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Abstract

Studying and modelling the interaction between predators and prey have been one of the central

topics in ecology and evolutionary biology. In this thesis, we study two different aspects of

predator-prey interaction: direct effect and indirect effect.

Firstly, we study the direct predation between predators and prey in a patchy landscape. A

model where prey reside in two isolated patches and predators move between two patches to

forage prey with the strategy that maximizes their fitness is proposed. Analytical conditions of

persistence and extinction of predators are obtained. Moreover, numerical simulations indicate

that either weak or strong adaptation of predators has a stabilizing effect in predator-prey system

for certain cases. Torus bifurcation is also observed, which implies complex dynamic behaviors.

Secondly, we study indirect effects between predators and prey. Without being directly killed

by predators, prey reproduction success is largely reduced by avoidance behaviors. We propose

a model which incorporates the impact of fear effect in prey reproduction. Our model shows that

high levels of anti-predator behaviors may stabilize predator-prey system by excluding periodic

solutions while relatively low levels of anti-predator behaviors may induce Hopf bifurcation.

Moreover, the direction of Hopf bifurcation can be either supercritical or subcritical, in contrast

to the model without fear effect.

Thirdly, we extend our previous model by incorporating a stage-structure into prey. We also

assume that adult prey avoid direct predation adaptively to maximize instant growth rate of both

adults and juveniles. Mathematical analyses show that fear effect can interplay with maturation

delay between juvenile and adult prey in determining the long-term population dynamics. The

positive equilibrium may lose stability with an intermediate value of delay and regain stability if

the delay is large.

Finally, we further extend our previous model by incorporating spatial structures into

modeling. Pattern formation is studied for the model with avoidance behaviors of prey and the

cost on prey reproduction. Mathematical and numerical analyses show that either small or large

predator-taxis may induce pattern formation, depending on the form of functional response.

Keywords: Predator-prey, adaptive behavior, uniform persistence, anti-predator response,

fear effect, stability, bifurcation, delay, pattern formation.
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Chapter 1

Introduction

1.1 Overview of predator-prey interaction

Understanding predator-prey interaction has been one of the central topics in ecology and

conservation biology. In an ecological community, most species depend on successful pre-

dation to survive because prey serve as food resources which provide predators with energy.

Consequences of converting prey biomass into predator biomass through direct predation are

referred to as a direct effect between predators and prey, and have been the focus of modelling

predator-prey interactions ([5, 33]).

Among direct effects between predator-prey interactions, successful hunting is essential for

predators to survive as a species. Although for an individual predator, the hunting mode may

vary instantly according to changes of the surrounding environment, most species have adopted

particular hunting strategy via long-term evolution ([38]). There are two main but completely

different types of hunting strategy: one is called ambush strategy and the other one is called

active strategy ([38]). Species in an ecological community can be classified into two categories

of predators depending on their hunting mode when they forage prey. Species such as snakes

or spiders are ambush predators because their hunting strategy is “sit and wait” ([43]). When

prey approach, ambush predators trap the prey or take the opportunity to pounce on it. On the

contrary, species such as African wild dogs forage prey actively in a habitat and usually catch

prey after a relatively long-distance chase ([10]). Hence, wild dogs can be classified as active

foragers due to their active movement when foraging prey.

Because active foragers move widely in habitats when searching for prey, one natural

question is that how will the difference in landscape impact the predator-prey interaction?

Habitat fragmentation disconnects landscape and separates habitats for prey or predators into

different patches. Naturally, different patches represent unbalanced living conditions and uneven
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abundance of prey. When migration or dispersal of a predator is incorporated, one interesting

question is that what is the optimal dispersal strategy for a predator? Moreover, dispersal of a

predator between patches may change the pattern of predator-prey dynamics in a single isolated

patch. For example, without dispersal of a predator, the prey and predators may tend to a steady

state in an isolated patch. However, dispersal of predators may destroy the steady state and

induce oscillations in predator or prey demography. Extensive research has been conducted

concerning patches and dispersals of predators or prey (see references [7, 8, 28, 29, 42] for

example).

Earlier research about predation behaviors and dispersal of either prey or predators assume

random dispersal of species (see e.g. [28, 29] for example). However, it has been argued that

almost all species have the ability to learn and adapt to changes of the nearby environment

([6, 40]). The adaptive behaviors of a species play an important role in determining the species’

survival and evolution by maximizing individual payoff ([6, 40]). In recent years, there have

been some studies that combined the spatial dispersal of species and adaptive behaviors of

species together ([7, 8, 12, 13, 14, 27]).

Because direct effects such as direct killing of prey or migration of a species can be easily

observed in an ecological community, and have been the central topic in research by far,

indirect effects may play an even more important role in determining the demography of species.

Indirect effects between predators and prey are mainly induced by anti-predator behaviors

of prey. It has been argued by theoretical biologists that prey can perceive predation risk at

least to some extent and avoid direct killing by predators through a variety of anti-predator

behaviors ([15, 35, 36, 37, 41]). The fear of predators drives prey to show anti-predators

responses, which include habitat switch, foraging behaviors change, and increased vigilance

([9]). Specifically, when prey are in breeding season, any change of the above anti-predator

responses may lead to a loss on prey reproduction success even though no direct killing has

been involved ([9, 15, 30, 31]). Because of such decay on prey reproduction, anti-predator

behaviors may increase short-term survival rate of prey but in the long-term, there is a cost

in the fitness of prey as a species ([9]). Recently, a field study on song sparrow populations

confirms the theoretical argument that even rare presence of predators can exert a large impact

on prey demography ([45]).

In [45], a field study on song sparrows has been conducted by Zanette et al. during the

whole breeding season. The authors in [45] eliminated all direct predation of both juvenile and

adult song sparrows by effectively using netting and electrical fences to protect nests. Without

direct predation, however, the authors used sounds of predators to manipulate predation risk.

Two groups of breeding song sparrows were monitored, within which one was exposed to

sounds of predators and the other was exposed to sounds of non-predators. By comparing the
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reproduction success of the two tested groups, the authors concluded that the group exposed

to predation risk reproduced 40% less offspring than the other group. In fact, the impact of

adult song sparrow’s anti-predator behaviors exist in every stage of breeding process. When

exposed to predation risk, adult song sparrows laid fewer eggs, fewer eggs were successfully

hatched and fewer nestlings survived, which all contributed to the eventual 40% loss of offspring.

Moreover, various anti-predator behaviors of adult song sparrows were observed in [45], such

as change of habitat. As indicated in [45], adult song sparrows were more willing to locate nests

in habitats with sub-optimal quality if a predation risk is persisted. On one hand, relocating

to habitats with less predation risk increases the surviving probability of adult song sparrows,

but on the other hand, it decreases the survival rate of newborn song sparrows due to less

suitable living conditions. In addition, the authors also documented that adult song sparrows

in the group exposed to predator’s sounds feed their offspring less and stayed less on brood

to protect juveniles. As a consequence, lower survival rate of nestlings was found for the

group with predation risk compared to the one without predation risk. In recent years, similar

results have also been obtained from field experiments of other vertebraes, such as birds

([17, 18, 19, 20, 24, 25, 26, 34]), elk ([11]), snowshoe hares ([39]) ,and dugongs ([44]). All

the aforementioned experiments offered evidence that the mere presence of predators could be

strong enough to impact the interaction between predators and prey. Indirect effects may play

a more important role in determining the demography of both prey and predators than direct

predation.

1.2 Mathematical modelling of direct effects

1.2.1 Functional responses

As mentioned in the previous section, direct effects measure the conversion of prey biomass

to predator biomass through predation. Extensive and intensive research has been done about

modelling direct predation between prey and predators. One of the earliest work that modeled

direct effects between predator-prey interaction is the Lotka-Volterra predator-prey model

dx
dt

= α x − β x y,

dy
dt

= c β x y − γ y,
(1.1)

where x and y represents the biomass of prey and predators respectively, β is the attacking rate

of prey by predators, c is the conversion rate from prey biomass to predator biomass. One of the

characteristics of (1.1) is that the predation term β x y is linear with respect to x and therefore is
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called a linear functional response of the predator ([5, 33]). After the classic work of Lotka and

Volterra, Holling ([22, 23]) proposed the well-known Holling type II functional response

f (x) =
β x

1 + β h x
(1.2)

and the Holling type III functional response ([22, 23])

f (x) =
β xθ

1 + β h xθ
. (1.3)

Derived from a more realistic assumption, Holling improved the linear functional response by

incorporating a predator handling time of prey besides attacking. In (1.2) and (1.3), h represents

predator handling time of prey, and in (1.3), θ > 1 is a constant. Obviously, the Holling type III

functional response can be viewed as a generalization of the type II functional response. The

common feature of the Holling type II and type III functional responses lies in that they are

both saturating functions when the density of prey becomes large. However, the Holling type III

functional response differs from the type II functional response when prey density is at lower

level. A possible explanation is that it is more difficult for the predators to learn searching for

prey effectively if the density of prey itself is low ([22, 23]).

Although assumptions and detailed mechanisms are different for each of Holling’s functional

responses, all of the Holling type functional responses are predator-independent functional

responses. Prey-dependent functional response assumes that the predator per capita consumption

rate of prey is influenced by prey density alone. However, it is argued that the conversion of

prey biomass to predator biomass does not only depend on prey density but also depends on

predator density ([2, 3]). A well-known functional response which depends on both prey and

predator density is the Beddington-DeAngelis functional response ([4, 16])

f (x, y) =
β x

1 + a x + b y
. (1.4)

The Beddington-DeAngelis functional response (1.4) can be regarded as a generalization of the

Holling type II functional response (1.2) by incorporating an extra term b y in the denominator.

Here, in fact, the term b y models the interference between predators when searching for prey. In

prey dependent only functional responses (e.g. Holling type functional responses), the encounter

between predators and prey is assumed to be random and unbiased. However, the competition

of prey or resources increases if the density of predators becomes larger. Hence, the successful

predation rate of prey by a predator decreases with increasing density of predators. Another

functional response that depends on both prey and predator densities and has been studied

extensively is the ratio dependent functional response

f (x, y) =
β x

y

a x
y + b

=
β x

a x + b y
. (1.5)
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The ratio-dependent functional response (1.5) is suitable when the predator is active foragers

since the predation success is an increasing function of the rate x/y, which accounts for the

average number of prey per predator can have. The function (1.5) can also be derived from

separating different time scales between behavioral change and demographical change of prey

and predators ([2, 3]). The authors of [2, 3] found empirical evidence that the ratio-dependent

functional response fitted experimental data of certain species better than prey-dependent

functional response.

Debate about whether prey dependent only functional responses or functional responses that

depend on both prey and predator densities could describe a more realistic predation behavior

has lasted for more than a decade ([1]). Due to the complexity of food webs, no explicit and

general conclusions have been recognized commonly by either theoretical or experimental

ecologists. Each type of the aforementioned functional responses has its merits and drawbacks,

and fits different situations.

1.2.2 Paradox of enrichment

Paradox of enrichment describes a phenomenon which arises from predator-prey model with

the Holling type II functional response

dx
dt

= r0 x
(
1 −

x
K

)
−

β x
1 + β h x

,

dy
dt

=
c β x

1 + β h x
− γ y.

(1.6)

Gilpin et al. studied the stability of the positive equilibrium of (1.6) ([21]). By regarding

the carrying capacity K as a bifurcation parameter, Gilpin et al. find that prey and predator

densities tend to a steady state if K is small but oscillate periodically if K is large enough to

pass a critical value. By plotting the phase portrait of prey/predator density, it is observed that

a limit cycle exists and stays very close to both axes for a large portion of time. Therefore,

a small perturbation or stochasticity would drive prey/predator species to extinction. It is

counter intuitive because the coexistence of prey and predator should be enhanced if the carrying

capacity is large (equivalently better environment).

1.3 Mathematical theories and methodologies

This thesis uses dynamical system approach to explore the population dynamics of predator-prey

system. The main notions are the following two.
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1.3.1 Stability analysis of equilibria

In dynamical system theory, equilibrium solutions are solutions which do not change with

time ([32]). Studying equilibrium solutions is important in mathematical biology because

it predicts long-term behaviors of a system. An equilibrium solution can be asymptotically

stable, which means that the equilibrium attracts trajectories in some neighborhood of the

equilibrium or unstable, meaning it repels trajectories. The stability of an equilibrium may be

local or global, depending on the basin of attraction of the equilibrium. To determine the local

stability of an equilibrium, linearization of a system at the equilibrium is an useful tool. The

equilibrium is locally asyptotically stable if all eigenvalues of the Jacbian matrix evaluated at

this point have negative real parts and is unstable if at least one eigenvalue has a positive real part

([32]). If one of the eigenvalues has zero real part, then the linearized system is not enough to

capture dynamical behaviors nearby the equilibrium and therefore, higher order approximation

is required.

1.3.2 Hopf bifurcation

Bifurcation describes an abrupt change from one state to the other when some parameters pass

the critical values. For example, water start to froze instead of keeping flowing when temperature

goes to zero. Bifurcation study is a powerful tool in understanding an ecological community

because bifurcation implies an abrupt change from one state to the other. For predator-prey

systems, the population of prey and predators may stay at a steady state or oscillate periodically.

Hopf bifurcation may be the mathematical mechanism for the change of demography of prey

and predators.

Hopf bifurcation occurs when the Jacobian matrix evaluated at an equilibrium has a pair of

pure imaginary roots crossing the imaginary axis in the complex plane, and no other eigenvalues

have zero real parts. If the pair of pure imaginary roots cross the imaginary axis with non-zero

speed, and the nondegeneracy condition is satisfied, Hopf bifurcation gives rise to a periodic

solution. A periodic solution can be stable or unstable. Typically, for Hopf bifurcation, the

stability of a bifurcated limit cycle depends on the direction of Hopf bifurcation.

1.4 Thesis motivation and outline

In this thesis, we study both direct and indirect effects in predator-prey interactions. For

direct effect, we particularly consider a case where prey reside in two isolated patches while

predators are mobile and hence can forage on prey between patches. As mentioned above,
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spatial models including patch models which incorporate dispersal of either prey or predators

have been studied extensively (see ([7, 8, 12, 13, 14, 27]) for example). The key point in our

modelling is that we consider adaptive dispersal of predators instead of random dispersal or

density-independent dispersal. In addition, by studying the combined system of both population

dynamics and adaptive dynamics, we obtain some interesting results which are induced by

dispersal of predators. More importantly, we also study indirect effects systematically, including

an ODE (ordinary differential equation) model, a DDE (delay differential equation) model,

and a PDE (partial differential equation) model, depending on the focus of modelling. By

mathematical analysis and numerical simulations, we find that indirect effects play an important

role in determining prey or/and predator demography. Under certain constraints, indirect effects

induce new dynamical behaviors of predator-prey system and may stabilize or destabilize an

equilibrium depending on the strength of anti-predator behaviors of the prey.

In Chapter 2, we propose a two-patch predator-prey model where prey reside in two isolated

patches but predators move between patches to forage prey. Predators are assumed to move

adaptively between patches to maximize individual fitness. Analytical conditions of persistence

and extinction of predators are obtained. Moreover, numerical simulations show that either weak

or strong adaptation of predators stabilizes the system if the population of prey and predators

tend to a steady state in one patch but oscillate in the other. When the population of prey

and predators oscillate in both patches, torus bifurcation is identified, which implies more

complicated behaviors.

In Chapter 3, we propose a model which incorporates the cost of anti-predator behaviors of

prey in the birth rate of prey. As discussed above, indirect effects induced by fear of predators (or

equivalently anti-predator behaviors of prey) play an even more important role in predator-prey

interaction and thus should be modeled explicitly. Mathematical analyses show that high levels

of anti-predator responses may exclude the appearance of periodic oscillations in the predator-

prey system and thus eliminate the ‘paradox of enrichment’. However, periodic oscillations

of prey and predator demography are still possible due to Hopf bifurcation, if the level of

anti-predator response is relatively low. Different from classical model without fear effect

where Hopf bifurcation is typically supercritical, Hopf bifurcation in our model can be both

supercritical and subcritical. Subcritical Hopf bifurcation implies a case where bi-stability

exists, which shows rich dynamical behaviors. Moreover, numerical simulations show that prey

demonstrate weaker anti-predator behaviors if the birth rate of prey increases or the death rate of

predators increases, but avoid predation more strongly if the attack rate of predators increases.

In Chapter 4, we extend the model in Chapter 3 by incorporating a stage structure of prey

into modelling. As indicated in [45], the cost of anti-predator behaviors exists through all stages

of prey, and thus can be modeled more accurately by explicitly dividing prey into different
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stages. Based on the experimental findings, we propose a predator-prey model with the cost

of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect

can interplay with maturation delay between juvenile prey and adult prey in determining the

long term population dynamics. A positive equilibrium may lose stability with an intermediate

value of delay and regain stability if the delay is large. Numerical simulations show that both

strong adaptation of adult prey and the large cost of fear have destabilizing effects while large

population of predators has a stabilizing effect on the predator-prey interactions. Numerical

simulations also imply that adult prey demonstrate stronger anti-predator behaviours if the

population of predators is larger and show weaker anti-predator behaviours if the cost of fear is

larger.

In Chapter 5, we extend the model in Chapter 3 by incorporating spatial structures explicitly

into modelling. Anti-predator behaviors of prey that cause change of spatial locations such

as switch of habitat usage have been observed in experiments ([45]) and therefore should be

examined in detail. We propose and analyse a reaction-diffusion-advection predator-prey model

in which it is assumed that predators move randomly but prey avoid predation by perceiving

repulsion along predator density gradient. Based on recent experimental evidence that anti-

predator behaviors alone lead to a 40% reduction on prey reproduction rate, we also incorporate

the cost of anti-predators responses into the local reaction terms in the model. Sufficient and

necessary conditions of spatial pattern formation are obtained for various functional responses

between predators and prey. By mathematical and numerical analyses, we find that small prey

sensitivity to predation risk may lead to pattern formation if the functional response is the Holling

type II functional response or the Beddington-DeAngelis functional response but large cost of

anti-predator behaviors homogenises the system by excluding pattern formation. However, the

ratio-dependent functional response gives an opposite result where large predator-taxis may

lead to pattern formation but small cost of anti-predator behaviors inhibits the emergence of

spatial heterogeneous steady states.

We end the thesis by conclusions and discussions in Chapter 6, in which a brief summary of

main results is given. We also discuss possible future extensions in this chapter.
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[27] V. Křivan. The lotka-volterra predator-prey model with foraging–predation risk trade-offs.

The American Naturalist, 170:771–782, 2007.

[28] Y. Kuang and Y. Takeuchi. Predator-prey dynamics in models of prey dispersal in two-patch

environments. Mathematical Biosciences, 120:77–98, 1994.

[29] S. A. Levin. Dispersion and population interactions. The American Naturalist, 108:

207–228, 1974.

[30] S. L. Lima. Nonlethal effects in the ecology of predator-prey interactions. Bioscience, 48:

25–34, 1998.

[31] S. L. Lima. Predators and the breeding bird: behavioral and reproductive flexibility under

the risk of predation. Biological Reviews, 84:485–513, 2009.

[32] J. D. Meiss. Differential dynamical systems, volume 14. SIAM, 2007.

[33] J. D. Murray. Mathematical Biology, I, An Introduction. Springer, 2002.

[34] J. L. Orrock and R. J. Fletcher. An island-wide predator manipulation reveals immediate

and long-lasting matching of risk by prey. Proceedings of the Royal Society of London B:

Biological Sciences, 281:20140391, 2014.

[35] S. D. Peacor, B. L. Peckarsky, G. C. Trussell, and J. R. Vonesh. Costs of predator-induced

phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive

and consumptive effects of predators on prey. Oecologia, 171:1–10, 2013.

[36] N. Pettorelli, T. Coulson, S. M. Durant, and J-M Gaillard. Predation, individual variability

and vertebrate population dynamics. Oecologia, 167:305–314, 2011.

[37] E. L. Preisser and D. I. Bolnick. The many faces of fear: comparing the pathways and

impacts of nonconsumptive predator effects on prey populations. PloS One, 3:e2465, 2008.



12

[38] I. Scharf, E. Nulman, O. Ovadia, and A. Bouskila. Efficiency evaluation of two competing

foraging modes under different conditions. The American Naturalist, 168:350–357, 2006.

[39] M. J. Sheriff, C. J. Krebs, and R. Boonstra. The sensitive hare: sublethal effects of predator

stress on reproduction in snowshoe hares. Journal of Animal Ecology, 78:1249–1258,

2009.

[40] J. E. R. Staddon. Adaptive behavior and learning. CUP Archive, 1983.

[41] T. O. Svennungsen, Ø. H. Holen, and O. Leimar. Inducible defenses: continuous reaction

norms or threshold traits? The American Naturalist, 178:397–410, 2011.

[42] W. Wang and Y. Takeuchi. Adaptation of prey and predators between patches. Journal of

Theoretical Biology, 258:603–613, 2009.

[43] D. K. Wasko and M. Sasa. Food resources influence spatial ecology, habitat selection,

and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an

experimental study. Zoology, 115:179–187, 2012.

[44] A. J. Wirsing and W. J. Ripple. A comparison of shark and wolf research reveals similar

behavioral responses by prey. Frontiers in Ecology and the Environment, 9:335–341, 2011.

[45] L. Y. Zanette, A. F. White, M. C. Allen, and M. Clinchy. Perceived predation risk reduces

the number of offspring songbirds produce per year. Science, 334:1398–1401, 2011.



13

Chapter 2

On a two-patch predator-prey model with
adaptive habitancy of predators

2.1 Introduction

Foraging behaviour is a common phenomenon in nature. As indicated in [19], foraging behaviour

varies from ambush to active, in response to changes in environment and other circumstances.

Although the foraging mode for a certain individual may change from time to time, many

species have adopted the most advantageous foraging strategy through long-term evolution,

either ambush or active, to maximize their survival probability. Species like spiders, or snakes,

as indicated in [25], are classified as ambush predators because they “sit and wait” and then

pounce when the opportunity arises. In contrast, other species, like wild dogs, as described in

[6], move actively to forage prey.

Active foragers move back and forth searching for prey. Foraging behaviour of predators

does not depend only on intra-species competition, but also depends on spatial abundance of

resources and interspecies interaction in different patches. It has been widely observed in nature

that many species migrate between different patches to search for resources because of apparent

differences of resources, landscapes, or other environmental factors that affect the predators’

survival probability in different patches. Consequently, patch models have been introduced to

simulate predator-prey dynamics with active foraging behaviour and dispersal of predators, as

indicated in [3, 4, 16, 17].

Patch models with dispersal of certain species have been studied extensively, see, e.g.,

[3, 4, 16, 17, 24] and the references therein. The common point in [16] and [17] is the

assumption of density-independent dispersal rates. However, more and more experimental

results and field observations in nature seem to suggest that predators have the ability to choose
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a better patch in which they can gain more fitness. Predators are more likely to move between

different patches adaptively.

In behavioural ecology, an adaptive behaviour is a behaviour which contributes directly or

indirectly to an individual’s survival or reproductive success and is thus subject to the forces of

natural selection ([22]). Adaptations are commonly defined as evolved solutions to recurrent

environmental problems of survival and reproduction ([2]). Ecological species have the ability

to adapt through learning ([21]). An individual will adjust its behaviour or strategy by learning

in response to a change of the environment in order to survive and acquire the highest payoff.

In evolutionary biology, analyzing an evolutionary stable strategy (ESS) under adaptation is

one of the central topics. Another important concern is how species distribute themselves

among different patches under adaptive dispersal. Based on the assumption that each individual

has the ability to assess the condition of different patches and can move freely to maximize

the individual fitness, the ideal free distribution (IFD) is proposed to illustrate the ecological

equilibrium under adaptive dynamics ([3, 10]). It is natural to analyze the relationship between

the ecological equilibrium and the evolutionary stable strategy. Several papers of [3, 4, 7, 9, 14]

studied a variety of models including a single-species model, a two-patch competition model, a

two-patch predator-prey model and an interacting-species model within finitely-many patches.

They conclude that under certain conditions and assumptions, the evolutionary stable strategies

are those which lead to the ideal free distribution.

In addition to the evolutionary and ecological aspects, predation behaviour can also produce a

significant effect on predator-prey systems. As indicated in [1], different behaviour mechanisms

can result in surprisingly different outcomes. Behavioural dynamics exerts significant effect

on ecological and evolutionary dynamics. Functional responses are used to connect different

behavioural dynamics of prey and predators. One important functional response which connects

prey density and prey catch-per-predator is the Holling type II functional response, which was

proposed by Holling ([13]). In contrast to the classical linear functional response, the Holling

type II functional response assumes that the encounter rate of prey by predators is density-

dependent. This matches experimental data for many species very well, as indicated in [5, 20].

Seitz et al. ([20]) conducted a series of experiments to study predator-prey dynamics of thin-

shelled clams and their predators, the blue crabs, which inhabit the Chesapeake Bay. As indicated

in [20], the predation on Mya arenaria (soft-shell clam) in mud and M. mercenaria (hard clam)

in sand by their major predators, the blue crabs, obeys the Holling type II functional response.

Clark et al. ([5]) conducted another experiment about foraging behaviour of the blue crabs in

the Chesapeake Bay, but focused on studying the mechanism of foraging behaviour of the blue

crabs between patches. In addition to predation of clams by the blue crabs in the Chesapeake

Bay, there are other species in the ecological system which have similar predation mode, such
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as predation behaviour of rotifers on sessile planktonic species, and grazing behaviour of large

herbivores. The above biological instances share one feature in common: all predators are

mobile and migrate between different patches to forage prey or resources while prey or resources

are sessile. In addition, as mentioned above, foraging behaviour of predators is adaptive because

predators try to maximize individual fitness.

Křivan and Cressman ([15]) studied fast behaviour of predators moving between patches

and showed that there exists a complicated relationship involving behavioural, population and

evolutionary dynamics by studying three different predator-prey models. Their study is based

on the assumption that the behavioural dynamics runs on a much faster time scale than the

demographical time scale and thus simplifies the original system. Křivan and Cressman ([15])

also explored the effect of adaptive dispersal exerting on population dynamics by using computer

simulations. Based on [15], we consider a two-patch predator-prey model where predators move

between two patches foraging on prey freely but each individual of the prey resides only within

one patch. We combine population dynamics and behavioural dynamics together and investigate

detailed dynamics of the whole system under the effect of adaptive dispersal.

The rest of the paper is organized as follows. In Section 2, we present the two-patch predator-

prey model with the Holling type II functional response and adaptive dispersal of predators. In

Section 3, mathematical analysis of the model is carried out to provide analytical conditions

for persistence and extinction of the predators. Section 4 contains some numerical simulations.

One interesting observation from these simulations is that if under isolation, the populations of

the prey and predators in one patch tend to an equilibrium but those in the other patch tend to a

limit cycle, then either weak or strong adaptation of the predators may stabilize the system in

the sense that populations in both patches will tend to an equilibrium. Moreover, the strength

of adaption has influences on the average biomass of predators. When the populations of the

prey and predators tend to limit cycles in both patches under isolation, adaptive dispersal of

predators may results in torus bifurcation. In Section 5, we summarize our findings and discuss

some possible future projects along this line.

2.2 Model formulation

Our model will be built upon a two-patch predator-prey model with the Holling type II functional

response, which is also known as the Rosenzweig-MacArthur model. This model is based on

the assumptions that (i) prey and predators inhabit two patches which are totally separated; (ii)

an individual of the prey does not disperse between the two patches and only predators move

between two patches to forage on prey; (iii) the predators, they have the complete knowledge

on the patch qualities and always tend to move to the better patch to gain more payoff which
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is measured by the per capita growth rate of predators. Under these assumptions, the two-

patch Rosenzweig-MacArthur model is given by the following system of ordinary differential

equations

dx1

dt
= x1 (r1 − a1 x1) −

s1 x1 v y
1 + h1 s1 x1

,

dx2

dt
= x2 (r2 − a2 x2) −

s2 x2 (1 − v) y
1 + h2 s2 x2

, (2.1)

dy
dt

= y
(
−m1 v − m2 (1 − v) +

s1 x1 e1 v
1 + h1 s1 x1

+
s2 x2 e2 (1 − v)

1 + h2 s2 x2

)
,

where x1 denotes the density of prey in patch 1, x2 denotes the density of prey in patch 2, y

represents the density of predators, v is the proportion of time that predators stay in patch 1

on average, ri for i = 1, 2, is the intrinsic growth rate of prey in patch i, ri/ai is the carrying

capacity of prey in patch i, si is the attacking rate of the predators in patch i, ei is the expected

biomass of prey converted to predators in patch i, mi is the per capita mortality rate of predators

in patch i, and hi is the handling time of the predation in patch i respectively.

