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I 
 

Abstract 

  The Internet of Things (IoT) is changing people’s surrounding physical world into 

an information ecosystem that facilitate our everyday life. Billions of smart objects 

will become data-generating “things” that can sense environmental changes and report 

their sensed data in near future. Leveraging the huge amount of sensory information is 

a key issue to realize the IoT solutions in many areas. Adequate technologies are 

required for data collection, transmission, data processing, analysis, reporting, and 

advanced querying. 

  In this thesis, an IoT Stream Analytics Platform that supports IoT application and 

service development is proposed: it provides user applications a way to capture 

flowing data from multitudes of data sources and provide analytical insights in real 

time based on user needs. Developers can conveniently build their IoT applications on 

this platform without having to consider the diversity and complexity of smart devices 

and their underlying networks. 
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Chapter 1 

1. Introduction 

  In this chapter, the concept of Internet of Things (IoT) is introduced. We will then 

discuss the potential IoT application areas and the expected data explosion brought by 

IoT. Finally we will discuss the state of art and identify data management challenges 

that could complicate IoT application development. 

1.1 The Definition for Internet of Things  

   The Internet of Things (IoT) [1] is a major wave in computing, where we not only 

connect traditional end-user devices such as smart phones and tablets, but also 

physical objects embedded with sensors, actuators, and network connectivity. These 

“things” typically provide data, act on the environment and/or encompass points of 

control. For example, lighting can be adjusted based on data from an occupancy 

sensor and time of day, and chillers can be adjusted based on temperature sensors. As 

the cost of sensors and network connectivity becomes less expensive there is an 

increased interest in applications. Sensor data is seen as opening up the opportunities 

for new services, improved efficiency and possibly more competitive business 

models.    

  In a recent white paper [2] the Information Technology Association of Canada 

(ITAC) stressed that IoT will increase the competitiveness of Canadian businesses. 

Research from IDC Canada projects spending on IoT in Canada will reach as high as 

$6.5-billion (Canadian) by 2018, up from $2.8-billion in 2013. Cisco [3] predicts that 

the global Internet of Things market will be $14.4 trillion by 2022. In the future, smart 

computing devices and applications will surround us in an environment where the 

physical and virtual worlds are constantly connected. Instead of today’s billion-node 
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Internet network, the future Internet will be used by trillions of devices, people, 

organizations and places [4].   

1.2 Internet of Things applications 

  Typical IoT applications and services are or can be applied in a variety of 

application domains such as smart grids, smart homes, e-health, automotive, transport, 

logistics and environmental monitoring [5]. Major application sectors are presented in 

this section. 

Building and home automation 

  Through monitoring and control of intelligent buildings and smart homes, building 

and home automation applications can accomplish tasks from enhancing security, to 

reducing energy and maintenance costs. Examples include intrusion detection systems, 

light and temperature control, energy optimization, predictive maintenance, and 

remotely control appliances [5].  

Smart cities 

  Smart city applications use digital technologies or information and communication 

technologies to enhance quality and performance of urban services, to reduce costs 

and resource consumption, and to engage more effectively and actively with its 

citizens. Examples include smart waste management, smart lightning, pipeline leak 

detection, traffic control, smart roads, surveillance cameras etc. [5]. 

Health care 

  Health care applications are devoted to improving the functionality and 

accessibility of digital products that are revolutionizing the health and fitness 

industries. Application examples include patient surveillance, sportsmen care, medical 

fridges, and hospital asset tracking [5]. 

http://www.ti.com/solution/docs/appsolution.tsp?appId=407
http://www.ti.com/solution/chemical_gas_sensor?keyMatch=chemical/gas%20sensor&tisearch=Search-EN
http://www.ti.com/solution/chemical_gas_sensor?keyMatch=chemical/gas%20sensor&tisearch=Search-EN
http://www.ti.com/solution/camera_surveillance_ip_network
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Smart manufacturing 

  The applications of smart manufacturing provide opportunities to improve 

efficiency across labor, materials and energy in the manufacturing industry. Examples 

include flow optimization, real time inventory, asset tracking, employee safety, 

predictive maintenance and firmware updates [5]. 

Retail and Logistics 

  The Internet of Things can also be beneficial for the retail and logistics industry by 

optimizing information flows along the entire supply chain or tracking goods during 

transportation. Examples are Supply Chain Control, NFC payment, intelligent 

shopping applications, quality of shipment conditions, item location, and fleet 

tracking [5]. 

Smart Agriculture 

  For farmers and growers, the Internet of Things has opened up extremely 

productive ways to cultivate soil and raise livestock. Prospering on this prolific 

build-up of the Internet of Things in agriculture, smart agriculture applications are 

gaining ground with the promise to deliver 24/7 visibility into soil and crop health, 

machinery in use, storage conditions, animal behavior, and energy consumption level 

[5]. 

1.3 Big Data Explosion 

  Most analysts agree that that the Internet of Things will be huge. For example, 

Accenture’s survey states that by 2019 two-thirds of consumers expect to buy 

connected technology for their homes; and nearly half expect to buy wearable 

technology [6]. Cisco predicts that by 2020 there will be approximately 50 billion 

connected devices [6] and that the sensor data will often flow as a constant stream 

from the device to the network. The amount of data generated can be huge. For 
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example airliners can have more than 300,000 sensors on board which generates 20 

TB of data every hour during a flight [7]. Cisco estimates that the amount of data 

generated by Internet of Things devices will be 403Zetta byte by 2018 which equals 

47 times of the predicted total data center traffic and 267 times the predicted amount 

flowing between data centers and users [8]. Indeed, the Internet of Things 

communication generates enormous amounts of Internet traffic.  

1.4. State of the art 

  Sensors can be built small enough to be embedded into many physical objects and 

wireless communication technologies have improved to provide data connectivity that 

allows data to be produced frequently. These sensors will massively increase the 

amount of data available for analysis. Developing applications that make use of this 

data is challenging since application developers have to deal with heterogeneous 

devices and the underlying network for accessing the sensor data. After capturing the 

raw sensor data, the application has to transform the data to a proper format and apply 

analytics to data in order to extract valuable information.   

  IoT provides massive opportunities but also poses data management challenges. 

