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Abstract 

PDZ (PSD95/Disc Large/Zona Occludens) domain-containing proteins are scaffolding 

proteins that play important roles in regulating the activity of G protein-coupled receptors. 

Corticotropin Releasing Factor Receptor 1 (CRFR1) and Serotonin 2A Receptor (5-HT2AR) 

are two GPCRs that are commonly associated with mental disorders. Both receptors also 

contain a class I PDZ-binding motif at the carboxyl terminal tail. In the first chapter, we 

investigate the effects of CAL (CFTR-associated ligand) on regulating the trafficking and 

signaling of CRFR1. We demonstrate a role for CAL in inhibiting CRFR1 endocytosis, cell 

surface expression, and CRF-mediated ERK1/2 signaling via the CRFR1 PDZ-binding motif. 

Additionally, CAL can elicit its effects on CRFR1 by mediating the post-translational 

glycosylation of the nascent receptor at the Golgi apparatus. The second and third chapters 

focus on the MAGI (MAGUK with inverted orientation PDZ) proteins; MAGI-1, MAGI-2 and 

MAGI-3. We observe distinct functions for the MAGI proteins in regulating the trafficking 

and signaling of CRFR1 compared to that of 5-HT2AR. MAGI proteins can mediate CRFR1 

endocytosis via regulating β-arrestin recruitment to the receptor. No effect is observed on the 

basal plasma membrane expression of CRFR1 or CRF-stimulated cAMP formation in response 

to overexpression or knockdown of MAGI proteins. On the other hand, MAGI proteins 

regulate 5-HT2AR-stimulated inositol phosphate accumulation as well as surface expression 

levels but do not have an effect on the internalization of the receptor. MAGI proteins can also 

mediate ERK1/2 signaling activated by both CRFR1 and 5-HT2AR. We propose a 

compensatory mechanism of regulation between MAGI-1, MAGI-2 and MAGI-3 based on 

their similar functional roles. Our work characterizes the interactions between two different 

GPCRs and four PDZ proteins, further confirming the importance of this diverse family of 

scaffolding proteins and providing possible targets for specific drug design. 
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Chapter 1  

1 Introduction 

1.1 G Protein-Coupled Receptors 

G Protein-coupled Receptors (GPCRs) represent the largest receptor superfamily 

and regulate numerous physiological responses. These include neurotransmission, immune 

function, reproduction, cardiac function, metabolism, and homeostasis (Gurevich and 

Gurevich, 2008). The number of GPCRs in the human genome is estimated to be 800 to 

1000 and more than 40% of the currently prescribed drugs target GPCRs (Marchese et al., 

1999; Urs et al., 2014). GPCRs share a similar structure that consists of seven 

transmembrane α helical domains connected by three extracellular loops (ECLs) and three 

intracellular loops (ICLs), an extracellular N-terminal domain and an intracellular C-

terminal domain and they are also known as seven Transmembrane Domain Receptors 

(7TMRs). The extracellular and transmembrane regions of the receptor are involved in 

ligand binding while the intracellular domains are important for signal transduction and for 

feedback modulation of receptor function (Marchese et al., 1999). GPCRs can be bound 

and activated by a wide number of ligands such as photons of light, odorants, hormones, 

neurotransmitters, peptides, chemokines, amino acids and Ca2+ ions to name a few 

(Gurevich and Gurevich, 2008). GPCRs mediate their effects by coupling to a variety of 

heterotrimeric guanine nucleotide-binding proteins (G proteins). G proteins have two 

states; the inactive (GDP bound) and the active (GTP bound). Ligand binding to a receptor 

results in the exchange between GDP and GTP. This active G protein (GTP bound) 

dissociates into Gα subunit and Gβγ subunit. These dissociated subunits can mediate 

several downstream effectors such as adenylyl cyclases (AC), GPCR kinases (GRKs) and 

phospholipases and that ultimately leads to the activation of different signaling pathways. 

The compounds that bind GPCRs can be classified into four classes based on their 

effects. 1) Full agonists which by binding the receptor stabilize the active conformation 

and result in maximal receptor activity, 2) partial agonists which bind the receptor without 

causing maximal activity 3) inverse agonists which decrease the constitutive or 
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spontaneous activity of the receptor by stabilizing the inactive conformation of the receptor 

and 4) full antagonists block agonists and inverse agonists activity either by binding to the 

same binding site as the endogenous ligand (competitive) or binding to an allosteric site 

(non-competitive) (Luttrell, 2008; Prazeres and Martins, 2015). 

GPCRs are commonly classified into five major phylogenetic families. Those are 

rhodopsin (Class A), secretin (Class B), glutamate (Class C), adhesion and frizzled 

(Krishnan and Schioth, 2015; Prazeres and Martins, 2015). 

1.2 G Protein-Coupled Receptor Trafficking 

1.2.1 Anterograde Pathway (GPCR Biosynthesis) 

Anterograde trafficking (forward trafficking) of GPCRs can be defined as the 

synthesis of GPCRs at the endoplasmic reticulum (ER) followed by their transport from 

the ER to the plasma membrane (Fig. 1.1). Therefore, it is an essential checkpoint in 

determining the level of expression of the functional receptors at the surface and this in 

turn dictates the strength of the signal initiated by the receptor. This process is mediated by 

multiple factors including ER chaperones, Rab GTPases, receptor activity modifying 

proteins (RAMPs), exit motifs encoded by the receptor sequence and post-translational 

modifications (Wu, 2012). 

1.2.1.1 GPCR Synthesis at the Endoplasmic Reticulum 

GPCRs are plasma membrane proteins and like many other membrane proteins, 

they are synthesized via ribosomes at the membranes of the rough endoplasmic reticulum 

(ER). They undergo the first set of post-translational modifications at the ER and this 

facilitates their proper folding and maturation (Achour et al., 2008). Key factors are 

involved in regulating this process including molecular chaperones such as Bip, calnexin, 

calreticulin, ERp57, HSP70, PDI and GRP94. The interactions that occur between the 

newly synthesized polypeptides and those ER-proteins slow the folding process, prevent 

aggregation and stabilize the intermediate forms of proteins (Dupré et al., 2012).  
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Figure 1.1: Schematic representation of the Anterograde (Forward) Trafficking of a 

GPCR: The receptor is synthesized at the Endoplasmic Reticulum (ER) then transported 

via COPII vesicles to the Golgi apparatus. The receptor undergoes post-translational 

modifications to achieve proper folding before trafficking to the plasma membrane. 

Immature forms of the receptor are transported back from the Golgi apparatus to ER via 

COPI vesicles. Different Rab GTPases are involved in regulating the steps in the pathway. 
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In addition, in order for the receptor to form its native conformation, enzymatic 

processes are required to catalyze disulfide-bond formation or peptidyl-prolyl cis–trans 

isomerization. These ER processes represent a crucial quality control system to ensure 

proper folding of proteins and any misfolded polypeptides are sent for the proteasome for 

degradation (ER-associated degradation) (Achour et al., 2008; Jean-Alphonse and 

Hanyaloglu, 2011). 