In model (2.1), the proportional time v that predators spend in patch 1 is assumed to be

constant. However, predators seem to choose their habitat intelligently according to resource

abundance in patches. In other words, they migrate between patches adaptively with the change

of surrounding environment. If v increases, prey in patch 1 will be reduced due to the high

predation risk and meanwhile, intra-specific competition of predators will be increased. As a

consequence, predators tend to migrate to the second patch in order to maximize energy intake.

Consequently, aggregation of predators in the second patch will again cause prey reduction in

this patch, and this in turn impels predators to migrate to the first patch. Through adaptation of

predators, v in model (2.1) should change with time rather than remain as a constant. Thus v

can be viewed as the strategy of predators.

We now derive the strategy equation based on [10] and the idea of the replicator dynamics.

As indicated in [10], the assumption that predators have the complete knowledge about patch

qualities and always tend to move to a better patch to gain more fitness is valid. Let

f1 = −m1 +
e1 s1 x1

1 + h1 s1 x1
, f2 = −m2 +

e2 s2 x2

1 + h2 s2 x2
,

which measures the fitness of predators in patches 1 and 2 respectively. Because the proportion

of time that predators forage in patch 1 is v and the corresponding proportion of time that

predators stay in patch 2 is 1− v, the average fitness of predators switching over the two patches

is

f = v f1 + (1 − v) f2. (2.2)
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By the theory of adaptive dynamics ([12]), we have

dv
dt

= k v
(

f1 − f
)
. (2.3)

By plain language, this means that the relative change rate of v is proportional to the difference

of the fitness in patch 1 and the mean fitness over the two patches. In equation (2.3), k is a

positive constant, with large k accounting for strong (fast) adaptation of predators in response to

a change of prey abundance in the local patch, while small k explaining weak (slow) adaptation

of predators.

Plugging (2.2) into (2.3), we obtain

dv
dt

= k v (1 − v) ( f1 − f2)

= k v (1 − v)
(
−m1 + m2 +

e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2

)
. (2.4)

Combining (2.1) and (2.4), we obtain our model system which describes both population

dynamics and adaptive dynamics:

dx1

dt
= x1 (r1 − a1 x1) −

s1 x1 v y
1 + h1 s1 x1

,

dx2

dt
= x2 (r2 − a2 x2) −

s2 x2 (1 − v) y
1 + h2 s2 x2

,

dy
dt

= y
(
−m1 v − m2 (1 − v) +

s1 x1 e1 v
1 + h1 s1 x1

+
s2 x2 e2 (1 − v)

1 + h2 s2 x2

)
, (2.5)

dv
dt

= k v (1 − v)
(
−m1 + m2 +

e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2

)
.

In the next section, we will analyze this model system.

2.3 Mathematical analysis

We first address the well-posedness of the model (2.5), including non-negativity and bounded-

ness of solutions. Since (2.5) is of Gauss type, the solution with any set of non-negative initial

values for the four unknowns will remain non-negative for all t at which the solution exists.

Moreover, if x1(0) = 0, then x1(t) = 0 for all t ≥ 0. The same conclusion also holds for all

other unknowns. For the strategy variable v(t), writing the last equation in (2.5) as the following

integral form

v(t) = 1 − 1/
(
1 + v(0)/(1 − v(0)) exp

{∫ t

0
ψ(ξ)dξ

})
, (2.6)
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where

ψ(ξ) =k
(
− m1 + m2 + (e1 s1 x1(ξ))/(1 + h1 s1 x1(ξ))

− (e2 s2 x2(ξ))/(1 + h2 s2 x2(ξ))
)
.

(2.7)

From (2.6), we know that v(t) ∈ [0, 1] for t ≥ 0, as long as v(0) ∈ [0, 1]; if the case v(0) = 0

then v(t) = 0 for all t ≥ 0; if v(0) = 1 then v(t) = 1 for t ≥ 0; and if v(0) ∈ (0, 1) then so

is v(t) for all t ≥ 0. Although the dedicated cases v(0) = 0 and v(0) = 1 will be addressed

for mathematical purpose, we are mainly interested in the case of v(0) ∈ (0, 1). This can

be justified by assuming that initially there are predators in both patches. Next, we address

boundedness of solutions. To this end, let (x1(t), x2(t), y(t), v(t)) be any non-negative solution

with x1(0) ≥ 0, x2(0) ≥ 0, y(0) ≥ 0 and v(0) ∈ [0, 1]. We have seen from the above that

v(t) ∈ [0, 1] for all t ≥ 0 where the solution exists. We only need to confirm the boundedness of

x1(t), x2(t) and y(t). To this end, let G = e1 x1 + e2 x2 + y. By direct calculation, we obtain

dG
dt

= − m1 v G − m2 (1 − v) G + [e1 r1 + m1 v e1 + m2 (1 − v) e1] x1

+ [e2 r2 + m1 v e2 + m2 (1 − v) e2] x2 − e1 a1 x2
1 − e2 a2 x2

2

≤ −m1 v G − m2 (1 − v) G +
[e1 r1 + m1 v e1 + m2 (1 − v) e1]2

4 e1 a1

+
[e2 r2 + m1 v e2 + m2 (1 − v) e2]2

4 e2 a2
.

(2.8)

Because we have shown that v is bounded between 0 and 1, we obtain

dG
dt
≤ −m0G + η0, (2.9)

where m0 = min{m1,m2} and η0 is a positive constant. By the comparison principle, we conclude

that

lim sup
t→∞

G(t) =
η0

m0
,

implying that G is bounded. This also indicates that η0/m0e1, η0/m0e2 and η0/m0 are also a

priori bounds of x1(t), x2(t) and y(t) respectively. The boundedness of the solution also implies

that it exists globally, that it, it exists for all t ∈ (0,∞).

The above analysis also show that the set

X = R4
+ = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 ≤ v ≤ 1},

is positively invariant, and we will only need to consider the dynamics of the model in this set.
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In order to analyze the long-term behaviour of system (2.5), we first discuss the structure of

all possible equilibria for this system. For convenience of notations, we let

A1 =
e1 s1 r1

a1 + h1 s1 r1
− m1, A2 =

e2 s2 r2

a2 + h2 s2 r2
− m2,

A3 = e2, A4 = e2 − m2 h2, A5 = r2 s2, A6 = a2 m2,

A7 = e1, A8 = e1 − m1 h1, A9 = r1 s1, A10 = a1 m1.

(2.10)

Denote
x∗1 =

m1

s1(e1 − m1 h1)
, y∗1 =

e1(r1 s1 e1 − r1 s1 h1 m1 − a1 m1)
s2

1(e1 − m1 h1)2
,

x∗2 =
m2

s2(e2 − m2 h2)
, y∗2 =

e2(r2 s2 e2 − r2 s2 h2 m2 − a2 m2)
s2

2(e2 − m2 h2)2
.

(2.11)

Then, direct calculations show that there are always eight equilibria for the biologically mean-

ingful parameters:

E2
0 = (0, 0, 0, 0), E2

1 =

(
r1

a1
, 0, 0, 0

)
, E2

2 =

(
0,

r2

a2
, 0, 0

)
, E2

3 =

(
r1

a1
,

r2

a2
, 0, 0

)
,

E1
0 = (0, 0, 0, 1), E1

1 =

(
r1

a1
, 0, 0, 1

)
, E1

2 =

(
0,

r2

a2
, 0, 1

)
, E1

3 =

(
r1

a1
,

r2

a2
, 0, 1

)
.

In addition, five other equilibria including a unique positive equilibrium may come into existence

under certain conditions on the model parameters:

E1
4 = (x∗1, 0, y

∗
1, 1), E1

5

(
x∗1,

r2

a2
, y∗1, 1

)
,

E2
4 = (0, x∗2, y

∗
2, 0), E2

5 =

(
r1

a1
, x∗2, y

∗
2, 0

)
,

E∗ = (x̃∗1, x̃
∗
2, ỹ
∗, ṽ∗) with x̃∗1 > 0, x̃∗2 > 0, ỹ∗ > 0, ṽ∗ ∈ (0, 1).

Obviously, y∗1 > 0 if and only if A1 > 0 which implies A8 > 0 (hence x∗1 > 0). Similarly,

y∗2 > 0 if and only if A2 > 0 which implies A4 > 0 (hence x∗2 > 0). Here, all equilibria, except for

E∗, have explicit formulas and each represents one situation of the specialist strategies (v = 0 or

v = 1) meaning that all predators choose to inhabit in one patch. However, E∗ with ṽ∗ ∈ (0, 1)

represents a generalist strategy, which can not be obtained explicitly; indeed, its existence will

be established by an argument using abstract persistence theory.

The stability/instability of these equilibria can be analyzed by the standard method of

investigating the characteristic equation at each of them, except for E∗. Below, we showcase the

analysis on E2
5.

Theorem 2.3.1 Assume that A2 > 0 so that E2
5 exists. Then, it is locally asymptotically stable if

and only if

A1 < 0 and A4 A5 (A3 − A4) < A6 (2 A3 − A4) . (2.12)
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Proof The Jacobian matrix of (2.5) is

J11 0 −
s1 x1 v

1 + h1 s1 x1
−

s1 x1 y
1 + h1 s1 x1

0 J22 −
s2 x2 (1 − v)
1 + h2 s2 x2

s2 x2 y
1 + h2 s2 x2

e1 v s1 y
(1 + h1 s1 x1)2

e2 (1 − v) s2 y
(1 + h2 s2 x2)2 J33 J34

k v (1 − v) e1 s1

(1 + h1 s1 x1)2 −
k v (1 − v) e2 s2

(1 + h2 s2 x2)2 0 J44


, (2.13)

where
J11 = r1 − 2 a1 x1 −

s1 v y
(1 + h1 s1 x1)2 ,

J22 = r2 − 2 a2 x2 −
s2 (1 − v) y

(1 + h2 s2 x2)2 ,

J33 = −m1 v − m2 (1 − v) + e1 v
s1 x1

1 + h1 s1 x1
+ e2 (1 − v)

s2 x2

1 + h2 s2 x2
,

J34 = y
(
− m1 + m2 +

e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2

)
,

J44 = k (1 − 2 v)
(
− m1 + m2 +

e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2

)
.

Substituting equilibrium E2
5 into the Jacobian matrix (3.26) gives the characteristic equation at

E2
5 :

(λ + r1)
(
λ − J44

) (
λ2 − J22λ − J23 J32

)
= 0, (2.14)

where

J44 = k
(
−m1 + m2 +

e1 s1 r1

a1 + h1 s1 r1
−

e2 s2 x∗2
1 + h2 s2 x∗2

)
,

J22 = r2 −
2 a2 m2

s2 (−m2 h2 + e2)
−

s2 y∗2(
1 + h2 s2 x∗2

)2 ,

J23 = −
s2 x∗2

1 + h2 s2 x∗2
, J32 =

e2 s2 y∗2(
1 + h2 s2 x∗2

)2 .

Obviously, λ1 = −r and λ2 = J44 are real roots of (2.14), and the other two roots of (2.14) are

determined by the quadratic equation:

λ2 − J22λ − J23 J32 = 0. (2.15)

Note that J23 J32 < 0. Thus, the two roots of (2.15) have negative real parts if and only if

J22 < 0. Therefore, all roots of (2.14) have negative real parts if and only if

J22 < 0 and J44 < 0,
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which are, by the notations defined in (2.11), equivalent to the two conditions in (2.12). This

completes the proof.

Equilibrium Existence Stability Condition for stability
E2

0(0, 0, 0, 0) always exists unstable

E2
1

(
r1

a1
, 0, 0, 0

)
always exists unstable

E2
2

(
0,

r2

a2
, 0, 0

)
always exists unstable

E2
3

(
r1

a1
,

r2

a2
, 0, 0

)
always exists Locally Stable A2 < 0, A1 < A2

E2
4(0, x∗0, y

∗
0, 0) 0 < A2 unstable

E2
5

(
r1

a1
, x∗0, y

∗
0, 0

)
0 < A2 Locally Stable A1 < 0, A4 A5(A3 − A4) < A6(2 A3 − A4)

E1
0(0, 0, 0, 1) always exists unstable

E1
1

(
r1

a1
, 0, 0, 1

)
always exists unstable

E1
2

(
0,

r2

a2
, 0, 1

)
always exists unstable

E1
3

(
r1

a1
,

r2

a2
, 0, 1

)
always exists Locally Stable A1 < 0, A2 < A1

E1
4(x∗1, 0, y

∗
1, 1) 0 < A1 unstable

E1
5

(
x∗1,

r2

a2
, y∗1, 1

)
0 < A1 Locally Stable A2 < 0, A8 A9(A7 − A8) < A10(2 A7 − A8)

E(x̃∗1, x̃
∗
2, ỹ
∗, ṽ∗) 0 < A1, 0 < A2

Table 2.1: The upper index i (i = 1, 2) indicates that predators forage only in patch i without migrating

to the other patch. E(x̃∗1, x̃
∗
2, ỹ
∗, ṽ∗) is the unique positive equilibrium.

The analysis of stability/instability of other equilibria, except for E∗, can be similarly done

and will be omitted here since it would cost too much space. Table 2.1 summarizes such results.

As mentioned before, the existence of E∗ can not established through solving the equations

for equilibria. Instead it is established as a result of uniform persistence of the model. To this

end, we will first establish the uniform persistence of the population with a generalist strategy

(v ∈ (0, 1)) under the conditions A1 > 0 and A2 > 0. For this purpose, we need to obtain some

information about the patch-wise dynamics, that is, the population dynamics when the predator

only stays in one patch, by considering the following system (obtained by taking taking v = 0 or
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v = 1 in (2.5)): 
dxi

dt
= xi (ri − ai xi) −

si xi y
1 + hi si xi

,

dy
dt

= y
(
−mi + ei

si xi

1 + hi si xi

)
.

(2.16)

For such a classic prey-predator model, generally, when the carrying capacity of the prey is not

too large, the populations of prey and predator tend to a unique positive steady state; while when

the carrying capacity of the prey is sufficiently large, oscillations will occur and the populations

of prey and predators tend to a globally stable limit cycle. To state this more precisely, we first

note that for i = 1, 2, Ai > 0 is equivalent to

mi hi

si hi(ei − mi hi)
<

ri

ai
,

which is also the condition for x∗i and y∗i to be positive (hence existence of positive equilibrium

(x∗i , y
∗
i ) for (2.16)). Thus, if both A1 and A2 are negative, regardless of whether choosing to stay

in patch 1 (v(t) = 1) or patch 2 (v(t) = 0), the predator will go to extinction. Indeed, in such

a case, this conclusion remains true for any general strategies in (2.5), as is confirmed in the

following theorem.

Theorem 2.3.2 The predators go to extinction if A1 < 0 and A2 < 0.

Proof Applying the comparison principle to the first and the second equation in (2.5), we have

the estimates:

lim sup
t→∞

xi(t) ≤
ri

ai
, i = 1, 2.

Thus, for any ε > 0, there exists t∗ > 0 such that

xi(t) ≤
r1

a1
+ ε for t ≥ t∗. (2.17)

This together with the third equation in (2.5) lead to

dy
dt
≤ By, (2.18)

where

B = −m1 v − m2 (1 − v) +
e1 v s1(r1 + a1 ε)

a1 + h1 s1(r1 + a1 ε)
+

e2 (1 − v) s2(r2 + a2 ε)
a2 + h2 s2(r2 + a2 ε)

.

Noting that

lim
ε→0

(
−m1 v − m2 (1 − v) +

e1 v s1(r1 + a1 ε)
a1 + h1 s1(r1 + a1 ε)

+
e2 (1 − v) s2(r2 + a2 ε)
a2 + h2 s2(r2 + a2 ε)

)
= v(A1 − A2) + A2 = vA1 + (1 − v)A2 < 0.

(2.19)

One can choose ε > 0 sufficiently small such that B < 0. This together with (2.18) implies that

y(t)→ 0 as→ ∞, that is, the predator goes to extinction.
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By this theorem, in order for the predators to be persistent, at least one of the two quantities

A1 and A2 must be positive. To proceed further, we need the following lemma, which can be

easily proved by standard methods (see, e.g., [18]), on the prey-predator model (2.16).

Lemma 2.3.3 Assume that Ai > 0. If

(Hi)
ri

ai
<

ei + mi hi

si hi(ei − mi hi)
,

then, every positive solution of (2.16) approaches to a positive equilibrium; and if

(H−i )
ei + mi hi

si hi(ei − mi hi)
<

ri

ai
,

then, every positive solution of (2.16) tends to a positive limit cycle, except for those solutions

starting from unstable equilibria.

In the remainder of this section, we consider the case when both A1 and A2 are positive, and

will leave the case that A1A2 < 0 to the next section for discussion where we will present some

numerical simulation results.

Now we are in the position to establish the persistence of the predators, as well as of the

strategy functions v(t) and 1 − v(t) for the case when both A1 and A2 are positive.

Theorem 2.3.4 Assume that A1 > 0 and A2 > 0. Then the predator population in system (2.5)

is uniformly persistent.

Proof We apply the theory in [11, 23] to complete the proof. To this end, we distinguish four

cases:

(I) (H1) and (H2) hold; (II) (H1) and (H−2 ) hold;

(III) (H−1 ) and (H2) hold; (IV) (H−1 ) and (H−2 ) hold.

We only give the proof for Case (I), since the proofs for the other three cases are similar and are

thus omitted to save space.

Define

X = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 ≤ v ≤ 1},

X0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y > 0, 0 ≤ v ≤ 1}, (2.20)

Y = X/X0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y = 0, 0 ≤ v ≤ 1}.

There are eight equilibria in set Y:

E2
0(0, 0, 0, 0), E2

1

(
r1

a1
, 0, 0, 0

)
, E2

2

(
0,

r2

a2
, 0, 0

)
, E2

3

(
r1

a1
,

r2

a2
, 0, 0

)
,

E1
0(0, 0, 0, 1), E1

1

(
r1

a1
, 0, 0, 1

)
, E1

2

(
0,

r2

a2
, 0, 1

)
, E1

3

(
r1

a1
,

r2

a2
, 0, 1

)
.



24

Following notations in [11], A∂ being the global attractor in the boundary set Y , we have

Ã∂ = ∪
x∈A∂

ω(x)

= ∪E j
i , i = 0, 1, 2, 3, j = 1, 2.

In order to show Ã∂ is isolated and has an acyclic covering, first, we consider the system

restricted on Y:

dx1

dt
= x1(r1 − a1x1),

dx2

dt
= x2(r2 − a2x2), (2.21)

dv
dt

= kv(1 − v)
(
−m1 + m2 +

e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2

)
.

Note that among equilibria E j
i for i = 0, 1, 2, 3; j = 1, 2, the sequence E2

i , i = 0, 1, 2, 3

correspond to v = 0 and the sequence E1
i , i = 0, 1, 2, 3 correspond to v = 1. First, we show

the analysis for the former case. When v = 0, the three-dimensional system (2.21) reduces

to a two-dimensional system. Because equilibrium E2
3 is globally asymptotically stable for

the two-dimensional system, it is clear that E2
0, E

2
1, E

2
2, E

2
3 are isolated and acyclic in set Y . By

checking eigenvalues of each equilibrium, it can be shown that E2
0, E

2
1, E

2
2, E

2
3 are also isolated

in set X.

Next, we show that W s(E2
3) ∩ X0 = ∅. Suppose this is not true. Then there exists a solution

of (2.5) with y(t) positive such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1

a1
,

r2

a2
, 0, 0

)
. (2.22)

Denote

R(t) = −m1 v − m2 (1 − v) +
e1 v s1 x1

1 + h1 s1 x1
+

e2 (1 − v) s2 x2

1 + h2 s2 x2
.

Then (2.22) implies that R(t)→ A2 > 0 as→ ∞. Thus, for ε ∈ (0, A2), there exists T > 0 such

that R(t) > A2 − ε > 0 for t ≥ T . Therefore,

dy
dt

= R(t)y ≥ (A2 − ε)y, for t ≥ T, (2.23)

which implies that y grows unboundedly by the comparison principle. This contradicts the

boundedness of y(t). Therefore, W s(E2
3) ∩ X0 = ∅ if A2 > 0. Similarly, we can prove W s(E2

i ) ∩

X0 = ∅ for i = 0, 1, 2 when condition A2 > 0 holds.

For the case corresponding to v = 1, we can prove that A1 > 0 implies W s(E1
i ) ∩ X0 = ∅ for

i = 0, 1, 2, 3. The proof here is similar to the proof for the case v = 0 (it is actually a result of

the conjugacy of v and 1 − v) and is thus omitted.
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Now, by the theoretical results in persistence theory (see, e.g., [11] or [23]), we have proved

that the predator’s population in system (2.5) is uniformly persistent.

Next, we show that strategy variable v(t) is also persistent if both A1 and A2 are positive.

We also distinguish the local case (Hi) (convergence to equilibrium) from the local case (H−i )

(convergence to limit cycle).

Theorem 2.3.5 Assume that A1 > 0 and A2 > 0. Then the strategy functions v(t) and 1 − v(t)

are uniformly persistent in the sense that there exists a η > 0 such that

lim inf
t→∞

v(t) > η, and lim inf
t→∞

[1 − v(t)] > η.

In order to prove the strategy’s persistence, we need to prove that v = 0 and v = 1 are both

uniform repellers. To this end, we define the same set X as in the proof of Theorem 2.3.4 but

define the interior set and the boundary set with respect to v and 1 − v by

X̂0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 < v < 1},

Ŷ = X/X̂0 = Y1 ∪ Y2,

where, Y1 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, v = 0} and Y2 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥

0, y ≥ 0, v = 1}.

As in the proof of Theorem 2.3.4, we also distinguish four local cases as in the proof of

Theorem 2.3.5, depending on whether the local dynamics is convergence to equilibrium (i.e.,

under (Hi)), or convergence to limit cycle (i.e., under (H−i )).

Proof of Case (I). (H1) and (H2) hold. First, we prove that v = 0 (i.e. Y1) is a uniform repeller.

When v = 0, six equilibria, namely

E2
0(0, 0, 0, 0), E2

1

(
r1

a1
, 0, 0, 0

)
, E2

2

(
0,

r2

a2
, 0, 0

)
,

E2
3

(
r1

a1
,

r2

a2
, 0, 0

)
, E2

4
(
0, x∗2, y

∗
2, 0

)
, E2

5

(
r1

a1
, x∗2, y

∗
2, 0

)
,

exist in set Y1. Let us consider the system restricted in Y1:

dx1

dt
= x1(r1 − a1 x1),

dx2

dt
= x2(r2 − a2 x2) −

s2 x2 y
1 + h2 s2 x2

, (2.24)

dy
dt

= y
(
−m2 +

e2 s2 x2

1 + h2 s2 x2

)
.

For system (2.24), equilibrium E2
5 is globally asymptotically stable when A2 > 0, i.e. when

equilibrium E2
5 exists. Therefore, equilibria E2

0, E2
1, E2

2, E2
3, E2

4, E2
5 are isolated and acyclic
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in the set Y. By checking the eigenvalues of each equilibrium, we can see that E2
i for i =

0, 1, 2, 3, 4, 5 are also isolated in set X.

Next, we prove that W s(E2
5) ∩ X0 = ∅. Suppose that is not the case. Then there exists a

solution of (2.5) in X0, such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1

a1
, x∗2, y

∗
2, 0

)
. (2.25)

Denote

r(t) = −m1 + m2 +
e1 s1 x1

1 + h1 s1 x1
−

e2 s2 x2

1 + h2 s2 x2
.

Then (2.25) implies that r(t)→ A1 > 0 as t → ∞. Thus for any ε ∈ (0, A1), there exists T > 0

such that r(t) > A1 − ε for t ≥ T. Therefore,

dv
dt

= k v(1 − v)r(t) ≥ k v(1 − v)(A1 − ε), for t ≥ T, (2.26)

which implies that v is increasing in t. This contradicts the fact that v → 0 when t → ∞.

Therefore, W s(E2
5) ∩ X0 = ∅ if condition A1 > 0 is satisfied. Similarly, we can prove that

W s(E2
i ) ∩ X0 = ∅, for i = 0, 1, 2, 3, 4.

For the case where v = 1, we can prove that W s(E1
i ) ∩ X0 = ∅ for i = 0, 1, 2, 3, 4, 5 if A2 > 0

by the conjugacy of v and 1 − v.

Based on persistence theory (e.g.,[11] or [23]), we have proved that the strategy is uniformly

persistent.

Proof of Case (II). (H−1 ) and (H−2 ) hold. We assume the period in patch 1 is T1 and the period in

patch 2 is T2, and T2 > T1 for convenience. First, we show that v = 0, i.e. Y1 is a uniform repeller.

Let (x2(t), y(t)) denote points of the limit cycle. It is sufficient to prove W s

(
r1

a1
, x2, y, 0

)
∩ X0 = ∅

in order to prove that v = 0 is a uniform repeller. Suppose this is not the case. Then there exists

a solution of (2.5) such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1

a1
, x2, y, 0

)
. (2.27)

As indicated in (2.6), we have obtained the solution of v as

v(t) = 1 − 1/
(
1 + v(0)/(1 − v(0)) exp

{∫ t

0
ψ(ξ)dξ

})
.

We rewrite exp
{∫ t

0
ψ(ξ)dξ

}
as

exp
{∫ t

0
ψ(ξ)dξ

}
= exp


(∫ t

0
ψ(ξ)dξ

)
t

t

 . (2.28)
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Substituting (2.7) into
∫ t

0
ψ(ξ)dξ/t, we obtain

− k(m2 + ε e2 s2 L1) +
k e1 s1(r1/a1 − ε)

1 + h1 s1(r1/a1 − ε)

≤
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

n T2
−

k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

n T2

≤
k e1 s1(r1/a1 + ε)

1 + h1 s1(r1/a1 + ε)
− k(m2 − ε e2 s2 L2).

(2.29)

Substituting t = n T2 into (2.29), we obtain∫ nT2

0
k ((e1 s1 x1)/(1 + h1 s1 x1) − (e2 s2 x2)/(1 + h2 s2 x2)) dξ

n T2

=
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)dξ

n T2
−

k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)dξ

n T2
.

(2.30)

The predator’s equation in system (2.5) shows

dy
y

=

(
−m2 +

e2 s2 x2

1 + h2 s2 x2

)
dt. (2.31)

Substituting (x2, y) into (2.31) and integrating both sides of (2.31) from 0 to n T2 gives∫ nT2

0

d y
y

=

∫ nT2

0

(
−m2 +

e2 s2 x2

1 + h2 s2 x2

)
dt. (2.32)

Direct calculations indicate that
∫ nT2

0
d y
y = 0. Further calculations show that the right-hand side

of (2.32) equals −m2 n T2 +
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)dt. Therefore, we obtain

∫ nT2

0

e2 s2 x2

1 + h2 s2 x2
dt = n m2 T2. (2.33)

Let

f (x) =
e2 s2 x

1 + h2 s2 x
.

The function f (x) is increasing. In addition, from (2.27), for ε small enough, there exists n∗ > 0

such that x2 − ε < x2 < x2 + ε. Using the above two properties, when n > n∗, we obtain,

e2 s2 (x2 − ε)
1 + h2 s2 x2

<
e2 s2 (x2 − ε)

1 + h2 s2 (x2 − ε)
<

e2 s2 x2

1 + h2 s2 x2

<
e2 s2 (x2 + ε)

1 + h2 s2 (x2 + ε)
<

e2 s2 (x2 + ε)
1 + h2 s2 x2

.
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By using (2.33),when n > n∗, we have∫ nT2

0
(e2 s2 (x2 + ε)) / (1 + h2 s2 x2) dξ

nT2

=

∫ nT2

0
(e2 s2 x2) / (1 + h2 s2 x2) dξ

n T2
+

∫ nT2

0
(e2 s2 ε) / (1 + h2 s2 x2) dξ

nT2

=
n m2 T2

n T2
+

∫ nT2

0
(e2 s2 ε) / (1 + h2 s2 x2) dξ

n T2

= m2 +
ε e2 s2

∫ nT2

0
1/ (1 + h2 s2 x2) dξ

n T2
.

(2.34)

Because x2 is bounded, we assume

L2 ≤ 1/(1 + h2 s2 x2) ≤ L1, (2.35)

where L1 and L2 are positive constants. By using (2.35), we obtain

ε e2 s2 L2 ≤
ε e2 s2

∫ nT2

0
1/(1 + h2 s2 x2)dξ

nT2
≤ ε e2 s2 L1, when n > n∗.

