 In this section we will introduce information models that are used in this work.

5.3.1 Sensor Data Model

- 25 -

 Each sensor si is a data source. A stream generated by one sensor is set of elements

(ai, t) where ai is a tuple, (ai0, ai1,….ain-1) consisting of attribute values measured by

sensor si at time t. We assume that there is a unique identifier associated with a stream.

We also associate sensor si, with the pair (typei,locationi) where typei represents the

type of sensor si, and locationi represents the location of sensor si.

5.3.2 Stream Map

 The Stream Map is maintained by Data Dispatcher and is used to guide the Data

Dispatcher on how to dispatch sensor data. The Stream Map is basically a set of pairs

(or 2-tuples). In the ordered pair (si,Qi), where si represents the stream of data coming

from sensor si and Qi represents the set of query identifiers interested in the sensor

information from si,

5.3.3 Stream Queues

 Stream Queues represents the queues maintained by the Stream Manager. For each

sensor si and query qij from Qi of the stream map, there is a queue. The Stream

Manager needs to maintain information about each queue. Stream Queues is a set of

tuples [si Queuei]: where si represents the sensor identification, Queuei is the set of

queues where Queueih is associated with query qij. This means that if a data steam for

sensor si is used by two queries then there will be two queues with the data from the

sensor si. We choose to duplicate the sensor data instead of sharing it because different

applications would handle the data in different ways.

5.3.4 An Information Model Example

 To get a better understanding of the Stream Map and Stream Queues, this section

presents an Information Model use case. The example assumes that there are three

sensors sending data to the query engine and three queries have been issued: query1

requires data from sensor1; query2 requires data from two streams generated by

- 26 -

sensor1 and sensor2; query 3 requires three streams of data from sensor1, sensor2 and

sensor3 respectively.

 After the queries are issued, the Stream Map will be updated: each sensor is related

to a set of current queries. Following the Stream Map, new queues will be create in

Stream Queues as follows and sensor data will be constantly sent to these queues.

{

[:(: queue of data from), (: queue of data from),

(: queue of data from)];

[:(: queue of data from), (: queue of data from

)];

[:(: queue of data from)];

}

5.4 Interactions

 In previous sections we discussed the functionality of each component. In this

section, we will discuss the details of how these system components cooperate.

Step 1: Issue and parse queries

 In the first step, the User Application issues queries to the query engine. The Query

Parser component of the query engine listens for queries and processes each received

query.

 Upon receiving a query, the Query Parser interprets the query message and checks

whether it is a valid query. A valid query message satisfies two requirements: the

1sensor 1query 1sensor 2query 1sensor

3query
1sensor

2sensor 2query 2sensor 3query
2sensor

3sensor 3query 3sensor

- 27 -

query string follows the specified query language syntax and the queried sensor type -

location combination exists. If the Query Parser determines that the query is valid, the

Query Parser sends a success message back to the User Application, and then sends

the parsed query information, including attribute-list, condition-expression, location

and possibly a time window, to the Data Dispatcher and Task Manager. Otherwise a

‘query fail’ message is returned to the User Application.

Figure 7 Issue queries and parse queries

Step 2: Start tasks for processing queries

 After receiving a ‘query success’ message, the User Application starts a Query

Result Receiver thread, which is used to receive query results of that query. After

being informed of the new query, the Query Task Manager will start a Query

Processing Task associated with the query, and the Data Dispatcher will also update

the list of active queries in the Stream Map.

- 28 -

Figure 8 Start a query task

Step 3: Distribute data among query tasks

 In the previous step, the Query Task Manager starts a query task for each query and

the Data Dispatcher updates the Stream Map. The Data Dispatcher receives data sent

from sensors.

 The Data Dispatcher directs data streams to Stream Queues by referring to the

mapping information from Stream Map. The Data Dispatcher uses the sensor

identifier of received data to determine the list of queries that require data from the

incoming stream. The Data Dispatcher will then dispatch the data to the relevant

queue associated with the query. This enables all queries from the query list that map

to the sensor identifier to extract data from the stream associated with the stream

identifier. In this way, if multiple queries require data from a particular stream, the

sensor data from this stream will be duplicated and directed to multiple queues. If no

query requires data from the data stream, this data will simply be discarded.