1.2.1.2 GPCR Trafficking from ER to Golgi Apparatus 

Once the receptor is mature and properly folded, it traffics from the ER exit sites to 

the Golgi complex via COPII-coated vesicles. The interaction of GPCRs with the 

components of the COPII vesicles is mediated by ER export motifs expressed at their 

carboxyl-terminal tails. These motifs consist of either di-acidic residues (Asp-x-Glu, where 

x = any amino acid), pairs of aromatic residues (Phe-Phe, Tyr-Tyr or Phe-Tyr) or bulky 

hydrophobic residues (Leu-Leu or Ile-Leu) (Achour et al., 2008). This transport of the 

receptor through the ER-Golgi Intermediate Compartment (ERGIC) is facilitated by many 

different regulator proteins including COPI, Rab GTPases and ARF GTPases. Studies on 

GPCRs transport suggest that Rab1 plays a role in anterograde trafficking from ER to 

Golgi, while Rab2 regulate the retrograde trafficking from the Golgi apparatus back to the 

ER and Rab6 is important for GPCRs transport through the Golgi cisternae (Appenzeller-

Herzog and Hauri, 2006; Achour et al., 2008; Wu, 2012). Similar to Rab GTPases, ARF 

GTPases are also important and different members play different roles at distinct cellular 

compartments. ARF1 plays a role in both anterograde and retrograde trafficking by 

recruitment of the COPII complex proteins (Appenzeller-Herzog and Hauri, 2006; Wu, 

2012). 

1.2.1.3 GPCR Trafficking from Golgi to the Plasma Membrane 

The trans-Golgi network (TGN) is known to function as the sorting center for newly 

synthesized proteins where their final destination is determined between the plasma 

membrane, lysosomes or endosomes. The vesicles that regulate post-Golgi transport are 

believed to be clathrin-coated vesicles. The vesicles that are involved in protein transport 
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from the Golgi apparatus to lysosomes are composed of clathrin and the adaptor proteins 

GGAs (Golgi-associated, γ-adaptin homologous, ARF-interacting proteins). GGAs have 

four main domains to facilitate their function. An N-terminal VHS domain that recognizes 

the sorting signals on the carboxyl-terminal tail of the protein being transported, a GAT 

domain that interacts with ARF1, a hinge domain that recruits clathrin and the C-terminal 

GAE domain that binds to accessory proteins (Wu, 2012). On the other hand, the vesicles 

regulating cargo transport from the Golgi apparatus to the plasma membrane are unknown 

and it has been suggested that they could be large pleiomorphic carriers. However, studies 

show that post-Golgi trafficking to the plasma membrane is also highly regulated by Rab 

GTPases and conserved sorting motifs. Rab8 is important for the transport of 

transmembrane proteins and GPCRs specifically from the Golgi apparatus to the plasma 

membrane. It has been previously shown that using Rab8 mutants or knocking down Rab8 

expression results in reduced surface expression of the adrenergic receptors α2B-AR and 

β2-AR and retention of the receptors in the intracellular compartments (Dong et al., 2010; 

Wang and Wu, 2012). As for motifs, studies show an importance for the di-leucine (LL) 

residues at the carboxyl-terminal tail of certain family A GPCRs in plasma membrane 

expression (Schulein et al., 1998; Duvernay et al., 2004; Carrel et al., 2006; Sawyer et al., 

2010). It has been shown that this motif is highly conserved in α2B-AR, α1B-AR, β2-AR, 

angiotensin II type 1 receptor (AT1R), serotonin 5-HT1A and 5-HT1B receptors, vasopressin 

V2 receptor, and M1-muscarinc receptor and mutations lead to the retention of these 

receptors intracellularly and therefore reduced cell surface levels. In addition to the 

conserved motifs at the carboxyl-terminal end of GPCRs, studies illustrate an important 

role for the N-terminal end in GPCRs trafficking. Reports show that mutations of the N-

terminal YS motif in some adrenergic receptors results in their retention in the Golgi (Wu, 

2012). 

1.2.2 The Life Cycle of G Protein-Coupled Receptors 

1.2.2.1 GPCR Desensitization 

GPCR desensitization is defined as the reduced strength of receptor activity or 

responsiveness. The process is mainly initiated after a ligand binds to a receptor to activate 
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it. The mechanisms underlying GPCR signal attenuation include G-protein uncoupling 

from the phosphorylated receptor, receptor internalization to the intercellular 

compartments and receptor degradation. Depending on the receptor structure as well as the 

cellular environment, desensitization can vary from reduced activity to complete loss of 

signaling. G protein uncoupling occurs once the receptor is phosphorylated either by 

second messenger-dependent kinases (PKA and PKC) or by G protein-coupled receptor 

kinases (GRKs). These enzymes commonly phosphorylate threonine and serine residues 

on the intracellular loop or the carboxyl-terminal tail of the receptor (Ferguson, 2001). In 

addition, different GRKs can phosphorylate different sites on the receptor resulting in a bar 

code that dictates the fate of the receptor (Lefkowitz and Shenoy, 2005). 

1.2.2.2 GPCR Endocytosis 

GPCR endocytosis is an important process for the regulation of receptor levels at 

the plasma membrane and hence receptor activity. Different GPCR subtypes undergo 

internalization via various mechanisms. The classical common pathway for internalization 

requires the binding of an agonist to the receptor resulting in a conformational change that 

leads to receptor phosphorylation by GRKs and β-arrestin recruitment (Ferguson and 

Caron, 1998) (Fig. 1.2). When β-arrestin binds the receptor, it uncouples G proteins and 

dissociates the heterotrimeric G protein complex from the receptor. β-arrestin binding also 

results in the recruitment of adaptor proteins AP-2 and clathrin. Studies showed that the 

carboxyl-terminal end of β-arrestin binds the amino-terminal globular region of the clathrin 

heavy chain and the β2-adaptin subunit of the AP-2 heterotetromeric complex (Ferguson 

and Caron, 1998; Ferguson, 2001; Sorkin and von Zastrow, 2009). The β2-adaptin subunit 

is important for the formation of the clathrin coat and the targeting of the receptor to the 

coated pits. These clathrin-coated pits are vesicular structures that are covered on the inner 

cytoplasmic surface by clathrin triskelions, which consist of three clathrin heavy chains 

and three clathrin light chains assembled into the clathrin lattice. The pits contain the 

receptor and the ligand and pinch off from the plasma membrane by a process that is 

mediated by the GTPase dynamin (Ferguson and Caron, 1998; Ferguson, 2001; Sorkin and 

von Zastrow, 2009). These vesicles are targeted to the endosomal compartment where they 

either recycle back to the plasma membrane or traffic to the lysosomes for degradation  
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Figure 1.2: Schematic representation of the life cycle of a GPCR: Upon activation of 

the receptor with a ligand, it is phosphorylated by GRK. This phosphorylation results in 

the recruitment of β-arrestin and the initiation of endocytosis via clathrin-coated pits. The 

receptor is then internalized to the early endosomes and its fate is determined between 

either recycling back to the plasma membrane or getting transported to lysosomes for 

degradation. Rab GTPases as well as PDZ proteins are key modulators of the steps in this 

pathway. Modified from (Ferguson and Caron, 1998). 



8 

 

depending on certain motifs usually at the cytoplasmic tail of a GPCR (Sorkin and von 

Zastrow, 2009). 