From the above analysis, when n > n∗, we have

m2 − ε e2 s2 L2 ≤

∫ nT2

0
(e2 s2 (x2 − ε)) / (1 + h2 s2 x2) dξ

nT2

≤

∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)dξ

nT2

≤

∫ nT2

0
(e2 s2 (x2 + ε))/(1 + h2 s2x2)dξ

nT2
≤ m2 + ε e2 s2 L1.

(2.36)

Again from (2.27), when n > n∗, we have

r1

a1
− ε < x1(t) <

r1

a1
+ ε.

By using the above inequality, we obtain

e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<
e1 s1 x1

1 + h1 s1 x1
<

e1 s1 (r1/a1 + ε)
1 + h1 s1 (r1/a1 + ε)

. (2.37)

Integrating (2.37) from 0 to n T2, we obtain

n T2 e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<

∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)dξ

<
n T2 e1 s1 (r1/a1 + ε)
1 + h1 s1 (r1/a1 + ε)

.

(2.38)
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It is obvious that (2.38) is equivalent to

k e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<
k

∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)dξ

n T2

<
k e1 s1 (r1/a1 + ε)

1 + h1 s1 (r1/a1 + ε)
.

(2.39)

Comparing (2.36), (2.39) with (2.30), when n > n∗, we obtain

− k(m2 + ε e2 s2 L1) +
k e1 s1(r1/a1 − ε)

1 + h1 s1(r1/a1 − ε)

≤
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

n T2
−

k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

n T2

≤
k e1 s1(r1/a1 + ε)

1 + h1 s1(r1/a1 + ε)
− k(m2 − ε e2 s2 L2).

(2.40)

From (2.40), we have

lim sup
n→∞

k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

n T2
−

k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

n T2

=
k e1 s1 r1

a1 + h1 s1 r1
− k m2,

lim inf
n→∞

k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

n T2
−

k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

n T2

=
k e1 s1 r1

a1 + h1 s1 r1
− k m2.

(2.41)

By comparing (2.41) and (2.29), we obtain∫ t

0
ψ(ξ)dξ

t
→ −k m1 +

w e1 s1 r1

a1 + h1 s1 r1
, when t → ∞. (2.42)

Let α = k ((e1 s1 r1)/(a1 + h1 s1 r1) − m1) = k A1. From (2.6) and (2.42), we obtain

v(t) = 1 − 1/
(
1 + (v(0)/(1 − v(0))) exp

{∫ t

0
ψ(ξ)dξ

})
→ 1, when t → ∞. (2.43)

This contradicts the fact that v→ 0, when t → ∞. Therefore, we can conclude that v = 0 is a

uniform repeller.

The proof of v = 1 being a uniform repeller is similar to the proof above. The only difference

lies in choosing t = n T1 instead of t = n T2. Here we omit this part.

When t , n T1 or t , n T2, from (2.41), we see that∫ nT2

0
(ei si xi)/(1 + hi si xi)ds, i = 1, 2
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are bounded because x1, x2 are bounded. When n is sufficiently large, (2.41) is still valid. Taking

all the above into consideration, we can conclude that if A1 > 0, A2 > 0, the strategies v(t) and

1 − v(t) are uniformly persistent.

Proof of Case (III). (H1) and (H−2 ) hold. When (H1) and (H−2 ) hold, we assume the period of

the limit cycle of (2.5) in patch 2 is T . First, we prove that v = 0 is a uniform repeller. When

v = 0, predators forage only in patch 2. Let (x20(t), y0(t)) denote points of the limit cycle in

patch 2. It is sufficient to prove W s

(
r1

a1
, x20, y0, 0

)
∩ X0 = ∅ in order to prove that v is a uniform

repeller. The remaining proof is similar to the proof of Case (II) except that we choose t = n T

here instead of t = n T1 or t = n T2. Following the same procedure as in the proof of Case (II),

we can prove that v = 0 is a uniform repeller when conditions A1 > 0, A2 > 0 are satisfied. The

proof of v = 1 being a uniform repeller is similar to the proof of v = 0 being a uniform repeller

of Case (II), and is thus omitted.

The proof of the theorem is completed.

2.4 Numerical simulations

We now discuss the mixed scenario of either “A1 > 0 and A2 < 0” or “A1 < 0 and A2 > 0”.

In such a case, if the two patches are fully isolated, then the results on the dynamics of the

patch-wise model (2.16) show that the predators will persist in the advantageous patch (i.e.,

with Ai > 0) but go to extinction in the disadvantageous patch (i.e., with Ai < 0). When the

two patches are not isolated, v(t) evolves in (0, 1). Unfortunately we are unable to obtain any

theoretical results at this moment for such a case. However, our numerical explorations seem to

suggest that the above conclusion remains true. For example, if we take the parameter values

r1 = 2.0, r2 = 0.3, a1 = 2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 =

0.3, h2 = 0.2, k = 1.0, we have A1 > 0 and A2 < 0. Numerical simulation shows that v(t)→ 1

as t → ∞ (see Fig. 2.1(a)), implying that the predators will eventually stay in patch 1 (the

advantageous patch). Then by the theory of asymptotically autonomous systems, we obtain the

above conclusion. Similarly, by choosing the parameter values r1 = 0.8, r2 = 2.0, a1 = 2, a2 =

1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k = 1.0, we have

A1 < 0 and A2 > 0, and simulation shows that v(t)→ 0 as t → ∞ (see Fig. 2.1(b)), leading to

the above conclusion again.

Mathematical results in Section 3 show that the dispersal rate of predators or the strength

of adaptation (i.e., k) does not affect the persistence or extinction of the predators. However,

numerical simulations indicate that k may induce rich patterns and have an effect on average

biomass of the predators. Figures 2.2, 2.3, 2.4 are obtained under the case where the carrying
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capacity of prey in patch 1 is small and the carrying capacity of prey in patch 2 is large enough

to support oscillations, reflected by the conditions “A1 > 0 and A2 > 0” together with “(H1) and

(H−2 )”.

Figure 2.2 indicates that when k is large or small, i.e. when the adaptation strength of

predators is strong or weak, the dispersal of predators stabilizes the system; while when the

adaptation strength is mediate, there will be Hopf bifurcation. Figures 2.3 and 2.4 show that in

the interval of Hopf bifurcation, prey, predators and the strategy behave periodically. Figure

2.5 shows that there is a complicated relationship between predator’s average biomass and the

dispersal rate k in the interval of Hopf bifurcation.

When the carrying capacity of prey in each isolated patch is large enough to support

oscillations, i.e. conditions (H−1 ) and (H−2 )in Lemma 2.3.3 are satisfied, a torus bifurcation may

occur. Figures 2.6(a) and 2.6(b) are produced under conditions (H−1 ) and (H−2 ) in Lemma 2.3.3.

Figure 2.6(a) shows modulated oscillation. Figure 2.6(b) shows a torus surface. As indicated in

[8], a torus bifurcation may be due to the aperiodic behavior of predators. Making use of the

simulations in Figures 2.3, 2.4, or 2.5, we increase the local recruitment rate of prey in patch 1

such that prey and predators in both patches exhibit periodic behaviour. Because the amplitude

of the periodic solutions in two patches are different, the aperiodic behaviour of the predators

occurs, which leads to the torus bifurcation.

2.5 Conclusion and discussions

In this paper, we have studied the dynamics of a two-patch predator-prey model with the Holling

type II functional response and allowing the predators to move adaptively between the two

patches to gain fitness. We have analyzed the persistence and extinction of predators and the

corresponding mixed strategy, in terms of the combined parameters Ai, i = 1, 2 which determine

whether patch i is advantageous or disadvantageous to the predators. When patches are isolated,

in an advantageous patch, by Lemma 2.3.3, prey and predators can persist in two different

modes: (i) convergence to a positive equilibrium; (ii) convergence to a positive periodic solution,

depending on whether (Hi) or its opposite (H−i ) holds.

With the adaptive dispersal, we have proved that predators will go to extinction on both

patches when A1 < 0 and A2 < 0; and when A1 > 0, A2 > 0, the predators will persist in

both patches, and so will be the dispersion strategy function v(t). Interestingly, the strength of

adaptation (i.e. k) does not affect the above conclusion. However, numerical simulations indicate

that it does have an impact on the patterns of persistence and affect the average population of

the predators. When prey and predators tend to an equilibrium in one patch and tend to a limit

cycle in the other patch, numerical simulations show that the adaptive movement of predators
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can stabilize the system when the adaptation of predators is either weak or strong, and there is

an intermediate window for the adaptation strength in which Hopf bifurcation occurs, causing

periodic fluctuations for prey and predator populations in both patches. Also found by numerical

simulations is that the average biomass of predators has a complicated relationship with the

dispersal rate of the predators. Moreover when prey and predators tend to limit cycles in each

isolated patch, a torus bifurcation is numerically observed.

For the case of A1A2 < 0 (i.e., one patch is advantageous and the other is disadvantageous),

we are unable to obtain theoretical results. In such situation, our numerical investigations seem

to show that adaptive dispersal also does not affect the global outcome in the sense that the

predators will persist in the advantageous patch and go extinct in the disadvantageous patch. In

plain language, the adaptive dispersal is always in favor of the advantageous patch, if any.

We point out that recently Cressman and Křivan ([8]) studied a two-patch predator-prey

model focusing on adaptive dispersals of both prey and predators. In contrast to their work, we

consider a system including both population dynamics and adaptive dynamics. By studying the

combined system, we can gain more biological and mathematical insights.
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Figure 2.1: Adaptive dispersion. (a) The initial values are (0.2, 0.1, 12, 0.35), and the parameter

values are r1 = 2.0, r2 = 0.3, a1 = 2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 =

0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k = 1.0 leading to A1 > 0 and A2 < 0; (b) The initial values

are (0.5, 0.2, 12, 0.35), and the parameter values are r1 = 0.8, r2 = 2.0, a1 = 2, a2 = 1.3, s1 =

1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k = 1.0 leading to A1 < 0

and A2 > 0.



33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

x
1

H H 

Figure 2.2: There exists Hopf bifurcation for the case where A1 > 0, A2 > 0,H1,H−2 . Between

the two Hopf bifurcation point, periodic solutions exist. Parameters are r1 = 5, r2 = 8, a1 =

2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2.
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Figure 2.3: Prey populations in both patches oscillate periodically with varying k in the interval

of Hopf bifurcation, when A1 > 0, A2 > 0,H1,H−2 . Parameters are r1 = 5, r2 = 8, a1 = 2, a2 =

1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2.
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Figure 2.4: Predators population and strategy oscillate periodically with varying k in the interval

of Hopf bifurcation, when A1 > 0, A2 > 0,H1,H−2 . Parameters are r1 = 5, r2 = 8, a1 = 2, a2 =

1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2.
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Figure 2.5: The average biomass of predators has a complicated relationship with the strength

of adaptation of predators in the interval of Hopf bifurcation, when A1 > 0, A2 > 0,H1,H−2 .

Parameters are r1 = 5, r2 = 8, a1 = 2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 =

0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2.
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Figure 2.6: A torus surface exists when A1 > 0, A2 > 0,H−1 ,H
−
2 , which indicates a torus

bifurcation. Parameters are r1 = 9, r2 = 8, a1 = 2, a2 = 2, s1 = 1, s2 = 1,m1 = 0.2,m2 =

0.2, e1 = 0.4, e2 = 0.4, h1 = 0.4, h2 = 0.4,w = 1.0.
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Chapter 3

Modelling the fear effect in predator-prey
interactions

3.1 Introduction

Studying the mechanisms driving predator-prey systems is a central topic in ecology and

evolutionary biology. The long-standing view, is that predators can impact prey populations

only through direct killing. Predation events are relatively easy to observe in the field and

by removing individuals from the population, it stands to reason that direct killing would be

involved ([5, 7, 26, 27]). An emerging view, however, is that the mere presence of a predator

may alter the behaviour and physiology of prey to such an extent that it can exert an effect on

prey populations even more powerful than direct predation ([5, 7, 26, 27]).

All animals in every taxa respond to perceived predation risk and show a variety of anti-

predator responses including changes in habitat usage, foraging behaviours, vigilance and

physiological changes ([7, 32, 34, 35, 43]). For example, when prey assess predation risk, they

may choose to abandon the original high-risk habitat and relocate to low-risk habitats, which

can carry an energetic cost especially if the low-risk habitats are of suboptimal quality ([7]).

Similarly, scared prey are well-known to forage less, which could reduce the birth rate and

survival through mechanisms like starvation ([5, 7]). High levels of acute predation risk can

cause prey to leave habitats or foraging sites temporarily, returning only when the acute risk

has passed and the prey are relatively safe ([7]). Moreover, fear may affect the physiological

condition of juvenile prey and leave harmful impacts on their survival as adults ([4, 5]). Birds,

for example, respond to the sounds of predators with anti-predator defences ([5, 7]), and when

nesting, will flee from their nests at the first sign of danger ([7]). Such an anti-predator behaviour

may be beneficial in increasing the probability of survival, but can carry some long-term costs
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on reproduction that may affect population numbers ([7]).

Although some theoretical ecologists and evolutionary biologists have realized that the

interactions between prey and predators should not be simply described by direct predation

alone and that the cost of fear should be considered ([32, 34, 35]), no mathematical models have

been proposed to quantitatively investigate whether or the extent to which fear can affect prey

populations. This is mainly due to lack of direct experimental evidence demonstrating that fear

can affect the populations of terrestrial vertebrates.

Recently, however, Zanette et al. ([48]) conducted a manipulation on song sparrows during

an entire breeding season to determine whether perceived predation risk could affect reproduction

even in the absence of direct killing. The authors manipulated predation risk by broadcasting

predator sounds to some populations of song sparrows while others heard non-predator sounds.

At the same time, all nests in the manipulation were protected from direct killing ensuring that

any effects on reproduction could only be ascribed to fear. Zanette et al. ([48]) found that the fear

of predators alone led to a 40% reduction in the number of offspring of the song sparrows parents

could produce. The reason this effect was so dramatic, is because predation risk had effects on

both the birth rate and survival of offspring because song sparrow females laid fewer eggs (the

birth rate), fewer of those eggs hatched (survival) and more nestlings died in the nest (survival).

Moreover, the authors showed that a variety of anti-predator responses led to these effects on

demography. For example, scared parents fed their nestlings less, their nestlings were lighter

and much more likely to die. Correlational evidence in birds ([11, 12, 13, 15, 18, 19, 23, 31]),

elk ([6]), snowshoe hares ([39]) and dugongs ([44]) also provide some evidence that fear can

affect populations.

Predator-prey models have been studied extensively, but no models to date have incorporated

the plastic anti-predator behaviour of prey in addition to the behaviour of the predator. Following

the classic Lotka-Volterra model, Holling ([17]) proposed the well-known Holling type II

functional response of predators. The population dynamics of predator-prey systems with the

Holling type II functional response have been studied by many scholars and the existence

of a unique stable limit cycle for such a model has been confirmed ([24, 25, 42]). There

have been many other predator-prey systems that have modelled more complicated functional

responses. For example, within the prey dependent functional responses, [20, 28, 38] considered

some monotone response functions and [14, 45, 46, 47] studied some non-monotone response

functions. In addition to functional responses dependent on prey numbers only, there are also

studies considering functional responses dependent on both prey and predators numbers, among

which are the Beddington-DeAngelis functional responses ([1, 2, 8, 21, 22]) and ratio dependent

functional response ([40, 41]).

No matter how sophisticated functional responses may be when incorporated into predator-
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prey models, they still only reflect what can happen regarding direct killing. In this paper, we

propose and analyze a predator-prey model incorporating the cost of fear (indirect effects) to

explore the impact that fear can have on population dynamics in predator-prey systems. In

Section 2, we formulate the model incorporating the cost of fear generated by anti-predator

behaviors. In Section 3, we analyze the model for the case when the functional response is a

linear function of the prey population. In Section 4, we consider the Holling type II functional

response for the model, and present some results on the stability of equilibria, existence of

Hopf bifurcation and direction of Hopf bifurcation. Our mathematical results show that while

incorporating fear (i.e. predation risk) effects into predator-prey models do not affect the

structure of the equilibria, it may change the stability of the equilibria. Moreover, the existence

of Hopf bifurcation and its direction in our model will be different from the classic model

ignoring fear effects. In Section 5, we provide some numerical simulation results which reveal

some potential roles that the fear effect may play in predator-prey interactions. We end the paper

by Section 6, consisting of some conclusions and we also, discuss the biological implications of

our mathematical results and possible future projects.

3.2 Model Formulation

Assume that the prey obey a logistic growth in the absence of predation and the cost of fear. The

logistic growth of prey can be separated into three parts: a birth rate, a natural death rate and a

density dependent death rate due to intra-species competition. This leads to the following ODE

du
dt

= r0u − d u − a u2, (3.1)

where u represents the population of the prey, r0 is the birth rate of prey, d is the natural death

rate of prey, a represents the death rate due to intra-species competition.

Let v represent the population of the predator. Since fields experiments show that the fear

effect will reduce the production, we modify (3.1) by multiplying the production term by a

factor f (k, v) which accounts for the cost of anti-predator defence due to fear, leading to

du
dt

= [ f (k, v) r0] u − d u − a u2. (3.2)

Here, the parameter k reflects the level of fear which drives anti-predator behaviours of the prey.

By the biological meanings of k, v and f (k, v), it is reasonable to assume that
f (0, v) = 1, f (k, 0) = 1, lim

k→∞
f (k, v) = 0, lim

v→∞
f (k, v) = 0,

∂ f (k, v)
∂k

< 0,
∂ f (k, v)
∂v

< 0.
(3.3)
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Although there are arguments and beliefs (e.g., [4]) that fear may lead to lower survival

rate of adults due to physiological impacts when they are young, by far there are no direct

experimental evidences showing such an impact. As such, we do not incorporate this factor into

modelling in this work, meaning that we regard d and a as constants.

Next, we incorporate a predation term g(u)v into (3.2) to obtain the following general

prey-predator model with cost of fear reflected:
du
dt

= u r0 f (k, v) − d u − a u2 − g(u) v,

dv
dt

= v (−m + c g(u)).
(3.4)

Here g : R+ → R+ is the functional response of predators, v represents the density of predators,

c is the conversion rate of prey’s biomass to predators’ biomass, m is the death rate of predators.

Typically, g(u) is of the form up(u) with p : R+ → R+. When p(u) = p is a constant, g(u) gives

a linear functional response, and when p(u) = p/(1 + qu), g(u) represents the Holling type II

functional response.

By the standard basic theory of ODE systems, one can easily show that for any initial value

(u0, v0) ∈ R2
+, (3.4) has a unique solution, and with the form g(u) = p(u)u, it is easily seen that

the solution remains positive and bounded, and hence it exists globally.

From the first equation in (3.4), we have u′(t) ≤ (r0 − d)u which establishes a linear

comparison equation from the above for the first equation. By a comparison argument, we

conclude that if r0 < d, then u(t) → 0 as t → ∞, and applying the theory of asymptotically

autonomous systems (see, e.g. [3] ) to the second equation in (3.4), we also obtain v(t) → 0

as t → ∞. This means that when r0 < d, both prey and predator species will go to extinction,

regardless of the fear effect and particular predation mechanism. Therefore, we only need to

consider the case when r0 > d which will be assumed in the rest of the paper.

3.3 Model with the linear functional response

For the case of linear functional response g(u) = pu, we consider general function f (k, v) that

satisfies conditions (3.3), reducing the model (3.4) to
du
dt

= r0 u f (k, v) − d u − a u2 − p u v,

dv
dt

= c p u v − m v.
(3.5)

In addition to the trivial equilibrium E0 = (0, 0), this system also has a boundary equilibrium

E1 = ((r0 − d)/a, 0) under the condition r0 > d. In addition, there exists a unique positive
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(co-existence) equilibrium for system (3.5) given by E2 = (u, v) if

r0 > d +
am
cp

(3.6)

holds, where u = m/(c p) and v satisfies

r0 f (k, v) − d − a u − p v = 0. (3.7)

If (3.6) is reversed, (3.7) has no positive solution and hence system (3.5) has no positive

(coexistence) equilibrium.

The following theorem describes the local stability of all three equilibria.

Theorem 3.3.1 The following statements hold:

(i) The semi-trivial equilibrium E1 is locally asymptotically stable if (3.6) is reversed and is

unstable if (3.6) holds.

(ii) The positive equilibrium E2, as long as it exists (i.e., when (3.6) is satisfied), is locally

asymptotically stable.

Proof We only show the proof of the local stability of E2 because the proof for the local stability

of E1 is similar. The Jacobian matrix of system (3.5) at E2 is

J =

 J11 J12

J21 J22

 , (3.8)

where

J11 = r0 f (k, v) − d − 2 a u − p v = −aū < 0, J12 = r0 u
∂ f (k, v)
∂v

∣∣∣∣
v=v
− p u < 0,

J21 = c p v > 0, J22 = c p u − m = 0.
(3.9)

Obviously, tr(J) = −aū < 0, and by (3.3), det(J) = −J12J21 > 0. Thus, E2 is locally asymptoti-

cally stable.

The above theorem shows that, as the parameter r0 increases, the model experiences two

bifurcations of equilibrium: when r0 ∈ (0, d), E0 is the only equilibrium which is globally

asymptotically stable; when r0 passes d to enter the interval (d, d + am/cp), E0 loses its stability

to a new equilibrium E1; and when r0 further passes d + am/cp, E1 loses its stability to another

new equilibrium E2. The next theorem further confirms that the stability claimed in Theorem

3.3.1 is actually global for both E1 and E2.
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Theorem 3.3.2 The boundary equilibrium E1 is globally asymptotically stable if r0 ∈ (d, d +

am/cp), and the unique positive equilibrium E2 is globally asymptotically stable if r0 > d +

am/cp.

Proof Assume r0 > d + am/cp and let P(u, v), Q(u, v) represent the two functions on the right

hand side of system (3.5). Choose the Dulac function B(u, v) = 1/(u v). After calculations, we

obtain

D =
∂(P B)
∂u

+
∂(Q B)
∂v

= −
a
v
< 0 (3.10)

for (u, v) ∈ (0,∞) × (0,∞). Therefore, by the Dulac-Bendixson theorem (Theorem 2, p265,

[33]), there is no periodic orbit in (0,∞) × (0,∞) for system (3.5). Moreover, E2 is the unique

positive equilibrium in (0,∞) × (0,∞) if (3.6) holds; hence, every positive solution will tend to

E2. This together with the local stability confirmed in Theorem 3.3.1 implies that E2 is indeed

globally asymptotically stable, if (3.6) holds.

When r0 ∈ (d, d + am/cp), there is no other equilibrium other than E0 and E1 in R2
+, and

hence, there can not be any periodic orbit in R2
+, implying that every positive solution will either

approach E0 or E1. It can be easily seen that E0 is repelling (under r0 > d), and thus, every

positive solution actually approaches E1. This together with Theorem 3.3.1 again implies that

E1 is indeed globally asymptotically stable if r0 ∈ (d, d + am/cp).

3.4 Model with the Holling Type II functional response

In this section, we consider the Holling type II functional response g(u) = pu/(1 + qu), and in

the mean time, for convenience of analysis, we adopt the following particular form for the fear

effect term f (k, v):

f (k, v) =
1

1 + k v
. (3.11)

With g(u) and f (k, v) specified as above, the model (3.4) becomes

du
dt

=
r0 u

1 + k v
− d u − a u2 −

p u v
1 + q u

,

dv
dt

=
c p u v
1 + q u

− m v.
(3.12)

3.4.1 Existence of equilibria and dynamical behaviours in boundary

In addition to the trivial equilibrium E0 = (0, 0), system (3.12) has one semi-trivial equilibrium

E1 = ((r0 − d)/a, 0) if r0 > d, which is assumed in the rest of the paper. We address the local

stability of E1 in the following theorem.



46

Theorem 3.4.1 Semi-trivial equilibrium E1 is locally asymptotically stable if

(r0 − d)(c p − m q) < a m (3.13)

is satisfied and is unstable if

(r0 − d)(c p − m q) > a m (3.14)

holds.

The proof for Theorem 3.4.1 is similar to the proof in Theorem 3.3.1 and is thus omitted.

Note that E0 is unstable, E1 is locally asymptotically stable and there is no other equilibrium

provided that

c p ≤ m q. (3.15)

This implies that E1 is indeed globally asymptotically stable if (3.15) holds. Thus, we have the

following theorem.

Theorem 3.4.2 The boundary equilibrium E1 is globally asymptotically stable if (3.15) is

satisfied.

By Theorem 3.4.2, the dynamical behaviour of system (3.12) is clear when (3.15) holds. In

the sequel, we only need to study the case when

c p > m q. (3.16)

In order to simplify the analysis, we make the following transformations for system (3.12) by

dt =
(1 + q u)(1 + k v)

m
dt,

u =
c p − m q

m
u, v = k v.

(3.17)

Dropping the bars system (3.12) is transformed to the following equivalent system

du
dt

= u
(
a1 + a2 u − a3 v − a4 u v − a5 u2 − a6 v2 − a5 u2 v

)
,

dv
dt

= v (u − 1)(1 + v),
(3.18)

where

a1 =
r0 − d

m
, a2 =

(r0 − d) q − a
c p − m q

, a3 =
d k + p

m k
,

a4 =
d q + a

c p − m q
, a5 =

a m q
(c p − m q)2 , a6 =

p
m k

.

(3.19)
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By (3.16), we have ai > 0 where i = 1, 3, 4, 5, 6. Thus, there exists a positive equilibrium

E2 = (1, v2) for system (3.18) if

a1 + a2 > a5 (⇐⇒ a5 − a1 < a2), (3.20)

where v2

a6 v2
2 + (a3 + a4 + a5) v2 − (a1 + a2 − a5) = 0. (3.21)

By (3.21), we actually obtain

v2 =
−(a3 + a4 + a5) +

√
(a3 + a4 + a5)2 + 4 a6(a1 + a2 − a5)

2 a6
. (3.22)

The local stability of E2 is addressed in the following theorem.

Theorem 3.4.3 The positive equilibrium E2 is locally asymptotically stable if

a5 − a1 < a2 ≤ 2 a5, (3.23)

or

a2 > 2 a5 and v2 >
a2 − 2 a5

a4 + 2 a5
; (3.24)

it is unstable if

a2 > 2 a5 and v2 <
a2 − 2 a5

a4 + 2 a5
. (3.25)

Proof Jacobian matrix of system (3.18) at E2(1, v2) is

J∗ =

 J11 J12

J21 J22

 , (3.26)

where
J11 = a1 + 2 a2 − a3 v2 − 2 a4 v2 − 3 a5 − a6 v2

2 − 3 a5 v2,

J12 = −a3 − a4 − 2 a6 v2 − a5 < 0, J21 = v2 (1 + v2) > 0, J22 = 0.
(3.27)

Obviously, det(J) = −J12J21 > 0 by (3.20) and then the stability of E2 is determined by

tr(J∗) = J11. Direct calculations show that tr(J∗) < 0 is equivalent to

(a2 − 2 a5) < (a4 + 2 a5) v2. (3.28)

Because v2, a4, a5 are all positive, (3.28) is satisfied if (3.23) holds. Furthermore, if a2 > 2 a5,

the local stability of E2 further requires v2 > (a2 − 2 a5)/(a4 + 2 a5), as presented in (3.24).

Equilibrium E2 loses stability when (3.25) holds.
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Note that (3.23) is equivalent to 
r0 >

a m
c p − m q

+ d,

r0 ≤ d +
a (c p + m q)
q (c p − m q)

,
(3.29)

and (3.24) is equivalent to
r0 > d +

a (c p + m q)
q (c p − m q)

,

k >
q (c p − m q)2 ((r0 − d) q (c p − m q) − a (c p + m q))

c2 p a (q d(c p − m q) + a (c p + m q))
.

(3.30)

Then, by Theorem 3.4.3, we obtain that prey and predators will tend to a steady state if (3.29)

holds. In this case, the stability of E2 is not affected by the cost of fear, which is similar to the

results we obtained from the previous Section 3. In other words, the stability of the co-existence

equilibrium will not change if the birth rate of prey is not large enough to support oscillations

no matter how sensitive prey are to predation risks. However, in contrast to the results of model

with linear functional response (3.5), for the model with the Holling type II functional response

(3.12), conditions in (3.30) imply that the stability of E2 is affected by the level of anti-predator

defence. Conditions in (3.30) indicate that when the birth rate of prey is large enough, prey and

predators still tend to a steady state if prey are sensitive enough to perceive potential attacking

by predators and show anti-predation behaviours accordingly but lose stability if not. It is

well-known that the classic predator-prey model without the cost of fear but with the Holling

type II functional response admits the occurrence of Hopf bifurcation when the carrying capacity

of prey is large enough. The phenomenon ‘paradox of enrichment’ ([16, 29, 36, 37]) appears as

a consequence. However, as discussed above, incorporating the cost of fear into predator-prey

models can rule out such phenomenon ‘paradox of enrichment’ by choosing large enough k.