One of these challenges is that many IoT applications require that queries are 

long-running over data streams where the data is continuously generated. There are 

some variations of database management systems such as pipelinedb[10], 

EP-SPARQL[11], and Nile[12] devoted to addressing this issue. These systems allow 

streaming data to be entered into the database directly or through a loading 

application. A collection of applications can then manipulate DBMS data by running 

SQL queries to compute metrics accurate up to the last event [9].   

Data streams are not unique to the Internet of Things with examples seen in 

automated stock trading, land monitoring, meteorological surveillance, logistic 

services, and transaction management. Recently a new class of data-intensive 

applications called data stream management systems has been widely adopted. 
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Research on stream processing started in the late 1990’s with the development of 

several academic platforms e.g. Aurora[11], Borealis[12], TelegraphCQ[13], 

NiagaraCQ[14], OpenCQ[15], Tribeca[16], CQL and Stream[17], GSQL and 

Gigascope[18], Perla[19] and SteamMill[20].  

  Compared to traditional queries, which are referred to as ad-hoc queries, data 

stream management systems queries may be executed continuously over the data 

passed to the systems. These are referred to as continuous or standing queries. Data 

stream management systems consider data stream elements as tuples and require 

stream operators. Queries may be specified declaratively using an SQL-like language 

or graphically using a graph of data operations that support the continuous query 

paradigm. For each operator, there are queues for buffering input. Execution plans of 

registered queries are combined into one big plan to reuse results of common 

operators for multiple queries. This enables real-time analysis [14]. Much of the work 

focuses on algorithms for stream analysis, e.g., filtering, finding subsequences, that 

can be done in memory. Little of this work addresses challenges associated with the 

sharing of sensor data by multiple applications. 

1.5 Problem Statement 

  This work focuses on the development of a data stream systems that have several 

properties. Firstly IoT applications often require real-time processing of high-volume 

stream data. The processing logic should satisfy the requirements of IoT applications 

in various domains. Secondly, IoT scenarios require a decoupling of data consumers 

and data producers. We assume that data streams from different sensors are available 

to multiple applications. Essentially it should be possible for a sensor’s data to be 

shared. Any application should be able to connect or disconnect to any desired stream 

data at any time. Furthermore, it should be possible to share the data such that the data 

is only sent once and ideally if two applications require the same subset of a data 

stream then the subset only has to be generated once. Finally, IoT will be pervasive in 
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the near future. IoT application developers should be able to specify the data required 

through an easy to understand interface.   

  The primary contribution of this work is that a programming abstraction is provided 

through the use of an SQL-like syntax to be used by application programmers.  An 

architecture of a platform is proposed that manages the data flows for application 

programmers that allows for sharing of a single data stream from a sensor. 
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Chapter 2 

2 Related Work 

  This chapter describes some of the representative work related to handling 

streaming data. 

2.1 Database management system 

  This section describes representative examples of database management system. 

  PipelineDB [10] is an open-source relational streaming-SQL database based on 

PostgreSQL. It added extra functionality to PostgreSQL such as continuous SQL 

queries, probabilistic data structures, sliding windows, and stream-table joins. 

PipelineDB’s fundamental abstraction is called a continuous view, which is very 

similar to regular SQL views, except that their defining SELECT queries can include 

streams as a source to read from. PipelineDB runs SQL queries continuously on 

streams and incrementally stores results in tables. 

 Although previous work on query languages were useful for automated stock trading, 

logistic services, transaction management and business intelligence, they were not 

well suited for applications that use web structured data and ontologies. SPARQL [11] 

partially addresses this by allowing for the specification of queries for “key-value” 

data. EP-SPARQL [12] is based on SPARQL to provide a unified language for event 

processing and stream reasoning devoted for streaming databases. It uses SQL-line 

syntax and execution models adapted to process streaming data.   
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  Nile [13] extends the query processor engine of an object-relational database 

management system to support data streams. This project is motivated by many 

emerging applications, particularly in pervasive computing, sensor-based 

environments, retail transactions, and video processing which continuously report 

up-to-the-minute readings of sensor values, locations, and status updates. The initial 

prototype implementation was based on an object-relational DBMS called Predator. 

Predator added data streams as a special data type and implemented a stream query 

interface through stream-scan and stream manager components. Nile uses traditional 

SQL operators and consider window execution as an approach to restrict the size of 

stored state in operators such as join.  

  Tribeca [14] is an extensible, stream-oriented DBMS designed to support network 

traffic analysis. It combines ideas from temporal and sequence databases with an 

implementation optimized for databases stored on high speed ID-1 tapes or arriving in 

real time from the network. 

  Traditional storage based data processing infrastructures can deal with stream data. 

However, the amount of data generated is huge and may come quickly. DBMS 

assumes that the query is continuously applied to streams with results incrementally 

stored on a disk for retrieval by applications. For real-time analysis of high-volume, 

the bottleneck associated with writing to disk and then reading is not suitable. 

2.2 Data Stream Management Systems and Query 

Languages 

  This section describes representative examples of academic data stream 

management systems and query languages. Many of these form the basis for 

commercial systems. 
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  Research on stream processing started in the late 1990’s with the development of 

several academic platforms e.g., Aurora [15], Borealis [16], NiagaraCQ [17], CQL 

and Stream [18], GSQL and Gigascope [18], and SteamMill [20].   

  Aurora [15] is a general-purpose data stream manager that was designed and 

implemented at Brandeis University, Brown University, and M.I.T. to efficiently 

support a variety of real-time monitoring applications. Aurora users can build 

continuous queries out of a small set of well-defined operators that implement 

standard filtering, mapping, and windowed aggregate and join operations. Each 

Aurora application can also define one or more Quality of Service (QoS) 

functions/graphs, each defining the utility of query results in terms of a performance 

or quality metric. Other key components of the Aurora run-time system are the 

scheduler, the storage manager, and the load shedder. The scheduler decides which 

operators to execute and in which order to execute them. 

  Borealis [16] is a second-generation distributed stream processing engine that 

inherits core stream processing functionality from Aurora [15] and distribution 

functionality from Medusa that supports three fundamental functions including 

dynamic revision of query results, dynamic query modification and flexible and 

highly-scalable optimization. 