Although there is data supporting this mechanism for many receptors, there is also 

evidence for alternate steps and mechanisms for endocytosis. Despite the importance of 

GRKs and specially GRK2 for initiating the internalization process, some reports showed 

that phosphorylation by second messenger kinases such as PKA and PKC can also result 

in β-arrestin recruitment and G protein uncoupling. Furthermore, some studies illustrate 

that having sufficient levels of β-arrestin 1 and β-arrestin 2 could eliminate the requirement 

for receptor phosphorylation (Ferguson and Caron, 1998; Ferguson, 2001). 

1.2.2.3 GPCR Recycling 

One of the pathways that the receptor can go through after endocytosis is to recycle 

from the endosomes to the plasma membrane. Studies show that Rab GTPases play an 

important role in regulating this process. While Rab1 and Rab2 are the Rab proteins that 

control the anterograde and retrograde trafficking of GPCRs, Rab4 and Rab11 are involved 

in receptors recycling (Zerial and McBride, 2001). This reflects the specificity of the 

members of the small Rab GTPases family and their distinct distribution among the 

intracellular compartments. Rab4, Rab5 and Rab11 are expressed in the endosomal 

compartment. Furthermore, studies show that Rab5 regulates the transport of clathrin-

coated vesicles from the plasma membrane to the endosomes and facilitates tethering and 

fusion of the vesicles to the early endosomes (Zerial and McBride, 2001). Rab4 and Rab11 

on the other hand have a role in sorting and recycling either through the early endosomes 

(Rab4) or the perinuclear recycling endosomes (Rab11). In addition, recycling via Rab4-

containing endosomes is rapid while Rab11-containing endosomes facilitate the slower 

recycling mechanism (Zerial and McBride, 2001). 

1.2.2.4 GPCR Degradation 

The other common fate for GPCRs following endocytosis is degradation in the 

lysosomes. When the early endosomes mature to multivesicular bodies (MVBs) and late 

endosomes, their cargo of internalized receptors is contained in the intraluminal vesicles 
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(ILVs) which are formed by ESCRT (endosomal sorting complex required for transport) 

complexes (Soldati and Schliwa, 2006; von Zastrow and Williams, 2012). Late endosomes 

and MVBs are then fused to the lysosomes that contain proteolytic enzymes to breakdown 

receptors. Similar to the anterograde pathway, certain motifs and post-translational 

modifications are important for initiating degradation (Sorkin and von Zastrow, 2009). 

However, the most common process that marks receptors for degradation is ubiquitination. 

The process consists of three key steps; First E1 (ubiquitin-activating enzyme) activates a 

ubiquitin molecule in an ATP-dependent step, then E2 (ubiquitin-conjugating enzyme) 

receives the active ubiquitin and transfers it to E3 (ubiquitin ligase) which would recognize 

the protein and label it with the ubiquitin molecule (Sorkin and von Zastrow, 2009; Alonso 

and Friedman, 2013). 

1.3 G Protein-Coupled Receptor Signaling 

1.3.1 G Protein-Dependent Signaling Pathways 

The classical view of GPCRs signaling involves coupling to G proteins as their 

name suggests. Upon agonist binding, the GDP on the Gα subunit is displaced by a GTP 

and this results in the functional disassociation of the heterotrimeric G protein (Gα and 

Gβγ). This would then allow each of the subunits to activate different effectors including 

ion channels and enzymes and eventually multiple signaling pathways. GTPase-activating 

proteins (GAPs) then bind Gα resulting in the hydrolysis of GTP to GDP, which deactivates 

Gα and causes disengagement of the effector (Gilman, 1987; Hepler and Gilman, 1992). 

Finally, Gα reassociates with Gβγ. Therefore, upon activation, the receptor acts as a 

guanine nucleotide exchange factor (GEF) for the heterotrimeric G protein. G proteins 

signaling can be classified into 4 major categories based on the G protein subtype that the 

receptor couples to; Gαs, Gαi, Gαq/11 and G12/13. 

1.3.1.1 cAMP Signaling Pathway 

The cAMP (cyclic adenosine monophosphate) signaling pathway is a downstream 

pathway that is mediated when a GPCR couples to either the stimulatory- or inhibitory- 

regulatory G proteins (Gαs and Gαi) (Kristiansen, 2004). The effector that the G proteins 
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bind to in this case is adenylyl cyclase (AC), an enzyme that synthesizes cAMP from ATP. 

cAMP would in turn activates PKA as well as certain cAMP-regulated guanine nucleotide 

exchange factors, such as EPAC1 and EPAC2. There are 10 isoforms of AC and all of 

which can be stimulated by Gαs. However only some of them can be stimulated by Gβγ or 

inhibited by Gαi. The activity of AC can be also modulated through phosphorylation by 

PKA and PKC (Luttrell, 2008). 

1.3.1.2 IP3 Signaling Pathway 

The inositol 1,4,5-trisphosphate (IP3) signaling pathway is the downstream 

pathway that is mediated when a GPCR couples to Gαq/11 subunit (Kristiansen, 2004). The 

main effector for Gαq is phospholipase Cβ (PLCβ), a membrane-bound enzyme that 

converts phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and IP3. 

IP3 binds to IP3 receptor in the ER and this results in the release of Ca2+ from intracellular 

stores, while DAG activates PKC. There are four known isoforms for PLCβ, PLCβ1-4 and 

they are known to be regulated by the Gα subunits as well as the Gβγ subunits of Gαq/11. In 

fact, it has been suggested that certain isoforms (PLCβ2 and PLCβ3) are more sensitive to 

Gβγ regulation than others (PLCβ1) (Luttrell, 2008). 

1.3.1.3 Rho Activation Signaling Pathway 

The Rho activation signaling pathway is a less common pathway and it is mediated 

when the GPCR couples to G12/13 subunit. G12/13 is implicated in the regulation of Ras 

homology (Rho) guanine nucleotide exchange factors (RhoGEFs) which is considered to 

function as a link between the heterotrimeric G protein and small GTPase pathways. G12/13 

can control cytoskeletal rearrangement and affect cellular growth (Luttrell, 2008). 

1.3.2 G Protein-Independent Signaling Pathways 

GPCRs can signal via G-protein independent mechanisms and the best 

characterized example is β-arrestin-mediated signaling via Src and mitogen-activated 

kinase pathways (Naor et al., 2000; Kristiansen, 2004; Lefkowitz and Shenoy, 2005). 

Stimulation of many GPCRs leads to the activation of mitogen-activated protein (MAP) 
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kinases. There are three classes of MAP kinase, the extracellular signal-regulated kinases 

(ERK), c-Jun N-terminal kinase/Stress-activated protein kinases (JNK/SAPK) and 

p38/HOG1 MAP kinases (Naor et al., 2000; Belcheva and Coscia, 2002; Lefkowitz and 

Shenoy, 2005). MAP kinases are regulated via a series of modular kinase cascades. Each 

cascade is composed of three kinases that successively phosphorylate and activate the 

downstream component. β-arrestin acts as a multifunctional scaffold protein and helps 

assemble the MAP kinase modules with a GPCR to target it to the endosome of the cell 

(Lefkowitz, 1998; Ferguson, 2001; Lefkowitz et al., 2006). It is important to mention that 

this is a divergent pathway that can also be activated by multiple intracellular intermediates 

such as Ca2+, Ras, PLC, proline-rich tyrosine kinase 2, cAMP, c-Src, and PI3K. For 

example, the activation of Gαs and Gαq via PKA and PKC leads to the phosphorylation of 

Ras. Ras would then activate Raf to phosphorylate MEK which subsequently 

phosphorylate ERK (Luttrell et al., 1999; Belcheva and Coscia, 2002; Kristiansen, 2004). 