3.4.2 Global stability of positive equilibrium

In the above section, we have shown that E2 is locally asymptotically stable if (3.23) or (3.24)

holds. The following theorem confirms that E2 is globally symptomatically stable under (3.23)

and another condition.

Theorem 3.4.4 The positive equilibrium E2 is globally asymptotically stable if

a5 − a1 < a2 ≤ 2 a5 and 1 ≤ a2 + a4. (3.31)
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Proof Denote the right-hand sides of system (3.18) by P(u, v), Q(u, v) respectively. Take the

following function as a Dulac function: B(u, v) = u−1 vβ where β is to be specified later. Then

the divergence of the vector is

D =
∂(P(u, v) B(u, v))

∂u
+
∂(Q(u, v) B(u, v))

∂v
= u−1 vβ ( f1(u) v + f2(u)) ,

(3.32)

where
f1(u, β) = −2 a5 u2 + u (2 + β − a4) − (β + 2),

f2(u, β) = −2 a5 u2 + u (a2 + β + 1) − (β + 1).
(3.33)

By (3.33) and (3.31), we have

f1(u, β) = f2(u, β) + (u(1 − a4 − a2) − 1) ≤ f2(u, β) (3.34)

for u in [0,∞). Thus, we have D ≤ 0 for (u, v) ∈ R2
+ if

f2(u, β) ≤ 0, for u ∈ [0,∞). (3.35)

Therefore, it suffices to find a β such that (3.35) holds. Because a5 > 0, (3.35) is satisfied if

∆(β) = (a2 + β + 1)2 − 8 a5 (β + 1) ≤ 0 (3.36)

holds. For convenience, let β + 1 = β. Then (3.36) becomes

∆(β) = β
2

+ 2 (a2 − 4 a5)β + a2
2 ≤ 0. (3.37)

The existence of β satisfying (3.37) is implied by ∆(4a5 − a2) ≤ 0 which is equivalent to

a5 (2 a5 − a2) ≥ 0. (3.38)

But this is ensured by the first inequality in (3.31). Thus, under (3.31), there exists β such that

D ≤ 0 for (u, v) ∈ R2
+, and by the well-known Dulac-Bendixson theorem (Theorem 2, p265,

[33]), E2 is globally asymptotically stable.

3.4.3 Existence of limit cycles and Hopf bifurcation

In the above section, we have shown that there is no limit cycle if (3.31) holds. Now we show

that there exists a limit cycle if (3.25) is satisfied.

Theorem 3.4.5 There exists a limit cycle if (3.25) holds.
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Proof By (3.25) and Theorem 3.4.3, E2 = (1, v2) is unstable and E1 = (u1, 0) is a saddle point.

Note that by (3.25) we have

ū1 =
a2 +

√
a2

2 + 4a1a5

2a5
> 1.

Let L1 = u − u1. Then

du
dt

∣∣∣∣
L1=0

= u1

(
−a3 v − a4 u1 v − a6 v2 − a5 u2

1 v
)
< 0, (3.39)

since a3, a4, a5, a6 are all positive.

Next, let L2 = v − λ with λ > 0 to be specified later. By calculations, we obtain

dL2

dt

∣∣∣∣
L2=0

=
dv
dt

∣∣∣∣
v=λ

= λ (u − 1) (1 + λ) < 0, for u ∈ (0, 1).
(3.40)

Moreover, let

L3 = 2 (u1 − 1)(v − λ) + λ (u − 1). (3.41)

Calculations give

dL3

dt

∣∣∣∣
L3=0

= 2 (u1 − 1)
dv
dt

+ λ
du
dt

= 2 (u1 − 1)v (u − 1) (1 + v)

+ λ u
(
a1 + a2 u − a3 v − a4 u v − a5 u2 − a6 v2 − a5 u2 v

)
≤ −

a6 u
4

λ3 + λ2
(
2 (u1 − 1)2 −

u
2

(
a3 + a4 u + a5 u2

))
+ λ

((
a1 + a2 u − a5 u2

)
u + 2 (u1 − 1)2

)
.

(3.42)

Because a6 > 0 and 0 < u < u1, it follows from (3.42) that dL3/dt < 0 for sufficiently large

λ > 0.

By Poincaré-Bendixson theorem (Theorem 6.12, [30]), there exists a limit cycle if (3.25)

holds.

From the above analysis, we see that when (3.25) holds, the positive equilibrium E2 becomes

unstable and a limit cycle comes into existence. Such a limit cycle is a result of Hopf bifurcation.

Indeed, from the proof of Theorem 3.4.3, we see that E2 loses its stability and Hopf bifurcation

occurs when tr(J∗) = J11 in (3.27) changes sign from negative to positive. Thus, tr(J∗) = J11 = 0

gives the condition for Hopf bifurcation. Making use of (3.21), the formula for J11 in (3.27) can

be simplified to

J11 = −(a4 + 2a5)v̄2 + a2 − 2a5. (3.43)
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Therefore, sign change of J11 from negative to positive is actually equivalent to switch from

condition (3.24) to condition (3.25) implying that the limit cycle arises from a Hopf bifurcation.

Next, we deal with the direction of Hopf bifurcation, intending to understand the impact of

the fear effect on the Hopf bifurcation and its direction in terms of the fear effect parameter k.

We first have the following general theorem on the bifurcation direction.

Theorem 3.4.6 Let

σ := −8 a5 (a2 − 2 a5)2 a2
6 − (a4 + 2 a5) (−a4 + 6 a4 a5 − 2 a5 + 8 a3 a5

+ 4 a2
5) (a2 − 2 a5) a6 − a5 (a4 + 2 a5)2 (2 a3 + a4) (a3 + a4 + a5).

(3.44)

Then, the Hopf bifurcation is supercritical if σ < 0 and it is subcritical if σ > 0.

Proof Let x = u − 1, y = v − v2. Then system (3.18) becomes

dx
dt

= J11 x + J12 y + f1(x, y),

dy
dt

= J21 x + J22 y + f2(x, y),
(3.45)

where J11, J12, J21, J22 are shown in (3.27) and fi(x, y) for i = 1, 2 represent higher order terms

of x, y. We have seen in the above that the Hopf bifurcation occurs when J11 = 0, or equivalently

v2 =
a2 − 2 a5

a4 + 2 a5
. (3.46)

Moreover, by the transformation

X = x,Y = J11 x + J12 y = J12 y,

system (3.45) is further transformed to

dX
dt

= Y + f1

(
X,

Y
J12

)
,

dY
dt

= J12 J21X + J12 f2

(
X,

Y
J12

)
.

(3.47)

Let

γ = −J12 J21 > 0, X = −X,Y = Y/
√
γ.

Then system (3.47) becomes

dX
dt

= −
√
γ Y − f1

(
−X,

√
γ

J12
Y
)
,

dY
dt

=
√
γ X +

J12
√
γ

f2

(
−X,

√
γ

J12
Y
)
.

(3.48)
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Now the Jacobian matrix of (3.48) at (0, 0) is of the Jordan Canonical form 0 −
√
γ

√
γ 0

 . (3.49)

Define F1 and F2 by

F1(X,Y) = − f1

−X,
√
γ Y

J12

 , F2(X,Y) =
J12
√
γ

f2

−X,
√
γ Y

J12

 .
Then the direction of Hopf bifurcation is determined by the sign of the quantity

σ∗ :=
1

16

(
∂3F1

∂X
3 +

∂3F1

∂X∂Y
2 +

∂3F2

∂X
2
∂Y

+
∂3F2

∂Y
3

)
+

1
16ω

( ∂2F1

∂X∂Y

(
∂2F1

∂X
2 +

∂2F1

∂Y
2

)
−
∂2F2

∂X∂Y

(
∂2F2

∂X
2 +

∂2F2

∂Y
2

)
−
∂2F1

∂X
2

∂2F2

∂X
2 +

∂2F1

∂Y
2

∂2F2

∂Y
2

)
,

(3.50)

where ω =
√
γ =
√
−J12 J21. Using (3.46) and with the help of Maple software, σ∗ is calculated

and simplified to the formula given by σ in (3.44). By [33] (Theorem 1 on page 34), Hopf

bifurcation is supercritical if σ < 0 and it is subcritical if σ > 0.

In order to analyze how the fear affects the direction of Hopf bifurcation, we may choose k

as a bifurcation parameter. By (3.19), it is clear that only a3 and a6 depend on the parameter k.

Letting h = d/m, we see that

a3 = a6 + h. (3.51)

By a6 =
p
m

1
k , we can equivalently take a6 (instead of k) as the bifurcation parameter in the

re-scaled model (3.18). By using (3.51), (3.46) can be simplified to

a6 =
(a4 + 2 a5)(a4 a5 + a4 a1 + a5 a2 + 2 a5 a1 + 2 a5 h − h a2)

(a2 + a4)(a2 − 2 a5)
=: a∗6 (3.52)

an equation with the right hand side independent of k, giving the critical value of a6 for Hopf

bifurcation.

Regarding a6 as a bifurcation parameter which is chosen at the critical value a∗6, σ in (3.44)

can be expressed, in terms of a1 as a quadratic function, as

σ0 = A1 a2
1 + A2 a1 + A3, (3.53)

the sign of which determines the direction of Hopf bifurcation. In (3.53), we have

A1 = −2 a5 (a4 + 2 a5)2 (2 a2 − 2 a5 + a4)2,

A2 = −(a4 + 2 a5) (B1 h + B2), A3 = D1 h2 + D2 h + D3,
(3.54)
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where

B1 = −4 a5 (−2 a5 + a2)2 (2 a2 − 2 a5 + a4),

B2 = (a2 + a4)(−2 a5 a2
2 + 6 a4 a5 a2

2 + 20 a2
2 a2

5 − a2
2 a4 − 44 a3

5 a2 + 3 a2 a5 a2
4

+ 4 a4 a2 a5 + 8 a2
5 a2 − 8 a4 a3

5 − 2 a2
4 a2

5 − 4 a4 a2
5 − 8 a3

5 + 24 a4
5),

D1 = −2 a5 (−2 a5 + a2)4,

D2 = (a2 − 2 a5)2 (a2 + a4) (−a4 a2 + 3 a4 a2 a5 + 10 a2
5 a2 − 2 a5 a2

− 2 a4 a2
5 + 4 a2

5 − 12 a3
5 + 2 a4 a5),

D3 = −a5 (a2 + a4)2 (a2
4 a2

2 + 12 a2
2 a2

5 − 2 a5 a2
2 + 7 a4 a5 a2

2 − a2
2 a4 − 12 a2 a4 a2

5

− a2 a5 a2
4 − 28 a3

5 a2 + 8 a2
5 a2 + 4 a4 a2 a5 − 8 a3

5 + 4 a4 a3
5 − 4 a4 a2

5 + 16 a4
5).

(3.55)

From (3.54), it is clear that A1 < 0 because a5 > 0. Let ∆ = A2
2 − 4 A1 A3. Mathematical analysis

show that A2, A3 and ∆ can be positive or negative under different conditions. Numerical simu-

lations show that all reasonable combinations of A2, A3,∆ are possible (see Figures 3.1, 3.2, 3.3).
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Figure 3.1: A1 < 0, A2 < 0, A3 < 0,∆ > 0 and A1 < 0, A2 < 0, A3 < 0,∆ < 0. Parameters

are: a2 = 9.0639, a4 = 8.8393, a5 = 4.4733, h = 0.8866 and a2 = 8.7964, a4 = 3.82, a5 =

1.4757, h = 1.3037 respectively.

Notice that A1, A2, A3, ∆ are all expressions of a2, a4, a5, h. Then, by taking different values

of a1, σ0 can be positive or negative. Let

a+
1 =

1
2

(a4 +

√
a2

4 − 4 a5 h)(a2 + a4)

a5
− h, (3.56)
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Figure 3.2: A1 < 0, A2 > 0, A3 < 0,∆ < 0 and A1 < 0, A2 < 0, A3 > 0,∆ > 0. Parameters

are: a2 = 3.9703, a4 = 7.6983, a5 = 0.0715, h = 35.7226 and a2 = 6.9741, a4 = 0.1337, a5 =

0.1194, h = 0.0032 respectively.
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Figure 3.3: A1 < 0, A2 > 0, A3 > 0,∆ > 0 and A1 < 0, A2 > 0, A3 < 0,∆ > 0. Parameters

are: a2 = 8.0115, a4 = 0.2414, a5 = 0.0256, h = 0.0131 and a2 = 7.1134, a4 = 7.3037, a5 =

0.0436, h = 0.7421 respectively.
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aaaaaaaaaaa
Cases

Hopf Direction
Conditions A1 A2 A3 ∆ a1 Hopf Direction

case 1 < 0 < 0 < 0 > 0 ai
1 Supercritical

case 2 < 0 < 0 < 0 < 0 ai
1 Supercritical

case 3 < 0 > 0 < 0 < 0 ai
1 Supercritical

case 4-1 < 0 < 0 > 0 > 0 a+
1 Supercritical

case 4-2 < 0 < 0 > 0 > 0 a−1 Subcritical

case 5-1 < 0 > 0 > 0 > 0 a+
1 Supercritical

case 5-2 < 0 > 0 > 0 > 0 a−1 Subcritical

case 6-1 < 0 > 0 < 0 > 0 ai
1, r2 < ai

1 < r1 Subcritical

case 6-2 < 0 > 0 < 0 > 0 a−1 , r2 < a−1 < r1 < a+
1 Subcritical

case 6-3 < 0 > 0 < 0 > 0 ai
1, a
−
1 < r2 < r1 < a+

1 Supercritical

case 6-4 < 0 > 0 < 0 > 0 a+
1 , r2 < a−1 < r1 < a+

1 Supercritical

case 6-5 < 0 > 0 < 0 > 0 ai
1, r1 < ai

1 Supercritical

Table 3.1: Direction of Hopf bifurcation by taking a6 as a bifurcation parameter.

Here ai
1, i = +,− are defined in (3.56), (3.57) and r1, r2 are larger and smaller roots of (3.53)

respectively.

and

a−1 = −
1
2

(−a4 +

√
a2

4 − 4 a5 h)(a2 + a4)

a5
− h. (3.57)

By using a+
1 and a−1 , the possibilities of the direction of Hopf bifurcation are summarized in

Table 3.1, which shows that the direction of Hopf bifurcation can be supercritical or subcritical

depending on different combinations of a1, a2, a4, a5, h.

3.5 Numerical Simulations

In order to better explore the role that the cost of fear plays in our predator-prey model, we

conducted a series of numeric simulations for model (3.12) with parameters in their original

scales. In Figure 3.4, the solid curve represents the critical curve which determines the Hopf

bifurcation without the fear effect (i.e. k = 0) by setting r0 and q as free parameters. Figure 3.4

shows that the model incorporating the cost of fear requires larger r0 to admit the existence of

Hopf bifurcation, compared to the models without it. From a biological point of view, the cost of

fear in prey requires higher compensation for the prey’s birth rate to support periodic oscillations

in prey and predator populations. As indicated in Figure 3.5(a), the population of the prey and
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predator tend toward a globally stable steady state if r0 and q are located in the region between

the dashed curve and the solid curve in Figure 3.4. In this case, no matter how sensitive the prey

is to predation risk, periodic oscillations can not occur. Figure 3.5(b) shows that the populations

of prey and predator oscillate periodically due to supercritical Hopf bifurcation if the parameters

are chosen in the region between the solid line and the dotted line in Figure 3.4. In Figure 3.4,

by choosing q = 0.6, we can obtain a vertical line which intersects with the solid line and the

dotted line when increasing the value of r0. This indicates that increasing r0 or equivalently

increasing k may lead to change of directions of Hopf bifurcation from forward to backward.

Figure 3.6 is a subcritical Hopf bifurcation diagram plotted using Matcont software ([9, 10]).

As shown in Figure 3.6, taking k as a bifurcation parameter, there are two branches for the

period of oscillation where the lower one corresponds to an unstable limit cycle and the upper

one accounts for a stable limit cycle. Biologically, increasing the level of the fear effect in prey

may induce a transition from the state where the populations of the prey and predator oscillate

periodically to a bi-stability situation. When bi-stability happens, multiple limit cycles occur,

as shown in Figure 3.7. In this scenario, the eventual pattern for prey and predators depend on

their initial population sizes. Prey and predators tend to a steady state if initial populations are

relatively small and stay inside the unstable limit cycle. The populations of prey and predators

oscillate periodically if initial populations are relatively large and locate outside the unstable

limit cycle. Figure 3.8 shows the relationship between (k, q) and (k, r0) along the critical line

determining Hopf bifurcation. Figure 3.8(b) indicates that when increasing the value of the

prey’s birth rate, lower levels of fear are required to obtain Hopf bifurcation no matter how the

handling time of food by predators varies. Biologically, this implies that with a higher birth rate,

the prey becomes less sensitive in perceiving predation risk.

Similarly, Figure 3.9 again shows that as fear effects become more extreme, it can induce

a change in the direction of Hopf bifurcation, from supercritical to subcritical by holding p

fixed at some point. The difference between Figure 3.4 and Figure 3.9 lies in that p needs

to be large enough to support subcritical bifurcation whereas q has to be in an intermediate

interval. Biologically, the attack rate by predators needs to be large enough to instill fear in prey;

otherwise, fear will not affect dynamical behaviours of predator-prey systems and bi-stability can

not happen. Figure 3.10(a) shows that prey are more willing to show anti-predator behaviours

when the attack rate of predators increases and Figure 3.10(b) again confirms that the prey show

weaker anti-predator behaviours when the prey’s birth rate is greater, regardless of the change in

the predators’ attack rate.

Another interesting observation is that the natural death rate of predators m needs to be

relatively small in order for the model to permit a subcritical Hopf bifurcation, as indicated in

Figure 3.11. Biologically, a relatively high density of predators is required to evoke anti-predator
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defenses in prey that carry costs large enough to affect prey populations. The cost of fear can not

be observed if the population of predators drops too quickly whereby cues signifying predation

risk are low, as will be the anti-predator responses of prey.

We also apply different functions in modelling the cost of fear when conducting simulations.

Particularly, we test the following two functions

f (v) = e−k v, (3.58)

and

f (v) =
1

1 + k1 v + k2 v2 . (3.59)

Both functions (3.58) and (3.59) are decreasing functions with respect to v, but with different

decreasing rates, compared with (3.11). Our simulation results for Hopf bifurcation and its

direction are qualitatively unchanged with either (3.58) or (3.59), which implies that our results

are applicable for general monotone decreasing function of v. Moreover, for (3.59), we also

obtain a relationship between k1 and k2 along the Hopf bifurcation curve as demonstrated in

Figure 3.13 indicating that k2 is indeed linearly decreasing with k1 on the Hopf bifurcation.

In the context of population control, if all solutions of (3.12) tend to a steady state eventually,

then the fear effect will not affect the prey population over the long-term. However, under the

same scenario, the predator’s eventual population will decrease when k increases (see (3.22)).

On the other hand, the populations of the prey and predator may oscillate periodically due to

supercritical or subcritical Hopf bifurcation. In this case, Figure 3.14 indicates that the biomass

of prey and predators decrease with increasing k along periodic solutions due to supercritical

Hopf bifurcation. Biologically, this implies that anti-predator behaviours of prey may impact

their long-term overall growth rate, as a cost of fear. Moreover, Figure 3.14 confirms the

theoretical arguments that stronger levels of defence result in higher costs, which can decrease

the prey’s long-term population size. Simulations are also conducted for biomass of prey and

predators along periodic solutions with varying k due to subcritical Hopf bifurcation. Results

for such a case are consistent with the former one where Hopf bifurcation is supercritical and is

thus omitted.

3.6 Conclusions and discussions

In this paper, we have studied a predator-prey model that has incorporated the effect that the

fear of predators have on prey with either the linear functional response or the Holling type II

functional response. For the case with the linear functional response, mathematical results show

that the cost of fear does not change dynamical behaviours of the model and a unique positive

equilibrium is globally asymptotically stable when it exists.
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Figure 3.5: Different patterns for prey and predators. Parameters for 3.5(a) are: r0 = 0.03, k =

0.1, d = 0.01, a = 0.01, p = 0.5, q = 0.1,m = 0.05, c = 0.4. Parameters for 3.5(b) are:

r0 = 0.05, k = 10, d = 0.01, a = 0.01, p = 0.5, q = 0.6,m = 0.05, c = 0.4.
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Figure 3.6: Bifurcation diagram for subcritical Hopf bifurcation. Parameters are: r0 = 2.671, d =

0.0246, a = 0.0004, p = 0.0673, q = 0.0058, c = 0.0952,m = 0.0505.
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Figure 3.8: Two dimensional projection of Hopf bifurcation curve when k , 0 into k, q and k, r0

respectively.
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Figure 3.10: Two dimensional projection of Hopf bifurcation curve when k , 0 into k, p and

k, r0 respectively.
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Figure 3.11: Available region of Hopf bifurcation on r0, m plane. Parameters are: q = 0.5, p =
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Figure 3.12: Two dimensional projection of Hopf bifurcation curve when k , 0.
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Figure 3.14: The biomass for predators and prey from periodic solutions with varying k due to

supercritical Hopf bifurcation. Parameters are: r0 = 2, d = 0.2, a = 0.04, p = 0.4, q = 0.2, c =

0.3,m = 0.1.

However, for the model with the Holling type II functional response, the cost of fear affects

predator-prey interactions in several ways. Analytical results show that there exists a globally

stable positive equilibrium if the birth rate of prey is not large enough to support fluctuations. In

this case, the populations of prey and predators tend to generate positive constants eventually,

no matter how sensitive the prey is to potential dangers from predators. When the birth rate

of prey is large enough to support oscillations, the positive equilibrium of the predator-prey

system is locally asymptotically stable if the fear level is high. In this case, the cost of fear can

stabilize the predator-prey system by ruling out periodic solutions. This offers a new mechanism

to avoid the “paradox of enrichment ” in ecosystems. Periodic solutions can still exist when

the fear level is relatively low. Conditions for existence of Hopf bifurcation and conditions

determining the direction of Hopf bifurcation are obtained, which indicate that the cost of fear

will not only affect the existence of Hopf bifurcation but also change the direction of Hopf

bifurcation. Indeed, we have shown that Hopf bifurcation in the model incorporating the cost of

fear can be both supercritical and subcritical, which is in contrast to the classic predator-prey

models that ignore the predation risk effects where Hopf bifurcation can only be supercritical.

Numerical simulations are conducted to show the potential role that fear effects can play

in predator-prey interactions by releasing one or two more parameters free rather than the

single k. Under conditions of Hopf bifurcation, increasing fear level may cause a change in

the direction of Hopf bifurcation, from supercritical to subcritical, when the birth rate of prey
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increases accordingly. Fear generates rich dynamical behaviours including bi-stability, where

the solutions tend to a steady state or oscillate periodically depending on the initial population

size. Numerical simulations also show that the prey is less sensitive to perceived predation risk

when the birth rate of prey is high, regardless of how other parameters change. Moreover, the

prey would be more willing to show anti-predator defences when the attack (i.e. predation) rate

is high, and would perceive fewer potential dangers as the death rate of predators increases.

Simulations with different functions modelling the cost of fear indicate that the results we have

obtained in this paper remain valid when other general monotone decreasing functions are

adopted.

In our model formulation, we have assumed that the perceived predation risks only reduce

the birth rate and survival of offspring, and have ignored the possible impact on the death

rate of adult prey. Although Zanette et al. ([48]) and Clinchy et al. ([4]) argue that fear may

increase the adult death rate due to long-term physiological impacts, there is still a lack of direct

experimental evidence. For the same reason, we have only considered the case when fear does

not affect intra-specific competition in our model, although there is also a theoretical argument

in [7] that the fear effect may change the strength of intra-specific competition because of the

complexity of food web. Once some experimental evidence becomes available, these should

all be incorporated into the model, and such a model would be able shed more light on the

prey-predator interactions.



65

Bibliography

[1] J. R. Beddington. Mutual interference between parasites or predators and its effect on

searching efficiency. The Journal of Animal Ecology, 44:331–340, 1975.

[2] R. S. Cantrell and C. Cosner. On the dynamics of predator-prey models with the

Beddington-DeAngelis functional response. Journal of Mathematical Analysis and Appli-

cations, 257:206–222, 2001.

[3] C. Castillo-Chavez and H. R. Thieme. Asymptotically autonomous epidemic models.

Mathematical Population Dynamics: Analysis of Heterogeneity, 1:33–50, 1995.

[4] M. Clinchy, M. J. Sheriff, and L. Y. Zanette. Predator-induced stress and the ecology of

fear. Functional Ecology, 27:56–65, 2013.

[5] S. Creel and D. Christianson. Relationships between direct predation and risk effects.

Trends in Ecology & Evolution, 23:194–201, 2008.

[6] S. Creel, D. Christianson, S. Liley, and J. A. Winnie. Predation risk affects reproductive

physiology and demography of elk. Science, 315:960–960, 2007.

[7] W. Cresswell. Predation in bird populations. Journal of Ornithology, 152:251–263, 2011.

[8] D. L. DeAngelis, R. A. Goldstein, and R. V. O’Neill. A model for tropic interaction.

Ecology, 56:881–892, 1975.

[9] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. Matcont: a MATLAB package for

numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software

(TOMS), 29:141–164, 2003.

[10] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, and B. Sautois. New features

of the software Matcont for bifurcation analysis of dynamical systems. Mathematical and

Computer Modelling of Dynamical Systems, 14:147–175, 2008.



66

[11] S. Eggers, M. Griesser, and J. Ekman. Predator-induced plasticity in nest visitation rates

in the Siberian jay (perisoreus infaustus). Behavioral Ecology, 16:309–315, 2005.

[12] S. Eggers, M. Griesser, M. Nystrand, and J. Ekman. Predation risk induces changes in

nest-site selection and clutch size in the siberian jay. Proceedings of the Royal Society of

London B: Biological Sciences, 273:701–706, 2006.

[13] J. J. Fontaine and T. E. Martin. Parent birds assess nest predation risk and adjust their

reproductive strategies. Ecology letters, 9:428–434, 2006.

[14] H. I. Freedman and G. S. K. Wolkowicz. Predator-prey systems with group defence: The

paradox of enrichment revisited. Bulletin of Mathematical Biology, 48:493–508, 1986.

[15] C. K. Ghalambor, S. I. Peluc, and T. E. Martin. Plasticity of parental care under the risk of

predation: how much should parents reduce care? Biology Letters, 9:20130154, 2013.

[16] M. E. Gilpin and M. L. Rosenzweig. Enriched predator-prey systems: theoretical stability.

Science, 177:902–904, 1972.

[17] C. S. Holling. The functional response of predators to prey density and its role in mimicry

and population regulation. Memoirs of the Entomological Society of Canada, 97:5–60,

1965.

[18] F. Hua, R. J. Fletcher, K. E. Sieving, and R. M. Dorazio. Too risky to settle: avian com-

munity structure changes in response to perceived predation risk on adults and offspring.

Proceedings of the Royal Society of London B: Biological Sciences, 280:20130762, 2013.

[19] F. Hua, K. E. Sieving, R. J. Fletcher, and C. A. Wright. Increased perception of predation

risk to adults and offspring alters avian reproductive strategy and performance. Behavioral

Ecology, 25:509–519, 2014.

[20] J. Huang, S. Ruan, and J. Song. Bifurcations in a predator-prey system of leslie type with

generalized Holling type iii functional response. Journal of Differential Equations, 257:

1721–1752, 2014.

[21] T-W Hwang. Global analysis of the predator-prey system with Beddington-DeAngelis

functional response. Journal of Mathematical Analysis and Applications, 281:395–401,

2003.

[22] T-W Hwang. Uniqueness of limit cycles of the predator-prey system with Beddington-

DeAngelis functional response. Journal of Mathematical Analysis and Applications, 290:

113–122, 2004.



67
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Chapter 4

Modelling the fear effect in predator-prey
interactions with adaptive avoidance of
predators

4.1 Introduction

Studying the mechanism of predator-prey interaction is a central topic in both ecology and

evolutionary biology. Direct killing of prey by predators is obviously easy to observe in the

field and hence is the focus of mathematical modelling by far. However, it has been argued by

theoretical biologists ([6, 14, 15]) that indirect effects caused by anti-predator behaviours of

prey may play an even more important role in determining prey demography.