  NiagaraCQ [17] is the continuous query system developed at the University of 

Wisconsin and Oregon Graduate Institute. The goal for this continuous query system 

is to transform a passive web into an active environment and therefore needs to be 

able to support millions of queries due to the scale of the Internet. No existing systems 

have achieved this level of scalability. NiagaraCQ addresses this problem by grouping 

continuous queries based on the observation that many web queries share similar 

structures. Grouped queries can share the common computation, tend to fit in memory 

and can reduce the I/O cost significantly. 
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  CQL [18] is a Continuous Query Language that supported by the STREAM 

prototype Data Stream Management System at Stanford. It is an expressive 

SQL-based declarative language for registering continuous queries against streams 

and updatable relations. From the “black box” mappings among streams and relations 

they define a precise and general interpretation for continuous queries. 

  Operators of large networks and providers of network services need to monitor and 

analyze the network traffic flowing through their systems. They use monitoring tools 

built into routers, such as SNMP, RMON, or NetFlow. The problem with these tools 

is their lack of a query interface. Gigascope [19] provides an SQL interface to the 

network monitoring system, greatly simplifying the task of managing and interpreting 

a stream of data.   

  Stream Mill [20] system’s Expressive Stream Language(ESL) efficiently supports a 

wide range of applications—including data stream mining, streaming XML 

processing, time-series queries, and RFID event processing. ESL supports physical 

and logical windows on both built-in aggregates and user-defined aggregates (UDAs), 

using a simple framework that applies uniformly to both aggregate functions written 

in an external procedural language and those natively written in ESL. The constructs 

introduced in ESL extend the power and generality of data stream management 

system. 

2.3 Commercial Platforms 

  Data stream management systems have been applied in many industrial domains 

that require network monitoring, fraud detection, intelligence and surveillance, risk 

management, e-commerce, market data management, algorithmic trading and so on. A 

stream processing product might solve issues out-of-the-box, as it is noted that such 

products require less self-coding and the Total Cost of Ownership is not high [21] 

compared to non-commercial frameworks. Several stream processing commercial 

platforms are introduced in this section. 
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  Apache Storm [22] is an open source stream processing framework created by 

Twitter, and it provides the functions for transforming data streams into a new data 

stream in a distributed and reliable way. A Storm cluster runs "topologies" in a similar 

fashion to a Hadoop cluster that runs "MapReduce jobs". The key difference is that a 

“MapReduce job” will eventually finish, whereas a “topology” processes stream data 

forever until it is stopped. A “topology” is a graph of computation where each node 

from the graph contains processing logic, and links between nodes indicate how data 

should be passed around among nodes. Each processing node consumes any number 

of input streams, does some processing, and emits new streams, one example can be 

compute a stream of trending topics from a stream of tweets [23]. Storm’s website 

shows some reference use cases for stream processing at companies such as Groupon, 

Twitter, Spotify, HolidayCheck, Alibaba, and others. 

  Samza [24] plays a role similar to MapReduce yet it is unlike batch processing 

systems such as Hadoop. Samza’s goal is to provide an elastic, fault-tolerant 

processing on top of real-time feeds. Samza continuously computes results as data 

arrives which makes sub-second response times possible. 

  The Cedr stream research project [25] proposes novel architectures, processing 

techniques, models, and applications to support time-oriented queries over temporal 

and real-time data streams. This research shipped in 2010 as Microsoft StreamInsight 

[26] - a commercial stream processing system that is part of SQL Server. Microsoft 

StreamInsight is a comprehensive platform for building event-driven applications. 

StreamInsight adopts a deterministic stream model that leverages a temporal algebra 

as the underlying basis for processing long-running continuous queries.  

  These systems are designed to provide resources to analyze streaming data. 

However, these stream processing systems typically assume that the data streams are 

to be analyzed by one task and there is a one-to-one relationships between the data 

producers (sensors) and the applications (consumers that require the data). This does 

https://storm.incubator.apache.org/
http://storm.incubator.apache.org/documentation/Powered-By.html
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not satisfy the requirement of the decoupling of data consumers and data producers. 

Because we want to achieve more effective stream data sharing. 

 

 

Chapter 3 

3. System Design Requirements  

    This chapter presents data management requirements for stream-processing 

systems which are motivated by IoT applications.     

3.1 Requirement: Real-time Analysis of Stream Data 

  Smart roads applications [9] can help make traffic control more effective by 

monitoring live trends in traffic flow. The traffic flow information, usually detected by 

vehicles or road side units, is broadcast among all vehicles when it is close to its 

occurrence. Getting this information received with minimum latency, real-time action 

can be taken, instructing ways to avoid traffic bottlenecks or even potential accidents.  

  From the above example, we can identify that a requirement for a stream 

processing system is to spot useful events as close to the occurrence of the event as 

possible. This requirement was also noted in M. Stonebraker et al [8], where it was 

noted that a system should be able to avoid costly storage operations when necessary. 

For smart road applications, the traffic flow information changes frequently, and a 

delayed transmission of traffic information will be no longer useful. Storing all the 

data before it could be processed increases the amount of time to analyze and make 

decisions. Upon arrival of data, instead of storage, a better solution is to analyze the 

captured data without having to store it. We can choose to save the data in storage 

only when history data need to be traced.      
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3.2 Requirement: Stream Filtering 

  In the Automatic NFC payment application scenario [9], payment is processed 

based on location or activity duration for places such as public transport, gyms, theme 

parks, etc. The application should track a user’s location information and charge only 

when that information is relevant to payment activity. For example, when a user is 

using public transport, the application will record the distance traveled and 

automatically charge the transportation fee. 

  As seen with this example, filtering the sensor data is required since the huge 

amount of sensor data and instantaneous response demand has made it unrealistic to 

process all the data. Much of the generated data is regarded as “unconcerned” and will 

not be used by user applications. For example, the period that a person is not in a train 

or in theme park is not relevant for payment. Stream analytics systems should handle 

irrelevant data by applying transformations and rules to determine if further 

processing needs to take place. If not necessary, the data should be discarded 

immediately.  

3.3 Requirement: Temporal Analysis and Aggregation 

   Patient surveillance [9] requires monitoring of conditions of patients inside 

hospitals and in old people's home. A variety of sensors attached to patients should 

keep tracking of body data: pulse rate, breathing airflow, body temperature, 

glucometer, blood pressure, etc. Health care applications should continuously monitor 

the sensor data along a time line and compute the aggregate value within the time 

window. For example, the average blood pressure for every 15 minutes or the 

maximum body temperature for half an hour can be detected by the health care 

application, so that patients and doctors can identify potential problems.  

