
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-25-2016 12:00 AM

Agora: A Knowledge Marketplace for Machine Learning Agora: A Knowledge Marketplace for Machine Learning

Mauro Ribeiro
The University of Western Ontario

Supervisor

Dr. Miriam A. M. Capretz

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Mauro Ribeiro 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Other Computer Sciences Commons,

Software Engineering Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Ribeiro, Mauro, "Agora: A Knowledge Marketplace for Machine Learning" (2016). Electronic Thesis and
Dissertation Repository. 4029.
https://ir.lib.uwo.ca/etd/4029

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4029?utm_source=ir.lib.uwo.ca%2Fetd%2F4029&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

More and more data are becoming part of people’s lives. With the popularization of tech-

nologies like sensors, and the Internet of Things, data gathering is becoming possible and

accessible for users. With these data in hand, users should be able to extract insights from

them, and they want results as soon as possible. Average users have little or no experience in

data analytics and machine learning and are not great observers who can collect enough data to

build their own machine learning models. With large quantities of similar data being generated

around the world and many machine learning models being used, it should be possible to use

additional data and existing models to create accurate machine learning models for these users.

This thesis proposes Agora, a Web-based marketplace where users can share their data and

machine learning models with other users with small datasets and little experience. This thesis

includes an overview of all the components that make up Agora, as well as details of two of its

main components: Hephaestus and Sibyl.

Hephaestus is a domain adaptation method for multi-feature regression models with sea-

sonal adjustment, which can improve predictions for small datasets using information from

additional datasets. Hephaestus works in the pre- and post- processing phases, making it possi-

ble to work with any standard machine learning algorithm. As a case study, we built predictive

models using the proposed method to predict school energy consumption with only one month

of data, improving accuracy to the same level as if 12 months of data were being used.

Sibyl is a flexible, scalable and non-blocking machine learning as a service, which facil-

itates the creation of multiple predictive models and running them at the same time. As a

case study, we implemented Sibyl equipped with three machine learning algorithms to show

the flexibility of adding new algorithms. We also executed three models at the same time to

demonstrate that they can run without interference from another model.

The results obtained in this research demonstrates the concept of Agora. Users can share

the same platform to provide or consume knowledge and create multiple concurrent machine

learning models.

Keywords: marketplace, domain adaptation, seasonal adjustment, energy consumption,

machine learning as a service, energy consumption

i

Acknowledgements

The writing of this thesis involved a mix of things: knowledge, patience, will power, healthy

mind and loss of mind as well. This means that this thesis would not have been possible without

the support of many people that during these last two years.

First, I would like to thank my supervisor Dr. Miriam Capretz for all the effort she made

to make this thesis become a reality. Without her guidance and support, I would never have

reached this point. Thank you for welcoming me to Western and for giving me this huge

opportunity to accomplish this new milestone in my life.

Infinite thanks to my mother, Helena Nana Ribeiro, and my father, Itamar Bittencourt

Ribeiro, for bringing me into this world and supporting all my decisions, even if they meant

moving too far away from home. Thank you for allowing me always to pursue my dreams and

accept new challenges.

Marjorie Rodrigues, my dear wife, you are the only one on this planet that really knows

how hard it was to change our whole life to get to where we are. Our teamwork can make our

score much higher in this game called Life. Thank you Marjorie, for guiding me during these

years. Simply love you.

Thank you my old friends Dennis Bachmann and Roberto Barboza Jr. (a.k.a. Juju) for

being nearby and having a beer together to chill out sometimes. Thanks to all my laboratory

colleagues and friends Wilson Higashino, Daniel Berhane Araya, Wander Queiroz, and Alex

L’Heureux, for laughing together and supporting each other. My special thanks to Dr. Katarina

Grolinger and Dr. Hany ElYamany for believing in my potential, for all your patience reviewing

my research papers, and for all the time you spent helping me.

Thanks to all my three brothers, my family, my friends, and my colleagues that accompa-

nied me during my life. Thank you Misty, my dog, for listening to all my complaints without

understanding anything of what they meant. Thank you, my video games, for de-stressing me

after exhausting days. Thank you uncountable sweet treats and greasy snacks that were eaten

during the writing of this thesis. Finally, thanks for all of those that will never pardon me

because I forgot to mention them here.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Organization of the Thesis . 5

2 Background and Literature Review 7
2.1 Background . 7

2.1.1 Machine Learning . 7
2.1.2 Normalization . 9
2.1.3 Time Series Regression Model and Seasonal Adjustment 10
2.1.4 Transfer Learning . 12
2.1.5 Domain Adaptation . 15
2.1.6 Service Component Architecture . 15

2.2 Related Work . 17
2.2.1 Transfer Learning . 17
2.2.2 Machine Learning as a Service . 23
2.2.3 Knowledge Sharing and Marketplaces 24

2.3 Summary . 26

3 Agora: a Knowledge Marketplace for Machine Learning 28
3.1 Overview . 28
3.2 Architecture . 30

3.2.1 Actors . 32
Providers . 32
Consumers . 32

3.2.2 Providers’ Database . 33
Source Domain Data . 33
Metadata . 33

iii

Model Specification . 34
Global Data . 34

3.2.3 Consumers’ Database . 34
Target Domain Data . 34
Metadata . 35
Predictive Set . 35
Prediction . 35

3.2.4 Processing Components . 35
Cerberus: Data Gatherer . 35
Argus: Similarity Search . 36
Hephaestus: Domain Adaptation . 36
Sibyl: Machine Learning as a Service 37

3.3 Summary . 38

4 Hephaestus: a Domain Adaptation Method for Regression 39
4.1 Method . 39

4.1.1 Time Series Domain Adaptation . 41
4.1.2 Atemporal Domain Adaptation . 43
4.1.3 Standard Machine Learning . 45
4.1.4 Adjustment . 45

4.2 Case Study . 46
4.2.1 Evaluation . 47
4.2.2 Implementation . 49
4.2.3 Preliminary Analysis . 51
4.2.4 Results . 52

4.3 Summary . 55

5 Sibyl: a Machine Learning as a Service 58
5.1 Architectural Design . 58

5.1.1 Modeler Composite . 61
5.1.2 Model-µ Composite . 62

5.2 Process . 63
5.3 Case Study . 67

5.3.1 Algorithms . 68
5.3.2 Results . 69

5.4 Summary . 72

6 Conclusions and Future Work 75
6.1 Conclusions . 75
6.2 Future Work . 76

Bibliography 81

Curriculum Vitae 85

iv

List of Figures

2.1 Machine learning tasks categorization. 8
2.2 Correlation between z-score of a normal curve and its probability distribution. . 11
2.3 Types of machine learning approaches. 14
2.4 SCA artifacts. 16

3.1 High-level diagram showing how Agora should work. 30
3.2 Overview of Agora’s architecture. 31
3.3 SCA composite of Cerberus. 36

4.1 Overview of Hephaestus method. 40
4.2 Time series domain adaptation phase. 41
4.3 Local and global z-score normalizations. 43
4.4 Rolling base forecasting. 48
4.5 Sample of an energy consumption timeline. 49
4.6 Seasonal index for all four schools. 52
4.7 Polynomial interpolation of the correlations between mean temperature and

energy consumption. 53
4.8 Errors for the schools’ energy consumption prediction (MLP). 54
4.9 Timeline comparison between the predictions for MLP models. 55
4.10 Errors for the schools’ energy consumption prediction (SVR). 56

5.1 High-level diagram showing how Sibyl should work. 59
5.2 Sibyl’s simplified architecture using SCA notation. 60
5.3 Sibyl’s detailed architecture using SCA notation. 61
5.4 Process flow of build phase. 64
5.5 Process flow of train phase. 65
5.6 Process flow of validate phase. 65
5.7 Process flow of test phase. 66
5.8 Process flow of predict phase. 66
5.9 Sibyl’s models screen. 70
5.10 Sibyl’s validate screen. 71
5.11 Sibyl’s test screen. 73
5.12 Sibyl’s predict screen. 74

v

List of Tables

4.1 Errors for the schools’ energy consumption prediction (MLP) 54
4.2 Errors for the schools’ energy consumption prediction (SVR) 56

vi

Chapter 1

Introduction

1.1 Motivation

The world today relies on data as they play an important role in our civilization when it comes

to decision making. Data enable understanding of past behaviors, patterns and trends, as well

as the measurement of current performances. This information is necessary for organizations

to properly design efficient strategic plans and maintain or accelerate their progress. For exam-

ple, a governmental budget can be approved depending on social-economic indexes, or private

investments can be made depending on sales performance of a company. Data come from many

sources in addition to society and economy, including global data sources like Web sites, so-

cial media, mobile applications, news networks, weather and government. The amount of data

from all these sources has been continuously growing. The technology enables the collection

and sharing of various types of data during each millisecond. Sensors are becoming cheap and

popular, enabling gathering of new data. Now that all these technologies can be connected to a

network (i.e., the Internet of Things), it is becoming viable to collect more data from specific

contexts at higher level of detail. This is leading to an explosive growth of data in every dimen-

sion, including: (a) the number of attributes, (b) the number of data points and (c) the number

of datasets.

The increase in the number of datasets is pushed by the interest of companies and individ-

uals in monitoring things for various reasons. For example, monitoring energy consumption

can reduce expenses, monitoring sales can increase revenue, and monitoring physical activities

1

2 Chapter 1. Introduction

can lead to personal achievements. This demand, allied with the supply of new technologies,

creates a perfect scenario for creating new software applications combining data analytics.

However, no matter how big the data get, they may be useless without proper preparation

and processing. The value is actually realized when meaningful information is extracted from

all this data. Machine learning algorithms enable analysis and extraction of valuable informa-

tion such as patterns and associations. Nonetheless, sometimes data are dirty or noisy and must

be pre-processed to improve learning.

One important application of machine learning is predictive modeling, which can infer

future values based on measured data from the past. With precise predictions, individuals,

scientists and companies can better visualize the trends in the current situation and take early

actions to avoid unwanted outcomes or to adapt to a specific condition. More specifically, a

predictive regression model is used when the label (i.e., the value to be predicted) is a numeric

value. Some examples of predictive regression model applications are: (a) building managers

can predict energy consumption to manage energy costs; (b) retailers can estimate the number

of customers in the next few days so they can better manage their resources; (c) Web site

builders can understand how visits to their sites are affected by external factors and recommend

appropriate content; and (d) passengers can predict how crowded the next bus will be and

decide whether to take the bus or wait for a less packed one.

The number and complexity of data samples required by regression models to provide pre-

cise predictions depend on data randomness and number of features [14, 21]. The randomness

of data is its lack of pattern, whereas features are attributes that are correlated with the label

to justify the randomness. The greater amount of data available, the more precise will be the

correlation with features and labels. The problem is that final users and data analysts are in

a hurry to see accurate predictions as soon as possible. They do not want to wait for several

months or years of data collection to obtain accurate predictions. Nonetheless, it is hard to

create an accurate prediction without enough data. However, it is possible to create more ac-

curate predictions for small or new datasets using additional datasets. For example, building

energy consumption depends on many factors such as human activities, machinery schedules

and weather. Small datasets do not have enough data samples to represent all possible combi-

nations of these factors. Hence, new buildings cannot generate accurate energy consumption

1.1. Motivation 3

forecasts due to the short time they have been collecting data, at least until enough samples are

collected, which can take a long time. However, new buildings can use data from other build-

ings to increase data variance, filling the gaps left by missing samples in the original dataset.

In this way, it becomes possible to make predictions for new buildings under conditions they

have not faced so far, shortening the time required for collecting enough data to make accurate

predictions.

The solution would be straightforward if all datasets were in the same domain: just consider

all datasets as one and run a standard machine learning algorithm. However, in the real world,

data are gathered in diverse contexts, and any small deviation in context can cause an unwanted

divergence in the domain represented. Hence, it is likely that two distinct datasets are not in

the same domain (i.e. they have different distributions). A domain can vary based on an

infinite number of factors. For example, if one building uses incandescent lights and another

fluorescent lights, their energy consumptions will be different and cannot be used together

directly in a predictive model without making adjustments.

Time can also affect domains. Almost everything in the real world experiences the effects

of time, be they the inevitable aging of things, the seasons of the year, or — in the case of

data depending on human activities — business hours, business days, and holidays. Each

domain can have different seasonal patterns (e.g., one building can have peaks during Mondays

while another on Fridays, depending on the routine each building follows). In order to analyze

different domains with different seasonality together, the seasonality must be removed.

Analysts have been using data from different domains for a long time to better understand

phenomena and patterns. For example, using social-economic data from diverse regions can

help to understand the situation of a specific place. However, these analyses were usually done

by human intuitions. Recently, many approaches for machine learning address the issue of

transferring knowledge from one domain to another. Collectively, they are known as transfer

learning. Most of them are difficult to understand by people with less experience in statistics

and computer science. In addition, seasonal adjustment approaches are able to remove the

seasonality from time series.

Another problem that makes it difficult to popularize machine learning is the complexity of

understanding and implementing it, as well as the related costs. Large companies have enough

4 Chapter 1. Introduction

resources to hire data scientists and invest in their own machine learning solutions. On the

other side, small companies, developers and researchers in general have difficulties climbing

the steep learning curve of how machine learning works and then building their own solutions

or integrating with third-party ones. Furthermore, machine learning may require computational

resources with high costs.

Users that lack data and skills in machine learning are discouraged by the difficulty of cre-

ating accurate predictive models. If they could have access to more data and to pre-set machine

learning specifications, they might be encouraged to generate models to create accurate predic-

tions. However, gaining access to third-party data and machine learning specifications can be

difficult. In addition, third-party data must probably be pre-processed before use and machine

learning specifications are useless unless users know how to implement them, which is not the

case in this scenario. Considering all these challenges, how could these users gain access to

efficient machine learning services with accurate predictions?

1.2 Contribution

The main contribution of this thesis is Agora, a Web-based software as a service (SaaS) mar-

ketplace where users can share knowledge to build accurate machine learning models. Agora

enables experienced users (providers) to share their knowledge, including data and machine

learning specifications, with less experienced users (consumers) to create accurate machine

learning models. Agora also makes it easier for consumers to find the best providers and

knowledge. This thesis provides a modularized architecture for Agora, dividing the platform

between various components with specific roles and functions. All the components as well as

their roles, functions and relationships are explained. Particularly, two of its main components,

Hephaestus and Sybil, are described in high level of detail as they are two important additional

research contributions.

Hephaestus is a novel transfer learning method that enables creation of accurate machine

learning models for a target domain using knowledge transferred from another domain. Hep-

haestus is a domain adaptation method for time series regression models with multi-feature

datasets that are readable to understand and implement. By working as pre- and post-processing

1.3. Organization of the Thesis 5

stages, Hephaestus works with any standard machine learning algorithm. To provide a better

understanding of Hephaestus, this thesis presents some background and related studies in trans-

fer learning. This thesis also provides the details of Hephaestus design and operation, as well

as a case study involving a real world regression problem. The results show that Hephaestus is

a feasible and efficient method for transferring knowledge between domains and can work for

regression tasks considering time series and multiple features.

Sibyl is a scalable, flexible, and non-blocking platform as a service (PaaS) for machine

learning. Based on service component architecture (SCA), Sibyl builds on the advantages from

service oriented architecture (SOA) and is scalable and practical to adapt by adding, removing,

changing or linking any component. This approach also makes the system more flexible in

handling multiple data sources and different machine learning algorithms at the same time.

Because multiple users will be using the same platform, computational resources can be shared

or allocated on demand, reducing overall costs. By specifying a well defined interface, users

can have access to machine learning processing efficiently from anywhere, at any time. Users

do not need to be concerned with implementation and computing resources, but are left free

to focus on their data and their outcome. To provide a better understanding of Sibyl, this

thesis presents some background and related works in machine learning, machine learning as a

service and service oriented architecture (SOA). Details of Sibyl design and operation are also

described and a case study on predictive modeling is presented. The results demonstrate that

Sibyl can handle predictive models at the same time.

