
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-19-2016 12:00 AM 

Study on Developments of Processes for Powder Coatings Study on Developments of Processes for Powder Coatings 

Shan Gao 
The University of Western Ontario 

Supervisor 

Jesse Zhu 

The University of Western Ontario Joint Supervisor 

Hui Zhang 

The University of Western Ontario 

Graduate Program in Chemical and Biochemical Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Shan Gao 2016 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Chemical Engineering Commons 

Recommended Citation Recommended Citation 
Gao, Shan, "Study on Developments of Processes for Powder Coatings" (2016). Electronic Thesis and 
Dissertation Repository. 3984. 
https://ir.lib.uwo.ca/etd/3984 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/250?utm_source=ir.lib.uwo.ca%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3984?utm_source=ir.lib.uwo.ca%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


  

 i 

Abstract 

Powder coating, which utilizes polymer resin based powder, is a relatively young 

technology for decorative and protective purposes. It was first developed in the early 

1950s and gradually grew into automotive finishes. Compared to conventional liquid 

coating, powder coating is an environmentally friendly technology, given that there is no 

emission of harmful solvent throughout the entire operating process. It is also much more 

efficient, economical and energy saving as a result of the capability to reuse all the 

powder. However, there are still some problems in the powder coating process limiting 

its application. This thesis focused on studying some key aspects of the manufacturing 

and application processes of both coarse powder and fine powder. Several new 

techniques were developed during the process.  

The study started with an investigation of powder coating manufacturing processes. Most 

of the research was aiming at maximizing the productivity, while the produced powder 

has a wide particle size distribution, leading to a poor surface condition. In order to 

narrow the particle size distribution, a new design of classifying cyclone for an air 

classifying mill (ACM) with a reversed air inlet was studied. Experimental results 

indicated that this novel cyclone design could effectively reduce the span of the particle 

size distribution, without deteriorating the collection efficiency compared to conventional 

cyclones.  

In addition, the spraying properties of powder coatings were investigated during 

electrostatic spraying. In order to overcome the Faraday Cage effect, a modified corona 

spray gun with a multi-electrode design supplied by an alternating charging pattern was 

invented. Experimental results demonstrated that the Faraday Cage effect could be 

significantly mitigated by using the new spray gun at various gun voltages. Besides, the 

new design of spray gun could provide higher transfer efficiency compared to its 

conventional counterpart.  

Moreover, this study also improved the powder coating processing technique involving 

metallic pigments. To achieve better bonding between metallic pigments and powder 
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coating particles, a liquid bonding agent (bonder) was introduced into the blending 

process. It was found that the concentration of metallic pigments changed minutely from 

the pre-sprayed and post-sprayed powder, indicating that the recycled powder could be 

reused. Therefore, this new bonding method of utilizing liquid bonder could provide a 

strong affinity between the powder coating and metallic pigments so as to prevent 

separation of the two materials during spraying. 

At the end, a pre-heating method of applying powder coating onto thermoplastic 

substrates, which helps powder deposition and adhesion onto plastic substrates, was 

studied. Three widely used powder coatings have been tested for this method. The 

coating films were evaluated by both visual inspection and instrumental measurements. It 

was found that this new processing method could provide a smooth surface as well as a 

strong adhesion to the difficult substrate. Furthermore, for the purpose of protecting the 

thermoplastic substrate from deformation during the curing process, a UWO low-cure 

method was applied to these three powder coatings. Compared with commercial low-cure 

powder, the UWO low-cure coatings perform better in a few aspects.  

The discoveries and analyses in this thesis work are contributing to powder coating 

development. Several original techniques have been invented in this study and they could 

provide a good guideline for future work of modern powder coating technology.  

Keywords: powder coating, cyclone, corona charge spraying, Faraday Cage effect, 

transfer efficiency, insulating substrate 
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1 Chapter 1: General Introduction 

1.1 Introduction 

1.1.1 Powders 

Powders are dry solid materials composed of very fine and loose particles which could be 

obtained by pulverizing bulk materials [1]. Powders also refer to the granular materials 

with finer sizes which could have the greatest tendency to form clumps. Powder 

technology could be described as study of the particle dispersion properties [2]. Powders 

have a great importance to industries due to the fact that they have greater specific areas 

compared with the coarse granular material and so they have been studied in detail in the 

fields of chemical reactions, powder coating industry and pharmaceutical applications. 

However, finer particles tend to have more difficulties in fluidization, pneumatic 

transport and spraying, resulting from the inter-particle cohesion and the low flowability. 

Generally, powders may be classified into four groups according to Geldart’s 

classification in terms of particle sizes and densities [3]. This famous classification 

depicts the flow characteristics of the powder during handling and processing. Also the 

theory has been widely used today in guiding many powder studies. 

1.1.1 Powder coating technology 

Powder coating is a technology of decorative and protective coatings which was first 

developed in the early 1950s. The biggest advantage of powder coating is environmental 

friendliness due to having zero volatile compound emissions. In response to the 

announced federal EPA (Environmental Protection Agency) guideline (Clean Air Act of 

1970) with the restriction of quantity and type of solvents, powder coating is applied by 

spraying the charged particles onto grounded substrates [4]. In North America, almost 

five thousand companies are using powder coatings in their final products for better 

corrosion, chemical and abrasion resistance. Powder coating is a young and fast growing 

technology in industrial finishing and takes up over fifteen percent of coating market in 

North America.  
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In the modern manufacturing powder coating process, paint ingredients including resin, 

curing agent, filler and various additives such as degassing agent are mixed and extruded 

into solid composite pieces. After grinding and classifying, the powder particles are 

electrostatically sprayed to the substrate. The resin-based coating melts quickly when 

being heated in a baking oven, and is then transformed to a continuous film on the 

substrate. Compared with the conventional coating process, powder coating does not 

involve any solvent so it eliminates the Volatile Organic Compounds (VOCs) emission.  

Although the market share of the powder coating is still limited currently, taking up only 

8%-9% of industrial finishing by volume, due to its multiple advantages, almost all the 

metal finishing market has chosen powder coating in the recent two decades. The powder 

coating materials have been produced at a value of nearly 4 million USD each year in 

industrial operations [5]. Besides metal substrate, powder coating also began to be 

developed on plastics, wood and other non-conductive materials. Furthermore, the other 

advantages of powder coating compared with the traditional liquid coating is that powder 

coating has the potential to recover all the recycled powders, making it much more 

efficient, economical and energy saving, and it also has greater surface resistance to 

chemicals and UV radiation.   

1.2 Challenges and opportunities of powder coating 
application 

In the coating industry, the film appearance of the final product is the most significant 

factor. The most commonly used powder in current technology is median particle sizes 

(also known as coarse powder), with diameters between 30 to 60 µm. Compared with the 

conventional liquid coating, the current limitations of the powder coating surface film are 

mainly thick film thickness (25-50 µm) and poor surface quality which highly affects the 

aesthetic appearance. As a result, the powder coating coated components are used as 

underbody, car wheel or other interior part in most of the automotive applications [6]. 

Other powder coating applications has been limited to those which do not have high 

requirements of aesthetic purpose such as office furniture and hand tools.  
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The potential solution for improving the film quality is by utilizing finer powders of 

smaller particle sizes. The smoothness of the film could be significantly improved by 

replacing coarse powder with fine or ultrafine powder [7]. Moreover, the film thickness 

obtained by using ultrafine powder (median particle size below 30 µm) is comparable 

with the liquid coating, also it has been realized for the application of the clear top 

coating for automotive industry [3,6,8,9]. For the automotive industry, there are thirteen 

plants of General Motors using powder primers in production lines. In BMW Germany 

plants, several applications of the car body have been successfully applied with powder 

clear coats and put on the market [10,11]. In 2005, Zhu and Zhang developed a new 

technique of better improving the coating qualities by using ultrafine powder coatings 

with particle size smaller than 20 µm [9]. 

However, there are still many fundamental problems and challenges for the ultrafine 

powder application due to their smaller sizes, so it is hard to produce. The dispersion and 

handling problem is more severe than the regular coarse powder. The large amount of the 

small particles generated during the grinding process agglomerate easily and results in the 

low particle flowability. One effective way to enhance the powder flowability is to add 

flow additives such as nanoparticles. However, it may deteriorate the appearance of the 

final coating film by adding any extra additives as it may result in poor blending and 

agglomeration.  

Besides the powder properties, the production of fine powder coating in every 

manufacturing step is more challenging than before. In the extrusion and grinding process, 

very fine particles are hard to be classified and can cause wide particle size distribution. 

During the spraying, more defects occur on the final coating surface as a result of the 

uneven distribution. Furthermore, it has been disclosed by many researchers that the 

transfer efficiency of fine powder is lower than that of coarse powder as they carry less 

electric charge. In addition, fine particles are easy to be influenced and to drift away by 

the air turbulences during spraying, and also by stronger back ionization in using fine 

particles during the spraying [12]. Additionally, the corona charging process of the 

powder coating is facing a problem in coating application on irregular shaped targets that 

have recessed areas. Powder coatings have less tendency to cover those cavities or holes 
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due to the Faraday Cage effect. So the traditional corona spraying has a poor performance 

to provide sufficient coverage for recessed areas of those coating targets with complex 

geometries.  

1.3 Research objectives 

With the increasing demand of the fine powder coating product with satisfactory finishes 

in the industry, the research on the manufacturing and handling of the fine powders is 

worth conducting. The challenges and problems encountered in developing powder 

coating technology have a great need to be solved. The research objectives of this study 

were to expand powder coating’s manufacturing and handling process to non-conductive 

parts, meanwhile solving the problems of the powder processing and spraying. Several 

modifications on the equipment of the grinding and classifying systems and the corona 

spraying gun have been finished to improve the powder properties and spraying 

performance. Furthermore, the manufacturing process of the functional powder coatings 

has been invented and evaluated in this study. 

This study has fulfilled several industrial ideas and demands, at the same time with great 

support of the industrial devices, materials and practices. A series of studies in 

collaboration with Nordson (Ohio, USA) in researching the corona spraying gun, 

Langfabo (Shandong, China) in developing the functional powder technology, and 

Fraunhofer Project Centre for Composites Research @ Western (Ontario, Canada) in 

applying powder coating on thermoplastics has been conducted. Problems and difficulties 

in the operating process have been solved and overcome during the comprehensive study.  

The experimental studies of this research could be classified into four sections: 

I. The powder product obtained from current manufacturing process has large 

particle size distributions, which brings a lot of side effects in the future operating 

processes. The first section of this study was aiming at modifying the current 

classifying and collection process in order to get the final powder product with a 

narrower particle size distribution, so as to improve the powder properties. A 
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secondary air-guider was developed and added to the conventional collecting 

cyclone, and was validated by a series of experiments. 

II. Functional powder coating with for aesthetic use has gained increasing popularity 

in recent years. However, due to the different charging performance of the regular 

powder coating and the functional powders, it has been difficult to spray the 

powder blend onto the target at a fixed mixing ratio. In this part of the research, a 

new processing technique of pre-mixing the metallic pigments with regular 

powder coatings to achieve a uniform charging performance during the spraying 

was invented, and it also improved the recyclability of the powder material.  

III. The third section is the study of modifying the corona spraying gun. The 

operating conditions and optimization of a commercial corona spraying gun has 

been studied in this section. One common problem in using the corona spray gun 

is with the insufficient powder coverage in the recessed area of the target with 

complex configuration, also known as the Faraday Cage effect. In addition, 

several modifications were conducted on the spraying gun in solving the effect, 

followed by a series of experiments. 

IV. The final section was to develop a method of applying powder coating on the non-

conductive substrate. Powder coating is realized by electrostatic spraying onto a 

grounded metal target for maintaining the powder deposition, however, the non-

conductive substrate could not be applied using electrostatic spraying process. A 

new method has been investigated by heating the substrate to certain temperature, 

followed by spraying. The first pass powder gets melted and cured due to the high 

temperature so as to improve the powder transfer efficiency. Extensive 

experiments were conducted to evaluate the new method. 

1.4 Thesis structure 

This thesis is written in the “Integrated-Article” form and fulfills the format requirements 

outlined in the Thesis Regulation Guide of the School of Graduate and Postdoctoral 

Studies (SGPS) of Western University. The thesis consists of eight chapters and is 

arranged as follows: 
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Chapter 1 generally introduces the background of powder coating technology and 

applications. It starts with the research objectives of this PhD thesis. The thesis structure 

and research contributions are also stated in this chapter. 

Chapter 2 presents the comprehensive review from the previous literatures related to this 

research.  It mainly provides the detailed knowledge of powder coating processes to 

explain the background of this study better. The main apparatus and materials are 

outlined in this chapter. 

Chapter 3 discusses a modified cyclone design of the classic grinding system, mainly for 

improving the particle size distribution. A secondary air-guider was utilized and installed 

at the bottom of the cyclone, and then examined by experimental evaluations. 

Chapter 4 contains a new technique in processing metallic power in powder coatings. A 

new bonding method between metallic pigments and powder coating is developed in 

order to reach a uniform charging performance during the spraying. The optimization 

experiment of the liquid bonder and spacer is also explained in this chapter.  

Chapter 5 describes a modified design of spray gun. It reviews the finding of the 

baseline operating condition of a corona spray gun. Then the modified design, by adding 

additional electrodes, is evaluated by Faraday Cage resistance and transfer efficiency. It 

also includes the optimization experiments for electrode adjustments.  

Chapter 6 discusses a new processing technique in spraying non-conductive substrates 

using a pre-heating method before spraying. Three commonly used powder coatings are 

tested on thermoplastic substrate. The sprayed articles are evaluated by both visual 

inspection and instrumental measurements. 

Chapter 7 contains the general discussion on the results of this study.  

Chapter 8 is the overall summarization of the experimental results contained in this 

study. It also provides suggestions for future work.  
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1.5 Major contributions 

Four major contributions of this study can be summarized as below:  

 A modified cyclone design of the current grinding process has been invented to 

achieve a narrower particle size distribution. A secondary air inlet was added at 

the cyclone bottom which provides the reverse air inlet so that the smaller 

particles could be effectively removed during the collection process. In this way, 

the novel design was able to narrow down the particle size distribution. In 

addition, a secondary air guider was utilized so as to retain the comparable 

collection efficiency compared with the conventional cyclone. Also the different 

configuration of the secondary air guider was comprehensively investigated. It 

was found that the convex shaped air guider could narrow the particle size 

distribution as well as retain the cyclone efficiency.   

 A new technique in processing metallic powder and powder coating was invented. 

Those two materials are strongly bonded with liquid bonder so as to reach a 

uniform charging performance during the spraying. As a result, the recycled 

powder has more possibility to be reused, as the concentration of metallic 

pigments remains unchanged before and after spraying. A spacer was also utilized 

in the bonding process to avoid the agglomeration of metallic pigments, as that 

helps to give the good dispersion of these two materials during the manufacturing 

process.  

 The modifications developed on the corona spray gun could significantly improve 

the Faraday Cage resistance during the spraying by adding alternating charging 

electrodes. With the specially designed configuration, the spray gun with multi-

electrode could effectively solve the Faraday Cage effect. The improvement of 

visual appearance is also significant. Meanwhile, the obtained transfer efficiency 

was comparable with the normal corona spray gun by adjusting the charging 

performance of the additional electrodes. 

 A modified technique in applying powder coating on non-conductive substrates 

using pre-heating method was proven to be able to obtain a stable adhesion and 
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smooth coating film. Unlike the conventional pretreatment which makes the 

manufacturing process complex, only by pre-heating the thermoplastic substrate 

to a certain temperature and then by spraying could achieve the acceptable coating 

finishes. Furthermore, the invention of a UWO low-cure powder coating 

formulation provided the opportunity of further reducing the curing temperature, 

which could protect the substrate better from deformation. 
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2 Chapter 2: Literature Review 

2.1 Powder 

Powders are defined as granular materials that have finer grain sizes (less than 100 µm) 

[1].  Powder may become suspended in the atmosphere for a long time if the particle size 

is sufficiently small. The interactions between the powder phase and the air could create 

an expansion of the powder. However, powders tend to return to the packed status due to 

the force of gravity. This aerodynamic property of powder is widely used in industrial 

applications, such as powder fluidization and pneumatic conveying.  

Powders have great importance in industry and medicine, and they have been studied in 

detail in the field of chemical reactions, powder coating industry and pharmaceutical 

applications [2]. It has been a challenge in handling and processing fine powders 

(medium size less than 30 µm) due to its strong inter-particle forces, mainly Van der 

Walls attraction [3]. The ability of a powder to flow is defined as powder flowability. A 

poor powder flowability is mainly due to strong cohesion between particles, which brings 

many difficulties such as agglomeration, de-agglomeration and de-fluidization problems 

in most of the industrial applications. To solve these problems, research has been 

conducted many ways in improving the powder flowability including mechanical 

vibration or adding flow agents, so as to modify the powder performance during handling 

and processing [68-71]. 

The measurement of powder flowability is for characterizing flow properties, as well as 

designing equipment for handling of powders [4]. The most famous classification based 

on powder sizes and densities was proposed by Geldart in 1973, which classified powders 

into four groups according to their flow behaviors [5]. As shown in Figure 2.1, four 

powder groups (A, B C and D) which were denoted “aeratable”, “bubbling”, “cohesive” 

and “spoutable” in Geldart’s chart, indicating different powder fluidization behaviors. 

Geldart’s chart had been greatly helpful on powder involved fields in that it could provide 

a clear criterion for researchers to quickly predict the powder flowability without using 

complex testing processes.  
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Figure 2.1 Geldart’s chart for powder classifications [5] 

Many other researchers also have proposed powder classification criteria. It has always 

been challenging for researchers to test the flowability of a large scale of powder varieties. 

A series of preliminary works of Carr claimed a grade for powder flowability and ranked 

them based on angle of repose, angle of spatula, angle of fall, uniformity and Carr’s 

dispersitility and cohesion [7]. In a classification method proposed by Jenike, powders 

were categorized into five groups with different flowability from “free flowing” to “non-

flowing”, based on analyzing the flow function [8]. In addition, Taylor et al. 

demonstrated a composite index using a flow measurement technique to qualify the flow 

properties of tablet and capsule formulations [6]. In further discussing powder flowability 

in various production processes, a combination of particle physical properties and the 

equipment used for handling and/or processing has been investigated to address this 

multidimensional problem [10]. However, the accuracy could not be assured due to 

variations between characterization methods, which has been a confusion for a long time 

[6, 9]. This concept was proven by the recent work of Huang, which found that 

inconsistency exists among varieties of characterization techniques. The study also 

resolved the confusion problem by characterizing the powder under different states from 

dynamic to static [11]. In similarity, Krantz conducted a characterization experiment in 
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testing different powder material under stress states from static to dynamic [12]. These 

two researches also claimed that there is no single technique that could fully characterize 

a powder, as powder flow properties are dependent upon stress state. It was also 

suggested that characterization techniques under both static and dynamic states are 

needed in order to completely understand and describe the flow properties, as well as to 

predict powder behavior under different processing conditions. 

2.2 Powder Coating Technology 

Powder coating technology is one of the powder applications, and it was first developed 

in the USA in 1950s [13]. It was fast developed in powder formulation on metal 

substrates in the finishing industry for decorative as well as durability considerations [14]. 

Benefiting from its advantages of being environmentally friendly with no Volatile 

Organic Compounds (VOCs) releasing over conventional liquid coating, at the same time 

resisting corrosion and chip with less energy cost, powder coating rapidly gained 

popularity in many industries [15].  

Powder coating materials are either thermoplastic or thermosetting. The main types of 

thermoplastic are polymers with high molecular weight, such as polyethylene, 

polypropylene, nylon, polyamides, polyvinyl chloride and polyesters [15,16]. A 

thermoplastic coating melts when its melting temperature is reached, and it returns to 

solid to form as a coating film after it cools down and retains the same chemical 

composition. The same transformation starts again when reheating the thermoplastic 

material. However, thermosetting coatings are lower molecular weight solid resins which 

melt when heat is applied. Being different from thermoplastic materials, the molecules of 

thermosetting coatings are chemically cross-linked with each other or with reactive 

agents to form a polymer with higher molecular weight. Thus, the final coating layer of 

melted thermosetting material has different chemical structures from the original resin, 

and could not be re-melted by applying the same heating process when the reactions are 

completed. This cross-linking process is also known as the coating curing process. Final 

coating film is strongly bonded with coating substrate after curing, also the mechanical 

properties of the coating itself could be enhanced during the cross-linking reaction.  
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The major portion of powder coating market is using thermosetting coatings with more 

than 90% of the market share. Thermosetting coating consists of resin, filler, curing agent, 

color pigments and other additives such as flow agent. Resins as the basic composition of 

thermosetting material and they also control the melting point, flow and leveling 

properties of coating film. There are several main types of resins in the market: epoxy, 

polyester, polyurethane and acrylic [15]. Detailed properties of thermosetting coating 

materials are discussed as follows. 

Polyester powder coatings 

Polyester coatings are often applied on exterior products due to its good weathering 

characteristics. The coating film is tough and resists cracking because of the contained 

polar groups.  It could also provide a better finish with higher gloss and less yellowing 

when applied over the appropriate pre-treatment [17]. The typical uses of polyester 

powder coatings are outdoor applications like automotive components, garden furniture 

and outdoor use electrical equipment. 

Epoxy powder coatings 

Epoxy powder coatings are recommended for internal products with good flow and 

toughness. The adhesion between epoxy coatings and metal surface is excellent so 

generally primer is not required in coating process.  It could also provide smooth finishes 

with resistance to corrosion, scratching and chemicals. However, epoxy coatings chalk 

when subjected to UV radiation. For this reason, they are used mainly for indoor 

applications such as furniture decorations.  

Epoxy and Polyester coatings 

This coating type combines epoxy resin and polyester resin to form a product which is 

very close to its epoxy counterpart. It is also known as hybrid powder coatings in 

combining both characteristics of epoxy and polyester, also it has a competitively lower 

price. Hybrid coatings are usually for use where tough, flexible and excellent decorative 

appearances are required, but it begins to chalk when exposed to UV radiation. Hybrids 



  

 14 

are likely to be used in many of the same applications as epoxies. The mixing ratio of the 

two resins is always adjusted to provide desired coating properties.  

Polyurethane powder coatings 

Polyurethane coatings are suitable for both indoor and outdoor applications. Due to its 

low viscosity during curing, it could provide a high level of smoothness and gloss coating 

film. Polyurethane coatings are considered a high end version of polyesters with even 

stronger bonding to the coating target as well as a better overall appearance in color, 

gloss and smoothness.  Of course the cost of polyurethane is higher as compared to a 

polyester powder. 

Acrylic powder coatings 

Acrylic powder offers excellent thin film appearance with good exterior durability and 

chemical resistance. Because of their perfect electrostatic application characteristic, 

acrylic powder coatings are often used for top coats on automotive bodies. However, 

flexibility and impact resistance of acrylic powder coatings are very poor. The overall 

compatibility with other commonly used powder coating types is relatively weak, which 

limits acrylic’s application [18].    

2.3 Powder Coating Manufacturing Processes 

Powder coating manufacturing processes include two main stages: (1) hot extrusion: 

different ingredients are mixed in microscopic scale into a paste, then they form a 

homogeneous product in the form of chips; (2) Chip product is then ground, classified 

and collected into powder with a mean particle size of 30-40 µm by using grinding 

system. The most commonly used one is the air classifying mill (ACM). Each of the 

processes is discussed as follows. 

2.3.1 Hot extrusion 

The first step of production of powder coating starts with the hot melt compounding 

process. It is a classic mixing technique and has been widely used for over 70 years by 

the industry [19].  During this operation, binder and cross-linker are melted and mixed on 
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a microscopic scale. The mixture agglomerates are broken into particles due to the high 

shear mixing characteristic, and are wetted by the melted binder, and then 

homogeneously dispersed together with additives uniformly [20-22].  

Figure 2.2 illustrates a typical hot extrusion process. A common extrusion system 

includes the screws, barrel and heating/cooling system.  

 

 

Figure 2.2 Hot extrusion process 

For powder coating manufacturing, a co-rotating twin screw system is widely accepted to 

realize a continuous production. In the beginning of hot extrusion process, raw materials 

including resin, pigment, filler, curing agent, degassing and flow agent etc. are pre-mixed 

(a) Hot extruder 

(b) kneading disks in zone 2 

Hot Extruder 

Zone 1 Zone 2 

Cooling Drum Cooling Drum 
Cooling Belt 
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and fed into the feeder. There are two zones with different temperatures of extruder barrel. 

As shown in Figure 2.2 (a), zone 1 contains a pair of one-piece screws with large helical 

threads pushing materials forward. This zone is also where the raw materials start to 

soften at 40-60 °C. When moving into zone 2, the actual mixing begins at an increasing 

temperature from 100 to 130 °C. The cross-cut operational scheme shown in Figure 2.2 

(b) demonstrates a twin screws with lens-shaped kneading elements arranged in zone 2 of 

extruder. It could provide an efficient conveying and pressure build up action. Driven by 

strong agitating force, the softened material is continuously transferred from the district 

between the wall and kneading disks. The inter-meshing and high shear motion of the 

screws also help mixing and dispersing to take place. During this homogenizing process, 

pre-curing of the material could occur if the temperature is not well controlled in the two 

zones. Larger size of cured material can jam the screws, and may cause operating hazards. 

Any pre-cured pieces after spraying cause defects on coating finishes.  

The homogenous product obtained from the hot extruder is followed by cooling 

procedure. Two cooling drums roll the hot mixed material into a solid thin sheet and 

guide it to a long cooling belt with a pelletizer at the end. The cooled sheet is finally 

crushed into pieces, which are known as powder coating chips and are ready for grinding. 

2.3.2 Grinding, classifying and collecting  

Grinding 

Fine grinding process follows the hot extrusion in powder coating industry after the 

collected material is completely cooled down. Different types of grinding mills are 

utilized for the process to achieve size reduction of solid granules. Most of the 

contemporary grinding systems combine the function of size classification and de-dusting 

devices together. Figure 2.3 shows the key grinding component of a common impact 

pulverizer. A chamber with a main rotor with grinding elements evenly distributed at the  
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Figure 2.3 A grinder mill of grinding system 

edge, and a stationary annular wall with vertical grooves are fitted at the outer part of the 

rotor with a certain gap size. When the main rotor is operating at a high linear speed (110 

m/s), the fed powder coating chips in this grinding chamber are ground fast and broken 

into powders due to the high shear and impacts between rotating pins and grooves. 

Classifying  

The contemporary powder coating technique requires an effective classifying process for 

adjusting the particle size. In particular, fine powder handling is even more challenging 

because of the agglomeration due to cohesion between particles. These clusters can be 

broken up by collisions driven by air force. Screen mesh is the best known type of 

classifier used in separating powders by industries. However, for dry classification of 

those particle less than 70 µm, the capability of screen classifier decreases rapidly, so that 

other types of classifiers are recommended. For example, centrifugal classifier of cross-

flow or counter-flow, rotor classifiers, cascade classifiers and circulating air classifiers 

are recommended [23]. Centrifugal classifier with counter-flow is the most widely used 

one in powder coating industry. The work of the centrifugal classifier is based on vertical 

air flow action of rotary and cyclonic devices. The effect of the classifier in a cyclone is 

normally obtained by the tangential air inlet in the case of cyclones shows in Figure 2.4.  
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Figure 2.4 Principles of air classifiers [72] 

The air vortex causes an inward spiral movement from the tangential inlet to the central 

outlet. The tangential velocity component (Vt) of one particle in separating device at 

radial position (R) is given by [24]: 

Vt = K· Rn     Eq. 2.1 

where K and n are geometry constants. The exponent n has the value of 1 for the ideal 

case for rotary classifiers and -1 for cyclonic classifiers.  