 Each individual Query Processing Task will continuously extract data from its

queues maintained by the Stream Manager: Each query task will search for its own

group of queues identified by the query associated with the query processing task.

Among the list of queues, each interested stream can be found based on the sensor

- 29 -

identifier. While there is sensor data in the queue, the task will keep extracting sensor

data from this queue, therefore allowing the task to access data from this stream.

Figure 9 Distribute data among query tasks

Step 4: Execute each query task

 After the sensor data is directed from the Stream manager to the correct destination

at each task, the Query Processing Task will apply processing logic to stream data

according to the parsed query. In order to execute each of the query task, several

modules need to collaborate to achieve this goal.

Figure 10 Execute each query task

- 30 -

Aggregator:

 In order to calculate an aggregate value like average, maximum or minimum value

of multiple data entries, the Aggregator is used for retaining stream data entries for a

specified time frame before the aggregation function can be applied.

Synchronizer:

 Since there may be a time difference on the arrival of data from different sensors, a

Synchronizer is required to determine whether all the data from different sources

arrived. The Synchronizer will signal Condition Checker for further processing when

all required sensor data from multiple streams are ready. If any data is missing and the

Synchronizer waits for this data for a specific amount of time the query engine will

ignore this set of data and proceed to data at next time stamp. For example when

calculating a combined result from two streams, if the data from one steam arrives yet

the data from another stream is lost, then in this case the arrived data should be

discarded, no result is returned at this time stamp and the system will proceed to the

next set of data.

Condition Checker:

 One query message contains a condition expression which is composed of a list of

conditions. The Condition Checker is responsible for calculating and checking each of

the individual conditions and determines whether the condition expression is satisfied

when several conditions are connected by AND/OR operators. Only when the

condition expression is satisfied, can the sensor data entry be selected to return to

user.

Publisher:

 After the data streams are evaluated by the Condition Checker, the Publisher will

refer to the attribute list specified in query and take the corresponding attribute-value

- 31 -

pairs from multiple streams to generate one query result ready to present to users who

issue this query.

Step 5: Publish query results via publisher-subscriber channel

 The query results produced by each Query Processing Task can be published as a

topic via a Publisher, one topic is a query string. When a user issues a query, the user

automatically subscribes to that topic. All User Applications that subscribe to that

topic will receive the query results, which means that if query1 is the same as query2

then the user application that issued query2 can just subscribe to the topic and thus no

need to a separate stream. This is done by a Publisher-Subscriber channel that takes

the query results published and instantly delivers the messages to Subscribers using

the topics and subscriptions information.

Figure 11 Publisher-Subscriber Chanel

 Design communication as the publisher-subscriber model is necessary since

multiple users may be interested in common events and demand for the same data. In

the publisher-subscriber approach, the query engine does not have to execute one task

several times to fulfill multiple users’ needs. Only one query processing task is needed

and one copy of the query result will be published. Finally multiple users who

subscribe to this topic can receive the query results.

- 32 -

Step 6: User Application receive results of multiple queries

Figure 12 Receive query results

 As mentioned in previous step, the User Application starts a thread called Query

Result Receiver after issuing a valid query. One Query Result Receiver contains the

Subscriber that receives query results for subscribed topic. The User Application will

gather all results from those Query Result Receivers it started.

 As all the data dispatching and analysis mentioned in this chapter are done in

memory, the requirement of Real-time Analysis of Stream Data is satisfied. Also

multiple users can receive the same copy of data via a subscribe-publish mode. The

platform does not need repeatedly process the task if the queries are the same and thus

the requirement of data shared by multiple users is satisfied.

- 33 -

Chapter 6

6 Software Demonstration

This chapter describes the validation of the functionality.

6.1 Software implementation

 The platform is developed using the Java language. Third party tools that have been

applied are JavaCC[28] for interpreting query string and ActiveMQ[29] for

implementing the publisher-subscriber channel. As Java is a platform independent

language, the software can be ran on any hardware platform. The software was

executed on a PC running 64 bit Windows7 operating system, with Intel Core i3 CPU

and 4GB RAM.