  Stonebraker et al [8] claims that one unique feature of event stream analytics is to 

take the concept of time stamp as a primary computing element, which is crucial for a 

user application to identify certain events at a specific time. Unlike traditional 
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computing models which are designed to summarize historical data, stream analytics 

continuously process the data as it is generated. The system should also be able to do 

continuous aggregation across sliding time windows in order to understand real-time 

trends over a period of time.  

 

3.4 Requirement: Multiple Stream Correlation  

  Waste management applications [9] are used for detection of waste levels in 

containers to optimize the trash collection routes. The application will analyze 

multiple streams of sensor data from all waste containers, and create a customized 

overall waste collection plan that guarantees that there are no overflows or over 

collect the wastes.   

  From this example we can see that figuring out whether or not trash cans need to be 

emptied obviously cannot only consider one particular trash can. The stream 

processing system should allow user applications to connect to multiple data streams 

that are from different sources. A user application might be wish to identify that a 

series of events occurred, e.g., all the trash cans contain waste above certain level. Or 

the user application will be interested as long as any event from a series of events 

occurs e.g. there is one trash can exceed the maximum overflow level.   

3.5 Requirement: Data shared by multiple users 

   In the smart roads application [9] example, when poor weather conditions or 

unexpected events like accidents or traffic jams are detected, the warning messages 

and diversions should be advertised to all vehicles. The sensor data would be useful 

for different applications. In another example, home automation applications often 

focus on the use and control of home appliances remotely or automatically. Suppose 

the heating and cooling are two separate systems and that both heating and cooling 

applications are interested in the same temperature data. 

https://en.wikipedia.org/wiki/Home_appliance
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  The above examples show that one data stream could be shared by multiple user 

applications who subscribe to this stream in real-time. Multiple user applications 

could be interested in one stream of raw sensor data, but may apply different 

strategies for downstream analysis. This system should be designed to satisfy this 

requirement. 

Chapter 4 

4. Query Language 

  In order to address the requirements of stream processing for IoT applications, it is 

crucial to design a query specification that allows the user to perform queries. 

4.1 Query Assumptions 

  A stream S is a bag (multiset) of elements (D, t) where D is the data and t 

represents the timestamp associated with the data. There is considerable existing work 

in query languages for streams such as NiagaraCQ[15], OpenCQ [16], CQL[18] and 

Gigascope[19]. This work uses a subset of operators found in CQL [18].  Most work 

assumes that the application issuing the query has knowledge of the available sensors 

and can specify the desired stream though a sensor stream identifier. This work differs 

in that the application that issues the query does not necessarily have knowledge of 

available sensors. Instead the approach taken is to allow the user to specify the type of 

data and the location from which it needs this data. This is sufficient for identifying 

the data when a sensor type maps to a unique sensor location. However if there are 

several sensors of the same type at the same location, we need to distinguish each 

sensor by adding an extra identifier. For example, if there are three temperature 

sensors in a room, a user should be able to query by sensor type e.g., temperature1, 

temperature2, temperature3, for representing each temperature at one location or the 

sensors are returned to the user and the user selects one. Future work will investigate 

this issue further. 
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4.2 Format of Queries 

The general form of a query is the following: 

SELECT <attribute-list> when [<conditional expression>] from <location> 

[<groupBy Time Window>] 

Components of the query within brackets are optional. The components of the query 

are described below: 

 attribute-list: This may consist of one or more attributes. An attribute is either 

data from a sensor or an aggregation function on a set of data of a particular 

attribute. The set of aggregation assumptions include average, maximum and 

minimum. One query is allowed to contain both aggregation and 

non-aggregation attributes and the attributes are from multiple sensors. 

 conditional-expression: This may be a single condition such as temperature 

> 20 or a series of conditions connected by a logical operator (AND or OR) 

such as temperature>20&&humidity<20 . Sensor data that does not satisfy the 

condition is not sent to the user. Basically if a condition is defined a subset of 

the stream is returned to the user. 

 location: This represents the sensor location. The location can be in different 

forms. For example, in most cases it could be a location tag e.g., Room 240, 

MC Building.  If the sensor can move such as a person who is carrying the 

sensor, then the location of the person is considered as the location in this 

query. 

 groupBy time-window: This defines the window of data to be retained before 

the data is analyzed e.g. timeWindow(5 minutes). All sensor readings (or data 

records) produced within every 5 minutes will be analyzed and returned to the 

user. This requires that when the time window is used, an aggregation function 

must be applied to attributes in the attribute-list. For queries which returns 
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data once the data is produced, the time window is not required for 

aggregating data.  

The query results is a tuple with two elements: 

 Attribute-value pair: This includes the sensor type and measurement value of 

returned data e.g. (Temperature, 20 degree). One query result tuple contains 

one or more attribute-value pairs according to attribute-list specified in the 

issued query. 

 time stamp: This is the time when the sensor data entry is produced. It uses 

the following format: [Month Day hh:mm:ss Year TZ] where Month refers to 

an abbreviation for month (Jan through Dec), Day refers to a two-digit day of 

the month (01 through 31), hh refers to two digits that represents an hour (00 

through 23), mm represents two digits of a minute (00 through 59), ss 

represents two digits of a second (00 through 59), YYYY represents a 

four-digit year; and TZ represents a time zone.  

4.3 Examples of Queries 

  This section presents several query examples and demonstrates how the queries 

satisfy the addressed requirements.  

Example 1: SELECT Temperature when Temperature>25 from Room240; 

  This query returns Room 240’s temperature value when it is more than 25. The 

temperature values that are less than 25 are filtered out.  

Example 2: SELECT avg(Temperature) when avg(Temperature)>20 from Room215 

groupBy timeWindow(10min); 

  This query is used to return the average temperature calculated for each 10 minute 

time window. This satisfies the requirement of temporal analysis and aggregation.         
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Example3: SELECT Temperature, Light when Temperature>25 && Humidity<10 

from Building1; 

  This query returns temperature and humidity from location Building1 when the 

temperature measured is greater than 25 and the light is less than 10. This query uses 

two streams and thus satisfies the requirement of multiple stream correlation. 

