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Abstract

Commercial and residential buildings are responsible for a substantial portion of total
global energy consumption and as a result make a significant contribution to global carbon
emissions. Hence, energy-saving goals that target buildings can have a major impact in re-
ducing environmental damage. During building operation, a significant amount of energy is
wasted due to equipment and human-related faults. To reduce waste, today’s smart buildings
monitor energy usage with the aim of identifying abnormal consumption behaviour and notify-
ing the building manager to implement appropriate energy-saving procedures. To this end, this
research proposes the ensemble anomaly detection (EAD) framework. The EAD is a generic
framework that combines several anomaly detection classifiers using majority voting. This
anomaly detection classifiers are formed using existing machine learning algorithm. It is as-
sumed that each anomaly classifier has equal weight. More importantly, to ensure diversity
of anomaly classifiers, the EAD is implemented by combining pattern-based and prediction-
based anomaly classifiers. For this reason, this research also proposes a new pattern-based
anomaly classifier, the collective contextual anomaly detection using sliding window (CCAD-
SW) framework. The CCAD-SW, which is also a machine leaning-based framework that iden-
tifies anomalous consumption patterns using overlapping sliding windows. The EAD frame-
work combines the CCAD-SW, which is implemented using autoencoder, with two prediction-
based anomaly classifiers that are implemented using the support vector regression and ran-
dom forest machine-learning algorithms. In addition, it determines an ensemble threshold that
yields an anomaly classifier with optimal anomaly detection capability and false positive min-
imization. Results show that the EAD performs better than the individual anomaly detection
classifiers. In the EAD framework, the optimal ensemble anomaly classifier is not attained by
combining the individual learners at their respective optimal performance levels. Instead, an
ensemble threshold combination that yields the optimal anomaly classifier was identified by
searching through the ensemble threshold space. The research was evaluated using real-world
data provided by Powersmiths, located in Brampton, Ontario, Canada.

Keywords: Anomaly detection, ensemble learning, autoencoder, support vector regression,
random forest, building energy consumption
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Chapter 1

Introduction

Anomaly detection refers to the process of identifying abnormal behaviour that does not con-
form to expected patterns. Identifying anomalies has application in wide-ranging domains
including intrusion detection, system health monitoring, building energy consumption moni-
toring, and others. Anomaly detection takes advantage of labelled or unlabelled datasets to
classify data instances as either anomalous or not. The term “labelled dataset” refers to the
existence of a label that identifies each data occurrence as either anomalous or not. The output
of an anomaly detection system can also be a label or score. A score provides a measure or
degree of how anomalous an observation is considered to be.

Anomalies can be broadly categorized as point, contextual, or collective anomalies [4].
Point anomalies refer to the occurrence of a value that is considered anomalous compared to
the rest of the data. For instance, an hourly heating, ventilating, and air conditioning (HVAC)
consumption data point might be anomalous compared to previous recorded hourly values.
Contextual anomalies take contextual or behavioural attributes into account to identify anoma-
lies. For instance, an hourly HVAC consumption data point may be anomalous in winter, but
not in summer. Collective anomalies occur when a set of related data instances is anomalous
compared to the rest of the data. Individually, these values may not be anomalous, but collec-
tively they represent an anomalous behaviour. For instance, individually, a facility’s lighting
energy consumption values may be normal as compared to previous recorded values. However,
if a set of these values is considered over a specific time window, it may represent a collective
anomaly.

Most existing studies focus on point and contextual anomalies, with fewer studies con-
sidering collective anomalies. One of the problems of standard collective anomaly detection
techniques is that they show little concern for the context of the collective anomaly under
consideration. Individually, the values of a collective data point may not be anomalous, but
collectively, and more importantly when viewed in a temporal, spatial, or dimensional context,

1



2 Chapter 1. Introduction

they may represent anomalous behaviour. For example, a collection of heating energy con-
sumption data from a school recorded every five minutes for one hour may be anomalous in
the summer (when schools are closed), but not in fall (when schools are running).

1.1 Motivation

An important application of anomaly detection is in the energy and buildings domain. Accord-
ing to the United Nations Environment Programme [5], buildings are the largest contributor
to global carbon emissions, accounting for about 40% of global energy consumption and 30%
of CO2 emissions. Moreover, the World Energy Outlook [6] report states that compared to
the transportation and industry sectors, buildings have the highest untapped energy e�ciency
potential. Hence, energy e�ciency targets aimed at the building sector can have a significant
impact on achieving a green future.

During operation, a significant amount of building energy is wasted due to equipment fail-
ure and human-related faults. One approach to energy e�ciency is to monitor building energy
usage with the aim of identifying abnormal or anomalous consumption behaviour and subse-
quently taking appropriate energy-saving measures. In recent decades, with the proliferation
of sensor devices, modern buildings have been equipped with an increasing number of sensors
and smart meters. By analyzing data from these devices, normal consumption profiles can be
identified. Subsequently, if consumption patterns that do not conform to the normal profiles are
detected, the building manager is notified, and appropriate energy-saving measures are taken.
More importantly, for safety-critical building services such as gas consumption, early detec-
tion and notification of anomalous behaviour (e.g., gas leakage) can help prevent potentially
life-threatening disasters.

The volume and speed at which sensor data are generated makes it challenging to label
anomalous consumption patterns. One motivation of this work is to design a framework that
relies on unsupervised learning using unlabelled data, to capture the prevalent historical con-
sumption patterns. By assuming that historical data are predominantly normal, the framework
builds a model representing normal consumption behavior, after which this model is used to
identify whether or not new patterns are anomalous.

Feature generation and selection, which refers to the process of generating and selecting
contextual and non contextual features for model building, also presents another challenge.
More specifically, defining features to capture anomalous patterns is a di�cult task. One mo-
tivation for this work is to use feature generation techniques that rearrange consumption data
using overlapping sliding windows. Each sliding window contains a consumption pattern, and
each data instance is represented by a pattern and its associated generated features. By rear-
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ranging the dataset in this manner, the algorithm used can learn to identify normal consumption
patterns.

Moreover, to address the performance issues associated with large number of features,
the framework uses autoencoders. Autoencoder perform non-linear dimensionality reduction
providing computational e�ciency [7] and better classification accuracy [8] than other dimen-
sionality reduction techniques such as PCA or Kernel PCA [9].

Another challenging anomaly detection task in this domain is that a single learning algo-
rithm may not capture enough information from the training dataset available. For instance, a
single learner may be able to identify only certain aspects of anomalous behaviours. Another
motivation of this work is to use several learners which are based on diverse learning tech-
niques and to combine them using majority voting to create an ensemble anomaly classifier
with a better-rounded response to di↵erent aspects of anomalous patterns.

Most existing anomaly detection techniques [10] [11] determine whether or not a con-
sumption value is anomalous compared to historical consumption data and show little concern
for the context of the anomaly under consideration. Some studies have considered context
in anomaly detection [12] [13], but have been concerned only with point contextual anoma-
lies. Most importantly, these techniques do not address the issue of anomalous collective data
contextually. The collective contextual anomaly detection techniques described in this study
serve two purposes: short-term and long-term anomaly detection. Short-term anomaly de-
tection refers to identifying anomalies in shorter time frames or profiles (seconds, minutes),
whereas long-term anomaly detection involves longer time frames (weekly, monthly, annual).
Short-term anomaly detection helps reduce energy waste and utility cost as well as associ-
ated environmental impacts. More importantly, for services where abnormal consumption has
life-threatening consequences (e.g., gas leakage), it helps avoid potential disasters. Long-term
anomaly detection helps facilities plan strategic energy-saving goals and targets. These tasks
can range from equipment e�ciency analysis to overall facility maintenance planning.

1.2 Thesis Contribution

The work in this thesis involves several contributions; in this section, the main contributions
are presented. The thesis contribution as a whole is on the application of machine learning and
the first major contribution is a generic ensemble anomaly detection (EAD) framework. The
EAD combines several anomaly classifiers using majority voting to capture various aspects of
collective contextual anomalies in building energy consumption; the base anomaly classifiers
are assumed to have equal weight. The second contribution is the integration of pattern-based
and prediction-based anomaly classifiers to create an ensemble anomaly classifier. One of
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the main advantages of this is the introduction of diversity into the EAD framework, which
fosters learning. Each anomaly classifier learns di↵erently and recognizes a certain aspect of
the underlying anomalous behaviour, meaning that together the ensemble provides a better-
rounded anomaly classification. The third contribution is that the EAD framework identifies
a combined or ensemble threshold that yields optimal anomaly detection and minimizes false
positives. By assuming that anomaly detection and false warnings have equal weight, the
EAD framework searches through the ensemble threshold space to determine optimal anomaly
detection performance.

For this purpose, this thesis presents the collective contextual anomaly detection using
sliding windows (CCAD-SW) framework, which is the fourth contribution of this work. The
CCAD-SW is an anomaly detection framework that relies on unsupervised learning and uses
overlapping sliding windows to identify contextually anomalies in collective sensor data. The
CCAD-SW framework integrates historical sensor data along with generated and contextual
features to identify anomalies. One of the important features of this framework is that it
addresses the performance issues associated with high-dimensional datasets using non-linear
dimensionality reduction techniques. This helps not only to speed up learning, but also to
enhance anomaly detection performance.

The feature preparation technique, more specifically, the data rearrangement style used in
the CCAD-SW framework, is also another important contribution of this work. One of the
challenges in anomaly detection is capturing anomalous patterns, and hence the dataset was
rearranged in such a way that the underlying algorithm can learn the normal behaviour of
patterns instead of single values. The CCAD-SW framework is flexible and can adapt to the
requirements of the anomaly detection domain. This provides an anomaly detection platform
that can be tuned to stringent or lenient requirements with regard to sensitivity, specificity, or
an optimal overall value of these two metrics. Besides, this framework also adapts to changes
in functionality of the facility under consideration.

The last contribution in this work is that by adjusting the sliding window size, the frame-
work can be used both for short-term and long-term anomaly detection. By identifying anoma-
lies in short time frames, the framework helps avoid energy waste as well as potential disasters.
Moreover, anomaly detection over long time frames helps achieve long-term energy-saving
goals.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows:

• Chapter 2 provides an outline of background concepts associated with collective con-
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textual anomaly detection as well as a literature review of current anomaly detection ap-
proaches for sensor data and ensemble-based anomaly detection techniques. This chapter
first provides an introduction to the terminology that is used in the rest of the thesis. Next,
an overview of the anomaly detection algorithms used in this study is provided. Finally,
this chapter presents a review of current studies on anomaly detection in sensor data as
well as ensemble-based anomaly detection approaches.