The results obtained in this research demonstrates that knowledge can be transferred be-

tween domains and that a machine learning as a service can be developed. Agora integrates

both Hephaestus and Sibyl‘s outcomes to create various machine learning models using small

datasets and knowledge from larger datasets to and run them at the same time. This thesis

also contributes by starting some discussion about possible future research opportunities and

applications related to Hephaestus, Sibyl and Agora.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

6 Chapter 1. Introduction

• Chapter 2 provides a literature review, giving background information that is useful in

understanding this work and describing related studies. First, an introduction to the

technical terms and concepts used in the research described in this thesis is presented.

Second, recent and popular techniques for transfer learning, machine learning as a ser-

vice and marketplaces are reviewed. Finally, the contribution of this thesis is contrasted

with existing work.

• Chapter 3 gives an overview of the contribution of this thesis by presenting the architec-

ture for Agora and giving a brief description of each of its main components, including

how they are related with each other.

• Chapter 4 delves into the details of Hephaestus, a novel domain adaptation method for

multi-feature regression tasks with seasonal adjustment. This chapter is divided into two

main sections: Method, where the concepts and design of Hephaestus are described;

and Case Study, where Hephaestus is implemented and tested on energy consumption

forecast using different schools. Finally, a summary concludes this chapter.

• Chapter 5 investigates Sibyl, a novel platform as a service platform for machine learning.

This chapter is divided into three main sections: Architectural Design, which presents an

overview of the architecture and describes each of the components and their interactions;

Process, which describes the work-flow to provide a better understanding of how Sibyl

works; and Case Study, which presents implementation details and application of this

approach to energy consumption forecasting using multiple algorithms at the same time.

Finally, a summary concludes this chapter.

• Chapter 6 concludes this thesis and discusses possible future research involving Agora.

Chapter 2

Background and Literature Review

The goal of this chapter is two-fold: first, it introduces the terms and concepts related to the

topics to understand Agora; second, it gives an overview of the related works for marketplaces,

machine learning as a service and transfer learning, as well as identifies the research gaps and

explains briefly how Agora addresses them.

2.1 Background

This section defines and discuss the concepts of machine learning, transfer learning and service

component architecture, which are foundation to understand Agora.

2.1.1 Machine Learning

Machine learning is one of the fastest growing fields in computer science [4]. It is a collection

of statistical techniques for building mathematical models that can make inferences from data

samples (known as a training set). Machine learning is a part of artificial intelligence: it must

adapt itself to a changing environment.

Figure 2.1 roughly lists the main categories of machine learning tasks and how to choose

between them. There are three main types of learning [4]: (a) supervised learning, when the

training set is labeled (i.e., it contains the attribute that the model is trying to estimate); (b)

unsupervised learning, when the training set is not labeled, and (c) reinforced learning, when

7

8 Chapter 2. Background and Literature Review

yes

no

discrete

numeric

no

yes

Learning
do results

interfere with
the environment?

is it labeled?

Supervised
Learning

Unsupervised
Learning

Reinforced
Learning

Classification

Regression

Density
Estimation

Clustering

is it labeled?

Figure 2.1: Machine learning tasks categorization.

the learned results lead to actions that change the environment.

The labels in supervised learning can be discrete or continuous, which are handled by clas-

sification and regression tasks respectively. Classification tasks are used mostly for prediction,

pattern recognition and outlier detection, whereas regression tasks are used for prediction and

ranking. Unsupervised learning is known as density estimation in statistics and is represented

mainly by clustering algorithms. Classification, regression and clustering tasks are widely

used in data mining (applications of machine learning to large databases), whereas reinforced

learning is mostly used in decision-making problems (e.g., a computer playing chess).

Independently of the applications just described, machine learning techniques work in a

similar way: the model learns from a training set and then becomes able to make inferences for

a new data set. This abstraction inspires the creation of a generic architecture to support any

machine learning algorithm. This thesis will focus on regression predictive modeling, although

the approach can be adapted for other algorithms.

In predictive modeling, once rules have been extracted from past data (the training set),

the model can make accurate prediction for new instances of data (the predictor set) if the fu-

ture is similar to the past. Spam filtering, investment risk and energy consumption forecasting

2.1. Background 9

are some examples of predictive modeling. Predictive modeling approaches include: Artificial

Neural Networks for energy consumption [3], Support Vector Machines for energy consump-

tion [3] and K-Nearest Neighbors for wind power [48].

Validation for predictive models has a twofold importance: (a) choosing the most accurate

algorithm and parameters; and (b) estimating the expected error for new predictions [4]. Ac-

curacy can be related with errors, which can be calculated by comparing the estimated results

from the model with the real measured results. A popular validation technique for predictive

models is the K-Fold Cross-Validation. The data set is split randomly into K parts of the same

size. One of the K folds is used to calculate the errors using the other K-1 folds to train the

algorithm. The same process is repeated K times each time using different fold for validation.

This method guarantees that the entire data set is validated with statistical significance.

Different models can perform better or worse, depending on the used algorithms, parame-

ters and data set. However, there is no such a thing as the “best” learning algorithm [4]. For

any algorithm, there are data sets that perform very accurately and others that perform very

poorly. For the same data set, different algorithms can perform differently because of their own

nature. Sibyl helps the user to run multiple algorithms and compare their performance, so the

most suitable algorithm can be chosen.

2.1.2 Normalization

Normalization is defined in this thesis as follows:

Definition (Normalization). Given two different sets of values S 1 and S 2, normalization Ψ is a

linear transformation where Ψ(S 1) and Ψ(S 2) are in the same domain and have approximated

distributions.

It is the process of aligning values measured and stored at different scales or proportions

to a common scale so that they can be compared and operated together. In machine learning,

normalization is an essential step in pre-processing and, if well executed, can significantly

improve model performance.

Min-max is one of the most popular normalization methods in data mining [23, 38]. It

is commonly referred to simply as “normalization” or sometimes as “feature scaling” and is

10 Chapter 2. Background and Literature Review

represented by the equation:

min-max =
x − Xmin

Xmax − Xmin
(2.1)

where x is the current value, X contains all values, Xmin is the minimum value, and Xmax is the

maximum value. The main notion of min-max is to rescale and confine samples to an interval

between 0 and 1.

The z-score, also known as the standard score or standardization, is another normalization

method. It is represented by the equation:

z =
x − µ
σ

(2.2)

which returns the distance of x from the mean µ, measured in multiples of the standard devia-

tion σ [6]. Figure 2.2 illustrates how a z-score is distributed in a Euclidean space.

Unlike min-max, the z-score does not limit values to lie between specific minimum and

maximum. Instead, it maintains the normal distribution, in which the majority of values are

statistically concentrated within a range of z-scores (e.g., in Figure 2.2, more than 95.4% of the

data are located between -2 and 2). Because a z-score can be any real number, outliers can still

have higher values that are not limited by the minimum and maximum.

The use of z-score normalization is recommended for attributes that follow a normal dis-

tribution (a.k.a. the Gaussian or bell curve). From the central limit theorem [12], when an

attribute is determined by independent random variables, its distribution approximates a nor-

mal distribution. Assuming that the observations of natural phenomena (such as outdoor tem-

perature) and human activities are determined by randomly distributed variables, they can be

considered to be normally distributed and, therefore, can be normalized using the z-score. Hep-

haestus uses the z-score not only to normalize the feature values within the target dataset, but

also among the different datasets.

2.1.3 Time Series Regression Model and Seasonal Adjustment

A time series regression model is used to predict new values based on time series data, which

contain successive measurements at different points in time. Its popularity came from eco-

2.1. Background 11

Figure 2.2: Correlation between z-score of a normal curve and its probability distribution.

nomics in the beginning of the 20th century with the growth and systematization of collection

and publication of economic information [19]. Despite its age, it is still being used in many

areas such as revenue prediction [40] and energy consumption forecasting [15, 46].

A time series regression model can be either additive [19]

yt = Tt + Ct + S t + It (2.3)

or multiplicative

yt = Tt ×Ct × S t × It (2.4)

The trend component (Tt) is a smooth, regular, and long-term statistical series and repre-

sents a general growth or decline; the cyclical (Ct) component is a pattern that occurs repeatedly

several times during an irregular period; the seasonal component (S t) is similar to the cyclical

component, but the pattern occurs in a well-defined period (e.g., daily, weekly, or monthly);

and the irregular component (It) is the remainder, which can be related to atemporal factors or

simply considered an error.

The cyclical component (Ct) can be analyzed together with the trend component (Tt), also

known as the trend-cycle component (TCt) [19, 20].

12 Chapter 2. Background and Literature Review

Choosing the most appropriate model depends on the data to be analyzed. The additive

model is most suitable when the magnitude (the distance between highs and lows) remains

relatively constant over time; the multiplicative model is most useful when the magnitude

varies with the local average values (the higher the average, the higher the magnitude) [20].

For an economic time series, multiplicative models are commonly used [20].

Seasonal adjustment is a procedure to improve the properties of the parameter estimates

for time series regressions [19]. In seasonal adjustment, the trend factor is an estimation of the

trend-cycle component (TCt) and the seasonal index is an estimation of the seasonal component

(S t) based on past observations. The trend factor and seasonal index are used to remove the

trend-cycle and seasonal components from a time series, allowing the analysis of data without

these components and later adjust the prediction.

The method proposed in this thesis can work with both additive and multiplicative models.

It uses seasonal adjustment to remove the different seasonality within domains to approximate

their distributions.

2.1.4 Transfer Learning

Transfer learning aims to improve the learning task in a target domain using the knowledge

from other domains and learning tasks [34]. It is defined as follows:

Definition (Transfer Learning). Given a source domainDS and a learning task TS , a target

domain DT and a learning task TT , transfer learning aims to improve the learning of the

target predictive function rT (·) in DT using the knowledge in DS and TS , where DS , DT , or

TS , TT [34].

From the definition above, a domain is defined as a pair D = {F , P(X)}, where F =

{ f1, .., fn} is a feature space with n dimensions, fk is a feature, X is a learning sample such that

X = {x1, ..., xn} ∈ F and P(X) is the marginal probability distribution of X. A task is a pair

T = {Y, r(·)}, whereY is the label space and r(·) is the predictive function. From a probabilistic

viewpoint, r(X) can also be written as the conditional probability distribution P(Y |X) [34].

Figure 2.3 compares different types of machine learning approaches regarding domains.

Figure 2.3a shows how a standard machine learning works, using only a single domain for

2.1. Background 13

each model to learn from separately. Figure 2.3b shows how transfer learning differs from the

standard machine learning, using the knowledge extracted from multiple source domains to

improve the prediction for a target domain.

Three questions arise when describing transfer learning approaches: “what to transfer?”

means what knowledge can be transfered across domains or tasks; “how to transfer?” describes

the approach itself; and “when to transfer?” refers to the choice of situations in which transfer

learning should be used. Transfer learning approaches can also be grouped into four “what”

categories [34]:

(a) Instance-based, where labeled data are selected and reweighted from the source domain

to be used in the target domain;

(b) Feature representation-based, where a new feature space is composed to satisfy all the

different domains;

(c) Parameter-based, where the parameters used to train the source are used to train the

target; and

(d) Relational knowledge-based, where a mapping of relational knowledge is built between

the source and target domains.

The “how” and “when” strongly depend on the transfer learning approach itself. The

method proposed in this thesis is instance-based to add external information to the target and

parameter-based for the domain adaptation when the target is not statistically sufficient to ad-

just itself.

Transfer learning has three main settings [34, 50]: (a) inductive transfer learning, where

the target task is different from the source task (TS , TT); (b) transductive learning, where the

tasks are the same (TS = TT), but the domains are different (DS , DT); and (c) unsupervised

transfer learning, which is similar to inductive transfer learning for unsupervised learning tasks,

where no labeled data are available. Hephaestus works for the transductive learning setting.

14 Chapter 2. Background and Literature Review

Domain 1

Standard
Machine Learning

Domain 2

Standard
Machine Learning

Domain 3

Standard
Machine Learning

(a) Traditional machine learning.

Source 1

Knowledge

Source n Target

Transfering Adapted
Machine Learning

...

(b) Transfer learning.

Source 1

Domain Adaptation

Source n Target

Training Set

Standard Machine Learning

...

(c) Domain adaptation learning.

Figure 2.3: Types of machine learning approaches.

2.1. Background 15

2.1.5 Domain Adaptation

Domain adaptation addresses transductive learning by transforming domains or creating a la-

tent domain that is common to all to reduce the difference between the distributions of source

and target domain data [34]. Domain adaptation can be done either before or during the execu-

tion of a machine learning algorithm. Figure 2.3c shows how this works by adapting n different

source domains and the target domain into a common domain and fusing the datasets into a

single training set, which then becomes a standard machine learning problem.

Moreover, domain adaptation problems can be divided into two sub-categories according

to the difference between source and target domains: (a) the feature spaces between domains

are the same (FS = FT) (e.g., transferring energy consumption knowledge from one building to

another); and (b) the feature spaces between domains are different (FS , FT) (e.g., transferring

the knowledge from a Web page in English to another in Portuguese). Most existing studies on

transfer learning fall into the first category [50].

Covariate shift and sample selection bias are also important to consider in domain adapta-

tion. Covariate shift is the difference between two domains in which the conditional probabili-

ties from source and target are the same (PS (Y |X) = PT (Y |X)), but their marginal probabilities

are different (PS (X) , PT (X)). Although the interest is in the conditional probabilities, not in

the marginal probabilities, this difference is important for misspecified models [43]. Sample

selection bias follows the same requirements as covariate shift, but is caused by the exclusion

of part of the entire population [49].

This thesis proposes a semi-supervised domain adaptation method in which the feature

spaces between domains are the same (FS = FT), but the marginal distributions and conditional

distributions between domains are different (PS (X) , PT (X) and PS (Y |X) , PT (Y |X)). This

method works in both pre- and post-processing stages (i.e., before and after the execution of a

machine learning algorithm) and can be used with any standard machine learning algorithm.

2.1.6 Service Component Architecture

A service component architecture (SCA) [1] is a modeling specification for composing systems

according to the principles of Service-Oriented Architecture (SOA).

16 Chapter 2. Background and Literature Review

Composite

Component A

Component B

Consumer A

Service B

Service A

Consumer B

Global Property

Property A

Property B

Figure 2.4: SCA artifacts.

SCA separates implementation concerns into four artifacts: (a) components implement its

business function; (b) composites assemble various components together to create business

solutions; (c) services create an interface for remote access to component and composite func-

tions; and (d) properties contain global values for composites and local values for components.

Figure 2.4 illustrates the SCA artifacts and their relationship. In a system, composites, services,

and their relations with components are defined in a dynamic XML descriptor file.

Because SCA is built on top of SOA, it inherits all SOA’s advantages — for example, in-

trinsic interoperability, inherent reuse, simplified architecture and solutions, and organizational

agility [11]. In addition, whereas SOA focuses on building an architecture to design individual

components, SCA focuses on assembling multiple components into a composite and facilitat-

ing design, implementation, and deployment. SCA systems have been successfully used, for

example, in geographic information systems [25] and smart home systems [7] [26].

This research aims to build a platform which is capable of providing various machine learn-

ing algorithms to build different predictive models which will run at the same time. Adding

a new algorithm must be simple. The system must provide well-defined APIs which can be

2.2. RelatedWork 17

remotely accessed over the Web by any external system. SCA provides enough artifacts to

meet these requirements.

2.2 Related Work

This section discusses previous work from the academy and industry for transfer learning,

machine learning as a service and knowledge marketplaces. In addition, the research gaps are

identified as well as it is explained how Agora addresses them.

2.2.1 Transfer Learning

In this section, existing methods for transfer learning and domain adaptation are discussed.

Transfer learning can also be found in the literature under the term cross-domain plus other

terms such as learning [51], prediction [27], data [29] and data fusion [50]. Sometimes the

term domain is replaced by the domain category (e.g., cross-company [29]). Covariate shift

[43] and sample selection bias [49] are also related to domain adaptation.