However, there is a difference between the tangential velocity component with an actual 

condition, resulting from the existence of a forced vortex in rotary centrifugal air 

classifiers that is in the middle of the above two extreme cases. As illustrated in Figure 

2.5, a classifier that has a high speed classifying rotor with guider vanes set up on the top 

of cyclone. When the upward particles encounter the rotating rotor, only small particles 

could pass through to the top of cyclone while larger particles are rejected. Those larger 

particles are driven down stream to the cyclone bottom and collected for the further 

processing.  

Figure 2.6 demonstrates the top view of a simplified classifier. A particle in the space 

between classifier vanes is driven by two forces: drag force (Fd) generated by the driving 

air and centrifugal force (Fc) caused by spin of the particle. The particle remains in 

equilibrium if the two forces are equal, and the size of this particle is called the cut-size 

of this classifier. Bigger particles over the cut-size has larger centrifugal forces and vice  
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Figure 2.5 A classifier for powder coating 

versa. In this way, the cut-size can be varied by decreasing the rotating speed of the 

classifier by controlling centrifugal force on the particle. The cut-size can also be  

 

Figure 2.6 Forces acting on particle within a rotating classifier (Top view) 

controlled by changing the drag force of the particle by adjusting the air velocity. In 

reality, the forces on a particle in classifying process are much more complex than in 

theory. Due to the influence of air velocity and existence of turbulences and eddies, the 

Vp: rotational velocity of the particle; Vc: rotational velocity 
of the classifier blade; 
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particle can not be successfully classified as predicted. It is because small particles could 

not pass through the vanes due to outward drag caused by turbulences. Those larger 

particles could also be driven deeper to the vanes as a result of the centrifugal force 

decrease. Hence, larger particles could possibly be carried out by the escaping air flow. 

These above influences directly affect the efficiency and cut-size of the classifier, and 

further cause the wider particle size distribution of the collected powder product.  

Collecting 

The collection process of fine powders is usually accomplished by a cyclone in order to 

separate powder coatings from the air after pneumatic transport. A cyclone is a classic 

separator which was first invented in 1800’s and became the essential component in the 

modern powder coating grinding systems [20, 25]. They have the advantages of low 

maintenance and low capital cost, as well as that it could considerably reduce the 

cleaning expense compared with filters. A typical cyclone consists of a tangential inlet on 

the top, a vortex finder, a cylindrical barrel and a solid outlet, as shown in Figure 2.7.  

 

Figure 2.7 A cyclone design 

Particles entering from the cyclone inlet are driven by the combination of centrifugal  
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force and gravity so that they flow spirally along the cyclone inner wall towards the solid 

outlet. At the same time, majority of air escapes from the air outlet at top of the vortex 

finder due to the negative pressure while a certain amount of air is flowing downward 

and creating an “outer vertex” along the cyclone wall [26,27]. This downward velocity 

diminishes when the air moves close to cyclone bottom, and it eventually turns upward 

due to the strong suction at the air outlet. This spiral air flow from the cyclone bottom 

and along the center axis forms an “inner vortex”. Meanwhile, the horizontal inward drift 

occurs due to the fact that some of the air from the outer vortex is carried away by this 

inner vortex [27].  

The mechanism of cyclones has been widely studied by previous researchers. Leith 

claimed in 1979 that spinning gas streams due to the centrifugal effect is the key factor to 

separate particles from the air [35]. Particles are thrown from the cyclone wall to center 

and they tend to orbit around the cyclone axis according to numerical studies. It is also 

found that the upward inner vortex flow could create inward drag on the spinning 

particles near cyclone wall [25,27]. On the other hand, many researchers focused on 

collection efficiency, and found that the main reason causing great reduction of cyclone 

efficiency is the particle loss [29-41].  

The theoretical cut-size figure is shown in Figure 2.8 with a solid line. Ideally, the 

situation for particle collection efficiency is either 0% if all the particles are smaller than 

cut-size, or 100% for particles larger than cut-size that are all collected due to gravity and 

centrifugal forces.  However, the actual efficiency curve follows the dotted S-shaped line. 

The difference between theoretical and actual grade efficiency curve is due to the 

following two reasons: Stairmand pointed out that smaller particles could easily 

agglomerate into clusters which could have been retained inside the cyclone and behaved 

like larger particles [28].  
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Figure 2.8 Diagram of grade efficiency curve [29] 

Moreover, smaller particles could also attach onto larger particle surface by inter-particle 

forces. In this case, the particles below cut-size are collected so that those particles have a 

collection efficiency higher than 0%. On the other hand, the collection efficiency for 

those particles larger than cut-size could not reach 100%, because larger particles could 

also be guided out through the air outlet by the inner vortex due to the air turbulences and 

bounces.  

In the process of collecting powder coatings, it is crucial to remove small particles as well 

as retain large particles. However, there is no successful design that has selectivity on 

particle size currently. Larger particles escape from the cyclone top directly causing 

reduction of collection efficiency. Therefore, a cyclone with the design of selection on 

particle size will solve the urgent problem in producing powder coatings.   

Air classifying mill 

In 1962, the first Mikro ACM (air classifying mill) invented by Hosokawa came on the 

market. It works as a size reduction mill for various products including powder coatings. 

The combination of grinding, classifying and integral dynamic collecting could be 

achieved in one stage operation using ACM, and then it has been fast developed and 

adapted to many industries especially fine and ultrafine powder coating applications. 
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Compared with each single stage operations, ACM is less time consuming and less 

operation complexity. Figure 2.9 demonstrated a typical ACM operating process. The  

 

Figure 2.9 A typical air classifying mill (ACM) operation [73] 

product is fed from the feeder and pneumatically transferred to the mill chamber, where 

size reduction takes place. Due to the high speed of rotating grinding rotor, particles are 

crushed into smaller pieces by the impact on grinding pins and grinder wall with grooves. 

The striking edge velocity of particles could reach 140 m/s so that d10 less than 10 µm is 

achieved during grinding process. Fine product and air mixtures are distributed by the 

classifier blades uniformly. At the same time the separation of coarse powder and fine 

powder takes place due to mass difference. Fine particles which pass through the 

classifier are guided to an outlet connection followed by a collecting cyclone, while 

larger particles are rejected and return to mill chamber to repeat the grinding process till 

they reach the ideal size. There are four essential operating parameters during operating 

ACM, namely air velocity, feeder speed, grinder speed and classifier speed [42]. Higher 

total air velocity benefits the classifying efficiency in that it could directly increase the 

centrifugal force on the particles. Above all, higher air flow could reduce the system 

temperature so as to help protect the entire system with many moving components. So in 

order to obtain finer powder coating products, the increase of grinding speed and/or 

classifier speed is needed. A proper reduction of feeder speed and air velocity is also 
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helpful to get finer products. In summary, ACM is a grinding system controlled by 

adjusting overall parameters according to the desired particles sizes. Hence, trials are 

always needed prior to the production due to the complex determinants. 

2.4 Powder Coating Applications 

Generally, it is thought that application of powder coating has more difficulties than 

conventional liquid coating. Unlike those wet paints, powder coating could not dissolve 

or suspend into solvents. Difficulties of powder coating application are with how to apply 

it evenly and let the coating melt to form a smooth and continuous film on coating 

substrate. Also challenges arise in objects with complex geometry. However, it could not 

draw the conclusion that powder coating is always problematic [20]. Compared to 

conventional liquid coating, powder coating presents some advantages such as 

eliminating volatile solvents and have potential 100% utilization of over-sprayed powders. 

Many different coating techniques have been developed for powder coating application in 

the past decades, including thermal spraying, electrostatic spraying, fluidized bed, 

electrostatic fluidized bed and flame spray. The flame spray was invented in 1985 but not 

yet widely used [43]. These techniques have been proven effective in powder coating 

application and more advanced than liquid coating. They offer the advantages such as 

good edge covering, uniform film thickness, absence of sagging problem, low overall 

costs and more importantly, the recyclability of waste coating materials which meets the 

most stringent environmental regulations [44]. Some spraying techniques are typical and 

most widely used currently and they are described in the following sections.  

Thermal spraying 

Powder coatings become soft and melted at certain temperature. Inspired by this 

characteristic of powder coatings, thermal spraying was firstly invented for applying 

powder coatings in the late 1940s [45]. A thermal spray gun is demonstrated in Figure 

2.10. At the beginning of the thermal spraying process, the cold air is first heated up and 

prepared for melting the powder coatings. The fed particles quickly get softened in 

contact with the heated air and are then transported through the gun to coating target. 

Then the melted particles build up and form coating film after cooling down. Thermal 
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spraying is still being used nowadays in powder coating industry. However, the limit of 

this technique is due to that it is very difficult to control the heating of powder so that it is 

only suitable for thermal plastic coating application.  

 

Figure 2.10  Thermal spraying gun 

Furthermore, the obtained film thickness after thermal spraying is up to few millimeters 

in scale, resulting in a rough coating finishes. Also the bonding between substrate and 

powder coating is weak.  Other new techniques were required to overcome those 

difficulties. 

Fluidized bed coating 

Powder coatings were firstly applied by fluidized beds, as was patented by Gemmer in 

1963 [46]. In this process, the workpiece is pre-heated before conveying into fluidized 

 

Figure 2.11 Fluidized bed powder coating process 
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bed, where powder coatings stay at room temperature and are kept fluidized by means of 

the air stream. Figure 2.11 illustrates a fluidized bed powder coating application. When 

the pre-heated coating part is moving and dipped into fluidized bed, powder particles 

soften and adhere to the substrate. The final coating film thickness is determined by heat 

capacity and temperature of workpiece and its residence time. Then the coated part is 

cured to form the final coating in a baking oven. The particle deposition rate depends on 

the particle size very much. In fluidized beds, fine particles are always consumed faster 

than coarse particles, resulting in size distribution changes with time. However, it could 

be mitigated by supplying fresh powder continuously. In this way, a constant operating 

sequence between two dipping operations and residence time of one workpiece could be 

controlled so as to obtain a final coating product with high quality.  

Fluidized bed application could provide an improved overall coating finish compared 

with thermal spraying due to the better control of heating. The thickness after fluidized 

bed coatings arrange from 50 to 150 µm which is suitable for both thermosetting and 

thermoplastic applications [45].  

Electrostatic spraying 

Electrostatic spraying is one of the most popular techniques for applications of powder 

coating. It was developed by Pieter and first introduced to industry in the 1960s [47]. The 

basic principle of electrostatic coating is that the powder is quickly charged in a spray 

gun chamber and deposited onto coating target by propulsion of compressed air. Charged 

powder particles can deposit on the grounded target surface firmly due to strong 

electrostatic force. Some researchers have discovered that particles are still held to 

coating surface when removing the electric field derived from the gun, as is due to the 

image charges in the substrate. The negative ions flow from the grounded wire to 

neutralize the charged particle, meanwhile this image charges can be considered as a 

capacitor [48]. In this way the powder layer adheres to the workpiece and is ready for 

baking. The biggest advantage of electrostatic coating is that over sprayed powder could 

be recycled and reused. In addition, the final film thickness is less than 100 µm, resulting 

in a significantly improved coating finishes compared with other application methods. 
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Nowadays, electrostatic spraying is widely utilized by majority of powder coating 

industry for decorative purposes, and more than 90% of powder coating is applied to 

metal finishing [49]. Corona charge spraying and tribo spraying are two commonly used 

types of electrostatic spraying which are reviewed as follows. Corona discharges are low 

power electrical discharges that take place at atmospheric pressure. The corona is 

generated by an electric field and always associated with sharp edges on an electrode or 

small diameter wires. Generally speaking, corona charging is a process to charge 

materials using ion sources from corona discharge. Powder coating particles (size larger 

than 0.5 µm) get charged by contacting with free ions which is called field charging [51, 

52].  

The particle saturation charge by field charging can be derived from Pauthenier limit and 

described as [47, 51-53]: 

Qmax = 12πε0εrr2E/(εr+2)    Eq.2.2 

where Qmax stands for saturation charge, and εr is the particle relative permittivity. Corona 

current for a certain electric field could affect the particle charging time, so as to reach 

the saturation charge [27,49,53]: 

τ = 4ε0E/J      Eq.2.3 

where τ is the time for particle to reach half saturation charge, and J is current density. In 

addition, charging efficiency is also a significant parameter which is described by charge-

to-mass ratio (Q/M) and given by [51,52]:  

Qmax/M=9ε0εrE/(εr+2) rρ    Eq.2.4 

Where Qmax/M is inversely proportional to particle radius, and ρ is the particle’s true 

density. 

Corona spray gun is one of the most widely used devices for corona charging applications. 

Particles are directed by flow from a feeder to the inside of the spraying gun, and then 

they are imparted by high voltage from electrode(s) to get charged. Corona gun also has a 

good control of the deposition of powder by adjusting electrostatic voltage setups. Figure 
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2.12 demonstrates a corona charging process. An external high voltage is connected with 

one electrode inside of the corona gun (some designed with more than one electrode). 

Normally a negative charge from -30 kV to -100 kV is applied to electrodes and is 

discharged at the electrode tip of spray gun nozzle. It ionizes the surrounding air and 

creates negatively charged free electrons in the vicinity of gun tip, which is known as  

 

Figure 2.12 A corona charge spraying process 

corona discharge. Powder particles obtain negative charges when being sprayed out from 

the gun and carry free electrons to the coating target. However, not all the moving 

particles are charged and not all ions are attached onto the particles. It is found that only 

0.5% ions are associated with charging particles while 99.5% still exist as free ions in 

powder cloud [50]. In other words, the powder cloud created by the spray gun consists of 

charged particles, uncharged particles and negative ions. At the same time, corona 

discharge also creates a strong electrostatic field between the electrode tip and coating 

target. As a result, the moving particles are governed by a combination of electrostatic 

forces and aerodynamic forces [47]. The electrostatic forces become dominant when 

particles move closer to coating target [56]. Hence, the charged particles attach on the 

surface of grounded workpiece to form the final film. 

Electrostatic spraying has one limit in that it does not cover the recessed area of coating 

substrate. So it is not favorable for coating targets with complex geometries. Particles 

tend to cover along edges and corners and this phenomenon is known as Faraday Cage 

effect. As a result, coatings accumulate on the edge and leave those recessed areas 

covered with insufficient particles, leading to uneven finishes.  
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Tribo charging is another significant alternative for powder coating spray. Different from 

corona charging mechanism, particles get charged mainly by friction. Figure 2.13 shows 

a tribo spray gun. The basic mechanism of tribo gun is that particles flowing inside of 

gun chamber touch the wall and baffles, so as to form intensive friction. During this  

 

Figure 2.13 Tribo charging gun (source: Ransbwg Gema AG) 

process, positive charges are created resulting from the difference of dielectric constants 

of particle and gun wall surface. It was explained by Davies and Henry that if two 

insulators are brought into contact, the unipolar charge created by charge transfer remains 

after their separation [54,55]. In addition, some researchers suggested that the ionic 

transfer or bulk material transfer should be involved and combined with the friction 

mechanism to better explain why it is necessary to get sufficient charge transfer [50].  

The advantage of the tribo gun is that it eliminates the electrostatic filed between gun tip 

and coating target, which effectively avoids the Faraday Cage effect. In this way a 

smoother and uniform film is achieved, even for the coverage on recessed areas. 

However, the performance of tribo spraying process is sensitive to many factors such as 

humidity, powder properties and surface condition. Also it has lower charging capability 

than the corona spray gun, which is considered as a disadvantage in industry with high 

intensity of production. What is more, the adhesion between the powder layer and coating 

substrate is weaker due to less particle charge compared with using the corona spraying 

gun [57-59].  
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2.5 Trends of Powder Coating Technology 

(a) Fine powder coating 

Powder coating technology has been fast developing for many years. In recent years, it is 

widely used in finishing industry in Europe, North America and Asia due to its 

advantages of no VOC emission and economical consideration [17]. However, powder 

coating has the main restriction on coating quality so it could not thoroughly replace the 

liquid paints. The commonly used powder coating has medium particle size from 30 µm 

to 60 µm, which is known as coarse powder. With current technology, the extensively 

employed powder coatings cause many aesthetic problems such as thick film thickness 

(50-100 µm) and coating roughness, reflected by strong orange peel. As a result, powder 

coating application in most of the finishing industry, especially automotive industries, is 

only limited to underpart components with lower aesthetic requirement [60]. A potential 

solution of this problem is using fine powder with particle size less than 30 µm. It has 

been referred that the film smoothness could be improved and the film thickness is 

comparable to liquid coating film (25- 50 µm) by using ultrafine powder [61]. In recent 

years, many automotive industries applied ultrafine powder coatings on car bodies with 

higher aesthetic requirements. BMW utilizes powder clear coatings on several series of 

sedans, General Motors also applies powder coating as primer in their 13 plants in North 

America [62,63]. Since there are fundamental problems in ultrafine powder handling 

such as dispersion and agglomeration of ultrafine powder coatings, researchers 

concentrated more on improving the flowability of ultrafine powders. Zhu and Zhang 

developed an ultrafine powder coating technology with flow additives for enhancing the 

powder flowability, which successfully realized powder coating application for particles 

less than 20 µm [64]. 

(b) Low temperature cure 

The curing process of thermosetting powder coating occurs at a temperature from 180 to 

200 °C for 10 to 20 min, which is not suitable for some heat sensitive substrates. Coating 

parts like plastic, wood or other temperature sensitive materials are almost impossible to 
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be powder coated and cured as metal targets. In recent years, the development of low-

cure powder coatings has been devoted to formulating powders that could cure at a 

relatively low temperature (near 100 °C). Low-cure powder coating contains basic resin 

with curing promoters, where they are functioning as catalysts to accelerate the 

crosslinking reaction. With this promising technology, more heat sensitive materials 

made of plastic and wood could be coated and cured without compromising durability or 

quality [65]. However, it is necessary to pay attention to its transportation and storage 

stability.  

(c) Functional powder coatings 

In recent years, powder manufacturers started to offer powder coating product for 

premium application with higher aesthetic appearance requirements. The utilization of 

metallic powder is one typical example to provide extra shininess of the final finishes.  

In addition, there are also many other new opportunities of functional powder appearing, 

such as antibacterial and antimicrobial powders, which prevent the spread of bacteria. 

Furthermore, the finishing on plastics works on improving weatherability, anticorrosion 

and chemical resistance [66]. 

(d) Powder coating on insulated substrate 

The use of plastic components has been growing steadily due to its lighter weight in 

reducing overall vehicle weights so as to increase the fuel efficiency. Powder coating on 

plastics has potential advantages in providing good adhesion, abrasion resistance as well 

as multitude of color choices. Powder coatings can also be used as a primer in coating 

plastics to increase the surface conductivity [67]. 
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3 Chapter 3: A novel classifying cyclone for reducing 
particle size distribution  

3.1 Introduction 

In the application of the powder coating, the powder flowability is a critical characteristic 

because it directly affects the final coating quality during the powder handling and 

spraying. Narrowing down the particle size distribution can improve the flowability so as 

to achieve a better surface condition [17]. The direct method to reduce the particle size 

distribution is to remove small particles of the collected particle samples. However, it is 

very challenging to accomplish since there is a large amount of small particles less than 5 

µm generated from the grinding process. In general, utilizing a classifier or other 

conventional sieving during the collecting process could reduce particle size distribution. 

Furthermore, some grinding system involves multi-classification processes which could 

further reduce the finer particle content. Due to the complex operation and relatively high 

costs, those methods are not widely used in powder manufacturing processes. In this 

study, a modification of a conventional cyclone was proposed and utilized as a function 

of classifying cyclone, which would give better classifying performance during the 

collection of fine powder coatings. 

Cyclones are the particle removal devices which collect entrained particles by centrifugal 

force. It has been established as a low-cost unit operation for removing dust from 

industrial gas streams in the late 1800s [1,2]. The cyclone efficiency is generally good for 

particles larger than 5 µm in diameter [3]. As one of the most widely used gas and solid 

separators, it spins the gas stream without any moving parts. Because of its advantages of 

simple construction, low capital cost and the applicability to a wide range of operating 

conditions, cyclones are still widely used today for solid-gas and solid-liquid separations 

[4].  

A typical cyclone contains a cylindrical barrel, a cone and a vortex finder, as shown in 

Figure 3.1. Due to the suction of the air outlet, particles are guided tangentially into the 

top of the cyclone barrel during the operation. Then the particles flow mainly near the 

wall of the inner barrel, driven by the gravitational forces and the centrifugal forces. Most 
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of the particles flow helically because of the rotating gas flow, while some particles are 

driven by the exiting air through the vortex finder and then escape from the top after 

entering the cyclone [5]. Many numerical studies suggest that the air velocity becomes 

much lower in the lower part of the cyclone, and as a result, the air flow eventually turns 

around and towards the top of the vortex finder due to the outlet suction. This creates the 

inner vortex in the middle of the cyclone. Meanwhile, the remaining smaller particles 

would easily be carried away from the outer vortex. This process is denoted as a 

horizontal inward drift, and the smaller particles are removed from the introduced powder 

as they are more subjected to the aerodynamic forces.  

 

Figure 3.1 The reverse flow cyclone 

In recent years, more industrial operations required higher collection efficiency and 

researchers focused on improving the efficiency of those particles smaller than 5 µm. The 

collection efficiency and pressure drop are two main criteria for evaluating the 

performance of the cyclone collection [6]. Many researchers who have devoted to 

designing cyclones for decades also used these two factors. The main purpose of 

modifying the cyclone is narrowing down the particle size distribution, which can benefit 

the powder flowability so as to improve the quality of the powder coating for high-end 

uses. As previous numerical studies indicated, the particles orbit along the cyclone wall 

and around the axis on a cross-section of the barrel of the cyclone. At the same time, the 
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air flow moves upwards in the radial direction and goes through from the vortex finder, 

resulting in discharge. In this way, the brought up particles are removed from the cyclone 

[1,5]. Leith stated that the separation of the particles from the air relies on the spinning 

gas stream, as a result of the existence of centrifugal forces [7]. Both the inward air drag 

force and centrifugal forces have influence on different particle sizes, as shown in Figure 

3.2 [1,8,9,10]. The larger particles are affected more by the centrifugal forces, so the 

combined force acting on the particle points towards the cyclone wall. If the particle is 

small and light, the inward drag force is dominant, so the combination of the force points 

opposite the wall and towards the cyclone axis. Due to this phenomenon, the small 

particles are easily cleared away, resulting in the reduction of the collection efficiency. 

However, by utilizing a classifying cyclone, it could help with reducing the particle size 

distribution of the collected particles in a way that the small particles are retained inside 

the cyclone and then removed. 

 

Figure 3.2 Forces on small particles (left) and large particles (right) on a cyclone 
cross-section [10] 

Furthermore, in an ideal situation, a cyclone has a theoretical grade efficiency curve with 

a certain cut-size shown in Figure 3.3. The particles smaller than the cut size should not 

be collected in the final samples whereas the collection efficiency could reach 100% for 

the particles larger than the cut size. However, due to the existence of agglomeration of 

the smaller particles as well as the difference of forces acting on the particles, the actual 

collection efficiency curve follows an S-shape, as illustrated in Figure 3.3 in dotted line. 
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The finer particles get agglomerated and even form into larger and heavier clusters due to 

the strong inter-particle cohesion, so they are difficult to disperse in the cyclone at low 

flow rates [11]. When the finer particles agglomerate into larger clusters, they are no 

longer dominated by the inward force. Instead, the clusters could be retained inside the 

cyclone. In addition, the smaller particles are likely to attach onto the large particles or 

the cyclone wall by the inter-particle force during pneumatic transport. In this way, the 

collection efficiency of the particles below cut-size would not be 0%. In terms of the 

large particles, the collection efficiency could not reach 100% for the reason that they 

may also escape through the vortex finder during operation due to the impact of 

turbulences, bouncing and eddies. In consequence, the actual collection efficiency of the 

large particles above the cut-size is smaller than 100%.  

 

Figure 3.3 Diagram of grade efficiency curve characteristics [10] 

Previous researchers indicate that when optimizing the dispersion performance, both 

effects of flow rate and particle size distribution should be taken into consideration [11]. 

Some work shows that the principal source of de-agglomeration is drag force, while other 

believes that the agglomerates would be reduced by the separation force due to 

mechanical impaction [12,13]. As an inspiration to this study, when removing the small 

particles, a certain amount of large particles could also escape during the process.  
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In this study, the proposed classifying cyclone is somehow contradictory to the 

conventionally used cyclone which focuses more on improving and maximizing the 

collection efficiency. However, the classifying cyclone of air classifying mill (ACM) in 

this study is aiming at removing specified particles. In processing the powder samples, 

after the grinding and classifying system, a large amount of fine particles is generated in 

the powder sample. When applying the collected powder into a spraying booth, it is more 

difficult to spray ultrafine powders compared with regular powder coatings, as the fine 

particles deteriorate the powder flowability, resulting in a poor film quality. In this study, 

the ACM is utilized in grinding and classifying the particles. Experimental results 

showed that the D10 is less than 6 µm for the fine powder particles and 12 µm for the 

coarse powder collected by the conventional cyclone. The generated fine particles get 

agglomerated easily so that the modification of the new cyclone is aiming at removing 

the smaller particles so as to narrow down the particle size distribution.    

3.2 Related Work 

The purpose of the cyclone modification and optimization in this study focused on 

removing particles rather than maximizing the collection efficiency compared with the 

traditional improvement on the cyclone. Along with the reduction of small particles, the 

particle distribution could be improved. However, the collection efficiency is affected 

and becomes lower with the reduction of the amount of smaller particles. In order to 

optimize the cyclone efficiency, the new cyclone design introduces the secondary air inlet 

at the bottom of the reverse flow. As shown in Figure 3.4, there is a thin gap opening at 

the bottom of the cyclone. Given that the gap is relatively smaller than the whole scale of 

the cyclone, the air is easily induced into the cyclone at a high speed by the vacuum due 

to the suction from cyclone top. As a result, the upward flow can be enhanced so as to 

help remove the small particles. Meanwhile, the introduced secondary air also breaks 

down the particle agglomerates at the bottom of the cyclone. This design does not require 

any other external power supply, as the secondary air gap was open to the atmosphere.  
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Figure 3.4 The reverse flow cyclone with the secondary air gap 

Although a few similar designs and modifications have been mentioned in previous 

literature, especially for the cyclone application in ACM, some of the study and findings 

could still provide a guidance for the work today in this study. Darrow invented a cyclone 

utilizing reverse air to remove the fine particles [14]. As shown in Figure 3.5, the 

additional classifying air inlet is introduced at the bottom of the cyclone. This was more 

efficient due to the inner structure which could redirect the fine particles near the wall  

 

Figure 3.5 The classifying design by Darrow [14] 

back to the classifying air. Similarly, Schwamborn et al. proposed a cyclone collector 

having two secondary air nozzles at bottom which could provide the upward flow, as 

illustrated in Figure 3.6 [15]. Thus the fine particles nearby can be carried away by the 
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classifying force and taken back upwards. Ikebuchi’s cyclone bottom design has the 

annular pipes around the lower conical part, as shown in Figure 3.7 [16]. The gas streams 

are blown through these pipes so as to form a swirling current, thus the particles inside of  

 

Figure 3.6 The classifier design by Schwamborn et al [15] 

  

Figure 3.7 Classifier design by Ikebuchi et al [15] 

the cyclone would be reclassified. According to the above three patented designs, 

additional reverse flow are all utilized to get rid of fine particles but this study proposes a 

different modification method. In the referred invention, removal of small particles can 

definitely improve the classifying efficiency of the cyclone but it causes the reduction of 

collection efficiency due to increased entrainment of the larger particles. So the inner 

structure deflectors are added in the cyclone body in order to minimize the adverse effect 



  

 44 

brought by the reverse flow, so as to maintain the collection efficiency [14-16]. However, 

those designs of the cyclone were too complex and very difficult to adjust and modify 

during industrial application.  