Almost all vertebrates demonstrate plastic behaviours in response to stimuli in the surround-

ing environment. For prey, the fear of predators drives prey to avoid direct predation, which

may increase short-term survival probability of prey but may cause a long-term loss in the prey

population as a consequence ([8]). Such indirect effects exist commonly in species with different

life stages in their life span, for example, birds. Breeding birds may fly away from nests and

leave juvenile birds unprotected and less looked after when adults perceive predation risk ([8]).

Even temporary absence of adult birds may lower survival probability of juveniles because

juveniles may experience less suitable living conditions and face higher risk of predation. In

such a scenario, the overall fitness of the bird species may decrease because fear may lead to a

reduction of reproduction success although temporary survival probability may increase.

Some recent field experiments supported the aforementioned theoretical arguments about

the significant effect that such anti-predator behaviours may have. For example, Zanette et al.

([27]) conducted a field experiment on song sparrows during a whole breeding season by using
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electrical fence to eliminate direct predation of both juvenile and adult song sparrows. No direct

killing can happen in the experiment, however, broadcast of vocal cues of known predators in

the field was employed to mimic predation risk. Two groups of female song sparrows were

tested, among which one group was exposed to predator sounds while the other group was

not. The authors ([27]) found that the group of song sparrows exposed to predator vocal cues

produced 40% less offspring than the other group because fewer eggs were laid, fewer eggs

were successfully hatched, and fewer nestlings survived eventually. Behavioural changes of

adult song sparrows when predation risk existed were also observed and documented in [27],

including less time of adult song sparrows on brood and less feeding to nestlings during breeding

period, and these were all believed to be responsible for the total cost of 40% reduction in

offspring population. Some correlative experiments on other birds or other vertebrate species

also reported that even though there was no direct killing between predators and prey, the

presence of predators did cause a large reduction of prey population due to anti-predator

behaviours of prey ([7, 18, 25]).

Based on the experiment in Zanette et al. [27], Wang et al. ([23]) studied a predator-prey

model with the cost of fear incorporated. The authors found that strong anti-predator behaviours

or equivalently the large cost of fear may exclude the existence of periodic solutions and thus

eliminate the phenomenon ‘paradox of enrichment’. In addition, under relatively low cost of

fear, periodic solutions still exist arising from either supercritical or subcritical Hopf bifurcation

([23]). Wang’s study ignored age-structure of prey, while Zanette’s experiment distinguished

the life stages of song sparrows with regards to their behaviours. In addition, the cost of

anti-predator defense of adult prey does not only exist in the birth rate of juvenile prey but

also been observed in the survival rates including both natural death rate and predation rate of

juveniles. All this evidence demands the incorporation of age structures into a mathematical

model. In fact, the anti-predator behaviour of adult prey can be viewed as a plastic trait or

strategy which is adaptive to the environment ([20, 26]). Under selection, adult prey tend to

choose a defense level that would increase their survival probability and reduce the reproduction

loss but maximize the individual fitness ([1]). There have been a few mathematical models that

describe such adaptive behaviours of prey. Křivan ([12]) studied the trade-off between foraging

and predation based on classic Lotka-Volterra model where either prey or predator or both were

adaptive to maximize their individual fitness. Peacor et al. ([17]) employed a graphical model to

study the strength of anti-predator behaviours and conditions when the indirect effects dominate

predator-prey interactions by regarding the defense level of prey as an adaptive trait. Takeuchi et

al. ([21]) studied the conflict between investing time on taking care of juveniles and searching

for resources of adult prey in the absence of direct predation, where they assumed that adults

adapt their parental care time through learning.
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Motivated by the above existing works and the experimental evidence of [27] for song

sparrows, and as an extension of [23], in this paper, we formulate, in Section 2, a predator-prey

model with age structure and allowing adaptive avoidance of predators. The model divides

the prey population into a juvenile stage and an adult stage, and is naturally represented by a

system of delay differential equations (DDEs) with the delay accounting for the maturation time.

Adult prey in the model are assumed to adapt defense level in terms of the total growth rate

of both juveniles and adults. In Section 3, we address the well-posedness of the model with

properly posed initial conditions. In Section 4, we analyze the dynamics of the model with either

a constant defense level or an adaptive defense level respectively, with focus on a simplified

version of the model. The reason is that for the full model in the general form, analysis becomes

more difficult, as such, we mainly present some numerical simulation results and discuss some

biological implications, with focus on the impact of some key model parameters. We conclude

the paper by Section 5 in which we briefly summarize this work and in the mean time, discuss

some possible future topics related to this paper.

4.2 Model formulation

Based on the experiment in [27], there exists different stages of song sparrows, in which song

sparrows behave very differently. This naturally suggests use of age structured model for study

of population dynamics of birds. For simplicity, we only consider two stages —a juvenile

stage and an adult stage, and follow the standard and frequently used approach (see references

[2, 4, 5, 10, 16, 22]) to incorporate the two stages of prey into the model. Apparently there is

a maturation delay between juvenile prey and adult prey, which is denoted as τ in our model.

Noting that Zanette et al. reported in [27] that juvenile song sparrows can’t live independently

and must live under the protection of adult song sparrows to survive, we assume that juvenile

birds do not show anti-predator behaviours. In other words, only adult prey perceive predation

risk and are able to avoid potential attacking by flying away from nests. Such an anti-predator

defense of adult prey positively impacts the individual survival but in the mean time, results in a

cost as well ([6]). This is because anti-predator behaviours of adult prey increase the possibility

for them to escape from direct killing by predator but more frequent and defensive flying of

adults will consume extra energy and time, which are essential for reproduction. Moreover,

too frequent flying of parent birds will leave the juveniles less looked after and less protected,

leading to a higher risk of predation. In addition, as documented in [27], adult song sparrows

feed less to juveniles if they are scared, and this leads to a higher death rate of juvenile song

sparrows even in the absence of direct killing.

Taking into consideration the aforementioned facts/observations due to fear effect of adult
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prey, we can formulate a mathematical model as below. Let α ∈ [0, 1] denote the level of

anti-predator defense of adult prey, with larger value of α accounting for stronger anti-predation

defense and smaller value corresponding to weaker response. Denote the populations of juvenile

prey and adult prey by x1 and x2 respectively, and the population of predator by y. Adopting

the simple mass action predation mechanism and incorporating the effect of the anti-predation

response represented by α, the dynamics of x1 and x2 can be described by the following

differential equations:

dx1

dt
= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

− b(α, x2(t − τ)) x2(t − τ)e− (d0 + s0 y + (d1 + s1 y)α) τ,
dx2

dt
= b(α, x2(t − τ)) x2(t − τ)e−(d0 + s0 y + (d1 + s1 y)α) τ

− d2 x2 − s(α) x2 y.

(4.1)

Here, d0 is the natural death rate of juveniles, s0 is the death rate of juveniles due to direct

predation, d1 and s1 are death rates of juveniles induced by the cost of anti-predator behaviours

of adult prey, d2 is the natural death rate of adult prey. Here in this work, to avoid making things

too complicated, we assume that the predator population y is a constant. This corresponds to a

scenario that the predator is a generalist which lives on many other species of prey, and this also

reflects the environment of the field experiment by Zanette et. al. ([27]) in which the presence

of predators is represented by the strength of vocal cues which can be controlled as a constant

level.

In model (4.1), b(α, x2) is the birth rate function and s(α) is the predation rate function for

adult prey. Both of them depend on the anti-predation behaviours of adult prey and should

be decreasing in α, followed by the aforementioned discussions on the fear effect. Typically

b(α, x2) is also decreasing in x2. To be specific, we choose the following form for b(α, x2):

b(α, x2) =


(b0 − b1 α)θ1e(−a x2), if 0 ≤ α <

b0

b1
,

0, if
b0

b1
≤ α ≤ 1,

(4.2)

where 0 < b0 < b1 and θ1 ≥ 1. This assumes a threshold b0/b1 below which, the birth function

is of the Ricker type with the maximal birth rate adjusted by α ∈ [0, b0/b1), and above which

(extremely fearful case) there is no birth at all. For s(α), for convenience we also choose the

following similar form:

s(α) =


(s2 − s3 α)θ2 , if 0 ≤ α <

s2

s3
,

0, if
s2

s3
≤ α ≤ 1,

(4.3)
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where 0 < s2 < s3 and θ2 ≥ 1. Again a threshold s2/s3 is assumed above which, the adults can

fully escape from predation. We point out that depending on the particular species of predator

and prey, the two threshold values b0/b1 and s2/s3 may vary. For convenience of subsequent

discussions, we assume, in the rest of the paper, that s2/s3 < b0/b1, accounting for a situation of

relatively mild predation.

Because adult prey can perceive predation risk to some extent and adapt their behaviours to

the change of the surrounding environment ([8]), we may consider the anti-predator defense

level of the adult prey (i.e., α) to be adaptive. According to [20], it is reasonable to regard α

as a trait, which should evolve toward maximizing the fitness of the prey species ([1]). For a

prey with stage structure, following the idea in [21], we consider the scenario that adult prey act

adaptively so that the instant total growth rate of the total species will be benefitted. With this

consideration and following [21], we adopt the following quantity for the fitness of prey with

respect to anti-predator defense level α

Φ =
dx1

dt
+

dx2

dt
= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) y x1 − d2 x2 − s(α) x2 y. (4.4)

Then, according to [21], the evolution of α is governed by

dα
dt

= γ(α)
∂Φ

∂α

= γ(α)
(
∂b(α, x2)
∂α

x2 − d1 x1 − s1 y x1 −
ds(α)

dα
x2 y

)
, (4.5)

where γ(α) = k α (1 − α) ensures that the defense level α remains between 0 and 1, provided

that α(0) ∈ [0, 1]. Summarizing, as far as the adaptive anti-predator response is concerned, we

will consider the following stage structured predator-prey model with adaptive avoidance of

predation and fear effect:

dx1

dt
= b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

− b(α(t − τ), x2(t − τ)) x2(t − τ) exp
(
−

∫ t

t−τ
(d0 + s0 y + (d1 + s1 y)α(s))ds

)
,

dx2

dt
= b(α(t − τ), x2(t − τ)) x2(t − τ) exp

(
−

∫ t

t−τ
(d0 + s0 y + (d1 + s1 y)α(s))ds

)
− d2 x2 − s(α) x2 y,

dα
dt

= k α (1 − α)
(
∂b(α, x2)
∂α

x2 − d1 x1 − s1 y x1 −
ds(α)

dα
x2 y

)
.

(4.6)



74

4.3 Well-posedness of the model

The model (4.6) should be associated with non-negative initial values:

x2(θ) ≥ 0, α(θ) ∈ [0, 1] with x2(0) > 0. (4.7)

As for the variable x1, there is also a compatibility issue. To see this, we can integrate the

equation for x1 in (4.6) to obtain

x1(t) =

∫ t

t−τ
b(α(η), x2(η)) x2(η) exp

(
−

∫ t

η

(d0 + s0 y + d1 α(u) + s1 yα(u)) du
)

dη. (4.8)

At t = 0, the above equation gives a constraint on the initial values:

x1(0) =

∫ 0

−τ

b(α(η), x2(η)) x2(η) exp
(
−

∫ 0

η

(d0 + s0 y + d1 α(u) + s1 yα(u)) du
)

dη. (4.9)

This condition is also biologically reasonable because it simply says that the total juvenile

population at t = 0 is a result of the newborns during the interval [−τ, 0] mediated by the death

during this period ([13]).

The existence and uniqueness of solutions of (4.6) can be easily established by the standard

method of steps. Now when the initial values are non-negative and the compatibility condition

(4.9) holds, we can confirm the well-posedness in the sense stated in the following lemma.

Lemma 4.3.1 Let x2(θ), α(θ) ≥ 0 on −τ ≤ θ < 0 and x2(0) > 0, b0/b1 > α(0) > 0, and assume

that x1(0) satisfies (4.9). Then the solution of (4.6) stays positive and is ultimately bounded.

Proof Let

h(t) =
∂Φ

∂α
(t) =

∂b(α(t), x2(t))
∂α

x2(t) − d1 x1(t) − s1 y x1(t) −
ds(α(t))

dα(t)
y x2(t). (4.10)

Then, α(t) can be expressed as

α(t) =
α(0) exp

(∫ t

0
k h(η)dη

)
1 − α(0) + α(0) exp

(∫ t

0
k h(η)dη

) . (4.11)

Thus, it is clear that α(t) = 0 for all t ≥ 0 if α(0) = 0, α(t) = 1 for all t ≥ 0 if α(0) = 1, and

0 < α(t) < 1 for t ≥ 0 if 0 < α(0) < 1.

Since we assume x2(θ), α(θ) ≥ 0 on −τ ≤ θ < 0, from equation of x2 in (4.6), we obtain

dx2(t)
dt

≥ −d2 x2 − s(α) x2 y ≥ −(d2 + s2
2 y) x2, t ∈ [0, τ]. (4.12)
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By a comparison argument and from (4.12), we obtain

x2(t) ≥ x2(0)e−(d2+s2
2 y)t, t ∈ [0, τ] (4.13)

which shows that x2(t) > 0 if x2(0) > 0 for t ∈ [0, τ]. Repeating the argument, we obtain the

positivity in [τ, 2τ], [2τ, 3τ], · · · , and hence for all t ≥ 0 indeed. The positivity of x1(t) is just a

consequence of combining (4.8) and the positivity of x2(t) and α(t).

Next, we show boundedness of solutions of (4.6). In the above, we have shown that α(t) is

bounded between 0 and 1. Thus it only remains to show the boundedness of x1 and x2. From

(4.6), we have
dx1

dt
≤ b(α, x2) x2 − (d0 + d1 α) x1 − (s0 + s1 α) x1 y

≤ bθ1
0 e−a x2 x2 − (d0 + s0 y) x1

≤
bθ1

0

e a
− (d0 + s0 y) x1.

(4.14)

Therefore, we obtain

lim
t→∞

sup(x1(t)) ≤
bθ1

0

e a (d0 + s0 y)
.

Furthermore, adding the first two equations of (4.6) gives

d(x1 + x2)
dt

≤ b(α, x2) x2 − d0 x1 − d2 x2

≤ b(α, x2) x2 − γ(x1 + x2)

≤
bθ1

0

e a
− γ(x1 + x2),

(4.15)

where γ = min{d0, d2}. Thus

lim
t→∞

sup(x1(t) + x2(t)) ≤
bθ1

0

e a γ
. (4.16)

By (4.16) and the positivity of x1 and x2, we conclude that x1 and x2 are ultimately bounded,

completing the proof of the lemma.

4.4 Long term dynamics of the model

In this section, we investigate the dynamics of the model. We start by looking at two special

cases first, in subsections 4.4.1 and 4.4.2 respectively, before considering the full model in

subsection 4.4.3.
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4.4.1 Model with constant defense level

Before we consider the adaptive defense described by (4.6), it would be helpful and useful

to look at the case when the defense level α is a constant. In this case, the equation of x2 is

decoupled from x1, and the dynamics of system (4.1) is completely determined by

dx2

dt
= b(α, x2(t − τ)) x2(t − τ)e−(d0 + s0 y + (d1 + s1 y)α) τ − d2 x2 − s(α) x2 y, (4.17)

where b(α, x2), s(α) are defined in (4.2) and (4.3) respectively. In order to simplify analysis, let

p = d0 + s0 y, q = d1 + s1 y, δ0(α) = p + qα, and δ(α) = d2 + s(α) y.

When the defense level is too strong in the sense that α ∈ [b0/b1, 1], by (4.2), b(α, x2) = 0,

meaning the species is fully devoted to defend predation so that there is no birth at all. Then

(4.17) becomes
dx2

dt
= −d2 x2 − s(α) x2 y, (4.18)

implying that x2(t) dies out exponentially. Accordingly, by the first equation in (4.6), x1(t) also

approaches zero.

Next, consider the case of mild defence, that is, α ∈ [0, bb/b1). Then, plugging in the birth

function given in (4.2) into (4.17) leads to

dx2

dt
= (b0 − b1α)θ1e−δ0(α)τe−ax2(t−τ)x2(t − τ) − δ(α)x2. (4.19)

This is in the form of the well-known Nicholson blowflies equation which has been extensively

studied in the literature, see, e.g., [4, 9, 11, 19, 24] and the references therein. In terms of the so

called basic reproduction number

R0 =
(b0 − b1α)θ1 e−δ0(α)τ

δ(α)
, (4.20)

the main results about (4.19) related to the topics of this paper are summarized below:

(C1) If R0 ≤ 1, then the trivial equilibrium x2 = 0 is globally asymptotically stable.

(C2) If R0 > 1, then the trivial equilibrium becomes unstable and there exists a unique positive

equilibrium given by x+
2 = 1

a lnR0. In this case, for any fixed τ > 0,

(C2-i) either x+
2 is asymptotically stable;

(C2-ii) or x+
2 is unstable but there is an asymptotically stable periodic solution x2p(t) that is

a sustained oscillation about x+
2 .
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Since in both (C2-i) and (C2-ii), x+
2 = 1

a lnR0 represents the average persistence level of the

population, it is interesting and significant to explore at what value of α ∈ [0, b0/b1), R0 = R0(α)

will be maximized. Note that s(α) = 0 for α ∈ [s2/s3, 1], and hence R0(α) is deceasing in

[s2/s3, 1]. Thus, R0 should be maximized in the interval [0, s2/s3]. The following theorem gives

an answer to the problem when θ1 = 1 = θ2.

Theorem 4.4.1 Let θ1 = 1 = θ2. Then, R0 is maximized at α = 0 if

exp
(
q τ s2

s3

)
>

(d2 + s2 y) (b0 s3 − b1 s2)
b0 d2 s3

, (4.21)

and it is maximized at α = s2/s3 if (4.21) is reversed.

Proof For 0 ≤ α ≤ s2/s3, we have

dR0

dα
=

−e−pτe−qτα

(d2 + ys2 − ys3α)2

[
a1 α

2 + a2 α + a3

]
(4.22)

where
a1 = q τ b1 y s3, a2 = −q τ (b1 d2 + b1 y s2 + s3 y b0) ,

a3 = q τ b0 (d2 + s2 y) + b1 d2 − y (b0 s3 − b1 s2) .
(4.23)

Let

∆ = a2
2 − 4 a1 a3 = q τ (s3 y b0 − b1 d2 − b1 y s2) (q τ b0 y s3 + 4 b1 s3 y − q τ b1 y s2 − q τ b1 d2) .

(4.24)

If a3 > 0 and ∆ < 0, (4.22) has not real root and R0 is maximized either at α = 0 or α = s2/s3.

If a3 > 0 and ∆ > 0, then (4.22) has two distinct positive roots

ᾱ1 =
−a2 −

√
∆

2 a1
, ᾱ2 =

−a2 +
√

∆

2 a1
,

where ᾱ2 > s2/s3 and hence should be excluded. Direct calculations show that α = ᾱ1 is the

local minimum point of R0, and hence R0 is maximized either at α = 0 or α = s2/s3. If a3 < 0,

then (4.22) has a single positive root ᾱ2 which is in [s2/s3, 1]. Summarizing, in the interval

0 ≤ α ≤ s2/s3, R0 can only be maximized either at α = 0 or at α = s2/s3. Evaluating of R0(0)

and R0(s2/s3) leads to the conclusion of the theorem, and the proof is completed.

For other values of θ1 and θ2, one may also do similar things but it typically becomes

more difficult for analytic results. However, one can always explore numerically to gain useful

information on this topic. For example, for θ1 = θ2 = 2 and with parameters given, numerical

results show that an optimal defense level α may exist in the interval 0 < α < s2/s3, as

demonstrated in Figure 4.1.
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Figure 4.1: If θ1 = θ2 = 2, optimal defense level α exists in interval [0, s2/s3]. Other parameters

are b0 = 9.4609, b1 = 13.2741, p = 0.0856, q = 3.0554, d2 = 0.0467, s2 = 0.2009, s3 =

1.5685, y = 2.6194, τ = 2.2335.

4.4.2 Model with adaptive defense level—a special case: d1 = 0, s1 = 0

In this subsection, we first consider a special case where the anti-predation response of adult

prey has no impact on the death and predation of juveniles. This is reflected by assuming

d1 = 0, s1 = 0 in (4.6), leading to the following simplified version of the model:

dx1

dt
= b(α, x2) x2 − (s0 y + d0) x1 − b(α(t − τ), x2(t − τ)) x2(t − τ)e−(d0 + s0 y)τ,

dx2

dt
= b(α(t − τ), x2(t − τ)) x2(t − τ)e−(d0 + s0 y) τ − d2 x2 − s(α) x2 y,

dα
dt

= k α (1 − α)
(
∂b(α, x2)
∂α

x2 −
ds(α)

dα
x2 y

)
,

(4.25)

where b(α, x2) and s(α) are the same functions defined in (4.2) and (4.3) respectively. To be

more concrete, we will choose θ1 = θ2 = 2 in this subsection.

Notice that the equations for x′2(t) and α′(t) in (4.25) are decoupled from the equation for

x′1(t). Therefore, we only need, in the rest of this subsection, to study subsystem

dx2

dt
= b(α(t − τ), x2(t − τ)) x2(t − τ)e−p τ − d2 x2 − s(α) x2 y,

dα
dt

= k α (1 − α)
(
∂b(α, x2)
∂α

x2 −
ds(α)

dα
x2 y

)
,

(4.26)

where p = d0 + s0 y.
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4.4.2.1 Equilibria of system (4.26)

For (4.26), the basic reproduction number reduces to

R0(α) =
(b0 − b1α)2 e−p τ

d2 + (s2 − s3α)2 y
. (4.27)

Let R0
0 = R0(0). There are two extinction equilibrium: Eb0 = (0, 0) and Eb1 = (0, 1). Straight-

forward and simple stability analysis shows that Eb1 is always stable, and Eb0 is stable if R0
0 < 1

and is unstable if R0
0 > 1.

A semi-trivial equilibrium Es = (x̄20, 0) exists if R0
0 > 1 where

x̄20 =
1
a

lnR0
0.

Properties of (4.2) and (4.3) give

dα
dt

= k α (1 − α)
[
−2 b1 (b0 − b1 α) e−a x2 x2

]
< 0, if

s2

s3
≤ α <

b0

b1
.

(4.28)

Similarly, we obtain
dx2

dt
= −d2 x2, if

b0

b1
≤ α ≤ 1. (4.29)

By (4.28) and (4.29), it is clear that positive equilibrium can exist only if 0 ≤ α < s2/s3.

Setting the right hand side of the second equation in (4.26) to zero and solving for α in terms

of ψ = e−ax2 , we see that a positive equilibrium E(x̄2, ᾱ) must satisfy

x̄2 = −
1
a

ln(ψ), ᾱ =
b0 b1 ψ − s2 s3 y

b2
1 ψ − s2

3 y
=: H(ψ) (4.30)

where, by plugging the formula for ᾱ in (4.30) into the right hand side of the first equation in

(4.26), ψ is determined by

F(ψ) := ρ1 ψ
2 + ρ2 ψ + ρ3 = 0. (4.31)

Here in (4.31) we have

ρ1 = −b2
1

(
b2

1 d2 + y (b1 s2 − b0 s3)2
)
,

ρ2 = y s2
3

(
e−p τ y (b0 s3 − b1 s2)2 + 2 b2

1 d2

)
, ρ3 = −d2 y2 s4

3.
(4.32)

Noting that with the assumption of s2/s3 < b0/b1, H(ψ) is decreasing in ψ ∈ (0, 1) with

H(0) = s2/ss, which automatically ensures that ᾱ < s2/s3. Now the other requirement of ᾱ > 0

leads to another constraint for ψ : ψ < s2s3y/b0b1, which is obtained by solving H(ψ) = 0 for

ψ. Thus, we need to look for real roots of (4.31) in the interval (0, ψ0) where

ψ0 = min
{

s2 s3 y
b0 b1

, 1
}
. (4.33)
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Let

∆ = ρ2
2 − 4 ρ1 ρ3. (4.34)

From (4.32), it is obvious that ρ1 < 0, ρ2 > 0, ρ3 < 0, thus F(0) = ρ3 < 0 and F′(0) = ρ2 > 0.

Therefore, (4.31) has no positive root if ∆ < 0, and (4.31) has two distinct positive roots if ∆ > 0.

For the latter case, denote the two positive roots of (4.31) by ψ1, ψ2 respectively and assume

ψ1 < ψ2 without loss of generality. Thus, system (4.26) admits a unique positive equilibrium ψ1

if ∆ > 0, F(ψ0) > 0 and it has two distinct equilibria if ∆ > 0, ψ2 < ψ0. Note that the condition

∆ > 0 is equivalent to

ep τ <
b1 d2 +

√
(b1 d2)2 + d2 y (b0 s3 − b1 s2)2

2 b1 d2
. (4.35)

Summarizing the above analysis and expressing in terms of the model parameters, we obtain the

following two theorems about the existence of positive equilibrium/equilibria.

Theorem 4.4.2 Assume that (4.35) holds. Then, a unique positive equilibrium Ep1 = (x̄21, ᾱ1)

of (4.26) exists if
y ≥

b0 b1

s2 s3
(corresponding to ψ0 = 1),(

d2 s4
3 y2 + b2

1

(
(b1 s2 − b0 s3)2 − 2 d2 s2

3

)
y + d2 b4

1

)
ep τ < y2 s2

3 (b0 s3 − b1 s2)2 ( F(ψ0) > 0 );
(4.36)

or 
y <

b0 b1

s2 s3

(
corresponding to ψ0 =

s2s3y
b0b1

)
,

ep τ <
s2 s3 b0 y

b1

(
d2 + y s2

2

) ( F(ψ0) > 0 )
(4.37)

where

x̄21 =
−1
a

ln
−ρ2 +

√
∆

2 ρ1

 , ᾱ1 =
b0 b1

((
−ρ2 +

√
∆
)
/(2 ρ1)

)
− s2 s3 y

b2
1

((
−ρ2 +

√
∆
)
/(2 ρ1)

)
− s2

3 y
. (4.38)

In Theorem 4.4.2, ∆, ρ1, ρ2 are defined in (4.34) and (4.32) respectively.

Theorem 4.4.3 Assume that (4.35) holds. Then, two distinct positive equilibria

Ep1 = (x̄21, ᾱ1), Ep2 = (x̄22, ᾱ2) of (4.26) exist if
y ≥

b0 b1

s2 s3
(corresponding to ψ0 = 1),

y2 s2
3 (b0 s3 − b1 s2)2 <

(
d2 s4

3 y2 + b2
1

(
(b1 s2 − b0 s3)2 − 2 d2 s2

3

)
y + d2 b4

1

)
ep τ ( F(ψ0) < 0 ),

y2 s2
3 (b0 s3 − b1 s2)2 < 2 b2

1

(
d2 (b2

1 − y s2
3) + y (b0 s3 − b1 s2)2

)
ep τ (ψ2 < ψ0 );

(4.39)
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or 
y <

b0 b1

s2 s3

(
corresponding to ψ0 =

s2s3y
b0b1

)
,

s2 s3 b0 y < b1 (d2 + y s2
2)ep τ ( F(ψ0) < 0 ),

b0 s3 y (b0 s3 − b1 s2) < 2 b1 (s2 y (b0 s3 − b1 s2) − b1 d2) ep τ (ψ2 < ψ0 ),

(4.40)

where x̄21, ᾱ1 are the same as (4.38), and

x̄22 =
−1
a

ln
−ρ2 −

√
∆

2 ρ1

 , ᾱ2 =
b0 b1

((
−ρ2 −

√
∆
)
/(2 ρ1)

)
− s2 s3 y

b2
1

((
−ρ2 −

√
∆
)
/(2 ρ1)

)
− s2

3 y
. (4.41)

4.4.2.2 Dynamics of system (4.26)

We begin with analyzing local stability of the semi-trivial equilibrium Es. The linearization of

(4.26) at Es is
dx2

dt
= f11 x2 + f12 α + f13 x2(t − τ) + f14 α(t − τ),

dα
dt

= f22 α,

(4.42)

where
f11 = −d2 − s2

2 y,

f12 = 2 s2 s3 x̄20 y,

f13 =
(
d2 + s2

2 y
)

(1 − ax̄20) ,

f14 = −2 b1 x̄20

(
d2 + s2

2 y
b0

)
,

f22 = k x̄20

(
−2 b0 b1 e−a x̄20 + 2 s2 s3 y

)
.

(4.43)

Plugging (x2, α) = e(λ t)(v1, v2) into (4.42), we obtain the characteristic equation at Es

G(λ, τ) :=
[
λ −

(
f11 + f13 e−λ τ

)]
(λ − f22) = 0. (4.44)

When τ = 0, the characteristic equation (4.44) reduces to

G(λ) =
[
λ + (d2 + s2

2y) lnR0
0

]
·

[
λ + 2kx̄20

(
b0b1

R0
0

− s2s3y
)]

(4.45)

where x̄20 = 1
a ln

(
b2

0/(d2 + s2
2 y)

)
= 1

a ln R0
0. By (4.45), we obtain the local stability of Es when

τ = 0, which is shown in the following theorem.

