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Outer Space and Oocyte Developmental Competence

Andrew J. Watson1

Departments of Obstetrics and Gynaecology, Physiology and Pharmacology, The University of Western Ontario,
Children’s Health Research Institute-Lawson Health Research Institute, London, Ontario, Canada

Mammalian oocytes are quite special cells for many
reasons, but one of their most amazing characteristics is that
while in the ovary they remain blocked at diplotene of
prophase one of the first meiotic division [1]. Because the
oocyte can remain in this resting state in the ovary until
menopause in women, the oocyte can retain this meiotic cell
cycle block for more than 50 years [2]. A lot can happen in 50
years, and for that entire time in the ovary, the primordial
follicle containing its primary oocyte is exposed to a wide
variety of environmental conditions that have an impact on the
health of the oocyte and affect its potential for fostering normal
development and health of the offspring derived from it [1–4].
Our genome is constantly subject to modification by the
environment [3, 4]. The environmental affect on the genome
begins with gametogenesis and extends through preimplanta-
tion development, pregnancy, and postpartum development
and throughout life [3, 4].

The study by Kujjo et al. entitled ‘‘RAD51 Plays a Crucial
Role in Halting Cell Death Program Induced by Ionizing
Radiation in Bovine Oocytes,’’ published in this issue of
Biology of Reproduction, reveals to us an additional environ-
mental factor that can influence oocyte health over time [5].
Uniquely, we have to look to outer space for the source of this
environmental factor [6]. Kujjo et al. inform us that high-
energy cosmic rays originating from supernovas, traveling at
the speed of light, strike the earth at the rate of one cosmic ray
per square centimeter per minute and can penetrate more than a
mile into the earth’s crust [5]. To put this into clear terms,
Kujjo et al. state that during every night’s sleep a human can
expect to be bombarded with up to 1 million cosmic rays [5].
This occurrence poses a series of very interesting questions,
such as: How do we prevent accumulating genomic damage
from these cosmic rays? Does this type of environmental insult
accumulate over time? Most importantly, are oocytes suscep-
tible to this type of insult, and could it contribute to the decline
in fertility women experience beyond the age of 35, normally
well before menopause and before the absolute cessation of
their reproductive function occurs?

Although our exposure to cosmic rays may be increasing
because of global warming and ozone depletion, all species on
this planet, including humans, have nevertheless been exposed

to cosmic rays for their entire history [6–8]. Therefore, what
mechanisms have we evolved to minimize the damage caused
by cosmic ray exposure on our reproductive cells? This is the
unique and important question that Kujjo et al. explore [5].
Successful completion of this study required an international
collaboration between investigators from Michigan State
University; the United States National Superconducting
Cyclotron Laboratory; Waseda University in Tokyo; the
RIKEN Systems and Structural Biology Center, Yokohama,
Japan; and the LARCel Programa Andaluz de Terapia Celular
y Medicina Regenerativa, Sevillia, Spain [5].

The investigators contrasted the effects of radiation
exposure between murine and bovine oocytes. They observed
important species differences in their responses to radiation,
with murine oocytes activating high levels of caspases as a
prelude to necrotic death, whereas bovine oocytes activate
annexin-V, cytochrome C release, and an incomplete cell death
program [5]. Subsequent experiments focused on the mecha-
nisms affecting these outcomes. It was discovered that
inhibition of RAD51 or increasing caspase 3 levels before
irradiation induced high levels of cytoplasmic fragmentation
[5]. In contrast, microinjection of RAD51 before irradiation
significantly decreased cytoplasmic fragmentation and DNA
damage in oocytes [5].

The decision of the researchers to focus their studies on
RAD51 was quite intuitive. Although DNA double-strand
breaks (DDSBs) are detrimental to genome stability, they are
events that commonly occur during both meiotic and mitotic
cell division [9–11]. All cells have a capacity to repair DDSBs
employing homologous recombination-based mechanisms that
require the coordinated involvement of a number of protein
families [9–11]. Among these protein families are the RAD
proteins [9–11]. RAD51 displays DNA-stimulated ATPase
activity, preferentially binds to single-stranded DNA, and
mediates ATP-dependent strand exchange events with homol-
ogous duplex DNA [11]. A role for RAD51 in repairing
DDSBs during early development was reported by Perez et al.
[9], who microinjected RAD51 into fertilized oocytes and
observed reduced DNA damage, reduced apoptosis, and
improved embryo development in AKR/J mice, a mouse strain
displaying a very poor DDSB repair mechanism. The same
group of researchers also demonstrated that mouse embryos
overexpressing RAD51 display reduced DNA damage and
cytoplasmic fragmentation [10]. Deletion of RAD51 results in
early embryonic lethality [12] and the RAD51C hypomorph
displays meiotic failure in both males and females [13].
Therefore, Kujjo et al. [5] focused their studies on investigating
the effects of radiation damage on oocyte health on an ideal
candidate, i.e., RAD51. They have convincingly demonstrated
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that RAD51 is an important component of the adaptive
mechanism that reduces DNA damage in oocytes.

This innovative study has also generated several important
new concepts. These include the premise that mammalian germ
cells are equipped to at least respond in an adaptive way to the
deleterious effects of exposure to radiation, but not all species
have an identical capacity to adapt to these types of
environmental influences. It is intriguing to speculate that
differences in lifespan, particularly reproductive lifespan, may
underlie the species differences observed in this study. For
example, mice, with their short lifespan, may not be subject to
the same lifetime exposure that longer-lived species such as
cattle would see; thus, the necessity of evolving a highly
responsive protective mechanism is not as great in the mouse as
it is for the cow. Overall, we also have to consider what this
study means to humans, with our longer lifespan and longer
reproductive period. Are we more susceptible to gamete
radiation damage? Or do we have robust RAD51-based DNA
repair and apoptotic protective mechanisms? Is it possible that
the effects of cosmic radiation comprise an underlying
mechanism that contributes to the sharp decline in female
fertility beyond age 35? It is certainly on the minds of pilots
and airline service employees [7, 14].

This novel study reveals an important role of RAD51 as a
potent protector of our DNA and a suppressor of gamete cell
death pathways. Perhaps this pathway acts to reduce oocyte
loss and extend female fertility as long as it can be preserved.
Finally, this study has importantly revealed another key aspect
of our environment and how it impacts our overall reproductive
health. However, don’t let thinking about cosmic rays keep you
from a good night’s sleep; RAD51 is there to help you out.
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