• Chapter 3 describes the components of the collective contextual anomaly detection ap-
proach using sliding window (CCAD-SW) framework. Besides providing an overview
of the function of each component, this chapter also describes how each component in-
teracts with others. The description is broken down into three sections: the first is data
preprocessing, which describes the data cleaning, feature preparation, and normalization
aspects. The second is model training and testing, which highlights the training and test-
ing dataset as well as the model training and testing engines. Finally, the last section
covers anomaly detection and notification, discussing the threshold determinator and the
anomaly classifier and notifier components.

• Chapter 4 describes the components of the ensemble anomaly detection (EAD) frame-
work and is broken down into two broad sections: training and testing. The training
section describes the components involved in the training flow and is further divided into
five components: the learner model, the unique error value determinator, the anomaly
classifier, the ensembler, the ensemble performance evaluator, and optimal ensemble
threshold determinator. Finally the testing section is described.

• Chapter 5 describes the implementation and evaluation of the CCAD-SW and EAD
frameworks. First, the evaluation of the CCAD-SW is presented. The dataset and al-
gorithms involved are initially described, followed by the experiments and finally a dis-
cussion of the experimental results. Similarly, the second section presents an evaluation
of the EAD framework and provides a description of the dataset and the algorithms used
in the framework. Furthermore, the experiments and a discussion of the results are pre-
sented

• Chapter 6 presents the conclusions for this work, as well as discussion on areas of future
work for the CCAD-SW and EAD frameworks



Chapter 2

Background and Literature Review

This chapter has two objectives: first, the background concepts and terms of the topics dis-
cussed in this thesis will be presented, and second, an overview of existing anomaly detec-
tion studies in the building energy domain in general, and more specifically studies that focus
on collective contextual anomaly detection, will be provided. Moreover, related ensemble
learning-based anomaly detection studies will also be discussed.

2.1 Concept Introduction

In this section the following concepts and terminology will be introduced: anomaly detection,
ensemble learning, principal component analysis (PCA), autoencoder, random forest and
support vector regression (SVR). This section presents the foundations of the concepts be-
hind the work described in this thesis.

2.1.1 Anomaly Detection

This section discusses various aspects of anomaly detection. In anomaly detection, depending
on the domain, several important points must be considered, including input data, type of
anomalies, availability of data labels, and anomaly detection output [4]. The nature of the
input data is one of the essential features of any anomaly detection process. How the data are
represented and the data types of these representations must be determined. An input refers to
a collection of data instances or observations, of which each can be described using a set of
features (attributes). Moreover, the features can be of binary, categorical, or continuous type.
Binary features are represented by two possible values; categorical features are represented by
a categorical number of possible values. For instance, a gender feature may be categorical,
with the set of values male and female. By contrast, continuous features are represented by

6



2.1. Concept Introduction 7

a continuous range of possible values. For instance, an HVAC sensor consumption reading
might be a floating point number [0 5].

Another important aspect of any anomaly detection technique is the type of anomaly under
consideration. Depending on the nature of the anomaly, anomalies can be broadly classified as
point, contextual or collective anomalies. A description of these terms is given in Table 2.1.
The availability of data labels is also another feature of an anomaly detection technique and it
refers to the availability of labels referring to each observations as either normal or abnormal.
Depending on the availability of data labels, the anomaly detection system can use, super-
vised, unsupervised, or semi supervised anomaly detection techniques. Supervised anomaly
detection techniques assume the existence of labelled training data. Semisupervised Anomaly
Detection techniques typically assume the existence of a small amount of labeled data with a
large amount of unlabeled data, whereas Unsupervised Anomaly Detection techniques assume
that the available training data have no labels. Labelling each observation in a sensor dataset
is a di�cult and time-consuming process. Moreover, the dynamic nature of anomalies makes
it di�cult to label these sensor data points. For instance, in the building energy domain, the
functionality of a building may change, which in e↵ect changes existing labels. The anomaly
detection outputs are another important aspect. Normally, anomaly detection outputs are of
two types: scores which assign a score value to each observation and labels, which as already
described give each instance is given a label representing normal or anomalous status.

Term Definition
Point Anomalies An individual observation is considered anomalous when

compared to the rest of the data. A lighting consump-
tion value at a certain time may be higher than previously
recorded values. Figure 2.1a illustrates a point anomaly.

Contextual Anomalies An observation is considered normal in one context, but not
in another. As illustrated in Fig. 2.1b, a specifically very
low temperature reading might be normal in winter, but not
in summer.

Collective Anomalies A collection of related observations is anomalous when
compared to the rest of the data. An hourly profile or pat-
tern of HVAC consumption may be anomalous compared to
other hourly patterns. A collective anomaly is illustrated in
Fig. 2.1c.

Table 2.1: Types of Anomalies Definitions
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(a) Point Anomaly: Represented by O1,
O2, and O; these points are outside the
concentrated clusters N1 and N2.

(b) Contextual Anomaly: Represented by
the low value of temperature value in
June, which is abnormal for the month

(c) Collective Anomaly: Represented by
the horizontal pattern half way along the
graph. This pattern is anomalous when
compared to previous normal patterns

Figure 2.1: Types of Anomalies

2.1.2 Anomaly Detection Metrics

This section presents the concepts of the anomaly detection metrics used to analyze the frame-
works proposed.

The metrics used to analyze the anomaly detection frameworks proposed in this research are
the sensitivity and specificity [14], which are statistical measures of the performance of binary
classification tests. The definition of these terms are provided in Table 2.2. The sensitivity and
specificity of an anomaly classifier are evaluated using (2.1) and (2.2) respectively.

Sensitivity =
TP
P

(2.1)

Specificity =
TN
N

(2.2)

where True positive (TP) is the number of anomalous consumption patterns that are cor-
rectly identified as anomalous, True negative (TN) is the number of normal consumption pat-
terns that are correctly identified as normal, P is the total number of positive instances, and N
is the total number of negative instances.

In machine learning and data mining studies, the receiver operating characteristics (ROC)
curve [15] [1], is widely used to analyse and visualize classifier performance. The ROC curve
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is a plot in a unit square of the TPR versus FPR. The FPR refers to the rate of false alarm and is
given by (1-TNR). Using the ROC curve, the performance of an anomaly detection model for
all possible cut-o↵ values can be evaluated, and the threshold value that optimizes specificity
as well as sensitivity can be identified. Various threshold determination approaches have been
examined [15] [1]. In this research, the rate of anomaly detection and the false alarm rate are
assumed to have equal weight. Based on this approach and noting that the point (0,1) on the
ROC curve is the ideal point, the shortest distance d from a point on the curve to point (0,1) as
shown in Fig. 2.2, can be evaluated using Eq. (2.3) [15]:

d2 = (1 � sensitivity)2 + (1 � speci f icity)2, (2.3)

where d is the shortest distance from a point on the ROC curve to the point (0,1). This
distance is used to determine the threshold value that optimizes both the sensitivity and
specificity of the framework [16, 17, 18, 19].

The area under the curve (AUC) is an e↵ective measure of accuracy which determines the
overall inherent capacity of an anomaly classifier to di↵erentiate between normal and anoma-
lous data instances. The maximum (AUC = 1), represents a perfect anomaly classifier. Gener-
ally, an AUC closer to 1 indicates better anomaly detection performance [1].

The partial area under the curve (pAUC), defined as the area within a range of false posi-
tives or true positives [1] is a performance metric that is well suited for comparing classifiers
whose ROC curves cross. An anomaly classifier “A” might have better sensitivity than anomaly
classifier “B” in a particular specificity range, whereas anomaly classifier “B” might perform

Term Definition
Sensitivity or true positive rate (TPR) Proportion of anomalous instances identified cor-

rectly.
Specificity or true negative rate (TNR) Proportion of normal instances identified cor-

rectly..
True Positive (TP) Number of anomalous instances correctly identi-

fied as anomalous.
True Negative (TN) Number of normal instances correctly identified

as normal.
False Positive (FP) Number of normal instances incorrectly identified

as anomalous.
False Negative (FN) Number of anomalous instances incorrectly iden-

tified as normal.

Table 2.2: Anomaly Detection Metrics Definition
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better than anomaly classifier “A” in another sensitivity range. Hence, instead of using AUC,
which gives an overall combined metric, identifying a particular range and using pAUC pro-
vides a better comparison measure. By standardizing pAUC, regardless of the partial region
defined, the value of pAUC is always 1 for a perfect ROC curve and 0.5 for a random ROC
curve. pAUC can be standardized using Eq. (2.4) [20]:

pAUCs =
1
2

✓
1 +

pAUC � min
max � min

◆
(2.4)

where pAUC is the partial area under the curve for the selected FPR or TPR range, min is the
pAUC over the same region of the diagonal ROC curve, max is the pAUC over the same region
of the perfect ROC curve, and pAUCs is the standardized partial area.

The trapezoid rule is typically used to evaluate the area under a curve by approximating the
region under the curve as a trapezoid and calculating its area.

2.2 Algorithms

This section provides an overview of the algorithms that are used in the CCAD-SW and EAD
frameworks. Initially, the idea behind ensemble learning will be described. Later on, the con-
cepts of principal component analysis (PCA), autoencoder, random forest and support vector
regression machine learning algorithms will be discussed.

Figure 2.2: ROC: optimal threshold determination [1].
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2.2.1 Ensemble Learning

Ensemble learning is a machine learning approach that solves a problem by training multiple
learners. Unlike ordinary machine learning techniques in which a single hypothesis is learned
from training data, ensemble techniques attempt to build a set of hypotheses and combine them
to form a new hypothesis [21]. Previous studies have shown that an ensemble often performs
better than the individual learners, also known as base learners of the ensemble [22].

Most ensemble techniques rely on a single base learning algorithm to produce what are
referred to as homogeneous base learners. However, some methods use multiple learning algo-
rithms and are referred to as heterogeneous learners [21]. The primary objective of ensemble
learning is to improve model performance by combining multiple learners.

Normally, ensembles are constructed in two steps. Initially, several base learners are
built, and then these learners are combined. Several combination techniques are used. For
anomaly classification, majority voting [23] is a widely used combination method [21]. In
majority voting, which is used in this study, the final decision is made based on the agreement
of more than half of the base learners.