4.4 Interpreting the query message  

  A corresponding interpreter is needed for the proposed query language. This 

interpreter recognizesFigure 1 Syntax Tree 1 the query string’s grammar specification 

to determine whether it is a valid query and also converts the query string to 

information that can be executed by a query task. 

  The syntax tree is shown as Figure 1 Syntax Tree 1to interpret the query string. The 

string without angle brackets indicates one expression, which is composed of several 

tokens. Each token is the one with angle brackets and should be matched to a string or 

character as specified in Appendix 1.  

  The syntax tree also follows the same rule as used in regular expression, where 

question mark (?) indicates zero or one occurrences of the preceding element, the 

asterisk (*) indicates one or more occurrences of the preceding element, and the 

operator ‘OR’ means this expression can be either one from two tokens.  

  In Figure 1 a query is composed of several expressions including SelectList, 

SelectConditions, SensorLocation, and can have a TimeWindow expression. A 

semicolon denotes the end of a query.      
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Figure 1 Syntax Tree 1 

  In Figure 2 the SelectList starts with a SELECT token, followed by one or more 

SelectAttribute expressions, separated by a COMMA token. A SelectAttribute can be 

a SensorType token, or an AggregateSensorType expression. The 

AggregateSensorType expression starts with an AggregateFunction followed by a 

SensorType which is surrounded by a left parentheses and a right parentheses.   

 

Figure 2 Syntax Tree 2 

                          

  The SelectConditions expression starts with a WHEN token, followed by one or 

more Condition expressions, connected using a LogicOperator. One condition 

expression is composed of a CompareAttribute expression, a RelationalOperator 

token, and a Number token. The CompareAttribute can be a SensorType or an 

AggregateSensorType. The AggregateSensorType starts with an AggregateFunction 
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followed by a SensorType, which is surrounded by a left parentheses and a right 

parentheses.   

 

Figure 3 Syntax Tree 3 

  Finally we have SensorLocation expression composed of a FROM and a Location 

token. The TimeWindow expression contains a GroupBy token and a Time token that 

is surrounded by a left parentheses and a right parentheses 

 

Figure 4 Syntax Tree 4 
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Chapter 5 

5 IoT Event Stream Processing Platform  

  In order to support the query language, an IoT Event Stream Processing Platform is 

proposed. In this chapter the overall architecture and each of its components are 

introduced. 

5.1 Platform Introduction 

  The framework is designed to be available via the Platform as a Service (PaaS) 

model: Platform as a Service is a cloud computing model that delivers applications 

over the Internet. In a PaaS Model a cloud provider delivers hardware and software 

tools, usually those needed for application development, to its users as a service [27]. 

The platform is licensed on a subscription basis and is hosted on a server. Sensor data 

can be accessed by a client IoT application using a TCP connection. Various kinds of 

IoT applications can be developed by leveraging this platform. The platform provides 

two main services to its users: executes basic analytics on sensor data based on the 

user query and dispatches processed sensor data to applications who subscribe to this 

information.   

  Figure 5 shows a general architecture of the Event Stream Processing Platform. The 

platform gathers data generated by data sources and sends data to IoT applications. 

The rest of this chapter describes this platform in detail. 
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Figure 5 Platform overview diagram 

 

5.2 Platform Architecture 

  This section describes the functionality of each component of the platform as 

illustrated in Figure 6. This platform assumes that there is a queue for each data 

stream coming from a data source. The Stream Manager maintains these queues.  

 

Figure 6 Platform architecture diagram 
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Data Sources 

  The Data Sources refers to sensors attached to smart devices, which are used to 

sense the surrounding environment, periodically produce sensor data and send sensed 

data to the cloud platform. In general, the devices or things can be categorized into 

two groups: constrained and standard devices. Constrained devices may be very small 

and have very few resources in terms of compute power storage, etc., and may be able 

to communicate only via networks that are unable to reach cloud platform directly 

(e.g., over Bluetooth Low Energy, or BLE). Standard devices more likely resemble 

small computers and can route data directly over networks to cloud platform. In order 

for the data from constrained devices to reach the cloud platform, the data needs to go 

through some type of gateway device. 

User Applications 

  This refers to IoT applications that need to make use of the sensor data. The 

platform provides each user application an interface to issue queries and receive query 

results in real-time. The applications do not have to be concerned with the 

configuration of the query engine that allows the data to be delivered to it. 

Query Parser 

  This component is used for receiving and parsing query messages issued by user 

applications. Only after parsing the query message successfully, can the query can be 

executed by the query engine.  

Stream Manager 

  This component maintains a list of queues, where each queue represents a data 

stream where the queue contains data from this stream. A data stream can be used by 

more than one query, and therefore we have multiple queues associated with this data 

stream with each belonging to a query. Since a query may need data from multiple 

streams, we associate multiple queues with each query.  
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Data Dispatcher 

  This component is aware of the information of all the active queries, including the 

streams that each query is interested in. Using this information, the sensor data can be 

dispatched to corresponding queues at the Stream Manager, so that each query has 

access to its requested   stream data from the queues at the Stream Manager. 

Query Processing Task 

   Each Query Processing Task is started for handling one query. As all data streams 

required by this query is handled by the Stream Manager, the task is able to 

continuously receive data from the corresponding queues. Upon receiving the data, 

the task will apply analysis to the streaming data including aggregate, calculate 

average and filter on the stream data according to user needs, and generate final query 

results.  

Task Manager 

  This component is used to manage a group of Query Processing Tasks. There is one 

task per user query. The tasks can be started or removed based on user requirements.  

Query Result Publisher 

   This component is responsible for publishing the query results on a query topic, 

the query topic is the query string. It allows users who subscribe to that query topic to 

receive the query results.  

5.3 Information Model 

  In this section we will introduce information models that are used in this work.   

5.3.1 Sensor Data Model 
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  Each sensor si is a data source. A stream generated by one sensor is set of elements 

(ai, t) where ai is a tuple, (ai0, ai1,….ain-1) consisting of attribute values measured by 

sensor si at time t. We assume that there is a unique identifier associated with a stream. 

We also associate sensor si, with the pair (typei,locationi) where typei represents the 

type of sensor si, and locationi represents the location of sensor si.  