1.4 Regulation of GPCR Trafficking and Signaling 

The various steps in the trafficking and signaling pathways of GPCRs are very 

efficiently regulated by two main factors; post-translational modifications and modulatory 

proteins. 

1.4.1 GPCR Regulation by Post-Translational Modifications 

Post-translational modifications serve as a method to label or mark the receptor 

particularly for the trafficking between cellular compartments by the addition of specific 

chemical groups or molecules on certain residues of the receptor. The four major types of 

post-translational modifications that have been well-characterized are glycosylation, 

phosphorylation, palmitoylation, and ubiquitination (Alonso and Friedman, 2013). These 

processes have distinct roles in regulating the expression and function of GPCRs. 

1.4.1.1 Glycosylation 

There are two forms of glycosylation; N- linked glycosylation and O-linked 

glycosylation. N-glycosylation is the addition of oligosaccharide to the nitrogen in the side-
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chain amid of asparagine residues and it is the more common way of GPCRs glycosylation. 

Approximately 90% of all GPCRs are glycosylated on their extracellular domains at 

conserved consensus sites Asn-x-Ser/Thr (where x = any amino acid except proline). This 

process usually starts at the ER and is completed during the transport through the Golgi. 

O-Glycosylation on the other hand is the transfer of N-acetyl-galactosamine to a serine or 

threonine residue on the target protein (Qiu and Law, 2011). Studies with the β2-AR and 

opioid receptors demonstrate an importance of glycosylation in receptor expression at the 

cell surface (McLawhon et al., 1983; Stiles et al., 1984; Law et al., 1985; George et al., 

1986). Studies with the protease activated receptors (PARs) point to an effect for 

glycosylation on receptor signaling (Grimsey et al., 2011). It is suggested that inhibiting 

PAR1 glycosylation can enhance its signaling either due to the lack of the bulky sugars 

allowing for more efficient interaction of the newly generated tethered ligand with the 

second extracellular loop or a change in conformation that provide more flexibility of the 

ECL2 domain and more efficient G protein coupling (Grimsey et al., 2011). Receptor 

glycosylation is studied using different methods including monitoring the mobility of 

receptors on SDS-PAGE, enzymatic deglycosylation and site-directed mutagenesis. 

Multiple glycosidases have been characterized and shown to cleave the glycan chain 

differently (Spiro, 2002). Those include neuraminidases that cleave terminal N-

aceylneuraminic acid, α-mannosidases that cleave mannose, endoglycosidases H that 

cleave asparagine-linked mannose rich oligosaccharides, Peptide N-Glycosidases F 

(PNGase F) which remove all types of N-linked glycosylation and O-glycosidase that 

cleaves O-linked glycan chains (Qiu and Law, 2011). 

1.4.1.2 Phosphorylation 

As explained earlier, GPCRs are phosphorylated by GRKs upon agonist activation. 

GPCRs can also be phosphorylated by protein kinase C (PKC), protein kinase A (PKA), 

casein kinases and receptor tyrosine kinases (Ferguson, 2001). Receptor phosphorylation 

occurs mainly on serine or threonine residues within the carboxyl-terminal tail or third 

intracellular loop. Studies with β2-AR demonstrate the importance of GPCRs 

phosphorylation in regulating desensitization and internalization. Receptor 

phosphorylation promotes the association of arrestins to the activated receptor. This not 
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only uncouples the receptor from G protein to stop signaling (desensitization) but also 

recruits the receptor to the endocytic machinery (internalization) (Ferguson, 2001). 

Therefore, phosphorylation is an important factor in determining the fate of the receptor. 

In addition, studies on phosphorylation of the opioid receptors show an effect for this 

modification on the activity of adenylyl cyclase (Zhang et al., 2009). This suggests that 

post-translational modifications can play important roles in regulating receptor signaling 

in addition to the role they play in regulating trafficking. Studies on PAR1 illustrate that 

phosphorylation sites can be very specific in terms of regulating different functions 

meaning that different residues can differentially regulate association with clathrin 

adaptors that facilitate receptor internalization versus uncoupling from G protein signaling 

(Grimsey et al., 2011). Receptor phosphorylation is commonly studied by [32P] 

orthophosphate labeling, mass spectrometry and phospho-specific antibodies. 

1.4.1.3 Palmitoylation 

Palmitoylation involves the attachment of palmitate to cysteine residues on the 

carboxyl-terminal tail or intracellular loop of the receptor through a thioester linkage. It is 

a covalent lipid modification that is observed with many GPCRs including rhodopsin, β2-

AR and the opioid receptors MOR and DOR (Qiu and Law, 2011). It usually occurs very 

early during protein synthesis. Therefore, it is important for receptor maturation and hence 

for receptor expression on the cell surface. However, there is evidence indicating that the 

receptor can undergo palmitoylation and depalmitoylation cycles in an agonist-dependent 

manner but the role of these processes is still unknown (Qanbar and Bouvier, 2003). There 

are multiple methods used to assess receptor palmitoylation such as metabolic labeling with 

[3H] palmitate followed by immunoprecipitation, fatty acyl exchange labeling, SDS-PAGE 

and fluorography. 

1.4.1.4 Ubiquitination 

As described in the GPCR degradation section, ubiquitination is an important label 

that drives the receptor towards the degradation pathway. Furthermore, ubiquitination is 

important during the biosynthetic pathway to identify misfolded proteins and send them 
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for proteasomal degradation (ER-associated degradation) (Achour et al., 2008; Jean-

Alphonse and Hanyaloglu, 2011). Ubiquitination involves the covalent addition of 

ubiquitin to the lysine side chains of the receptor which is facilitated by three enzymes; E1, 

ubiquitin-activating enzyme, E2, ubiquitin-carrying enzyme and E3, ubiquitin ligase 

(Sorkin and von Zastrow, 2009; Alonso and Friedman, 2013; Marchese and Trejo, 2013). 

First, ubiquitin is activated by E1 and transferred to the active site of the enzyme in an 

ATP-dependent process. Then, the ubiquitin molecule is passed on to E2 by a 

transthiolation reaction. Finally, E3 recognizes the target protein and label it with ubiquitin 

(Alonso and Friedman, 2013; Marchese and Trejo, 2013). Ubiquitination of GPCRs mainly 

occurs on the lysine residues of the carboxyl-terminal tail but studies show ubiquitin sites 

on the first cytoplasmic loop for µ-opioid receptor and on the third intracellular loop for 

the vasopressin V2 receptor (V2R) and β2-AR receptor. Ubiquitin is a highly conserved 

76-amino acid polypeptide and since it contains lysine residues, the peptide itself can be 

ubiquitinated forming polyubiquitin chains. In addition to its role in targeting the receptor 

to the late endosomes for degradation in the lysosomes, ubiquitination can serve as a quality 

control step for newly synthesized receptors resulting in this case in their proteosomal 

degradation. Studies with the DOR, MOR and thyrotropin-releasing hormone receptor 

show that when the receptor is misfolded, it gets retranslocated to the ER where it is labeled 

with ubiquitin to be degraded by the proteasome (Chaturvedi et al., 2001; Petaja-Repo et 

al., 2001; Shenoy, 2007). GPCRs can also be deubiquitinated by deubiquitination enzymes 

130 and this leads to their rescue from degradation and an increase in their cell surface 

expression levels (Sorkin and von Zastrow, 2009). Furthermore, studies on PAR1 illustrate 

the importance for ubiquitination in the constitutive internalization of the receptor (Alonso 

and Friedman, 2013). In addition to regulating GPCRs trafficking, ubiquitination can 

indirectly regulate GPCRs signaling by regulating GRKs, MAPKs and β-arrestins (Alonso 

and Friedman, 2013; Marchese and Trejo, 2013). Ubiquitination is commonly studied by 

protease inhibitors and ubiquitin antibodies. 