Theorem 4.4.4 Consider the case of τ = 0 and b0b1 > s2s3y. Assume R0
0 > 1 so that the

semi-trivial equilibrium Es = (x̄20, 0) exists. Then, Es is locally asymptotically stable if

R0
0 =

b2
0

d2 + s2
2y
<

b0b1

s2s3y

(
⇐⇒

b0

b1
−

s2

s3
<

d2

s2s3y

)
, (4.46)

and it is unstable if (4.46) is reversed.
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Next we analyze how the delay τ affects the stability of Es. To this end, we assume that Es

is locally stable when τ = 0 (i.e. (4.46) holds). Now we consider the case where τ > 0. Note

that R0
0 depends on τ, being decreasing in τ.

Theorem 4.4.5 Let b0b1 > s2s3y and assume that R0
0 > 1 so that Es exists. Then Es is locally

asymptotically stable if

R0
0 <

b0 b1

s2 s3 y
and R0

0 ≤ e2. (4.47)

Proof The characteristic equation (4.44) has one real eigenvalue

λ = f22 = −2 k x̄20

(
b0 b1

R0
0

− s2 s3 y
)

which is negative if and only if

R0
0 <

b0 b1

s2 s3 y
. (4.48)

All other eigenvalues of (4.44) are determined by

D(λ, τ) := P(λ, τ) + Q(λ, τ) e−λ τ = 0, (4.49)

where
P(λ, τ) = λ − f11 = λ + (d2 + s2

2 y),

Q(λ, τ) = − f13 = −
(
d2 + s2

2 y
)

(1 − a x̄20) .
(4.50)

Because D(0, τ) =
(
d2 + s2

2 y
)

ax̄20 > 0, λ = 0 is not a characteristic root of (4.49) for any τ > 0.

Therefore, stability of Es can change only through the occurrence of pure imaginary roots of

(4.49). Assume λ = iω with ω > 0. Because |P(iω, τ)| = |−Q(iω, τ) exp(−iωτ)| = |Q(iω, τ)|

(by (4.49)), ω > 0 must satisfy

0 = F(ω, τ) = |P(iω, τ)|2 − |Q(iω, τ)|2

= ω2 + (d2 + s2
2 y)2 − (d2 + s2

2 y)2 (1 − a x̄20)2

= ω2 + (d2 + s2
2 y)2

[
1 − (1 − ax̄20)2

]
.

(4.51)

Obviously, (4.51) has no positive solution if ax̄20 ≤ 2, implying that there is no pure imaginary

root for (4.49). Simple calculation shows that

a x̄20 ≤ 2⇐⇒ R0
0 ≤ e2. (4.52)

Indeed, if (4.52) holds, then (4.49) also has no root with positive real part. To see this, we

assume λ = r + iω is a root of (4.49) with r > 0 and ω > 0. By substituting λ = r + iω into

(4.49), we obtain

r +
(
d2 + s2

2 y
)

+ iω =
(
d2 + s2

2 y
)

(1 − a x̄20)e−r τe−iωτ,
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which gives

|r +
(
d2 + s2

2 y
)

+ iω| = |
(
d2 + s2

2 y
)

(1 − a x̄20)e−r τe−iωτ|. (4.53)

Because r > 0 by assumption, (4.53) implies(
d2 + s2

2 y
)2
<

(
r + d2 + s2

2 y
)2
<

(
r + d2 + s2

2 y
)2

+ ω2

=
(
d2 + s2

2 y
)2

(1 − a x̄20)2 e−2 r τ <
(
d2 + s2

2 y
)2

(1 − a x̄20)2,
(4.54)

implying that 2 < a x̄20 which contradicts to (4.52). Therefore, every eigenvalue λ = r + iω of

(4.49) must have r < 0 if (4.52) holds. As a consequence, local stability of Es remains valid for

τ > 0 if (4.48) and (4.52) hold.

Noting that R0
0 is decreasing in τ, we immediately have the following corollary.

Corollary 4.4.6 Assume that

b2
0

d2 + s2
2y
< min

{
b0b1

s2s3y
, e2

}
.

Then Es is asymptotically stable as long as it exists (i.e., provided that R0
0 > 1.)

From the proof of Theorem 4.4.5, we can see that violation of condition (4.48) leads to the

sign change of a real eigenvalue from negative to positive, and loss of stability of Es results

in the occurrence of a positive equilibrium (see the condition (4.37) in Theorem 4.4.2), which

will be discussed later. The violation of the other condition (4.52), on the other hand, makes it

possible for a pair of complex eigenvalues to cross the imaginary axis from the left half plane to

the right in the complex plane, and this is expected to cause Hopf bifurcation. We explore a

bit more along this line below. The focus is on the impact of the delay τ > 0, and accordingly,

we assume that (4.46) holds so that Es is asymptotically stable when τ = 0, and we follow the

framework of [3] to proceed.

Assume the opposite of (4.52), that is

a x̄20 > 2 (equivalently R0
0 > e2). (4.55)

Under (4.55), equation (4.51) admits a unique positive root given by

ω(τ) =
(
d2 + s2

2 y
) √

(1 − a x̄20)2 − 1. (4.56)

Following [3], let I denote the interval in which ω(τ) in (4.56) is defined. Solving (4.55) for τ

then gives

I =

[
0,

1
p

ln
b2

0

(d2 + s2
2y)e2

)
.
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Let θ(τ) : I → R+ be the solution of

sin θ(τ) = −
ω(τ)

(d2 + s2
2 y)(1 − a x̄20)

, cos θ(τ) =
1

1 − a x̄20
. (4.57)

Then, by [3], stability switch of Es may occur when τ is a zero of

S n(τ) := τ −
θ(τ) + n 2 π

ω(τ)
, τ ∈ I, n ∈ N. (4.58)

To finally confirm the stability switch, we need to verify the transversality condition at zeros

of S n(τ), τ ∈ I. To this end, we use the implicit differentiation in (4.49) to obtain

dλ
dτ

=
( f
′

13 − f13 λ) e−λ τ

1 + f13 τ e−λ τ
, (4.59)

where f13 is shown in (4.43). We point out that it is more convenient to consider(
dλ
dτ

)−1

=
eλ τ + f13 τ

f ′13 − f13λ
=

f13/(λ − f11) + f13τ

f ′13 − f13λ
. (4.60)

At a zero τ∗ of S n(τ), we have λ(τ∗) = iw(τ∗). This observation together with (4.49) and (4.51)

help us to simplify (4.60) to(
dλ
dτ

)−1 ∣∣∣∣∣∣
λ=iω(τi)

=
− f11 + f 2

13 τ − ω i

ωω′ − f 2
13 ω i

(4.61)

=
1

ω2 ω′2 + f 4
13 ω

2

((
− f11 + f 2

13 τ
)
ωω′ + ω2 f 2

13 +
(

f 2
13 ω − ω

2 ω
′
)

i
)
.

By (4.61), we obtain

d Re(λ)
dτ

∣∣∣∣∣∣
λ=iω(τi)

=

(
− f11 + f 2

13 τ
)
ωω′ + ω2 f 2

13

ω2 ω′2 + f 4
13 ω

2
. (4.62)

The formula in (4.62) can be used to determine the transversality for Hopf bifurcation. Un-

fortunately, we cannot confirm the sign of this formula for general model parameters. However,

once the values of parameters are given, it is straightforward and easy to numerically calculate

the zeros of S n(τ) and evaluate (4.62) at these zeros, and thereby, determine whether Hopf

bifurcation will occur. For examples, for parameters chosen in Figure 4.2, by numerically

solving S n(τ) = 0, we find that there are two zeros for S 0(τ), which are τ1 = 0.5 and τ2 = 4.782,

as shown in Figure 4.2, but none for S n(τ), n = 1, · · · . Moreover, numerical evaluations of

(4.62) at τ1 and τ2 indicate that d Re(λ)/dτ > 0 at τ1 and d Re(λ)/dτ < 0 at τ2. This implies

that the model (4.26) undergoes Hopf bifurcation at these two critical values: when τ increases

to pass τ1, Es loses its stability leading to sustained oscillation of the population; while when τ
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Figure 4.2: Stability switch of Es. Parameters are: b0 = 8.1311, b1 = 9.1252, a = 0.9858, p =

0.3290, s2 = 1.3924, s3 = 2.4989, y = 0.5376, d2 = 0.7139, k = 1.

further increases to pass τ2, the periodic solutions disappear and Es regains its stability. These

are confirmed by numerical simulations of the model (4.26), as shown in Figure 4.3.

The above analyses have shown that the semi-trivial equilibrium Es may lose its stability

to a stable periodic solution with an intermediate value of τ and regain its stability when τ

is large, through Hopf bifurcation. In addition to this, as we mentioned before, Es may also

lose its stability to a positive equilibrium through equilibrium bifurcation, reflected by a real

eigenvalue crossing the pure imaginary axis from the left to the right in the complex plane. Such

a positive equilibrium is interesting since it represents a persistent anti-predator defense. Thus,

the stability/instability of such a positive equilibrium is of great importance.

Note that Theorem 4.4.2 and 4.4.3 have confirmed that one positive equilibrium or two

positive equilibria may exist under different conditions. However, if τ = 0, Ep2 in Theorem

4.4.3 can not exist because the conditions for its existence are contradictory in this case. Hence,

we first consider the case where a unique positive equilibrium Ep1 exists (i.e. where conditions

in Theorem 4.4.2 hold) when τ ≥ 0 and then proceed to the case where Theorem 4.4.3 holds by

restricting τ > 0. The procedure is exactly the same as the one for the stability/instability of Es

above, mainly using the framework in [3], as such, we will try to be brief below, omitting many

details.
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Figure 4.3: Stability switch of Es with varying τ. Parameters are: b0 = 8.1311, b1 = 9.1252, a =

0.9858, p = 0.3290, s2 = 1.3924, s3 = 2.4989, y = 0.5376, d2 = 0.7139, k = 1.
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By linearizing (4.26) at Ep1, we obtain characteristic equation at Ep1:

G(λ, τ) := λ2 − (g11 + g22) λ+ (g11 g22 − g21 g12) + (−g13 λ+ g13 g22 − g21 g14) e−λ τ = 0, (4.63)

where
g11 = −d2 − (s2 − s3 ᾱ1)2 y,

g12 = 2 s3 (s2 − s3 ᾱ1)x̄21 y,

g13 = (b0 − b1 ᾱ1)2 e−a x̄21 e−p τ(1 − a x̄21),

g14 = −2 (b0 − b1 ᾱ1) e−a x̄21 x̄21 e−p τ b1,

g21 = 2 k ᾱ1(1 − ᾱ1) a s3 (s2 − s3 ᾱ1) y x̄21,

g22 = 2 k x̄21 ᾱ1 (1 − ᾱ1)
(
b2

1 e−a x̄21 x̄21 − s2
3 y

)
.

(4.64)

When τ = 0, (4.63) reduces to a simplified equation

G(λ, 0) = 0⇐⇒
[
λ y (b0 s3 − b1 s2)2 −

(
y (b0 s3 − b1 s2)2 + b2

1 d2

)
d2 ln(ψ)

]
[
λ

(
y (b0 s3 − b1 s2)2 + b2

1 d2

)
a + 2 k [(s2 − s3) (b0 s3 − b1 s2) y − b1 d2]

[(b0 s3 − b1 s2) s2 y − b1 d2] ln(ψ)
]

= 0.

(4.65)

In fact, when τ = 0, the existence condition of Ep1, which is ψ < ψ0 as discussed in the above

section, can be simplified to
d2 s2

3 y

y (b0 s3 − b1 s2)2 + b2
1 d2

< 1 ⇐⇒ ψ < 1,

R0
0 =

b2
0

d2 + s2
2y
>

b0b1

s2s3y
⇐⇒ ψ <

s2 s3 y
b0 b1

.

(4.66)

When (4.66) holds, it is clear that (4.65) gives negative real eigenvalues, which leads to the

following theorem.

Theorem 4.4.7 If τ = 0, a unique positive equilibrium Ep1 = (x̄21, ᾱ1) is always locally stable

when it exists.

Again, we hope to see whether delay τ would induce stability switch of Ep1. Assuming

(4.66) holds, we seek pure imaginary root iω of (4.63) to find possible stability switch of Ep1

when τ > 0. Similar to the proof of Theorem 4.4.5, we substitute iω with ω > 0 into (4.63) and

obtain
F(ω, τ) = ω4 − ω2

(
g2

13 + 2 (g11 g22 − g21 g12) − (g11 + g22)2
)

+
(
(g11 g22 − g21 g12)2

− (g13 g22 − g21 g14)2
)

= 0,
(4.67)

where g11, g12, g13, g14, g21, g22 are shown in (4.64). Let

∆ =
[
g2

13 + 2 (g11 g22 − g21 g12) − (g11 + g22)2
]2
− 4

[
(g11 g22 − g21 g12)2

− (g13 g22 − g21 g14)2
]
.

(4.68)
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By (4.68), we know that (4.67) admits two positive equilibria ω2
1, ω

2
2 with ω2

1(τ) < ω2
2(τ) if

∆ > 0, where

ω2
1(τ) =

1
2

[(
g2

13 + 2 (g11 g22 − g21 g12) − (g11 + g22)2
)
−
√

∆
]
,

ω2
2(τ) =

1
2

[(
g2

13 + 2 (g11 g22 − g21 g12) − (g11 + g22)2
)

+
√

∆
]
.

(4.69)

We first consider possible stability switch of Ep1 where only ω2
2 exists. Similar to (4.57) and

(4.58), define θ(τ) ∈ [0, 2 π) such that

sin(θ(τ)) =

(
(g11 g22 − g21 g12) − ω2

2

)
ω2 g13 − ω2 (g11 + g22) (g13 g22 − g21 g14)

ω2
2 g2

13 + (g13 g22 − g21 g14)2 ,

cos(θ(τ)) = −

(
(g11 g22 − g21 g12) − ω2

2

)
(g13 g22 − g21 g14) + ω2

2 (g11 + g22) g13

ω2
2 g2

13 + (g13 g22 − g21 g14)2 .

(4.70)

Then stability switch of Ep1 occurs when τ passes zeros of

S 0
n(τ) := τ −

θ(τ) + n 2 π
ω2(τ)

, n ∈ N, (4.71)

where θ is obtained by solving (4.70). Based on [3] and again employing numerical tools,

zeros of (4.71) can be obtained. For example, for the set of parameter values in Figure 4.4,

by numerically solving S 0
0(τ) = 0, we obtain two zeros τ1 = 0.123 and τ2 = 0.154, as shown

in Figure 4.4. Because Ep1 is locally stable when τ = 0, Ep1 switches from stable to unstable

when τ increase to pass τ1 = 0.123. Again, numerical simulation of the model, as shown in

Figure 4.5, confirms that when maturation delay τ is relatively small, the local stability of Ep1

will not change. However, if τ is larger (τ > τ1), delay will destroy the stability of Ep1 causing

periodic oscillations for both x2 and α (in contrast to the situation when Es loses stability due to

Hopf bifurcation in which only x2(t) oscillates), as demonstrated in Figures 4.5(b) and 4.5(c).

When τ further increases to pass the second critical value τ2 shown in Figure 4.4, Ep1 regains its

stability and both (x2(t), α(t)) tends to the equilibrium Ep1 again, as indicated in Figure 4.5(d).

Here in (4.71), only S 0
0(τ) = 0 has real roots. Hence there are no other critical values of τ other

than τ1 and τ2 that could induce stability switch of Ep1. We point out that parameters chosen in

Figure 4.4 only admits positive ω2
2(τ) but ω2

1(τ) is negative, and hence, only allows a unique

positive equilibrium of (4.67). Although we cannot prove analytically, our extensive numerical

simulations show that ω2
1(τ) is always negative.

As for the case when there are two positive equilibria Ep1 and Ep2 under the conditions in

Theorem 4.4.3, by numerical simulations, we find that under such conditions, Ep2 is always

unstable. In this case, going through the same procedure of constructing S 0
n(τ) and numerically

solving S 0
n(τ) = 0 reveals that the delay induced instability of Ep1 is different from the previous
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Figure 4.4: Stability switch of Ep1 where only Ep1 exists as a positive equilibrium. Param-

eters are: b0 = 3.07552, b1 = 4.33876, a = 0.38976, p = 0.750396, s2 = 0.562070, s3 =

1.21206, y = 4.89360, d2 = 0.552225, k = 31.0047.

case where Ep2 doesn’t exist. As shown in Figure 4.6, S 0
n(τ) has only a unique positive root,

which is different from Figure 4.4 where two distinct positive roots of S 0
n(τ) exist. Accordingly,

Ep1 will remain asymptotically stable when τ > 0 and is small, and will lose its stability to

a periodic solution when τ increases to pass the unique critical value τc > 0 through Hopf

bifurcation; however, Ep1 cannot regain its stability through Hopf bifurcation. These numerical

observations are illustrated in Figure 4.7, where the parameters gives a unique τc ≈ 2 from

S 0
0(τ) = 0.

4.4.3 Full model

In this section, we consider the original 3-d model (4.6). Since the full model involves three

equations with delays and is much more complicated, we will mainly explore it numerically.

Before that and in order to simplify the notations, let p = d0 + s0 y, q = d1 + s1 y. Similar to the

analysis of the reduced 2-d model (4.26), and still making use of R0(α) defined in (4.27), we

may determine the existence of a semi-trivial equilibrium of (4.6), as stated in the following

lemma.

Lemma 4.4.8 A semi-trivial equilibrium Es0 = (x̄10, x̄20, 0) exists if

R0 > 1, τ > 0, (4.72)



90

0 10 20 30 40 50
3.4

3.5

3.6

3.7

3.8

3.9
τ=0.12

x 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

time

α

(a) Small delay

0 10 20 30 40 50
3.4

3.5

3.6

3.7

3.8

3.9
τ=0.13

x 2

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

time

α

(b) Intermediate delay

0 10 20 30 40 50
3.4

3.5

3.6

3.7

3.8

3.9
τ=0.14

x 2

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

time

α

(c) Intermediate delay

0 5 10 15 20 25 30
3.54

3.56

3.58

3.6

3.62
τ=0.156

x
2

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

time

α

(d) Large delay

Figure 4.5: Stability switch of Ep1 with varying τ. Parameters are: b0 = 3.07552, b1 =

4.33876, a = 0.38976, p = 0.750396, s2 = 0.562070, s3 = 1.21206, y = 4.89360, d2 =

0.552225, k = 31.0047.
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where

x̄10 =
(d2 + s2

2 y) (ep τ − 1)
a p

lnR0,

x̄20 =
1
a

lnR0.

(4.73)

Theorem 4.4.9 Assume thatR0 > 1, τ > 0 so that the semi-trivial equilibrium Es0 = (x̄10, x̄20, 0)

exists. Then it is locally asymptotically stable if

R0 <
b0 (2 b1 p + q b0)

2 s2 s3 y p + q d2 + q y s2
2

and R0 ≤ e2. (4.74)

Proof The characteristic equation of system (4.6) at Es0 is

G(λ, τ) := (λ + p)
[
λ + k

(
2 b0 b1 e−a x̄20 x̄20 + q x̄10 − 2 s2 s3 x̄20 y

)]
[
λ + d2 + y s2

2 + e−a x̄20 e−p τ b2
0(a x̄20 − 1) e−λ τ

]
,

(4.75)

where x̄10, x̄20 are shown in (4.73). Equation (4.75) has two real eigenvalues

λ1 = −p < 0, λ2 = −k
(
2 b0 b1 e−a x̄20 x̄20 + q x̄10 − 2 s2 s3 y x̄20

)
. (4.76)

From (4.76), one can easily verify that

λ2 < 0 if R0 <
b0 (2 b1 p + q b0)

2 s2 s3 y p + q d2 + q y s2
2

. (4.77)

All other eigenvalues of (4.75) are determined by the same equation as (4.49). The remaining

part of the proof is the same as the proof in Theorem 4.4.5 and is thus omitted.

Next, we numerically explore the model dynamics, hoping to gain some information and

insights about the roles that anti-predator defense of adult prey play in predator-prey interactions.

We start by considering the impact of the parameter k which represents the sensitivity

of adaptive anti-predator response. Figure 4.8(a) illustrates that, for relatively small k, the

populations of both juvenile and adult prey, as well as the adaptive defense level of adult prey

all converge to positive constants. However, for relatively large k, we have observed periodic

oscillations of the solutions of the model, as is shown in Figure 4.8(b). This indicates that, in

addition to the maturation delay τ, this parameter of sensitivity may also destabilize an otherwise

stable positive equilibrium, leading to the occurrence of periodic solutions.

Note that the parameter b1 in the function b(α, x2) describes how fast b(α, x2) decreases with

respect to the increase of α, and hence, accounts for the cost of the anti-predation response

in the reproduction. The simulation results show that this parameter can also destabilize an

otherwise stable positive equilibrium, as demonstrated in Figure 4.9. Similar destabilizing
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effect by another parameter d1, the cost of the fear in the death rate of the juveniles due to less

sufficient care from the parental prey, has also been observed, see Figure 4.10.

Our model assumes a simplest scenario for the predator population: constant predator

population y (see the justification for this in the introduction). We now investigate the impact

of this parameter. Interestingly, we have found that within certain range of other parameters,

increasing y can stabilize an otherwise unstable positive equilibrium, see the simulation results

in Figure 4.11.

It is also interesting to examine the impact of key parameters on the components of a positive

equilibrium. Figure 4.12 describes the dependence of Ep1 on predator population y: Figure

4.12(a) indicates that the population of both juveniles and adult prey decreases with increasing

population of predators, and Figure 4.12(b) shows that anti-predator defense level of adult

prey increases with larger predator population–this is biologically reasonable (not surprising)

because adult prey are easier to perceive predation risk with higher density of predators and

demonstrate stronger anti-predator behaviours. Figure 4.13 shows the dependence of Ep1 on the

cost of fear b1 in the reproduction while fixing other parameters. Figure 4.13(a) demonstrates

that adult prey population decreases with increasing cost of fear. Figure 4.13(b) indicates that

adult prey show weaker anti-predator behaviours if the cost of such behaviours becomes too

larger. Notice that from Figure 4.13(a), the population of juvenile increases slowly with large

b1. This is because adult prey devote more energy in juvenile’s reproduction and protection of

juveniles with larger cost of anti-predator defense. As a consequence, the population of juvenile

prey increases slightly.

We also compare the effects that the adaptive defense level of adult prey α has on adult prey

population with the case where α is a constant, i.e. the case when there is no adaptation for

the strategy α. As shown in Figure 4.14, the steady state population of adult prey x̄21 in Ep1 is

always larger than the steady state population of adult prey x+
2 in (4.17) when 0 ≤ α ≤ s2/s3.

Figure 4.14 indicates that adaptive defense of adults will have more benefit for prey in terms of

its long term population.

4.5 Conclusion and discussion

Motivated by a recent experimental field study on the fear effect of prey, we proposed a

mathematical model to examine the impact of the fear effect on the population dynamics of

prey. The model is in the form of a system of delay differential equations. The novelty lies

in the incorporation of cost of the anti-predation response of the prey both in the offspring

reproduction (produce less) and the death of juveniles (high death rate due to less sufficient care

from the parent prey), as well as the adaptive defense level. We have theoretically analyzed the
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Figure 4.8: Steady state or oscillation of system (4.6) with varying k. Parameters are:

b0 = 3.07552, b1 = 4.33876, a = 0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 =
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Figure 4.10: Steady state or oscillation of system (4.6) with varying d1. Parameters are: b0 =

3.07552, b1 = 4.33876, a = 0.38976, p = 0.750396, s2 = 0.562070, s3 = 1.21206, τ =

0.12276, d2 = 0.552225, k = 18.31767, y = 4.8936, s1 = 0.01, d1 = 0.1 or 0.2.
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Figure 4.11: Steady state or oscillation of system (4.6) with varying y. Parameters are:

b0 = 3.07552, b1 = 4.33876, a = 0.38976, p = 0.750396, q = 0.2, s2 = 0.562070, s3 =
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model dynamics for two simpler cases, and numerically explored the full model in the general

case with focus on the impact that some key model parameters has on the long term behaviours

of solutions of the model.

Results show that, in addition to the maturation delay which has been found to destroy the

stability of an equilibrium and cause periodic oscillations in many delay differential equation

models, some other essential parameters can also affect the stability of an equilibrium, as

illustrated in Section 4. While more rigorous and thorough analysis is still needed to obtain

more qualitative and quantitative results about the full 3-d model, the numerical results based

on the framework of the model have already provided some important information on the role

that an anti-predator response may play in determining the long term population dynamics.

For example, in the case of a constant defense level, there may exist an optimal anti-predator

defense level, and in the adaptive defense level case, within the certain ranges of parameters,

periodic defense levels may be a choice. Most importantly, these results, together with those

recent field experimental results offered strong evidences of the significance of the fear effect

in predator-prey interactions. All these seem to suggest the incorporation of the fear effect

in existing predator-prey models, and consideration of such a new mechanism may lead to

interesting and significant findings. For example, our recent work [23] on a simpler model with

the fear effect offered an alternative way to eliminate the so-called ‘paradox of enrichment’.
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In the model, the predator population is assumed to remain as a constant. Although there

are numerous situations that fit in such a scenario, as we explained in the introduction, a case

where the predator population is not an constant may intrigue further extensions. However, the

corresponding model with non-constant predator population is obviously very challenging and

difficult to analyze. Furthermore, as far as the predator-prey interaction is concerned, spatial

effect is an important factor due to foraging behaviors of both prey and predators. This suggests

models with spatial dispersal, in addition to the spatial implicitly predation, anti-predator

defense of prey, and the corresponding cost on prey population. All the aforementioned possible

extensions are interesting, biologically important but yet mathematically challenging, and we

have to leave them for future research projects.
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Chapter 5

Pattern formation of a predator-prey
model with the cost of anti-predator
behaviors

5.1 Introduction

In ecological systems, spatially heterogeneous distributions of many species have been observed,

for example, patchiness of plankton in aquatic systems ([27]). Although such heterogeneity

of species may be attributed to unevenly distributed landscapes, it may also occur in a closely

homogeneous environment ([17, 27]). One interesting question is that what are the mecha-

nisms behind the spatial heterogeneity of a species in homogeneous environment? Generally,

movement or dispersal of a species and its interactions with other species may lead to pattern

formation, and predator-prey type is such an interaction.

Pattern formation of predator-prey systems has been studied extensively (see [3, 20, 24, 26]

for example). In general, if both prey and predators move randomly in habitats, prey-dependent

only functional responses, including the Holling type I, II, III functional responses, can’t

generate spatially heterogeneous distributions. In such systems, the density-dependent death

rate of predators or the Allee effect in prey’s growth plays a critical role in determining spatial

patterns ([19, 20]). On the other hand, competition between predators alone may allow pattern

formation in predator-prey systems, which includes ratio-dependent functional response, the

Beddington-DeAngelis functional response, and their generalizations ([3, 24, 26]).

In addition to pure random movement of prey and predators, directed movement of predators

has attracted much attention in recent years and has inspired numerous researches about the

so called prey-taxis problems (see [1, 8, 16, 28, 29, 32] for example). A common feature of
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the models in the aforementioned papers lies in that the movement of predators is affected by

the density gradient of prey, in addition to random movement. In analogy to the well-known

chemotaxis, predators are attracted by prey-taxis and tend to move to habitats with higher prey

density. Such biased movement allows predators to forage prey more effectively. In [1, 28],

the global existence of weak solution and classical solution were proved respectively. As an

extension of [1, 28], the authors in [32] proved the global existence of classical solution with

more general local reaction terms and established the uniform persistence of the solutions as

well. In [16], pattern formation was studied under various functional responses between prey

and predators. The authors concluded that pattern formation may occur if the prey-taxis was

small and certain functional responses or growth functions were chosen ([16]).

Besides the fact that predators forage prey, prey may avoid predators actively as well. Almost

all species perceive predation risk to some extent and avoid predation by showing various anti-

predator behaviors ([9, 10]). More importantly, such anti-predator behaviors carry a cost on the

reproduction success of prey ([33]). Zanette et al. [33] experimentally verified that anti-predator

behaviors alone caused a 40% reduction in the reproduction rate of song-sparrows when all

direct predations were eliminated (see [30] for a thorough discussion about the cost of fear).