5.3.2 Stream Map 

  The Stream Map is maintained by Data Dispatcher and is used to guide the Data 

Dispatcher on how to dispatch sensor data. The Stream Map is basically a set of pairs 

(or 2-tuples). In the ordered pair (si,Qi), where si represents the stream of data coming 

from sensor si and Qi represents the set of query identifiers interested in the sensor 

information from si,   

5.3.3 Stream Queues 

  Stream Queues represents the queues maintained by the Stream Manager. For each 

sensor si and query qij from Qi of the stream map, there is a queue. The Stream 

Manager needs to maintain information about each queue. Stream Queues is a set of 

tuples [si Queuei]: where si represents the sensor identification, Queuei is the set of 

queues where Queueih is associated with query qij. This means that if a data steam for 

sensor si is used by two queries then there will be two queues with the data from the 

sensor si. We choose to duplicate the sensor data instead of sharing it because different 

applications would handle the data in different ways.    

5.3.4 An Information Model Example 

  To get a better understanding of the Stream Map and Stream Queues, this section 

presents an Information Model use case. The example assumes that there are three 

sensors sending data to the query engine and three queries have been issued: query1 

requires data from sensor1; query2 requires data from two streams generated by 
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sensor1 and sensor2; query 3 requires three streams of data from sensor1, sensor2 and 

sensor3 respectively. 

  After the queries are issued, the Stream Map will be updated: each sensor is related 

to a set of current queries. Following the Stream Map, new queues will be create in 

Stream Queues as follows and sensor data will be constantly sent to these queues. 

{ 

[ :( : queue of data from ), ( : queue of data from ), 

( : queue of data from )]; 

[ :( : queue of data from ), ( : queue of data from

)]; 

[ :( : queue of data from )]; 

} 

 

5.4 Interactions 

  In previous sections we discussed the functionality of each component. In this 

section, we will discuss the details of how these system components cooperate. 

Step 1: Issue and parse queries  

  In the first step, the User Application issues queries to the query engine. The Query 

Parser component of the query engine listens for queries and processes each received 

query.   

  Upon receiving a query, the Query Parser interprets the query message and checks 

whether it is a valid query. A valid query message satisfies two requirements: the 

1sensor 1query 1sensor 2query 1sensor

3query
1sensor

2sensor 2query 2sensor 3query
2sensor

3sensor 3query 3sensor
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query string follows the specified query language syntax and the queried sensor type - 

location combination exists. If the Query Parser determines that the query is valid, the 

Query Parser sends a success message back to the User Application, and then sends 

the parsed query information, including attribute-list, condition-expression, location 

and possibly a time window, to the Data Dispatcher and Task Manager. Otherwise a 

‘query fail’ message is returned to the User Application. 

 

 

Figure 7 Issue queries and parse queries 

 

Step 2: Start tasks for processing queries 

  After receiving a ‘query success’ message, the User Application starts a Query 

Result Receiver thread, which is used to receive query results of that query. After 

being informed of the new query, the Query Task Manager will start a Query 

Processing Task associated with the query, and the Data Dispatcher will also update 

the list of active queries in the Stream Map. 
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Figure 8 Start a query task 

Step 3: Distribute data among query tasks 

  In the previous step, the Query Task Manager starts a query task for each query and 

the Data Dispatcher updates the Stream Map. The Data Dispatcher receives data sent 

from sensors.  

  The Data Dispatcher directs data streams to Stream Queues by referring to the 

mapping information from Stream Map. The Data Dispatcher uses the sensor 

identifier of received data to determine the list of queries that require data from the 

incoming stream. The Data Dispatcher will then dispatch the data to the relevant 

queue associated with the query. This enables all queries from the query list that map 

to the sensor identifier to extract data from the stream associated with the stream 

identifier. In this way, if multiple queries require data from a particular stream, the 

sensor data from this stream will be duplicated and directed to multiple queues. If no 

query requires data from the data stream, this data will simply be discarded. 

  Each individual Query Processing Task will continuously extract data from its 

queues maintained by the Stream Manager: Each query task will search for its own 

group of queues identified by the query associated with the query processing task. 

Among the list of queues, each interested stream can be found based on the sensor 
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identifier. While there is sensor data in the queue, the task will keep extracting sensor 

data from this queue, therefore allowing the task to access data from this stream.  

 

Figure 9 Distribute data among query tasks 

 

Step 4: Execute each query task 

  After the sensor data is directed from the Stream manager to the correct destination 

at each task, the Query Processing Task will apply processing logic to stream data 

according to the parsed query. In order to execute each of the query task, several 

modules need to collaborate to achieve this goal.  

 

Figure 10 Execute each query task   
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Aggregator: 

  In order to calculate an aggregate value like average, maximum or minimum value 

of multiple data entries, the Aggregator is used for retaining stream data entries for a 

specified time frame before the aggregation function can be applied.  

Synchronizer: 

  Since there may be a time difference on the arrival of data from different sensors, a 

Synchronizer is required to determine whether all the data from different sources 

arrived. The Synchronizer will signal Condition Checker for further processing when 

all required sensor data from multiple streams are ready. If any data is missing and the 

Synchronizer waits for this data for a specific amount of time the query engine will 

ignore this set of data and proceed to data at next time stamp. For example when 

calculating a combined result from two streams, if the data from one steam arrives yet 

the data from another stream is lost, then in this case the arrived data should be 

discarded, no result is returned at this time stamp and the system will proceed to the 

next set of data. 

Condition Checker: 

  One query message contains a condition expression which is composed of a list of 

conditions. The Condition Checker is responsible for calculating and checking each of 

the individual conditions and determines whether the condition expression is satisfied 

when several conditions are connected by AND/OR operators. Only when the 

condition expression is satisfied, can the sensor data entry be selected to return to 

user.  

Publisher: 

  After the data streams are evaluated by the Condition Checker, the Publisher will 

refer to the attribute list specified in query and take the corresponding attribute-value 
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pairs from multiple streams to generate one query result ready to present to users who 

issue this query. 

Step 5: Publish query results via publisher-subscriber channel   

  The query results produced by each Query Processing Task can be published as a 

topic via a Publisher, one topic is a query string. When a user issues a query, the user 

automatically subscribes to that topic. All User Applications that subscribe to that 

topic will receive the query results, which means that if query1 is the same as query2 

then the user application that issued query2 can just subscribe to the topic and thus no 

need to a separate stream. This is done by a Publisher-Subscriber channel that takes 

the query results published and instantly delivers the messages to Subscribers using 

the topics and subscriptions information.  