2.2.2 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical technique that is widely used
for dimensionality reduction. PCA looks for new orthogonal components (eigenvectors) that
explain the largest part of the data variation by providing a measure of the dependency that
exists among a set of inter-correlated features [24]. PCA is based on the Eigenvalue Decom-
position (EVD) [25] of correlation or covariance matrices or the singular value decomposition
(SVD) of real data matrices. The implementation in this thesis is based on SVD. Compared to
EVD, SVD is more stable, robust and precise and does not require calculating the correlation
or covariance matrix [26].

2.2.3 Autoencoders

An autoencoder [27] is an unsupervised artificial neural network that is trained to reproduce
input vectors as output vectors [9]. Fig. 2.3 represents an autoencoder; in this figure, Layer L1

is the input layer, Layers L2, L3 and L4 are the hidden layers, and Layer L5 is the output layer.
During training, the input dataset {x1, x2 ,..., xm} is compressed through the three hidden layers
into a lower-dimensional latent subspace to reproduce the output {x̂1, x̂2 ,..., x̂m}. Assuming
that each data sample xi 2 RD, is represented by a vector of D di↵erent variables, the training
objective is to construct the outputs by minimizing the reconstruction error in Eq. (2.5).
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Figure 2.3: Autoencoder.

Err(i) =

vt
DX

d=1

(xd(i) � x̂d(i))2 (2.5)

The activation of unit k in layer l is given by Eq (2). The sum is calculated over all neurons j
in the (l � 1)st layer:

a(l)
k = f

0
BBBBBB@
X

j

W (l�1)
k j a(l�1)

j + b(1)
k

1
CCCCCCA (2.6)

where b and W are the bias and weight parameters respectively. In this study, the hyperbolic
tangent is used as the activation function of the autoencoder.

2.2.4 Random Forest

The random forest (RF), proposed by Breiman [28] is a widely used ensemble learning method
for both classification and regression problems [29] [30]. RF operates by constructing a mul-
titude of decision trees during training and outputting the class that is the mode of the classes
output by individual trees. An RF is composed of an ensemble of B trees {T1(F), ...,TB(F)},
where F = { f1, ..., fn} is an n-dimensional feature vector. The ensemble produces B outputs
{Ŷ1 = T1(F), ..., ŶB = TB(F)} where Ŷa, a=1, ..., B, is the value predicted by the ath tree. The
final prediction, Ŷ , is made by averaging the predicted values of each tree as shown in Fig. 2.4.
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Figure 2.4: Random Forest structure [2].

2.2.5 Support Vector Regression

Support vector machines (SVM) [31, 32, 33, 34] are supervised learning models used for re-
gression and classification purposes. Support vector regression (SVR) [35], a version of SVM
used for regression, achieves a high degree of generalization, which implies that the model
performs very accurately on previously unseen data. The support vectors in SVR are identified
from the rest of the training samples by a discriminating loss function that does not penalize
residuals less than a tolerance value ". As a result, for a given hypotheses and ", the observa-
tions constrained to the " tube bounding the hypothesis, as illustrated in Fig. 2.5 do not a↵ect
the predictions.

Given a training dataset {(x1, y1) , ..., (xN , yN)}, suppose that y is modelled as a function of
the input variables x. In SVR, the relationship between x and y is approximated as:

y = ! ·  (x) + b, (2.7)

where is a non-linear kernel function that maps from the input space x to a higher-dimensional
feature space. The coe�cients ! and b are obtained by minimizing the following function:

minimize
1
2
k!k2 +C

NX

i=1

(⇠i + ⇠⇤i )
(2.8)
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Figure 2.5: Parameters of nonlinear SVR [3].

subject to
yi � ! · xi � b  " + ⇠i

! · xi + b � yi  " + ⇠⇤i
⇠i, ⇠⇤i � 0

To achieve good generalization, the weight ! needs to be as flat as possible. The residuals
beyond the " are captured by the terms ⇠i, ⇠⇤i , and the cost C is the regularization parameter
that determines the penalty for errors greater than ". This work uses the radial basis function
(RBF) because it is a widely used kernel that is e�cient to compute. Moreover the kernel has
only one parameter that needs to be determined. The RBF kernel is given by:

K(x, x́) = exp(��kx � x́k2), (2.9)

where the kernel parameter � expresses the influence for each data point.

2.3 Literature Review

This section provides the literature review and is broken down into two sections. The first is
anomaly detection for building energy consumption and provides a review of state of the art
anomaly detection techniques for building energy consumption presented in academia and the
second is ensemble method for anomaly detection which presents current ensemble learning
approaches for anomaly detection. These sections are described below.
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2.3.1 Anomaly Detection for Building Energy Consumption

Several previous studies used historical building energy data to identify point anomalies [10,
36, 37, 11, 38]. Chou and Telaga [10] proposed a two-stage real-time point anomaly detection
system. In their work, consumption value was predicted one-step-ahead using a hybrid neural
net ARIMA (auto-regressive integrated moving average) model, and anomalies were identified
by comparing whether or not the reading deviated significantly from the predicted value by
applying the two-sigma rule.

Janetzko et al. [36] outlined an unsupervised anomaly detection system based on a time-
weighted prediction that used historical power consumption data to identify point anomalies.
Their anomaly detection work described a technique based on a time-weighed prediction and
it was compared with a similarity based anomaly detection. The prediction-based anomaly
detection gives one anomaly score for each reading while the similarity based anomaly com-
putation gives a score for a daily reading. Wrinch et al. [37] detected anomalies in periodic
building operations by analyzing electrical demand data using a weekly moving time window
in the frequency domain. However, the techniques outlined assumed constant data periodicity
which caused many false positives [39].

Hill et al. [11] proposed a data-driven modelling approach using one-step-ahead predic-
tion to identify point anomalies. However, their study considered only sequential data and did
not take contextual features into account. Considering only historical data to identify anoma-
lies would likely create false positives when contextual information such as season and day of
week was included in the anomaly detection process. Bellala et al. [38] proposed an unsu-
pervised cluster-based algorithm that identified anomalous points based on a low-dimensional
embedding of power data.

In contrast to these studies [10, 36, 37, 11, 38], our research introduces context to the
anomaly detection process because a value might be anomalous in one context but not in an-
other. The studies just mentioned considered only point anomalies. However, if a set of values
is considered, each value might not be anomalous, but collectively, this set of values might rep-
resent anomalous behaviour. Hence, using a sliding window approach, this research identifies
contextual anomalies in collective building energy consumption data.

Other studies have considered contextual attributes or behaviours to identify anomalies in
a specific context. Arjunan et al. [13] proposed a multi-user energy consumption monitoring
and anomaly detection technique that used partial contextual information. Besides partially
available contextual features, they used the concept of neighbourhood to provide a more rele-
vant context for anomaly detection. Zhang et al. [40] used historical data as well as weather
and appliance data to compare clustering, entropy, and regression techniques for identifying
unusually low energy consumption patterns in a household. The authors focus on ways of us-
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ing household energy consumption data to identifying vacation days and subsequently remove
them so that demand response programs can have accurate data for prediction. Nevertheless,
the model presented was static and could not adapt to changes in facility consumption be-
haviour, for instance, new equipment or a change in building functionality.

Zorita et al. [41] presented a methodology that used multivariate techniques to construct
a model by using variables that have an influence on energy consumption in a building. The
variables considered were climatic data, building construction characteristics and activities per-
formed in the building. The objective of their work was to help building managers of a set of
non-residential buildings to compare the energetic performance of their facilities and take ap-
propriate steps. Ploennigs et al. [42] presented a diagnostic technique that used a building’s
hierarchy of sub-meters which provides information on how much energy is consumed by the
di↵erent building equipments. By analyzing historical data, they identified how abnormal daily
energy use is influenced by building equipment and the extent to which exogenous factors a↵ect
the energy use of building equipments. The approach used was to compute generalized addi-
tive model (GAM) for the main meter and apply an Autoregressive Moving Average (ARMA)
model to compute the upper and lower bounds where energy consumption can be considered
normal. The method used can determine which meters are abnormal, and whether the anoma-
lies are isolated or persist for a day.

Jiang et al. [43] presented a three-stage framework for real-time collective contextual
anomaly detection over multiple data streams. These are the dispatching, scoring and alert
stages. The framework is designed to be distributed and can scale to handle large scale data.
However, the approach described identifies anomalies in the context of data streams, whereas
the proposed CCAD-SW framework is flexible with regard to new contextual features. Peña
et al. [44] proposed a rule-based system developed using data mining techniques to solve en-
ergy ine�ciency detection problem in smart buildings. A set of rules was developed using
knowledge extracted from sensor data and contextual information. Finally, the results of the
rules and energy e�ciency indicators were used to construct a decision support system that
identifies anomalies.

Capozzoli et al. [45] presented an approach to automatically identify anomalies in build-
ing energy consumption based on actual recorded data of active electrical power for lighting
and total active electrical power of a cluster of buildings. The proposed methodology uses sta-
tistical pattern recognition techniques and artificial neural ensembling networks coupled with
outliers detection methods for fault detection. The authors mention that by identifying faults
in a cluster of buildings, the outlined method can help further optimize the energy consump-
tion by informing occupants of their energy usage and educating them to be proactive in their
energy consumption.
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Hayes and Capretz [12] outlined a contextual anomaly detection framework for Big sen-
sor Data that used a content anomaly detection algorithm for real-time point anomaly detec-
tion. Also, the authors presented a post-processing context-aware anomaly detection algorithm
based on sensor profiles. In general, the framework identified sensor data anomalies using a
combination of point and contextual anomaly detection approaches.

These studies [13, 40, 41, 43, 42, 44, 45, 12] identified contextual point anomalies. In
contrast, our work focuses on a set of consecutive values to identify collective anomalies con-
textually. Hence, by using a sliding window approach, this study identifies contextual anoma-
lies in collective sensor data. This helps to analyze building consumption profiles contextually
over a specific sliding window instead of at a specific point in time. Moreover, by varying the
sliding window size, collective contextual anomaly detection can be advantageous in a number
of situations. These can range from short-term energy savings and potential disaster preven-
tion objectives to medium- and long-term building energy profile analyses which can be useful
in planning long-term energy-saving targets. In addition, this research identifies an anomaly
detection framework that optimizes both anomaly detection (hit rate) and false positive rates.

2.3.2 Ensemble Method for Anomaly Detection

Several studies have focussed on enhancing classification accuracy using an ensemble of clas-
sifiers. Some used homogeneous classifiers [46] [47], whereas others used heterogeneous clas-
sifiers [48] [49] or a combination of both [50, 51, 52].