3.3 Materials and Methods 

The new modification of cyclone in this study aimed at removing smaller particles as it 

has the ability to break down the powder agglomerations and guide more particles by the 

enhanced upper flow. Most importantly, compared with previous designs, fine powder 

was also investigated in the new cyclone other than only using the coarse powder in the 

previous patented designs. So it was more challenging in removing the small particles 

since the agglomeration is more severe for fine particles. In the case of the powder 

grinding system, since ACM is the most commonly used and integrated machine, it is 

difficult to change or reassemble any part of it. So the biggest advantage of this new 

design was that the secondary air inlet at the cyclone bottom can be adjusted easily 

without changing any structure of the cyclone, also other parts of the ACM can remain 

unchanged. In addition, the simple design at the bottom of the cyclone provides more 

convenience for future research and industrial scale-up.   

Nevertheless, same as the patented designs, the collection efficiency is still the most 

significant factor when removing the particles and it may be further reduced by adding 

the external air inlet. Therefore, the invention of the air guiders was made in order to 

solve the problem. As shown in Figure 3.8 (a), the air guider is made by cylindrical solid 

wires of different diameters mounted on a thin plastic shim. Thus the wires can provide 

the different heights when being installed between the gap. During the experiment 

process, the shim was inserted with the air guider facing downward, as Figure 3.8 (b) 

shows. In this way, the air guiders provided the spinning motion in the same direction as 

the vortex at the bottom of the cyclone. As discussed in previous studies, due to the 

centrifugal effect, the outer vortex could be enhanced and it helps retain the large 

particles. As a result, the outer vortex at the bottom part could be strongly enhanced 

without carrying out the larger particles, so as to maintain the collection efficiency.  
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(a) The secondary air guider 

 

 (b) provide spin motion with the same direction of 

Figure 3.8 The insert shim with secondary air guider at cyclone bottom 

Several series of experiments were conducted in evaluating the real performance of the 

modified classifying cyclone. The modification was carried on the cyclone connected to 

an air classifying mill (ACM) (manufactured by Donghui Powder Processing Equipment 

Co., Ltd., China). As illustrated in Figure 3.9, the original resin chips were fed into the 

ACM and ground by the center rotating mill into particles. In general, different particle 

sizes could be obtained by adjusting the rotor grinder and classifier speed. The classifier 

keeps the larger particles inside the grinding chamber for further grinding while the 

particles with proper diameter can go through and be collected by the cyclone. When the 

particles were guided into the cyclone, the classifying effect still existed because of the 

effect of rotating gas flow. The schematic of the cyclone is shown is Figure 3.10. The 
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materials of the powder and chip sample were provided by Seibert Powder Coatings 

(Cleveland, Ohio, USA).  

 

Figure 3.9 Schematic of the laboratory scale ACM [10] 

 

Figure 3.10 Dimensions of the cyclone on the ACM (drawings were not to the scale) 

In this experiment, three different configurations of the secondary air guider have been 

investigated. As shown in Figure 3.11, the secondary air guider consists of a plastic ring 

shim with an inner circle diameter of 58 mm, the same as the connection part of the 

cyclone bottom (with outer circle diameter of 80 mm). The shim was attached with the 

cylindrical solid wire on it for guiding the direction of inlet air. The three shapes of the 
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air guider are chosen as convex, linear and concave by adjusting the curvature of the wire. 

Each of the shims have 16 evenly distributed wire guiders at different angles. The actual 

air guider at 45° angle is illustrated in Figure 3.11 (a) left. The first applied convex shape 

 

 (a) Convex secondary air guider and 70° guider example 
       

 

(b) Linear secondary air guider and 70° guider example 

 

70° 

45° 

30° 

70° 

45° 

30° 
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 (c) Concave secondary air guider and 70° guider example 

Figure 3.11 Schematic of the second air guider with different shapes 

air guider started from the inner circle arc to the outer circle arc, decided by the angle 

from the circle center, as shown in Figure 3.11(a) right. The rest of the air guiders 

followed the same angle. There are two other angles for each of the air guider shapes: 30˚, 

45˚ and 70˚, as shown in Figure 3.11 (b) to (c). Similarly, the manufacturing of linear and 

concave guiders used the same method. In order to control the accuracy, the curvatures of 

both convex and concave wire come from the arc of a circle with 50 mm diameter, the 

three angles were also utilized in each shape. However, for the concave air guider the 

angle switched to 45˚, 60˚ and 70˚ for better experimental comparison, as shown in 

Figure 3.11 (c). In general, when the reverse air goes into the air guider, the higher degree 

of the air guider mainly leads the air velocity through the radial direction while lower 

degree provides air velocity along a tangential path. The wire shape influences the air 

velocity into the cyclone so as to create different secondary air spinning motion. In this 

way the small particles could be driven by the various upward flow conditions. Adjusting 

the wire with different diameters could change the opening gap of the secondary inlet 

70° 

45° 
60° 
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when inserting the shim at the cyclone bottom. Three sizes of the secondary inlet opening 

gap have been investigated: 0.25 mm, 0.56 mm and 1.00 mm, named as Gap1, Gap2 and 

Gap 3 respectively. 

In addition, the materials fed into the ACM were in two groups: coating chips and the 

ground powder. The experimental study started with grinding powder chips into coarse 

powder in ACM. Four main parameters of ACM in controlling the final sample were 

adjusted during the grinding. In order to obtain coarse powder (around 35 µm in D50) 

from powder chips, the rotor and classifier speeds were relatively lower compared with 

collecting the fine powder (around 22 µm in D50), also the fan speed which controlled the 

total air flow was adjusted to the optimal operating range and maintained. At the same 

time, the feeding speed remained unchanged once other operating conditions were 

finalized during the whole experiment. As listed in Table 3.1, each of the two types of 

feeding material was ground into coarse powder and fine powder. The coating chips were 

the product of the extruder and they had irregular shapes with an equivalent diameter of 

5-30 mm. The grinding process started with feeding the chips directly into the ACM 

rotating feeder. By adjusting the speed of main grinder and classifier, powder samples 

with selected size distributions were obtained. In this study, both coarse and fine powders 

were processed and classified through the new modified cyclone. So the powder 

produced directly from coating chips in the ACM without using secondary air guider was 

used as a control.  

Table 3.1 The list of the material tested in the experiment 
Material type Size distribution D50(µm) D10(µm) D90(µm) 
Coating chips 

(Control group) 
Coarse powder 35.83 11.94 73.5 

Fine powder 22.37 7.1 47.24 

Ground powder 
(Control group) 

Coarse powder 37.41 12.99 74.34 
Fine powder #1 19.99 6.04 43.49 
Find powder #2 22.67 7.99 44.59 

The purpose of using the coating powder as the feeding material was to eliminate the 

influence brought by the rotor grinder and classifier while investigating the efficiency of 

the classifying cyclone. If the rotor grinder and classifier were at relatively low speeds, 

almost no grinding happens in the grinding chamber, thus particles do not have much size 

reduction when passing through the main grinder. As a result, the dominant classifying 
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process happens in the cyclone with the air supply from ACM, and so the performance of 

the modified cyclone with a secondary air guider could be better evaluated without side 

effects from other components of the ACM. In particular, two kinds of fine powders 

which differ in D10 were tested, as shown in Table 3.1. In industry fine powder is defined 

as that of median particle size below 30 µm, while ultrafine powder with size smaller 

than 25µm, the D10 of which is around 6 µm. The fine powder #1 is a typical ultrafine 

powder from the industry. However, the fine powder #2 was pre-treated and with D10 

around 8 µm, which was used for further examining the ability of the new cyclone in 

removing smaller particles.  

In order to further evaluate the performance of the modified cyclone design, the particle 

size distribution (PSD) and collection efficiency were the two main factors for the 

evaluation. The particle sizes of the collected powder sample were measured by a laser 

particle size analyzer (BT9300S, Bettersize Laser Analyzer, China). The collected 

particle sample were dispersed in water with the help of detergent, then fed into the 

analyzer through electromagnetic vibration feeding system. During the process of free 

falling of particles, shoot particle images which pass the lens randomly. Meanwhile, 

software quickly recognizes and processes particles using the high light LED array light 

source and screen displays images. Particle size and particle shape data for each particle 

in real time. As it adopts high-speed CCD that can reach 100 frame/min, thousands of 

particles can be shot and processed per minute. In addition, image process software can 

recognize and extract adhesive particles automatically. These technologies improve the 

accuracy of particle image greatly. A typical particle size distribution curve is shown in 

Figure 3.12, where D10, D50 and D90 are three significant values in evaluating the powder 

size distribution. Particle size distribution indicates the particle size in percentage of a 

given sample. For example, D10 is the diameter value of 10% volume fraction of the 

particles with the diameter less or equal to, the same as D50 and D90. Normally the D50 is 

named as the median particle size of the powder, and D10 and D90 represent the amount of 

small and large particles in the sample. Increasing the D10 and decreasing D90 without 

changing D50 could lead to a steeper distribution curve. One of the other significant 
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values of the size distribution curve is the span, which is determined by the equation 

below:  

    Span =     Eq.3.1 

 

 

Figure 3.12 An example of particle size distribution 

As reflected in Figure 3.12, the span determines the overall shape of the size distribution 

curve. Narrow PSD curves indicate the reduction of span, which is mainly caused by 

increasing D10 and decreasing D90. It is always desirable to narrow down the size 

distribution, as when D10 and D90 are identical to D50, the powder sample has the ideal 

uniform distribution and every powder particle has the same size. Generally speaking, 

reducing the span could improve the powder flowability as well as the coating quality.  

In addition, the collection efficiency was calculated by: 

    η =
×

    Eq. 3.2 

where η  was the collection efficiency,  stood for the feeding rate, 

 was the feeding time and  represented the weight of collected powder 

sample. The feeding rate remained constant during the experiments. In conclusion, the 
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classification target was to narrow the span without sacrificing the collection efficiency, 

and above all, to remove the small particles (to increase D10) from the powder sample. 

3.4 Numerical Study  

3.4.1 Modelling design 

Numerical simulations of the air flow inside the proposed classifying cyclone have been 

conducted in this study. The models of cyclones were drawn in GAMBIT (version 2.4). 

As shown in Figure 3.13, in order to prevent the air escaping from the cyclone bottom, 

the original cyclone was attached with a collecting box, which was similar to the function 

of an airlock in real cyclone. A total of three models were drawn, namely (a) original 

cyclone, (b) cyclone with convex air guider, (c) cyclone with linear secondary air guider, 

(d) cyclone with concave air guider. The simplified model name of Model O, Model 

Convex, Model Linear and Model Concave were used to denote the original cyclone and 

three modified cyclones in the following discussion. All the three models of modified 

cyclone had identical dimensions of all cyclone parts as Model O and had 1.0 mm 

opening gap. The angle of air guider was 45° in each model. The modeling object is the 

fluid air under the turbulent flow dispersion model.   

 

(a) Original model of the original cyclone, Model O; 
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(b) Cyclone model with convex secondary air guider, Model Convex 

 

(c) Cyclone model with linear secondary air guider, Model Linear 

   

 (d) Cyclone model with concave secondary air guider, Model Concave 

Figure 3.13 Cyclone model drawn by GAMBIT 

The air flow inside the three models was simulated in Fluent (6.3). The model O had one 

air inlet and one outlet while the other three had two air inlets and one air outlet. The 

input parameters were measured from the actual cyclone. The injected air velocity is 
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10.89m/s and the secondary air inlet velocity is 0.5m/s under the Reynolds stress model 

(RSM).  

3.4.2 Results and discussions of the numerical simulations 

The axial velocity vector of model O is illustrated in Figure 3.14. The color gradient 

represents the magnitude of air velocity and the arrows represent the air directions. 

According to the figure, the air starts to accelerate when it enters the cyclone from the air 

inlet and when moving to the center vortex finder, the velocity reaches its maximum due 

to the suction from the cyclone top. As a result, smaller particles are guided out by the 

escaping air through vortex finder, while some larger particles go downward with 

 

Figure 3.14 Axial air velocity of Model O 

swirling air flow. According to the 2D velocity vectors, it is obvious to see an upward 

flow in the middle of cyclone representing the inner vortex. The velocity vectors close to 

the cyclone bottom along the wall indicate a downward outer vortex. However, the 
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velocities decrease when reaching the very bottom part and finally turn upward due to the 

suction at the air outlet. Meanwhile, the inward drag is induced between inner and outer 

vortexes, illustrated by the horizontal velocity vectors.  

The Model Convex has a secondary air inlet at cyclone bottom to induce the reverse air 

flow. The convex air guider introduced the inlet air into cyclone to form the air spinning 

at the same flow direction as the outer vortex. As shown in Figure 3.15, compared with 

Model O, the downward velocity at the wall region at the cyclone bottom was decreased, 

indicating the introduced reversed upward air flow. Meanwhile, the smaller particles 

were dominantly controlled by inward drag force as the decreasing of downward flow. As  

 

Figure 3.15 Axial air velocity of Model Convex 

a result, they were easily driven by air force to the cyclone center and carried away from 

cyclone top. It has also been observed that the outer vortex region became wider and 
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extended to the collecting box. The model only simulated the air flow inside of the 

cyclone, it could still interpret that the strong upward air flow at cyclone center was 

(a) Model Convex 

 

(b) Model O 

Figure 3.16 Velocity vectors of cyclone bottom cross section with Model Convex and 
Model O 

diminished so as to prevent a large amount of particles from escaping through the cyclone 

top. In this way the collection efficiency was maintained. 
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This phenomenon could also be explained by the velocity vector at the cross section of 

the cyclone bottom with convex air guider, as shown in Figure 3.16 (a). It is obvious that 

the secondary air flow enters the cyclone tangentially and accelerated when moving to 

the cyclone core. The maximum air velocity occurred along the wall region, resulting in a 

stronger outer vortex. Then the radial velocity became smaller when moving near to the 

axis, which implies that the air was controlled by the inner vortex and started to flow 

along the axial direction.  

 

Figure 3.17 Axial air velocity of Model Linear 

Compared to the velocity vector at cross section of the Model O, (Figure 3.6 b), the 

convex air guider could provide an obvious air spin motion with both outer and inner 

vortexes, so as to further enhance the classifying at the cyclone bottom. Meanwhile, small 

particles could be further carried away by the drag force induced between the outer and 

inner vortex. While the Model O without air guider does not provide a secondary 
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classifying process when particles reach the cyclone bottom. In summary, the secondary 

air spinning created by the air guider could effectively enhance the outer vortex so as to 

help further classify particles. During the spinning, small particles attached on larger 

particles could be blown away due to this enhanced outer vortex, leading to a better 

particle size distribution of the collected powder. The modeling result obtained from the 

linear secondary air guider in Figure 3.17 had similar results as Model Convex. There 

was an obvious reverse flow region at the cyclone bottom wall compared to model O. 

Similar to Model Convex, the linear air guider results showed a much narrower inner 

vortex and wider outer vortex, owing to the existence of the secondary air inlet and air 

guiders. Larger particles could be retained due to the reduction of the inner vortex. The 

air velocity vectors at the cross section of the air guider is illustrated in Figure 3.18. The 

tangential air inlet has the maximum velocity near the wall annulus region, greatly  

 

Figure 3.18 Velocity vectors of cyclone bottom cross section with Model Linear 

boosting the outer vortex. The secondary classification of small particles happened during 

this air spinning. Meanwhile, the larger particles were driven by this outer vortex and 

finally collected in the final powder sample. When the secondary air reached cyclone 

center, it became much slower. Compared to Model Convex, the secondary air inlet 

provided by the linear air guider had similar intensity near the cyclone wall, indicated by 

the color of air velocity. 
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Figure 3.19 demonstrated the results of axial velocity utilizing concave air guider. The 

reverse flow had higher intensity when entering the cyclone bottom compared to Model 

Convex and Model Linear. Furthermore, this phenomenon could be better explained by 

the air velocity near the air guider, as shown in Figure 3.20. The air velocity in the 

annulus region became higher in forming the outer vortex, then decreased at the cyclone 

core. This outer spinning was greater than Model Convex and Model Linear, resulting in 

the stronger outer vortex so as to remove more small particles during the air spinning. 

When moving to the cyclone core region, the radial velocity decreased due to the inner 

vortex.  

 

Figure 3.19 Axial air velocity of Model Concave 
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Figure 3.20 Velocity vectors of cyclone bottom cross section with Model Concave 

The axial air velocities with respect to the cross-sectional radius of secondary air inlet of 

all the three models have been studied. As plotted in Figure 3.21, the concave air guider 

could provide the relatively stronger reversed air flow at the wall region, in line with the 

downward axial velocity result of Model Convex. Similarly, both the concave and linear 

air guider showed smaller downward air flow in most of the wall region to enhance the 

outer vortex compared to the original cyclone. During this time, smaller particles at the 

wall region could be classified again and carried away from the cyclone top. The 

secondary classifying was achieved by using the secondary air guider. On the other hand, 

those downward velocities implied that the downward outer vortex carried large particles 

to the collecting box, helping with retaining the collection efficiency. In the cyclone 

center, the inner vortex flow has been greatly reduced in utilizing secondary air guider, 

which demonstrated that the air flow was less destructive. Hence, less particles would be 

driven out due to the suction and turbulences. The overall air velocity at the cross section 

of the cyclone obtained by using secondary air guider was less violent compared to the 

original cyclone. As a result, the collection efficiency could be maintained during the 

removal of smaller particles. In addition, the above result only represents the 

instantaneously axial velocity, due to the inward drift of the outer and inner vortex, the 



  

 61 

velocity distribution among different radial position is uneven, reflected by the higher 

downward velocity at annulus region on the left but slower on the right.  
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Figure 3.21 Comparison of axial velocity at the cross-section of secondary air inlet in 
four types of cyclones 

All three of these models of the air guider with different shapes and angles indicated that 

the existence of a secondary air inlet at cyclone bottom could provide the reverse air flow. 

Due to the existence of the secondary air guider, the better size distribution could be 

achieved without sacrificing collection efficiency. It is believed that the strength of 

reverse flow varies with the different opening gaps. Also the angle of the air guider 

affects the flow pattern and the size distribution of the collected particles. Series of 

experiments have been conducted so as to find the classifying performance under the 

influence of different air guider designs.  

3.5 Results and Discussion 

3.5.1 Characteristic of classifying process with chips feeding 

3.5.1.1 Characteristic of classifying process from chips to coarse powder 

The experiment started with grinding the chips into coarse powder, by applying the 

secondary air guider with different shapes, degrees of air guider angles and inlet opening 
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gaps, the particle size distribution has been influenced with the existence of the secondary 

air inlet.  As shown in Figure 3.22, the samples collected with secondary air guider in gap 

3 (widest inlet opening) had relatively smaller span, due to the stronger reverse air flow, 

especially for the shape of concave in 70˚. The span in gap1 did not change much 

compared with the span of control group illustrated as solid line. When the inlet opening  

 

Figure 3.22 Comparison of Span with respect to angle degree in different inlet 
opening gaps (from chips to coarse powder) 

became bigger, using the linear and concave shape air guider could help with the 

reduction of the span, the convex air guider did not lead to much change in span. It is 

obvious that providing more reverse flow by increasing the opening gap could effectively 

remove the small particles, and in this way the span could get narrowed. It is very 

promising to see that the span could reduce from 1.7 to nearly 1.4 with a decrease of 

17.6%. In considering the air guider angle, the span obtained from concave air guider was 

relative lower than the other two shapes. When observing the effect of air guider angle 

degree, it was found that higher guider angle degree could lead to smaller span in most 

cases, which indicated that the reverse air entered from the cyclone bottom on a relatively 
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radial path to the inside of the cyclone, then the spin motion was formed. So the shape 

had less influence on span compared with inlet opening gap and air guider degree. 

Figure 3.23 D10, D50 and D90 with respect to angle degree in different inlet opening 
gaps (from chips to coarse powder) 

Figure 3.23 showed featured sizes with respect to angle degree in different inlet opening 

gaps. It is obvious that the highest opening gap cause the biggest changes of D10, D50 and 
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D90. Compared to convex and linear air guider, concave shape air guider under higher 

opening gap could provide the largest D50, naturally the D10 and D90 has greatly increased 

compared to the original cyclone. This sizes change could be explained by that utilizing 

concave air guider, the large amount of smaller particles has been moved. 

Furthermore, the collection efficiency was another significant parameter of the cyclone 

evaluation. The final revision of the cyclone design is aiming at removing the small 

particles without sacrificing the collection efficiency. Figure 3.24 showed the 

corresponding collection efficiency. It is noticed that the collection efficiency drops 

because of the removed small particles are not collected in the final sample compared 

with the control sample. Particularly, it has a quick decrease in Gap 3 compared with Gap 

1 and 2, especially for the concave shape air guider and one linear guider at higher angle 

degree. It implied that more amount of smaller particles has been removed in Gap 3 with 

inner cyclone flow, and the turbulence could also cause the loss of large particles. The  

 

Figure 3.24 Comparison of collection efficiency with respect to angle degree in 
different inlet opening gaps (from chips to coarse powder) 
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low efficiency indicates that the cyclone could not retain the large particles when the 

higher reverse flow intensity. This result is also in accordance with the Figure 5.23 in 

which concave air guider has the lowest span value. Besides the removal of the small 

particles, the turbulence of the secondary air flow could also lead to the turbulence of the 

strong reverse flow exists, and the problem was similar to the previous research in 

cyclone classifier modification [14-16]. Under the condition of opening gap 1 and gap 2, 

the angle degree and shape did not affect the efficiency much, in general, the narrow 

opening gap would not introduce the upper flow air so the large particles could still be 

collected, resulting in little reduction of the collection efficiency.  

However, for the shape of convex air guider, it shows promising results as it has a small 

span but at the same time no rapid decrease in collection efficiency compared with the 

control group. The convex air guider could create a similar outer vortex and the inward 

drag inside in the inner part to the original cyclone. Furthermore, with the air guider, the 

upward air flow has much less significance to enhance the out vortex and retain the large 

particles. That could also be the reason why concave air guider provides a different inner 

vortex and causes the complex turbulence of the inner cyclone, resulting in the large 

particles removal and drastic collection efficiency drop.  

Compared with the effect of degree and shape, both span value and collection efficiency 

are more sensitive to secondary inlet opening gap. Increasing the gap from 0.25 mm to 

0.56 mm does not cause major reduction of span and collection efficiency. However, by 

changing the gap from 0.56 mm to 1.00 mm, the span reduced quickly and the collection 

efficiency was sacrificed. According to the objective of modifying the cyclone, the 

desired span could be even smaller whereas the collection efficiency should still be 

maintained, for which the secondary air guider is used. In comparing the different air 

guider designs, the convex shape with smaller angle degree for providing the tangential 

air inlet is preferable at wider opening gap as it could create a low span value while still 

have the efficiency over 85%. By checking the industry method of narrowing down the 

size distribution, it is very complex and time consuming to use conventional sieving 

process or secondary classifications, which has a low effectiveness in reducing the span.  
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Figure 3.25 illustrates the size distribution of both control group obtain from the original 

cyclone compared to the improved size distribution collected in using convex shape air 

guider at degree of 60° in Gap 3. Due to the removal of smaller particles, the size 

distribution curve became steeper, indicating the lower span of the improved powder  

 

Figure 3.25 The size distribution between control group and improved sample in 
using secondary air guider (from chips to coarse powder) 

sample, without causing much difference in D50. In particular, the D10 changed from 11.8 

µm to 14.67 µm with an increase of 24.3%. As a result, the method of using secondary 

air inlet with air guider on the ACM cyclone is an easy and promising way because of its 

excellent capability in reducing the span while at the same time with an acceptable 

collection efficiency. 

As it is known that using the reverse flow could remove the small particles and perfecting 

the size distribution, several additional experiments are conducted in changing the total 

air flow of the ACM for testing classifying cyclone behavior. Figure 3.26 shows the span 

of the original power compared with the powder collected by the modified cyclone with  
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Figure 3.26 Span with respect to air flow of ACM (from chips to coarse powder) 

 

Figure 3.27 Size comparison of D10, D50 and D90 (from chips to coarse powder) 
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secondary air guider (SAG)with the coarse powder sample. In general, the high total air 

set the easier smaller particles to be removed. As illustrated in the figure 3.26, when 

changing the total flow of the ACM from 40 to 120 m3/h, all the powder samples 

collected from the cyclone with air guider are much higher than the original groups, 

indicating that during the wide range of operating conditions the revised cyclone could  

provide the satisfied sample. On the other hand, D10, D50 and D90 comparison is shown in 

Figure 3.27. All the featured size of the improved powder sample is higher than the 

original powder sample. In addition, D50 could maintain in relatively steady range 

compared with the original powder. The air flow less than 60 m3/h is considered as the 

critical operating in that the D50 has dropped to less than 25 µm. In summary, the size 

distribution of the collected powder could be improved under regular cyclone operation 

condition in utilizing the designed secondary air guider. 

3.5.1.2 Characteristic of classifying process from chips to fine 
powder 

The experiment continued in grinding the coating chips into the fine powder. The biggest 

challenge in manufacturing fine powder is that the small particles less than 10 µm are 

very likely to get agglomerated, causing poor flow properties. So removing the small 

particles is an urgent need as well as a hard task. In Figure 3.28, the lowest span value is 

also observed in Gap 3, and the biggest change is from 1.79 of the control group to nearly 

1.3, which is a huge reduction of span. However, differing from the coarse powder, all 

the spans of the collected sample using secondary air guider are lower than the control 

group, even with the narrowest inlet opening gap. As a result, the introduced reverse 

upward flow has more influence on the fine powder grinding and classifying. On the 

other hand, the angle degree of air guider also differs in the flow spin motion. According 

to the design, the higher degree of the air guider implies that the air velocity goes from 

the air inlet into the inner part of cyclone, while lower degree guides the air to enter the 

cyclone tangentially along the edge of secondary air guider. Overall, for all the three 

shapes, the radial air inlet could provide a smaller span in each inlet opening gap, as the 

air velocity goes directly into the inner part the cyclone. This secondary air velocity could 
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enhance the inner vortex and the upward flow greatly, so as to remove the fine particles 

better. 

 

Figure 3.28 Comparison of span with respect to angle degree in different inlet 
opening gap (from chips to fine powder) 

Figure 3.29 shows the particle size changing for the fine powder collected by the 

modified classifying cyclone. Compared with the coarse powder, D10 of the fine particles 

had a larger increase, especially in Gap 2 and 3. This is very promising since almost all 

the particles less than 10 µm have been removed when opening gap reaches the highest. 

Along with the removal of small particles, D90 became larger together with the D50 value. 

The smaller D90 than the control group in Gap1 and 2 groups is the sign of loss of larger 

particles. The phenomenon is in agreement with the findings that an increase of upper 

flow could also cause the loss of large particles. Differing from the coarse powder, the 

D90 of the fine particles in this case is only around 50 µm, and this size could possibly be 

removed from the cyclone by the reverse air flow. Moreover, as the convex and linear air 

guider are at 70˚, the D50 values are greater than the fine particles range. This is mainly 

due to that at 70˚ air guider angle, the intense air flow accessing towards the cyclone  
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Figure 3.29 D10, D50 and D90 with respect to angle degree in different inlet opening 
gaps (from chips to fine powder) 

center from the air guider may destroy the original inner spin motion and become 

dominant in driving most of the particles to the top of the cyclone. Thus a few particles 
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considered as a critical point of the inlet angle. It is also noticed that the collected powder 

samples still belong to fine powder category after classifying. In this case the D50 should 

be similar to the control group (less than 25 µm). According to Figure 16, all the concave 

shape air guiders in the widest inlet opening are not proper for fine powder classifying, as 

well as the concave and linear shape air guiders at highest angel degree. It is still mainly 

due to that the secondary air flow entering in a radial way would strengthen the inner 

vortex, the smaller and lighter particles are much easier to be removed compared with the 

coarse particles. By observing Figure 16, it is noted that the convex and linear air guiders 

with angle degree smaller than 45˚ provide wonderful results in classifying fine particles 

at the widest inlet opening.  