Transfer learning has been recently used in many real-world problems from different areas:

in software engineering, it has addressed cross-company software defect classification [27,

31] and cross-company software effort estimation [29]; in voice processing, it has improved

mispronunciation detection [17]; in image processing, it has dealt with visual recognition [13,

16, 24, 30, 37, 47, 51]; and in natural language processing (NLP), it has addressed sentiment

analysis [9, 10, 18, 24, 33].

Although most transfer learning studies in the literature deal with classification tasks [13,

16–18, 24, 27, 30, 31, 37, 51], regression tasks are highly restricted to specific areas [9, 29, 33,

47].

Many domain adaptation methods are gaining attention because of their ability to work with

standard machine learning [10, 29, 33], whereas others work only for a small set of algorithms

[9, 18, 24, 27].

In general, instance-based methods address the problem by importance reweighting [34]

— where the general idea is to increase the weights of data in the source domain that are close

to data in the target domain — especially for covariate shift [43] and sample bias selection

18 Chapter 2. Background and Literature Review

problems [49]. The definition of reweighting varies for each method, but a common definition

consists of weighting a data point x of the training set as an estimate of the ratio ω(x) =

P(x)/Q(x) where P is the target distribution and Q is the source distribution [9].

As for the feature representation-based methods, in general, they deal with the problem by

extracting underlying features that are common to all domains [10, 18, 33].

The procedure to reduce the distance between domains can be explicit or implicit. An

implicit procedure processes the data in such way that it consequently reduces the distance.

On the other hand, an explicit procedure transforms distance reduction into an optimization

problem by directly attempting to minimize the distance. In the next two subsections, various

methods from the literature are grouped into implicit and explicit distance reduction methods,

discussed and compared with Hephaestus, the method proposed in this thesis.

Explicit distance minimization

Hu et al. [18] proposed a feature representation-based method called multi-bridge transfer

learning (MBTL). MBTL is formulated as an optimization problem based on nonnegative

matrix tri-factorization (NMTF), which has already been widely used for text classification.

MBTL constructs multiple different latent feature spaces using a clustering algorithm with dif-

ferent parameters. Simultaneously, it learns the marginal and conditional distributions in the

latent spaces to construct bridges across domains. MBTL uses the latent factors to reduce the

distribution divergences in the various latent feature spaces. However, MBTL relies strictly on

NMTF and cannot work with other standard machine learning algorithms. Moreover, MBTL

has been used only for text classification, and not for regression tasks.

Along the same line, nonetheless promising to work with regression tasks, Pan et al. [33]

proposed a new feature-based domain adaptation method called transfer component analysis

(TCA). TCA attempts to find a suitable feature representation across domains by learning a

set of common transfer components (or latent variables) that underlie domains. This is done

by explicitly minimizing the maximum mean discrepancy (MMD), which compares the distri-

butions based on the corresponding reproducing kernel Hilbert space (RKHS) distance, while

preserving data variance. The latent space projected by TCA can be used with standard ma-

chine learning algorithms for classification, regression, or clustering.

2.2. RelatedWork 19

Similarly, Cortes and Mohri [9] introduced the notion of discrepancy — a distance cal-

culation between distributions generalized with arbitrary loss functions — and introduced the

discrepancy minimization (DM) algorithm, which attempts to minimize the discrepancy explic-

itly for kernel-based regularization algorithms (e.g., support vector machines, support vector

regression, and kernel ridge regression). Despite previous studies that claimed that their solu-

tion worked for regression tasks and demonstrated this with case studies (such as TCA), Cortes

and Mohri adapted a classification problem into regression for their case study on real-world

multi-domain sentiment analysis. The restriction of the limited number of algorithms with

which DM is compatible makes it disadvantageous compared to others that are compatible

with any standard marchine learning algorithm.

However, all the domain adaptation methods based on explicit distance minimization that

were reviewed here (MBTL, TCA, and DM) require extensive knowledge of statistics and ma-

chine learning, which can make them complex. Moreover, all of the three rely on optimization

algorithms, meaning that they are computationally expensive. Furthermore, they are not avail-

able as code libraries or components for any popular machine learning tool or programming

language, which makes it harder for MBTL, TCA, and DM to be implemented and used.

Unlike MBTL and DM, we designed Hephaestus to work with any standard machine learn-

ing algorithm. Its ease of understanding and its compatibility with standard machine learning

algorithms enables Hephaestus to be applied to a variety of problems, without the need for

expert skills to implement it.

Implicit Distance Reduction

Following the tradition of instance reweighting for instance-based methods, Ma et al. [27]

proposed the Transfer Naive Bayes (TNB) method. TNB first calculates the degree of simi-

larity between each training sample and the test set by checking whether the attribute values

are within the target domain boundaries (between the minimum and maximum values of each

attribute). The weight for each training sample is calculated using data gravitation between the

training sample and the test set using the degree of similarity. A Naive Bayes classifier is then

run over the weighted training samples. However, this method, along with the most domain

adaptation reweighting methods, tends to diminish the importance of data that are outside the

20 Chapter 2. Background and Literature Review

boundaries of the target domain, which could be used to predict a new situation. For example,

if a model tries to predict a situation that the target has not faced so far (i.e., that lies outside

the target boundaries), obtaining this situation from a source domain could be necessary. Hep-

haestus does not weight data samples by their distance between target samples and therefore

does not ignore samples outside the target boundaries. Instead, Hephaestus addresses domain

adaptation by rescaling the feature values to achieve a better representation of the source data

in the target domain.

Minku and Yao [29] created a relational knowledge-based algorithm called dynamic cross-

company mapped model learning (Dycom) to estimate software effort (SEE) within a company

(WC) using cross-company (CC) data. Dycon is able to work in an online scenario, where

there is no need to retrain the whole model after a new training data has arrived. Minku and

Yao assumed that the relationship between the two companies follows the equation:

fA(x) = gBA(fB(x)) (2.5)

where fA is the true estimate for company A, fB is the true estimate for company B and gBA is

the function that maps the effort from context B to context A. First, the CC data are split into

M different clusters (i.e., distinct sets of data points grouped by similarity), which are used to

build M different models. Dycom assumes that

gBiA(fBi(x)) = fBi(x) × bi (2.6)

where each Bi is a CC model and bi is the factor calculated depending on the amount of training

data received. For each new WC labeled sample that arrives, M estimations are performed for

the CC models. Once Dycom gets each of the M estimates and the WC measurement, it learns

the mapping functions between the WC measurement and the M CC models and reweights the

M + 1 estimates (including WC) to return the right estimate. Dycom can be implemented using

any standard machine learning algorithm. Although Dycom does not reweight the instance

itself, it reweights instances indirectly by reweighting models that are built using clusters. This

can lead to the same issue mentioned earlier, that of excluding samples that are out of bounds

from the target domain.

2.2. RelatedWork 21

Daumé [10] proposed a domain adaptation method called Frustratingly Easy Domain Adap-

tation (FE), which is a feature representation-based method. FE creates an augmented latent

space using two simple kernel-mapping functions:

ΦS (x) = 〈x, x, 0〉 ΦT (x) = 〈x, 0, x〉 (2.7)

to map the feature space into three spaces, representing the general, source and target spaces.

The source mapping ΦS keeps only the general and source spaces, whereas the target mapping

ΦT keeps only the general and target spaces. This method is suitable for natural language

programming (NLP). To make it easier to use, Daumé also provided the method as a segment

of Pearl code. To work properly, the augmented features must be weighted. For example, for

text classification, if the meaning obtained for a single word were the same for all domains,

the feature-augmented weight vector would be represented as 〈1, 0, 0〉; otherwise it would be

〈0, 1, 0〉 if the meaning were specifically from the source domain or 〈0, 0, 1〉 if it were from the

target domain.

The simplicity of Daumé’s FE inspired other works in different areas to use, adapt, improve

or compare with it. For example, Yamada et al. [22] used FE for sentiment classification

between restaurants and laptop domains. Kiritchenko et al. [47] used FE to estimate 3D full-

body and head poses (a regression task).

However, Daumé’s approach would not work properly for cross-domain regression prob-

lems where zero does not necessarily represent the absence of a feature. For example, consider

a cross-building energy consumption problem in which energy consumption depends on ex-

ternal temperature. In this situation, 0 does not represent the absence of temperature, but a

temperature of 0◦C. Therefore, it would not be able to use the kernel-mapping functions ΦS (x)

and ΦT (x). In addition, the training-set size increases quadratically because each new domain

not only adds more data points but also creates new features, which makes weighting less accu-

rate and training slower. Hephaestus can deal with any continuous features (e.g. temperature)

where zero does not necessarily mean the absence of that feature. In addition, Hephaestus

works directly on top of the original features, without needing to create new ones.

Furthermore, none of the methods reviewed above work when the conditional probabilities

22 Chapter 2. Background and Literature Review

are not the same (PS (Y |X) , PT (Y |X)). Hephaestus can rescale the label Y to reduce the

distance between the conditional probabilities (PS (Φ(Y)|X) = PT (Φ(Y)|X)).

As a solution between implicit and explicit distance minimization, Li et al. [24] proposed

heterogeneous domain adaptation (HDA), which adapts Daumé’s FE by introducing two pro-

jection matrices P and Q for the general subspace of the mapping functions to improve the

alignment between domains, as shown in the following equation:

ΦS (x) = 〈Px, x, 0〉 ΦT (x) = 〈Qx, 0, x〉 (2.8)

HDA learns P and Q and the weight vector by minimizing the structural risk functional of

support vector machines (SVM). Li et al. also claim that HDA can work with support vector

regression (SVR). HDA works for classification tasks such as object recognition, multilingual

text categorization and cross-lingual sentiment classification. However, it relies on SVM and

SVR and also suffers from the same issues as FE.

Because Hephaestus acts directly on top of feature and label values, and not on the distance

itself, it is considered to be a method based on implicit distance reduction.

Transfer Learning for Seasonal Adjustment

Although some studies mentioned at the beginning of this section naturally deal with the time

component (e.g., voice processing), none of them considered trends and seasonality (e.g., cross-

building energy consumption). Microsoft SQL Server (a relational database management sys-

tem) can use more than one source to create time series predictions, an ability that Microsoft

calls cross prediction [2]. SQL Server embeds two algorithms: an autoregressive tree model

with cross-predictions (ARTXP) [28] for short term predictions and an autoregressive inte-

grated moving average (ARIMA) for long term predictions. Cross-predictions are possible

only for ARTXP models, and no information is publicly available about how it operates. How-

ever, it does not support features other than time.

Hephaestus deals with both time series and multi-feature regression together. It separates

out the time component from the various domains, adapts the remainder component for all

domains into a same domain and uses any standard machine learning algorithm to create a

2.2. RelatedWork 23

predictive model.

2.2.2 Machine Learning as a Service

The increasing demand for machine learning is leveraging the emergence of new solutions. In

this section, various machine learning platforms are reviewed.

PredictionIO [8] was launched in 2013. It is an open-source platform with an architecture

that integrates multiple machine learning processes into a distributed and horizontally scalable

system based on Hadoop. In addition, PredictionIO provides access through web APIs and

graphical user interface (GUI).

Baldominos et al. [5] also proposed a platform built on top of Hadoop. Its implementation

was capable of handling up to 30 requests at one time while maintaining a response time of

less than one second.

OpenCPU [32] is another open-source platform, launched in 2014, that creates a Web API

for R [41], a popular statistical analysis software environment. However, because it is practi-

cally a middleware for accessing R functions, it does not take into account many non-functional

requirements like scalability and performance.

In the industry context, the giants Google, Microsoft, and Amazon have been releasing their

own proprietary platforms. Google released its Prediction API1 in 2014, a platform as a service

(PaaS) for developers that need a third party machine learning service. Google Prediction

API claims it chooses the best algorithm depending on the data provided by the user, without

being able to be selected or customized, nor letting the user know which algorithm is being

used. Also in 2014, Microsoft launched Azure Machine Learning2, a software as a service

(SaaS) that provides a web user interface to facilitate basic machine learning tasks for the

user. In 2015, Amazon released AWS Machine Learning3, another PaaS for machine learning,

however restricted to the logistic regression only. BigML4, a startup company founded in

2011, is another (SaaS) similar to Microsoft’s. Their sales can prove that the demand exists.

Unfortunately, the designs and implementation specifications of these products are not publicly

1http://cloud.google.com/prediction
2http://azure.microsoft.com/en-us/services/machine-learning
3http://aws.amazon.com/pt/machine-learning
4http://bigml.com

24 Chapter 2. Background and Literature Review

available.

PredictionIO, OpenCPU, and Baldominos’ platforms are built on top of a specific analytical

tools and suffer from their restrictions. This means less flexibility for adding new machine

learning algorithms, for data storage, and for deployment. Although Hadoop and R are open-

source projects, it is not a trivial challenge to adapt them to a new approach. The same happens

with the industry players and their proprietary solutions when external developers cannot have

access to the code to add new algorithms.

The platform proposed in this thesis focuses on predictive modeling. As an architecture

based on SCA specifications, the architecture facilitates the addition of new algorithms, its

improvement, and its adaptation to other machine learning applications. Even the revised plat-

forms mentioned above can be attached to the proposed architecture to build prediction models.

2.2.3 Knowledge Sharing and Marketplaces

Stewart and Ruckdeschel [44] introduced the idea of intellectual capital: knowledge that brings

wealth to the organization. For traditional accounting, intellectual capital does not fit the def-

inition of an asset in general, which is required to be tangible and to have a solid known cost.

Despite this, markets can establish the value of a knowledge asset. Knowledge assets can be

divided into three categories: human capital, made up of the competencies of people; cus-

tomer capital, including brand, reputation and relationships with customers; and structural (or

organizational) capital such as patents, methods and models. Raw data cannot be considered a

intellectual capital by themselves because they cannot bring wealth to the organization without

being processed and understood. However, when considering that useful insights can be ex-

tracted from the data, they become an important knowledge asset. Although structural capital

has more strategic value than market value for the organization, it is shareable and can be sold

in the market. For example, the “lessons learned” of a company are important for its future

projects, but can be of great value to other companies as well.

The Internet response to the demand for knowledge is the variety of marketplaces for

knowledge in general. For example, on crowd-sourced question and answer (Q&A) Web-

2.2. RelatedWork 25

sites such as Yahoo! Answers5 (2005), Stackoverflow6 (2008) and Quora7 (2009), users post

questions that others then answer.

Sometimes, data are already shared, but in the raw state and having almost no value. Gov-

ernments, for example, are huge data generators. The Gov 2.0 movement has created a new

level of data transparency to attract developers to make a civic contribution to society, creating

a great opportunity to build a knowledge marketplace with government data. However, gov-

ernments are unable to feed developers with well-defined structured data. Qanbari et al. [39]

proposed an architecture for Open Government Data as a Service (GoDaaS), in which devel-

opers could have easy access to government data and share their applications with the entire

population. GoDaaS is composed of three layers: the data infrastructure, to provide public and

structured data; the development platform, where authorized developers can deploy services to

retrieve information from the data infrastructure; and the app store, where citizens have access

to government data thought mobile applications. Despite its focus on government data, Go-

DaaS has a very wide scope of potential applications, but does not consider transfer learning.

In contrast, Agora focus much more on private data and predictive models (e.g., retail sales

prediction, energy consumption forecasts).

As a specific example of a marketplace for data analytics, Park et al. [35] created an

architecture for a Web-based collaborative Big Data analytics where users can share data, al-

gorithms, and services. This platform consists of two different Web portals. The Web service

portal facilitates collaboration between users by means of a multi-tenancy architecture. Users

can communicate and share information using the platform for efficient and rapid service de-

velopment, by exploring the algorithms, data and services available in its catalog. The analytics

portal focuses on the productivity of data analytics, enabling users to visualize and explore data

as well as to monitor process and cluster resources. What differentiate this platform from Agora

are the knowledge assets being shared. Although the users in this platform share data and al-

gorithms to further development of new services, users in Agora can share data and models to

facilitate creation of predictive models for other users with small datasets.