 

In addition to the previous main post-translational modifications that GPCRs 

undergo, recent studies are exploring two more processes; isoprenylation and sumoylation 

(Qiu and Law, 2011). Isoprenylation is a lipid modification of proteins characterized by 
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the addition of an isoprenoid moiety to the sulfhydryl group of a cysteine residue via a 

thioether bond. It has been suggested that isoprenylation and palmitoylation may 

collectively regulate GPCRs function (Miggin et al., 2003). Isoprenylation of prostacyclin 

receptors is suggested to be important for G-protein coupling, as well as receptor 

internalization (Miggin et al., 2002). Sumoylation is the covalent attachment of SUMO (an 

ubiquitin-like peptide) to lysine on the target receptor but unlike ubiquitin, it is not used to 

label the proteins for degradation. It appears to be important for transcriptional regulation, 

protein stability and receptor trafficking. Studies suggest that metabotropic glutamate 

receptors contains a sumoylation motif and can undergo this modification (Qiu and Law, 

2011; Tang et al., 2005). However, further characterization of both isoprenylation and 

sumoylation is still required to understand their effects on regulating GPCRs activity. 

1.4.2 GPCR Regulation by Modulator Proteins 

Many intracellular and transmembrane proteins associate with GPCRs to regulate 

their processing in the endoplasmic reticulum, trafficking to the cell surface, 

compartmentalization to the plasma membrane microdomains, endocytosis and trafficking 

between intracellular membrane compartments. Examples include β-arrestins, receptor 

activity-modifying proteins (RAMPs), PSD95/Disc Large/Zona Occludens (PDZ) domain-

containing proteins, small GTPases, regulators of G-protein signaling (RGS), GPCR-

associated sorting proteins (GASPs), molecular chaperones, Homer, GRKs and protein 

phosphatases (Magalhaes et al., 2012). 

1.5 PDZ Domain-Containing Proteins 

PDZ domains comprise ~90 residues and PDZ domain-containing proteins are 

mainly known to be scaffolding proteins. They modulate protein interactions by 

recognizing short amino acid motifs usually at the carboxyl-terminal end of their target 

proteins (Lee and Zheng, 2010; Romero et al., 2011). They are found on more than 100 

proteins in the human genome and there is usually more than one domain on the same 

protein to enable them to bind multiple proteins simultaneously and form functional 

molecular complexes. These complexes can regulate multiple biological processes such as 
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transport, ion channel signaling, protein trafficking and other signal transduction systems 

(Dunn and Ferguson, 2015). PDZ domains contain a conserved sequence that consists of 

glycine-leucine-glycine-phenylalanine and forms the globular structure of the domain that 

recognizes the PDZ-binding motif. PDZ motifs are usually classified into three classes. 

Class I is identified by their final three–amino acid sequence which consists of S/T-x-φ, 

where x symbolizes any amino acid and φ symbolizes any hydrophobic amino acid. The 

most common hydrophobic amino acids are found to be valine, isoleucine, or leucine 

(Songyang et al., 1997; Bezprozvanny and Maximov, 2001; Sheng and Sala, 2001; Vaccaro 

and Dente, 2002). Class II is characterized by having φ-x-φ as the final three amino acids. 

Class III is characterized by having Ѱ-x-Ѱ as the final three amino acids, where Ѱ 

symbolizes any acidic amino acid residue (Sheng and Sala, 2001). 

PDZ domain-containing proteins also contain multiple other modular protein 

interaction domains such as: Src-homology 2 (SH2), SH3, phosphotyrosine binding (PTB), 

WW motifs, guanylate kinase-like (GK), calmodulin kinase-like (CaMK) and Ras-

associated (RA) domains (Harris and Lim, 2001; Magalhaes et al., 2012) (Fig. 1.3). Some 

of the recent studies show that PDZ proteins have distinct functions depending on the 

receptor being investigated (Table 1). A good example for that is MUPP1, which can 

enhance GABAB receptor signaling (Balasubramanian et al., 2007), uncouple the 

melatonin-1 receptor from Gαi and facilitate the dephosphorylation (Guillaume et al., 2008) 

and resensitization of the 5-HT2CR (Parker et al., 2003). Other studies show that unique 

PDZ proteins can regulate different pathways of the same receptor. For example, MAGI-2 

has been shown to promote β1-AR internalization while MAGI-3 seems to selectively 

attenuate β1-AR signaling via ERK1/2 (He et al., 2006). 
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Figure 1.3: PDZ proteins that regulate Golgi sorting and MAGUKs: PDZ domain-

containing proteins possess multiple domains that facilitate their function, binding to their 

target and subcellular localization. (Dunn and Ferguson, 2015). 
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Table 1: PDZ proteins and their role in GPCRs regulation (The table is part of tables 

published in Dunn and Ferguson, 2015) 

PDZ protein Effect on GPCR Receptor 

CAL/GOPC ↓ Membrane localization  β1-AR, SSTR5 

↓ Recycling β1-AR 

↑ Golgi localization SSTR5 

↓ ERK mGluR1, β1-AR 

GIPC ↓ Gi coupling Dopamine 3 receptor 

↑ Protein kinase B, ↑ Trafficking to 

early endosome 

LPA1R 

↓ ERK β1-AR 

↑ Endosome/Golgi localization D2R, dopamine 3 receptor 

↑ Membrane stability Human LH receptor 

SNX27 ↑ Recycling  β2-AR, β1-AR, SSTR5 

MAGI-2 ↓ endocytosis VPAC1 

↑ endocytosis β1-AR 

↑ Golgi localization mGluR1a 

↓ cAMP VPAC1 

MAGI-3 ↑ ERK BAI-1, LPA2R 

↑ Rho LPA2R 

↓ ERK β1-AR, β2-AR 

SAP97 ↑ Inositol 1,4,5-trisphosphate, ↑ ERK 5-HT2AR 

↑ ERK CRFR1, CRFR2 

↓ Endocytosis CRFR1, 5-HT2AR 

PSD-95 ↑ Inositol 1,4,5-trisphosphate  5-HT2AR 

↑ cfos, ↑ Desensitization of Ca2+, 

↑ Endocytosis 

5-HT2CR 

↑ Membrane localization  GPR30 

↓ or = cAMP, ↑ Recycling, 

↑ Endocytosis 

D1R 

↓ Endocytosis 

↓ Endocytosis, ↓ β-arrestin recruitment 

β1-AR, 5-HT2AR 

CRFR1 

SAP102 ↑ ERK, ↓ Mobility A2AR 
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1.5.1 Golgi- Associated PDZ Proteins (PDZ Proteins that Regulate 
Golgi Trafficking and Sorting) 

1.5.1.1 CFTR-Associated Ligand (CAL) 

The Golgi-localized cystic fibrosis transmembrane conductance regulator-

associated ligand (CAL) is a single PDZ domain-containing protein with two coiled-coil 

motifs and two evolutionally conserved regions which are required for its Golgi 

localization (Charest et al., 2001; Yao et al., 2001; Cheng et al., 2002). CAL is also known 

as GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein), PIST (PDZ 

domain protein interacting specifically with TC10) and FIG (fused in glioblastoma). CAL 

overexpression reduces cell surface expression of the β1-AR and mGluR1a by retaining the 

receptor inside the cell via a direct interaction (He et al., 2004; Zhang et al., 2008). CAL 

also interacts with mGluR5a and stabilizes receptor expression by a mechanism that is 

proposed to involve the inhibition of ubiquitination-dependent degradation (Cheng et al., 

2010). CAL also contributes to the regulation of somatostatin receptor recycling and 

degradation (Wente et al., 2005; Bauch et al., 2014). 