 

Figure 3.30 Comparison of collection efficiency with respect to angle degree in 
different inlet opening gaps (from chips to fine powder) 

On the other hand, collection efficiency of the fine powder derived from the coating chips 

is also a crucial factor for classifying fine powder. As shown in Figure 3.30, in similarity, 

fine powder collection efficiency shows the same trend as the coarse powder. When the 

opening gap becomes wider, the collection efficiency drops dramatically resulting from  
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eliminating the small particles. So the dominant and direct factor affecting collection 

efficiency is the inlet opening gap. The design of air guider angle and shape also have 

some influence on the collection efficiency. For instance, the convex shape has less 

colleting ability than the linear and concave shapes with smaller opening gap, but it could 

retain much more particles in higher opening inlets. In other words, the convex shape 

guider could create a spinning motion in order to get rid of mall small particles when the 

inlet air flow is weak. When the upward flow became stronger, the convex air guider 

could retain the large particles, as illustrated in the figure with efficiency larger than 75%. 

In general, the tangential inlet air velocity guided by smaller air guider degree has more 

possibility of retaining the large particles at the bottom of the cyclone than the condition 

of inlet air entering radially. Also it could be a good explanation why higher degree 

results in a larger D10 and lower span. For the same reason, most of the groups having a 

lower collection efficiency would not be proper choices for classifying the fine powder in 

Gap 3. Besides the result caused by reducing the amount of the small particles, the fine 

particles could get strong agglomerates, and could also cause the poor collection 

efficiency as the agglomerates are finally guided out through the top of the cyclone. In 

evaluating the span, D50 and collection efficiency comprehensively, the satisfactory 

design of the secondary air guider for fine powder is the condition of convex shape with a 

lower guider angle in the widest opening inlet, which is similar to the condition of 

grinding coarse powder.  

Figure 3.31 illustrates the difference between the particle size distribution of control 

group which shown in solid line, and the improved size distribution utilizing the satisfied 

secondary air guider (Convex air guider with the 45˚ angle, Gap 3) as shown in dotted 

line. It is noted that an obvious D10 increase from 7.1µm the control group to nearly 10.3 

µm of the improved group, with an increase of 45.1%. It is quite a huge improvement 

since the fine powder with D10 is more than 10 µm. In comparison with the classifying 

coarse powder, narrowing down the fine powder distribution could be much more 

effective in using the same secondary air guider.  During the time of eliminating the small 

particles, the D50 of collected particle sample could still be within a certain range, in 

guaranteeing the powder sample still belongs to fine powder (<30 µm) almost without 

changing also the D90. In this case, the improved size distribution curve is narrower and 
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Figure 3.31 The size distribution between control group and improved sample in 
using secondary air guider (from chips to fine powder) 

steeper than the control group, which indicates a lower span. As a result, the modified 

classifying cyclone with the design of secondary air guider has shown promising results 

in cleaning the small particles up and narrowing down the span, which is very effective in 

improving the particle size distribution of fine powders.  

In summary, the new design of the revised cyclone with an air inlet at the bottom have 

the ability in removing smaller particles with the wider secondary inlet opening. When 

the opening gap reaches 1mm the removal reaches the best, however, collection 

efficiency is strongly decreased. With the secondary air guider, inside the air inlet, the 

large particles could also be retained in keeping the large particles not to be driven away 

by the strong upward flow by the cyclone. What’s more, the secondary air guider has 

made in different shape which could guider the secondary in inlet velocity when getting 

access to the cyclone bottom. At the same time, each of the guider has manufactured with 

three different angles in introducing the air velocity goes tangentially or radially to create 

the enhanced spin motion. Using each shape of the air guider in lower opening inlet could 
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obtain the particles with lower span than the control group, however in the higher 

opening gap the concave air guider has big particles loss due to the strong disturbance of 

the inner vortex. Experimental results indicated that convex shape air guider with a lower 

degree leading to a tangentially air velocity inlet could effectively create the secondary 

reverse flow vortex, so as to sweep most of the smaller particles away. As the opening 

gap became wider, the convex air guider could still have a collection efficiency higher 

than 80% which could consider as the promising air guider design and provide the 

promising results for the further studies. 

In similar, the fine powder is also investigated in changing the total air flow. As shown in 

Figure 3.32, within the changing range of the air flow, all the powder collected by 

revising cyclone has great higher span than the original sample, which indicates the 

method is also efficient for fine powders. In better explain the comparison of the size  

 

Figure 3.32 Span with respect to air flow of ACM (from chips to fine powder) 
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procedure due to the strong reverse flow, the D90 is likely to be guided away as well, 

resulting in the reduction of D90. On the other hand, D50 in all the operating condition 

could still be preserved between 20 to 25µm. This also shows that the stability of the 

ACM is very high due to the fact that the modified cyclone has no side effect on the 

ACM and can perfectly cooperate with it to keep the size accuracy.  

 

Figure 3.33 Size comparison of D10, D50 and D90 (from chips to fine powder) 

However, the powder with higher D50 also own larger D10. It is needed to compared the 

smaller particle amount of the sample particles with same D50. Figure 3.34 illustrates the 

particle featured sizes with respect to D50 obtained from modified cyclone with SAG 

(concave shape, 60°) and the original cyclone. The modified cyclone with SAG showed 

an overall better classifying performance than the original cyclone. The D10 get increased 

and D90 is smaller when the particle has the same D50. As a result, the SAG cyclone could 

be able to produce the powder sample with much smaller span and the better size 

distribution, shows in Figure 3.35. 
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Figure 3.34 Size comparison of D10, D50 and D90 of SAG sample and original sample 

with respect to D50 

 

Figure 3.35 Span comparison of SAG sample and original sample of D10, D50 and D90 

with respect to D50 
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3.5.2 Characteristic of classifying process with powder feeding  

3.5.2.1 Characteristic of classifying process with coarse powder 

In order to further tested small particles removing capabilities of the modified cyclone 

with secondary air guider, the powder sample is used as the feeding material of the ACM. 

During the experiment, the rotor grinder and classifier were adjusted to very low speed 

without further grinding (for maintaining the original size distribution) the powder 

sample meanwhile still keeping the normal operating status of the ACM. By this means 

the particles distribution collected from the cyclone bottom would be mainly separated by 

the modified classifying cyclone, without the influence from the grinder and classifier of 

ACM.  

Figure 3.36 illustrates the span with respect to the inlet opening gap of the collected 

powder samples. It is noted that compared with the chips feeding, the span value has less 

 

Figure 3.36 Comparison of spans with respect to angle degree in different inlet 
opening gaps (with coarse powder feeding) 

influenced by the opening inlet gap. The highest span reduce is from 1.65 to less than 

1.55 happened at high degree of linear and concave shape air guider. Among the three 
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shape, convex shape air guider could obtain relatively steady span in changing with gap 

than 40µm in that the distribution with size larger than that may cause poor coating  

 

Figure 3.37 D10, D50 and D90 with respect to angle degree in different inlet opening 
gap (with coarse powder feeding) 

surface results from relatively large particles. In this case, the convex shape would not be 

a proper choice if the preferred D50 powder sample is around 35µm. The reduction of 
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span could also be better explained according to D10 and D90 changes, as shown in Figure 

3.37. In general, concave air guider performs better in removing small particles, however 

the obtained D50 has big changes and some of them are higher than 40 μm. Based on the 

span and featured sizes, using the concave shape air guider with high opening gap is a 

good choice to remove small particles as well as getting a reasonable median sizes. 

On the other hand, collection efficiency of the collected powder from powder feeding is a 

significant factor shouldn’t be neglected. Similar as the previous experimental 

discoveries in our study, opening gap is key factor in effecting the collection efficiency. 

In figure 3.38, Both linear and convex shape air guider is good enough in preserve almost 

90% collection efficiency which is comparable to the original group during the removal 

of smaller particles. In other word the reverse spin motion only sweeps the small particles 

away without cause the side effects among large particles.  

 

Figure 3.38 Comparison of collection efficiency with respect to angle degree in 
different inlet opening gap (with coarse powder feeding) 

Despite the concave air guider had the best ability in reducing the span, it still couldn’t 

consider as a satisfied option in wider opening inlet in that they sacrificed in collection 
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efficiency.  Also in similar, with the identical shape of the guider, higher guider degree 

provides a radial air inlet has less efficiency because of larger purging of small particles. 

In considering the particle size distribution and colleting efficiency, the shape of linear 

and convex with lower guider angel performed behaved promising results in all the 

opening inlet gap. Hence if the powder sample product has the need in further treatment 

could consider using the similar procedure so as to reduce the span. 

Figure 3.39 shows the size distribution between the control group of coarse powder and 

the collected sample using convex shape, 30˚ air guider in Gap3. The D10 changes from 

12.9µm to 14.1 µm, which consider as an unease improvement in coarse powder.   

 

Figure 3.39 The size distribution between control group and improved sample in 
using secondary air guider (with coarse powder feeding) 

The D50 and D90 didn’t vary too much indicates the classifying mainly took place inside 

of the cyclone and there are few influence caused by the slow speed rotor grinder and the 

classifier from ACM. Thus the span is only perfected by the revised classifying cyclone.  
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3.5.2.2 Characteristic of classifying process with fine powder 
feeding  

In addition, the fine powder material is also investigate using the same method. It is very 

difficult in classifying the fine powder coatings due to the agglomeration of the fine 

particles as the ordinary D10 is around 6 µm. Figure 3.40 shows fine powder span with 

the respect to different secondary air guider. It is obvious that all the span has been 

preferably improved by the reduction in value compared with the control group of 1.93. 

The lowest span value in Gap 3 could be lowered to 1.58 with a decrease of 18.1%. 

Different from the coarse powder, the big reduction of the span in fine powder declared 

that the fine powder is much easier to be carried away by the reverse air flow from the 

cyclone bottom than the heavier particles. Also, the results in Gap 1 and 2 showed that  

 

Figure 3.40 Comparison of span with respect to angle degree in different inlet 
opening gap (with fine powder feeding, D10≈6 µm) 

shape of air guider did not have much difference, while in Gap 3 the linear and concave 

air guider could obtain an even lower span than convex shape. In addition, the guider 

angle also has minor effect on the span compared with the coarse powder.  
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In addition, the D10, D50 and D90 are shown in Figure 3.41. When the opening inlet gap 

became larger, the D10 had more significant increase, especially for the concave and  

Figure 3.41 D10, D50 and D90 with respect to angle degree in different inlet opening 
gap (with fine powder feeding, D10≈6 µm) 

linear shape air guider. The D90 showed the similar trend for each opening gap as D10. In 

general, the angle of air guider did not affect the size distribution much on the fine 
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powder. Above all the D50 is even more crucial in handling the fine powder, as if the D50 

is higher than 30 µm the collected sample could not be considered as fine powder. It is 

very pleased to see all the improved powder sample has the D50 less than 25 µm, and 

most of them are very close to the original group. Due to the relatively smaller particle 

size for all the particles with D90 is less than 50 µm, D90 is likely to be driven by the 

combined force of the centrifuge and the enhanced upward drag force and some of them 

are guided out from the cyclone, which is the main reason causes the D90 size reduction. 

The featured size suggested that all the cyclone with reverse air flow and secondary air 

guider could effectively improve the particle size distribution of fine powders.  

Whether the designs of the secondary air guider are applicable for the fine powder size 

improvement, there is always a need to see the collection efficiency. As illustrated in 

Figure 3.42, except for the concave shape air guider in Gap 2 and Gap3 has low  

 

Figure 3.42 Comparison of collection efficiency with respect to angle degree in 
different inlet opening gap (with fine powder feeding, D10≈6 µm) 

collection efficiency, the other design shows good results with the collection efficiency 

higher than 80%. It is not difficult to explain that the particle span is lowest in using 
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concave air guider. A larger amount of smaller particles was removed from the cyclone 

top, and less amount can be collected, sacrificing collection efficiency. The angle of the 

air guider showed similar results as the coarse powder that both tangential and radial air 

inlet is slightly lower in collection efficiency due to the better removal ability for smaller 

particles.  

Figure 3.43 indicates the final size distribution of the original sample and the new powder 

utilizing the convex air guider in 70˚, Gap3. The steeper size distribution curve shows in 

dotted line in comparison with the control group of original power sample. With the D10 

increasing from 6.04 to 8.65, without cause to much reduction in collection efficiency,  

 

Figure 3.43 The size distribution between control group and improved sample in 
using secondary air guider (with fine powder feeding, D10≈6 µm) 

it is a great result in dealing with the fine powder. Also, the D50 and D90 is preserved in 

the proper range. In summary, utilizing the modified classifying cyclone could obtain 

promising results for the further treatment of the fine powder and even ultrafine powder 

coating samples. The last but not the least experiment conducted using the fine powder 

sample as well. However, the difference from the above testament is the fine powder 
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sample pre-treated and has the D10 around 8 µm. Normally the fine powder coatings 

manufactured by the industry always has a D10 around 6 µm, the even finer particles 

cause huge difficulties in the next spraying processes as a result of the strong 

agglomeration of the fine particles. The pre-treated powder sample with the D10 of 8 µm 

had already lost part of the smaller particles. Hence the purpose of this experiment is to 

see how effective the revised classifying cyclone is. If the D10 could be further increased 

with an acceptable collection efficiency, the cyclone modification is considered as a great 

method of dealing with the span reduction problem.  

As shown in Figure 3.44, the span has minor changes compared with any other groups 

above in that the powder is pretreated and few larger particles could be removed by 

reducing the span. In Gap 1 and 2, the span is comparable with the original powder 

indicating that the reverse flow function is not obvious in this powder sample.  

 

Figure 3.44 Comparison of span with respect to angle degree in different inlet 
opening gaps (with fine powder feeding, D10≈8 µm) 

But it is still µhaving the removal condition when the opening gap opened to widest, 

showed in Gap 3 all the span is smaller than the control group. It is also observed that the 
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influence of the shape and degree still followed the similar trend in the group of using 

fine powder with D10 in 6µm. It is always satisfying to see the span reduction in every 

 

Figure 3.45 D10, D50 and D90 with respect to angle degree in different inlet opening 
gaps (with fine powder feeding, D10≈8 µm) 

case. In the Figure 3.45, the higher D10 than control group is still observed. That is to say, 

the reverse flow could still sweep a certain amount of the smaller particles away even for 

the pretreated powder with higher D10. Along with this, the D90 has been retained and 
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also had certain increase and caused the higher D50, but it still belongs to fine powder 

(less than 30µm). The opening gap width is still dominant in fine powder as usual and 

concave and linear shape air guiders could still acquire higher D10 than the convex guider. 

In similarity, both low and high degrees of the guider angle lead to the relatively higher 

D10. 

By looking at the collection efficiency charts in Figure 3.46, it can be figured out which 

air guider is better in retaining the large particles. After all the larger particles are the 

important content of the collected powder sample. It is very clear that the opening gap of 

the secondary air guider plays a significant role in controlling the collection efficiency. 

Under the condition of Gap 3, the concave air guider has the lowest collection efficiency  

 

Figure 3.46 Comparison of collection efficiency with respect to angle degree in 
different inlet opening gaps (with fine powder feeding, D10≈8 µm) 

while in lower gap all the three shapes of air guider still having the collection efficiency 

greater than 70%. On the other hand, the guider angle does not cause too much difference 

as the spin motion in promoting the upward flow has less influence on the relatively large 
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particles since there are few smaller particles which could easily be driven by the inner 

vortex left.  

Figure 3.47 shows the original group of the particle size distribution compared with the 

newly collected sample using revised cyclone and convex air guider in 45˚. This time, the 

D10 value had a little increase, as well as D50 and D90, but the span still became smaller, 

reflected in the steeper and narrower distribution curve. taking the comprehensive factors 

into consideration, the modified cyclone with secondary air guider is proven be able to 

further reduce the span of the fine particles with an even higher D10.  

 

Figure 3.47 The size distribution between control group and improved sample in 
using secondary air guider (with fine powder feeding, D10≈8 µm) 

3.6 Conclusion 

A novel classifying cyclone was revised from the conventional cyclone of the air 

classifying mill. The new development of this revision was to provide the classifying 

function during the collecting process of the powders by introducing a secondary air inlet 

at the cyclone bottom. This novel classifying cyclone could remove a large amount of the 

100 101 102

Size ( m)

0

2

4

6

8

10

D10

D50

D90

Control

Improved



  

 89 

smaller particles so as to improve the size distribution. The span has the biggest decrease 

of 17.6% for coarse powder and the huge reduction of 27.4% for fine powder.  

During the operation, if the upward flow is too strong when the opening gap reaches a 

certain height, larger particles at the cyclone bottom could also be removed and cleared 

away from the cyclone top causing the huge reduction of collection efficiency. In order to 

retain the large particles so as to maintain the collection efficiency, an additional revision 

in adding a secondary air guider with a simple design for the purpose of retaining larger 

particles from being removed. The air guider is designed in different shapes and angles in 

accordance with the air spinning direction. In this way, the secondary air inlet gets access 

to the air guider in a certain direction and creates different spin motion. With the help of 

the developed secondary air guider, the collecting efficiency could be maintained as more 

than 80% of the original cyclone’s.  

Two kinds of powder sample were used to test the performance of the new classifying 

cyclone. Experimental results showed many promising results in removing the small 

particles without sacrificing the collection efficiency. According to the analysis of all the 

results in span, D10, D50, D90 and collection efficiency, it showed that when the inlet 

opening gap became wider, the span has the most reduction as D10 strongly increased. 

Also, the collection efficiency was affected mainly due to the inlet opening gap. On the 

other hand, using a concave shape air guider could always achieve the lowest span but the 

lowest collection efficiency, in the reason that the spin motion provided by the concave 

air guider disturbs the original inner vortex during removal of small particles. It could 

also remove larger particles during the disturbance. In this case, the linear and convex 

shape guiders are suitable for further reducing the span without losing much collection 

efficiency. 

In addition, the angle of the air guider in three different degrees has been tested. 

Experimental results showed both 30˚ and 70˚ (for concave guider is 45˚ and 70˚) is 

preferable in helping with a better size distribution. It is owing to that air guider at these 

two angles, leads the air to get access to the cyclone bottom tangentially and radially, 

which faster creates the upward spin vortex. Furthermore, inlet air with radial velocity 
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helped with clearing the smaller particles away while tangential velocity is beneficial for 

retaining large particles. Overall, the obtained particle size distribution in using a novel 

cyclone had a huge improvement as the span is reduced and the D10 is improving. In 

conclusion, the new revision of the classifying cyclone with a secondary air guider is an 

effective method for reducing the particle span as well as further improving the particle 

distribution.  
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4 Chapter 4: Improvement on the Faraday Cage effect by 
Modifying Corona Spray Gun 

4.1 Introduction 

Regarding the spray application of powder coatings, there are two major electrostatic 

charging methods: corona charging and tribo charging. Corona charging spray gun is 

more popular in powder coating applications due to its reliable charging performance and 

good control of powder deposition [1]. Powder coating application by corona charging is 

achieved by spraying, curing and cooling. During the corona spraying process, the 

electrode of spray gun generates a strong electrostatic field to charge the particles. Then 

the charged particles deposit on the grounded coating target, followed by curing process 

at a high temperature (180 to 200 ℃). Figure 4.1 illustrates a typical corona charging and 

spray system. The spraying process starts with the high-voltage charging provided by the 

generator to the electrode at the tip of the spray gun. With the charge accumulating on the 

electrode, it generates a strong electric field to charge powder particles between the gun 

tip and target substrate. The charged particles are driven by air flow and then deposited 

onto the grounded target [2].  

 

Figure 4.1 A corona charge spraying process (duplicated from Figure 2.11) 

There are several major requirements for powder coating spraying application: high first-

pass transfer efficiency (FPTE), good surface finish with desirable mechanical, chemical 

and weather resistance, as well as uniform film thickness of the entire target substrates. 

Among these factors, higher FPTE is able to be achieved by utilizing the corona spray 

gun with higher voltage [3]. However, there are some drawbacks of using corona spray 

gun under a high voltage operating condition due to the fact that copious free electrons 
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created from the gun electrode tip could break down and ionize the surrounding air. This 

phenomenon is known as corona discharge. A small percentage of the charged ions 

attaches to the particles sprayed out of the gun while large amount of these free ions 

directly deposit onto the target together with the particles [5]. If those free ions are 

continuously building up on the deposited powder layer, the field intensity exceeds the 

breakdown tolerance of powder layer. The ions tend to penetrate through the powder 

layer and cause the dropping of the particles and repellence of further particles deposition. 

This is known as back ionization, which eventually causes insufficient particle deposition 

rate and poor film qualities [4].  

The presence of the electric field between the gun nozzle and the substrate leads to 

problems when coating articles with convex geometry by corona spray guns. As a result 

of electrostatic law, the field lines cannot penetrate to recessed areas of coating target. 

Charged particles driven by the force always follow the field line pattern and tend to 

cover the sharp edges when flying close to the target, so powder deposition is reduced in 

recessed area or holes [6] (Figure 4.2 and Figure 4.3). As the result, the recessed areas or 

corners have insufficient particle coverage compared with other part of the coating 

surface. This phenomenon is known as Faraday Cage effect, casing the uneven powder 

distribution and coverage on the final coating finishes.  

 

Figure 4.2 Typical flow pattern of corona gun and Faraday Cage effects 
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Figure 4.3 Coating target with complex configurations 

The other significant charging system called tribo or triboelectric charging gun could at 

least in principle, help eliminate the above problems of the corona discharge as well as 

preventing the Faraday Cage effect. The mechanism of tribo-charging is to charge 

particles by intensive friction between particles and the gun internals made of 

polytetrafluoroethylene (PTPE) as the frictional component. Powders become positively 

charged when passing through the gun and in contact with the PTFE internals. 

Subsequently the gun internals are left with a negative charge and must be conducted 

away afterwards. Unlike the corona gun, the tribo charging gun does not contain an 

electrode which generates an electric field between the gun tip and target. As a result, the 

transportation of the charged particles from the gun is entirely realized by the air flow 

passing through the specially designed spray head [7]. As a result of the charging 

mechanism of the tribo gun, the electrostatic field between the spray gun and work piece 

is weaker so as to effectively eliminate the Faraday Cage effect, leading to a good coating 

film quality [8].  

However, the low transfer efficiency of tribo gun is always a problem. On different 

coating substrates, corona and triboelectric charging differ in the electrostatic powder 

charging performance and transfer efficiency. Earlier studies indicated that corona gun 

had relatively higher powder deposition efficiency than a triboelectric gun with coating 

metal plates, while it had the same efficiency in coating metal tubes [9]. Mayr et al. 

analyzed the effectiveness of corona and triboelectric charging systems in transfer 
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efficiency and adhesion using powder of selected sizes. The results showed that corona 

charging system could provide the highest transfer efficiency as well as better adhesion 

among all the tested spraying systems [4]. In general, although using tribocharging is one 

possible solution in avoiding back ionization and Faraday Cage effect, some problems 

and drawbacks of tribo gun are still remaining to be solved. It is more sensitive and 

difficult to predict than the corona spray gun due to the fact that the tribo system is easily 

influenced by many factors during the operating such as humidity, material electrical 

characteristics and the surface condition of the coating target (roughness and shape) [10]. 

It is also hard to predict the quality of coating. 

In powder coating industry, Faraday Cage effect seriously affects the final product 

quality such as film thickness and smoothness. Thus additional make-up procedures are 

needed, causing cost increase and extra waste. In the past few decades, many efforts have 

been made in mitigating back-ionization and Faraday Cage effect by modifying the 

spraying devices. One famous idea called internal-corona (IC) modification in the corona 

spraying system has been developed to solve these problems. In 1988, Kiefer et al. 

proposed an idea to let the electrostatic charging electrodes charge particles in gun 

chamber near the nozzle region. Then the grounded substrate is coated with a cloud of all 

charged alike particles, and then the layer of particles melts and cures to a continuous 

film [11]. Similarity, Nagasaki et al. invented a plasma electrode pair disposed inside the 

spray apparatus so as to charge the flowing particles passing through [12]. Usually, the 

electrode is enclosed by a grounded cylinder in most of the internal corona spray gun 

design. During the spraying, the electrostatic field and free ions go to the cylinder instead 

of coating surface, so the induced electric field near target surface space is minimized to 

overcome the problem of Faraday Cage effect. However, these designs of the spray gun 

may lead to large amount of the charged particles accumulating inside the cylinder wall 

and gun tip. Over accumulation of those particles could cause reverse discharge and back 

ionization. More seriously, sparks from reverse discharge may ignite the surrounding 

particles. Several solutions aiming at modifying IC guns have been studied since then. 

Clements [13] et al. investigated an IC gun with an attached cylindrical section to the 

nozzle to coat the insulated targets with electrostatic powder. The electrode was provided 

with both alternating polarity and dc voltage supplies. Since the IC gun does not emit 
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many free ions, it could reduce the charge accumulation on the coating target in order to 

solve back ionization and Faraday Cage effect problems. However, the TE obtained by 

this method is very low, also the adhesion between powder coating and insulating target 

is weak. So the final film does not always meet the requirements.  

On the other hand, the biggest challenge of the internal charge gun modification is that 

the gun electrode is enclosed in limited space. It reduces charging intensity so the free 

electrons tend to attach on cylinder wall. As a result, the actual charging of the particle is 

very poor. Therefore, the amount of deposited powder on the target is much less than 

being adequate. So far, there has been almost no successful method and design of IC 

spray gun.  

4.2 Materials and Methods 

In this study, we proposed a new method in modifying corona spray gun to overcome the 

Faraday Cage effect. The main innovation of the corona gun is to add four additional 

electrodes with alternating voltage supply. Theoretically, comparing with conventional 

constant voltage supply systems, the induced electrostatic field of the alternating voltage 

supply has a low field intensity, avoiding the ions’ continuous building up on the powder 

layer of coating target. As a result, more charged particles have access to the recessed 

areas for solving the Faraday Cage effect problem. In addition, this modified gun with 

multi-electrodes could create repellency of the electrostatic field near the gun tip, which 

allows particles flowing out from the spray gun to interact the electrostatic field with 

much less intensity compared with a single electrode. The main goal of this study is to 

comprehensively investigate the performance of the modified spray gun. Series of 

experiments were conducted to examine the results and it was mainly depicted by 

measuring of Faraday Cage Resistance (FCR) and FPTE.  

The experiments were conducted using a corona spray system (Encore® XT manual 

powder spray systems, Nordson Corporation, Amherst, Ohio, USA). Conventionally, a 

corona spray gun includes one single electrode at the gun tip and is supplied with 

constant high voltage. However, the modified spray gun proposed in this study consists 
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of four additional electrodes surrounding the center gun tip, as shown in Figure 4.4 (a). 

Additional electrodes were installed in a plastic plate on the outside circumference of the  

 

Figure 4.4 The schematic of the modified corona spray gun 

gun nozzle, named as electrode 1,2,3 and 4, as shown in   Figure 4.4 (b). For realizing the 

alternating voltage supply, four electrodes were connected to a specially designed 

distributor attached to the side of the spray gun, driven by a DC motor, distributing the 
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(a) The modified corona spray gun 

(b) Configuration of four additional 
electrodes 
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high voltage to each of two diagonal electrodes at a time. The main cylinder shaft is made 

from brass and encapsulated in poly (methyl methacrylate) (PMMA) chamber, as 

illustrated in Figure 4.5 (a). The main shaft is made from brass with 4 naked triangle 

patches. Each patch is connected with one electrode through the extension wire crossing 

on top of the PMMA chamber. Except for the surface of four brass patches, the main 

shaft is wrapped by ceramic, as illustrated in Figure 4.5(b). During the rotating,  

 

Figure 4.5 The DC motor distributor 

electrodes get charged when touched with brass while stop charging when touched with 

ceramic surface. In this way, the four electrodes can get charged in a certain sequence 

during the rotation. By connecting electrode 1 with 3, 2 with 4, the DC motors  
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1-shaft cover, 2-main shaft, 3-naked brass contact panel, 4-electrodes, 5- top cover 
bar, 6-slide bar, 7-extention wire connected with electrodes and brass patch, 8-wire 

connected with brass shaft, 9-motor base 
(b) Design drawing of the distributor 
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could distribute the high voltage to each of the two diagonal electrodes simultaneously. 