Parreiras et al. [36] presented a framework for a marketplace to connect software artifacts

5http://answers.yahoo.com
6http://stackoverflow.com
7http://www.quora.com

26 Chapter 2. Background and Literature Review

within the same project and across different projects as well. This marketplace enables sup-

pliers (i.e., software producers) to store and share artifacts such as bug reports, versions and

source code. Built upon linked open data (LOD) techniques and semantic technologies, it offers

easy access to related software data in the marketplace. In addition, this framework facilitates

development of services for analytics and visualization of software data, enabling consumers

to find, understand and reuse various pieces of open-source software. However, the focus of

this framework is to describe how artifacts are related with each other and how users interact

with them. It is not clear what type of statistics and data analytics services this framework can

handle.

From an industry perspective, Microsoft offers the Azure Marketplace8, where users can

find a variety of free or paid applications and components to attach to projects created on

the Azure Platform. For example, for projects in Azure Machine Learning, users can find

everything from a single anomaly detection component to attach to their models to an entire

predictive model already built and just waiting for data input. However, Azure Marketplace

and Azure Machine Learning do not provide any method related with transfer learning to users

with small datasets.

2.3 Summary

This chapter has introduced terms and concepts related to the various topics to assist in under-

standing Agora and to provide a background in machine learning, transfer learning and service

component architecture.

Various related studies from the literature on transfer learning, machine learning as a service

and knowledge sharing and marketplaces were discussed. The research gaps were identified

and can be summarized as the following three topics:

• Lack of transfer learning methods for regression tasks considering time series.

• No studies in transfer learning considering both domains and learning tasks different

(DS , DT and TS , TT).

8http://azure.microsoft.com/en-us/marketplace

2.3. Summary 27

• No studies about flexible and scalable machine learning as a service.

• No studies about knowledge platform for transfer learning.

Moreover, the related work and research gaps were compared to the methods from Agora,

the platform presented in this thesis. These methods are discussed in more details in the fol-

lowing chapters.

Chapter 3

Agora: a Knowledge Marketplace for

Machine Learning

The Agora was the central square located in the city-states of Ancient Greece, in which peo-

ple came together and athletics events, art performances and political gatherings took place.

Merchants took advantage of the crowded space to sell their goods, turning it into a market-

place. Famous philosophers such as Socrates and Plato were frequently present in the Agora

of Athens, where they could question the other visitors and spread their knowledge publicly.

Many years have passed and Agora is the name of the knowledge marketplace for machine

learning and transfer learning proposed in this thesis. Knowledge can be shared between users

to facilitate learning. Knowledge, in Agora, is the understanding about how to extract informa-

tion from observations (i.e., datasets) using certain learning technique (i.e., machine learning

algorithms). When users share their knowledge in the marketplace, it means both their data

and model specifications are being provided to help other users.

3.1 Overview

Agora visitors (or users) can be either providers or consumers. Providers play the mixed role

of philosophers and merchants: they control the knowledge that can be “sold” as a product in

the marketplace. Providers are more observant and have more data samples collected. In addi-

tion, providers have more experience in data analytics and understand how to extract valuable

28

3.1. Overview 29

information from data. They can determine what features should be considered, what is the

best algorithm for the task and what are the best parameter settings.

Consumers are the visitors looking for knowledge to gain insights. They are not as experi-

enced as providers with regarding to data analytics. In addition, consumers are not necessarily

observant or attentive to details, meaning that they do not have enough data samples. In sum-

mary, customers have enough information to ask questions and know what they want, but they

do not have enough samples and knowledge to create an accurate model. They want insights

immediately, without wasting time understanding complex algorithms or collecting more data.

This is where they can use the knowledge learned by the providers.

Figure 3.1 outlines how this process works. Each tent represents a provider selling knowl-

edge: data samples (represented by geometric shapes) and model specifications (represented

by gears). Consumers must find providers that are selling the knowledge that they need. For

example, consumer A should ask for knowledge from provider A because both have square

samples, and consumer B should ask provider B because both have circular samples. Once

consumers have enough data and models from providers, they can extract insights from their

original data.

The main idea of Agora is to connect providers and consumers to facilitate knowledge

sharing. Agora stores the datasets and the machine learning model specifications provided

by providers. Consumers can efficiently create accurate models using knowledge shared by

providers, within the context of the built-in domain adaptation method and the machine learn-

ing platform provided by Agora.

As an example, a consumer who is a school building manager needs to predict the school’s

energy consumption. However, this consumer does not understand what machine learning is

and has available only a small dataset from the last month containing only the day and the

associated energy consumption. This consumer has no idea what other factors (e.g., weather

attributes) could be related to energy consumption. In Agora, this consumer could efficiently

create a machine learning model using knowledge from a specific provider. This provider is

also a school building manager, but one with more experience who has many years of energy

consumption data, knows which features can be related to energy consumption and has already

created a machine learning model to predict energy consumption. All the consumer needs to

30 Chapter 3. Agora: a KnowledgeMarketplace forMachine Learning

Consumer A

Provider A Provider B Provider C

Consumer B

Data
+ Adapted Data

Model Insight

Figure 3.1: High-level diagram showing how Agora should work.

do is to upload his dataset to Agora, specify what exactly the dataset is and Agora will do the

rest. At the end, the consumer will have the energy consumption prediction.

3.2 Architecture

The general architecture of Agora is illustrated in Figure 3.2. First of all, providers are the par-

ticipants that control the available knowledge, which is a combination of information (source

domain data and global data) and learning methods (model specifications). The source domain

data contain data samples of a specific domain and are described by metadata. The model spec-

ifications contain details about how to extract insights from the source domain data. The global

data can be shared between different models and domains. All this information is stored in the

database.

On the other side are the consumers, who want to make use of the providers’ knowledge,

but do not own it. However, to retrieve knowledge, they must provide a description of their

3.2. Architecture 31

C
o

n
su

m
er

s
 D

at
ab

as
e

Providers

P
ro

vi
d

er
s

 D
at

ab
as

e

Global Data Model Specifications

Argus
(Similarity Search)

Sibyl
(Machine Learning)

Consumers

Predictive Set
(Local Features)

PredictionMetadata

Metadata

Pre-processing phase Post-processing phase

Hephaestus
(Domain Adaptation)

Target Domain Data

Labels

Local Features

Cerberus
(Data Gatherer)

Source Domain Data

Labels

Local Features

Cerberus
(Data Gatherer)

Figure 3.2: Overview of Agora’s architecture.

32 Chapter 3. Agora: a KnowledgeMarketplace forMachine Learning

context by providing their target domain data, the corresponding metadata, and information

about the future in the form of a predictive set. Once the prediction is made, it is returned to

the consumer.

To keep Agora clean of dirty or noisy data (e.g., zeros, incomplete data, empty fields), all

data must be checked by the Cerberus processing component, which filters the data before they

enter Agora.

In between relies the other processing components Argus, Hephaestus and Sibyl, which

enable Agora to work properly. Once Argus receives target domain data, it can find the most

similar source domain data in the database and forward them to Hephaestus. Hephaestus

adapts all its input domains to become one, enabling them to be analyzed together by Sibyl.

Sibyl can create predictions using the knowledge shared by the providers and returns the results

back to Hephaestus, which makes the final adjustments to the original domain and return the

results to the consumers.

3.2.1 Actors

Providers

Providers possess large and almost complete datasets and have knowledge of how to create

efficient machine learning models. Agora enables providers to upload and store their data (i.e.,

source domain data) in Agora’s database. In addition, providers determine which features may

be considered relevant to build the model. Furthermore, providers store model specifications in

the database to specify the best way to create a machine learning model (to be built by others)

using their data.

Consumers

Consumers have insufficient, incomplete, or small datasets (i.e., the target domain data), which

are sent to Agora in an attempt to create an accurate prediction. In addition, consumers are not

required to understand which features should be considered to build a model as well as the best

algorithms and parameters. This is the job of the providers.

3.2. Architecture 33

Agora also facilitates communication between actors to help consumers find the right

provider and knowledge they need.

3.2.2 Providers’ Database

The database contains all the knowledge shared by the providers. Here, knowledge is de-

termined by the combination of observations of events that happened locally (source domain

data), observations of global events (global data) and details of how to learn from the data

(model specifications).

Providers’ database and consumers’ database are only the names given to group the data

provided by both actors. They do not necessarily mean they use different databases or tables.

This thesis leaves the design of the database out of the scope due to the time limit and focuses

on the machine learning aspects of Agora. For evaluating the rest of Agora, the data was fed

directly to each component evaluated, without requiring access to any database.

Source Domain Data

The source domain data contains observations of events that happened locally, which means

that they are very domain-specific. The source domain data are made up of labels, which is

the target factor to be analyzed (e.g. predicted, or classified), and local features, which consist

of local measurements that support analysis of the labels.

The source domain data must contain enough data samples to provide accurate predictions.

If even the provider cannot predict with enough accuracy, the consumer will not be able to

predict any better.

Metadata

The metadata describes the properties of the source domain data. They identify the labels and

local features, as well as their data types (e.g., integer, floating-point, character, and string),

their domain in the case of numbers (e.g., natural numbers, integers, and real numbers), their

range (e.g. minimum and maximum), and other properties. These are useful for Agora to

understand the nature of the datasets when comparing them.

34 Chapter 3. Agora: a KnowledgeMarketplace forMachine Learning

In addition, metadata contain additional information to help Agora identify similar datasets.

For example, because the metadata retain the location where the data were collected, Agora

can analyze two datasets for the same location because the weather and cultural values within

the same location are almost the same. The same can be stated when the metadata retain the

type of entity where the data were collected (e.g., from a school, house or office).

Model Specification

The model specification contains information about how to create a machine learning model for

a specific task. When a consumer needs to create a specific model but has no idea how to do it,

a provider with a similar task provides the details of which algorithms, normalization methods,

and additional attributes should be used to build the model. With the model specification,

Agora combines the consumer’s and provider’s data with the model specification to build and

run the model.

Global Data

Similarly to local features, global data act like features, but can be shared between different

models and domains. If a provider knows that a specific machine learning model depends on

a specific feature from global data, consumers, even if they have not measured these features,

can still retrieve a prediction because Agora has the data available. In this way, consumers can

focus only on their specific measurements (i.e., labels and local features).

3.2.3 Consumers’ Database

Target Domain Data

The target domain data have the same structure as the source domain data. The difference is

that the target domain data do not contain enough samples to create high-accuracy models and

need the support of additional data to improve machine learning models. Moreover, the source

domain data and the target domain data are in different domains.

3.2. Architecture 35

Metadata

The consumers’ metadata are similar to the providers’ metadata, the only difference being that

they describe the target domain data. By having metadata from both providers and consumers,

Agora can analyze and identify similar datasets between domains.

Predictive Set

A predictive set contains information about what can happen in the future. It contains pre-

dictable values for local features, but not for labels, because these are the goal of the machine

learning model.

Prediction

A prediction is the result of a machine learning model built by Agora. It estimates label values

depending on the values of the predictive set.

3.2.4 Processing Components

The processing components are responsible for processing the data from providers and con-

sumers to return the prediction to the consumers.

Cerberus: Data Gatherer

Cerberus was a dog with many heads from Greek Mythology. He was responsible for guarding

the gates of Hades and not letting the dead return to the living world.

In Agora, Cerberus is the gate keeper responsible for receiving data and pre-processing

them before letting them enter Agora. Figure 3.3 shows how Cerberus is designed using SCA

notation. The two components are arranged in a pipeline and can be described as follows:

• The merger component merges all received data (single data points or batches) from

different data sources (e.g., sensors or databases) for a single consumer. Datasets with

different schema are joined into a single multicolumn schema by related attributes (e.g.,

36 Chapter 3. Agora: a KnowledgeMarketplace forMachine Learning

Cerberus

Merger Outlier
Remover

Remove
OutliersSend

Dataset Store

Figure 3.3: SCA composite of Cerberus.

time-stamp for time-series data, categories, identifiers, etc). When finished, the merger

forwards the data to the outliers remover component.

• The outliers remover component removes outliers (e.g., missing values, zeros, extremely

high values, etc.). Outliers depends on the predictive model and must be specified by

providers inside model specifications.

The send dataset service enables users to submit their datasets to Agora via Cerberus,

which requests databases to store the new submitted data.

Argus: Similarity Search

Argus, in ancient Greek mythology, was a 100-eyed giant, capable of observing everything that

was happening around him. This name has invaded modern pop culture, as in Harry Potter,

for example, where Argus Filch was the Hogwarts School vigilante who knew all the school

corridors to catch students breaking rules.

As the state of the art, Argus should be able to perform data similarity search by compar-

ing the distributions of the source and target datasets to find the most similar source domain

datasets to create accurate machine learning models. However, the details of Argus are omit-

ted from this work due to the time limit of this thesis, and selection can be simply done by

manually choosing the best dataset candidates.

Hephaestus: Domain Adaptation

Hephaestus comes from ancient Greek mythology as well and is the name of the god of crafts-

men, sculptors, artisans, and blacksmiths. Hephaestus also has his popularity in pop culture

3.2. Architecture 37

with some appearances such as in the Disney film Fantasia in 1940 and the video game God

of War III1in 2010. Today, his crafting abilities make him a perfect candidate to work on

transforming data.

Here, Hephaestus is a novel domain adaptation method for multi-feature regression with

seasonal adjustment. This method reduces the distance between different domains to improve

prediction of a target domain. For example, for a new building, it can make accurate energy

consumption predictions using knowledge from other building energy consumption measure-

ments over a much longer time.

Hephaestus is designed to work in the pre- and post-processing phases of standard machine

learning, acting directly on top of features and label values, without the need to modify the

machine learning algorithm itself, making it possible to use any standard regression algorithm.

The pre-processing phase performs domain adaptation on top of the various datasets, whereas

the post-processing phase adjusts the predicted values to the target domain.

Chapter 4 explains in substantial detail how Hephaestus works and presents a demonstra-

tion using a case study involving cross-building energy consumption prediction.

Sibyl: Machine Learning as a Service

In ancient Greek mythology, Sibyls were women that were believed to have oracle powers and

the ability to predict the future. In the Japanese animation Psycho Pass2, Sibyl was a complex

system capable of analyzing the criminal tendencies of Japan’s entire population using data

from the whole country.

Sibyl is a platform as a service for machine learning, capable of running multiple machine

learning models at the same time. Sibyl makes it possible to gather data from multiple sources

and build multiple machine learning models using different algorithms.

The details of Sibyl are presented in Chapter 5, as well as a case study in energy consump-

tion prediction.

1More information about God of War III in: http://en.wikipedia.org/wiki/God_of_War_III
2More information about Psycho Pass in: http://en.wikipedia.org/wiki/Psycho-Pass

38 Chapter 3. Agora: a KnowledgeMarketplace forMachine Learning

3.3 Summary

This chapter has provided an introduction of Agora by giving an overview of its architecture,

presenting its main components, and explaining the relationship between them. Two of the

processing components, Hephaestus and Sybil, are detailed in Chapters 4 and 5 respectively.

Chapter 4

Hephaestus: a Domain Adaptation

Method for Regression

This chapter gives the details of Hephaestus1, a novel domain adaptation method for multi-

feature regression with seasonal adjustment. It can extract knowledge from additional datasets

in different domains to improve prediction for a target dataset. For example, for a new building,

it can make accurate energy consumption predictions using knowledge from measurements of

energy consumption in other buildings over a much longer time frame. Hephaestus is designed

to work in the pre- and post-processing phases of standard machine learning, acting directly

on top of feature and labels values, without the need to modify the machine learning algorithm

itself, making it possible to use any standard regression algorithm.

4.1 Method

Figure 4.1 provides an overview of Hephaestus. The inputs are: (a) the target, which represents

the target dataset and which contains past information from the target subject to be predicted;

(b) sources 1 .. n, which represents additional datasets that will be used to improve the target

prediction; and (c) the predictive set, which contains unlabeled data to be predicted.

1This research has been submitted as a journal paper to Elsevier Applied Soft Computing as “Hephaestus: Do-
main Adaptation for Multi-Feature Regression with Seasonal Adjustment” in July 2016, co-authored by Katarina
Grolinger, Hany F. ElYamany, and Miriam A.M. Capretz

39

40 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

...

Source 1

(B) Atemporal Domain Adaptation

(C) Standard Machine Learning

X Y

Adapted Source 1

X Y

Training Set

Adapted Target

X Y

Source n

X Y

...