Using ensemble methods, Cabrera et al. [46] examine the problem of distributed intrusion
detection in Mobile Ad-Hoc Networks (MANET). More specifically, the authors used an en-
semble obtained by training multiple C4.5 classifiers, to evaluate these classifiers on a MANET
network for two types of attacks: Denial-of-Service and Black Hole attacks. The authors de-
scribed a three-level hierarchical system for data collection, processing and transmission.

Didaci et al. [47] proposed a pattern recognition approach to network intrusion detection
based on ensemble learning paradigms. The authors categorized feature spaces and trained a
neural network with separate features to create several classifiers. Subsequently, these classi-
fiers independently performed attack detection, and their results were later combined to pro-
duce the final decision. Folino et al. [48] introduced an architecture for a distributed intrusion
detection by using ensembles that specialized in detecting particular types of attack. Similarly
to our framework, the authors used di↵erent algorithms with the same dataset to build di↵erent
classifiers or models. Zhao et al. [49] proposed ensemble methods to enhance the anomaly de-
tection accuracy on unsupervised data using density-based and rank-based algorithms. Besides
using these independent learners, the authors also considered sequential methods for ensemble
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learning in which one detection method is followed by another.
Amozegar and Khorasani [50] proposed an ensemble of dynamic neural network identi-

fiers for Fault Detection and Isolation (FDI) in gas turbine engines. The authors first built
three individual dynamic neural-network architectures, then constructed three ensemble-based
techniques and compared the performance of these models.

Aburomman and Reaz [51] proposed an ensemble construction method that used particle
swarm optimization (PSO)-generated weights to create an ensemble of classifiers for intrusion
detection. The authors used Local unimodal sampling (LUS) method as a meta-optimizer
to find better behavioral parameters for the PSO and created ensemble classifiers using their
proposed approach and the weighted majority algorithm (WMA) approach. Their work used a
combination of homogeneous and heterogeneous classifiers.

Shoemaker et al. [52] studied an ensemble voting method for anomaly detection in su-
pervised learning using random forests and distance-based outliers partitioning. They demon-
strated that this approach provided accuracy results similar to the same methods without par-
titioning. Moreover, the authors also showed that distance-based outlier and one-class support
vector machine partitioning and ensemble methods for semi-supervised learning of anomaly
detection perform better compared to non-ensemble techniques.

To the best of our knowledge, no previous work has explored ensemble anomaly detection
techniques in the building energy domain. Moreover, in contrast to the studies described above,
[46, 47, 48, 49, 50, 51, 52], the ensemble anomaly detection (EAD) framework proposed in this
research combines several learners and determines a combined threshold (ensemble threshold)
value that yields an ensemble anomaly classifier with optimal anomaly detection performance.

2.4 Summary

In this chapter an overview of the concepts involved in anomaly detection were presented.
More specifically, an introduction to the terminology and performance metrics in anomaly de-
tection domain was presented. In addition, an introduction to the machine learning techniques
and algorithms that are employed in this research was provided. Finally, current anomaly de-
tection studies in the building energy domain as well as ensemble-based anomaly detection
techniques were discussed.
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Collective Contextual Anomaly Detection
using Sliding Window (CCAD-SW)
framework

This research proposes the CCAD-SW framework illustrated in Fig. 3.1. the framework uses
historic sensor data, generated features, and contextual features to identify collective contextual
anomalies. Moreover, by using flexible sizes of overlapping sliding windows, the CCAD-SW
framework accommodates to both short-term urgent anomaly detection requirements as well
as long term building energy consumption profile analysis (monthly, annual etc.) that is aimed
at long-term energy saving plans. The components of the CCAD-SW framework are described
below.

3.1 Data Preprocessing

The term “sensor data” in this research represents a time-stamped record of consumption data
recorded at regular intervals. The dataset need to be processed to suit the learning algorithm
used. The following sections describe the data preprocessing steps involved.

3.1.1 Data Cleaning

To mitigate the negative impact of noisy and incomplete data on the performance of the CCAD-
SW framework, these data must be removed from the dataset. Depending on the problem
domain, noisy data are indicated by values outside the valid range. For instance, in the building
energy domain, negative electric consumption values are considered noisy. Incomplete data in
this context refers to the existence of missing data within a sliding window data. Moreover, the

19
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Figure 3.1: Collective Contextual Anomaly Detection using Sliding Window (CCAD-SW)
Framework

proposed CCAD-SW framework uses sliding window to identify anomalies; a sliding window
in this case is a specific windows size that includes a set of consecutive values. Hence, if
the data in a sliding window are incomplete, then that specific input set is removed form the
dataset.

3.1.2 Feature Preparation

Given a clean dataset, the feature preparation component focuses on the arrangement and gen-
eration of features and involves two sub-steps: Data Rearrangement and Feature Generation.

• Data Rearrangement: this involves rearranging the sensor data by representing each
input instance using sliding window data instead of a single consumption value.

Table 3.1 shows a sample input dataset of the hourly sliding window data “Sw-a”, “Sw-
b”, and “Sw-c”, shown in Fig. 3.2. In the Table 3.1, columns “5”, “10”, ... , “55”, “60”
represent an hourly consumption reading recorded every five minutes, and the consump-
tion values in the first, second, and third rows represent the sliding window data “Sw-a”,

... Day of Week Hour Minute 5 10 . . . 55 60 ...

... 2 8 45 0.3 0.2 . . . 0.2 0.2 ...

... 2 8 50 0.2 0.2 . . . 0.2 0.2 ...

... 2 8 55 0.2 0.2 . . . 0.2 0.2 ...

Table 3.1: Sample Preprocessed Dataset for CCAD-SW.
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“Sw-b”, and “Sw-c” respectively. For instance, “Sw-a” represents an hourly sliding win-
dow sensor dataset from 7:45 to 8:45. The next row in the sliding window represents
“Sw-b” which is constructed when the data reading at 8:50 becomes available. “Sw-b”
represents an hourly sensor dataset from 7:50 to 8:50, and so on. Hence, for instance, for
the sample sliding window data shown in Fig. 3.2, collective contextual anomalies are
identified every five minutes.

Figure 3.2: Data rearrangement CCAD-SW framework.

• Feature Generation: This component introduces contextual or behavioural features into
the CCAD-SW framework. In the building energy consumption domain, the context can
be spatial, temporal or weather-related. Moreover, by deriving additional sensor data-
generated features such as the mean and median, more insights can be obtained from the
sliding window data. The generated features are described in Table 3.2. the temporal
contextual features day of year, season, month, day of week, hour of day are selected
because energy consumption exhibits temporal seasonality. To ensure that the CCAD-
SW framework does not use features from other sources, weather attributes are not used
in this research. The generated features (x̄, s, S n-S 1, Q1, Q2, Q3, and IQR) are selected
to explore whether or not these features a↵ect the performance of the CCAD framework.
As a measure of central tendency, the mean x̄ of the sliding window sensor data provides
a measure of the centre of the data. The standard deviation, s, gives an idea of how
spread out the data are. The di↵erence between the last and the first elements of the
sliding window, (S n-S 1), shows whether or not the data on both ends of the window are
the same. In a dataset that su↵ers from outliers, the median is a more robust measure of
the centre of the data than the mean; hence, the following four features representing the
median at di↵erent ranges of the sliding window are suggested: the first quartile (Q1),
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second quartile (Q2), third quartile (Q3) and interquartile range (IQR). A total of 25
features were selected.

Feature Description

Day of Year 1-365/366
Season 1-4
Month 1-12
Day of Week 1-7
Hour of Day 0-23
Minute of the Hour 0-59
S j, { j =1, ..., n} n - size of the sliding window; S - sensor consumption data
x̄ Mean of sensor data values in each window
s Standard deviation of sensor data values in each window
S n - S 1 Di↵erence between last and first elements of a sliding window
Q1 First quartile of the sensor data values in each window
Q2 Median of the sensor data values in each window
Q3 Third quartile of the sensor data values in each window
IQR Interquartile range of the sensor data values in each window

Table 3.2: Features Generated and Domain

3.1.3 Normalization

In a dataset that has features with widely di↵ering scales, the larger values might have more
influence than the smaller ones. To give the features equal weight, the dataset was normalized
by rescaling the features to lie in the range [0 1] [53] using Eq. (3.1):

x́ =
x � min(x)

max(x) � min(x)
(3.1)

where x is the original value and x́ is the normalized value.

3.2 Model training and testing

This section describes the datasets used for model training and testing as well as the model
training and testing engines.
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3.2.1 Training and Testing Datasets

This section describes the datasets used for model training and testing as well as the training
and testing engines. The CCAD-SW framework is based on the assumption that historical
sensor data are for the most part normal. Based on this assumption, initially, a subset at the end
of this dataset was set aside to assess the specificity of the model. This dataset was not part of
model selection (parameter tuning) or model training. Subsequently, the remaining dataset (the
“real dataset”) was split into real training and real testing datasets. Moreover, an anomalous
dataset was artificially generated. These datasets are described below:

• Real Dataset (D) refers to the historical dataset.

– Real Training Dataset (Dtrain) : A subset of the historical dataset that is used to
train a model to learn normal consumption behaviour.

– Real Testing Dataset (N) : A subset of the historical dataset used to test the speci-
ficity of a model.

• Artificial Dataset (P) : In this research, anomalous data is generated artificially to as-
sess the sensitivity of the model. Artificial anomalous data are generated based on his-
toric sensor data patterns. Consumption patterns can be classified into two types of
periods: high-activity and low-activity. A high-activity period has comparatively high
energy consumption, whereas a low-activity period has either low or zero consumption
values. Artificial anomalous data are generated to cover both cases. By plotting the fre-
quency distribution of all the historic consumption data, it is possible to determine the
statistically valid range of consumption values that are considered normal. This range
is validated by using the 95% confidence interval. An artificial anomalous test dataset
for the high-activity period can be generated by fitting an appropriate distribution to the
frequency distribution plot and generating random numbers from outside the possible
range of consumption values. For the low-activity period, the primary test objective is
to determine whether a low-activity period’s consumption pattern behaves similarly to
an active-period consumption pattern. Hence, for the low-activity period, random con-
sumption values can be generated from the distribution used earlier. But this time, the
random values are generated from the range of possible consumption values.

The training method used in this study was a form of Bootstrap Aggregating or bagging
[54], which is a commonly used ensemble modelling technique [55] [56]. Bagging is designed
to improve the stability and accuracy of machine learning algorithms used in statistical classi-
fication and regression. Initially, from the historical dataset, a 10% subset at the end was set
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aside for final model testing. This dataset was used as a final step to test the specificity of the
model and was not part of the model training or validation process. Moreover, the same size of
anomalous dataset was generated artificially and used to test the sensitivity of the model.