Theoretically, this alternating charging pattern could effectively avoid the accumulating 

of free ions, so the powder cloud produced by this spray gun contains almost no net 

charge. In this case the Faraday Cage penetration is expected to be avoided due to the 

reduction of electrostatic field intensity.   

The charging programming is demonstrated in Figure 4.6. Each pair of the electrodes in 

diagonal position have the same charging performance with the empty periods in between 

two adjacent charging periods. The alternating distribution frequency was adjusted by 

changing the voltage input of the DC motor. The rotation speed is proportional to the 

voltage input, so by increasing the charging frequency, both of the charging and empty 

periods (neutral period) are shorter.  

 

Figure 4.6 The charging program of the distributor 

The powder samples tested were Avalanche White (PT-3000), provided by Syn-Link, 

Ontario, Canada. The reason why this powder sample is used in this experiment is that 

coarse powder is dominant in most of the powder coating applications, and it can 

represent the most typical powder coatings in the industry for laboratory test and scale-up. 

(a) Charging cycles of the pins 

 

(b) Charging scheme of the gun 
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It will benefit in representing the performance of this novel spraying gun, as well as the 

future scale up researches.  

4.3 Experiment Design 

In this experiment, the voltage of the DC motor was measured by rotating speed of the 

main shaft cylinder. The corresponding charging rotation was 400 r/min, 550 r/min, 

700r/min, 850 r/min and 1000r/min. In addition, five different voltages of the corona 

spray gun were set as -30kV, -45kV, -60kV, -75kV and -90kV, where -30kV and -90kV 

were the lower and upper limits of the normal spray gun, and the normal application 

voltage setup is in between. In order to optimize the spray gun experiments, the distance 

between the center gun tip and four additional electrodes was adjusted in both axial and 

radial directions. The distance of the gun tip to work pieces is 20cm and remains constant 

throughout the whole experiment. 

More importantly, the main parameter in evaluating the spray gun performance is 

Faraday Cage Resistance (FCR), measured by a U-shape coating panel, as shown in 

Figure 4.7. There are three aluminum panels, panel A, B and C, being attached to the U-

shape aluminum coating panel which was hanging upright during the spraying. Those 

three small panels have identical dimensions but Panel C was placed in the recessed area 

with 2.5 cm depth lower than panel A and B. In this way, the Faraday Cage Resistance 

was calculated by: 

    FCR =
×  

  
    Eq.4.1 

W (g) is the weight of the powder on each panels. The range of the FCR is from 0 to 1, 

where the higher value of FCR, the better penetration of the powder overcoming the 

Faraday Cage effect. If the FCR equals to 1, it means that the amount of the powder 

deposited on panel C is the same as panel A and B, standing for the no Faraday Cage 

effect. However, if FCR is zero, there is no powder reaching panel C, indicating that 

Faraday Cage effect is extremely strong.  
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Figure 4.7 The Panel size for Faraday Cage effect measurement 

Another significant parameter is the first pass transfer efficiency (FPTE). It was first 

determined by Chen et al. [14] using a computer-controlled powder coating spray system. 

The mass of the deposited powder on the target compared with the weight loss from the 

powder supply is measured using a microbalance. In this way, the measured FPTE was 

defined as the ratio of the mass of deposited powder to the mass of sprayed powder. 

According to the weight of powder sprayed onto coating surface, the FPTE could be 

calculated as: 

    FPTE =      Eq.4.2 

In this experimental study, the powder loading was accomplished by a conveyer belt 

feeding the powder to a hopper which was connected to the bottom of the spray gun at a 

loading rate of 3.1g/s, which is comparable to the industry feeding rate. This feeding 

method is different from the conventional approach utilizing the fluidized air to transport 

the powder from a powder box through the regulator. In this way, the powder amount is 

easily controlled and the loading rate could remain constant by maintaining the conveyer 

speed during the experiments. In this study, the powder loading rate remains 3.1g/s with 

an amount of 6.3 g for FCR test and 18.6 g powder samples for FPTE test. The results 

obtained from the original corona spray gun were used as a control. In addition, in order 

to find the best range of operating conditions of the original corona gun, a series of 

parameters of the original spray gun were also adjusted: namely gun voltage (-kV),  
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Figure 4.8 Encore XT Manual Powder System diagram 

current (µA), percentage of flow air (%) and total flow (SCFM). The modification 

experiment was carried out in accordance with those operating conditions. The schematic 

(a) Control board of the spray system  

(b) System diagram of the spray system 
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of the control board and the system diagram is shown in Figure 4.8. In general, the most 

commonly used gun voltage range in powder coating industry is from -60kV to -100kV 

for conductive substrates, and less than -10kV for insulated parts. The tube controlling 

the total flow is connected to the powder unit with an air supply, controlling the velocity 

of the powder flow. In this study, the smart flow mode of the spraying system has been 

used. As controlled by the system, if the flow air % percentage value decreases, the 

atomizing air pressure increases automatically, so that the powder velocity remains the 

same. The flow air (%) sets the actual percentage of powder flow rate, depending on the 

total air amount and the outputs of atomizing air. 

 During the experiments, several operating conditions have been adjusted and measured 

for evaluating the performance of this novel spray gun, namely: 1) voltage (-kV); 2) 

alternating charging frequency (RPM); 3) axial distance of the electrodes to center tip 

(cm), see Figure 4.8 (a). 4) radial position of the additional electrodes, see Figure 4.9 (b);  

 

(a) Radial position of additional electrodes to center tip 
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(b) Radial position of the additional electrodes to center tip 

Figure 4.9 Axial (a) and radial (b) position of electrodes to the center tip 

4.3.1 Finding the baseline of original 

The experiment began with the calibration of the Nordson Corona spray gun. The four 

significant parameters affecting the final spraying performance are gun voltage (-kV), 

current (µA), percentage of flow air (%) and total flow (SCFM, Standard cubic feet per 

minute). In order to find the optimized operating condition range of the original spray 

gun, series of experiments were carried out to determine those factors. They show as 

follows:  

To begin with, total flow was adjusted first in setting the powder velocity to obtain the 

desired pattern size and penetration. The influence of total flow was tested under 60 µA, 

50% flow air and in two ordinary gun voltages. As illustrated in Figure 4.10, within the 

setting range of total flow (1.5 to 6.0 SCFM), both FCR and FPTE values dropped 

quickly when the total flow was increased. This is mainly due to the fact that with the 

constant flow rate but higher total flow, particle velocity is increased by atomizing air, 

leading to less penetration of the recessed area. 

In addition, the effect of particle velocity also could influence the particle charging 

efficiency, evaluating by charge-to-mass ratio (Q/M). The Q/M increases under relatively 

low particle speed (1.5-2.5m/s) but decreases soon when the powder flow rate goes up [9]. 

In our case, according to the size of total flow in the circular duct, Q/M was decreasing 

L=Lmax L= L/2 L= 0 
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when the total flow was larger than 2.0 SCFM, leading to less powder deposition on all 

coating panels. As a result, both FCR and FPTE values dropped quickly due to the 

reduction of the amount of particles. 

It is also known that particle velocity is crucial as it affects particles’ bouncing behaviors. 

Higher velocity may help with Faraday Cage penetration if the particle charge is well-

controlled. However, particles at a high velocity are likely to cause particle bouncing at 

the surface of powder layer, resulting in the reduced amount deposited powder [14]. 

Therefore, the proper total flow should be set to less than 3.0 SCFM. In addition, 

compared with using voltage of -90kV, the FCR under -75kV was slightly smaller during 

the total flow region less than 3.0 SCFM, while the FPTE was comparable under the 

same total flow. The above experimental results indicated that utilizing higher charging 

voltage and proper particle velocity could help particles reach the recessed area so as to 

reduce the Faraday Cage effect. 
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Figure 4.10 Effects of total flow on Faraday Cage and FPTE (50% flow air, 60µA) 

After deciding the total flow, it is easy to investigate the influence of flow air (%). As 

illustrated in Figure 4.11, it showed an increasing trend in the FCR value as the flow air 

becomes smaller. With a fixed amount of powder feeding from the conveyer, the higher 

flow air pressure brings higher particle velocity, so that fewer particles get charged 

leaving the gun. So the Faraday Cage effect is severer under the condition of high flow 

rate. Meanwhile, FPTE is not sensitive to the change of flow air. However, the flow air 

could not be set too low so that the extreme setup for flow air (20%) is not favorable for 

wide range of application conditions and the surface quality.  
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Figure 4.11 The effects of flow air on Faraday Cage and FPTE (2.0 total flow, 60µA) 

The corona gun current also controls the charging performance, so it is necessary to find 

the how the gun current affects the FCR and RPTE. In figure 4.12, both FCR and FPTE 
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were influenced by adjusting the electrical current of spray gun. In observing the results 

obtained from changing the current between 20μA and 60μA, it is found that the FCR 

had an obvious improvement when the spray gun current was low, indicating that the 

Faraday Cage effect became less serious. At the same time, the FPTE has a minor 

reduction with the current going higher. This phenomenon is related to the current density 

of the electrostatic field between the spray gun and coating target.  

It happens when free ions keep accumulating near the target surface and particles start to 

build up. Then it causes the self-limiting in preventing further particles depositing onto 

the target due to back-ionization, resulting in poor film qualities. Previous researchers 

determined that the optimal operating conditions to reach a final coating film with few 

defects is with a high voltage and a low current, meanwhile the FPTE could be 

maintained [3,15]. In this case, 20 μA is suitable for the future spray gun current setting. 
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Figure 4.12 Effects of current of spray gun on Faraday Cage and FPTE (2.0 total 
flow, 25% flow air) 

In addition, after determining the settings of main operating parameters, consistent and 

accurate experiments in evaluating the corona spray gun were conducted by testing FCR 

in the whole range of gun voltage. As the Figure 4.13 shows, in general, the FCR is 

within the certain range, which indicates the chosen corona spray gun has a relatively 

stable operating state. Under the low gun voltage, the average FCR value was slightly 

higher than that in higher voltage regions. FCR being closed to 1 represents that there is 

almost no Faraday Cage effect and all the tight corners and recessed areas are covered by 

a suitable amount of powder coatings. The higher FCR obtained around -30kV can be 

explained that when operating under a low gun voltage, the total weight loss of particles 

on panel A and B is greater than that on panel C, this does not stand for the weaker 

Faraday Cage effect. The further explanation of the weight loss and insufficient coverage 

can be the poor charge of particles under low gun voltage. During the spraying, the first 

requirement of the spray gun is to let more particles diffuse from it being highly charged. 

Only in this way are the particles able to reach the target and adhere on it. But in reality, 

not all the particles are charged sufficiently due to the inefficient charging process, 
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especially when using a low gun voltage. Additionally, the corona discharge which is 

confined to a small vicinity of the spray gun needle where the ion density is sharply 

decreasing, is also causing less particle charges. Experimental results also found that the 

corona discharge can shield the spray gun tip, so that no further charging can happen. 

What’s more, as mentioned above, copious free ions in the space between the gun tip and  

 

Figure 4.13 FCR of spray gun vs gun voltage (Total flow=2.0, Flow air=20%, 
Current=20μA) 

the work piece repel the further particles adhering onto the coating surface due to self-

limiting. It was found that this phenomenon occurs in the particle radius less than 50µm 

[16]. Also, according to the visual observing of all coated samples, it is obvious that 

panel C had less powder coverage in the recessed area when coated with a low gun 

voltage, indicating a more severe Faraday Cage effect. In conclusion, the suggested gun 

voltage range is between -60kV and -90kV. 
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4.4 Optimized experiment of the modified corona spray gun 

4.4.1 Investigating the length of the additional electrode 

According to the previous exploratory research, the condition of the original spray gun 

was decided with the settings of: total flow=2.0 SCFM; flow air %=25%, current=20μA. 

The further modification was based on those settings which remaining the same during 

the whole experiment.  

The length of the axial position between the gun tip of the center electrode with 

additional electrode tips has been investigated as follows. Figure 4.14 shows the 

condition of largest axial distance between center tip and the additional electrodes tips, 

denoted as Lmax. The results obtained from this condition are illustrated in Figure 4.15. In 

observing the FCR with respect of charging frequency, it is obvious that FCR is getting 

improved by using the new spray gun, especially under an alternating frequency of 1000 

RPM. As the input voltage decreased, the average of FCR became slightly higher. All the 

FCR values obtained by the revised gun is greater than the control group, indicated that 

the modified spray gun with additional electrodes with alternating voltage supply was 

efficient in mitigating the Faraday Cage  

 

Figure 4.14 Axial position of additional electrodes to center tip (Figure 4.9a left) 

resistance, as more particles sprayed out from the gun get charged owing to stronger 

charging intensity around the gun tip. Meanwhile, other than conventional constant 

charging, the Alternating charging could effectively avoid ion accumulating so as to help  
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Figure 4.15 The FCR and FPTE for L=Lmax 
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particle deposition. At the same time, the transfer efficiency has some improvement in 

higher charging frequency while some of the values are comparable to the control group 

under the low frequency. Most of the FPTE values were above the control group, 

demonstrating that the alternating charging by adding the electrodes is capable of 

improving FPTE under most operating conditions.  

Figure 4.16 illustrates the extended additional electrode condition. The axial distance 

between the additional electrode tips and center tip are L/2. The results obtained from this 

operating condition is shown in Figure 4.17. It is obvious that by adding higher 

alternating frequency, the promising FCR values could be obtained, which is also in line 

with the condition of furthest axial electrodes distance. Compared with the FCR results in 

Figure 4.13, the peak of the FCR value in most of the alternating frequency is even higher 

in this testing configuration by extending the length of additional electrodes. On the other 

hand, the FPTE does not vary much comparing with using shorter electrodes.  

 

Figure 4.16 Axial position of additional electrodes to center tip (figure 4.9a Middle) 
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Figure 4.17 The FCR and FPTE for L=L/2 

By further extending the length of the additional electrodes, the tip positon of all the 

electrodes were in the same axial line. Figure 4.18. In other words, the gun tip of all the 
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five electrodes had the same distance to the spraying target. As the Figure 4.19 indicates, 

the FCR has an apparent improvement especially under 1000 RPM. Compared with the 

former two groups, only by adding the minimum alternating frequency with 400 RPM, 

the average FCR have the larger improvement. Also with the increasing of charge 

frequency, the even better FCR could be obtained, which indicate the Faraday Cage 

effect became weaker. The probable average FCR value in 1000RPM roughly had the 

 

Figure 4.18 Axial position of additional electrodes to center tip (figure 4.9a right) 
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Figure 4.19 The FCR and FPTE for L=0 

improvement of 10% than the average control group, which is very promising for the 

revision of corona spray gun. In addition, the PFTE in this case has slight improvement 

under higher gun voltage with the charging frequency larger than 850 RPM, although it is 

still a bit lower than the control group in -30kV and -45kV, similar to the conditions of 

more additional electrode positions. In general, most of the FPTE of these three groups 

had relatively lower values under the lower voltage and started increasing with the 

growth of gun voltage.  

In analyzing the FPTE values of Figure 4.15 - 4.19, the transfer efficiency of the original 

gun and the modified gun was comparable under the low gun voltage and the charging 

frequency. The difference between control group and improved results became larger 

when the higher gun voltage and charging frequency were supplied. It implied that the 

new design of the modified spray gun is desirable due to the fact that it is capable of 

reducing the corona quenching. Corona quenching was first observed and proposed in the 

application of electrostatic precipitators. It is the suppression of the corona and influences 

the deposition of the dust due to the space-charge of the particles [17], which is simply 
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illustrated in Figure 4.20. Previous researchers [18] summarized that there are two main 

reasons causing corona quenching: (1) the slow mobility of those charged particles results 

in the deceleration of the ion movements; (2) the low mobility of charged particles 

decelerates the movement of ions [20]. The following studies also found that the corona 

quenching was closely related with the corona onset voltage which could cause the strong 

current deformation [19]. Meng et al. claimed that the non-uniform current density 

distribution and the higher corona current is in favor of avoiding the corona quenching 

[20,21]. In our modification, the charging performance was definitely enhanced by the 

multiple electric fields. Furthermore, since the alternative charging period is much shorter 

than the spraying duration, the non-uniform current density distribution is formed near 

the spray target so that the particle charging could be improved. As a result, the influence 

from the empty charging periods is compensated by the diagonal alternative charging, in 

this way the transfer efficiency has no significant reduction and even gets improved 

under the high gun voltage and rotating frequency conditions. 

 

 

Figure 4.20 Illustration of corona quenching 

The other reasonable explanation to the fact that the revised spray gun had much higher 

transfer efficiency than the original group is due to the reduction of the secondary 

charging. It was disclosed by Wu [22] that during the coating process, the charging may 

happen both on the flying powder and deposited powder. The primary charging always 

occurs near the corona electrode within 50mm of the gun tip due to the high electrostatic 
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field. While the secondary charging exists when the deposited powders accept additional 

charges, results from the converging of the electric field on the substrate surface and as a 

result terminating the further ions on the coating surface [22]. This accumulation of the 

charges on the coating layer could further generate the powder break down due to the 

bombardments of the current ions, causing the reduction of powder deposition during the 

continuous spraying [22,23]. The secondary charging phenomena always occurs with the 

existence of higher gun voltage. In utilizing the modified new spray gun with the 

alternating charging pattern, it is able to improve the transfer efficiency by reducing the 

duration of secondary charging. 

After analyzing the above results, the most suitable operating conditions were the chosen 

as follows: The maximum length of additional electrodes which four electrodes tips had 

the same axial position as the center gun tip; The suggested alternating frequency is from 

800 RPM to 1000RPM; The higher frequency setup was not tested due to the 

performance of 1000RPM has similar results within -60kV to -90kV during extending the 

four electrodes.  

4.4.2 Investigating the influence of the C/N ratio  

As mentioned above, the four electrodes can get charged in a certain sequence during the 

rotation of the main shaft. Furthermore, the charging period and empty period of each 

electrode could also be changed by adjusting the connection position of the extension 

wire on the brass patch. As a result, this alternating charging pattern with both charge and 

neutral periods influences the FCR and FPTE results. Adjusting the charge-to-neutral 

ratio (C/N ratio) of the alternator has been studied as well. As mentioned in Figure 4.21, 

the higher C/N ratio in the same rotating frequency indicates a longer charging period, 

otherwise a longer empty period. In this experiment, the four different C/N ratios were 

chosen and calculated according to the design drawing. Experiments of adjusting the C/N 

ratio were carried out under 1000RPM alternating frequency with L=0. All the results 

before adjusting the C/N ratio were conducted in the ratio of 2.36, with the maximum 

charging period. As indicated in Figure 4.21, when reducing the charging period, the 

average FCR was decreasing gradually, which indicated that the longer charging period is  
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Figure 4.21 The FCR and FPTE for different C/N ratio in L=0, 1000RPM 

helpful to overcome the Faraday Cage effect. Similarly, in the low gun voltages the 

higher FCR value could be obtained when changing the C/N ratio. On the other hand, the 
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transfer efficiency under every gun voltage is still above the control group (62%) 

compared with the previous experiment owing to it being supplied with highest 

alternative charging frequency. However, the transfer efficiency showed reduction when 

increasing the C/N ratio. This phenomenon could be explained by the fact that by longer 

period of charging time, the back ionization problem still exists and cause the difficulties 

in gaining stable results. The transfer efficiency has minor descending but not significant.  

It is also necessary to compare the FCR value with the additional rotating voltage in each 

gun voltage setting with the control group. As illustrated in Figure 4.22, all the testing 

groups from the revised gun had the higher FCR than the control group. When adjusting 

the gun voltage to a higher range (-60kV~-90kV), the even higher FCR value was easier 

to be obtained. That’s the reason that the commonly used operating voltage range is from  

 

Figure 4.22 The effect of C/N ratio on Faraday Cage resistance in different voltage 
settings. (L=0, 1000RPM) 

-60kV to -90kV other than lower voltage settings, though the voltage lower than -30kV 

had the minor changes with the changing of C/N ratio. In Figure 4.22, the highest C/N 

ratio is illustrated by “CN1”, which performs better in achieving the better FCR, whereas 

20 40 60 80 100

Voltage (-kV)

30%

35%

40%

45%

50%

55%

CN1
CN2
CN3
CN4
Control



  

 122 

“CN4” stands for the shortest charge time, so that the average FCR in each voltage is 

relatively low. The best performance of the FCR was observed at -90kV by adjusting the 

additional rotating voltage to reach the maximum C/N ratio. In summary, the revised 

spray gun with additional voltage supply with C/N ratio larger than 1 is proven to be 

efficient in improving the Faraday Cage effect within the normal gun voltage operating 

range. 

The researchers in our lab had also investigated some previous works related to the 

revised corona spray gun proposed in this study. The experiment was conducted by 

adjusting the C/N ratio in every rotating frequency with a certain gun voltage. As the 

result, with the higher C/N ratio of the additional voltage supply, the higher FCR value 

could be obtained, however there was a sacrifice with the minor reduction of the transfer 

efficiency. It is noted that all the testing groups all had the greater FCR and most of the 

higher FPTE values compared with the control group with no additional voltage supply 

[25]. 

The radial positions of electrodes were also adjusted in investigating the influence of the 

spraying performance. There are many attempts and arrangements that have been 

investigated to increase the charging performance of the particles emitted from the corona 

spray gun. One of the modifications related to our new revising idea was accomplished 

by Kleber [26] in 1993. He utilized a corona gun with single central point as well as 

several corona points arranged symmetrically surrounding the gun nozzle at the rim of 

the gun barrel. The current density patterns of the target were measured and the results 

showed that due to the mutual effect of the two electrodes, the mutual repelling of the ion 

clouds emitted from each electrode and creating a dead zone on the target, resulting in the 

decreasing of the powder deposition, as illustrated in Figure 4.23. A valid arrangement of 

the position of those multi-electrodes could help with reducing the dead zone. In addition, 

this kind of multi-electrode design was also beneficial to reduce the free ions if it had a 

proper electrode arrangement, demonstrated on the right part of Figure. Kleber also 

disclosed that adjusting the axial position of the additional electrodes have influence on 

FCR and FPTE. This evidence was also in accordance with the results discussed above: 

the FCR and transfer efficiency were the highest when the four electrode tips had the 
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shortest distance from the center corona point. Yanagida et al. proposed that the pin 

electrode could behaved as a free-ion trap due to the electrodes being maintained at a 

ground potential [27]. A large amount of the free ions having higher mobility spouted out  

 

Figure 4.23 Current density pattern with one and two corona points [22] 

from the nozzle are likely to get attracted by the gun body and the electrodes. The 

particles without gaining sufficient charge and having lower Q/M ratios are likely to 

continue to their path and finally attach on the target instead of turning back to the gun 

barrel and getting trapped. In this way the free electrons content is decreased in the 

charged powder clouds so as to avoid the further back ionization problems.  

4.4.3 Investigating the radius position of additional electrodes 

It is also necessary to investigate the influence brought by adjusting the radial positon of 

additional electrodes with the center tip. As shown in Figure 4.24, as the additional 

electrodes move away from the center tip, the charging of the particles became poorer, 

causing the low FCR and transfer efficiency. However, too small of distance brought a 

stronger Faraday Cage effect due to the influence of the electrostatic field interaction. 

The results showed a rather stable FPTE with the changing of the radial position, 

especially in a high gun voltage where the transfer efficiency could maintain around 69%.  
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Figure 4.24 Effects of different electrode radial positions, L=0, 1000RPM 

In summary, the above results obtained in varieties of operating conditions indicate that 

the FCR could be effectively improved by utilizing the new spray gun with the additional 

electrodes during the spraying. Meanwhile the FPTE also improves in most of cases, 
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although in some conditions it may scarify in a small range. In observing the final results 

visually in Figure 4.25, the difference of powder distributions is obvious especially on  

 

Figure 4.25 The comparison between the original and revised spray gun in -90kV 
and 1000 RPM, C/N ratio 0.21, additional electrode radius position 1.25 

panel C. The powder coverage of the original gun has two uncovered parts on panel C 

which could be clearly seen as the exposed aluminum color. In contrast, the recessed area 

had more sufficient powder deposit sprayed by the new spray gun, so that the visual 

result has strongly proved the effectiveness of the modified spray gun.  

Based on the above analysis, the higher rotating frequency is the favorable condition for 

the alternator, which was decided as 1000 RPM. The most preferable electrodes length is 

having a same axial gun tip position as the center tip. In accordance with the industry 

requirement in spraying conductive spray target, the gun voltage is set between -75kV to 

-90 kV. To reach a more effective and stable operation, the revision of the spray gun and 

the alternator still needs to be modified to accommodate more research tests in the future 

work.  
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4.5 Conclusion  

A novel technique in modifying the conventional corona spray gun by introducing the 

additional multi-electrodes near the tip has been tested. A series of experiments has been 

conducted and the proposed design was proven to be effective in improving FCR and 

FPTE under the ordinary operating conditions. The Faraday Cage resistance could be 

significantly enhanced by increasing the alternative rotating frequency especially under 

the lower gun voltages and higher charging-to-neutral ratio. Furthermore, the obtained 

transfer efficiency had significant improvement over the original gun and even got 

promoted when increasing the gun voltage supply. In addition, experiments in optimizing 

the electrode position have been conducted to decide the favorable radial and axial 

position of the additional electrodes tips. By narrowing down the axial tip distance, a 

stronger charging field formed so that the Faraday Cage effect could be overcome by 

extending the electrodes length. The optimum radial position of the electrodes is 1.25cm 

towards the center tip.  
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5 Chapter 5: Cold bonding technique for processing 
metallic powder coatings  

5.1 Introduction 

Powder coating is a dry coating technology involving powder material processing. It was 

introduced in the early 1950s in the United States and fast developed in the metal 

finishing industries [1]. During the past few decades, powder coating has been gaining 

popularity steadily and is considered one of the most innovative surface techniques. It is 

widely used today due to its characteristic of environmentally friendliness [2]. Compared 

with conventional liquid coating technology, powder coating has obvious advantages that 

it does not incur any volatile organic compounds (VOCs) emission, as well as its 

recyclability of over-sprayed materials [3].   

The coating finish strongly relies on the powder particle size. Fine and ultrafine powders, 

with median particle size between 10 µm and 30 µm have been successfully used in many 

industries and has a remarkable performance in forming a very uniform layer of paint. 

However, there are not a lot of decorative coating products in the powder coating 

industry and they have only been used on limited products in the lower end market.  

In order to provide a much better aesthetic appearance of powder coatings, some powder 

manufacturers started to offer new technique of adding metallic color powder to products. 

In this way, the final coatings get the extra shine and deepness to the color by introducing 

metallic effect. Processing metallic powders has great difficulties. The cost of the 

metallic color powders is much higher than commonly used powder coating materials, 

and also, the manufacturing process is much more complex. Several patents have 

mentioned some technique related to metallic pigment in powder coating processing. At 

the beginning, metallic effect coating was realized by spraying multi-layers on the 

substrate. Researches applied the first base layer with metallic pigments onto the target, 

then covered it with clear top coating [4-6]. However, it needed preheating of the coated 

substrate to enhance the cross-linking reaction. Also the time interval of applying the 
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secondary layer should be controlled based on the curing condition of the base layer. 

Furthermore, the ratio of powder coating resin to curing agent is strict. Other researchers 

also devoted in processing metallic pigments with powder coatings. Reisser et al. 

proposed a synthetic method to produce a resin-coated aluminum pigment. The 

production of a silicon-organic coating on the aluminum pigment surface was first 

performed, and then the coating reacted with other compound to form a cross-linked 

synthetic resin coating [7]. However, this production method was too complex, involving 

many synthesis steps. Nowadays, the processing technique of metallic pigments with 

powder coating is mainly utilizing the thermal blending method. Generally speaking, the 

thermal blending is needed during the process of mixing powder coating with metallic 

powder coating, where the temperature of the blending is critical in ensuring that the 

powder coatings are not cured.  