6.2 Verification of the functionality

 The functionality of our platform to be evaluated includes: applications can apply

analysis to stream data in real time, stream filtering is possible using one or more

conditions, aggregation for a specific amount of time is allowed, one query is able to

correlate multiple streams from different sources, and multiple applications can access

the same stream of data. To test these functionalities, a simulator was developed to

simulate the sensors and send stream data to the platform. We ran the sensors (data

source side), platform (server side) and user applications (client side) on one PC, and

used the TCP protocol to communicate between the components for simulating

components communicating from different locations. We use three IoT application

examples to demonstrate the functionality of the prototype.

6.2.1 Health care application example

1. The first example is a health care application that monitors a patient’s pulse rate

and body temperature. We first start the Sensor Simulator.

- 34 -

Figure 13 start a simulator

2. When the Add a Sensor button is pressed a window pop up that allows the user to

set the sensor configuration. A sensor that monitors the pulse rate from patient1 is

created. The simulation produces 3000 sensor readings or data records, and produces

one record every second. The value of simulated data of simulated sensor readings is

in the range of 50 to 150. We then create another sensor which senses body

temperature. It then simulates sensor data values that range between 36 to 38 degrees.

Figure 14 sensor configuration

Figure 15 sensor configuration

3. There are now two sensors. We can press the Start Data Generator button to start

- 35 -

the simulation. Each sensor configuration is registered at the server and each sensor

continuously generates data.

Figure 16 sensor simulator

3. Pressing Start Query Engine allows the server to start receiving sensor values and

the timestamp associated with the sensor value when it was generated. The sensor

simulator will also automatically assign an identifier to the data from the sensor

stream: pulseRate data with sensor identifier 1 and bodyTemperature data with sensor

identifier 2.

Figure 17 start query engine

4. One of the clients may be a doctor which we will identify as Doctor1. Doctor1

issues a query in the text field next to Add Query button. Only valid queries can be

accepted. If an invalid query an alert will be generated and displayed to Doctor1. The

- 36 -

invalid query is one that does not follow the query specification or the sensor type

queried at that location does not exist.

Figure 18 invalid query

5. A query can be issued to alert the doctor when a patient’s pulse rate is greater than

130. The query should be “Select pulseRate when pulseRate>130 from patient1”.

Figure 19 issue query

6. The Add Query button is used to issue the query. This query will appear on the

Query List panel. All the matched data entries from this stream is shown in the result

- 37 -

display area.

Figure 20 receive query result

7. We issue another query “Select pulseRate, bodyTemperature when pulseRate>70

&& bodyTemperature>37 from patient1”. This query requires data from two streams

when the two conditions “pulse rate is larger than 70” and “body temperature larger

than 37” are both satisfied. As we can see the Query List panel now contains two

issued queries. By clicking each of the queries, the result display area can switch

between the two query results.

Figure 21 issue another query

- 38 -

8. We issue the third query “Select avg(pulseRate) when avg(pulseRate)>70 &&

from patient1 groupBy timeWindow(3s)”. This computes the average pulse rate every

3 seconds, and the data that satisfies the query will be returned when the average

pulse rate is higher than 70.

Figure 22 issue third query

9. The last query is “Select avg(pulseRate),bodyTemperature when

avg(pulseRate)>70 from patient1 groupBy timeWindow(3s)”. This return the average

pulse rate and body temperature when average pulse rate is larger than 70 every 3

seconds. The body temperature is generated every 1 second and therefore each result

has three entries with the same average pulse rate and different body temperatures.

 As we can see from these 10 steps, this single application can issue queries to query

multiple sensors and receive results from four concurrently tasks running on our

platform.

- 39 -

Figure 23 issue fourth query

6.2.2 Smart road application example

 In the second example we use a smart road application to demonstrate that multiple

users can use the same stream of data. We use an attribute trafficLoad with values that

range from 0 to 100 percent to measure the amount of traffic on a block (0 for no

traffic, 100 for the road is fully packed).

Figure 24 sensor configuration

 We will have two users called User1 and User2. User1 issues a query “Select

trafficLoad when trafficLoad>70 from westernRoad”. It returns the trafficLoad when

it is more than 70 percent.