Let the remaining part of the historical dataset be denoted by D. From D, again, a 10%
subset (N) was set aside for model validation. From the remaining 90% dataset, a random 80%
(Dtrain) was selected with replacement. The subset Dtrain was used to train a model. Subse-
quently, this model was tested using (N) as well as the artificially generated anomalous dataset
(P). This training and testing process was repeated k times; most published papers suggest a k
value between 25 and 50 [56] [54]. After k repeated training and testing cycles, the average of
the test results was evaluated, i.e., the average test result for both normal and anomalous test
datasets.

Algorithm 1 describes the CCAD-SW illustrated in Fig. 3.1. In the following sections, each
component of the figure will be described and the descriptions referred to the corresponding
lines in Algorithm 1. The algorithm starts with a loop in line 1 which represents the learning
rounds R of the tasks from lines 2 to 9. Inside this loop, initially, bootstrap training samples,
Dtrain are generated from the historical dataset D (line 2).

3.2.2 Model Trainer Engine

The Model Trainer Engine in this study is a generic component that trains a pattern learning
algorithm to reconstruct input data patterns. Autoencoder [27] was used in this research to
capture the non-linear and complex pattern that exists between the contextual features and the
sliding window of consumption data. Autoencoder provides non-linear dimensionality reduc-
tion giving the CCAD-SW framework computational e�ciency gains [7] and improved clas-
sification accuracy [8] compared to other dimensionality reduction techniques such as PCA or
Kernel PCA [9]. The Model Trainer Engine can be replaced by other pattern learning tech-
niques. In Algorithm 1, the ModelTrainer function trains algorithm “A” to recognize input
data patterns consisting of historical sensor data (Dtrain), contextual features (C), and sensor
data-generated features (G) (line 3).

3.2.3 Model Tester

Once a model is trained using normal consumption patterns, the ModelTester function tests
the model using the real testing dataset as well as the artificially generated anomalous dataset.
The Model Tester component tries to reconstruct the input dataset; the output of this component
is a reconstruction error that measures of how close the input data pattern is to the normal data
pattern.
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Algorithm 1: CCAD-SW framework Algorithm
Input : New Sensor Value (V), Real Training Dataset (Dtrain), Real Testing Dataset

(N), Artificial Dataset (P), Contextual Features (C), Generated Features (G),
Number of learning rounds (R), Learner Algorithm (A)

Output: Noti f ication

/* Function: Learner Model [lines 1 to 8] */

1 for i 1 to R do
/* Generate bootstrap samples */

2 Dtrain(i)  Bootstrap (D);
3 normal model ModelTrainer (A, S lidingWindow, Dtrain(i), C, G);
4 err negi  ModelTester (normal model, S lidingWindow, N, C, G);
5 err posi  ModelTester (normal model, S lidingWindow, P, C, G);
6 end
7 err pos = 1

R
PR

i=1 err posi;
8 err neg = 1

R
PR

i=1 err negi;

9 err value ModelTester (normal model, S lidingWindow, V , C, G);
10 thresholdValue ThresholdDeterminator(err pos, err neg);
11 Ac AnomalyClassifier(err value, thresholdValue);
12 if IsAnomalous(Ac) then
13 return Noti f ication = true;
14 else
15 return Noti f ication = false;
16 end

The ModelTester function uses the model trained in the Model Trainer Engine to recon-
struct new instances of normal historical sensor data as well as artificially generated anomalous
data. The reconstruction error array, err neg, which is the test output of the normal test data,
as well as the reconstruction error array, err pos, which is the test output of the artificially
generated anomalous test data, are determined in lines 4 and 5 respectively.

After R learning rounds, the average of the test outputs of the positive and negative test
results are evaluated in (line 7) and (line 8) respectively. In line 9, new sensor data are tested
by the ModelTester function.

3.3 Anomaly Detection and Notification

The anomaly detection and notification section involves the threshold determination, anomaly
detection, and notification steps described below.
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3.3.1 Threshold Determinator

The ThresholdDeterminator function (line 10) uses the test results of the Model Tester
component to evaluate a threshold value ✓ that optimizes the sensitivity and specificity of the
CCAD-SW framework. In this component, the density distributions of err pos and err neg
are determined, and using the TP and TN values of every cut-o↵ error value, the corresponding
TPR and TNR ratios are evaluated using Eqs. (2.1) and (2.2) respectively.

The chosen threshold value determines the number of TN and TP captured. A lower thresh-
old value yields a better anomaly detection rate while increasing the false positive rate. The
ROC curve was used to determine the threshold that optimized these metrics.

3.3.2 Anomaly Classifier and Anomaly Notifier

The reconstruction error values of new sensor data instances are determined using the trained
model. These values are then compared with the threshold value ✓, and the AnomalyClassifier
function (line 11) classifies instances with a reconstruction error value greater than ✓ as anoma-
lous and instances with an error value less than ✓ as normal. Anomalous values trigger the
notifier function to raise an alarm that notifies the building manager, who then performs
appropriate energy-saving procedures.

3.4 Summary

In this chapter, the CCAD-SW framework was proposed, and the three major components of
the framework i.e., Data Preprocessing, Model Training and Testing, and Anomaly De-
tection and Notification were discussed. In Data Preprocessing, the data cleaning, feature
preparation and normalization aspects were explained. In Model training and testing, the
training and testing datasets used, model trainer engine and model tester components were dis-
cussed. Finally, in Anomaly Detection and Notification, the threshold determinator, anomaly
classifier and anomaly notifier components were elaborated.



Chapter 4

Ensemble Anomaly Detection (EAD)
Framework

In this chapter, the Ensemble Anomaly Detection (EAD) framework is proposed. Before delv-
ing into the details of the EAD framework, this section briefly explains the motivation and
reasoning behind its design.

The generalization ability of an ensemble is usually much stronger than that of a single
learner [57]. One of the reasons is that a single learner might not capture enough information
from the training data available. For instance, several learners might perform equally well on a
given training dataset, but combining these learners might produce a better result. Another rea-
son is that the search processes of the individual learners or base learners might not be perfect.
For example, even if a unique best hypothesis exists, it might be di�cult to achieve because
running the base learners gives suboptimal hypotheses. Thus, ensembles can compensate for
such imperfect search processes [57].

Empirical results show that, ensembles tend to have better results when there is a significant
diversity among the models [58] [59]. Hence most ensemble approaches tend to promote
diversity among the models they combine [60] [61]. One way of introducing model diversity is
to use models that are based on di↵erent algorithms; another is to use models that are based on
the same algorithm, but trained with di↵erent subsets of the dataset. To address data shortage
issues, this research focusses on the former approach because the latter requires a sizeable
dataset.

Therefore, this thesis proposes the ensemble anomaly detection (EAD) framework shown
in Fig. 4.1. The EAD is a generic framework that combines several heterogeneous or homo-
geneous learners. The framework combines anomaly detection learners that rely on pattern
and/or prediction based approaches. Moreover, by evaluating combined threshold (ensemble
threshold) values, the EAD framework identifies an ensemble anomaly classifier that yields

27
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optimal sensitivity and specificity.

In this study, the prediction-based anomaly classifiers determine whether or not the sum of a
sliding windows dataset is anomalous. For instance, from the sliding window dataset illustrated
in Fig. 3.2, the CCAD-SW determines whether or not pattern of the sliding window “Sw-a”
is anomalous, while the prediction-based learners determine whether or not the sum of the
sliding window data “Sw-a” is anomalous. Both of these anomalous classification approaches
deal with the same sliding window, but identify anomalous behaviour di↵erently.

The EAD framework, as illustrated in Fig. 4.1 and outlined in Algorithm 2, has training and
testing flow paths. These components with their associated lines in Algorithm 2 are described
in the following sections.

4.1 Training

The training flow of the EAD framework in Fig. 4.1 is represented by continuous lines and the
letter “R”. The components involved in the training are described in the following sections.

Figure 4.1: Ensemble Anomaly Detection (EAD) framework
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4.1.1 Learner Model (L)

As shown in Fig. 4.1, the EAD framework has several Learner Models, of which two types
are considered in this study: pattern-based (e.g. CCAD-SW) and prediction-based learner
models. The objective of a Learner Model is to perform the following tasks: pre-process an
input dataset, train a model, test the model using previously unseen normal and anomalous
datasets, and finally output these test results.

The use of a Learner Model for pattern-based anomaly detection approach has been de-
scribed in Chapter 3. This section describes the use of a Learner Model for prediction-based
anomaly detection classifiers.

The Learner Model, represented by the largest dashed box in Fig. 3.1, is a generic com-
ponent of the EAD framework (Fig. 4.1). From Fig. 3.1, the main di↵erence between the
application of the Learner Model to pattern-based anomaly classifiers and prediction-based
anomaly classifiers is, in the Data Rearrangement, Feature Generation, Model Trainer En-
gine, and Model Testing components. In the Data Rearrangement, the dataset is reorganized so
that the sliding window data shown in Fig. 3.2 are represented by the sum of the consumption
data of a sliding window. Table 4.1 shows a sample reorganized dataset with corresponding
temporal contextual features for Fig. 3.2. The first, second and third rows of the table represent
the input instances for the sliding windows: “Sw-a”, “Sw-b”, and “Sw-c” respectively (Fig.
3.2). Each row contains a single consumption feature, which represents the sum of a sliding
window consumption dataset.

In Feature Generation these temporal features are also used, but the generated features such
as mean and standard deviation are not included because this approach uses a single consump-
tion value as a target variable. In the Model Trainer Engine, the underlying algorithm is trained
to predict consumption values. In Model Testing, consumption is predicted for new data in-
stances and the di↵erence between the actual and predicted consumption values as well as the
di↵erence between the anomalous and predicted values is evaluated. These are the outputs of
the Learner Model for prediction-based anomaly classifiers. The LearnerModel function is
outlined in Algorithm 1, and called by Algorithm 2 (line 2) (R1).