1.5.1.2 GAIP-Interacting Protein (GIPC) 

Another PDZ-binding protein involved in regulating the trafficking and sorting 

from Golgi is the Gα-Binding Protein Interacting Protein Carboxyl-Terminus (GIPC) (Liu 

et al., 2001). Similar to CAL/GOPC, GIPC contains one PDZ domain. GIPC is also known 

as Tax interaction protein 2 (TIP-2) and Synectin (Dunn and Ferguson, 2015). GIPC 

facilitates the trafficking of D2R to the endosomes and Golgi (Jeanneteau et al., 2004). 

Similarly it has been found to enhance the trafficking of LPA1R to the early endosomes 

and promote the receptor activation of the protein kinase B signaling pathway (Varsano et 

al., 2012). GIPC is also shown to regulate the trafficking of the human luteinizing hormone 

receptor and stabilize its expression at the plasma membrane (Hirakawa et al., 2003). In 

addition, GIPC plays a role in regulating the signaling of β1-AR via the MAPK pathway 

but has no effect on the Gαs pathway since GIPC can reduce β1-AR-stimulated ERK1/2 

phosphorylation but does not interfere with cAMP formation (Hu et al., 2003). However, 
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GIPC prevents the coupling of Dopamine 3 receptor to Gαi to reduce signaling through the 

G protein-dependent pathway. (Jeanneteau et al., 2004; Dunn and Ferguson, 2015). 

1.5.1.3 Sorting Nexin 27 (SNX27) 

Sorting Nexin 27 (SNX27) contains one amino terminal PDZ domain, a Phox 

homology domain and a Ras-associating domain (Joubert et al., 2004). SNX27 can drive 

multiple GPCRs to the recycling pathway and therefore prevent their degradation. These 

include β2-AR, β1-AR and SSTR5 (Lauffer et al., 2010; Temkin et al., 2011; Nakagawa 

and Asahi, 2013; Bauch et al., 2014; Dunn and Ferguson, 2015). One of the mechanisms 

suggested for this role in recycling is that SNX27 can target the receptor to the retromer 

tubule by interacting with the endosomal WASH complex (Temkin et al., 2011). 

1.5.2 Membrane-Associated Guanylate-like kinases (MAGUKs) 

Membrane Associated Guanylate Kinase (MAGUK) family proteins are synaptic 

scaffolding proteins within a structured protein network responsible for the spatial 

organization of the presynaptic and postsynaptic compartments. They play a crucial role in 

the formation and function of synapses in the Central Nervous System (CNS) by regulating 

multiple aspects of synapse physiology such as synaptogenesis, receptor trafficking, 

synaptic function, and plasticity (Funke et al., 2005; Feng and Zhang, 2009; Yamagata and 

Sanes, 2010). MAGUKs are well-conserved throughout evolution and are widely-

expressed in the brain and periphery. They include multiple subfamilies including 

membrane palmitoylated proteins (MPPs), zona occludens (ZO), caspase recruitment 

domain-containing MAGUK protein (CARMA), discs larges (DLGs) and MAGUK with 

inverted orientation PDZ proteins (MAGIs) (Oliva et al., 2012). Generally, these proteins 

contain multiple domains that control their function and facilitate their interactions with 

their targets. The two common domains among all members are PDZ domains and 

guanylate kinase (GK) domains (Oliva et al., 2012). An important target for the MAGUKs 

scaffolding proteins is the G protein-coupled receptors (GPCRs) family (Dunn and 

Ferguson, 2015). This protein-protein interaction between the receptor and MAGUKs 

results in the regulation of GPCRs function. MAGUK proteins play a key role in mediating 
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the subcellular localization, trafficking, cell surface expression and signal transduction of 

multiple GPCRs and different proteins have both overlapping and distinct roles in the 

regulation of GPCR activity (Harris and Lim, 2001; Lee and Zheng, 2010; Romero et al., 

2011; Magalhaes et al., 2012). One of the important subfamilies of MAGUKs is MAGIs. 

It consists of three members; MAGI-1, MAGI-2 and MAGI-3. All three proteins share a 

similar structure containing one GK domain, two tryptophan tryptophan (WW) domains 

and six PDZ domains (te Velthuis et al., 2007; Oliva et al., 2012; Dunn and Ferguson, 

2015). 

1.5.2.1 MAGUK with Inverted orientation PDZ (MAGIs) 

MAGI-1, also known as BAP-1 (BAI-1-associated protein 1), has 7 isoforms that 

are widely expressed in different tissues. Isoform 1, isoform 2 and isoform 6 are highly 

expressed in colon, kidney, lung, liver, and pancreas. Isoform 5 is predominantly expressed 

in brain and heart. Isoform 3 and isoform 4 are highly expressed in pancreas and brain 

(Dobrosotskaya et al., 1997; Laura et al., 2002). MAGI-1 interacts with BAI-1 (brain-

specific angiogenesis inhibitor-1), a family B GPCR that functions as an adhesion molecule 

(Shiratsuchi et al., 1998). Therefore, it is suggested that MAGI-1 might play an important 

role in the organization of membrane proteins and cytoskeleton by transmitting signals 

related to cell- cell or cell- matrix interactions through BAI-1 (Shiratsuchi et al., 1998; 

Stetak et al., 2009; Stephenson et al., 2013). MAGI-1 also regulates AMPA receptor 

activity and modulate behavioral plasticity (Emtage et al., 2009). 

MAGI-2, also known as S-SCAM (synaptic scaffolding molecule), is specifically 

expressed in the brain and has 2 isoforms (Wood et al., 1998). Previous studies illustrate 

an association between MAGI-2 and β1-AR that is enhanced upon agonist stimulation (Xu 

et al., 2001). The study also demonstrate an increase in agonist-induced internalization of 

β1-AR when MAGI-2 is co-expressed but no effect on cAMP generation induced by 

isoproterenol stimulation. Alternatively, a study of the effects of MAGI-2 on vasoactive 

intestinal polypeptide type1 (VPAC1) receptor demonstrate an opposite function, where 

MAGI-2 overexpression results in the inhibition of VPAC1-mediated cAMP production 

and agonist-induced VPAC1 internalization (Gee et al., 2009). 
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MAGI-3 is widely expressed in different tissues. It has been shown to interact with 

β2-AR and reduce signaling via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) 

pathway (Yang et al., 2010). MAGI-3 can also associate with lysophosphatidic acid-

activated receptor subtype-2 (LPA2R) and contrary to the effect observed with β2-AR, 

knockdown of MAGI-3 results in a decrease of receptor-mediated ERK1/2 signaling 

(Zhang et al., 2007). The study also reports a significant reduction in Rho activation upon 

knockdown of MAGI-3. 