Adapted Source n

X Y

Target

X Y

Predictive Set

X

train

Domain Adaptation

Adapted Predictive Set

X

Prediction

Y

(A) Time Series Domain Adaptation

(D) Adjustment

tr
an

sf
o

rm
at

io
n

 f
u

n
ct

io
n

tr
an

sf
o

rm
at

io
n

fu
n

ct
io

n

Figure 4.1: Overview of Hephaestus method.

Hephaestus consists of four main phases: (A) time series domain adaptation, in which

the time effects (e.g. seasonality) for all source and target domains are analyzed, transferred

to the target (if needed) and have the trend and seasonality removed; (B) atemporal domain

adaptation, in which the domains of time-independent labels and features (those that do not

define time that were removed by the first phase and do not depend on it) are adapted; (C)

standard machine learning, which uses any standard algorithm to train the predictive model and

generate a prediction using the predictive set; and (D) the adjustment, in which the prediction

is adjusted using the factors calculated in the time series and atemporal domain adaptation

phases.

Hephaestus can be considered as both a parameter and an instance transfer method. It

transfers the time factors and normalization parameters (if the target dataset does not have

enough data to calculate them) and transfers instances containing atemporal features only to

train the predictive model.

In the next subsections, these four phases are discussed.

4.1. Method 41

4.1.1 Time Series Domain Adaptation

Different datasets can have different time profiles, with similar behavior for atemporal features.

Hence, it is important to remove trend and seasonal effects before analyzing and transferring

atemporal feature correlations. For example, a building can have an energy consumption profile

that follows a weekly pattern with peaks and depressions defined by the day of the week. Each

building can have a different profile, making it difficult to transfer knowledge of atemporal

features from one to another, unless the time effects (e.g., seasonality and trend) are removed.

This phase has two objectives: (a) removing the effects of time from the dataset, and (b)

transferring (if needed) time series knowledge from the sources to the target. Figure 4.2 illus-

trates this phase.

As input, the time series domain adaptation phase receives the n raw source datasets and

the target dataset. As output, the labels Y for each dataset contain the residuals after trend and

seasonality removal. If each input dataset has a unique time profile, the conditional probability

P(y|xt), where xt is a temporal feature (i.e., contains a value in time space), is not equal for

all the sources and the target. Hence, TS , TT , confirming that this is a transfer learning

problem. The goal of time series domain adaptation Φ() here is to approximate the conditional

probability P(Φ(Y)|X) of all domains by removing the effects of all temporal features (e.g. day

Source 1

Trend Removal

Seasonality Removal

trend
factor

transfer

seasonal
index

transfer

Source 1 Without Trend

Residual 1

Y

Y

Y

Source n

Trend Removal

Seasonality Removal

Source 2 Without Trend

Residual n

Y

Y

Y

...
Target

Trend Removal

Seasonality Removal

Target Without Trend

Target Residual

Y

Y

Y

Figure 4.2: Time series domain adaptation phase.

42 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

of the week) from the label.

Trend Removal

Each dataset may have different trends. To reduce this difference, the label has the trend re-

moved, losing its long-term variation, as can be seen in Figure 4.2. The trend removal calcu-

lates the trend factors to first remove the trend from the label using a removal function, based

on the additive or multiplicative models, and later to adjust the prediction with the inverse of

the removal function.

Small amounts of data in the target dataset can be statistically insufficient to determine the

trend properly. This issue can be solved by using the trend factors calculated from one of the

source datasets or a composite of all of them, assuming that they have similar trends. For

example, two approaches can be used: (a) calculating the average of all the source datasets or

(b) choosing the dataset that is most similar to the target’s (e.g., using K-Nearest Neighbors).

Seasonal Removal

Like trends, datasets can have different seasonal profiles (for example, weekly seasonality) and

labels can have the seasonality removed to reduce seasonal impact, as shown in Figure 4.2.

The seasonality removal calculates the seasonal indexes to first remove the seasonality from

the label using a removal function, based on additive or multiplicative models, and later to

adjust the prediction with the inverse of the removal function.

Similarly as in trend removal, the target dataset may not be large enough to calculate sea-

sonal indexes with statistical relevance. If this is the case, the target’s seasonal removal can

be calculated using the seasonal indexes from one of the source domains or a composite of all

of them, assuming that they have similar seasonal profiles. For example, this can be done by

(a) calculating the average of all the source datasets or (b) choosing the source dataset most

similar to the target’s (e.g., using K-Nearest Neighbors).

After trend and seasonal removal, the outcome of this phase is the residual component of

the target variable with time effects removed.

4.1. Method 43

4.1.2 Atemporal Domain Adaptation

In this thesis, a domain adaptation method is proposed in the atemporal domain adaptation

phase. However, Hephaestus is flexible enough to work with any other domain adaptation

technique. The goal here is to align the domains of all atemporal features and labels to enable

them to be handled together. Figure 4.3 illustrates how this works.

For a single feature f , the values X f from each source domain and the target domain Dk,

are subjected to a global normalization (if the relationship between Y and X f are absolute) or

local normalization (if the relationship between the label Y and the feature X f are relative).

These two normalization methods are described next.

Local Normalization

A relationship between Y and X f is relative if the value of Y relies on a proportional value of

X f . In other words, the conditional distributions P(Y |Ψ(X f)) of each source or target are the

same, where Ψ() is a normalization function. Local normalization is illustrated in Figure 4.3,

which shows all the resulting similar marginal distributions centered in the same position for

Local normalization

Source 1 TargetSource n

μ Xf

Tμ Xf

Snμ Xf

S1

...

Is the relationship between y and feature x relative or absolute?

Normalized Source 1 Normalized TargetNormalized Source n

0

...
transfer

normalization0 0

Global normalization

Normalized Source 1 Normalized TargetNormalized Source n

0 0 0 μ` Xf

Tμ` Xf

Snμ` Xf

S1

ab
so

lu
te

re
la

ti
ve

...

P(Xf) P(Xf) P(Xf)

P(Xf) P(Xf) P(Xf)

P(Xf) P(Xf) P(Xf)

Figure 4.3: Local and global z-score normalizations.

44 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

all source and target domains.

To illustrate a relative relationship, assume that energy consumption and external temper-

ature are correlated and that buildings have different structures adapted to the climate where

they were built. Therefore the air conditioner will not be set to an exact outdoor temperature,

but turned on when the indoor temperature becomes warm, a decision which depends on the

building’s heat-exchange characteristics with the outside environment. In this situation, the

relationship between the outside temperature and energy consumption is relative. The idea of

normalizing the temperature for each building is to align the concept of warm temperature onto

the same scale for all buildings.

Because most features in real-world regression problems follow a normal distribution, the

linear transformation proposed for this method is the z-score normalization. The z-score nor-

malization maintains all the feature distributions by aligning their means on the center and

keeping outliers out of bounds. Figure 4.3 uses z-score normalization as an example.

Z-score normalization can be calculated using Eq. 2.2. For local normalization, only the

feature values XDk
f from the current domainDk are used.

Similarly in time series domain adaptation, depending on dataset size, it is difficult or sta-

tistically irrelevant to achieve proper normalization using only the local dataset. This can be

solved by using the normalization parameters from one of the source domains or a composite

of all of them, assuming that they have similar distributions.

Labels from source and target datasets can be in different domains, therefore they must

also be normalized. For example, energy consumption depends on building size: the energy

consumption peak in a bigger building can be expected to be higher than in a smaller building.

In this case, local normalization should be used for the label.

Global Normalization

A relationship between Y and X f is absolute if the value of Y relies directly on the absolute

value of X f . Therefore the X f of each dataset is a subset of a superset F that contains all the

subsets from all the datasets. In other words, the conditional distributions P(Y |Ψ(X f , F)) for all

source or target datasets are the same in a global context. In this case, the feature X f is consid-

ered to be already in the same domain for all the sources and the target. Global normalization

4.1. Method 45

is illustrated in Figure 4.3, where the dashed lines represent the assumed marginal distribution

of the superset F and the continuous lines represents the marginal distribution of X f from the

source and target domains in relation to F.

For example, suppose that all the buildings are outfitted with the same type of equipment

(e.g. computers, lighting) with equal consumption characteristics and that the number of pieces

of equipment is available in the datasets. Because each piece of equipment consumes the

same amount of energy for every building, its relationship with energy consumption would be

considered absolute because it depends on the absolute number of pieces of equipment that are

turned on.

However, even if features with a global relationship are already in the same global do-

main, they should also be normalized in the same way the features with a local relationship to

maintain all the features at the same scale and consequently ensure prediction quality.

When using z-score normalization (Eq. 2.2) for global normalization, all the feature values

X f from all datasets are used at once.

4.1.3 Standard Machine Learning

In Hephaestus, how a machine learning algorithm works does not change because the input is

still one single dataset. The pre- and post-processing phases do not affect the execution of the

algorithm. Hence, Hephaestus can work with any standard regression algorithm (e.g. support

vector regression and neural networks) to build the predictive model, feeding the composed

training set directly into the algorithm without the need to adapt it.

In addition, any pre- or post-processing procedures, such as instance selection/weighting

and feature selection/weighting, can be executed during the standard machine learning phase

over the Training Set, either before training or after prediction.

4.1.4 Adjustment

It is important to note that the labels have been modified during time series and atemporal

domain adaptations phases. To retrieve the correct predicted values, the adjustments for each

phase must be done by applying the inverse functions from the time series domain adaptation

46 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

Φ−1(·) and the atemporal domain adaptation Ψ−1(·).

4.2 Case Study

This case study aims to improve energy consumption prediction for a building with only one

month of data available, with the help of data from additional buildings using Hephaestus.

There is no definition of what is an accurate model, because it depends on the predictive

model itself. For this case study, we considered that it is necessary at least one year of data

from a single domain to build accurate machine learning models, because it includes all the

seasons of the year and contains a variety of data to justify the irregular component.

The goal is to reach similar accuracy as if the model had been used with one entire year of

data for the target building. We assume that once Hephaestus is successfully evaluated for en-

ergy consumption forecast, it works for a variety of other tasks regarding the same nature (i.e.,

regression tasks considering time series and multiple features) such as retail sales prediction

and Web site visitors prediction.

Around 40% of energy consumption from an average building is related to heating, ven-

tilation and air conditioning (HVAC) and 15% to lighting [45]. The objective of HVAC and

lighting is to maintain a comfortable and healthy environment for building occupants. In ad-

dition, HVAC can also be related to operational draws such as equipments (e.g., to cool down

computers). Therefore, we concluded that the energy consumption of a building is strongly

related to human factors and machinery, which can be analyzed considering time and weather.

This case study makes use of data collected from four different buildings using Powersmiths

meters. Powersmiths is a company for which one of the main product lines is meters and

sensors to manage building resources. Their clients are located in several locations and have

different profiles. Four schools have been chosen to increase the likelihood that the buildings

would exhibit similar behavior, even though they were different in sizes and in the number

of staff and students. The schools are located across Newfoundland, Canada, which slightly

increases the diversity of weather conditions without making the schools too distinct from one

another. Moreover, the schools share similar seasonal patterns, including hours of operations,

holidays, and seasons of the year. Although they are all schools located in the same province,

4.2. Case Study 47

their weekly profile is different from one another.

The datasets for the four schools contain three years of daily data, from January 1, 2013,

to December 31, 2015. Each dataset contains 17 attributes, including four temporal attributes:

(1) year, (2) month, (3) day of the year, (4) day of the week; 12 atemporal attributes, all

related to external weather: (5) minimum temperature, (6) maximum temperature, (7) mean

temperature, (8) difference of mean temperature in one day, (9) difference of mean temperature

in two days, (10) difference of mean temperature in three days, (11) dew point, (12) mean dew

point, (13) minimum dew point, (14) minimum humidity, (15) maximum humidity and (16)

mean humidity; and finally, (17) energy consumption, measured by Powersmiths meters.

In the following subsections, the Evaluation subsection discusses how the performance of

Hephaestus was evaluated; the Implementation subsection describes certain details of the im-

plementation; the Preliminary Analysis subsection discusses how Hephaestus performs during

its process; and the Results subsection discusses how well Hephaestus performed.

4.2.1 Evaluation

To evaluate this case study, four different models were implemented for each school:

• T.1: using one month of data from the target school only, to simulate the scenario where

only recent data from the target domain are available.

• T.12: using 12 months of data from the target school, used only as a benchmark to

compare with Hephaestus performance.

• H.1-12: using one month of data from the target school plus 12 months from the addi-

tional schools, using Hephaestus.

• H.12-12: using 12 months of data from the target school plus 12 months of data from

the additional schools, using Hephaestus, used only as a benchmark.

• N.1-12: using one month of data from the target school plus 12 months of data from the

additional schools, without using domain adaptation; only min-max normalization was

used for each feature, to demonstrate the impact of domain adaptation compared to not

using it.

48 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

The additional schools used to train the models were the other three schools besides the

target school itself.

We made the prediction for one entire year using rolling base forecasting, which uses a

certain number of months to train the model and one month to test. Figure 4.4 illustrates how

this process works, using as an example one month of data from the target school plus 12

months from the additional schools.

The errors between the predicted values and the measured values were used to measure the

accuracy of a model and to compare with the others. Two different errors were calculated: the

mean absolute percentage error (MAPE) given by the equation

MAPE =
1
n

n∑
i=0

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (4.1)

and mean square error (MSE) given by the equation

MSE =
1
n

n∑
i=0

(yi − ŷi)2 (4.2)

where y is the actual value and ŷ is the predicted value.

Jan
2014

Feb
2014

Mar
2014

...
Nov
2014

Dec
2014

Jan
2015

Feb
2015

Mar
2015

...
Nov
2015

source training set

target
predictive

set

target
training

set

Dec
2015

source training set

target
predictive

set

target
training

set

source training set

target
predictive

set

target
training

set

1st prediction

2nd prediction

12th prediction

... ...

Figure 4.4: Rolling base forecasting.

4.2. Case Study 49

Hephaestus models H.1-12 and H.12-12 should be better than model T.1 and similar to

model T.12. It is expected that Model N.1-12 should not perform well because it is using

different domains directly to train the predictive model.

4.2.2 Implementation

From the data for the analyzed schools, if the energy consumption is high, the seasonal mag-

nitude will also be high. For example, Figure 4.5 shows a sample of energy consumption for

School A from September 1, 2013 to December 31, 2013. It is evident how the average of

energy consumption is lower during the first weeks and increases over time; the same effect is

evident in the magnitude, where the differences between highs and lows in the beginning are

lower and then increase over time. Because of this pattern, we implemented this experiment

was implemented using the multiplicative model.

For trend removal, trend smoothing was performed using moving averages:

tsi =
1
m

m−1∑
j=0

yi− j (4.3)

where m represents the last m values in the time series. In this experiment, if a small number

of days were chosen, this could remove the effects of weather attributes from the residuals.

However, 365 days were used because this is enough to remove only long-term trends, and

keeps the cyclical component related to seasonal weather features (such as temperature) over

0
500

1000
1500
2000
2500
3000
3500
4000

1‐
Se
p

8‐
Se
p

15
‐S
ep

22
‐S
ep

29
‐S
ep

6‐
O
ct

13
‐O
ct

20
‐O
ct

27
‐O
ct

3‐
N
ov

10
‐N
ov

17
‐N
ov

24
‐N
ov

1‐
De

c

8‐
De

c

15
‐D
ec

22
‐D
ec

29
‐D
ec

En
er
gy
 C
on

su
m
pt
io
n
(k
W
h)

Date

School A ‐ Energy Consumption

Figure 4.5: Sample of an energy consumption timeline.

50 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

the energy consumption. Otherwise, using a smaller number of days would remove, for exam-

ple, the correlation between temperature and energy consumption, because the seasons of the

year would be removed with the trend.

The trend factor, which measures the proportional increase of the trend at a specific point,

was calculated by the equation

t fi = tsi/tsr (4.4)

where r is the index of the reference value, and therefore t fi represents the proportion of the

trend in i in relation to r. In this case, r was set to the last day of each source dataset. The

trend factor was used to remove the long term trend from the additional datasets, by dividing

the energy consumption by the trend factor.