 

Figure 11 Publisher-Subscriber Chanel 

  Design communication as the publisher-subscriber model is necessary since 

multiple users may be interested in common events and demand for the same data. In 

the publisher-subscriber approach, the query engine does not have to execute one task 

several times to fulfill multiple users’ needs. Only one query processing task is needed 

and one copy of the query result will be published. Finally multiple users who 

subscribe to this topic can receive the query results. 
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Step 6: User Application receive results of multiple queries 

 

Figure 12 Receive query results 

  As mentioned in previous step, the User Application starts a thread called Query 

Result Receiver after issuing a valid query. One Query Result Receiver contains the 

Subscriber that receives query results for subscribed topic. The User Application will 

gather all results from those Query Result Receivers it started.  

 As all the data dispatching and analysis mentioned in this chapter are done in 

memory, the requirement of Real-time Analysis of Stream Data is satisfied. Also 

multiple users can receive the same copy of data via a subscribe-publish mode. The 

platform does not need repeatedly process the task if the queries are the same and thus 

the requirement of data shared by multiple users is satisfied. 
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Chapter 6 

6 Software Demonstration 

This chapter describes the validation of the functionality. 

6.1 Software implementation 

  The platform is developed using the Java language. Third party tools that have been 

applied are JavaCC[28] for interpreting query string and ActiveMQ[29] for 

implementing the publisher-subscriber channel. As Java is a platform independent 

language, the software can be ran on any hardware platform. The software was 

executed on a PC running 64 bit Windows7 operating system, with Intel Core i3 CPU 

and 4GB RAM.  

6.2 Verification of the functionality 

  The functionality of our platform to be evaluated includes: applications can apply 

analysis to stream data in real time, stream filtering is possible using one or more 

conditions, aggregation for a specific amount of time is allowed, one query is able to 

correlate multiple streams from different sources, and multiple applications can access 

the same stream of data. To test these functionalities, a simulator was developed to 

simulate the sensors and send stream data to the platform. We ran the sensors (data 

source side), platform (server side) and user applications (client side) on one PC, and 

used the TCP protocol to communicate between the components for simulating 

components communicating from different locations. We use three IoT application 

examples to demonstrate the functionality of the prototype.   

6.2.1 Health care application example 

1. The first example is a health care application that monitors a patient’s pulse rate 

and body temperature. We first start the Sensor Simulator.   
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Figure 13 start a simulator 

2. When the Add a Sensor button is pressed a window pop up that allows the user to 

set the sensor configuration. A sensor that monitors the pulse rate from patient1 is 

created. The simulation produces 3000 sensor readings or data records, and produces 

one record every second. The value of simulated data of simulated sensor readings is 

in the range of 50 to 150. We then create another sensor which senses body 

temperature. It then simulates sensor data values that range between 36 to 38 degrees. 

 

Figure 14 sensor configuration 

 

Figure 15 sensor configuration 

3.  There are now two sensors. We can press the Start Data Generator button to start 
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the simulation. Each sensor configuration is registered at the server and each sensor 

continuously generates data.  

 

Figure 16 sensor simulator 

3.  Pressing Start Query Engine allows the server to start receiving sensor values and 

the timestamp associated with the sensor value when it was generated. The sensor 

simulator will also automatically assign an identifier to the data from the sensor 

stream: pulseRate data with sensor identifier 1 and bodyTemperature data with sensor 

identifier 2. 

 

Figure 17 start query engine 

4. One of the clients may be a doctor which we will identify as Doctor1. Doctor1 

issues a query in the text field next to Add Query button. Only valid queries can be 

accepted. If an invalid query an alert will be generated and displayed to Doctor1. The 
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invalid query is one that does not follow the query specification or the sensor type 

queried at that location does not exist.  

 

Figure 18 invalid query 

5.  A query can be issued to alert the doctor when a patient’s pulse rate is greater than 

130. The query should be “Select pulseRate when pulseRate>130 from patient1”. 

 

Figure 19 issue query 

6. The Add Query button is used to issue the query. This query will appear on the 

Query List panel. All the matched data entries from this stream is shown in the result 
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display area. 

 

Figure 20 receive query result 

7. We issue another query “Select pulseRate, bodyTemperature when pulseRate>70 

&& bodyTemperature>37 from patient1”. This query requires data from two streams 

when the two conditions “pulse rate is larger than 70” and “body temperature larger 

than 37” are both satisfied. As we can see the Query List panel now contains two 

issued queries. By clicking each of the queries, the result display area can switch 

between the two query results. 

 

Figure 21 issue another query 
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8. We issue the third query “Select avg(pulseRate) when avg(pulseRate)>70 &&  

from patient1 groupBy timeWindow(3s)”. This computes the average pulse rate every 

3 seconds, and the data that satisfies the query will be returned when the average 

pulse rate is higher than 70.  

 

Figure 22 issue third query 

9. The last query is “Select avg(pulseRate),bodyTemperature when 

avg(pulseRate)>70 from patient1 groupBy timeWindow(3s)”. This return the average 

pulse rate and body temperature when average pulse rate is larger than 70 every 3 

seconds. The body temperature is generated every 1 second and therefore each result 

has three entries with the same average pulse rate and different body temperatures.  

  As we can see from these 10 steps, this single application can issue queries to query 

multiple sensors and receive results from four concurrently tasks running on our 

platform. 
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Figure 23 issue fourth query 

6.2.2 Smart road application example 

 In the second example we use a smart road application to demonstrate that multiple 

users can use the same stream of data. We use an attribute trafficLoad with values that 

range from 0 to 100 percent to measure the amount of traffic on a block (0 for no 

traffic, 100 for the road is fully packed). 

 

Figure 24 sensor configuration 

 We will have two users called User1 and User2. User1 issues a query “Select 

trafficLoad when trafficLoad>70 from westernRoad”. It returns the trafficLoad when 

it is more than 70 percent. 
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Figure 25 issue a query 

 The same copy of real time traffic information can be shared among multiple 

vehicles. By clicking Existing Query button User2 can see a list of queries issued by 

other users. User2 can choose one issued query and receive the query result. Here we 

choose the only query issued by User1 and receive the same results as User1. 