In the application process, electrostatic spraying is used in this study. Free electrons 

generated by a corona charged gun are attached to the particles by collision during spray 

[8]. Normally the metallic pigments are easy to stay on the panel because of the 

electrostatic force, whereas the powder coatings are less likely to stay on the panel and 

can go directly to recycle. Because of the distinctions in shape, size and surface 

conductivity, the two materials are prone to separate and to have different transfer 

efficiencies, resulting in the different contents of metallic powder concentration in the 

recycled powder compared with the original coating. The objective of this research was 

to improve the bonding between the metallic pigments and the powder coatings, so as to 

unify the charging performance during the spraying. 

In this chapter, a new method in utilizing liquid bonding solution to glue the metallic 

powder and powder coating is introduced, so as to achieve a better bonding during 

spraying. This can lead to a more uniform pigment concentration in the reclaimed powder. 

5.2 Materials and method 

The initial blending method started with mixing the metallic pigments with liquid bonder. 

At the beginning of this research, the liquid bonder and metallic pigment are mixed in a 
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high shear blender so that the metallic powder could be well dispersed and encapsulated 

by the dilute liquid bonder. Before the solvent in the liquid bonder evaporated, the 

powder coating was added into the mixture. In this way, the powder coating could adhere 

to the wet metallic pigments. The final product needed an additional drying procedure. In 

this study, two widely used metallic effect pigments, aluminum flakes (Al) 

(manufactured by Silberline Manufacturing Co., Inc., USA) and mica flakes 

(manufactured by Langfabo Manufacturing Co., Inc., China). 10% (by mass) solutions of 

polyacrylate (PA) and polyvinyl alcohol (PVA, IF14000) were both tested as the liquid 

bonder.  

5.2.1 Mica bonding test 

In industry the metallic pigment concentration is normally between 1%~3% to achieve 

the appearance. Overwhelming dosage of additives other than powder coating may cause 

surface defects. However, in order to observe and detect the bonding condition between 

metallic pigments with powder coating, a high concentration of metallic pigments was 

used in this study. Mica pigments (D50=18 µm) were chosen as metallic powder and the 

powder coating (manufactured by Langfabo Manufacturing Co., Inc., China) has the  

 

Figure 5.1 High shear blender 

median size of 27 µm. First of all, the mica flakes were mixed with the powder coating 

together in a high shear blender, as shown in Figure 5.1. The ratios are m(mica):m  
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 (powder coating) = 0.2: 1. m(PA):m(mica)=0.06:1, m (D.I. water):m(mica)=0.2:1 [9]. 

Water was used as solvent for diluting the PA solution and also helped disperse the 

materials better. Then the samples were air dried for 2 hours until completely dry.  

One direct approach of examining the bonding results is by scanning electron microscope 

(SEM) which could provide a visual analysis of the bonding results. As shown in Figure 

5.2, mica flakes stacked severely to each other (B). The powder coatings agglomerated 

due to the existence of liquid bonder. Although a few well-bonded mica flakes (A) with 

powder coating could be observed the bonding was still not satisfactory. 

  

Figure 5.2 Mica bonding with orange powder coating under SEM 

Spacer additives 

In order to solve the serious stacking problem, a new material with smaller particle size 

(less than 5 µm) was introduced in this research, working as a “spacer”. It could be any 

material with the stable physical and chemical properties and does not react with other 

materials used during the process. The main purpose to add this smaller size material was 

to separate the stacking mica flakes. If the sample is well blended, the space between two 

neighboring mica is enlarged by the existence of the spacer. As a consequence, the 

stacked mica flakes would be split during the further blending process with the help of 

the sheer force. 

The appropriate spacer size is around 3-5µm. It is easy to find this kind of size 

distribution from the recycled powder from the Corona charge spraying bag house. 

A 

B 
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During the spraying, because of the electrostatic force, part of the powder with the 

smaller size could not stay on the panel so that it has been directly recycled and stored in 

the bag house, which couldn’t be reused any more. The tested reclaimed bag house 

powder is polyurethane (PU). The bag house powder (BHP) and mica flakes were 

blended in the proportion of m(mica):m(BHP) =1:1 in the high shear blender, then the 

powder coating was added to the mixture then blended a second time. Figure 5.3 shows 

the result of accomplished bonding sample. The smaller particles with sizes around 5 µm 

are the bag house powder. However, they are easily agglomerated to form a cluster due to 

Van der Waals force (B1). By examining the SEM results, the stacking problem was 

partly solved by introducing the bag house powder, but this method was still not very 

effective because it could not separate those completely overlapped flakes (B2). 

Meanwhile, the bag house also had a risk to be surrounded by PA solution and then 

became strongly agglomerated to larger clusters, leading to a new side effect during the 

blending. 

  

Figure 5.3 SEM images of powder bonding sample with bag house powder 

The reclaimed bag house powder has its own drawbacks such as agglomeration and it 

was not small enough to go into the space between two tightly stacked mica flakes. In 

this case, an even smaller size material such as nanoparticles, could substitute the bag 

house powder. The nanoparticles (R287, manufactured by Evonik AG, Germany) was 

blended at the same dosage as bag house powder with mica flakes into the high shear 

blender. 

B1 

B1 

B2 
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The final product with nanoparticles is illustrated in Figure 5.4, showing the dry blend of 

mica and nanoparticles only. It is obvious that the nanoparticles are highly likely to 

adhere onto the mica flakes so as to increase the roughness and prevent stacking. 

However, in Figure 5.4 (b), due to the existence of liquid bonder, nanoparticles were not 

effective in solving the stacking problem where several mica flakes strongly adhered to 

each other, even though the nanoparticles were attached onto the mica flakes. Although a 

large amount of these are attaching onto the mica surface, it still could not prevent 

stacking mainly due to the relatively small size of nanoparticles. 

 

(a) Mica and Nanoparticles 

  

 (b) SEM of mica bonding with R972 nanoparticles 

Figure 5.4 Images of mica sample bonding with nanoparticles under SEM 
observation 

Another two possible new substances could be chosen as the spacer in this experiment, 

namely alumina (aluminium oxide, Al2O3) and aluminosilicate (zeolite, manufactured by 

PQ Corporation, USA). The particle sizes are both 2-5 µm and relatively inert in terms of 

chemical properties. Furthermore, the Al2O3 could bring more gloss than nanoparticles 
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and bag house powder to the final panel. The SEM of Al2O3 and zeolite are shown in 

Figure 5.5.  

  

(a) Al2O3    (b) zeolite 

Figure 5.5 Images of Al2O3 and zeolite under SEM 

The above two figures demonstrated that compared with Al2O3, zeolite has relatively 

regular shape and a uniform size distribution. Some Al2O3 particle sizes are larger than 

15 µm, and they would not help in solving the stacking problem. Additionally, because of 

the porous structure, zeolite has a larger specific surface area than the same amount of 

Al2O3. It could carry more liquid bonder, and have more opportunity in connecting mica 

and powder coatings. 

 

Figure 5.6 SEM image of bonding samples with zeolite 

The experiment involving zeolite conducted with the same blending ratio with powder 

coating and followed the same operating conditions. As the result shown in Figure 5.6, 

the unbounded flakes are scattered without stacking to each other (C). This demonstrated 

that during the blending, zeolite did have the function of preventing the stacking of mica.  

C 
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However, there were quiet large amounts of particle agglomerations observed under 

smaller magnification. Those were the zeolite aggregates under SEM. In this case, a 

stronger blending method should be invented to solve the existing problem of mica flakes 

and the agglomerates of the zeolites. 

5.2.2 Modification mechanism  

The current blend machine has short and blunt blades. It is easy to predict that by 

modifying the blade the powder sample could get a better dispersion, so as to solve the 

mica and zeolite stacking problems. The original flat blade has a flat surface, which 

provides a weak shear force to the sample powders. An extra blade is added onto the 

current blade with a sharp terminal made of aluminum plate, as shown in Figure 5.7. It is 

easy to modify the shape and the weight is light enough not to toss out because of the  

   

Figure 5.7 Modified high shear blender with sharp blade 

centrifugal force during the high speed blending. Also the terminal should not get too 

long to touch the edge of the blender. 

It was assumed that the powder sample processed by this new blender is well mixing and 

has limited numbers of stacking. However, the bonding of powder coatings with mica 

could not be realized in this new machine as the modified blade was aiming at splitting 

particles. The extra blender was named bonding machine, inspired by the blade 

modification of the high shear blender, which was introduced into the experiment, as 

shown in Figure 5.8. Bonding machine was using the same base as the high shear blender. 

The only change was that the blade had an extra flat space. The sharp blade could provide 
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a higher rotation and shear force in breaking those agglomerations. For the same reason, 

the bonding machine also needs to offer a force for gathering the particles together. To 

reach this goal, a flat impact surface, which has the same length as the original blade, was 

added onto the base blades, but in a vertical way. When the blades started rotating at a 

high speed, the new blade could drive the particle mixture in a certain direction, where 

the powder samples would collide with each other to realize bonding mainly between 

powder coatings and mica flakes. 

   

Figure 5.8 Bonding machine 

The mixing process could be done by utilizing the above two blending machines. 

However, the pretreatment of the materials before putting them into blending machine 

was crucial. Our new bonding process started with wetting the zeolite and PA solutions in 

a mixing tube with a rubber scraper in it. The function of the rubber scraper was to mix 

and stir the materials better, as shown in Figure 5.9. Zeolite, water and PA solution were 

blended in a mixing tube for 1 min, and then the wet zeolite was put into a new high 

shear blender with the mica flakes for 40 s. This procedure makes the encapsulated 

zeolite touch the mica flakes evenly. The entire sample was taken out of the new blender, 

then poured into the bonding machine with the powder coating in it. Now the micas were 

combined with powder coating. The PA has the function in gluing powders when it is not 

dry.  
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Figure 5.9 Mixing tube and stand mixer 

Figure 5.10 shows the SEM of the final powder sample obtained from the bonding 

machine. Well bonded mica flakes with powder coatings could be observed under the 

SEM (A). The new high shear blender separated the materials completely so there was 

large amounts of unbound flakes (C). This is due to several reasons: some of the mica 

flakes did not even get wet by the PA; those micas with PA may get dry quickly during 

the high shear process so that it could not glue any other particles any more. Those well-

bonded parts were split again because of the collision in the bonding machine. It was 

more likely because of the first reason due to the fact that the PA solution was firstly  

   

Figure 5.10 The SEM of the final powder sample 

absorbed by zeolites, and then mixed with large amount of dry mica flakes. So that only a 

small amount of PA could touch the mica flakes, not to mention to encapsulate them. 

That was also why some zeolite agglomerations could be observed (B).  

C B 

A 

A 



  

 139 

To further prevent the mica stacking and zeolite agglomerations, the first step of material 

mixing procedures should be improved. On one hand, it is important to make sure that 

PA solution can soak into the spacer thoroughly. On the other hand, it is also essential not 

to let the PA glue them too much before proceeding to the next bonding step. The mixing 

tube performed well in mixing PA solutions with particles. However, the high shear 

blender could not separate those sticky zeolites according to the SEM results. Therefore, 

a stronger splitting system was needed to solve this problem.  

A jet mill machine is a widely used particle grinding and classification equipment. Size 

reduction happens in the designed chamber due to the particle collisions between 

particles. The particles are fed from a vibratory feeder, right upon the injection nozzle 

which provides the high gas velocity and drives the particles to the chamber. Due to the 

Venturi effect, the powder passes through the thin nozzle at a high velocity. As a result, 

 

Figure 5.11 Jet-mixing system 

the clusters of zeolites or other agglomerations can be segregated. In this research, only 

the jet mill nozzle was used to separate the powder samples, and no additional jet mill  

Particle feed 

Pusher gas 
Gas and fine products 

Coarse products 



  

 140 

chamber was used. A rubber tube connected the recycle system and the powder sample 

was collected by a cyclone-like bin where most of the particles were gathered into it. This 

approach revised from jet mill machine was named jet-mixing system, as shown in Figure 

5.11. The injection pressure was set at 15 psi after some trial and error experiments. 

Otherwise higher pressure blew those bonding parts apart and accelerated the PA solution 

drying, while lower pressure was not strong enough to split the stacking part.  

The final sample accomplished by jet-mixing system observed by SEM is shown in 

Figure 2.12.  Some obvious bonding of one or more mica flakes attached with one or two 

powder coatings took place in this sample (A). However, the non-bonded flakes existed, 

which meant that the bonding between mica flakes and the powder coating was not strong  

  

Figure 5.12 SEM of the Jet-mixing sample 

enough (C). This problem could be solved by adding more liquid bonder, or switching to 

a more powerful liquid bonder. In this case, the solution did not get dried easily when 

passing through the jet mill nozzle.  

The other liquid bonder was polyvinyl alcohol (PVA, IF14000 WP21649) which could 

provide a stronger conjunction between two particles. In addition, adding borax could 

improve the stickiness significantly (Patent, CN1098430A). To find the appropriate ratio 

of adding borax, several solutions having different ratios of borax and PVA are listed in 

Table 5.1. 

 

A 

C 
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Table 5.1 Formulas of borax and PVA solution 
Borax solution (5%) (%) 0.5 0.8 1.1 1.4 1.7 
PVA solution (10%) (%) 10 10 10 10 10 

D.I. water (%) 89.5 89.2 88.9 88.6 88.3 
Borax/PVA (%) 2.5 4 5.5 7 8.5 

The experimental results of the bonding test utilizing the jet-mixing system turned out 

that when borax/PVA=5.5%, the best bonding effect could be reached. Lower ratio of 

borax/PVA may not provide a stronger adhesion between metallic pigments and powder 

coating while excessive borax turns the PVA solvent to slime, which could not be diluted 

or dispersed in the following blending process. Nevertheless, the jet-mixing method 

could not achieve a steady and satisfactory bonding according to observation under SEM. 

The non-bonded mica flakes still dominated among all the bonding conditions, and this 

could not be easily solved by modifying the mechanical parts. Therefore, more liquid 

bonder had to be used in mixing the mica and zeolites before feeding into the jet-mixing 

system.  

Previously, m(PVA+B):m(mica)=0.06:1. In the following experiment, the amount of 

PVA and borax solution was increased gradually and the same m(mica):m(zeolite) =1: 

0.3 was maintained, then the mixtures went through the jet mixing system. The bonding 

effect was also examined under SEM. After a series of experiments, m(mica):m(PVA+B) 

=1:0.42 was chosen as the proper mixing ratio to achieve the best bonded conditions.  

5.2.3 Bonding involving jet mixing process 

In summarizing the above works, two main approaches have been evaluated to achieve 

the final bonding, i.e., the bonding machine (renovated from high shear blender) and 

modified jet mixing system. In further comparison experiments, aluminum flakes (Al) 

(manufactured by Silberline Manufacturing Co., Inc., USA) were used instead of mica as 

mica can absorb excessive liquid bonder and solvent. The liquid bonder was chosen as 

polyvinyl alcohol (PVA) with borax solution, denoted as PVA+B solution. 

The key purpose of mixing the metallic pigment with powder coating is to prevent the Al 

flakes from stacking when contacting the liquid bonder. The jet mixing nozzle offers a 
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high gas velocity to make sure that the powder goes through and the stacking materials 

are split the due to the Venturi effect. Then the dispersed materials would recombine and 

bond to each other due to the cyclone vortex during the collecting.  

In order to compare which approach could provide a better bonding, a few experiments 

have been conducted. All the experiments used the same material formula: m(Al)=1 g, 

m(zeolite)=0.3 g, m(PVA+B) =1.26g, water=0.162 g, m (clear coat) =15 g. Jet mixing 

injection pressure Pin=15 psi. The first sample was made by mixing the Al pigments with 

PVA+B solution in the mixing tube, and then dry blended with the epoxy clear coat 

(dp50=27.13 µm) utilizing the original blender. The collected powder is denoted as 

control sample. Compared to the control group, the second sample was achieved by the 

modified high shear blending and bonding machine, named as bonding machine sample. 

The third group was using the same amount of materials in the mixing tube, but mixed by 

the jet mixing system, named as jet-mixing sample.  

The effectiveness of the above two bonding methods was further examined by a spraying 

test and ash test. The visual effect of the above two improved samples were sprayed by a 

corona spray gun (Gema, Switzerland). The process of ash test followed the ASTM 

D5630-06 [10] from which the exact Al pigment content of the sprayed powder could be 

obtained and compared to the original Al ratio. In the ash test, final powder samples were 

burned in crucible at 530 °C in a furnace. This temperature is lower than the boiling point 

of Al but much higher than the clear coat. In this way, the residues in the crucible would 

be oxides of Al and zeolite since the clear coat had already burnt off after 2 hours. A term 

csolid is introduced as the equation: 

    =      Eq.5.1 

where csolid represents the weight percentage of the residuals in the crucible after ash test, 

which contains Al flakes, zeolite and ash content of the clear coat. Wresiduals represents the 

weight of the residual. Wpowder is the amount of powder sample put into the crucible 

before the ash test.  
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In addition, another approach of examining the actual bonding is scanning electron 

microscope (SEM). The metallic effect of the sprayed panels was under visual 

examination by the naked eye, since the instruments in measuring the surface gloss is 

strongly affected by the existence of metallic pigments. The black polyester powder 

coating (Prism, Model PB-0191-H) with high gloss was used in measuring the metallic 

effect as well as the coating quality. 

5.3 Experiments and evaluations 

5.3.1 Ash test examination 

The powder samples obtained from the two improved bonding method have to be 

completely dried. The content of metallic powder in each sample was examined by ash 

test. There were 6 crucibles prepared for ash test where three of them represents the pre-

sprayed sample powders. The other three crucibles contained the powder made from the 

bonding method, and then sprayed and scraped from the panel without curing process, 

known as post-sprayed powder. The purpose of dividing one sample into 3 groups was to 

ensure the accuracy and consistency. In other words, each group consisted of 1 pre-

sprayed powder and one post-sprayed powder. Each sample was burnt for 2 hours, then 

cooled for 2 hours due to the fact that zeolite would absorb the moistures from the air and 

cause the weight change. The ash test results are shown in Table 5.2. It could be 

concluded that jet-mixing method performed better in bonding Al flakes with powder 

coating, indicated by the small solid concentration variation between pre-sprayed and 

post-sprayed solid concentration. In other words, most of the Al flakes were glued by  

Table 5.2 Ash test of control sample and bonded sample 

(a) Control sample  
Group # 

Solid % 
1 2 3 

Pre-sprayed CSolid  8.01% 7.95% 8.12% 
Post-sprayed CSolid 14.87% 14.94% 15.29% 

 (b) Bonding machine sample 
Group # 

Solid % 1 2 3 

Pre-sprayed CSolid 7.54% 7.52% 7.56% 
Post-sprayed CSolid 14.00% 13.94% 13.76% 
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(c) Jet-mixing sample 
Group # 

Solid % 1 2 3 

Pre-sprayed CSolid 8.64% 8.50% 8.56% 
Post-sprayed CSolid 10.25% 10.30% 10.89% 

liquid bonder with one or two powder coating particles. As a result, the solid content of 

the sprayed powder sample on the panel could maintain the same as the recycled powder 

sample. The sample obtained by jet-mixing method was better than utilizing bonding 

machine. 

Further comparison between the bonding machine sample and jet-mixing sample was 

performed by SEM images. As shown in Figure 5.13, the jet-mixing sample shows better  

  

  (a) Control sample 

  

(b) Bonded sample  

Figure 5.13 SEM observation of the control sample and bonded sample 

bonded conditions than in bonding machine sample, demonstrating by most of the Al 

flakes are adhered by one or more powder coatings (A). However, some non-bonded 

A 

A 

A 

B 
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flakes are still commonly seen in jet-mixing sample (B). In this case, future improvement 

on jet-mixing system should be conducted to achieve better bonding.  

Due to the fact that zeolite has relatively small size, it plays an essential role in dividing 

the neighboring Al flakes so as to prevent them from stacking to each other. However, at 

the same time, it also brought lots of drawback such as absorbing the water from added 

PVA and borax solution due to its porous structure and large specific surface area. It was 

difficult to get the sample completely dry after collecting the products, as may lead to the 

extra cost during the production. Also the existence of zeolite in the final sprayed panel 

could absorb the moistures and oil from surrounding environment. To test the zeolite 

absorbing phenomenon quantitatively, the ash test was carried out containing only 

PVA+B solution and zeolite. The weight change was measured from taking out from the 

furnace and till it reached weight equilibrium at room temperature. Experimental results 

indicated that it took 130 min for the zeolite to finish weight gain during the cooling 

period. This is the main reason why all the collected samples had to cool and dry for at 

least 2 hours at room temperature (21 °C) and humidity (35%).  

However, the result of csolid in post-sprayed powder was slightly higher than the original 

blending solid ratio. There could be several reasons: after burning, Al became Al2O3, 

which weighs more than Al; clear coat may contain ash content; the weight of zeolite and 

PVA +B solution changed after burning. Considering the above influences, a series of 

experiments were conducted for evaluating the possible effect from all the materials. First 

of all, in order to test the ash content of the clear coat, the ash test containing clear coat 

only has been tested; burnt at 530°C in a furnace for 2 hours, cooling for 2 hours and the 

result is shown in Table 5.3. Results indicated that the amount of ash content was 

negligible, so the epoxy clear coat had no side effects on the ash test process. 

Table 5.3 SEM observation of the control sample and bonded sample 
Clear coat ash test # 1 2 3 

Csolid 0.03% 0.05% 0.08% 

Secondly, the effect of Al flakes during the ash test was also studied. In the limited space 

of the crucible, Al flakes were stacking tightly so that part of the them may not get 
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oxidized thoroughly during the entire burning process. The different oxidized proportion 

would bring the Al2O3 weight difference. So the amount of Al accumulated in the 

crucible may affect the results. In this case, the ash test with different amount of Al has 

been carried out according to the ash test standard. No.1 to 3 crucible had 50 mg Al 

flakes while No. 4 to 6 with an amount of 120 mg, and No. 7-9 had Al around 230 mg. 

The average weight gain brought by Al2O3 is  

   = % − 1    Eq. 5.2 

where % is the average weight of the above mentioned Al2O3 after the test. Table 

5.4 indicated the weight gain of Al with different sample sizes. The result showed that Al 

amount had negligible influence on the Wgain during the ash test process. 

Table 5.4 Wgain in different Al amount 
Al amount (mg) 50 120 233 

Wgain  4.66% 4.34% 4.38% 

The product collected from jet-mixing system was well blended, and the Al flakes was 

well dispersed into every part. When taking the ash test, Al flakes of this well-bonded 

sample had more opportunity in getting oxidized as the surrounding clear coat would be 

burnt off immediately. The exothermic reaction of the combustion of the clear coat may 

generate the extra heat helping Al oxidation. The Al flakes and clear coat were well 

mixed with PVA+B solution at the same ratio, and then went through the ash test. The 

result after drying shows in Table 5.5. It demonstrates that the Al dispersed in the clear 

coat did not change the oxidizing rate compared with burning only.  

Table 5.5 Ash test of Al and powder coating only 
Al with Clear coat # 1 2 3 

Wgain 4.15% 5.12% 3.05% 

Zeolite has a crucial role in bonding metallic pigments with powder coating. Because of 

the characteristic of absorbing moistures from the air, the utilization of zeolite in the final 

powder may have other side effect on the product. A very tiny amount of zeolite may not 
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affect the whole panel gloss, so that a reduced amount of zeolite could bring minimal side 

effect on the final appearance. Meanwhile, the amount should not be too small as it works  

Table 5.6 Ash test of bonding sample with reduced amount of zeolite 
Group # 

Solid % 1 2 3 

Pre-sprayed CSolid 7.98% 8.06% 8.03% 
Post-sprayed CSolid 9.90% 9.61% 9.86% 

as the spacer. Considering all these factors, a reduced amount of zeolite at the ratio m(Al): 

m(zeolite)=1:0.2 was conducted utilizing jet-mixing. Figure 5.6 shows the ash test result 

of the above samples. According to the table, the decrease of zeolite amount could still 

achieve a good bonding condition, indicating by the little variation before and after 

spraying.  

As the clear coat could not be used as the final coating in the real industry use as it does 

not contain fillers. In order to examine the final appearance of the bonded sample 

produced by the new jet-mixing method, a black colored polyester powder coating 

(supplied by Prism, Model PB-0191-H) was used instead of the clear coat during the 

manufacturing process. The metallic pigments could also exhibit a distinct color in the 

background of black gloss. 

In order to evaluate the coating performance produced by the new bonding method 

visually, 5 different powder samples were finished using different processes for 

comparison. The process details are shown in Table 5.7. No.2 panel is using dry blending 

(no liquid bonder, by directly mixing and vibrating the powder coating and Al flakes in a  

Table 5.7 Different powder formulas for spraying test 
Panel # 1 2 3 4 5 

Polyester(g) 5.00 5.00 24.01 23.97 10.00 
Al (g)  0.10 1.00 1.00  

PVA+borax (g)   1.26 1.26 0.50 
Al2O3 (g)   0.31   

Zeolite (g)    0.20 0.08 

Description  Dry blending Jet mixing 
bonding 

Jet mixing 
bonding 

Jet mixing 
bonding 



  

 148 

bag). Each sample had the same Al content before spraying. The tested polyester powder 

coating amount in jet mixing process was scaled up for the future industrial use. 

Compared with the panel coated only with polyester powder coating, No. 3 and 4 had the 

perfect effect of metallic effects, while No.2 manufactured by dry blending method 

presented a significant high of gloss of metallic color, which indicated that the Al 

concentration was much higher than the concentration in the recycled powder. The 

photos of the metallic effects of No.1, 2 and 4 are shown in Figure 5.14. No.2 panel  

     

Panel #1  Panel #2  Panel #4 

Figure 5.14 Coatings without metallic pigment (Panel #1) compared with coatings 
obtained from jet mixing bonding (Panel #4) (right) and dry blending (middle) 

showed an excessive metallic pigment amount deposited on coating target without using 

bonding method. When introducing the liquid bonder, No.4 had the smooth shine with 

the reasonable amount of Al contents.  

No.3 and 4 presented similar good visual appearance which was difficult to tell the 

difference. Figure 5.15 showed the SEM image in further comparing the bonding 

performance. It could be easily observed the heavy stacking (B) and less bonding in using 

Al2O3 in sample No.3 (C), while zeolite sample No.4 contains more well bonded Al 

flakes with powder coating (A) and less non-bonded Al flakes. So zeolite could be 

considered as a proper spacer in jet-mixing bonding method to achieve a better bonding 

performance. 
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The purpose of producing No.5 panel was to investigate the gloss influences of PVA+B 

solution and zeolite. It had no obvious visual difference compared to No.1, demonstrating 

that PVA+B solution and zeolite would not cause the obvious gloss reduction after curing 

process. The actual gloss values of those two panels were measured by a triple angle  

  

 (a) No.3 sample 

  

 (b) No.4 sample  

Figure 5.15 SEM images of the powders 

gloss & DOI meter (Manufactured by Elcometer Inc. Michigan, USA), as shown in Table 

5.8. There were 9 different measuring points evenly chosen on each panel and detected 

by the sensor of the gloss meter, as shown in Figure 5.16. The average gloss values were 

illustrated in Table 5.8. The variation between two average panel gloss could be 

negligible, indicating little influence of the liquid bonder and zeolite on the coating gloss. 

It is mainly due to that the amount of zeolite compared to other materials is really small.  

B 

C 

A 
A 
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Figure 5.16 Nine measuring points on each panel 

 

Table 5.8 Gloss of panel No.1 and No.5 
Panel No.1 Testing point gloss value Average gloss value 

 91.7 92.0 91.6 
91.14  91.5 91.9 91.5 

 91.5 91.8 91.5 
Panel No.5 Testing point gloss value Average gloss value 

 91.7 92.0 91.6 
91.67  91.5 91.9 91.5 

 91.5 91.8 91.5 

In addition, as zeolite has a porous structure and very big specific surface area, it 

absorbed the solution and reached saturation immediately when blending the liquid 

bonder. As a result, the property of zeolite is relatively stable and would not absorb 

anything else in the following procedure of jet mixing and spraying. In conclusion, 

zeolite is a good choice in bonding the metallic pigments with powder coating.  