Recent work of Ryan and Cantrell [23] modelled avoidance behaviors of prey in an intraguild

predation community with heterogeneous distribution of resources. Biktashev et al. [8] also

considered avoided prey but in a homogeneous environment and identified several patterns

numerically. However, the cost of anti-predator behaviors of prey is ignored in the models of

Ryan and Cantrell and Biktashev et al. [8, 23].

In this paper, we extend the model based on Wang et al. by explicitly incorporating spatial

effects, where spatial structures are ignored in [30]. We study how the anti-predator behaviors

and the corresponding cost would affect the spatial distribution of prey and predators. In Section

2, the model formulation including the so-called predator-taxis is proposed. In Section 3, the

global existence of classical solution is established. In Section 4, pattern formation is analyzed

both theoretically and numerically for different functional responses. We end the paper in

Section 5 by giving conclusions and discussions.

5.2 Model Formulation

Let u(x, t) and v(x, t) represent the densities of prey and predators at position x and time t

respectively. As discussed in the introduction, we assume that predators move randomly to

forage prey but prey can perceive predation risk and act accordingly to avoid predators actively

([9, 10]). As a consequence, the dispersal of prey is a directed movement towards lower density

of predators in addition to random movement. Ideally, the avoidance behavior of prey leads to a
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repulsion of prey to lower gradient of predator density. Therefore, the flux of prey is

Ju = −du ∇u − γ(u, v) u∇v,

and the flux of predators is

Jv = −dv ∇v,

where γ(u, v) ≥ 0 represents the repulsion effect of the predator-taxis. Hence, a general reaction-

diffusion-advection model with avoidance behaviors of prey is

ut = ∇ · (du∇u + γ(u, v) u∇v) + f (u, v),

vt = dv∆v + g(u, v),
(5.1)

where f (u, v) and g(u, v) represent local interactions of predators and prey, du, dv are random

diffusion rates of prey and predators respectively, γ(u, v) is the sensitivity of prey to predation

risk (i.e. predator-taxis). Here, we assume that

γ(u, v) = β(u)α(v). (5.2)

Taking into account the volume filling effect ([12, 13, 22]) for γ(u, v), we adopt α(v) = α as a

constant and

β(u) =

 1 −
u
M
, if 0 ≤ u ≤ M,

0, if M < u,
(5.3)

where M measures the maximum number of prey that a unit volume can accommodate. If the

number of prey goes beyond the volume M, prey can no longer squeeze into nearby space and

therefore the tendency of directed movement goes to 0. For local reaction terms, we consider

f (u, v) = f0(k0 α, v) r0 u − d u − a u2 − u p(u, v) v,

g(u, v) = v (−m(v) + c u p(u, v)) ,
(5.4)

where

f0(k0 α, v) =
1

1 + k0 α v
(5.5)

satisfies the same hypotheses as f (k, v) in [30] with k0 as a nonnegative constant. In fact,

this function models the cost of anti-predator responses in the reproduction rate of prey. The

successful reproduction rate of prey decreases if the defense level or equivalently predator-taxis

sensitivity α increases. Similarly, higher predator density also decreases the local reproduction

rate of prey because it would be easier for the prey to perceive predation risk and adopt

corresponding avoidance behaviors in the presence of more predators. Here k0 is a constant

which reflects the magnitude that anti-predators behaviors exert on the local reproduction of
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prey. In (5.4), d is the natural death rate of prey, a represents the death due to intra-species

competition, p(u, v) denotes the functional response between predators and prey, and m(v) is the

death rate of predators. We consider either density-independent death rate or density-dependent

death rate of predators, i.e.

m(v) = m1 or m(v) = m1 + m2 v. (5.6)

As indicated in [19, 20], the density dependence of predator mortality plays a critical role in

pattern formation under certain situations.

We assume that individuals live in an isolated bounded domain Ω ∈ Rn with homogeneous

environment and ∂Ω is smooth. Hence, no-flux boundary condition is imposed

Ju · n = du
∂u
∂µ

+ γ(u, v) u
∂v
∂µ

= 0,

Jv · n = dv
∂v
∂µ

= 0,
(5.7)

where µ is the unit outward normal vector at ∂Ω. In fact, no-flux boundary condition (5.7) is

equivalent to Neumann boundary condition

∂u
∂µ

= 0,
∂v
∂µ

= 0, ∀x ∈ ∂Ω. (5.8)

Therefore, by (5.1), (5.2), (5.4) and (5.8), we obtain a spatial model with the avoidance behaviors

of prey and the cost of anti-predator behaviors, given by the following system

∂u
∂t

= du ∆u + α∇ · (β(u) u∇v) +
r0 u

1 + k0 α v
− d u − a u2 − u p(u, v) v,

∂v
∂t

= dv ∆v + v (−m(v) + c u p(u, v)) ,

∂u
∂µ

= 0,
∂v
∂µ

= 0, ∀x ∈ ∂Ω,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,

(5.9)

where u0(x), v0(x) are continuous functions.

5.3 Global existence of classical solution

First, we establish the global existence of classical solutions of (5.9). It is clear that the carrying

capacity of prey in (5.9) is K = (r0 − d)/a. By [22], we assume that

M >
r0 − d

a
, (5.10)
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which is reasonable because K measures the maximum capacity of the environment but M

merely represents the maximum number that one unit volume can be filled by prey. Notice that

β(u) is not differentiable at u = M. In order to obtain classical solutions, similar to [31], we

make a smooth extension of β(u) by

β̄(u) =


> 1, u < 0,

β(u), 0 ≤ u ≤ M,

< 0, M < u.

(5.11)

By proving the global existence of classical solutions of system

∂u
∂t

= du ∆u + α∇ · (β̄(u) u∇v) +
r0 u

1 + k0 α v
− d u − a u2 − u p(u, v) v,

∂v
∂t

= dv ∆v + v (−m(v) + c u p(u, v)) ,

∂u
∂µ

= 0,
∂v
∂µ

= 0, ∀x ∈ ∂Ω,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,

(5.12)

we obtain the global existence of classical solutions of (5.9) because β(u) = β̄(u) if 0 ≤ u ≤ M

and we will show that u ∈ [0, M] later. Let ρ ∈ (n,+∞), then W1,ρ
(
Ω̄,R2

)
is continuously

embedded in C
(
Ω,R2

)
. We consider solutions of (5.12) in

X :=
{
ω ∈ W1,ρ

(
Ω,R2

)
|
∂ω

∂µ
= 0 on ∂Ω

}
.

Then we have the following lemma.

Lemma 5.3.1 The following statements hold:

(i) System (5.12) has a unique solution (u(x, t), v(x, t)) ∈ X defined on Ω × (0,T ) satisfying

(u, v) ∈ C((0,T ), X) ∩C2,1
(
(0,T ) × Ω̄,R2

)
, where T depends on initial data (u0, v0) ∈ X.

(ii) Define X1 = {(u, v) ∈ R2| 0 ≤ u ≤ M, v ≥ 0} at G ⊂ R2 such that X1 ⊂ G. If for every

G ⊂ R2 containing X1, (u, v) is bounded away from the boundary of G in L∞(Ω) norm for

t ∈ (0,T ), then T = ∞, meaning that the solution (u, v) exists globally.

Proof Let ω = (u, v)T. Then system (5.12) can be written as
ωt = ∇ · (a(ω)∇ω) + F (ω) in Ω × (0,+∞),

Bω = 0 on ∂Ω × (0,+∞),

ω(·, 0) = (u0, v0)T in Ω,

(5.13)
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where

a(ω) =

 du α β̄(u) u

0 dv

 , (5.14)

and

F (ω) =

(
r0 u

1 + k0 α v
− d u − a u2 − u p(u, v) v, v (−m(v) + c u p(u, v))

)T

,

Bω =
∂ω

∂n
.

(5.15)

Because eigenvalues of a(ω) are all positive, then (5.13) is normally elliptic ([5, 6]). Hence

local existence in (i) follows from Theorem 7.3 in [5]. Because (5.13) is an upper-triangular

system, global existence of solution in (ii) follows from Theorem 5.2 in [4].

From (ii) of Lemma 5.3.1, to prove the global existence of solutions, it remains to show that

(u, v) are bounded away from the boundary of G in L∞ norm.

Theorem 5.3.2 Assume that 0 ≤ u0 ≤ M, then the solution (u, v) satisfies u(x, t) ≥ 0, v(x, t) ≥ 0,

and it exists globally in time.

Proof Define the operator

Lu = ut − du ∆u − α∇(β̄(u) u∇v) −
r0 u

1 + k0 α v
+ d u + a u2 + p(u, v) u v. (5.16)

Because 0 ≤ u0, u = 0 is a lower solution of the equation. Plug in u = M into (5.16) to obtain

LM = −
r0 M

1 + k0 α v
+ d M + a M2 + p(M, v) M v

= M
(
d + a M + p(M, v) v −

r0

1 + k0 α v

)
.

(5.17)

If v ≥ 0, then we obtain

LM ≥ M (d + a M − r0) . (5.18)

Because of the restriction (5.10), choosing sufficiently large M gives

LM ≥ 0. (5.19)

In addition, we have
∂M
∂µ

= 0, M ≥ u0. (5.20)

By (5.19) and (5.20), we know that u = M is an upper solution of the u equation. Therefore, by

comparison principle of parabolic equations ([25]), we have

0 ≤ u ≤ M. (5.21)
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Now we prove the L∞ norm of v is bounded. Here we show only the proof for the case of

m(v) = m1 because the proof of the case where m(v) = m1 + m2 v is similar and is thus omitted.

Choose v(0) = v0 ≥ 0. Then it is obvious that v = 0 is a lower solution of the v equation, which

gives v ≥ 0. It remains to show that ‖v‖L∞(Ω) is bounded. Integrating the first equation of (5.12),

we obtain∫
Ω

ut dx =

∫
Ω

∇ ·
(
du ∇u + α β̄(u) u∇v

)
dx +

∫
Ω

(
r0 u

1 + k0 α v
− d u − a u2 − p(u, v) u v

)
dx

=

∫
∂Ω

(
du ∇u + α β̄(u) u∇v

)
· n dS +

∫
Ω

(
r0 u

1 + k0 α v
− d u − a u2 − p(u, v) u v

)
dx

=

∫
Ω

(
r0 u

1 + k0 α v
− d u − a u2 − p(u, v) u v

)
dx.

(5.22)

Similarly, integrating the second equation of (5.12) gives∫
Ω

vt dx =

∫
Ω

v (−m1 + c p(u, v) u) dx. (5.23)

Multiplying (5.22) by c and adding the resulting equation to (5.23) gives

d
dt

∫
Ω

(c u + v) dx =

∫
Ω

(
r0 c u

1 + k0 α v
− c d u − c a u2 − m1 v

)
dx

= c
∫

Ω

(
r0

1 + k0 α v
+ m1 − d − a u

)
u dx − m1

∫
Ω

(c u + v) dx

≤ c
∫

Ω

(r0 + m1) u dx − m1

∫
Ω

(c u + v) dx

≤ c |Ω|(r0 + m1) M − m1

∫
Ω

(c u + v) dx. (5.24)

By (5.24), we obtain

d
dt
‖c u + v‖L1 ≤ c |Ω|(r0 + m1) M − m1 ‖c u + v‖L1 (5.25)

From (5.25), we obtain that

lim
t→∞

sup ‖c u + v‖L1 ≤
c |Ω|(r0 + m1) M

m1
,

which shows that ‖c u + v‖L1 is bounded. From (5.12), the growth of v is dependent only on u,

(i.e. predators are specialist predators), which falls into “food pyramid” condition in [2]. Hence

by Theorem 3.1. in [2], the boundedness of ‖v‖L1 implies that of ‖v‖L∞ and this completes the

proof.
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5.4 Pattern Formation

Now we analyze the pattern formation of (5.9) with general reaction terms defined in (5.4).

Assume that (us, vs) is a spatially homogeneous steady state of (5.9). Let

u(x, t) = us + ε ũ(x, t), v(x, t) = vs + ε ṽ(x, t), (5.26)

where ε � 1. By substituting (5.26) into (5.9) with general reaction terms, equating first-order

terms with respect to ε and neglecting higher-order terms, we obtain the linearized system at

(us, vs) :
∂u
∂t

= du ∆u + α β(us) us ∆v + fu(us, vs) u + fv(us, vs) v,

∂v
∂t

= dv ∆v + gu(us, vs) u + gv(us, vs) v,
(5.27)

where u(x, t), v(x, t) are still used instead of ũ(x, t), ṽ(x, t) for notational convenience. The

linearized system (5.27) can be written as the matrix form:

∂ω

∂t
= D ∆ω + Aω, (5.28)

where

ω =

 u

v

 , D =

 du α β(us) us

0 dv

 , A =

 fu fv

gu gv

 .
By (5.28), the characteristic polynomial of the linearized system at (us, vs) is

|λ I + k2 D − A| = 0, (5.29)

where k ≥ 0 is the wave number ([21]). Expanding the left side of (5.29), we obtain that

λ2 + a
(
k2

)
λ + b

(
k2

)
= 0, (5.30)

where
a
(
k2

)
= (du + dv) k2 − ( fu + gv) ,

b
(
k2

)
= du dv k4 + (gu α β(us) us − fu dv − gv du) k2 + fu gv − fv gu.

(5.31)

Here in (5.30), λ = λ (k) are eigenvalues which determine the stability of the steady state (us, vs).

For k = 0, the two roots of (5.30) satisfy

λ0
1 + λ0

2 = fu + gv, λ0
1 λ

0
2 = fu gv − fv gu. (5.32)

Assume that

fu + gv < 0, fu gv − fv gu > 0, (5.33)
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meaning that the steady state (us, vs) is linearly stable when there is no spatial effect. Now for

k > 0, the two roots of (5.30) satisfy λ
k
1 + λk

2 = ( fu + gv) − (du + dv) k2,

λk
1 λ

k
2 = du dv k4 + (gu α β(us) us − fu dv − gv du) k2 + fu gv − fv gu.

(5.34)

Because of du > 0, dv > 0 and assumption (5.33), we obtain that λk
1 + λk

2 < 0 for all k = 1, 2 · · ·

from (5.34). Therefore, if λk
1 λ

k
2 > 0 for all k > 0, then (us, vs) remains stable. If λk

1 λ
k
2 < 0 for

some k > 0, then (us, vs) becomes unstable, and such diffusion driven instability is often referred

to as the Turing instability, which will lead to occurrence of spatially heterogeneous steady state,

implying formation of spatial patterns. Summarizing the above analysis, we have the following

Theorem.

Theorem 5.4.1 Assume (5.33) holds, spatial homogeneous steady state (us, vs) of (5.9) may

lose stability only if

gu α β(us) us − fu dv − gv du < 0, (5.35)

(gu α β(us) us − fu dv − gv du)2
− 4 du dv ( fu gv − fv gu) > 0 (5.36)

hold.

Remark 5.4.2 Under the assumption (5.33), fu gv − fv gu > 0, and hence, by Theorem 5.4.1,

pattern formation of (5.9) can not occur if

gu α β(us) us > fu dv + gv du. (5.37)

5.4.1 Linear functional response

Following above general analysis of pattern formation of spatial homogeneous equilibrium,

we now proceed to further detailed analysis when a particular functional response is chosen.

First, we analyze possible pattern formation of (5.9) with the linear functional response, where

p(u, v) = p in (5.9). Either for the density-independent death rate or for the density-dependent

death rate of predators in (5.6), system (5.9) admits several spatial homogeneous steady states.

For (5.9), in addition to a trivial equilibrium E0(0, 0), a semi-trivial equilibrium E1((r0 − d)/a, 0)

exists if r0 > d is satisfied. There exists a unique positive equilibrium E(ū, v̄) for either predator

death function in (5.6) if

r0 > d +
a m1

c p
(5.38)
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holds. However, formulas for E(ū, v̄) are different for each function, where
ū =

m1

c p
, v̄ =

(
α c d k0 p + aα k0 m1 + c p2

)
−
√

∆1

−2 k0 α p2 c
,

∆1 = 4α c k0 p2 (−c d p + c p r0 − a m1) + (−α c d k0 p − aα k0 m1 − c p2)2

(5.39)

if m(v) = m1 while
v̄ =

(
c p2 + a m2 + k0 α (d c p + a m1)

)
−
√

∆2

−2 k0 α (c p2 + a m2)
, ū =

m1 + m2 v̄
c p

,

∆2 = 4 k0 α (c p2 + a m2) (−c d p + c p r0 − a m1) + (−α c d k0 p − aα k0 m1 − c p2 − a m2)2

(5.40)

if m(v) = m1 + m2 v. Direct calculations show that pattern formation can not occur around any

constant steady state if the functional response is linear, which leads to the following proposition.

Proposition 5.4.3 Either for m(v) = m1 or for m(v) = m1 + m2 v, pattern formation can not

occur around any of the constant steady states E0, E1, and E(ū, v̄).

Proof Because the proofs for all steady states are similar, we show only the proof of non-

existence of pattern formation around E(ū, v̄) when m(v) = m1 here. Calculations give

fu = −a ū < 0, fv = ū
(
−

r0 k0 α

(1 + k0 α v̄)2 − p
)
< 0, gu = c p v̄, gv = 0. (5.41)

This immediately verifies (5.33), implying that E(ū, v̄) is locally stable if it exists when there is

no spatial effect. Further substitution of (5.41) also shows that (5.37) holds, and then there is no

pattern formation around E(ū, v̄), by Remark 5.4.2.

In fact, under additional conditions, we can prove that the unique positive equilibrium E(ū, v̄) is

globally stable if m(v) = m1 + m2 v.

Theorem 5.4.4 Under existence condition (5.38) for E(ū, v̄), with density-dependent death rate

m(v) = m1 + m2 v for the predator, E(ū, v̄) is globally asymptotically stable if
c p M > m1, 4 du dv v̄ > cα2 ū v∗2,

min
{
a,

m2

c

}
>

r0 k0 α

2 (1 + k0 α v̄)

(5.42)

hold, where v∗ = (c p M − m1)/m2 and ū, v̄ are given in (5.40).

Proof As indicated in the proof of Lemma 5.3.1, the L∞ norm of v(x, t) is bounded for either

m(v) = m1 or m(v) = m1 + m2 v. In fact, if the death rate of predators is the density-dependent

one, then a constant upper solution for the v equation exists. Define

F v = vt − dv ∆v − v (−m1 − m2 v + c p u) . (5.43)
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Then by substituting v = v∗ into (5.43), we obtain

F v∗ = −v∗ (−m1 − m2 v∗ + c p u) ≥ 0 (5.44)

because 0 ≤ u ≤ M. By the parabolic comparison principle ([25]), we obtain that v = v∗ is an

upper solution of v(x, t) if v0(x, t) ≤ v∗. Therefore, X := {(u, v) ∈ R2|0 ≤ u ≤ M, 0 ≤ v ≤ v∗} is

positive invariant for (5.9). Choose a Lyapunov functional as

V(u, v) =

∫
Ω

(∫ u

ū

u − ū
u

du +
1
c

∫ v

v̄

v − v̄
v

dv
)

dx. (5.45)

If (u, v) is the solution to system (5.9), then we obtain

dV(u, v)
dt

=

∫
Ω

(
u − ū

u
ut +

1
c

v − v̄
v

vt

)
dx

=

∫
Ω

u − ū
u

(
du ∆u + α∇ · (β(u) u∇v) +

r0 u
1 + k0 α v

− d u − a u2 − p u v
)

dx

+
1
c

∫
Ω

v − v̄
v

(dv ∆v + v(−m1 − m2 v + c p u)) dx.

(5.46)

Rearranging (5.46) by separating the reaction and dispersal terms gives

dV(u, v)
dt

= V1(u, v) + V2(u, v), (5.47)

where

V1(u, v) =

∫
Ω

u − ū
u

[du ∆u + α∇ · (β(u) u∇v)] +
v − v̄
c v

dv ∆v dx,

V2(u, v) =

∫
Ω

(u − ū)
(

r0

1 + k0 α v
− d − a u − p v

)
+

v − v̄
c

(−m1 − m2 v + c p u) dx.
(5.48)

By using Neumann boundary condition (5.8) and divergence theorem, we obtain that

V1(u, v) = −du

∫
Ω

∇

(u − ū
u

)
· ∇u dx −

dv

c

∫
Ω

∇v · ∇
(v − v̄

v

)
dx

− α

∫
Ω

β(u) u∇v · ∇
(u − ū

u

)
dx

≤ −du ū
∫

Ω

|∇u|2

u2 dx −
dv v̄

c

∫
Ω

|∇v|2

v2 dx + α ū
∫

Ω

β(u)
u
|∇u| |∇v| dx

= −

∫
Ω

XT A X

(5.49)

where

X =

 |∇u|

|∇v|

 , A =


du ū
u2 −

α ū β(u)
2 u

−
α ū β(u)

2 u
dv v̄
c v2

 .
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It is clear that V1(u, v) < 0 if A is a positive definite matrix, which is equivalent to show that the

trace and determinant of A are positive. The trace of A, which is tr A = (du ū)/(u2) + (dv v̄)/(2 v2)

is clearly positive. The determinant of A is

det A =
du dv ū v̄
c u2 v2 −

α2 ū2 β2(u)
4 u2 . (5.50)

From (5.50), we obtain that det A > 0 is equivalent to

4 du dv v̄ > cα2 ū v2 β2(u). (5.51)

Because 0 ≤ u ≤ M, 0 ≤ v ≤ v∗, a sufficient condition for (5.51) to hold is

f1 := 4 du dv v̄ > cα2 ū v∗2. (5.52)

Therefore, we obtain that

V1(u, v) = −

∫
Ω

XT A X ≤ 0 (5.53)

if (5.52) is satisfied.

Now we estimate V2(u, v) as

V2(u, v) =

∫
Ω

(u − ū)
(

r0

1 + k0 α v
− a u − p v −

(
r0

1 + k0 α v̄
− a ū − p v̄

))
+

v − v̄
c

(m2 v̄ − c p ū − m2 v + c p u) dx

= −a
∫

Ω

(u − ū)2 dx −
m2

c

∫
Ω

(v − v̄)2 dx −
∫

Ω

r0 k0 α

1 + k0 α v̄
(u − ū)(v − v̄)

1 + k0 α v
dx

≤ −a
∫

Ω

(u − ū)2 dx −
m2

c

∫
Ω

(v − v̄)2 dx +

∫
Ω

r0 k0 α

1 + k0 α v̄
1

1 + k0 α v
|(u − ū)||(v − v̄)| dx

≤ −a
∫

Ω

(u − ū)2 dx −
m2

c

∫
Ω

(v − v̄)2 dx +
r0 k0 α

2 (1 + k0 α v̄)

∫
Ω

(
(u − ū)2 + (v − v̄)2

)
dx

= −

(
a −

r0 k0 α

2 (1 + k0 α v̄)

) ∫
Ω

(u − ū)2 dx −
(
m2

c
−

r0 k0 α

2 (1 + k0 α v̄)

) ∫
Ω

(v − v̄)2 dx

≤ 0
(5.54)

if

f2 := min
{
a,

m2

c

}
>

r0 k0 α

2 (1 + k0 α v̄)
(5.55)

holds. From (5.54), under (5.55), the only possibility such that V̇(u, v) = 0 is (u, v) = (ū, v̄).

Hence, by the LaSalle invariance principle ([18]), we obtain the global stability of E(ū, v̄) if

(5.42) holds.
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By checking conditions in (5.42), we can not obtain an explicit formula for the predator-taxis

sensitivity α due to the complex expressions of α in E(ū, v̄). Hence, we employ numerical

simulations to explore the role that α plays in global stability of E(ū, v̄) by testing the parameter

dependence of α in (5.52) and (5.55). As shown in Figure 5.1, we see that E(ū, v̄) is globally

asymptotically stable if α is small. Similarly, by examining the impact of k0 on the global

stability of E(ū, v̄), we observe that E(ū, v̄) is globally asymptotically stable if k0 is small, as

indicated in Figure 5.2. In biological interpretation, Figures 5.1 and 5.2 show that prey and

predators will tend to a steady state if prey are less sensitive to perceive predation risk or the

cost of anti-predator defense on the local reproduction rate of prey is small, regardless of spatial

effect, provided that the linear functional response is adopted.
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Figure 5.1: Conditions of global stability of E(ū, v̄) when α varies with m(v) = m1 + m2 v and

p(u, v) = p. Parameters are: r0 = 5, a = 1, d = 0.2, p = 0.5, c = 0.5, m1 = 0.3 m2 = 1, M =

10, du = 1, dv = 2, k0 = 1.

5.4.2 The Holling-type II functional response

Now we analyze possible pattern formation of system (5.9) with the Holling type II functional

response ([14, 15]) i.e.,

p(u, v) =
p

1 + q u
. (5.56)

For general death function of predators defined in (5.6), a trivial equilibrium E0(0, 0) always

exists and a semi-trivial equilibrium E1((r0 − d)/a, 0) exists if r0 > d holds. If the death function
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Figure 5.2: Conditions of global stability of E(ū, v̄) when k0 varies with m(v) = m1 + m2 v and

p(u, v) = p. Parameters are: r0 = 5, a = 1, d = 0.2, p = 0.5, c = 0.5, m1 = 0.3 m2 = 1, M =

10, du = 1, dv = 2, α = 0.5.

of predators is density-independent, i.e. m(v) = m1, a unique positive equilibrium E(ū, v̄) exists

if

c p > m1 q and r0 − d >
a m1

c p − m1 q
(5.57)

hold, where

ū =
m1

c p − m1 q
, v̄ =

−a2 −

√
a2

2 − 4 a1 a3

2 a1
,

a1 = −k0 α (c p − m1 q)2,

a2 = −α c2 d k0 p + α c d k0 m1 q − aα c k0 m1 − c2 p2 + 2 c m1 p q − m2
1 q2,

a3 = −c (c d p − c p r0 − d m1 q + m1 q r0 + a m1).

(5.58)

Calculations indicate that pattern formation can not occur around any of these steady states

E0, E1, and E(ū, v̄) if m(v) = m1, which is shown in the following proposition.

Proposition 5.4.5 Choose the functional response in (5.56) for (5.9). If the death function of

predators is density-independent, then pattern formation can not occur around all the steady

states E0, E1, and E(ū, v̄) of system (5.9).
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Proof Here we only show the proof for the unique positive equilibrium E(ū, v̄) because the

proofs for E0, E1 are similar and are thus omitted. Direct calculations lead to

fu = ū
(

p q v̄
(1 + q ū)2 − a

)
, fv = −

r0 k0 α ū
(1 + k0 α v̄)2 −

p ū
1 + q ū

,

gu =
c p v̄

(1 + q ū)2 , gv = −m1 +
c p ū

1 + q ū
.

(5.59)

By substituting ū, v̄ in (5.58) into (5.59), we obtain that fv < 0, gu > 0, gv = 0. Then (5.33) can

be simplified to fu < 0, and hence, (5.37) holds and therefore, pattern formation is impossible to

occur around E(ū, v̄).

Now we proceed to analyze the case where the death function of predators is the density-

dependent one in (5.6). Similar analyses to that in Proposition 5.4.5 show that there is no

pattern formation around E0 and E1. For the positive equilibrium E(ū, v̄) when m(v) = m1 +m2 v,

explicit formula of E(ū, v̄) can not be obtained due to the complexity. However, under the

extra conditions in (5.57), the existence of at least one positive equilibrium E(ū, v̄) of (5.9) is

guaranteed, as stated in the following lemma.

Lemma 5.4.6 If m(v) = m1 + m2 v, then there exists at least one positive equilibrium E(ū, v̄) for

(5.9) if (5.57) holds.

Proof From (5.9), the positive equilibrium E(ū, v̄) satisfies

ū =
m1 + m2 v̄

(c p − m1 q) − m2 q v̄
. (5.60)

By (5.60), the positivity of ū requires that v̄ < v̄max, where v̄max is defined by

v̄max =
(c p − m1 q)

m2 q
. (5.61)

In addition, v̄ is determined by

L(v̄) := a1 v̄4 + a2 v̄3 + a3 v̄2 + a4 v̄ + a5 = 0, (5.62)

where

a1 = −α k0 m2
2 q2, a2 = m2 q (2α c k0 p − 2α k0 m1 q − m2 q),

a3 = −(c2 p2 + ((−d m2 − 2 m1 p) q + a m2) c + q2 m2
1) k0 α + 2 q m2 (c p − m1 q),

a4 = (−α d k0 p − p2) c2 + (((α d k0 + 2 p) m1 + m2 (d − r0)) q − a (α k0 m1 + m2)) c − q2 m2
1,

a5 = −c ((−d q + q r0 + a) m1 + c p (d − r0)).
(5.63)



117

By substituting v̄ = 0 into (5.62), we obtain

L(v̄ = 0) = a5 > 0⇔ (c p − m1 q)(r0 − d) > a m1, (5.64)

which is equivalent to (5.57). Moreover, substituting v̄ = v̄max into (5.62) gives

L(v̄ = v̄max) = −
a c2 p (α c k0 p − α k0 m1 q + m2 q)

m2 q2 < 0 (5.65)

if (5.57) holds. Therefore, by the intermediate value theorem, there exists at least one v̄ ∈

[0, v̄max] such that L(v̄) = 0. Hence, the existence of at least one positive equilibrium E(ū, v̄) is

guaranteed if (5.57) holds.