- 40 -

Figure 25 issue a query

 The same copy of real time traffic information can be shared among multiple

vehicles. By clicking Existing Query button User2 can see a list of queries issued by

other users. User2 can choose one issued query and receive the query result. Here we

choose the only query issued by User1 and receive the same results as User1.

Figure 26 existing query list

- 41 -

Figure 27 issue existing query

6.2.3 Smart agriculture application example

 In the third example we will provide a smart agriculture application to show

multiple users that use different streams of data. We use an attribute temperature

whose values range from 0 to 30 degrees to measure the temperature at a farm.

Another attribute light is used to measure the day time illumination ranging from 0 to

100 at the farm.

Figure 28 sensor configuration

- 42 -

 We will have two user applications one for monitoring an animal and the other for

monitoring a plant. The first application issues a query “Select temperature when

temperature<15 from farm1”. It returns the temperature when it is less than 15.

Figure 29 issue a query

 The second application issues a query “Select temperature, light when temperature

<10 || light<30 from farm1”. It returns the temperature and light when the

temperature is less than 10 or light is less than 30.

Figure 30 issue a query

- 43 -

Chapter 7

7 Conclusion and Future Work

7.1 Conclusions

 This thesis addressed challenges in the development of a data stream system that

supports real-time analytics but also allows for the decoupling of sensors from

applications in a way that allows for sharing of substream computation.

 Integrating the data collection and analysis functions within a common platform is

important for IoT application developers. Developers do not have to deal with

heterogeneous and complex smart devices and the underlying network protocols to

access sensor data. Users can specify the substreams and analysis on substreams

without being concerned about efforts to transform the data to the desired format and

apply analytics to data in order to extract valuable information. Instead, the platform

provides an interface to access sensor data and carry out data analysis in the cloud on

users’ request. We reduce their development effort by not having these tasks done by

each of these applications.

 From the perspective of overall IoT applications ecosystem, the design also has its

advantage: the pattern has eased the overall communication to a large extent. In a

direct communication model, one user application should talk to multitudes of sensors.

On the other hand, one sensor should maintain communication with several users.

With our platform, only one connection is needed for each sensor multiple user

applications. Also Sharing stream with multiple users is more effective because there

are applications require multiple users receive results from a same query task, for

example many vehicles on a same road may want to get the traffic information on this

road. With the help of sharing mechanism, only one set of stream need to be

maintained and one query task need to be executed, the query results can be reused by

multiple application users.

- 44 -

7.2 Future Work

 The implementation is a proof-of-concept that looks promising for future work.

Our prototype requires several additional challenges to be addressed for a real-world

deployment. Some of these include:

1. The primary issue is the performance when deal with large amount of data, as now

the platform runs on a single machine. Obviously in next step we need to build our

system as a distributed one. One solution is to take advantage of existing distributed

stream processing framework Apache Storm [22]. Using Apache Storm each stream

processing task can be viewed as a computation graph consisting of several

processing nodes. Each processing node consumes any number of input streams, does

some processing, and emits new streams. When start a new job, we add more nodes to

our system. These processing nodes then can be distributed among multiple machines.

For each query we can consider it as one processing node (receive multiple input

stream from sensors and generate one output stream to user application) and specify

configuration on how many threads carry out this task and distribute these threads to

which cluster of machines. Alternatively we can further separate one processing node

to smaller ones: for each query, there is one node responsible for receiving multiple

streams and synchronize them, another one node for checking the condition

expression, and a third node for generating output result stream.

2. There are weaknesses in the query language. when there are multiple sensors of

the same type of sensors appear, users can be confused with which sensor to query

even if an extra identifier is provided. For example there are multiple temperate

sensors at one building, it is necessary to distinguish among these sensors since we

cannot query using sensor type-location pair. A definition of location is needed that is

understood by the user but is also unique. Another issue is that it should be possible to

provide “if any” query, for example a notification should be sent if “any room” has a

temperature of 25. Application users may not only concern about data from sensors at

one location, but also may want to get notified when an event happens among sensors

- 45 -

from different locations. And lastly our aggregation function now support

sum/maximum/minimum and these function are hard coded. To provide more

flexibility to our query language, we should be able to provide more functions or

ideally allow users to specify their own functions and automatically integrate within

query language.