1.5.2.2 Discs Large (DLGs) 

This subfamily of MAGUKs contain five proteins (DLGs 1-4) also known as 

SAP97 (DLG1), PSD-93 (DLG2), SAP102 (DLG3) and PSD-95 (DLG4) as well as a Discs 

Large Homolog 5 (DLG5). All members contain an SH3 domain, a GK domain and three 

PDZ domains (with the exception of DLG5 which has 4 PDZ domains). All PDZ domains 

are type I domains (they bind class I PDZ binding motif consisting of T/S-x-φ) (Oliva et 

al., 2012). Similar to MAGIs, DLGs are widely expressed in the central nervous system 

and have been shown to regulate synaptic function (Dunn and Ferguson, 2015). 

SAP97 (DLG1) regulates the trafficking and signaling of different members of the 

GPCRs family. It can antagonize the agonist-induced internalization of both CRFR1 and 

5-HT2AR when overexpressed. Furthermore, it plays an essential role in regulating the 

MAPK pathway for multiple GPCRs including CRFR1, CRFR2 and 5-HT2AR. The fact 

that CRFR2 does not possess a PDZ-binding motif suggests that this role for SAP97 in 

regulating ERK1/2 activation does not require an interaction with the receptor and could 

be a global role for the regulation of MAPK pathway (Dunn et al., 2013). SAP97 can also 

enhance 5-HT-induced IP3 formation which illustrates how one PDZ-binding protein can 

regulate G protein-dependent as well as G protein-independent signaling pathways 

activated by the same receptor. In addition, SAP97 facilitates the recycling of β1-AR and 

this emphasizes the involvement of PDZ proteins at different steps of the GPCRs life cycle. 

PSD-95 (DLG4) has been shown to regulate a number of GPCRs. It has been shown 

to antagonize the internalization of both β1-AR and 5-HT2AR (Hu et al., 2000; Xia et al., 

2003). It also has an enhancement effect on Gαq signaling mediated by 5-HT2AR. 
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Interestingly, PSD-95 has been shown to have an opposite effect on 5-HT2CR since it can 

enhance the internalization of the receptor and decrease its cell surface expression 

(Gavarini et al., 2006). There are reports of an association between PSD-95 and D1R 

resulting in an increase in internalization and reduction in cAMP formation by the receptor 

(Zhang et al., 2007). Other studies suggest that PSD-95 can enhance the recycling of D1R 

without affecting its signaling via Gαs (Sun et al., 2009). A recent study has illustrated the 

effects of PSD-95 in regulating CRFR1 function. Similar to the effects observed with β1-

AR and 5-HT2AR, PSD-95 can reduce the endocytosis of CRFR1 (Dunn et al., 2016). The 

study also provide a mechanism for this regulation presented by a negative effect of PSD-

95 on β-arrestin recruitment. The role of PSD-93 (DLG2) is not fully characterized yet. 

Reports indicate that PSD-93 and PSD-95 can compensate for one another and hence it is 

suggested they have similar functions (Sun and Turrigiano, 2011). 

SAP102 (DLG3) is another understudied member of the DLGs subfamily. It has an 

effect on the adenosine A2A receptor since it can regulate the mobility of the receptor and 

enhance ERK1/2 activation by the receptor (Thurner et al., 2014). Further studies are 

required to fully assess and understand the function of SAP102 in regulating GPCRs. 

DLG5 has some differences in topology compared to the other four members of the 

subfamily. It contains four PDZ domains as opposed to three domains in the other proteins. 

It also contains a caspase activation and recruitment domain (CARD) at the amino terminal 

that is not present in any of the other DLGs (de Mendoza et al., 2010). There are no reports 

that suggest a direct role for DLG5 in regulating GPCRs function. However, it can scaffold 

PKC isoforms which might be a mechanism for mediating GPCRs signaling. 

1.5.3 PDZ Proteins Network 

 The previous section highlighted the role that PDZ domain-containing proteins 

have in regulating different functions of GPCRs including their internalization, recycling, 

degradation and signaling. However, another important aspect that should always be 

considered when studying PDZ proteins is the interplay between the different proteins 

themselves. Bearing in mind the similar domains that PDZ proteins possess and their 

overlapping functions, there is a possibility for these proteins to either have 
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“complementary” effects or “competitive” effects. This also provides a possible 

explanation for the observation that one receptor can be mediated by multiple PDZ 

proteins. 

 A recent example that illustrates a complementary effect is the regulation of the 

somatostatin receptor subtype 5 (SSTR5) by PDZ proteins (Bauch et al., 2014). The 

trafficking of the receptor was studied and it appears that CAL, SNX27 and NHERF1 are 

involved in mediating the different steps to determine the subcellular distribution and 

membrane availability of the receptor. The data demonstrate that the receptor’s interaction 

with SNX27 can drive the trafficking pathway away from lysosomal targeting and towards 

the recycling pathway (Bauch et al., 2014). It also shows that while CAL overexpression 

leads to the retention of SSTR5 in the Golgi, NHERF1 can reverse this effect and is able 

to release the receptor and enhance its trafficking to the cell surface. The study also 

suggests that the protein interacting with C kinase 1 (PICK1), a fourth PDZ protein, and 

SNX27 act antagonistically to mediate receptor recycling. This is an example showing that 

PDZ proteins can perhaps sequentially perform their function depending on the stage of 

receptor trafficking. Another study on β1-AR demonstrated that PSD-95 can antagonize the 

intracellular retention of β1-AR upon CAL overexpression and restore plasma membrane 

expression (Koliwer et al., 2015). 

 A similar observation is reported between CAL and two other PDZ proteins when 

the transmembrane protein Cadherin 23 is investigated (Xu et al., 2010). Overexpression 

of CAL can lead to the retention of Cadherin 23 in the transgolgi network and hence to a 

reduction in plasma membrane expression. This effect is reversed by MAGI-1 as well as 

harmonin. 

 In addition to the regulation of trafficking, the interplay between PDZ proteins can 

be important for regulation of GPCR signaling. It has been shown that NHERF2 and 

MAGI-3 can compete for binding to LPA2R and this can bias the signaling of the receptor 

(Lee et al., 2011). The study shows that MAGI-3 can increase the coupling of Gα12/13 to 

LPA2R and hence decrease PLC activation while NHERF2 promotes the coupling of Gαq 

to the receptor resulting in an enhancement in PLC activity. Therefore, MAGI-3 and 
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NHERF2 exhibit opposite effects on LPA-induced PLC activity by differentially regulating 

G protein coupling. 

 A similar role of PDZ proteins in regulating GPCRs signaling resulting in bias from 

one pathway to another was reported with the Parathairoid Hormone receptor 1 (PTH1R). 

The study showed that NHERF1 can bias signaling from activating adenylyl cyclase to 

activating PLCβ. In addition, NHERF1 was shown to interfere with β-arrestin recruitment 

to PTH1R and hence reduce receptor internalization (Mahon et al., 2002). 