Day of Year Season Month Day of week Hour Minute Consumption

142 2 5 2 8 45 2.5
142 2 5 2 8 50 2.4
142 2 5 2 8 55 2.4

Table 4.1: Sample dataset for prediction-based anomaly classifiers
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Algorithm 2: Ensemble Anomaly Detection Framework
Input : New Sensor Value (S ), Real Dataset (D), Artificial Dataset (P), Contextual

Features (C), Learner Models (L1, L2, ... Ln), Number of learning rounds (R)
Output: Noti f ication

/* Training:Learner Model and UEVD [lines 1 to 4] */

1 for l 1 to n do

/* Function from Algorithm 1 */

2 Learner Model (D, A, C, G, Ll)
3 S l  uniqueErr (err negl, err posl);
4 end
/* Anomaly Classifier [lines 5 to 10] */

5 for l 1 to n do
6 foreach (" 2 S l) do
7 HnegLl,"  anomalyClassifier (err negl, ")
8 HposLl,"  anomalyClassifier (err posl, ")
9 end

10 end
/* Ensembler, EPE and OETD [lines 11 to 19] */

11 foreach ( j 2 S 1) do
12 . . .
13 foreach (z 2 S n) do
14 HposE  ensembler (HposL1, j, ... , HposLn,z)
15 HnegE  ensembler (HnegL1, j, ... , HnegLn,z)

/* a 2-D matrix of TPR and FPR of all ensembles */

16 per f  ensembleMetrics (HposE, HnegE)
17 end
18 end
19 opt Ethresh  ensembleOptimizer (per f )

/* Testing:MT, AC, Ensembler and AN [lines 20 to 29] */

20 for l 1 to n do
21 err valuel  ModelTester (S , C, G)
22 Hl  anomalyClassifier (err valuel, opt Ethresh)
23 end
24 HE  ensembler (H1, H2, ... , Hn)
25 if IsAnomalous (HE) then
26 return Noti f ication = true
27 else
28 return Noti f ication = false
29 end
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Suppose that the EAD framework contains n Learner Models denoted by Ll (l = 1, ..., n). As
already outlined in Algorithm 1, which uses a single learner, the outputs of a Learner Model
are the test outputs for normal and anomalous test datasets, denoted by the arrays err neg
and err pos respectively (Algorithm 1, lines 7 and 8). The EAD framework uses multiple
learners, and hence the test results Ll are denoted by err negl and err posl. For a pattern-based
learner such as the CCAD-SW, these error values represent the reconstruction error of both
normal and anomalous test datasets. For prediction-based learners, these error arrays represent
the di↵erence between predicted and actual consumption values. i.e., for real training data,
err negl, and for anomalous data, err posl.

4.1.2 Unique Error Values Determinator (UEVD)

Once each Ll has determined the prediction error arrays err negl and err posl, the uniqueErr
function uses these error arrays to determine a set S l = {"1, "2, ..., "n} that contains unique
values of these errors (line 3) (R2).

4.1.3 Anomaly Classifier (AC)

The objective of the Anomaly Classifier is to determine the anomaly class of the outputs of a
Learner Model Ll by using each of the unique error values " 2 S l as threshold values.

The for loop in line 5 runs over all learner models and for each learner model Ll, each
unique error element " 2 S l (line 6) is used as a threshold value to determine the hypotheses of
the err negl, which is (HnegLl,") (line 7) and that of the err posl which is (HposLl,") (line 8).

A sample illustration of the output of the Anomaly Classifier for err posl, is shown in Fig.
4.2. The 2D matrix in box “1” (HposL1, j) is the hypothesis of err pos1 for all unique threshold
values j 2 S 1. Similarly, the 2D matrix in box “n” ( HposLn,z) is the hypothesis for all unique
threshold values z 2 S n. More specifically, each column of the 2D matrices represents the
hypothesis of the array err posl determined by using the corresponding unique error value
as threshold value. For instance, the first column of the 2D matrix in box “1” represents the
hypothesis using threshold value j= "1. In the same manner, the second and third and other
columns are the hypotheses using threshold values j="2, "3, ... "p. As a result, the lth Anomaly
Classifier creates n(S l) di↵erent anomaly classifiers, where n(S l) is the number of elements
of set S l. For instance the first Anomaly Classifier creates p anomaly classifiers, and the last,
which is the nth, creates r anomaly classifiers.

The objective of determining all possible classifiers of all learner models is to enable the
EAD framework to choose the best combination of threshold values of each Learner Model
that yields optimal sensitivity and specificity from the entire ensemble.
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Figure 4.2: Anomaly Classifier illustration.

4.1.4 Ensembler

The objective of the Ensembler is to combine the hypotheses of all the Anomaly Classifiers to
create a new ensemble anomaly classifier. In this research, by assuming that all learners have
equal weight, all possible combinations of all Anomaly Classifiers are used to create ensemble
anomaly classifiers. The majority vote of the anomaly classifiers is used as the decision or
output of the Ensembler. By using all combinations of all Anomaly Classifiers, the Ensembler
creates n(S 1) ⇥ n(S 2) ⇥ ... ⇥ n(S n) di↵erent ensemble anomaly classifiers. For instance, one
sample ensemble from Fig. 4.2 is an ensemble formed by the majority vote of the hypotheses
(HposL1,3 , ... , HposLn,5).

The ensembler function uses a combination of each Anomaly Classifier in each Learner
Model to combine them and create new ensemble classifier (lines 14 and 15) (R5). HposE refers
to the anomaly class of an ensemble model for positive test data, whereas HnegE refers to the
anomaly class of an ensemble model for a negative test dataset.

4.1.5 Ensemble Performance Evaluator (EPE)

This component determines the anomaly performance of an ensemble classifier. For every
ensemble classifier that the Ensembler combines, the ensembleMetrics function evaluates
the performance metrics TPR and TNR of the anomaly classifier using Eqs. (2.1) and (2.2)
respectively (line 16) (R6). By combining all possible anomaly classifiers, the Ensembler de-
termines all possible ensemble anomaly classifiers, and the Ensemble Performance Evaluator
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determines the performance of each ensemble.

4.1.6 Optimal Ensemble Threshold Determinator (OETD)

The Optimal Ensemble Threshold Determinator (OETD) determines an ensemble threshold
opt Ethresh (line 19) (R7) that optimizes both sensitivity and specificity. The ensemble thresh-
old, opt Ethresh is a set of error values {"a, "b, ..., "n} where, "a 2 S 1, "b 2 S 2, ..., "n 2 S n, such
that this combination of error values yields optimal ensemble performance. To identify this
ensemble threshold, the ROC curve is plotted using the performance values evaluated in line
16. The ROC plot of the ensemble depends on several learners with di↵erent sets of unique
error values. As a result, as shown in Fig. 4.3, the ROC curve is not a single curve but a scat-
tered plot in the unit square. The reason is because multiple configurations of the base learner
thresholds can yield the same FPR and TPR values.

The ensemble threshold combination that yields the optimal ensemble anomaly classifier is
determined using the threshold determination technique described earlier, which assigns equal
weight to sensitivity and specificity. The output of the training flow path is a trained model and
a set of ensemble threshold values that yield the optimal ensemble anomaly classifier.

4.2 Testing

The testing flow path of the EAD framework in Fig. 4.1 is represented by the dashed lines and
the letter “T”. During testing, each Learner Model Ll initially determines its corresponding

Figure 4.3: Ensemble ROC.
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test output array err valuel, which is the error measure for a previously unseen dataset (line
21) (T1). Subsequently, each corresponding anomaly classifier decides about the anomaly class
of the same data instance. More importantly, using the optimal threshold values of each learner
determined during training by the OETD (line 19) (R7), the Anomaly Classifier determines
the anomaly class of the err value (line 22) (T2). By using majority vote of the decisions of
the anomaly classifiers, the ensembler function finally decides whether or not an instance is
anomalous or not (line 24) (T3). If the Anomaly Classifier has decided that a data instance is
anomalous, the isAnomalous function triggers the Anomaly Notification (line 26)(T4). The
notification can be displayed on dashboard or sent by email, SMS or other interface. Sub-
sequently, the responsible entity, in this case building managers, perform appropriate energy
e�ciency procedures.

4.3 Summary

In this chapter, the EAD framework was proposed, and the two major flow paths, i.e., Training
and Testing were discussed. In the Training flow path, the Learner Model, Unique Error
Values Determinator, Anomaly Classifier (AC), Ensembler, Ensemble Performance Evaluator,
and Optimal Ensemble Threshold Determinator components were discussed. Finally in the
Testing flow path, an overview of the components involved in this path, i.e., Learner Model,
Anomaly Classifier and Anomaly Notifier was provided.



Chapter 5

Evaluation and Experiment

In this chapter the implementation and evaluation for the collective contextual anomaly detec-
tion using sliding window (CCAD-SW) and ensemble anomaly detection (EAD) frameworks
will be presented. Subsequently, the proposed CCAD-SW and EAD frameworks will be eval-
uated using datasets provided by Powersmiths [62], a company that focusses on producing
sensor devices with the aim of creating a sustainable and green future. Powersmiths collects
various data from sensor devices, and both of the proposed frameworks were evaluated using
HVAC consumption data (kWh) for a school recorded every five minutes from 2013 to 2015.
In this work, historic dataset is assumed predominantly normal and based on this dataset, arti-
ficial anomaly dataset is generated. Then, the implementation is evaluated with normal as well
as artificially generated anomalous datasets. Moreover, this chapter will provide a discussion
on how well the CCAD-SW and EAD frameworks identify both anomalous and normal data
instances.

This chapter will be organized into two sections. The first section will present the evaluation
and experiment of the CCAD-SW framework. Moreover, in this section a comparison is made
between two implementations of the framework. The second section will present the evaluation
and experiments of the EAD framework. Also, in this section, a comparison of the EAD
framework is made with CCAD-SW and two other anomaly classifiers.

5.1 CCAD-SW Evaluation

In this section, the experiments, results and discussion of the CCAD-SW framework is pre-
sented.

35
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5.1.1 CCAD-SW Experiments

The dataset was initially preprocessed, subsequently generated and contextual features inte-
grated with it. The final dataset consisted of 337640 samples. Next, a 10% subset at the end of
the dataset was set aside to assess the specificity of the CCAD-SW framework. Subsequently
two experiments were performed, which are described below:

Experiment 1: The objective of this experiment was to determine the sensitivity and speci-
ficity of the CCAD-SW framework using autoencoder. The autoencoder used in this research
was based on a deep-learning autoencoder implementation in H2O[63], which is a scalable and
fast open-source machine learning platform. The experiment was performed within the R [64]
programming environment using an H2O API.

Initially, the autoencoder model was tuned. Various configurations of the regularization
parameter (L1), number of epochs, and the activation function as well as both shallow and
deep networks were considered. A model that resulted in a minimum stable MSE was finally
selected. The parameters selected for the model are given in Table 5.1.