From the three years of data, the first year’s was used exclusively to calculate the long-term

trend only for the additional schools. The remaining two years were used to run the evaluation.

Because all the models predicted only one month, it was decided that calculating the target

trend was not necessary.

For seasonal removal, only weekly seasonality was considered. Let P be the set of all points

from a specific seasonality (e.g. days of the week), where p is a specific point in P, yp, j the jth

of m observations that happened on p, and y the average of all the observations that happened

in every p ∈ P. The seasonal index was calculated by:

sp =
1

ym

m∑
j=1

yp, j (p ∈ P) (4.5)

to remove the seasonality by dividing the current value by its respective seasonal index.

During the atemporal domain adaptation, all the atemporal attributes were normalized lo-

cally using z-score (Eq. 2.2).

For standard machine learning, two experiments were constructed using two algorithms:

(a) multilayer perceptron (MLP), and (b) support vector regression (SVR) because these are

commonly used for energy consumption prediction [3]. This step was performed to demon-

strate that Hephaestus works with any standard machine learning algorithm.

The adjustment was calculated by applying the inverse of the z-score function on the re-

4.2. Case Study 51

sults from the standard machine learning and multiplying with the respective trend factor and

seasonal index, which can be written as:

y = (z × σ + µ) × t f × sp (4.6)

We programmed Hephaestus using Node.js, using the Synaptic package2 for multilayer

perceptron and the Node-SVM package3 for support vector regression. This experiment was

made in a virtual machine with 4 Cores Intel Xeon E5-2630 2.3GHz and 16GB RAM DDR3

1600MHz, using VirtualBox4 running Ubuntu 14.045.

4.2.3 Preliminary Analysis

The preliminary analysis helps explain the details of the data used in this case study and how

Hephaestus works. For illustration reasons only, all the following analyses used the entire

dataset from all the schools, instead of using the evaluation model previously described.

The weekly seasonal profiles for each school were calculated during seasonal removal in

the time series domain adaptation phase. Figure 4.6 shows that each school’s weekly pro-

files are different. Because each school presents different seasonal profiles, one school data

cannot be used to predict the energy consumption of another school because the prediction’s

seasonality will not fit the target’s seasonality.

Furthermore, the correlation between the atemporal features (e.g. external mean tempera-

ture) and the label (energy consumption) is not the same for all schools. For example, Figure

4.7 shows the difference between the correlations, using a polynomial interpolation of degree

3, between mean temperature and energy consumption. Figure 4.7a shows the correlation be-

fore atemporal domain adaptation. In this scenario, to determine the energy consumption for

one school using the curve from another school may not be accurate because the curves do not

overlay one another. This demonstrates the need for domain adaptation, which approximates

these curves to improve machine learning accuracy.

2http://synaptic.juancazala.com
3http://github.com/nicolaspanel/node-svm
4http://www.virtualbox.org
5http://www.ubuntu.com

52 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Sea
son

al In
dex

Seasonal Index per Day of the Week

School A School B School C School D
Figure 4.6: Seasonal index for all four schools.

Atemporal domain adaptation attempts to reduce the distance between the data distribution

for each school, and the new correlation between an atemporal feature (e.g. mean temperature)

and the school’s energy consumption should be similar. Figure 4.7b shows the correlation be-

tween external mean temperature and energy consumption after atemporal domain adaptation.

Once correlations for the atemporal features are approximated with one another, they are

ready to feed the predictive model.

4.2.4 Results

Table 4.1 shows the results of the experiment using multilayer perceptron (MLP). Each column

represents the Mean Absolute Percentage Error (MAPE) and the Mean Square Error (MSE) for

each target school. Those same values are plotted in Figure 4.8. Figure 4.9 shows a sample of

a timeline chart comparing the predictions made by the various models using MLP.

Model N.1-12 proved to be the worst model for all schools. This was expected because the

model used measurements that were outside the target domain, making wrong inferences and

thus increasing the error. This proves the importance of domain adaptation.

Model T.1 had the second worst results for every school. By adding data from additional

schools using Hephaestus in model H.1-12, all schools improved their results compared with

4.2. Case Study 53

0

1000

2000

3000

4000

5000

-20 -10 0 10 20 30

Ene
rgy

 Co
nsu

mp
tion

 (kW
h)

Mean Temperature (°C)

Mean Temperature and Energy Consumption Correlation before Domain Adaptation

School A
School B
School C
School D

(a)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Ene
rgy

 Co
nsu

mp
tion

 (z-s
cor

e)

Mean Temperature (z-score)

Mean Temperature and Energy Consumption Correlation after Domain Adaptation

School A
School B
School C
School D

(b)

Figure 4.7: Polynomial interpolation of the correlations between mean temperature and energy
consumption.

54 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

Table 4.1: Errors for the schools’ energy consumption prediction (MLP)

Model
School A School B School C School D

MAPE MSE MAPE MSE MAPE MSE MAPE MSE

T.1 0.2088 229548 0.3405 320401 0.2105 264078 0.3055 180463

T.12 0.1196 104444 0.2281 132927 0.1040 76155 0.2237 118421

H.1-12 0.1191 86240 0.2288 152466 0.0986 74601 0.2149 141240

H.12-12 0.1156 83337 0.2284 162093 0.0928 66509 0.2060 123051

N.1-12 0.1928 277025 0.6439 1031830 0.1941 234497 0.2662 222852

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

School A School B School C School D

M
AP

E
(%

)

Mean Absolute Percentage Errors (MLP)

T.1 T.12 H.1‐12 H.12‐12 N.1‐12

(a)

0

200000

400000

600000

800000

1000000

1200000

School A School B School C School D

M
SE
 (k

W
h²
)

Mean Square Errors (MLP)

T.1 T.12 H.1‐12 H.12‐12 N.1‐12

(b)

Figure 4.8: Errors for the schools’ energy consumption prediction (MLP).

4.3. Summary 55

500
1000
1500
2000
2500
3000
3500
4000
4500

1-Ja
n

2-Ja
n

3-Ja
n

4-Ja
n

5-Ja
n

6-Ja
n

7-Ja
n

8-Ja
n

9-Ja
n

10-
Jan

11-
Jan

12-
Jan

13-
Jan

14-
Jan

15-
Jan

16-
Jan

17-
Jan

18-
Jan

19-
Jan

20-
Jan

21-
Jan

22-
Jan

23-
Jan

24-
Jan

25-
Jan

26-
Jan

27-
Jan

28-
Jan

29-
Jan

30-
Jan

31-
Jan

Ene
rgy

 Co
nsu

mp
tion

(kW
h)

Day of the month

School A - Energy Consumption Prediction (MLP)

Measured
T.1
T.12
H.1-12
H.12-12
N.1-12

Figure 4.9: Timeline comparison between the predictions for MLP models.

model T.1. When calculating T.1 minus H.1-12 from Table 4.1, school C had the best improve-

ment, reducing the MAPE by 11.19% and MSE by 189477.

In addition, the prediction accuracy for model H.1-12 was almost as good as for model

T.12, which used only 12 months from the target school. Moreover, model H.1-12 performed

slightly better than T.12 for schools A and C (when considering both MAPE and MSE), and D

(when considering MAPE only).

It should be noted, however, that model T.12 gave better results than models H.1-12 and

H.12-12 for school B (considering MAPE and MSE) and D (considering only MSE). The

primary goal of Hephaestus was to improve prediction for small or new datasets, which was

simulated by model T.1. T.12 was added only as a benchmark to verify whether H.1-12 was

able to achieve a performance close to it where 12 months of the target dataset were available,

which is not possible in the problem that Hephaestus was designed to solve.

The use of additional datasets without proper domain adaptation is not efficient, as demon-

strated by model N.1-12. Hence, model H.1-12 was compared to T.1 and had a 100% success

rate in this experiment, while still managing to achieve results compatible to T.12.

Table 4.2 shows the results for support vector regression (SVR), which are plotted in Figure

4.10. The results are similar to the MLP experiment. This demonstrates that Hephaestus can

work with any standard machine learning algorithm.

4.3 Summary

This chapter has proposed Hephaestus, a novel transfer learning method for predictive regres-

sion models for time series and multi-feature datasets. Hephaestus works in the pre- and post-

56 Chapter 4. Hephaestus: a Domain AdaptationMethod for Regression

Table 4.2: Errors for the schools’ energy consumption prediction (SVR)

Model
School A School B School C School D

MAPE MSE MAPE MSE MAPE MSE MAPE MSE

T.1 0.1798 185051 0.2853 226727 0.1594 160584 0.2447 185406

T.12 0.1327 132285 0.2240 140457 0.1006 76340 0.2081 121938

H.1-12 0.1218 94187 0.2272 142427 0.0991 79346 0.2227 156124

H.12-12 0.1133 85407 0.2296 147068 0.0940 70158 0.2124 136681

N.1-12 0.1964 272301 0.6623 986109 0.2048 269871 0.2656 224486

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

School A School B School C School D

M
AP

E
(%

)

Mean Absolute Percentage Errors (SVR)

T.1 T.12 H.1‐12 H.12‐12 N.1‐12

(a)

0

200000

400000

600000

800000

1000000

1200000

School A School B School C School D

M
SE
 (k

W
h²
)

Mean Square Errors (SVR)

T.1 T.12 H.1‐12 H.12‐12 N.1‐12

(b)

Figure 4.10: Errors for the schools’ energy consumption prediction (SVR).

4.3. Summary 57

processing phases, enabling the use of standard machine learning algorithms. This method

can adapt the target variable domain of multiple datasets by removing the effects of time, and

adapts features by a simple z-score domain adaptation technique.

To validate Hephaestus, a case study on energy consumption prediction for multiple schools

was successfully presented. Predictive performance increased by up to 11.2% when using data

from additional schools compared with using only one month of data from the target school.

The results were found to be similar or even better than using 12 months of data from the target

school.

Chapter 5

Sibyl: a Machine Learning as a Service

This chapter describes Sibyl, a machine learning as a service architecture adapted from a pre-

vious study1[42]. Sibyl’s architecture allows multiple users to use the same platform to build

and run multiple machine learning models at the same time.

5.1 Architectural Design

This section describes the proposed Sibyl architecture, which is designed to support machine

learning by gathering data from multiple sources and building multiple machine learning mod-

els using different algorithms. The approach focuses on predictive modeling, but it is adaptable

to other applications.

The scope of this architecture deals with the machine learning itself, ignoring the front-

end aspects such as the user interface. In a model-view-controller (MVC) perspective, this

architecture focus on the model layer while the controller and view layers are only implemented

as part of the case study. The term model in the MVC context should not be confused with the

same term used in machine learning and predictive models that is used in the rest of this thesis.

Figure 5.1 illustrates a high-level description of Sibyl, where many users share the same

platform and each one creates as many machine learning models as they needed. The modeler

is responsible to handle all the user requests to build a model or redirect the request to the

1This research has been published as a conference paper in 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA) as “MLaaS: Machine Learning as a Service” in December 2016,
co-authored by Katarina Grolinger and Miriam A.M. Capretz

58

5.1. Architectural Design 59

Modeler

Model
A1

Model
B1

Model
A2

Model
C1

Model
C2

Model
A3

User A User B User C

Sibyl

Figure 5.1: High-level diagram showing how Sibyl should work.

proper user’s owned model.

The simplified SCA diagram in Figure 5.2 transforms the above concept into a technical

overview of Sibyl architecture, hiding the details of the composites’ implicit components. Sibyl

provides a total of seven services, including five for managing models: build, train, validate,

test and predict; and three for retrieving results: get report, get prediction and get test. These

services are all linked to the modeler composite. The modeler composite works as an interface

between users and models. The modeler composite is responsible for managing the creation

of new models and addressing the users requests to the correct model. The modeler composite

can handle as many models as requested by the users.

The five services for managing models represent the main machine learning tasks: build

creates a new instance of a model; train trains the model; validate validates the model; test

tests the model using a test set and predict creates a new prediction. All these services have

corresponding consumers that are linked to a specific model instance.

The specified services provide well defined interfaces that increase the architecture’s flexi-

bility to new inputs and outputs. The five Sibyl’s services for managing models allow any user

to access the same platform to create their own models. The corresponding five modeler’s well

60 Chapter 5. Sibyl: aMachine Learning as a Service

Sibyl: Machine Learning as a Service

Modeler

Build

Predict

Validate

Get
Report

Get
Test

Test

Get
Prediction

Models

Build Validate Test Predict

0 .. N

Train

Train

Figure 5.2: Sibyl’s simplified architecture using SCA notation.

defined consumers enable the architecture to be pluggable with different model-µ instances.

The three Sibyl’s services get report, get prediction and get test enable different user interfaces

and external systems to consume the resulting data.

The architecture works as follows: first, a model must be created by using the build ser-

vice. Once the model is built, it must be trained by sending the training set through the train

service. Once the model is trained, users can request it to be validated, to be tested or to make

a prediction.

The SCA diagram in Figure 5.3 depicts the same architecture with higher level of details,

displaying all the implicit components of the composites.

A model is an instance of model-µ composite, running a specific machine learning algo-

rithm with specific parameters. The cardinality 0..N shows that Sibyl can create and run mul-

tiples instances of model-µ at the same time. The model property shows that each instance can

run with different settings.

The following subsections describe each of Sibyl’s artifacts.

5.1. Architectural Design 61

Sibyl: Machine Learning as a Service

Modeler
Train

Predict

Learner

Predictions
Storage

Store
Prediction

Predictor

Builder

Build

Get Report

Send
Model

Identifier Reports
Storage

Store
Report

Get
Test

Test

Get
Prediction

Store
Test

Model- μ

Constructor

Validator

Trainer Predictor

Validate

Train

Build Train Test Predict

0 .. N

model

- modelId
- algorithm
- parameters
- validation

Validate

Validate

Send Training Set

Figure 5.3: Sibyl’s detailed architecture using SCA notation.

5.1.1 Modeler Composite

This is the core composite in the architecture, because it is an interface between the user and

model-µ instances. It is responsible for building, training, validating, testing, and running the

model-µ instances. It is made up of five components as illustrated in Figure 5.3, which can be

described as follows:

• The builder component receives from build service the parameters (e.g., algorithm and

property values) to build and deploy a new model (a model-µ instance) for the build

consumer. When the instance is created, builder sends the model identifier back to the

consumer and forwards it to the learner and predictor components.

• The learner component receives the data from the train service and forwards them to

62 Chapter 5. Sibyl: aMachine Learning as a Service

the destined model-µ instance. When it receives the training report from the model-µ

instance through the train consumer callback, it forwards the training report to reports

storage.

• The reports storage component receives the training reports from the learner component

through the store report service. Reports can be from training or validating a model. The

reports storage component serves the training reports to external consumers through the

get report service.

• The predictor component receives the predictive set from the predict service and for-

wards it to the model through the predict consumer, which will return the prediction

through a callback. The prediction will be returned to the predict requester and also for-

warded to predictions storage. predictor is also responsible for forwarding the testing

set.

• The predictions storage component receives and stores the predictions and tests from the

store prediction and store test services and provides them to external consumers through

the get prediction and get test services.

5.1.2 Model-µ Composite

The model-µ composite is an architecture for building different models. It holds all the imple-

mented algorithms source codes (e.g., multilayer perceptron or support vector regression), but

only one must be loaded. The algorithm to be loaded and its parameters should be specified

when calling the build service. In other words, for each build Model service request, a new

instance of a model-µ composite is created.

The model property describes how the model needs to be built and executed. It is composed

of four sub-properties: modelId is the model unique identifier; algorithm specifies which al-

gorithm is going to be used by the model; parameters adjust the algorithm behavior; and

validation specifies the validation method do be used.

The train, validate, test, and predict service specifications enable the modeler composite to

interact with any model-µ instance, independently of the chosen algorithm or parameters.

5.2. Process 63

The model-µ composite is made up of four components, which can be described as follows:

• The constructor component is responsible for loading the right algorithm and setting

the properties of the model instance using the build service request parameters. When

the instance is set up and running, it is ready to provide train, validate, test and predict

services.