 

Figure 26 existing query list 
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Figure 27 issue existing query 

6.2.3 Smart agriculture application example 

  In the third example we will provide a smart agriculture application to show 

multiple users that use different streams of data. We use an attribute temperature 

whose values range from 0 to 30 degrees to measure the temperature at a farm. 

Another attribute light is used to measure the day time illumination ranging from 0 to 

100 at the farm. 

 

 

Figure 28 sensor configuration 
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  We will have two user applications one for monitoring an animal and the other for 

monitoring a plant. The first application issues a query “Select temperature when 

temperature<15 from farm1”. It returns the temperature when it is less than 15. 

 

Figure 29 issue a query 

  The second application issues a query “Select temperature, light when temperature 

<10 || light<30 from farm1”. It returns the temperature and light when the 

temperature is less than 10 or light is less than 30. 

 

Figure 30 issue a query 
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Chapter 7 

7 Conclusion and Future Work 

7.1 Conclusions 

  This thesis addressed challenges in the development of a data stream system that 

supports real-time analytics but also allows for the decoupling of sensors from 

applications in a way that allows for sharing of substream computation.  

  Integrating the data collection and analysis functions within a common platform is 

important for IoT application developers. Developers do not have to deal with 

heterogeneous and complex smart devices and the underlying network protocols to 

access sensor data. Users can specify the substreams and analysis on substreams 

without being concerned about efforts to transform the data to the desired format and 

apply analytics to data in order to extract valuable information. Instead, the platform 

provides an interface to access sensor data and carry out data analysis in the cloud on 

users’ request. We reduce their development effort by not having these tasks done by 

each of these applications. 

   From the perspective of overall IoT applications ecosystem, the design also has its 

advantage: the pattern has eased the overall communication to a large extent. In a 

direct communication model, one user application should talk to multitudes of sensors. 

On the other hand, one sensor should maintain communication with several users. 

With our platform, only one connection is needed for each sensor multiple user 

applications. Also Sharing stream with multiple users is more effective because there 

are applications require multiple users receive results from a same query task, for 

example many vehicles on a same road may want to get the traffic information on this 

road. With the help of sharing mechanism, only one set of stream need to be 

maintained and one query task need to be executed, the query results can be reused by 

multiple application users.  
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7.2 Future Work 

  The implementation is a proof-of-concept that looks promising for future work.   

Our prototype requires several additional challenges to be addressed for a real-world 

deployment. Some of these include: 

1. The primary issue is the performance when deal with large amount of data, as now 

the platform runs on a single machine. Obviously in next step we need to build our 

system as a distributed one. One solution is to take advantage of existing distributed 

stream processing framework Apache Storm [22]. Using Apache Storm each stream 

processing task can be viewed as a computation graph consisting of several 

processing nodes. Each processing node consumes any number of input streams, does 

some processing, and emits new streams. When start a new job, we add more nodes to 

our system. These processing nodes then can be distributed among multiple machines. 

For each query we can consider it as one processing node (receive multiple input 

stream from sensors and generate one output stream to user application) and specify 

configuration on how many threads carry out this task and distribute these threads to 

which cluster of machines. Alternatively we can further separate one processing node 

to smaller ones: for each query, there is one node responsible for receiving multiple 

streams and synchronize them, another one node for checking the condition 

expression, and a third node for generating output result stream.  

2. There are weaknesses in the query language.  when there are multiple sensors of 

the same type of sensors appear, users can be confused with which sensor to query 

even if an extra identifier is provided. For example there are multiple temperate 

sensors at one building, it is necessary to distinguish among these sensors since we 

cannot query using sensor type-location pair. A definition of location is needed that is 

understood by the user but is also unique. Another issue is that it should be possible to 

provide “if any” query, for example a notification should be sent if “any room” has a 

temperature of 25. Application users may not only concern about data from sensors at 

one location, but also may want to get notified when an event happens among sensors 
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from different locations. And lastly our aggregation function now support 

sum/maximum/minimum and these function are hard coded. To provide more 

flexibility to our query language, we should be able to provide more functions or 

ideally allow users to specify their own functions and automatically integrate within 

query language.  

3. Thirdly security issues should also be considered because it is critical for IoT 

applications. In our work sensor data and user queries can be managed centrally, 

which made it inherently easier to solve security issues like access control, data 

authentication, snooping, DDoS attack and etc., however this will be more 

challenging in a distributed system.   

4. Fourthly fault tolerance is needed. Strategies like detection of offline device, 

management of dropped connections, and catch up of missed messages are to be 

implemented5. Finally in this project two time stamps are considered as the same 

when they differ by at most 1 seconds, however different applications may require 

different time stamp intervals. Some time critical applications require higher accuracy 

with shorter intervals and some latency tolerant application can have longer intervals. 

The platform should be able to adjust how close time stamps have to be considered 

the same according to different applications.   
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Appendix 

Appendix1: 

TOKEN: 

{ 

<SELECT:"Select"> 

| < L_PAREN: "(" > 

| < R_PAREN: ")" > 

| <WHEN: "when" > 

| <FROM: "from" > 

| <GROUPBY: "groupBy" > 

| <TIMEWINDOW: "timeWindow" > 

|< RelationalOperator:<LT>|<GT>|<EQ>|<LTE>|<GTE> > 

| < #LT: "<" > 

| < #GT: ">" > 

| < #EQ: "=" > 

| < #LTE: "<=" > 

| < #GTE: ">=" > 

|<LogicOperator:<AND>|<OR> > 

|<#AND :"&&"> 

|<#OR : "||"> 

|<EmbedFunction:<AVG>|<MAX>|<MIN> > 

|<#AVG :"avg"> 

|<#MAX : "max"> 

|<#MIN : "min"> 

| < SEMICOLON: ";" > 

| < COMMA: "," > 

| < TIME: <NUMBER> <SECOND> > 

|< NUMBER : ([ "0"-"9"])+ > 

|<SECOND:"s"> 
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| < SensorType: <LETTER> > 

|< SensorLocation: <LETTER> > 

| < #LETTER: 

(  ["A"-"Z", a"-"z", "_", "0"-"9"]  )+ 

> 

} 
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