3.4 The optimization  

The most important factor in bonding metallic pigments with powder coating is the 

amount of the liquid bonder. The changes of the concentration of liquid bonder and the 

solvent were likely to change the bonding results due to the change of bonding strength 

and dispersion of the metallic pigments. In this research, 4 different concentrations of 

PVA+B solution and 4 different combinations with the water amount were prepared for 

the optimization work. The Al concentration is 3.85% by mass for all the samples.  

To find out the proper range of the different concentrations of PVA+B solution, the 

experiment started with decreasing the water content for getting higher concentration. 
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The ratio of c(borax)/c(PVA+B) =5.5% remained the same when changing the 

concentration of the solution. Table 5.9 shows the four different concentrations of liquid 

bonder. The 96.04% of water is the lowest water content that could be utilized in this 

experiment. 

Table 5.9 Concentrations of PVA + Borax solution 
Solvent # 1 2 3 4 

Total D.I. water % 92.09% 93.25% 96.84% 96.04% 

Description Irreversible 
gelation 

Irreversible 
gelation 

Irreversible 
gelation 

Clarification 
Solvent 

The ratio of Al and zeolite remained the same. The optimization experiment started with 

the solution amount with m(zeolite):m(PVA+B) =1:0.42, then the amount of liquid 

bonder and solvent was increased. 16 different samples tested are listed in Table 5.10,  

Table 5.10 Samples of the optimization experiment 
D.I. water  

PVA+B 
-2.9% 0% +50% +100% 

Zeolite*0.42 Sample 1 Sample 5 Sample 9 Sample 13 
*0.63 Sample 2 Sample 6 Sample 10 Sample 14 
*0.84 Sample 3 Sample 7 Sample 11 Sample 15 
*1.05 Sample 4 Sample 8 Sample 12 Sample 16 

where D.I.water represents the additional water content other than the solvent in PVA+B 

solution. The results obtained from the optimization experiment were evaluated by ash 

test and the results are listed in Table 5.11. Csolid before and after spraying illustrates the 

final bonding performance, where the final  is calculated by the equation: 

    =
∑

     Eq.5.2 

where  stands for the solid concentration from the repeating test, and N represents 

the time of repentance. Table 5.11 shows the optimization results with variations of solid 

concentration after ash test between pre and post-sprayed powder samples. The variations 

between the original powder sample and the coated powder are calculated by the 

following Equation: 
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  =
  

 
   Eq. 5.3 

Table 5.11 Optimization experiment results 

The small variations indicate the better bonding of the sample, as the recycled powder 

had similar composition of the pre-sprayed powder and could be reused.   

According to the table above, sample 1 was used as the most concentrated PVA+B 

solution. The strong agglomeration of powder particles and Al flakes could be observed 

due to the high concentration of the liquid bonder. It is easy to predict that when 

increasing the amount using of PVA and borax solution, the condition would get more 

severe. Hence, the higher amount of PVA+B solution with the same concentration was 

not necessary to test (sample 2 to 4).  

Sample # 

Pre-
sprayed 
powder 
( ) 

Post-
sprayed 
powder 
( ) 

Variation 
(%) 

Sample # 

Pre-
sprayed 
powder 
( ) 

Post-
sprayed 
powder 
( ) 

Variation 
(%) 

1 6.42 2.55 -60.28 5 5.03 6.69 33.00 

2 N/A 
  

6 4.95 5.88 18.79 

3 N/A 
  

7 5.46 5.92 8.42 

4 N/A 
  

8 5.59 5.83 4.29 

Sample # 

Pre-
sprayed 
powder 
( ) 

Post-
sprayed 
powder 
( ) 

Variation 

(%) 
Sample # 

Pre-
sprayed 
powder 
( ) 

Post-
sprayed 
powder 
( ) 

Variation 

(%) 

9 5.38 6.47 23.46 13 5.11 6.10 19.37 

10 4.93 5.58 13.18 14 5.10 5.79 13.53 

 11 4.93 5.44 10.34 15 4.74 5.36 13.08 

12 5.24 5.92 12.98 16 N/A 
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Further analysis shows that when increasing the amount of PVA+B solution, the bonding 

condition improves significantly illustrated by the variation changes from 33.00% to 4.29% 

(sample 5 to 8). It is easy to explain that more liquid bonder could provide a stronger 

force in gluing the materials. Meanwhile, when maintaining the amount of the liquid 

bonder, the additional D.I. water amount made the bonding effect worse as the dosage 

increased. That was mainly due to the solvent could dilute the liquid bonder and 

deteriorate effect of the glue. Also it could explain why the variation of sample 14 and 15 

differed little as increasing the amount of solution. This phenomenon elucidates that 

when the solvent amount is high enough in the manufacture process, it could weaken the 

function of liquid bonder when connecting the metallic pigment with the powder coating. 

In this case the water amount should be controlled in a reasonable range.  

  

(a) Sample 5 

    

 (b) Sample 8  

Figure 5.17 SEM images of Sample 5 and Sample 8 (Same D.I. water, increasing 
PVA+B) 

 

A 

C B 
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5.3.2 Observations of the bonding effect under SEM 

A series of SEM images was conducted for further evaluating the bonding performance. 

Each SEM picture was taken at the same amplification, and randomly chosen in a certain 

according to the increase of PVA amount, the non-bonded Al flakes (C) became less, 

instead of one Al was contacted with more than one powder coating particles in different 

sizes (A). Meanwhile, a few stacking happened because no additional water was used (B). 

Sample 5 has relatively more stacking than sample 8 as less amount of solution was used, 

so that solid pigments did not have a good dispersion in the mixer tube. The similar 

differences were also observed in sample 9 to 12.  

     

(a) Sample 9 

  

(b) Sample 13 

Figure 5.18 SEM images of Sample 9 and Sample 13 (Same PVA+B, increasing D.I. 
water) 

Figure 5.18 shows the result of keeping the PVA+B solution amount and increasing the 

water amount (Sample 9 and 13). Compared with sample 5 showed above, sample 9  

A A 
C 

B 

C 
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contained 50% more additional solvent in mixing the materials before going through the 

jet mixing. It shows that sample 9 has more non-bonded metallic pigments in the SEM 

images (C), but less stacking (B). The liquid bonder was weaker in bonding large amount 

of dispersed particles with the insufficient amount. More importantly, those powder 

coatings bonded with Al flakes are very easy to get split when going through the jet 

mixing nozzle at high speed. However, with smaller amount of liquid bonder, relatively 

more water could help with the dispersion of the liquid bonder, so as to enhance the 

bonding. It is reflected by the well bonded parts observed in samples 9 and 13 (A). This 

phenomenon also explains why compared with the variation between samples 5,9 and 13, 

sample 13 had the least variation.  

Figure 5.19 shows the SEM results of sample 11 and 15. When the PVA+B solution 

amount became higher, the additional solvent showed less influence on the dispersion 

and bonding situation. It is due to the fact that liquid bonder had relatively small amount 

of solute, which was the functional part for gluing powders. When it reached the limit in 

bonding metallic pigments with powder coatings, it could not promote the bonding. In 

this case the water content was mainly contributing to disperse the materials and would 

not help bonding. Increasing amount of solvent resulted in more non-bonded Al flakes. 

Sample 15 presented a similar condition as sample 11, illustrated by many well-bonding 

situation (A) in each SEM pictures and less stacking (B), but more non-bonded Al flakes 

(C). This also explains that the variation became larger when the D.I. water increased 

while the liquid bonder remained the same.  

  

(a) Sample 11 
 

B 
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 (b) Sample 15  

Figure 5.19 SEM images of Sample 5 and Sample 8 (Same D.I. water, increasing 
PVA+B under larger amount of PVA+B solvent) 

 

As mentioned above, when the dosage of PVA and borax solution is high enough, more 

added water solvent is not helpful with the bonding. That mainly results from that the 

liquid bonder contains large amount of water solvent itself. Overdosed solvent surely 

deteriorates the bonding performance. As the Figure 5.20 indicates, sample 12 has more 

Al and powder coating stacking (B) as well as detached Al (C) compared with sample 8 

with less solvent amount. The overall result was less desirable than sample 8 in both 

variation and SEM observation because of the added water, so the sample 16 was not 

further tested.  

   

Figure 5.20 SEM of image of Sample 12 
 

C 

A 

B 

C B 

C 
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5.4 Results and discussion 

In order to evaluate the bonding effect in a quantitative way instead of simply observation, 

a series of work has been done. By observing numerous SEM images, the number of the 

Al flakes could possibly be counted from each picture. In other words, the number of 

non-bonded, well bonded, or stacking condition of Al flakes could be recorded 

statistically. Based on the above analysis, a set of criteria has been proposed in this study 

in defining the bonding performance of the optimization experiment. Table 5.12 shows 

the standard of the measurement. The method of counting the number of three different 

bonding conditions has its drawback due to limitation of the experiment. The observation 

was based on enough SEM images randomly chosen for each sample.  

Table 5.12 Measurement of the bonding conditions 
D.I. water 0% +50% +100% 

PVA+B amount Sample 5-8 Sample 9-12 Sample 13-15 
Total Al 

Numbers of the corresponding conditions Well-bonded  
Stacking 

Non-bonded 

However, the number counted from the captured pictures could vary a lot from each 

pictures in that some of them had more than 20 Al flakes but some had only less than 5. 

Each number related to the corresponding conditions was measured from 9 randomly 

selected photos with identical magnification. The final results of each condition were the 

average of the all the counts. Only in this way the results could be representative of each 

sample. 

It is illustrated by different amount of PVA+B solution plotted with the different D.I. 

water content. Figure 5.21 demonstrated the 12 valid data according to the measurement 

method collected from the all the SEM images. The samples with the lowest content of  
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Figure 5.21 Change in the variation between original powder solid% and coated 
powder solid% with different amount of PVA and borax solution and different D.I. 

water content 

PVA+B solution showed the highest variation, especially the sample 5 (the first sample 

point of the D.I. water=0%), due to the limited amount of liquid bonder and solvent. 

Along with the increase of PVA amount, the variation decreases fast.  

However, when the PVA+B amount goes higher, too much additional D.I. water was not 

helpful with reducing the variation. As analyzed above, excessive solvent may hinder the 

bonding of metallic pigments with powder coatings. It is reflected by the variation trend 

as the curve is flat or even goes higher. As a result, the samples with the largest amount 

of PVA+B solution and zero additional solvent could achieve a smaller variation.  

Figure 5.22 shows the percentage of 3 bonding conditions within different amount of 

liquid bonder. The percentage of well-bonded condition is calculated by its count divided 

by the total count of Al flakes. Apparently, by increasing the amount of PVA+B, more 
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metallic pigments and powder coatings attended to each other, demonstrated by the well-

bonded percentage increases. When m(PVA+B)/m(zeolite)>0.84, all bonding condition  

   

Figure 5.22 Bonding condition percentage with different PVA and borax solution 
amount (with no additional water solvent) 

barely changed, suggesting the maximum PVA and borax amount. As for non-bonded 

metallic pigments, they tend to decrease as the existence of increasing amount of liquid 

bonder, but stacking percentage had minor decrease.  

The bonding condition shows different distribution when adding 50% additional D.I. 

water. as shown in Figure 5.23. the well-bonded percentage increasing initially, but over 

the point of m(PVA+B)/m(zeolite)>0.84, it was dramatically reduced. The stack 

percentage both had smooth decreases while the non-bonded flakes percentage does not  
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Figure 5.23 Bonding condition percentage with different PVA and borax solution 
amount (with 50% additional water solvent) 

change much along with the solution increases. This phenomenon also suggests that the 

maximum amount of liquid bonder usage is around m(PVA+B)/m(zeolite)=0.84. In 

conclusion, with the higher PVA and borax solution in the blending process, more 

solvent amount could cause even worse bonding condition.   

Figure 5.24 illustrated the condition of 100% additional water dosage. Compared to the 

50% additional solvent condition, those three bonding percentage did not have much 

changes. The latter had relatively steady status by increasing the PVA+B amount. In 

general, the extra water diluted the solution and helped particle dispersion, resulting in 

that the non-bonded flakes percentage goes higher.  
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Figure 5.24 Bonding condition percentage with different PVA and borax solution 
amount (with 100% additional water solvent) 

Based on the above analysis, larger amount of the liquid bonder could provide a better 

bonding between Al and powder coatings, unless no additional solvent is added during 

the process. The increase of the water was helpful to powder dispersion, resulting in less 

stacking. However, it hinders the bonding between Al and powder coatings. The water 

from the PVA+B solution was enough for dispersing and separating the agglomerations 

during the jet mixing process.  

5.5 Conclusion 

In this study, a new processing technique of the metallic pigments with powder coating 

was proposed. The most important part of this method is to ensure the bonding between 

metallic pigments with powder coatings due to the difference of transfer efficiency of 

these two materials during spraying. A liquid bonder was introduced to blend with 

materials instead of conventional thermal blending method. Also, a new important 

additive called spacer was utilized to prevent the metallic pigments from stacking.  
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This research started with evaluation of the material which are considered as spacer. 

Experimental results indicated that aluminosilicate (zeolite) was capable to separate 

metallic flakes without bringing other drawbacks. In addition, several mechanical 

processes in obtaining bonding between metallic pigments and powder coatings were 

tested. Jet-mixing system was the satisfactory operating system to finalize the powder 

sample before spraying. Similar concentrations of metallic pigments are found in pre-

sprayed powder and in post-sprayed powder samples, indicating that the recycled powder 

could be reused.  

In addition, final coating films with metallic effect were examined by both spraying test 

and the observation of SEM images. Results demonstrated that the bonding situation 

could be greatly improved by increasing the amount of liquid bonder. At the same time, 

increased D.I. water amount could help the dispersion of materials for the accuracy of 

experiment operation. The proper amounts of liquid bonder and water have to be 

considered in for actual industrial use. Overall, the proposed bonding technology could 

solve the powder recyclability problem.  

In this study, limited kinds of metallic pigments were studied. For the future works of this 

research, other metallic pigment differing in sizes and shape from the flakes are also 

worth evaluating in utilizing this proposed cold bonding technique. On the other hand, 

although jet mixing is able to provide very good bonding and dispersion of the mixed 

powder, it is still complex for the scale-up operating procedures. A more flexible and 

simple technique to get the same bonding performance will have to be investigated in the 

future.  
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6 Chapter 6: Development of the electrostatic powder 
coating of insulating surface using the pre-heating 
method 

6.1 Introduction  

Powder coating technology was first invented in USA in the early 1960s. The painting 

with dry powder began to attract attentions from American industry due to its 

environmentally friendly characteristic. Powder coating has been widely used in the 

metal painting industry for several decades. Since the early 1970s, powder coating 

technologies were used for automotive components in North America. Initially the 

powder coating applications were mainly with underhood metal components, so it has 

been a basic requirement for the substrate to be conductive. The coating principle is to 

charge powder particles in an intense electric field known as a corona zone generated by 

high voltages [1]. During the process, particles receive a charge from the spray gun, 

forming a cloud across the coating area. With the increasing demand for lighter weight 

parts to reduce overall vehicle weights with the goal of increasing the fuel efficiency, 

plastic material components have seen a remarkable growth in automotive consumer 

industries [2]. Therefore, powder coating plastic components is becoming a real need. 

The thermoplastic is a typical example due to the fact that it has the polymer compounds.  

The purpose of painted plastics is not only for color-matching but also for obtaining the 

chemical and/or impact protection [3]. There are several advantages for powder coated 

plastics such as having good resistance of the abrasion or corrosion. However, powder 

coating has not been successful with plastic substrates using the standard electrostatic 

coating techniques. Since high temperature of the curing process is needed, the plastic 

substrate gets warped or distorted along with the elevated temperature. Furthermore, 

different types of plastic with various properties may affect the painting method, which 

increases the difficulties in the design of industrial processing. Also plastic substrates 

tend to absorb moisture from the air during storage. At the high temperature of the curing 

process, the trapped air and absorbed moisture and/or other volatile materials vaporize 

out from the plastic substrate and form pinholes in the coating film. This is known as 
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“popping” problem which is another big difficulty in obtaining smooth finishes on plastic 

substrate.  

The biggest difficulty in electrostatic spraying on plastic targets is that a plastic surface 

becomes charged quickly when the charged particles and free electrons from the 

electrostatic spray gun attach on the plastic surface. Because plastics are good insulators, 

longer charge relaxation times are needed than conductive substrates [4-6]. In this case, 

there are no opposite polarity electrons flow up through the grounded wire to neutralize 

the surface charge. The accumulation of free electrons could rapidly form a repelling 

field. As a result, this field prevents further particle deposition from attaching onto the 

surface, which finally causes the insufficient and uneven deposit of the particles. This is 

known as back-ionization, as illustrated Figure 6.1(a). The surface defects could also 

present the “patchy” finishes owing to the non-uniform deposition as shown in Figure 6.1 

(b) [4]. 

    

(a)Back ionization                      (b) Insufficient particle coverage 

Figure 6.1 Surface defects of the powder coating on plastic substrate 

The objective of this study was to find a simple and effective coating process involving 

the pre-heating method so as to produce high quality surface finishes on thermoplastic 

targets. In this study, three different commonly used powder coatings were tested on 

these thermoplastic panels by pre-heating the substrate. The surfaces were evaluated in 

film thickness, adhesion, gloss, distinctness of image (DOI) and haze.  
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The other goal was to minimize the curing temperature to far below the conventional 

curing temperature of thermosetting powder in order to minimize the deformation of the 

material. Therefore, low-cure powder coatings have been tested in this study as well. 

Low-cure curing promoters were incorporated into the fine powder coatings, which the 

promoters function as catalysts accelerating the cross-linking reaction process between 

the resin and the curing agents. Lower curing temperatures were achieved. To further 

reduce the curing temperature, an infrared (IR) was utilized for fast heating up the target 

surface.  

6.2 Related work 

Previous researches have come up with several solutions to the above mentioned 

problems in coating plastics. It has been a challenge to apply the powder coatings directly 

on the plastic surface so that the pre-treatment of the target is necessary. In order to 

ensure better adhesion of the coatings plastic surfaces, both physical and/or chemical pre-

treatment have been widely adopted, such as flame treatment, plasma treatment or 

chemical oxidation. Applying the primers on plastic surfaces before electrostatic spraying 

is another type of chemical treatment which could promote the surface adhesion to 

powder coatings [7]. One of the commonly used practices is utilizing the conductive 

primers to apply on the plastic surface before spraying powder coatings [4, 8]. Takahashi 

et al invented a primer with component including conductive materials such as 

conductive zinc, titanium and other surface active agent, which enhanced the coating 

efficiency [8]. For automotive industry, these researches preferred to directly add 

conductive materials to the plastic substrates such as carbon fibers, during the molding 

process rather than applying primers. Some researchers used conductive backings to the 

plastic substrate during the electrostatic spraying [9, 10]. However, this method was 

restricted by the configurations of the plastic parts. Other researchers investigated the 

method of spraying charged water cloud on the back of a plastic target, while the front 

side was sprayed with an electrostatic gun [11]. In addition, some attempts had also been 

investigated on the spray guns for coating plastic targets. Clements et al developed an 

internal charge spray gun with the alternating polarity without using conductive primers 

for improving the powder deposition on the surface [3]. However, the powder deposition 
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was still much less than satisfactory. The researches also suggested that internal charge 

spray gun could only have better performance on those insulating targets with good 

powder deposition, such as the preheated targets [3]. 

Some of the patents related to this field could be valuable to this study. Smith invented a 

method to powder coat cellulose phenolic composite articles by preheating the targets to 

degas the volatile compounds for powder spraying [12]. Similarly, Fredericksen also 

investigated the methods of coating pre-heated plastic articles [12]. After heating the 

plastic to the temperature below the melting temperature of the plastic, the coating step 

was carried out without grounding the target. In the furniture industry, the combination of 

steam and heat between 70 °C and 140 °C was tested for coating medium density fiber 

(MDF) boards [13]. Those studies proved that the powder deposition was enhanced by 

preheating the non-conductive target. Nevertheless, some of the inventions needed extra 

assisting procedures, which complicated the process. More importantly, the coating 

substrates they used were not the long-fiber reinforced thermoplastic that is discussed 

herein.  

In this study, a method for powder coating fiber reinforced thermoplastic substrates is 

studied utilizing the pre-heating method. There are two main reasons for preheating the 

thermoplastics target. On one hand, the moisture and other vaporizable contents could be 

eliminated through pre-heating to prevent the popping problem of the final finishes. On 

the other hand, the heat from the plastic substrate melts the powder coating so that the 

powder could stay on the substrate surface. 

6.3 Experimental materials and procedures 

6.3.1 Powder coating materials 

The substrate panels are made of polyamide laminate co-moulded with 30%wt of glass 

fibers (Ultramid 8202 HS, JM886 Fraunhofer Institute for Chemical Technology ICT) 

with identical size (5 cm×7 cm). The three different types of commonly used powder 

coating materials were supplied by PPG Industries Inc, Ohio, USA (Hybrid: Model PCF-

90127; Polyester: Model PCT99101) and Prism (Epoxy: Model SCE830). The 

characteristics of these powders are illustrated in Table 6.1.  



  

 168 

Table 6.1 Powder coating properties and applications 

Powder Coating type Advantages Applications 

Hybrid (Epoxy & 
Polyester) 

Good chemical and corrosion resistance 

Excellent decorative appearance 

Mainly for indoor 
parts 

Polyester Excellent weathering characteristics 

Fair corrosion resistance  

High gloss finishes 

For indoor and 
outdoor parts 

Epoxy Excellent chemical and corrosion 
resistance Smooth finishes 

For indoor parts 

6.3.2 Coating procedures 

A plastic panel was firstly pre-heated for 15 minutes to the set temperature (the same as 

the curing temperature) in a convection oven. Then it was quickly removed from the oven 

to the lab scale manual spray both (Nordson, USA) and sprayed using Gema OptiFlex 

manual spray gun (Gema, Switzerland). The powder sprayed onto the panel surface got 

fused on due to the heat from the panel surface. The sprayed panel was returned to the 

oven for curing at the set curing temperature for 15 minutes (the curing duration time is 

suggested by the powder coating suppliers).    

According to the previous researches, the pre-heating temperature was suggested to be 

higher than the melting temperature of powder coating but should be below the melting 

point of the plastic. In this study, the distortion rate vs. temperature was firstly 

investigated to ensure that the pre-heating and curing did not cause unacceptable 

deformation of the substrate. In consideration of all the factors, including complete curing 

of powder coating while maintaining acceptable curing times and substrate distortions, 

160 °C was determined as the upper limit for both pre-heating and curing. Because the 

low-cure powder coatings helped lowering curing temperature, 130 °C and below were 

chosen as the temperature range for low-cure powders.  

6.3.3 Evaluation of coating films 

The film thickness of the coating film was measured by a digital micrometer. For each 

panel, four measurements were taken at four set locations as shown in Figure 6.2. The 
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coating film thickness was obtained by the overall thickness difference before and after 

coating.   

 

Figure 6.2  Schematic of the measuring points for film thickness 

The curing performance of the final coating film was examined by MEK (methyl ethyl 

ketone) rubbing test (ASTM standard D4752) with 50 double rubs. The adhesion of the 

film was examined by the cross hatch cutter (Manufactured by Elcometer Inc. Michigan, 

USA) following ASTM Test Method D3359 (ranges from 0B to 5B, where 5B represents 

perfect adhesion and 0B stands for the poor adhesion). The gloss of the film was 

measured by a triple angle gloss & DOI meter (Manufactured by Elcometer Inc. 

Michigan, USA). The DOI and haze were also measured with the same device according 

to ASTM standard D523. Table 6.2 illustrates the definitions and explanations of each of 

the measured parameters. Besides the above measureable parameters, normally the 

defects of the coating surface can only be evaluated by naked eye observations. In order 

to provide an overall evaluation for each coating film, the results of visual inspections 

and instrumental measurements were combined into a grade between 0 and 5 in this study. 
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Table 6.2 Definitions of measured parameters 

Name Definition Value 

Gloss (GU) 

Measurement proportional to the amount of light reflected from a 
surface; 

Determining how shiny a surface appears;  

60° gloss value >70 considered as high gloss finishes. 

0~100 

Distinctness 
of Image 

(DOI) 

Sharpness of a reflected image in a coating surface; 

Poor coating appearance known as “orange peel”; 

A perfect surface returns a value of 100. 

0~100 

Haze (HU) 
High quality glossy surfaces have a clear, brilliant finish (HU=0); 

Haze causes a loss of reflected contrast.  
0~100 

6.4 Results and Discussion 

6.4.1 Film thickness 

A thicker coating film could lead to a smoother final surface due to the faster leveling of 

the coating compared with a thinner coating layer [14]. For non-conductive substrates, 

the films are required to be thicker than those for the metal substrate to obtain a better 

coverage of defects from the substrate surfaces, i.e. more than 100 µm is the common 

acceptable film thickness [12,13]. In this study, the film thicknesses for hybrid and 

polyester powder coatings were between 100 and 130 µm. For epoxy coatings, the 

thicknesses had to be around 250 µm for good surface smoothness.  

6.4.2 Surface evaluation 

6.4.2.1 Hybrid (epoxy and polyester) coating 

Epoxy-polyester hybrid powder coatings are known as having a good resistance in gloss 

and color changes, and have been used for where excellent decorative appearance and 

good chemical resistance are needed. They combine the advantages of both polyester and 

epoxy while diminishing the drawbacks. Also the coatings are with competitive prices 

compared to pure epoxy. In this study the gloss, DOI and haze of those samples were 

measured and found to change with the curing temperature, as shown in Figure 6.3.  
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(c) 

Figure 6.3 Gloss (a), distinctness of image (DOI) (b) and haze (c) values of the 
coating surfaces vs. curing temperatures 

Figure 6.3 (a) illustrates the effect of curing temperature on the coating gloss. Almost all 

the surfaces after curing at temperatures from 130 to 160 °C belong to high gloss (60° 

gloss >70). The gloss values reduce with the elevation of curing temperature. It seems 

that if there is a requirement for higher gloss, a lower curing temperature is preferred. 

The DOI value represents the sharpness of the reflect image of the surface. A higher DOI 

indicates smoother surface. As shown in Figure 6.3 (b), lowering the curing temperature 

also helps improve the DOI of the surface. On the other hand, a higher haze represents a 

milky and unclear finish. It was also observed in Figure 6.3 (c) that reducing the curing 

temperature could effectively lead to an even clearer surface (lower haze value). It is 

clear that reducing the curing temperature is beneficial for reaching a higher gloss, DOI 

as well as a lower haze.  

The completeness of curing is another important parameter to look after. When the 

melted coating reaches the minimum curing temperature, it starts to react and eventually 
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form a higher molecular weight structure which is much stronger and more stable. This 

process is known as cross-linking which requires a certain temperature and time to 

accomplish. If the temperature is not high enough or the curing time is not adequate, the 

coatings would not be fully cured. The completeness of coating was examined by MEK 

rubbing test, and the results are rated as good, fair and poor. Table 6.3 lists the results of 

the curing performance vs. curing temperature.  

Table 6.3 The influences of curing temperature towards the curing performance of 
hybrid 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

160/15 Good 5B 

150/15 Good 4B 

140/15 Good 3B 

130/15 Poor 2B 

130/25 Good 4B 

The adhesion of coatings with the plastic substrate is evaluated by cross-hatch testing. 