• The trainer component receives the training set from the train service and forwards it

to predictor components through the train services. It also sends the training set to the

validator component through the send training set service.

• The validator component receives the training set from the trainer component through

the send training set service, feeds it to the algorithm and validates the algorithm with a

validation method (e.g., k-fold cross-validation or rolling base forecasting). Once vali-

dation is finished, the validation report is sent back through the service callback.

• The predictor component receives the training set from the train service to feed the

model for future prediction requests. When receiving predictive sets through the predict

service, it calculates and returns the predictions. When receiving test sets through the test

service, it calculates and returns a comparison between predictions and the real measured

values.

The implemented algorithms source code must be responsible only for training and pre-

dicting. Testing and validating do not depend on the algorithm itself, but on the results, which

can be found by using the algorithm’s training and predicting functions. Therefore, testing

and validating functions are responsibilities of validator and predictor components, increasing

standardization and reducing the effort when adding a new algorithm.

5.2 Process

An average user should follow the interactions with Sibyl in the following order: build, train,

validate, test and predict. Figures 5.4, 5.5, 5.6, 5.7 and 5.8 illustrate these interaction phases

between a consumer, the modeler composite and a model-µ composite. The term consumer in

64 Chapter 5. Sibyl: aMachine Learning as a Service

the following discussion refers to a generic consumer from SCA notation using the modeler

component and it must not be confused with Agora’s actor consumer.

• build: it starts with the consumer requesting the builder component to build a new model

through the build Model service. The builder component will then create and configure

a new model-µ instance. When the building operation is complete, the builder compo-

nent sends the new model identifier to the learner and predictor components and to the

consumer.

• train: the consumer is now able to train the instantiated model. It sends the training

set to the learner component through the train service, which will forward the training

set to the trainer component of the model-µ instance. The trainer component will make

two requests at the same time: one to the validator component to validate the model and

another to the predictor component to be trained for future prediction requests. When

predictor training is complete, it sends back a training report of the training process to the

learner component, which requests the reports storage component to store the training

report.

• validate: once the model is already fed with the training set, validation of the model

is now possible. The consumer sends the validation settings to the learner compo-

Modeler

Model-μ

Builder Learner Predictor

Constructor

2. build

3.c. send model
identifier

3.b. send model
identifier

1. build

3.a. send model
identifier

Build

Figure 5.4: Process flow of build phase.

5.2. Process 65

Modeler

Learner
Reports
Storage

Model-μ

Trainer Predictor Validator

Train

1. train

2. train

3.b. train

3.c. send
training set

5. send report

6. store report

4. send report

Figure 5.5: Process flow of train phase.

Modeler

Learner
Reports
Storage

Validate

1. validate

5. store report

Model-μ

Validator

2. validate

4. send report

Figure 5.6: Process flow of validate phase.

66 Chapter 5. Sibyl: aMachine Learning as a Service

Modeler

Predictor
Predic�ons

Storage

Model-μ

Predictor

Test

1. test

2. test

4. send predic�on and report

3. send
test

iden�fier

5. store predic�on
and report

Figure 5.7: Process flow of test phase.

Modeler

Predictor
Predictions

Storage

Model-μ

Predictor

Predict

1. predict

2. predict

4. send prediction

3. send
prediction
identifier

5. store prediction

Figure 5.8: Process flow of predict phase.

5.3. Case Study 67

nent through the validate service, which will forward to the validator component of

the model-µ instance. When validation is complete, the validator component sends back

a validation report to the learner component, which requests the reports storage compo-

nent to store the validation report.

• test: the model is ready to be tested. The consumer sends the test set to the modeler

composite’s predictor component, which will forward to the model-µ instance’s predictor

component, where the prediction is calculated and compared to the measured labels. The

prediction and a test report are returned to the modeler. The prediction and the test report

are sent to the predictions storage to be stored and served.

• predict: works very similarly to the test phase. The consumer sends the predictive set

to the modeler composite’s predictor component, which will forward to the model-µ

instance’s predictor component, where the prediction is calculated and returned to the

modeler. The predictions are sent to the predictions storage to be stored and served.

In training, test and predicting phases, the consumer receives the report and prediction

identifiers as soon as the learner and predictor components receive the request, so it is not

necessary to keep the connection while the entire request is be processed. When the report or

prediction is ready, it can be accessed from reports storage and predictions storage compo-

nents, using the specific identifier.

5.3 Case Study

The goal of this case study is to forecast energy consumption based on past data for a building,

using different machine learning algorithms and finding the best-performing one.

We implemented Sibyl using energy data from Powersmiths’ office building, in Brampton,

ON, Canada. The dataset was pre-processed before feeding them to the system. The training

set contains two years of daily data and the test set one month. The training set goes from

January 1, 2014, to December 31, 2015 and contains 15 attributes, including two temporal at-

tributes: (1) day of the year, (2) day of the week; and twelve atemporal attributes, all related

68 Chapter 5. Sibyl: aMachine Learning as a Service

to external weather: (3) minimum temperature, (4) maximum temperature, (5) mean tempera-

ture, (6) difference of mean temperature in one day, (7) difference of mean temperature in two

days, (8) difference of mean temperature in three days, (9) dew point, (10) mean dew point,

(11) minimum dew point, (12) minimum humidity, (13) maximum humidity and (14) mean

humidity; and finally, (15) energy consumption, measured by Powersmiths meters.

We built Sibyl using Node.js because of its ease and agility for coding and deploying Web

services and handling JSON. Because there are currently no SCA frameworks for Node.js, we

had to implement one. We used JSON for Web service communication and data storage. Also,

instead of using the XML format for the SCA artifact descriptor file as the original design

adopted, here we are using JSON because of its easy integration with Node.js. Finally, we also

developed a simple user interface to generate effective illustrations of the results obtained.

This experiment was made in a virtual machine with 4 Cores Intel Xeon E5-2630 2.3GHz

and 16GB RAM DDR3 1600MHz, using VirtualBox2 running Ubuntu 14.043.

The source code is available in a public repository4.

5.3.1 Algorithms

To evaluate the architectural flexibility of running different machine learning models at the

same time, we implemented model-µ composite supporting the following algorithms:

• Multilayer perceptron (MLP): one of the most used techniques when evaluating machine

learning models, and one of the most used for electrical consumption problems [3]. For

this case study, we used the Synaptic package5.

• Support vector regression (SVR): also one of the most used techniques for electrical

consumption problems [3]. For this case study, we used the Node-SVM package6.

• K-nearest neighbors (KNN): simple to understand, to code, and to debug. We coded this

algorithm for this experiment.

2http://www.virtualbox.org
3http://www.ubuntu.com
4http://github.com/mauro0x52/mlaas
5http://synaptic.juancazala.com
6http://github.com/nicolaspanel/node-svm

5.3. Case Study 69

We developed a generic Algorithm class under an object-oriented programming structure,

defining the standard interface for train and predict function calls. A new algorithm can be

implemented simply by inheriting the Algorithm class and making minor adaptations. In this

case study, we implemented the KNN Algorithm first to test and validate the model-µ composite.

Later, using the same code structure, we coded MLP Algorithm and SVR Algorithm classes and

imported into model-µ composite.

When a model-µ instance is built, the algorithm with the parameters (both specified in the

model property) is loaded.

The test and validate functions are performed by predictor and validation components re-

spectively, not by the Algorithm class. Both functions use the results from Algorithm’s train

and predict calls.

The validator component implements the rolling base forecasting method (see Section

4.2.1) to validate models and compare their performance by calculating the mean absolute

percentage errors (MAPE) given by the equation

MAPE =
1
n

n∑
i=0

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (5.1)

and the mean square errors (MSE) given by the equation

MSE =
1
n

n∑
i=0

(yi − ŷi)2 (5.2)

where y is the actual value and ŷ is the predicted value.

The architectural design and the dynamic artifacts descriptor file make it possible to create

new model-µ instances dynamically. After the new model-µ instance is deployed and the arti-

facts descriptor file is updated, the new model-µ instance will be available without the need to

recompile or restart the system.

5.3.2 Results

We created three different models by instantiating the model-µ composite. The models were

asked to predict using a test set, which contains all 15 attributes including the real measured

70 Chapter 5. Sibyl: aMachine Learning as a Service

daily energy consumption peaks. We also asked asked the models to run a prediction using a

different predictive set. Figures 5.9, 5.10, 5.11 and 5.12 are screenshots of the Sibyl graphical

user interface (GUI). They represent the main features of Sybil, which correspond to the five

phases described in the process section: build and train are represented in Figure 5.9, validate

in Figure 5.10, test in Figure 5.11, and predict in Figure 5.12.

Figure 5.9 shows the models screen. Here the user can create and build any number of

predictive models. On the top, a navigation bar is replicated on all screens and enables the user

to access models, validate, test and predict screens. In the models screen, the user can access a

list of models as well as create new models or remove existing ones. In the table in Figure 5.9,

each row represents a single model with its unique identifier number, its name created by the

user, the chosen algorithm, the chosen training set file, the model status (i.e., building, ready,

training, or trained) and the actions available to train or delete the model.

Figure 5.10 shows the validate screen. In this screen, users can create validation tests using

the training set to measure the performance of their models. The table in Figure 5.10 shows a

list in which each row represents a different validation test with a the unique identifier number,

a name chosen by the user, the model used, the validation method (e.g., Rolling Base Forecast

or K-Fold Cross Validation), the status (i.e., ready, validating, or validated), and the actions

available to start the validation test, remove the validation, and visualize the results in the

charts. In the validation charts section, users can visualize the performance of each validation

Figure 5.9: Sibyl’s models screen.

5.3. Case Study 71

Figure 5.10: Sibyl’s validate screen.

72 Chapter 5. Sibyl: aMachine Learning as a Service

test, including the mean absolute percentage error, the mean square error, and the running time.

In the timeline comparison, users can compare the predictions from different models against

real measured data from the training set.

On the validate screen, the MLP model performed better — it had the lowest mean abso-

lute error and mean square error — whereas the KNN model performed worst. However, when

considering running speed, the KNN model was the fastest, and the SVR model was the slow-

est. In this experiment, all the validation tests started at the same time without blocking each

other, with the MLP model finishing first, the SVR model second and the KNN model last. The

timeline comparison section illustrates how these models performed differently: the MLP and

SVR models performed similarly, but the KNN model performed significantly differently.

Figure 5.11 shows the test screen, which is similar to the validate screen and enables users to

upload a test set to compare with the prediction results instead of running a validation method.

For the test screen, the results were slightly different. This time, the SVR model performed

better in relation to the test set, and the KNN model maintained the worst position. As for

running time, the KNN model had the best speed.

Finally, Figure 5.12 shows the predict screen, which is similar to the validate and test

screens. It differs from the test screen by the absence of measured results.

In the predict screen, the results are very similar to those from the test screen because the

test and predictive sets are similar despite the absence of labels in the predictive set. How-

ever, in this case, the models’ performance cannot be measured because no measured label is

provided.

5.4 Summary

With the growing amount of data available, companies and researchers are demanding feasible

and affordable ways to extract knowledge from all this data. This thesis has presented a novel

architecture for machine learning as a service based on SCA and focusing on predictive mod-

eling. The proposed architecture can support multiple data sources and create various models

with different algorithms, parameters, and training sets.

To prove the concept, we build Sibyl and used it to predict energy consumption using real-

5.4. Summary 73

world data. Once the main architecture is working and at least one algorithm coded, it is simple

to implement other algorithms. It is possible to execute multiple models concurrently.

Figure 5.11: Sibyl’s test screen.

74 Chapter 5. Sibyl: aMachine Learning as a Service

Figure 5.12: Sibyl’s predict screen.

Chapter 6

Conclusions and Future Work

This chapter provides a review based on conclusions made about Agora, the knowledge market-

place. In particular, it covers the components discussed in this thesis, which are Hephaestus,

the domain adaptation method, and Sibyl, the machine learning as a service. In addition, a

description of possible future work involving Agora and its components will be presented.

6.1 Conclusions

This thesis has presented Agora, a knowledge marketplace. Agora is a novel Web-based soft-

ware as a service platform. Agora enables providers to share their data and machine learn-

ing specifications with consumers, which enables consumers with little knowledge and small

datasets to make use of providers’ data and specifications to create accurate machine learning

models. An overview of the architecture has been presented, including its components, their

roles, and their relationships, and two of its main components were detailed.

The first component detailed was Hephaestus, a novel transfer learning method for multi-

feature regression with seasonal adjustments. Hephaestus works in the pre- and post-processing

phases, enabling standard machine learning algorithms to be used. This method can adapt the

target variable domain of multiple datasets by removing the effects of time, and adapts features

by a simple z-score domain adaptation technique. To demonstrate the efficiency of Hephaestus,

we successfully presented a case study on energy consumption prediction for multiple schools,

comparing different models using Hephaestus and standard machine learning. Models using

75

76 Chapter 6. Conclusions and FutureWork

Hephaestus and only one month of data from the target school had similar or better accuracy

than standard models using 12 months of data from the target school. For example, one exper-

iment reduced the mean absolute percentage error by more than half, from 21.05% to 9,86%,

an improvement of 11.19%. These results show how Hephaestus is capable of improving per-

formance of predictive models with small target domain datasets.

The second component presented was Sibyl, which is a scalable, flexible, and non-blocking

machine learning as a service platform for building machine learning models on demand. Sibyl

is based on service component architecture (SCA), taking advantages of service oriented archi-

tecture (SOA). The proposed architecture can support multiple data sources and create various

models with different algorithms, parameters, and training sets. To prove the concept, the sys-

tem was built to predict electricity demand using real-world data. Once the main architecture

is working and at least one algorithm coded, it is simple to implement other algorithms. It is

possible to execute multiple models concurrently.

Both Hephaestus and Sibyl are important parts of the whole Agora platform. Their func-

tionalities and characteristics combined enables Agora to provide a machine learning as a ser-

vice with transfer learning capabilities. The results obtained from both Hephaestus and Sibyl

are highly satisfactory, proving the concept of Agora. Consumers can share the same platform

to find the knowledge to create many predictive models concurrently without interfering with

predictive models from other consumers.

6.2 Future Work

The scope of this thesis was reduced to ensure the quality of the content within the time avail-

able for its the development.Because of this, many aspects or conditions were not taken into

account when doing this research and were instead left open as new research opportunities.

This thesis has focused on predictive regression models, which is by itself an interesting

topic with a wide range of possible applications. For example, it is possible to extend Agora to

other machine learning tasks such as classification and clustering, developing more variations

of Hephaestus or other methods and improving Sibyl to support them.

This thesis has presented Hephaestus as a transfer learning method for multi-feature regres-

6.2. FutureWork 77

sion models with seasonal adjustment. To extend Agora to work with other machine learning

tasks, Hephaestus must be adapted or extended. As previously described in related studies,

many transfer learning methods for machine learning tasks other than regression models have

already been proposed in the literature. These methods from the literature could be added to

the Hephaestus component to support other machine learning types such as classification and

clustering.

In addition, the Hephaestus method proposed in this thesis works only in a transductive

transfer learning setting, leaving aside inductive transfer learning and unsupervised transfer

learning settings. As future work, new methods to implement regression models in these two

settings could be developed.

In this research, Sibyl was designed to support multilayer perceptron (MLP), support vector

regression (SVR) and k-nearest neighbors (KNN) algorithms. For future work, it would be in-

teresting to add other regression algorithms as well as algorithms from other machine learning

categories such as classification and clustering. Because Sibyl is modularized and new services

can be coupled to it, it is possible to create and attach new components with new machine learn-

ing algorithms. Some algorithms require different pipelines from the standard proposed in this

thesis, which is an issue that can be addressed by Sibyl’s flexible and modularized architecture.