When E(ū, v̄) exists under m(v) = m1 + m2 v, we employ numerical simulations to examine

how α would change the stability of E(ū, v̄) when spatial effects exist and generate possible

spatial heterogenous patterns. Figure 5.3 indicates that if α is large, the population of both

prey and predators tend to a spatial homogeneous steady state. However, if α is small, spatial

heterogenous pattern appears, as indicated in Figure 5.4. Biologically, weak prey sensitivity to

predation risk is an underlying mechanism for generating spatial patterns in the predator-prey

system. Notice that anti-predator behaviors of prey also lead to a cost on the local reproduction

of prey. However, the magnitudes of impact that anti-predator behaviors exert on the dispersal of

prey and on the local reproduction of prey may be different. Therefore, we also test the role that

k0 plays in predator-prey system. By increasing the value of k0 to k0 = 20 while holding other

parameters in Figure 5.4 unchanged, we obtain a figure similar to Figure 5.3 (omitted). Further

check by substituting parameters into (5.35) and (5.36) gives a contradiction, which confirms

the non-existence of pattern formation. Therefore, we conclude that large cost of anti-predator

response of prey in its reproduction has a stabilizing effect by excluding the appearance of

pattern formation and ensures the stability of the positive spatial homogeneous steady state.

5.4.3 Ratio-dependent functional response

In this section, we analyze (5.9) with the ratio-dependent functional response, i.e.

p(u, v) =
b1

b2 v + u
(5.66)

again with the predator death rate functions given in (5.6). For either death function of

predators, system (5.9) with (5.66) admits a spatial homogeneous semi-trivial equilibrium

E1 ((r0 − d)/a, 0) , which exists if r0 > d. Direct calculations show that pattern formation can

not occur around E1. The proof is similar to the proof in Proposition 5.4.5 and is omitted here.



118

(a) u(x, t) (b) v(x, t)

Figure 5.3: Spatial homogeneous steady states of u, v with the Holling type II functional

response and density-dependent death function of predators when α is large. Parameters are:

r0 = .8696, d = .1827, a = .6338, p = 6.395, q = 4.333, m1 = 0.72e − 2, m2 = .9816, c =

.2645, du = 0.2119e − 1, dv = 1.531, α = 12, k0 = 0.1e − 1, M = 10, L = 4.

(a) u(x, t) (b) v(x, t)

Figure 5.4: Spatial heterogeneous steady states of u, v with the Holling type II functional

response and density-dependent death function of predators when α is small. Parameters are:

r0 = .8696, d = .1827, a = .6338, p = 6.395, q = 4.333, m1 = 0.72e − 2, m2 = .9816, c =

.2645, du = 0.2119e − 1, dv = 1.531, α = 8, k0 = 0.1e − 1, M = 10, L = 4.
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5.4.3.1 With density independent death rate for the predator

Consider the case with m(v) = m1 first for simplicity. A unique positive equilibrium E(ū, v̄)

exists when m(v) = m1 if

c b1 > m1 and r0 − d >
c b1 − m1

c b2
, (5.67)

where
ū =

m1 b2 v̄
c b1 − m1

, v̄ =
−a2 −

√
a2

2 − 4 a1 a3

2 a1
,

a1 = −k0 α a m1 b2
2 c, a2 = −k0 α (m1 − c b1)2 − c b2 (a m1 b2 + k0 α d (c b1 − m1)) ,

a3 = −(c b1 − m1) ((c b1 − m1) + c b2 (d − r0)) .

(5.68)

Assume E(ū, v̄) exists and we analyze necessary conditions for pattern formation around E(ū, v̄).

First consider a special case where prey avoid predation towards lower gradient of predator

density but there is no cost on the reproduction success of prey (i.e. k0 = 0 in (5.9)). When

k0 = 0, ū, v̄ are simplified to

ū =
c b2 (r0 − d) − (c b1 − m1)

b2 a c
, v̄ =

(c b1 − m1) (c b2 (r0 − d) − (c b1 − m1))
a m1 c b2

2

, (5.69)

which do not involve α. In this case, substituting (5.69) into (5.35) and (5.36) gives the following

proposition.

Proposition 5.4.7 When (5.67) holds and k0 = 0, pattern formation around E(ū, v̄) may occur

if

r0 − d >
(c b1 − m1)(c b1 + m1 − c b2 m1)

b1 b2 c2 , (5.70)

α <
fu dv + gv du − 2

√
du dv ( fu gv − fv gu)

gu β(ū) ū
(5.71)

hold.

Proof Direct calculations show that at E(ū, v̄), we have

fu = ū
(
−a +

b1 v̄
(b2 v̄ + ū)2

)
, fv = ū

(
−

b1

b2 v̄ + ū
+

b1 b2 v̄
(b2 v̄ + ū)2

)
,

gu =
c b1 b2 v̄2

(b2 v̄ + ū)2 , gv = −
c b1 b2 ū v̄
(b2 v̄ + ū)2 .

(5.72)

Substituting (5.72) into (5.35) and (5.36) gives
α <

fu dv + gv du

gu β(ū)ū
,

α <
fu dv + gv du − 2

√
du dv ( fu gv − fv gu)

gu β(ū) ū
,

(5.73)
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which leads to (5.71). Moreover, (5.33) needs to be satisfied to guarantee the local stability of

E(ū, v̄) without spatial effect. From (5.72), it is clear that λ0
1 λ

0
2 > 0 is always satisfied if E(ū, v̄)

exists and λ0
1 + λ0

2 < 0 gives (5.70).

Proposition 5.4.7 implies that when there is no cost of anti-predator defense on the repro-

duction success of prey, small predator-taxis sensitivity α may lead to pattern formation around

E(ū, v̄). Taking α as a bifurcation parameter, then bifurcation from the spatial homogeneous

steady state E(ū, v̄) to a spatial heterogeneous steady state occurs at

αc =
fu dv + gv du − 2

√
du dv ( fu gv − fv gu)

gu β(ū) ū
. (5.74)

By choosing parameter values as shown in Figure 5.5 and substituting them into (5.74), we

obtain the critical value of bifurcation αc = 9.874. Figure 5.5 shows that if α > αc, local stability

of ū, v̄ remains even if spatial effects exist. Notice that for model (5.9), a bounded domain Ω is

considered. Therefore, conditions (5.70) and (5.71) only give necessary conditions of pattern

formation around E(ū, v̄). To proceed with more detailed analysis, consider a one-dimensional

domain [0, L] with no-flux boundary condition, where the wave number k can be expressed

explicitly as k = (n π)/L with n = 0, ±1, ±2 · · · . From (5.31), the instability of E(ū, v̄) may

only occur if b(k2) changes from positive to negative for some k > 0 such that

k2
1 < k2 < k2

2 (5.75)

where

k2
1 =
− (gu α β(ū)ū − fu dv − gv du) −

√
∆

2 du dv
,

k2
2 =
− (gu α β(ū)ū − fu dv − gv du) +

√
∆

2 du dv
,

∆ = (gu α β(ū) ū − fu dv − gv du)2
− 4 du dv ( fu gv − fv gu) .

(5.76)

Equivalently, (5.75) in terms of modes n becomes

n2
1 < n2 < n2

2, (5.77)

where n1 = (k1 L)/π, n2 = (k2 L)/π. For a bounded domain, the wave number is discrete ([21]).

Therefore, the critical value of bifurcation αc = 9.874 we obtained above may not be the actual

bifurcation value because an integer n satisfying (5.77) may not exist. However, by choosing

parameters in Figure 5.6, we obtain that n1 = 0.6177, n2 = 8.0317, which admits at least one

integer n such that (5.77) is satisfied. Hence, for this parameter set, conditions (5.70) and (5.71)

are in fact sufficient and necessary conditions for pattern formation. With parameters in Figure
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5.6, positive equilibrium E(ū, v̄) loses stability for some spatial modes and heterogeneous spatial

patterns emerge.

Now we analyze the case where k0 , 0, i.e. there exists cost on the reproduction rate of

prey due to anti-predator behaviors of prey. Noticing from (5.68) that ū and v̄ contain α if

k0 , 0. Still regarding α as a bifurcation parameter in the following analysis but with k0 , 0,

an explicit formula of α can not be obtained due to the complexity of (5.68). Therefore, we

employ numerical simulations to explore the role that α plays in pattern formation when k0 , 0.

By choosing parameters in Figure 5.7, conditions in (5.33) are satisfied. Furthermore, the solid

line in Figure 5.7 corresponds to (5.35) and the dashed line in Figure 5.7 represents (5.36). It is

clear that α should satisfy α > α1 = 0.2979,

α > α2 = 0.5277 or α < α3 = 0.1833
(5.78)

to ensure the pattern formation of E(ū, v̄). Hence, we obtain that α > α2 is a necessary condition

for diffusion-taxis-driven instability of E(ū, v̄) by (5.78). We conjecture that α > α2 is also

a sufficient condition. Indeed, numerical simulations support this conjecture, implying that

α = α2 is the bifurcation value for pattern formation. Figure 5.8 confirms that if α is relatively

small, the density of prey and predators tend to a spatial homogeneous steady state eventually.

However, if we increase the value of α until it passes the critical bifurcation value α = α2, then

spatial heterogeneous steady state emerge, as shown in Figure 5.9.

By comparing the two cases where k0 = 0 and k0 , 0, we find some interesting distinctions

between the two cases. If k0 = 0, then prey avoid predators by moving towards lower predator

density locations but there is no cost of anti-predator behaviors on the local reproduction success

of prey. In this circumstance, small predator-taxis leads to instability of spatial homogeneous

steady state of predator-prey system, which eventually form spatial heterogeneous patterns.

Similar results have been obtained in [16], in which the opposite scenario where prey move

randomly but predators chase prey by moving towards higher prey density gradient in addition

to random diffusion was studied. In [16], by considering the same ratio dependent functional

response between prey and predators, the authors concluded that spatial pattern formation may

occur if the prey-taxis was small. However, in contrast to the case where k0 = 0 or the similar

conclusion in [16], if k0 , 0, (i.e. the cost of anti-predator response is incorporated), analyses

above show that large predator-taxis may result in spatial pattern formation. Biologically, when

the cost of anti-predator behaviors exists, strong anti-predator behaviors of prey have a destabi-

lizing effect by destroying the stability of the uniformly distributed equilibrium, and giving rise

to spatial non-homogeneous patterns. On the other hand, weak anti-predator behaviors of prey

have a stabilizing effect in predator-prey system by excluding the emergence of spatial pattern
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formation. Notice that stronger anti-predator behaviors of prey also carry larger cost on the

reproduction success of prey. In order to examine the impact that the cost of avoidance behaviors

of prey exerts on spatial distribution of prey and predators, we also conduct simulations by

varying the value of k0. Decreasing the value of k0 while holding other parameters in Figure

5.9 unchanged gives Figure 5.10, which shows that solutions tend to a homogeneous steady

state. Further computation confirms that small k0 leads to the violation of conditions (5.35) and

(5.36), which excludes the possibility of pattern formation. In biological interpretation, small

cost of anti-predator behaviors has a stabilizing effect by converting a spatial heterogeneous

steady state into a spatial homogeneous one if the functional response between predators and

prey is ratio dependent.

We also point out here that in [3], the authors analyzed pattern formation of a predator-prey

system where both prey and predators disperse randomly. By using numerical simulations, and

considering the same ratio-dependent functional response, the authors concluded that the most

possible Turing pattern occurred at places where the growth rate of prey and the death rate of

predators were similar ([3]). As a special case of (5.9), we also analyze the model

∂u
∂t

= du ∆u +
r0 u

1 + k0 α v
− d u − a u2 −

b1 u v
b2 v + u

,

∂v
∂t

= dv ∆v + v
(
−m1 +

c b1 u
b2 v + u

)
.

(5.79)

As shown in (5.79), different from model (5.9), prey have no directed movement but disperse

randomly in the habitat. However, in local reaction between prey and predators, the cost of

anti-predator behaviors still exists and the reproduction success of prey is reduced as a result.

For notational convenience, let k1 = k0 α, which represents the level of anti-predator behaviors.

Higher level of anti-predator defense of prey (i.e. larger value of k1) leads to lower reproduction

rate of prey. Again similar to the analysis above when k0 , 0, we conduct numerical simulations

to analyze the role that k1 exerts in pattern formation. By plotting (5.35) and (5.36) with respect

to varying k1, a figure which is very similar to Figure 5.7 is obtained, indicating that large k1 may

lead to pattern formation. Further numerical simulations of (u(x, t), v(x, t)) over time and space

confirm that spatial heterogeneous patterns are formed if k1 is large, which are similar to Figures

5.6(a) and 5.6(b) respectively and are thus omitted. The above analyses of (5.79) indicate

that small cost of anti-predator behaviors has a stabilizing effect on predator-prey system by

excluding the possibility of Turing bifurcation when both prey and predators move randomly.

Different from [3], by incorporating the cost of fear into modelling, Turing instability may or

may not occur when birth rate of prey r0 and death rate of predators m1 are similar, depending

on the value of k1 indeed.



123

5.4.3.2 With density dependent death rate for the predator

Now we proceed to the case where the death function of predators is density dependent, where

m(v) = m1 + m2 v. The existence of positive equilibrium is shown in the following lemma.

Lemma 5.4.8 If m(v) = m1 + m2 v, then at least one positive equilibrium E(ū, v̄) exists if (5.67)

holds.

Proof From (5.9), it is obvious that ū satisfies

ū =
b2 v̄ (m2 v̄ + m1)

(b1 c − m1) − m2 v̄
. (5.80)

Obviously, the existence of ū requires that

v̄ <
b1 c − m1

m2
:= v̄max, (5.81)

where b1 c > m1 holds by (5.67). Moreover, v̄ is determined by

F(v̄) := a1 v̄3 + a2 v̄2 + a3 v̄ + a4 = 0, (5.82)

where

a1 = −α k0 m2 (a b2
2 c + m2),

a2 = −m2
2 + (((b2 d + 2 b1) c − 2 m1) k0 α − a b2

2 c) m2 − aα b2
2 c k0 m1,

a3 = −α b1 k0 (b2 d + b1) c2 + (k0 m1 (b2 d + 2 b1)α − a b2
2 m1 + m2 (d − r0) b2 + 2 b1 m2) c

− α k0 m2
1 − 2 m1 m2,

a4 = −(b1 c − m1) (b2 c d − b2 c r0 + b1 c − m1).
(5.83)

From (5.83), a4 > 0 is equivalent to

(r0 − d) b2 c > b1 c − m1, (5.84)

which is implied by (5.67). Furthermore, substituting v̄ = v̄max into (5.82) gives

F(v̄max) = −
a b1 b2

2 c2 (b1 c − m1) (α b1 c k0 − α k0 m1 + m2)
m2

2

< 0 (5.85)

if b1 c > m1 is satisfied. Therefore, by the intermediate value theorem, there exists at least one

positive equilibrium E(ū, v̄) if (5.67) holds.

When E(ū, v̄) exists with m(v) = m1 + m2 v, we analyze possible pattern formation and conduct

numerical simulations, following the same procedures as in the previous case where m(v) = m1.
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Both theoretical and numerical results are similar to the previous case, in which strong anti-

predator behaviors (i.e. large α) induces a spatial heterogeneous steady state, while weak

anti-predators behaviors stabilize the system by converting solutions to spatial homogeneous

ones. Moreover, small cost of anti-predator behaviors on prey reproduction (i.e. small k0) may

also exclude the occurrence of pattern formation. The difference between the two cases where

m(v) = m1 and m(v) = m1 + m2 v lies in that for m(v) = m1 + m2 v, large k0 induces spatial

homogeneous but time-periodic solutions (Hopf bifurcation), as shown in Figure 5.11. However,

if m(v) = m1, increasing the value of k0 can not give time-periodically solutions but remain

spatial heterogeneous solutions. By further substituting parameters in Figure 5.11 into (5.33),

we find that large k0 leads to fu + gv > 0, which implies that time-periodic solutions emerge due

to Hopf bifurcation.

(a) u(x, t) (b) v(x, t)

Figure 5.5: Spatial homogeneous steady states of u, v when k0 = 0, α is large, m(v) = m1, and

p(u, v) = b1/(b2 v+u). Parameters are: r0 = 6.1885, d = 4.0730, a = 0.8481, b1 = 4.5677, b2 =

1.4380, m1 = 1.6615, c = 0.9130, α = 12, du = 0.0113, dv = 4.7804, M = 10, k0 = 0, L =

5.0212.

5.4.4 Beddington-DeAngelis functional response

In this section, we analyze possible pattern formation when p(u, v) in (5.9) is chosen as the

Beddington-DeAngelis functional response ([7, 11]), i.e.,

p(u, v) =
p

1 + q1 u + q2 v
. (5.86)

For either death function m(v) of predators in (5.6), a trivial equilibrium E0(0, 0) always exists

and a semi-trivial equilibrium E1((r0 − d)/a, 0) exists if r0 > d. Mathematical analyses show
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(a) u(x, t) (b) v(x, t)

Figure 5.6: Spatial heterogenous steady states of u, v when k0 = 0, α is small, m(v) = m1,

and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 6.1885, d = 4.0730, a = 0.8481, b1 =

4.5677, b2 = 1.4380, m1 = 1.6615, c = 0.9130, α = 5.1571, du = 0.0113, dv = 4.7804, M =

10, k0 = 0, L = 5.0212.
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Figure 5.7: Conditions of diffusion-taxis-driven instability of E(ū, v̄) with changing α when

k0 , 0, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 1.7939, d = 0.2842, a =

0.4373, b1 = 2.9354, b2 = 3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 =

8.0318, M = 10.
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(a) u(x, t) (b) v(x, t)

Figure 5.8: Spatial homogeneous steady states of u, v when k0 , 0, α is small, m(v) = m1,

and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 =

2.9354, b2 = 3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 = 8.0318, M =

10, α = 0.3, L = 2.6602.

(a) u(x, t) (b) v(x, t)

Figure 5.9: Spatial heterogenous steady states of u, v when k0 , 0, α is large, m(v) = m1,

and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 =

2.9354, b2 = 3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 = 8.0318, M =

10, α = 0.7957, L = 2.6602.



127

(a) u(x, t) (b) v(x, t)

Figure 5.10: Spatial homogeneous steady states of u, v when k0 is small, α , 0, m(v) = m1,

and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 =

2.9354, b2 = 3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 = 2, M =

10, α = 0.7957, L = 2.6602.

(a) u(x, t) (b) v(x, t)

Figure 5.11: Spatial homogeneous but temporal periodic solution u, v over time when m(v) =

m1 + m2 v, k0 is large, and p(u, v) = b1/(b2 v + u). Parameters are: r0 = 4.8712, d = .9235, a =

.9508, b1 = .3433, b2 = .6731, m1 = 0.228e − 1, m2 = .7908, c = .2959, du = .1516, dv =

8.5545, k0 = 10, α = 7.4798, M = 10, L = 10.
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that pattern formation can not occur around E0 or E1. Because the result is similar to the results

in previous sections and the analyses follow standard procedures, we omit the proof here. Due

to the complexity of the Beddington-DeAngelis functional response (5.86), pattern formation

around positive equilibrium is explored by numerical simulations. As shown in Figure 5.12 and

Figure 5.13 respectively, for the case where m(v) = m1, small α may induce pattern formation

but large α inhibits the emergence of spatial heterogeneous patterns. The simulation results

hold for either k0 = 0 or k0 , 0. Also, we obtain a figure which is very similar to Figure 5.12 by

increasing the value of k0 to k0 = 10 while holding other parameters in Figure 5.13 unchanged.

Biologically, it indicates that large cost of anti-predator behaviors on the reproduction of prey has

a stabilizing effect by converting a spatially heterogeneous steady-state to spatially homogeneous

one. The same conclusions hold for the case where m(v) = m1 + m2 v, for which we conduct

simulations and do not observe difference from the previous density-independent case.

(a) u(x, t) (b) v(x, t)

Figure 5.12: Spatial homogeneous steady states of u, v when m(v) = m1, k0 , 0, α is large, and

p(u, v) = p/(1 + q1 u + q2 v). Parameters are: r0 = .3558, d = 0.832e − 1, a = 0.106e − 1, p =

.6313, q1 = .4418, q2 = .3188, m1 = .4901, c = .4780, du = 0.324e − 1, dv = 3.7446, M =

100, α = 0.1, k0 = 1, L = 7.

5.5 Conclusions and Discussions

In this paper, we proposed a spatial predator-prey model with avoidance behaviors of prey and

the corresponding cost of anti-predator responses on the reproduction success of prey. The

focus is on the formation of spatial patterns. Various functional responses and both density-

independent and density-dependent death rates of predators were considered in the model
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(a) u(x, t) (b) v(x, t)

Figure 5.13: Spatial heterogeneous steady states of u, v when m(v) = m1, k0 , 0, α is small, and

p(u, v) = p/(1 + q1 u + q2 v). Parameters are: r0 = .3558, d = 0.832e − 1, a = 0.106e − 1, p =

.6313, q1 = .4418, q2 = .3188, m1 = .4901, c = .4780, du = 0.324e − 1, dv = 3.7446, M =

100, α = 0.01, k0 = 1, L = 7.

for analysis. Mathematical analyses show that pattern formation can’t occur if the functional

response is linear or if it is the Holling type II functional response with density-independent

death of predators. However, pattern formation may occur if the death rate of predators is

density-dependent with the Holling type II functional response. Moreover, functional responses

other than prey-dependent only ones, including ratio-dependent functional response and the

Beddington-DeAngelis functional response, may allow the emergence of spatial heterogeneous

patterns as well. Under conditions for pattern formation, the common point for the case with the

Holling type II functional response and the case where the functional response is chosen as the

Beddington-DeAngelis type is that small prey sensitivity to predation risk (i.e. small α) induces

spatial heterogeneous steady states while large α excludes pattern formation. In addition, large

cost of anti-predator behaviors on the reproduction rate of prey (i.e. large k0) has a stabilizing

effect by transferring spatial heterogeneous steady states into homogeneous ones. The case

where the functional response is a ratio-dependent one exhibits different mechanisms for pattern

formation, compared with other cases. For a special case where the prey avoid predation by

moving to habitats with lower predator density but the cost of such anti-predator behaviors

is ignored (i.e. k0 = 0), we obtain similar conclusions. However, if the cost of anti-predator

responses is incorporated, mathematical analyses give an opposite result. To elaborate, large

prey sensitivity to predation risk (i.e. large α) may lead to a spatially heterogeneous steady state

by destroying the local stability of a positive constant equilibrium while small α excludes the
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possibility of pattern formation. Moreover, different from other cases where large k0 stabilizes

system, in the case of ratio dependent functional response, small k0 inhibits the emergence of

pattern formation and stabilize a homogeneous equilibrium as well. Via both mathematical

analyses and numerical simulations, we may conclude that anti-predator behaviors of prey

and the cost on prey’s reproduction success have important impacts in pattern formation in

spatial predator-prey systems. Avoidance behaviors of prey and the cost of fear may have either

stabilizing effect or destabilizing effect, when they interplay with different functional responses.

In this paper, we mainly focused on modelling avoidance behaviors and the cost of anti-

predator behaviors on the reproduction of prey in a spatial predator-prey system. Therefore,

predators are assumed to move randomly in their habitats. For future extensions, it is possible to

incorporate a prey-taxis term, which describes a biased movement of predators to forage prey.

It is interesting to see how the repulsion and attraction effects work together and even more

interestingly, how they interplay with the cost of anti-predator behaviors. We leave these as

future work.
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Chapter 6

Conclusions and discussions

In this thesis, we studied two different effects between predator-prey interaction: direct effect

and indirect effect. To study direct effect, we proposed a two-patch model where prey are sessile

in each isolated patch but predators move between patches to forage prey. The dispersal strategy

of predators is assumed to be adaptive to maximize individual fitness. Explicit conditions for

predator persistence or extinction were obtained through persistence theory ([7, 19]). Numerical

simulations were conducted to explore the role that adaptive dispersal of predators plays

in predator-prey system. By numerical simulation, we observed that either weak or strong

adaptation of predators stabilizes the system if the population of prey and predators tend to a

steady state in one patch but tend to a limit cycle in the other patch. Moreover, torus bifurcation

was identified by numerical simulations when the population of prey and predators tend to limit

cycles in both patches. Via studying the model which incorporates the population dynamics and

adaptive dynamics together, we gained more insights of effects that adaptive strategy has on the

system.

To study the indirect effects in predator-prey interactions, we proposed three models, in-

cluding an ODE model, a DDE model and then a PDE model. As discussed in Chapter 1,

indirect effects have been experimentally observed in multiple field experiments ([1, 2, 3, 4, 5,

10, 11, 12, 14, 18, 20, 21]) and play an even more important role in determining the demography

of prey or predators but has been largely ignored in mathematical modelling. Therefore, we

proposed models to explore the role that the cost of avoidance behaviors plays in predator-prey

interaction.

In Chapter 3, as a first attempt of modelling the cost of fear, we proposed an ODE model,

which incorporates the cost of anti-predator behaviors in the birth rate of prey. It is well-known

that when the functional response between predators and prey is chosen as the Holling type II

functional response ([8, 9]), the positive equilibrium may lose stability and give rise to periodic

oscillations if the carrying capacity of prey increases to pass a critical value. However, the phase
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plane analysis shows that the limit cycle stays very close to the boundary such that a small

perturbation may lead to species extinction. This is referred to as the ‘paradox of enrichment’

([6, 13, 15, 16]). Mathematical analyses of our model showed that high levels of anti-predator

response inhibit the appearance of limit cycle and thus eliminate the ‘paradox of enrichment’.

However, if the level of anti-predator behaviors is relatively low, periodic oscillations may still

occur due to Hopf bifurcation. Analysis showed that Hopf bifurcation in our model can be both

supercritical and subcritical, which is different from the model without fear effect where Hopf

bifurcation is typically supercritical. The existence of subcritical Hopf bifurcation implies the

bi-stability in predator-prey system.

As an extension of the model in Chapter 3, we proposed a DDE model which divides prey

into two different stages and includes adult prey’s adaptive avoidance of predators. Mathematical

analyses showed that the positive equilibrium may lose stability if the maturation delay between

juvenile and adult prey increases but regain stability if the delay becomes very large. Numerical

simulations showed that either strong adaptation of adult prey or the large cost of anti-predator

behaviors destabilizes predator-prey interaction by giving rise to periodic oscillations. However,

large population of predators stabilizes the system by excluding periodic solutions. By numerical

simulations, we also observed that adult prey avoid predation more sensitively if population of

predators is larger and demonstrate weaker anti-predator behaviors if the cost of fear is larger.

In order to explore how the cost of anti-predator behaviors affects the spatial distribution of

prey and predators, we studied a spatial model with avoidance behaviors of prey and the cost of

fear in Chapter 5. For the spatial model, we considered a homogeneous environment and studied

the mechanisms that can give rise to spatial heterogeneous distributions. Both mathematical

and numerical analyses indicate that either small or large prey’s sensitivity to predation risk

may lead to pattern formation. Similarly, either small or large cost of anti-predator behaviors

stabilizes predator-prey system by inhibiting the appearance of pattern formation, depending on

the particular form of functional response.

In summary, by incorporating the avoidance behaviors of prey and the accompanying cost

of anti-predator behaviors into modelling, we obtained some interesting results that differ

from models ignoring the cost of fear. Mathematical and numerical simulations demonstrate

the effects that anti-predator behaviors have in predator-prey interactions, which give a more

thorough understanding of predator-prey systems.

For possible future research projects, we may consider a more complicated situation where

the predator population varies with time, in contrast to regarding the predator population as

a constant, which is an extension of the work in Chapter 4. Also, we noticed that ecological

systems in nature are very complicated and a single species may play both roles as prey and

predators in a food web. For example, an intraguild community was studied where prey and
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predator consume a common resource ([17]). It is interesting to examine how the cost of

anti-predator behaviors affects the food web, including the interaction among three species or

more. These remain as future topics and need further detailed examination.
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