The next step was repeated training and testing; to perform this, from the remaining dataset,

Parameter Value

Hidden Layers 3
Neurons in Hidden Layers 20, 10, 20
L1 (Regularization Parameter) 1E-04
Number of Epochs 400
Activation Function Hyperbolic Tangent

Table 5.1: Autoencoder Model Parameters

Figure 5.1: CCAD-SW (PCA) scree plot.
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a 10% subset was set aside for testing (the normal dataset). Subsequently, from the remaining
90% of the dataset, a random 80% training dataset was selected with replacement. After each
training cycle, the model was tested using normal and artificially generated anomalous test
datasets. This training and testing cycle was repeated 25 times, and the average values of the
reconstruction errors of the normal and anomalous test datasets were evaluated.

Experiment 2: In this experiment, the sensitivity and specificity of the CCAD-SW frame-
work was evaluated using PCA. The dataset that was already used in Experiment 1 was also
used for this experiment. Initially, PCA was used for dimensionality reduction purposes; it was
found that the first 10 principal components described 99% of the variance of the dataset, as
shown in the scree plot in Fig. 5.1. A scree plot is a line segment plot that shows the fraction
of total variance in the data as explained or represented by each principal component.

During training, the component loadings were determined. The component loadings are
the weights by which each standardized original variable should be multiplied to obtain the
component score. These values show how much of the variation in a variable is explained by
the component. Subsequently, the principal components that could explain 99% of the variance
were selected. During testing, these component loadings were used to try to reconstruct pre-
viously unseen normal and anomalous test datasets, and the reconstruction error of the normal
and anomalous test datasets were determined.

The outputs of both these experiments were the reconstruction errors for positive and neg-
ative test datasets. Using these reconstruction errors, the TN and TP density distributions for
both experiments were determined. Subsequently, for each experiment, the TPR and FPR =
(1-TNR) were evaluated using Eqs. (2.1) and (2.2) respectively. These values were used to
plot the ROC curves of the anomaly classifiers. Moreover, assuming that both sensitivity and
specificity have equal weight, a threshold value that optimizes these two metrics was deter-
mined using Eq. (2.3). Finally, each model was tested using previously unseen normal and
anomalous datasets. Subsequently, using the threshold values determined in each experiment,
the test outputs of these new datasets were classified as either anomalous or not.

To compare the performance of all these models, the following metrics were used: TPR,
FPR, and AUC. In this experiment the ROC curves of the CCAD-SW (autoencoder) and the
CCAD-SW (PCA) did not cross the other curves, and hence the pAUC was not considered. To
evaluate the AUC, a function AUC from the R package that approximates the area under the
curve using the trapezoid rule was used. An AUC = 1, which is the maximum value, represents
a perfect anomaly classifier, where as an AUC = 0.5 represents a non-discriminant or random
classifier.
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5.1.2 CCAD-SW results and discussion

The results of Experiments 1 and 2 are shown in Figs. 5.2a and 5.2b respectively. These are
the density distributions of the normalized values of the reconstruction errors. For each error
value on the x-axis, the plots show the proportions of TP and TN for the anomaly classifiers.
This distribution was referred to as the TP-TN density distribution in these experiments. From
the figures, the peak of the TN and the peak of the TP for the CCAD-SW (autoencoder) were
more separated while for the CCAD-SW(PCA) they overlapped. Intuitively, this indicates that
the latter implementation has a lower anomaly detection performance.

The performance of the CCAD-SW implemented using autoencoder and PCA was com-
pared with the performance of models based on the CCAD framework [65]. The CCAD
framework used non-overlapping sliding windows, contextual and generated features to iden-
tify collective contextual anomalies. Compared to the CCAD, the CCAD-SW framework had
better anomaly detection performance and reduced false positives significantly. In addition, by
using overlapping sliding windows, the CCAD-SW framework can identify anomalies earlier.
The CCAD had two models trained with di↵erent features and these were the CCAD-17 and
CCAD-26. The CCAD-17 model was trained using seventeen features, twelve of which were
consumption data representing an hourly sliding window and five were temporal contextual
features. Whereas the CCAD-26 model was trained using twenty-six features, the seventeen
features used for the CCAD-17, and nine more generated features. These nine generated fea-
tures were the (x̄, s, S n-S 1, Q1, Q2, Q3, and IQR) which are already described in Table 3.2
and two more features representing the moving average of the sliding windows, (x̄i-x̄(i�1)),
(x̄(i+1)-x̄i).

Figure 5.3 shows the ROC curve of both CCAD-SW implementations as well as the CCAD-
17 and CCAD-26 models. Intuitively, from Fig. 5.3, the CCAD-SW (autoencoder) can be seen
to have a larger AUC than any of the other anomaly classifiers. Moreover, the CCAD-SW
(PCA) has a curve that almost matches the line of non-discrimination, which is the linear
diagonal line shown in the figure.

The performance metrics of the four anomaly detection classifiers are shown in Table ??.
They confirm the observations made earlier: CCAD-SW (autoencoder) had the largest AUC
followed by CCAD-26, CCAD-17, and lastly CCAD-SW (PCA). If the optimal values of TPR
and FPR of each anomaly classifier are compared, with a TPR of 94.5% the CCAD-SW (au-
toencoder) had the highest anomaly detection rate while still maintaining a FPR of 4.7%, which
was the lowest of all the other anomaly detection classifiers. As for the CCAD-SW (PCA), the
optimal TPR and FPR measures also showed the same non-discriminant behaviour as indicated
by the AUC. Both had values close to 50%. Although the CCAD-SW (PCA) performed slightly
better than the random classifier for larger values of FPR (greater than 80%), false positives
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(a) (b)

Figure 5.2: TP-TN distribution: (a) CCAD-SW (autoencoder), (b) CCAD-SW (PCA).

in this range would not be acceptable for a workable anomaly detection system. Overall, the
experiments done showed that for the dataset used, the CCAD-SW (autoencoder) is well-suited
for both lenient and strict FPR requirements.

Figure 5.3: ROC of the CCAD-SW and CCAD models.
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Model Threshold TPR(%) FPR(%) AUC pAUC 1

FPR (0%-6%) FPR (6%-20%)
CCAD-SW 2 0.001 94.5 4.7 0.981 0.95 0.95
CCAD-17 2 0.07 68.6 12.7 0.842 0.77 0.86
CCAD-26 2 0.05 80.2 21.1 0.862 0.72 0.91
CCAD-SW 3 0.63 52.1 50.4 0.513 0.50 0.51

1 pAUC standardized [0-1]
2 Autoencoder
3 PCA

Table 5.2: CCAD-SW performance comparison

5.2 EAD Evaluation

In this section, an evaluation of the EAD framework implemented by combining the CCAD-
SW (autoencoder) framework with two prediction-based anomaly detection classifiers is pro-
vided. These two classifiers were implemented using random forest and SVR. A comparison
was also made between the anomaly detection performance of the EAD framework and the
three anomaly classifiers selected.

The CCAD-SW is a neural network-based learning framework that uses autoencoder. A
random forest, is an ensemble learning algorithm that combines the hypotheses of several de-
cision trees, and SVR is a version of support vector machine (SVM) for regression.

The experiment was subdivided into four steps and these are:

• CCAD-SW framework based learner model : In this step, a CCAD-SW anomaly detec-
tion classifier based on autoencoder was implemented and the anomaly class of normal
and anomalous test datasets determined.

• SVR-based learner model : In this step, a prediction-based anomaly detection classifier
was implemented using SVR, and the anomaly class of the normal and anomalous test
datasets used in the previous step was determined.

• Random Forest-based learner model : In this step, a prediction-based anomaly detection
classifier was implemented using random forest, and the anomaly class of the normal and
anomalous test datasets used in the previous steps was determined.

• EAD framework anomaly classifier : Using majority voting, this step combined the
decisions of the three anomaly classifiers.
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5.2.1 EAD Experiments

This section provides the details of the experiments implemented to evaluate the EAD frame-
work.

CCAD-SW framework based learner model : This step was already implemented in Ex-
periment 1, which was described in the CCAD-SW experimental section. The output of this ex-
periment was the reconstruction error for previously unseen positive and negative test datasets.

SVR-based learner model : The objective of this step was to implement a prediction-
based anomaly detection classifier using SVR. The dataset was initially prepared as described
in Section 5.1, and the temporal features mentioned in Section 4.1.2 were introduced into
the dataset. The final dataset included a total of 7 features: 6 contextual features and one
consumption feature. The same normal and anomalous test datasets used for the experiment
described in Section 6.1 were preprocessed and used for final model testing. After preparing
the dataset, the parameters of the SVR were tuned by considering various configurations of the
parameters C (cost) and �. By holding one constant and varying the other, a configuration that
yielded the minimum MSE was selected; C = 10 and � = 0.1.

Next, using the remaining subset of the dataset, the same training and testing technique was
applied as described in the CCAD-SW experimental section. The average predicted values of
the test runs were determined and using these values, the di↵erence from the actual values were
evaluated. The di↵erence between the actual (normal dataset) and the predicted values is the
error of the negative test dataset, whereas the di↵erence between the predicted values and the
artificially generated anomalous test datasets is the error of the positive test dataset.

Random Forest-based learner model: The next step was to perform procedures similar to
those in the previous, SVR-based learner model step, using the random forest algorithm. The
same test datasets used in the previous step were also used.

Various random forests with varying tree sizes were considered. For the dataset used, a ran-
dom forest configuration with 400 trees yielded the minimum MSE value and was selected for
the experiment. Using the selected random forest model selected, consumption was predicted
and the error values determined as described in the SVR-based learner model step.

EAD framework anomaly classifier : The last part of the experiment was to combine the
decisions of the anomaly detection classifiers based on the three learner models described so
far. The final output of the EAD framework was the anomaly class of the test data as determined
by a majority vote of the three anomaly detection classifiers described above.
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(a)

(b)

Figure 5.4: TP-TN distribution: (a) Random forest, (b) SVR.

5.2.2 EAD results and discusssion

The TP-TN density distributions of the Random Forest-based learner model and SVR-based
learner model are illustrated in Figs. 5.4a and 5.4b respectively. It is clear that the the peak
of the densities of TP and TN are separated, which intuitively shows that the models have a
reasonable anomaly detection capacity. The ROC curves of the anomaly classifiers are shown
in Fig. 5.5. The ROC plot of the EAD framework is not a single curve because the framework
relies on three di↵erent learner models. For instance, from the ROC curve of the CCAD-SW
(autoencoder) in Fig. 5.3, it can be observed that each FPR value corresponds to one and only
one TPR value.