As mentioned earlier, the Argus component, which is responsible for finding similar datasets,

was left out of the scope of this work for now because of limited time. As future project, Argus

should be discussed. Once Argus receive a target dataset from a consumer, it should be able

to perform a search in the providers database to find the most similar datasets to use in a new

prediction. A simplified solution could be to use metadata describing the dataset and what is

to be predicted. However, this naive approach could result in inaccurate predictions because

even if the same target variable (e.g., energy consumption) is analyzed in different domains, its

distributions are not necessarily the same because of the different aspects they may represent

(e.g., comparing the energy consumption of a school and a house). This issue could be solved

by adding a huge number of properties and descriptions inside the metadata. However, this

would be time-consuming for users and covering all the possibilities would be difficult. A bet-

ter solution would be to measure the distance between distributions and check for those with

smaller distances from each other.

78 Chapter 6. Conclusions and FutureWork

Two main challenges can be identified for Argus. The first is how to verify the distance

between two or more datasets. As was seen in related work described in section 2.2.1, some

approaches already exist to calculate the distance between distributions. These methods could

be used as a basis to create Argus. The second question is how to make it fast enough to

compare one target dataset with a lot of others from the providers’ database. Once metadata

are available, the number of datasets to be compared can be drastically decreased depending

on the number of properties that are described in the metadata. There must be an optimal and

efficient number of properties that should be considered in metadata to balance the issues of the

number of datasets involved in the comparison and the complexity of the metadata themselves.

Also left out of scope, the database must be properly designed in the future. In this thesis,

Hephaestus and Sibyl were implemented without access to any database, being directly fed

with the data. Some considerations must be kept into account when designing this database.

For example, how much data must the database support? If considering too many users with

big datasets each, a Big Data approach can be considered. Another consideration is how to

address relationships between the entities proposed in the architecture that are important to the

user and to the system. The relationships may require extra table attributes storing foreign keys

for 0xN relationships (e.g. a provider can have many datasets) or even extra tables for NxN

relationships (e.g. many global data can be used in many different models).

When dealing with data, challenges in security and privacy arise. Some security issues

can be discussed in future work. For example, only registered consumers can visualize Agora

content or make use of Agora features and only consumers that have paid a provider or have

authorization from a provider can make use of a provider’s knowledge. These can be addressed

using current technologies for database encryption, Web security, user authentication and user

access control. In this way, only registered users with proper authorization can access specific

content.

Other security and privacy aspects can be discussed including: providers want to share

knowledge, but not data; and piracy. In other words, they do not want other users to have

access to their data, but only to use their data and their machine learning specifications. One

reason for this, for example, could be the providers’ need to hide data for security reasons or

to keep them secret from their competitors. A possible hypothesis is that machine learning

6.2. FutureWork 79

algorithms can be seen as a one-way process that does not let someone to reverse-engineer

the results to build the original dataset. Moreover, the Agora architecture allows consumers

to retrieve data only from the Hephaestus post-processing phase, which is already encrypted,

meaning that consumers do not have direct access to providers’ data. With both this hypothesis

and these facts in hand, it is clear that gaining access to provider’s data and copying them would

be very difficult. As future work, this hypothesis could be verified.

Privacy also depends on the way Argus, the similarity search component, is designed.

For example, in a simple design where Argus verifies if two datasets from a consumer and a

provider contain the same exact values, a consumer could find out the provider’s data through

various attempts guessing the provider’s dataset until finding a fit. Despite, at least in this case,

the chances are very small, the possibility shows that this privacy issue must be addressed when

designing Argus.

Another privacy issue is that, in some cases, data can be extremely personal or secret and

cannot be shared. For example, in some fields such as health and finances, data cannot be

sent to external resources such as Agora due to high restrictions established by their owners or

organizations. However, some data are allowed to be published by de-identifying the data (e.g.,

removing parts of the data or aggregating values by location). It is necessary to investigate if it

would impact the performance of predictive models in Agora.

The contribution of this thesis considers the technical aspects of Agora only. The business

and economic aspects can be investigated regarding how to attract users to the marketplace and

how to monetize it. Populating Agora is a problem similar to the chicken and the egg dilemma:

consumers will come up once providers join the marketplace and vice-versa. How to bring the

first users to Agora? One idea would be to start from a specific niche (e.g. energy consumption)

that data is easily available and have a greater potential to attract users. Once early adopters

and first users are using Agora, it must have an attractive business model. Freemarket and

opendata models can possibly work, attracting non-profit organizations and altruistic providers.

However, to attract providers and compensate for sharing their knowledge, an evident business

model is to reward providers with cash, which will probably impact users’ pocket and interest

in using the system.

One feature that was not considered in this thesis but can be in future work is to use con-

80 Chapter 6. Conclusions and FutureWork

sumers’ data to improve providers’ model. So far, the idea of Agora was to use the data from

providers to create or improve consumers’ models. What if consumers can be sending data

to Agora that may be potentially valuable for providers to enhance the accuracy of their mod-

els? In this way, providers would be acting as consumers and vice-versa. Hence, this would

probably bring two major impacts: new privacy issues, considering that may be consumers are

not open to sharing their data; new business models where providers would pay to have this

benefit in case of a paid market, or even a free market where both providers and consumers are

benefited.

In this thesis, the Hephaestus’ case study was based a one-month time frame for the con-

sumer’s data. Hephaestus could be evaluated and adapted if necessary to use smaller time

frames such as seven days only. Because the case study implementation in Hephaestus works

with seasonal adjustment and considers weekly seasons, a small number of days do not have

enough data to calculate seasonality. This issue, however, can be solved by using the seasonal

indexes from the most similar domain.

Although there are many possibilities for future work, this thesis proves the concept of

Agora as a marketplace for machine learning to transfer the knowledge from one user to an-

other. This thesis provides a starting point to build a marketplace for any kind of knowledge for

machine learning. For example, it could be expanded for other learning types (e.g., clustering

and classification) or adapted for specific purposes beyond a public marketplace (e.g., within a

retail organization to predict sales for a new branch using data from other branches). It is clear

that many applications exist for Agora that end up creating new research opportunities.

Bibliography

[1] Service Component Architecture Assembly Model Specification Version 1.1.
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.

1-spec-cd03.html. [Online; accessed 30-April-2015].

[2] Microsoft Time Series Algorithm Technical Reference. https://msdn.microsoft.
com/en-us/library/bb677216.aspx, 2016. [Online; accessed: 06-April-2016].

[3] A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah,
and R. Saidur. A review on applications of ANN and SVM for building electrical en-
ergy consumption forecasting. Renewable and Sustainable Energy Reviews, 33:102–109,
2014.

[4] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[5] Alejandro Baldominos, Esperanza Albacete, Yago Saez, and Pedro Isasi. A scalable
machine learning online service for big data real-time analysis. In Computational Intelli-
gence in Big Data (CIBD), 2014 IEEE Symposium on, pages 1–8, Orlando, FL, December
2014. IEEE.

[6] Peter C Bruce. Introductory Statistics and Analytics: A Resampling Perspective. John
Wiley & Sons, 2014.

[7] Thomas Calmant, João Claudio Américo, Didier Donsez, and Olivier Gattaz. A dynamic
sca-based system for smart homes and offices. In Service-Oriented Computing-ICSOC
2012 Workshops, pages 435–438, Shanghai, China, November 2012. Springer.

[8] Simon Chan, Thomas Stone, Kit Pang Szeto, and Ka Hou Chan. PredictionIO: a dis-
tributed machine learning server for practical software development. In Proceedings of
the 22nd ACM international conference on Conference on information & knowledge man-
agement, pages 2493–2496, San Francisco, CA, October 2013. ACM.

[9] Corinna Cortes and Mehryar Mohri. Domain adaptation and sample bias correction theory
and algorithm for regression. Theoretical Computer Science, 519:103–126, 2014.

[10] Hal Daumé III. Frustratingly easy domain adaptation. In Proceedings of the 45th Annual
Meeting, pages 256–263, Prague, Czech Republic, June 2007. Association for Computa-
tional Linguistics.

81

82 BIBLIOGRAPHY

[11] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education India, 2005.

[12] Hans Fischer. A history of the central limit theorem: From classical to modern probability
theory. Springer Science & Business Media, 2010.

[13] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsu-
pervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2066–2073, Providence, RI, June 2012. IEEE.

[14] Samuel B Green. How many subjects does it take to do a regression analysis. Multivariate
behavioral research, 26(3):499–510, 1991.

[15] Wei-Chiang Hong. Electric load forecasting by seasonal recurrent svr (support vector
regression) with chaotic artificial bee colony algorithm. Energy, 36(9):5568–5578, 2011.

[16] Hamidreza Hosseinzadeh, Farbod Razzazi, and Ehsanollah Kabir. A weakly supervised
large margin domain adaptation method for isolated handwritten digit recognition. Jour-
nal of Visual Communication and Image Representation, 38:307–315, 2016.

[17] Wenping Hu, Yao Qian, Frank K Soong, and Yong Wang. Improved mispronunciation
detection with deep neural network trained acoustic models and transfer learning based
logistic regression classifiers. Speech Communication, 67:154–166, 2015.

[18] Xuegang Hu, Jianhan Pan, Peipei Li, Huizong Li, Wei He, and Yuhong Zhang. Multi-
bridge transfer learning. Knowledge-Based Systems, 97:60–74, 2016.

[19] Svend Hylleberg. Seasonality in regression. Academic Press, 1986.

[20] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2014.

[21] Rob J Hyndman and Andrey V Kostenko. Minimum sample size requirements for sea-
sonal forecasting models. Foresight, 6:12–15, 2007.

[22] Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and Saif Mohammad. Nrc-canada-
2014: Detecting aspects and sentiment in customer reviews. In Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (SemEval 2014), pages 437–442, Dublin,
Ireland, August 2014. Association for Computational Linguistics and Dublin City Uni-
versity Dublin, Ireland.

[23] Pieter M Kroonenberg. Applied multiway data analysis. John Wiley & Sons, 2008.

[24] Wen Li, Lixin Duan, Dong Xu, and Ivor W Tsang. Learning with augmented features for
supervised and semi-supervised heterogeneous domain adaptation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 36(6):1134–1148, 2014.

BIBLIOGRAPHY 83

[25] Feng-Cheng Lin, Lan-Kun Chung, Wen-Yuan Ku, Lin-Ru Chu, and Tien-Yin Chou. Ser-
vice component architecture for geographic information system in cloud computing in-
frastructure. In Advanced Information Networking and Applications (AINA), 2013 IEEE
27th International Conference on, pages 368–373, Barcelona, Spain, March 2013. IEEE.

[26] Chi-Chun Lo, Ding-Yuan Chen, and Kuo-Ming Chao. Dynamic data driven smart home
system based on a service component architecture. In Computer Supported Coopera-
tive Work in Design (CSCWD), 2010 14th International Conference on, pages 473–478,
Shanghai, China, April 2010. IEEE.

[27] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer learning for cross-
company software defect prediction. Information and Software Technology, 54(3):248–
256, 2012.

[28] Christopher Meek, David Maxwell Chickering, and David Heckerman. Autoregressive
tree models for time-series analysis. In Proc. 2nd Intl. SIAM Conf. on Data Mining, pages
229–244, Arlington, VA, April 2002. SDM.

[29] Leandro L Minku and Xin Yao. How to make best use of cross-company data in software
effort estimation? In Proceedings of the 36th International Conference on Software
Engineering, pages 446–456, New York, NY, May 2014. ACM.

[30] Azadeh Sadat Mozafari and Mansour Jamzad. A svm-based model-transferring method
for heterogeneous domain adaptation. Pattern Recognition, 56:142–158, 2016.

[31] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In Pro-
ceedings of the 2013 International Conference on Software Engineering, pages 382–391,
San Francisco, CA, May 2013. IEEE Press.

[32] Jeroen Ooms. The OpenCPU System: Towards a Universal Interface for Scientific Com-
puting through Separation of Concerns. arXiv:1406.4806, (2000):1–23, 2014.

[33] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. Neural Networks, IEEE Transactions on, 22(2):199–210,
2011.

[34] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[35] Kyounghyun Park, Minh Chau Nguyen, and Heesun Won. Web-based collaborative big
data analytics on big data as a service platform. In 2015 17th International Conference
on Advanced Communication Technology (ICACT), pages 564–567, Pyeongchang, South
Korea, July 2015. IEEE.

[36] Fernando Silva Parreiras, Gerd Gröner, Daniel Schwabe, and Fernando de Freitas Silva.
Towards a marketplace of open source software data. In System Sciences (HICSS), 2015
48th Hawaii International Conference on, pages 3651–3660, Koloa, HI, January 2015.
IEEE.

84 BIBLIOGRAPHY

[37] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain
adaptation: A survey of recent advances. Signal Processing Magazine, IEEE, 32(3):53–
69, 2015.

[38] Dorian Pyle. Data preparation for data mining. Morgan Kaufmann, 1999.

[39] Soheil Qanbari, Navid Rekabsaz, and Schahram Dustdar. Open government data as a ser-
vice (godaas): Big data platform for mobile app developers. In Future Internet of Things
and Cloud (FiCloud), 2015 3rd International Conference on, pages 398–403, Rome, Italy,
August 2015. IEEE.

[40] Jiang Qifa. A solution to seasonal adjustment forecasting for hydraulic smes in investment
decision-making. In Control and Decision Conference (2014 CCDC), The 26th Chinese,
pages 724–729, Changsha, China, May 2014. IEEE.

[41] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013.

[42] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learning
as a service. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 896–902. IEEE, 2015.

[43] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):227–244,
2000.

[44] Thomas Stewart and Clare Ruckdeschel. Intellectual capital: The new wealth of organi-
zations, 1998.

[45] Biao Sun, Peter B Luh, Qing-Shan Jia, Ziyan Jiang, Fulin Wang, and Chen Song. Building
energy management: integrated control of active and passive heating, cooling, lighting,
shading, and ventilation systems. Automation Science and Engineering, IEEE Transac-
tions on, 10(3):588–602, 2013.

[46] Jianzhou Wang, Wenjin Zhu, Wenyu Zhang, and Donghuai Sun. A trend fixed on firstly
and seasonal adjustment model combined with the ε-svr for short-term forecasting of
electricity demand. Energy Policy, 37(11):4901–4909, 2009.

[47] Makoto Yamada, Leonid Sigal, and Yi Chang. Domain adaptation for structured regres-
sion. International Journal of Computer Vision, 109(1-2):126–145, 2014.

[48] Mehmet Yesilbudak, Seref Sagiroglu, and Ilhami Colak. A new approach to very short
term wind speed prediction using k-nearest neighbor classification. Energy Conversion
and Management, 69:77–86, 2013.

[49] Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. In
Proceedings of the twenty-first international conference on Machine learning, page 114,
Banff, Canada.

BIBLIOGRAPHY 85

[50] Yu Zheng. Methodologies for cross-domain data fusion: an overview. Big Data, IEEE
Transactions on, 1(1):16–34, 2015.

[51] Fan Zhu and Ling Shao. Weakly-supervised cross-domain dictionary learning for visual
recognition. International Journal of Computer Vision, 109(1-2):42–59, 2014.

Curriculum Vitae

Name: Mauro Ribeiro

Year of Birth: 1985

Place of Birth: Campinas, SP - Brazil

Post-Secondary University of Western Ontario
Education and London, ON
Degrees: 2014 - 2016 MESc

University of Campinas
Campinas, SP - Brazil
2004 - 2008 BSc

Related Work Teaching Assistant
Experience: The University of Western Ontario

2014 - 2016

Front-End Developer
Strategy Manager (Brazil)
2014

Co-founder and Director of Technology
Empreendemia (Brazil)
2009 - 2016

Designer and Front-End Developer
Pinuts Studios (Brazil)
2008 - 2009

Web-Developer and Web-Designer
Pinuts Studios (Brazil)
2006 - 2007

86

Publications:

M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “MLaaS: Machine Learning as a Service”. In
IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pages
896–902, Miami, Florida, December 2015.

M. Ribeiro, K. Grolinger, H. F. ElYamanya, and M. A. M. Capretz, “Hephaestus: Domain
Adaptation for Multi-Feature Regression with Seasonal Adjustment”. Submitted to Elsevier
Applied Soft Computing.

87

	Agora: A Knowledge Marketplace for Machine Learning
	Recommended Citation

	tmp.1472656131.pdf.dUAxa