This test is conducted by applying and removing pressure-sensitive tape on the film with 

a cross-cut area. According to the extent of flaking of the cross-cut area, the results are 

rated as good, fair and poor, also shown in Table 6.3. It is obvious that the curing has not 

been completed at 130 °C. A better curing could be achieved by extending the curing 

time to 25 min at the same temperature. Based on the above analysis the 140 °C /15min 

are the preferred curing conditions in processing the hybrid coatings in this research。 

6.4.2.2 Polyester coating 

Polyester powder coatings are known as having a good weathering characteristics for 

exterior surfaces. The polyester coating film resists chalking and flaking caused by UV 

exposure, and therefore it is widely used as the outdoor protective finishes. In this study 

the surface conditions obtained by different curing temperatures are shown in Figure 6.4.  
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 (c) 

Figure 6.4 Gloss (a), distinctness of image (DOI) (b) and haze (c) values of the 
coating surfaces vs. curing temperatures 

Unlike hybrid coatings, the curing temperature has less influence on the gloss. When 

increasing the curing temperature from 130 °C to 160 °C, no significant changes are seen. 

By observing the DOI and haze tendency with respect to curing temperature, the higher 

DOI and lower haze value representing a better surface condition happened at 130 to 

140 °C. Similarly, the DOI and haze do not vary significantly with different curing 

temperatures. Table 6.4 lists the MEK and cross-hatch test results in evaluating the curing 

completeness and the coating adhesion respectively. As the table shows, a temperature 

lower than 140 °C cannot achieve a perfect curing. The inadequate film curing at low 

temperature could be solved by extending the curing time to 25 min. 

In addition, there is another main difference compared with hybrid coatings related to the 

surface film. The hybrid coating finishes at each curing temperature showed a smooth 

surface observed by naked eyes while the polyester coating films had more orange peel, 

especially when decreasing the curing the temperature and became severe when dropped 
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to 130 °C. In summary the suggested curing temperature is higher than 140 °C for the 

polyester coating.   

 

Table 6.4 Influences of curing temperature towards the curing performance of 
polyester coating 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

160/15 Good 5B 

150/15 Good 5B 

140/15 Good 4B 

130/15 Poor 2B 

130/25 Good 4B 

6.4.2.3 Epoxy coating 

Epoxy powder coatings could provide excellent toughness and corrosion resistance. Due 

to the major limitation of epoxy powder coatings that they chalk under UV radiation, they 

are only used on indoor parts. In this study, the surface conditions of the epoxy coating 

films on plastic panels, at different curing temperatures, were characterized. The gloss, 

DOI and haze values are illustrated in Figure 6.5.  

Different from the hybrid and polyester powder coatings, the gloss of epoxy powder 

coating film increases with higher temperature. By observing the coating films, it is clear 

that the orange peel became worse when the curing temperature is lower than 140 °C. 

These phenomena are also reflected by the DOI and haze values in Figure 6.5 (b) and (c). 

The lower DOI value represents that orange peel is more obvious. The existence of 

orange peels may not affect the gloss but the increased haze at lower curing temperatures 

directly causes the gloss reduction. The epoxy coatings have lower cure-ability compared 
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 (c) 

Figure 6.5 Gloss (a), distinctness of image (DOI) (b) and haze (c) value of the coating 
surface with respect of curing temperature 

with the other two types of coatings within the chosen temperature range. Also the 

adhesion with the plastic substrate is weaker. Based on the overall evaluation, 150 °C/15 

min is the recommended curing temperature in applying the epoxy coating on the 

thermoplastic target.  

Table 6.5 Influences of the curing temperature towards the curing performance of 
epoxy 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

160/15 Good 5B 

150/15 Good 4B 

140/15 Fair 2B 

140/25 Good 3B 

130/15 Poor 2B 
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6.4.2.4 Low-cure technologies 

In order to further explore the curing conditions of powder coatings on the plastic 

substrates aiming at further decreasing the curing temperatures, low-cure powder 

coatings were also investigated in this study. The low-cure technique could better protect 

the plastic substrates from distortion at lower temperatures, while saving energy and the 

baking and cooling times in the industrial processes. The conventional low-cure powder 

coatings are produced by adding curing catalyst(s) into the raw materials and thus the 

catalyst could cause pre-curing during the extrusion process as well as the transportation 

and storage. Different from those of the conventional low-cure coatings, the UWO curing 

catalyst is a post-blend-type additive which is incorporated into the ground powder 

coatings and therefore effectively avoids the pre-curing problem.  

In this study, employing the UWO curing catalyst, three types of low-cure powders 

(polyester, epoxy and hybrid) were produced by converting the regular powders into their 

low-cure versions. Firstly, the samples of regular powder coatings were grounded down 

to finer sizes (median size < 30µm). Then they were mixed with the UWO low-cure 

catalyst with a high-shear mixer. 0.5 wt% of catalyst has been determined as the optimal 

amount without causing any side effects on the coating quality. A commercial low-cure 

epoxy (PPG Model: PM90133L) has also been acquired and tested in comparison with 

the UWO low-cure epoxy.  

The experiment started with pre-heating the plastic substrate from 130 °C downwards, 

due to the regular powder had already got promising results at 140 °C. During the first 3 

min of curing period, infrared (IR) was also utilized to aid the melting and film leveling.  

(a) Low-cure hybrid (polyester and epoxy) coating  

As illustrated in Figure 6.6 (a), both the trend and value of gloss are similar to those of 

the regular hybrid powder (Figure 6.3 (a)), although the curing temperatures are 

significantly lowered. Again, the direct reason of the gloss reduction at higher 

temperatures is the growing value of haze, as shown in Figure 6.6 (c). Both the DOI and 

haze values fall into their normal range, indicating that no obvious changes in orange peel 

and haziness occurred when converting regular hybrid to its low-cure version. Similar to 
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the regular hybrid powder, a lower curing temperature results in higher gloss and DOI, as 

well as lower haze.  
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 (c) 

Figure 6.6 Gloss (a), distinctness of image (DOI) (b) and haze (c) values of the 
coating surfaces vs. curing temperature 

According to the previous definitions, these three types of surface condition values 

obtained under 110 and 120 °C were satisfactory in realizing the purpose of further 

reducing the curing temperature. As an important coating film characterizing parameter, 

curing properties should also be taken into consideration. As Table 6.6 lists, the MEK 

resistance became worse at 110 °C, at which the curing was incomplete and the film got 

softened easily by MEK rubbing. However, it could be solved by lengthening the curing 

time to 25 minutes. Hence, the 120 °C/15 min is a preferred curing condition for the 

hybrid coating on plastic substrate.  

The comparison of the appearance of the regular hybrid and that of the low-cure version 

is shown in Figure 6.7. Similar glossy appearance can be seen for both versions. The low- 

cure coating even shows less haze. This indicates that the UWO low-cure technology 

could obtain good cosmetic effect and high physical properties for hybrid powder coating 

on plastic substrate. 
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Table 6.6 Influences of the curing temperature towards the curing performance of 
hybrid coating 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

130/15 Good 5B 

120/15 Good 4B 

110/15 Poor 2B 

110/25 Fair 4B 

 

   

120 °C (low cure)  160 °C (without catalyst) 

Figure 6.7 Comparison between the process under 120 °C UWO low cure 
(left )160 °C without catalyst (right) 

 

(b) Low-cure polyester coating  

The gloss, DOI and haze with different curing temperatures are illustrated in Figure 6.8. 

The gloss does not vary significantly with curing temperature. It is also noted that the 20° 

gloss is slightly higher than the regular powder finishes. The DOI value remains the same 

as regular powder, and it is less influenced by temperature. The haze reduces with the 

decreasing of the temperature, leading to slightly higher gloss. As lists in Table 6.7, the 

MEK resistance is getting worse with the descending of curing temperature. The coating 

was not fully cured at 110 °C, but can be improved by using a longer curing time of 25 
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minutes. Hence, the optimal operating condition could be setup as 120 °C/15 min for 

low-cure polyester. 

Table 6.7 Influences of the curing temperature towards the curing performance of 
polyester coating 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

130/15 Good 4B 

120/15 Fair 4B 

110/15 Poor 2B 

110/25 Fair 4B 
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(b) 

 

(c) 

Figure 6.8 Gloss (a), distinctness of image (DOI) (b) and haze (c) value of the coating 
surface with respect of curing temperature 
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Figure 6.9 shows a comparison of the final appearances between the regular polyester 

(without catalyst) and the UWO low-cure version. It is noted that almost the same 

appearance and glossy surface were obtained, which indicates applying low-cure 

polyester coating with UWO low-cure method at a low temperature could achieve 

satisfactory results.   

   

120 °C (low cure)  150 °C (without catalyst) 

Figure 6.9  Comparison between the process under 120 °C UWO low cure 
(left )160 °C without catalyst (right) 

 

(c) Low-cure epoxy coating  

As shown in Figure 6.10 (a), the gloss is not obviously affected by curing temperature. 

The small gloss reduction at 110 °C is again due to the higher haze. The DOI shows a 

decreasing trend when reducing the curing temperature, standing for more orange peel at 

lower curing temperature. The results of using commercial low-cure powder coatings 

with exactly the same curing process are also shown in Figure 6.10. The glosses of both 

of the low-cure epoxy coatings are similar at 20° and 60°. Also the DOI and haze values 

of the two low-cure coatings have the similar value range and follow the same trend 

while the UWO low-cure is slightly better than commercial low-cure powder. By visual 

inspection, the film of commercial low-cure epoxy coating gets more obvious and severe 

orange peel when decreasing the curing temperature. Whereas the UWO low-cure epoxy 

has smooth finishes at all curing temperatures.  
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 (c) 

Figure 6.10 Gloss (a), distinctness of images (DOI) (b) and haze (c) values of the 
coating surfaces vs. curing temperature using UWO low-cure and commercial low-

cure powder coatings 

 

Table 6.8 Influences of the curing temperature towards the curing performance of 
polyester coating 

Temperature (°C) 
/Time(min) 

MEK Resistance Cross Hatch 
Resistance 

130/15 Good 5B 

120/15 Fair 4B 

110/15 Poor 2B 

110/25 Fair 3B 

Table 6.8 reveals that the low-cure epoxy coating could not be completely cured under 

lower temperature and shorter curing time 120 °C and up to 15 min is recommended for 

epoxy low-cure coating process. Figure 6.11 indicates the visual comparison of the 
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coating appearance between the UWO low-cure epoxy and the regular epoxy. By direct 

visual inspection, the two surfaces show similar smoothness. The UWO low-cure epoxy 

demonstrates an even higher gloss.  

   

120 °C (low cure)  150 °C (without catalyst) 

Figure 6.11 Comparison between the process under 120 °C UWO low cure 
(left )160 °C without catalyst (right) 

In addition, the sample sprayed using commercial low-cure epoxy at 130 °C is shown in 

Figure 6.12. It is obvious that the orange peel and defects occur on the surface.  

 

Figure 6.12 Commercial low-cure epoxy coatings finish under 130 °C/15min 

6.5 Discussion 

The gloss change of hybrid coating with curing temperature is obvious. Previous 

researchers also found this phenomenon that higher gloss was obtained at lower curing 

temperature but weakened physical properties such as curing completeness also presented. 
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However, curing temperature has less influence on the gloss of polyester and epoxy. 

Furthermore, utilizing the low-cure technology could reach a better finish when reducing 

the curing temperature.  

The adhesion between powder coating film and plastic substrate is also crucial. The basic 

mechanism of the adhesion is chemical bonds. The metal target has many free bonds 

available to combine with the functional groups of the powder coating. However, the 

available functional groups such as hydroxyl of the plastic surface in this study could 

only be provided by the glass fiber or the filler of the thermoplastics. It is shown that 

epoxy has worse adhesion with thermoplastic substrate compared with the other two 

powder coating systems. 

According to the above comprehensive analysis of tested powder coatings, an overall 

grade is given to each of them, as shown in Table 6.9. The evaluation is based on the 

visual inspections, instrument measurements (gloss, DOI and haze), curing temperature 

and time, and the physical properties. The powder coatings are rated in grades 0-5 where  

Table 6.9 Overall grade of the final coated substrate 

Coating material 
Temperature 

(°C) 
/Time(min) 

Hybrid Polyester Epoxy 
Commercial 

low-cure 
epoxy 

Regular powder 

(Coarse powder) 

160/15 5 5 5 

N/A 

150/15 5 5 4 

140/15 5 4 4 

130/15 2 2 1 

130/25 4 3 4 

UWO low-cure 

(Fine powder) 

130/15 5 5 5 4 

120/15 5 4 4 3 

110/15 3 2 2 0 

110/25 4 4 4 2 
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0 stands for poor appearance and 5 represents the good coating surface that is worth 

being further examined or researched for industry use. According to the overall grade list, 

it is clear that using the regular powders at 140 - 160 °C/15 min could produce good 

coating films. For the low-cure catalyst, 120 °C or higher is the best choice in avoiding 

insufficient cure. For applications that require even lower curing temperatures, a longer 

curing time is recommended. Compared with the commercial low-cure epoxy, the UWO 

low-cure powder could effectively eliminate the pre-curing problem and provide a 

smoother finish. It is necessary to emphasize that 120 °C is a fairly low curing 

temperature compared with most of the curing processes and this opens up a lot of 

opportunities for powder coatings to be applied onto plastic parts. 

For all the three chosen powder coatings, the recommended curing temperature is 

140 °C~ 160 °C for regular powders, and 120 °C~130 °C for UWO low-cure powder 

coatings, which is much lower than the conventional curing temperature which is 

between 180 and 200 °C.  Therefore, coating on plastics using pre-heating is proved to be 

successful in both regular coatings and low-cure coatings. 

6.6 Conclusion 

It is a challenge to apply powder coatings on non-conductive substrates. In this research, 

application of three popular powder coatings on thermoplastic substrates have been 

examined. A pre-heating method was utilized before spraying which effectively helps the 

deposition of powder coatings to plastic substrates. For the purpose of protecting the 

thermoplastic substrate from deformation during the curing process while ensuring 

complete curing and acceptable surface quality, different curing temperatures were 

investigated and the coating surfaces were examined by different methods.  

In order to further reduce the curing temperature, the UWO low-cure method was applied 

to these three coatings. One commercial low-cure powder coating (epoxy) was also tested 

against the UWO low-cure epoxy.  

In addition to visual inspections, the gloss, DOI and haze were measured and analyzed 

for the overall evaluation. The results revealed that for regular powder coatings, 140-
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160 °C is the proper curing temperature range, while for low-cure powders, 120 °C to 

130 °C is good for all the three types of coatings. The most significant achievement of 

this study is that much lower curing temperatures than conventional curing temperature 

(190-200 °C) was reached. Compared with the commercial low-cure epoxy, UWO low-

cure epoxy performs better in a few aspects. 

The pre-heating method is an effective way for applying powder coating on non-

conductive substrate such as thermoplastics. The low-cure formulation also provides an 

opportunity in curing powder coatings at a considerably low temperature.   
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7 Chapter 7 General Discussion 

Powder coating is a dry finishing process in which pulverized particles are 

electrostatically charged and sprayed onto grounded targets. It first appeared in the 

coating industry in the 1950s in the USA. Due to one of its outstanding advantages of 

eliminating the use of Volatile Organic Compounds (VOCs), powder coating became a 

new trend in the finishing markets. As a result of the overwhelming advantages of 

powder coating such as saving energy and cost, the satisfactory coating properties and 

high efficiency of the recycled materials, it had been outpacing the growth of the 

conventional liquid coating in the past decades.  

However, as a relatively young and newly developed technology, power coating is met 

with many challenges and has not gained a comparable market share with liquid coating 

in nearly half a century. The main problems include the excessive thickness and relatively 

poor and rough appearance of the coating film. It is a complex challenge for improving 

the coating finish. Previous researchers discovered that rough and poor coating film could 

be solved by reducing powder particle sizes. Yet, the applications of fine powder coatings 

encountered many obstacles due to the strong cohesion between particles. First of all, fine 

powders produced by grinding system have more flowability issues compared with 

coarse powder. What is more, the particle size distribution of fine powder is always wider, 

and smaller particles are more likely to get agglomerated causing further processing 

problems. During spraying operations, fine powder experienced lower coating efficiency 

and a stronger Faraday Cage effect than regular powder coatings. 

In this thesis, the experimental study resolved several key problems of machinery 

modification of powder production and powder handling in a comprehensive way. It 

started with modifying the manufacturing processes on the air classifying mill to narrow 

down the produced particle size distribution. Then it was followed by modifying the 

spray gun so as to improve the charging and spraying performance. A newly developed 

corona spray gun with a multi-electrode configuration was studied in overcoming the 

Faraday Cage effect. Furthermore, a new method in processing specialty powder coatings 

was explored in this study. In addition, a method in powder coating application on plastic 
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has also been investigated in the last part of this work. The low-cure technology which 

offers a wider operating window in application of powder coating on plastics was applied.  

To begin with, a manufacturing process was improved for narrowing the particle size 

distributions on the cyclone of air classifying mill (ACM). It has been discovered that 

utilizing a reverse air flow at the cyclone bottom could effectively remove small particle 

during the collecting process. In this way, the particle size distribution could get 

improved due to the smaller amount of small particles collected. Inspired by previous 

similar designs, this modification had an opening gap at the cyclone bottom through 

which the reversed air could be introduced directly. Compared to previous complicated 

classifying cyclone designs, this modification is easily setup and operated. The main 

contribution is that the obtained particle sample has a narrower size distribution after 

classification using the new cyclone design. This noticeable improvement applies with 

both fine and coarse powder, which more obvious achievement could be seen in fine 

powders. However, the cyclone collection efficiency was highly reduced due to the 

removal of small particle by strong reverse flow at cyclone bottom. In order to retain 

larger particles so as to maintain cyclone colleting efficiency, a special designed shim 

with secondary air guider was invented incorporating into the opening gap. According to 

the computer simulation, the secondary air guider could enhance the outer vortex air spin 

and remove smaller particles, it also helped retain larger particles by centrifugal forces. In 

this way the collection efficiency was expected to be retained and became comparable to 

an ordinary cyclone. Furthermore, the modified cyclone with reversed air and secondary 

air guider has a very simple design and does need extra powder supply. Hence, it can be 

easily utilized into scale-up device and implemented in real productions.  

A novel spray gun design in modifying corona spray gun was invented in this study to 

mitigate the resistance of the Faraday Cage effect. Experimental study started with 

finding the baseline of the original corona spray gun in a wide range of operating 

conditions. The novel spray gun design had 4 additional electrode configurations 

connected with an alternating charging pattern. Instead of a traditional corona spray gun 

with a single electrode, multi-electrodes could improve the particle charging performance. 

In addition, supplied by alternating high voltage, the modified gun provided an empty 



  

 196 

charging period to eliminate the accumulation of free electrons, as they created a 

repellence of electrostatic fields of the sprayed powder cloud. The Faraday Cage 

resistance could be effectively reduced during the corona spraying. Experimental results 

of the new spray gun were evaluated by Faraday Cage resistance (FCR) and first-pass 

transfer efficiency (FPTE). The optimization experiment of new electrodes configuration 

with different axial and radial length has been done. The results indicated that when four 

additional electrodes were set up with the same axial position as center gun tip, they 

could provide the satisfactory charging performance of particles as well as better Faraday 

Cage resistance. Besides Faraday Cage resistance, the transfer efficiency of modified 

corona spray gun was also studied. Results indicated that overall transfer efficiency 

obtained from the new gun was higher than the original one. This significant 

improvement of transfer efficiency was mainly due to the reduction of the duration of 

secondary charging, which was in agreement with the theory.  

Another development of this research was the new processing techniques for specialty 

powder coatings. The study of manufacturing processes of metallic color powder 

incorporated with regular powder coatings has been done. The metallic powder could 

provide an aesthetic appearance with extra shine to the coating surface when blended 

with powder coatings at certain dosages. However, this technique faced many difficulties 

not only due to the higher cost of metallic powder, but also the more challenging coating 

process. The new technique of bonding metallic powder with powder coating was 

developed to solve those problems.  

Conventional techniques utilized thermal blending method for metallic powder 

processing. It operates in a blender where powder coatings get softened due to the heat 

generated. Under the high shear the metallic pigments could attach onto the powder 

particle surface. However, the drawback of this process is that the proper operating 

temperature is hard to control. Lower speed is not able to achieve bonding of the two 

materials, while higher speed causes the cure of powder coatings because of the 

generated heat. In addition, the bonding between powder coating and metallic powder is 

not strong enough from traditional blending technique. During spraying process, the two 
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materials separate and vary in charging performance. As a result, the mixing ratio of 

metallic pigment in recycled powder changes and the collected powder is not reusable.  

In this study, a solution for the above problem started with utilizing a liquid bonder to 

create a better adherence of metallic pigment and powder coatings. After mixing and 

drying, powder samples with uniform dispersion of the two materials were ready to spray. 

According to experimental results, the concentration of metallic pigments sprayed on to 

the work piece could remain the same as the original blend before spraying, as indicated 

that recycled powder had similar aluminum content. Spraying tests showed that the new 

technique was efficient in bonding metallic pigments with powder coatings, so that 

solved the recyclability problem. Another difficulty in bonding process is the strong 

stacking of metallic pigments. Observed by SEM, besides attaching on particles, flat-

shaped metallic pigments tend to overlap each other due to the existence of liquid bonder, 

which deteriorates the metallic effect in final coating. Therefore, bonding agent was 

added during blending process for solving the stacking problem, followed by the jet-

mixing and drying processes. Bonding agent, which is made of smaller particles (2-3 µm), 

works as “spacer” aiming at separating the neighboring metallic pigment to avoid 

stacking. The effectiveness of introducing spacer was also confirmed by SEM. An 

optimization experiment of adjusting the amount of liquid bonder and spacer has been 

done in order to maximize the bonding performance. Further results indicated that an 

increased amount of liquid bonder could achieve stronger bonding, while an 

overwhelming amount causes stacking problems. The optimal amount of liquid bonder 

and spacer has been decided after a series of experiments. What is more, other kinds of 

metallic powder are worth trying with this new technique.  

The last but not the least, a method for coating fiber-reinforced thermoplastic substrate 

was studied utilizing the pre-heating method. In coating industry, over 90% of powder 

coating is applied to metal substrates. The biggest challenge in electrostatically spraying 

plastic substrate is that there is insufficient powder deposited and weak powder adhesion 

on plastics compared to metal target. As plastics are good insulator, there is no counter 

electrons to neutralize the surface charge. As a result, the accumulated free electrons 

repel further particles from attaching onto surface. The new technique in this study was a 
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simple way to produce high quality surface on plastic targets. Three commonly used 

powder coating were applied on pre-heated thermoplastic, and then examined by a series 

of surface evaluation parameters such as gloss, DOI and haze. Both visual inspections 

and instrumental measurements indicated that the good coating appearance and adhesion 

of powder coating with thermoplastic could be obtained by the new processing technique. 

In order to better protect plastic substrate from high temperature during curing process, a 

UWO low-cure technology was utilized and it successfully lowered the curing 

temperature. The low-cure technique could prevent the distortion of substrate, save 

energy and shorten the baking and cooling times in the industrial processes. Low-cure 

additives were blended with fine powder (< 30 µm) for better dispersion instead of 

mixing with coarse powder, followed by the same spraying process on a pre-heated 

thermoplastic target. A much lower curing temperature than conventional curing 

temperature was achieved using UWO low-cure technology.  

In conclusion, this thesis study was composed of many solutions for challenges and 

difficulties in powder coating manufacturing and application processes. In addition, 

several original methods were proposed for meeting the challenges. Comprehensive 

experimental study and analysis have been confirmed and supported the methods. Overall, 

it was believed that this study is of great help in advancing powder coating technologies 

and providing a better guidance of powder coating development.  
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8 Chapter 8 General Conclusions 

In this thesis, a comprehensively study on improving manufacturing and application 

processes of powder coatings has been accomplished. A series of experimental studies 

was conducted to improve the existing methods and overcome current technical 

difficulties. General conclusions of this research were stated as follows: 

 A new design of the cyclone of air classifying mill (ACM) has been developed for 

improving particle size distribution. The idea of a secondary opening gap at the 

cyclone bottom provides a reverse flow which effectively removes small particles. In 

addition, in order to maintain the cyclone collection efficiency, a secondary air guider 

was added to help retain the larger particles. A series of experiments were conducted 

under different air guider configurations, so as to investigate the effect on particle size 

distributions of the collected coarse and fine powder. Experimental results indicated 

that the new design of classifying cyclone could effectively remove small particles 

and achieve a narrower particle size distribution. Additionally, the proposed cyclone 

design could also provide comparable collection efficiencies compared to that of 

conventional cyclones, owing to the design of the air guider. 

 

 Another modification was developed for the corona spray gun with the multi-

electrode configuration design. The new spray gun was supplied with an alternating 

charging pattern and it was able to overcome the Faraday Cage effect during the 

corona spraying process. This modified corona spray gun showed a significant 

improvement on Faraday Cage resistance and, at the same time, with higher transfer 

efficiency under ordinary operating conditions compared to conventional corona gun. 

Furthermore, the relative position of four additional electrodes could affect spray gun 

performances. An optimized experiment with different electrode arrangements was 

conducted. Results suggested the best configuration of additional electrodes, and 

preferred operating condition of this new corona gun has been figured out.  
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 Furthermore, this study developed a new processing technique for metallic pigment in 

powder coatings. This new bonding technique involving liquid bonder was aiming at 

providing a strong adhesion between metallic pigments with powder coating particles. 

Therefore, the two materials would not separate during spraying and they can have a 

uniform charge performance. As a result, the content of metallic pigments remains the 

same in the recycled powder as pre-sprayed powder. More importantly, this new 

technique eliminates the pre-curing problem of conventional thermal blending 

methods. A comprehensive experiment has been conducted in optimizing the 

blending formulation. Results showed an increased amount of liquid bonder and 

reduced content of liquid bonder solvent could achieve a stronger bonding. The 

stacking problem with the metallic powder can be resolved by introducing “spacer” 

made of smaller particles during the blending process.  

 

 In the end, a technique of powder coating on thermoplastics using the pre-heating 

method has been studied in this thesis. After heating the plastic to the temperature 

below the melting temperature of the plastic, the spraying step was carried out 

without grounding the target. The proposed new technique could provide a smooth 

and acceptable surface condition, as well as strong adhesion between the powder 

coatings and thermoplastic substrates. Furthermore, a UWO low-cure additive was 

blended with fine powder coatings, aiming at lowering the curing temperature so as to 

better protect the thermoplastic substrate from deformation at high curing 

temperatures. It was found that there is effective reduction of curing temperature by 

utilizing the UWO low-cure catalyst. The final coating surfaces were evaluated by 

both visual inspection and instrumental measurement, and the results were promising. 

So the pre-heating method is a simple and successful strategy for powder coating on 

thermoplastics, and this method can be a good guideline to powder coating on other 

non-conductive substrates.  

The discoveries of this thesis are of great help to the powder coating manufacturing and 

application process. Nevertheless, some of the remaining issues related to the proposed 
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technique are still worthy of further investigation. The future research recommendations 

are listed below: 

 
 The new design of the cyclone in this study was tested at a small scale. A full 

scale testing with extended operating durations needs to be conducted. Powder 

accumulation problems can occur in scale-up testing, so the design of this 

proposed new cyclone may need to be further optimized. 

 

 A more reliable mechanism for the alternating charging gun needs to be 

developed. The current charging distributor is not suitable for continuous 

operations required by industrial applications due to the possibility of erosion. 

However, in most of the automatic spraying systems, several spray guns are 

utilized together to coat larger components. Therefore, testing of the interference 

on a multi-gun setup with a new gun design is also needed.  

 

 The blending and drying of metallic powder processing technique could be 

simplified. Instead of a jet-mixing machine, a fluidization bed could be a proper 

alternative device to achieve bonding and could deal with larger amounts of 

powder sample.  

 

 For powder coating on non-conductive substrates, the current technique is only 

suitable for those substrates with simple configurations. A more sophisticated 

spray method for complex shaped substrates is preferred to overcome the Faraday 

Cage effect. 
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