3. Thirdly security issues should also be considered because it is critical for IoT

applications. In our work sensor data and user queries can be managed centrally,

which made it inherently easier to solve security issues like access control, data

authentication, snooping, DDoS attack and etc., however this will be more

challenging in a distributed system.

4. Fourthly fault tolerance is needed. Strategies like detection of offline device,

management of dropped connections, and catch up of missed messages are to be

implemented5. Finally in this project two time stamps are considered as the same

when they differ by at most 1 seconds, however different applications may require

different time stamp intervals. Some time critical applications require higher accuracy

with shorter intervals and some latency tolerant application can have longer intervals.

The platform should be able to adjust how close time stamps have to be considered

the same according to different applications.

- 46 -

References

[1] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of things: A survey." Computer

networks 54.15 (2010): 2787-2805.

[2] Information Technology Association of Canada (ITAC), “The Internet of Things: Time for a

National Discourse” August 2015

http://itac.ca/wpcontent/uploads/2012/09/The-Internet-of-Things-Time-for-a-National-Discourse.pdf

[3]Cisco, “Embracing the Internet of Everything to Capture your share of 14.4 trillion” February 2013

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoE_Economy.pdf

[4] Dave Evans, "The Internet of Things: How the Next Evolution of the Internet Is Changing

Everything" September 2015.

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[5] Lebelium, “50 Sensor Applications for a Smarter World”.

http://www.libelium.com/top_50_iot_sensor_applications_ranking/

[6]Press, Gil. "Internet of Things by the numbers: Market estimates and forecasts." Forbes. Forbes

Magazine 22 (2014).

[7]Matthew Finnegan, “Boeing 787s to create half a terabyte of data per flight, says Virgin Atlantic”.

March, 2013

http://www.computerworlduk.com/news/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-

virgin-atlantic-3433595/

[8]Charles McLellan, “The internet of things and big data: Unlocking the power”. March , 2015

http://www.zdnet.com/article/the-internet-of-things-and-big-data-unlocking-the-power/

[9]Stonebraker M, Çetintemel U, Zdonik S. The 8 requirements of real-time stream processing[J].

ACM SIGMOD Record, 2005, 34(4): 42-47.

[10]Pipelinedb official website. https://www.pipelinedb.com/

[11]Pérez, Jorge, Marcelo Arenas, and Claudio Gutierrez. "Semantics and Complexity of

SPARQL." International semantic web conference. Springer Berlin Heidelberg, 2006.

[12] Anicic, Darko, et al. "EP-SPARQL: a unified language for event processing and stream

reasoning." Proceedings of the 20th international conference on World wide web. ACM, 2011.

- 47 -

[13] W. G. Aref,et al.“Nile: A Query Processing Engine for Data Streams”Data Engineering, 2004

Proceedings 20th International Conference on 30 March-2 April 2004

[14]Sullivan, Mark, and Andrew Heybey. "A system for managing large databases of network traffic."

Proceedings of USENIX. 1998.

[15]Abadi, Daniel, et al. "Aurora: a data stream management system." Proceedings of the 2003 ACM

SIGMOD international conference on Management of data. ACM, 2003.

[16]Abadi, Daniel J., et al. "The Design of the Borealis Stream Processing Engine." CIDR. Vol. 5.

2005.

[17]Chen, Jianjun, et al. "NiagaraCQ: A scalable continuous query system for internet databases." ACM

SIGMOD Record. Vol. 29. No. 2. ACM, 2000.

[18]Arasu, Arvind, Shivnath Babu, and Jennifer Widom. "The CQL continuous query language:

semantic foundations and query execution." The VLDB Journal—The International Journal on Very

Large Data Bases 15.2 (2006): 121-142.

[19]Cranor, Chuck, et al. "Gigascope: High performance network monitoring with an SQL interface."

Proceedings of the 2002 ACM SIGMOD international conference on Management of data. ACM, 2002.

[20] Bai, Yijian, et al. "A data stream language and system designed for power and extensibility."

Proceedings of the 15th ACM international conference on Information and knowledge management.