The mean TPR value for each FPR is plotted in the top zoomed figure of Fig. 5.5. Intu-
itively, the ROC plot shows that the EAD framework outperformed the rest of the individual
anomaly classifiers. The ROC curves in figure Fig. 5.5 cross, and hence, for the reasons
discussed earlier, the pAUC was also used as a metric to evaluate and compare the anomaly
detection classifiers. Moreover, as in the previous experiments, the optimal values of TPR and
TNR as well as the AUC were used as performance measuring metrics.

As shown in Fig. 5.5, the ROC curves cross at an FRP of 6%, and hence the pAUC was
analyzed for FPR ranges of (0%-6%) and (6%-20%). In this study, because the anomaly clas-
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Figure 5.5: ROC of the EAD framework.

sifiers are performed well even for lower false positive rates, only low false positive rates were
considered. Moreover, the trend of the curves did not significantly change beyond the ranges
considered.

Table 5.3 shows the optimal TPR and FPR values as well as the threshold values that yielded
these optimal values. For the EAD framework, the optimal TPR and FPR was achieved at a
combined threshold values (ensemble threshold) of CCAD-SW = 0.0032, random forest = 0.3,
and SVR = 2. This shows that for the dataset used in this research, optimal ensemble anomaly
classifier is not attained by combining the base anomaly classifiers at their respective optimal
thresholds which is CCAD-SW=0.001, random forest = 1.7 and SVR = 3.2, but instead at the
values CCAD-SW = 0.0032, random forest = 0.3, and SVR = 2.

The table also shows that for FPR range (0%-6%) with a pAUC of 0.95, the EAD frame-
work performed better than any of the base anomaly classifiers. The CCAD-SW (autoencoder)
was the second best in this FPR range followed by the random forest based and SVR based
anomaly classifiers. Moreover, with a pAUC of 0.97, the EAD framework still outperformed
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the base learners in the higher FPR range, i.e., (6%-20%). The optimal TPR and FPR values
also indicate that the EAD framework outperformed the other classifiers not only in anomaly
detection (higher TPR), but also in reducing false positives (lower FPR). Although the SVR-
based anomaly classifier had a TPR of 95.7% which is the second best, its has the highest FPR
of all the classifiers, 7.10 %. Hence, it may not be suitable for services that require stringent
false positive rates. From these experiments, it can be concluded that for all the FPR ranges
considered, the EAD is a better anomaly classifier than any of the other base anomaly classi-
fiers.

Model Threshold TPR(%) FPR(%) pAUC 2

FPR (0%-6%) FPR (6%-20%)
SVR 3.2 95.7 7.10 0.82 0.965
CCAD-SW 1 0.001 94.5 4.70 0.89 0.955
Random Forest 1.7 94.9 6.60 0.87 0.960
EAD [2, 0.0032, 0.3] 3 98.1 1.98 0.95 0.97

1 Autoencoder
2 pAUC standardized [0-1]
3 Threshold at these values of SVR, CCAD-SW and Random Forest respectively

Table 5.3: EAD performance comparison

5.3 Summary

In this chapter, the evaluation of the frameworks described in Chapters 3 and 4 was pre-
sented. Moreover, the implementation details of the experiments as well as the results were
discussed. In the CCAD-SW evaluation, the details of the implementation of the CCAD-SW
using both autoencoder and PCA was presented. In addition, a comparison of the two imple-
mentations was presented. In the EAD evaluation, two more experiments involving prediction-
based anomaly classifiers that rely on the machine learning algorithms SVR and random forest
were discussed. Finally a comparison of the performance of the ensemble anomaly classifier
with the base anomaly classifiers was provided. The results show that the optimal ensemble
anomaly classifier is not attained by combining the base anomaly classifiers at their respective
optimal threshold. Also, the EAD had better sensitivity and specificity than the base anomaly
classifier for all FPR ranges.
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Conclusions and Future Work

This chapter presents a concluding summary based on the contributions of the two proposed
frameworks: Collective Contextual Anomaly Detection using Sliding Windows (CCAD-SW)
and Ensemble Anomaly Detection (EAD). In addition, a description of possible research on
the proposed frameworks will be outlined.

6.1 Conclusions

The work described in this thesis involves a new ensemble-based approach to anomaly detec-
tion. To enhance anomaly detection, the ensemble approach combines hypotheses from several
learners based on diverse learning techniques. This enables the ensemble to capture enough
information from the training data to help learning and hence increase anomaly detection per-
formance. In addition, this thesis presents a pattern-based anomaly detection approach that
uses overlapping sliding windows with contextual and generated features to identify collec-
tive contextual anomalies in sensor-generated energy consumption data. By varying sliding
window size, this approach can be used for both short-term and long-term energy e�ciency
planning. This thesis has provided the following detailed components of a proof of concept for
the CCAD-SW and EAD frameworks:

• Development of an EAD framework that combines hypotheses from diverse anomaly
detection techniques in general and that more specifically integrates pattern-based and
prediction-based anomaly detection approaches. Moreover, the framework also provides
a generic and adaptive learner model that can be used in both anomaly detection ap-
proaches.

• The techniques of determining an ensemble threshold, which is a combined base anomaly
classifier threshold that yields optimal anomaly detection and minimizes false positives.

45
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• Development of a pattern-based anomaly detection framework (CCAD-SW) that relies
on unsupervised learning for contextual identification of anomalous patterns in building
energy-consumption data. The framework also addresses performance issues associated
with high-dimensional datasets using non-linear dimensionality reduction techniques.
In addition, the framework provides a data rearrangement technique that enables the
underlying algorithm to learn the behaviour of normal sensor-generated consumption
patterns.

In this thesis, the CCAD-SW and EAD frameworks have been evaluated based on de-
tailed implementations. The frameworks were evaluated using HVAC consumption sensor
data. Based on the experimental results, the following conclusions can be drawn:

• The CCAD-SW implemented using autoencoder and EAD frameworks successfully iden-
tified collective contextual anomalies in artificially generated anomalous data. More-
over, the frameworks could also identify normal patterns in sensor-generated HVAC data.
However, the CCAD-SW implemented using PCA behaved as a random anomaly classi-
fier for the dataset and hence is not recommended as a reliable anomaly classifier in this
domain.

• The EAD can identify an ensemble threshold that yields an optimal ensemble anomaly
classifier. For the dataset used, the optimal ensemble anomaly classifier was not attained
by combining the base anomaly classifiers at their respective optimal performance levels.
The combined threshold value was rather achieved by searching the threshold space of
the anomaly classifiers.

• The EAD framework improved both anomaly detection and false positive rates for the
CCAD-SW as well as for two prediction-based anomaly classifiers that relied on support
vector regression and random forest algorithms. This makes the EAD framework useful
for applications with stringent anomaly detection and false positive requirements.

• The CCAD-SW framework is computationally less intensive than the EAD and hence
can be used for services that are less mission-critical, although the EAD is more suitable
for critical services.

Anomaly detection plays a significant role in diverse domains of todays systems. More specifi-
cally, in buildings, identifying and rectifying abnormal consumption behaviour has far-reaching
impact. As world population grows, the need for more food, fresh water, and other resources
also increases. This growing demand added to changes in lifestyle has fuelled the demand for
more energy. By minimizing energy waste and hence reducing the investment needed for new



6.2. FutureWork 47

energy generation and transmission capacity, substantial amounts of money can be saved not
only in utility bills, but also by avoiding the repercussions and negative side e↵ects to the en-
vironment. Moreover, by identifying long-term building consumption behaviour, facilities can
develop strategic e�ciency plans that are specifically suited to their buildings. The CCAD-SW
and EAD frameworks proposed in this study provide a generic and adaptive platform for iden-
tifying collective contextual anomalies in building energy consumption and thereby addressing
the energy-related challenges that the world faces today.

6.2 Future Work

This section presents several areas of future work that can be explored:

• The CCAD-SW framework presented in this study considers temporal features to pro-
vide context to the anomaly detection process. Future work will consider more diverse
features that provide an even broader context. These include features such as occupancy,
classroom size, and number of students in a classroom, as well as weather-related fea-
tures such as humidity and temperature. Although the underlying algorithms used by the
frameworks can adapt to changes in building functionality, integrating these contextual
features will provide even more valuable learning to the anomaly detection process.

• Another future project is to adapt lambda architecture [66] to identify collective con-
textual anomalies in real time. A lambda architecture is a data-processing architec-
ture designed to handle massive quantities of data by making use of both batch- and
stream-processing techniques. By using robust algorithms to process historical datasets
in batch mode and incremental algorithms to create a model using newly generated sen-
sor data, these approaches could subsequently be integrated to identify collective contex-
tual anomalies in real time. This approach to architecture balances latency, throughput,
and fault-tolerance using batch processing to provide robust and accurate anomaly detec-
tion while simultaneously using real-time stream processing to provide views of on-line
data.

• Future work will explore weighted voting to combine base learners. For instance, the
decisions of learners with better learning accuracy can be given more weight. More
specifically, when using prediction-based anomaly classifiers, learners with better pre-
diction accuracy can have more weight during voting.

• Given large training datasets, future work will consider other ways of introducing di-
versity to the base learners. One approach is to train each base learner using di↵erent
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subsets of the training dataset. As a result, each anomaly classifier can learn di↵erent
aspects of dataset behavior, bringing more knowledge into the ensemble anomaly detec-
tion process. Another approach is to train the base learners using di↵erent features of the
dataset.

• The frameworks described earlier require a sizeable historical dataset to create a model
that can distinguish between normal and abnormal consumption behaviours and based on
the model, classify new sensor data as normal or abnormal. The assumption here is that
a facility has been operating for a few years and that during this period sensor-generated
consumption data have been recorded. This approach would not be applicable for newly
built facilities. An interesting future study in this area would be to use models created
for older facilities to evaluate new buildings. To select the right model, introducing
contextual features, as described earlier, is important. For new facilities, using models of
other facilities located in similar climatic zones and that have similar spatial features and
functionality can be explored. For instance, to identify abnormal energy-consumption
behaviour in a new school, models already created from another school of similar school
size, classroom size, and school hours in the same climatic region can be used.

• In this study, the proposed frameworks were designed with the assumption that historical
consumption data is predominantly normal. Future work will explore anomaly detection
techniques that consider cases where historical consumption data may have large number
of anomalies.
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networks for prediction of heating energy consumption,” Energy and Buildings, vol. 94,
pp. 189–199, 2015.

[35] A. Smola and V. Vapnik, “Support vector regression machines,” Advances in neural in-
formation processing systems, vol. 9, pp. 155–161, 1997.
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