ACM, 2006.

[21] Kai Wähner “Real-Time Stream Processing as Game Changer in a Big Data.” September, 2014

www.infoq.com/articles/stream-processing-hadoop April 26, 2016.

[22] Apache Storm, storm.apache.org/

[23] Tutorial - Apache Storm https://storm.apache.org/documentation/Tutorial.html.

[24] Samaze, http://samza.apache.org/

[25]Barga, Roger S., et al. "Consistent streaming through time: A vision for event stream

processing." arXiv preprint cs/0612115 (2006).

[26] Microsoft StreamInsight, https://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx

[27] Rackspace Support, “Understanding the Cloud Computing Stack: SaaS, PaaS, IaaS” October,

2013

https://www.infoq.com/author/Kai-W%C3%A4hner
http://www.infoq.com/articles/stream-processing-hadoop
http://www.infoq.com/articles/stream-processing-hadoop

- 48 -

https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-ia

as/

[28] Java Compiler Compiler (JavaCC)-The Java Parser Generator. https://javacc.java.net/

[29] Apache ActiveMQ. activemq.apache.org/

https://javacc.java.net/

- 49 -

Appendix

Appendix1:

TOKEN:

{

<SELECT:"Select">

| < L_PAREN: "(" >

| < R_PAREN: ")" >

| <WHEN: "when" >

| <FROM: "from" >

| <GROUPBY: "groupBy" >

| <TIMEWINDOW: "timeWindow" >

|< RelationalOperator:<LT>|<GT>|<EQ>|<LTE>|<GTE> >

| < #LT: "<" >

| < #GT: ">" >

| < #EQ: "=" >

| < #LTE: "<=" >

| < #GTE: ">=" >

|<LogicOperator:<AND>|<OR> >

|<#AND :"&&">

|<#OR : "||">

|<EmbedFunction:<AVG>|<MAX>|<MIN> >

|<#AVG :"avg">

|<#MAX : "max">

|<#MIN : "min">

| < SEMICOLON: ";" >

| < COMMA: "," >

| < TIME: <NUMBER> <SECOND> >

|< NUMBER : (["0"-"9"])+ >

|<SECOND:"s">

- 50 -

| < SensorType: <LETTER> >

|< SensorLocation: <LETTER> >

| < #LETTER:

(["A"-"Z", a"-"z", "_", "0"-"9"])+

>

}

- 51 -

XING ZHOU

PERSONAL DESCRIPTION

I have been learning and using Java for more than 5 years, doing several projects for research purpose,

my research interests mainly focus on computer networks and internet of things, now expecting to

apply my knowledge to solve real industry problems in a future work.

EDUCATION

-Sep 2014 – May 2016, MSc in Computer Science, Western University, GPA:

83/100

-Sep 2009 – Aug 2013, BSc in Computer Science, Xi’an Jiaotong-Liverpool University, GPA:

80/100

SKILLS

Core Java, data structure&algorithms, code refactoring, design pattern, computer networks, Java

Swing, socket programming, multi-threading, relational databases, unit test, Python, Spring MVC,

Servlets, JSP, HTML

WORK EXPERIENCE

Research&Teaching Assistant at Western University, Sep 2014 – now

-Teaching labs on course of Java Programming, Python Programming, Operating System.

-Conducting research under supervision of department chair Professor Hanan Luffiya in Cloud

Computing area.

 PUBLICATION

-Fleming, C., Zhou, X., and Liang, H.-N., DiffuseNet: A random walk based anonymity

network, 2014 IEEE International Conference on Signal Processing, Communications and

Computing (ICSPCC)

-Fleming, C., Zhou, X., and Liang, H.-N., Wireless Spectrum Allocation by

Simulated Annealing, 2013 IEEE Fifth International Conference on Ubiquitous and

Future Network (ICUFN)

http://ieeexplore.ieee.org/iel7/6971897/6986138/06986323.pdf?arnumber=6986323
http://ieeexplore.ieee.org/iel7/6971897/6986138/06986323.pdf?arnumber=6986323

	IOT Stream Analytics Platform
	Recommended Citation

	tmp.1472659198.pdf.xsFPh