 An example for a compensation effect between PDZ proteins is between PSD-93 

and PSD-95 (Sun and Turrigiano, 2011). Double knockout studies show a functional 

compensation between PSD-95 and PSD-93 during scaling up in young cortical neurons. 

1.6 G Protein-Coupled Receptors and Disease 

In addition to being involved in regulating all physiological processes from 

neurotransmission and cardiovascular function to inflammation, metabolism and endocrine 

function, dysregulation or dysfunction of GPCRs has been associated with a broad range 

of pathological conditions. This is not surprising given their regulation of all physiological 

processes as well as their wide distribution in the different organs of the body. These 

conditions include neurological and cardiovascular disorders, renal and pulmonary 

diseases, immunological diseases, pain and cancer. 

One important example that has been well studied would be heart diseases. There 

are approximately 200 members of the GPCR superfamily that have been shown to regulate 

heart function (cardiac GPCRs) (Salazar et al., 2007). However, most of the drugs used to 

treat heart problems act on the angiotensin and adrenergic receptors. These available drugs, 

although improving the quality of life for patients, still have their limitations since they 

show major side effects in some cases due to off target effects or the ubiquitous distribution 

of the receptors in organs other than the heart. To produce better drugs with fewer side 

effects, further characterization of GPCRs, their assembly into signaling complexes, their 

interacting partners as well as their trafficking from the endoplasmic reticulum to the cell 

surface is required to establish a complete understanding of the key factors in the processes. 
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The example that is going to be the focus for this project is psychiatric disorders. 

The role of GPCRs in regulating neurotransmission and the function of the central nervous 

system has been well documented. The two families that demonstrate crucial effects on 

synaptic transmission, synapse formation, axon guidance and development of neuronal 

circuits are Rhodopsin and Glutamate. Rhodopsin family GPCRs have this role because 

they are the main molecular targets for various neurotransmitters such as serotonin, 

dopamine, acetylcholine, histamine, adrenaline and norepinephrine and neuropeptides such 

as somatostatin, melanocortins, neuropeptide Y and neuropeptide FF. The same reason 

applies for Glutamate receptors being the target for glutamate which represent the principal 

excitatory neurotransmitter of the CNS. 

A common disorder that has been associated with mGluR activation is Fragile X 

mental retardation (FMR) where it has been suggested that FMR results from unbalanced 

activation of Group I mGluRs and impaired synaptic maturation. mGluRs have also been 

associated with dementia and Alzhiemer’s disease (Bear, 2005; Yan et al., 2005). 

As for the rhodopsin family, the 5-HT2C receptor has been shown to play an 

essential role in the regulation of mood and alteration of its functional activity has been 

implicated in the etiology of anxio-depressive states (Millan et al., 2005). Therefore, it has 

been targeted by antidepressants as a therapeutic approach. 5-HT2CR is not the only 5-HT-

activated receptor to be implicated in mood disorders and have antidepressants actions. 

Dopamine signaling via D1 and D2 receptors plays a key role in schizophrenia and 

blocking dopamine D2 receptors with any antipsychotic drug is thought to alleviate 

positive symptoms, but not sufficiently address negative symptoms and cognitive deficits 

(Meltzer et al., 1989). The A2a receptor plays an important role in modulation of 

dopaminergic and glutamatergic neurotransmission and has been used as a target for the 

treatment of drug addiction, anxiety and depression (Komatsu, 2015). 

Recently, some attention is being directed toward the role of adhesion GPCRs in 

regulating neurotransmission (Stephenson et al., 2014). For example, studies show effects 

of GPR56 on regulating brain development and brain-specific angiogenesis inhibitor (BAI) 

subfamily in mediating synaptogenesis. Another examples is GPR88 since the knockout 
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mouse model for this receptor shows abnormal behaviors associated with schizophrenia 

such as disrupted sensorimotor gating and impaired learning and bipolar disorder (Logue 

et al., 2009; Quintana et al., 2012; Komatsu, 2015). 

1.6.1 Mental Disorders 

Depression and Anxiety are co-morbid disorders that associate with stressful events 

(Anisman et al., 2008). According to Health Canada and Statistics Canada, 10-15% of 

Canadians are affected by depression and anxiety, and females are at higher risk since the 

number of women affected is doubled compared to men. Also, anxiety and depression are 

the leading causes of disability in females and the second cause generally just after 

ischemic heart disease (Nemeroff and Owens, 2004). The causes of depression and anxiety 

vary to include genetic determinants and environmental factors, but early life experiences 

and the effect of the environment seem to be more crucial, especially in the progression of 

the disease. There are some drugs available for the relief of symptoms associated with 

depression and anxiety. Despite being regularly prescribed to patients, these drugs still 

have limitations with the onset of action, response, remission rates, and side-effect profiles, 

especially that they are only effective in 50% of patients. These medications include 

serotonin 2A receptor (5-HT2AR) antagonists, CRF receptor 1 (CRFR1) antagonists, 

selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants and monoamine 

oxidase inhibitors (Marek et al., 2003; Holtzheimer and Nemeroff, 2006). 

Two of the major molecules implicated in these disorders are the corticotropin-

releasing factor (CRF) and serotonin (5-HT). CRF is known to regulate physiological 

responses in anxiety states and behavioral mechanisms of defense and it can trigger some 

changes in the other neurotransmitter systems such as serotonergic signaling (Macri et al., 

2007). Serotonin is also important in the central nervous system (CNS) and it modulates 

the etiology of anxiety and the response to anxiolytic drugs via its different receptors 

(Holmes et al., 2003; Holsboer, 2003). Different members of the serotonin receptors family 

are used as targets for the treatment of brain-related disorders such as schizophrenia, 

depression, anxiety, eating disorders and obesity (Roth et al., 2004). These two 

neurotransmitters elicit their effects via acting on their corresponding G protein-coupled 
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receptors. CRF activates two receptors, CRFR1 and CRFR2 while serotonin receptors form 

a bigger family with 15 members. Among these GPCRs, 5-HT2AR and CRFR1 have been 

directly associated with anxiety behaviours (Magalhaes et al., 2010).  Also, the role of 5-

HT2AR and CRFR1 in modulating anxiety and depression is clear given that the currently 

available drugs act directly or indirectly on these receptors. 

1.6.2 Targeting Protein- Protein Interactions as a Pharmacological 
Tool 

An increasing number of neurological and psychiatric disorders have been found to 

result from an alteration in the interaction between a GPCR and GPCR-interacting protein. 

This can provide new tools for therapeutic intervention. Many studies that investigated the 

association between GPCRs and diseases conclude that sometimes it is these interactions 

between the receptor and a specific protein that could be causing the problem (Bockaert et 

al., 2010). For example, it has been demonstrated that the interaction of Homer protein 

with mGluRs is associated with schizophrenia and anxiety (Norton et al., 2003; Szumlinski 

et al., 2005). Similarly, the interaction of Shank proteins and specifically Shank3 with 

mGluRs and somatostatin SSTR2 receptor is associated with autism (Durand et al., 2007). 

In addition, the interaction between mGluR7 and PICK1 (protein interacting with C kinase 

1) is implicated with neurological disorders like epilepsy and in fact, in vivo studies showed 

that injecting rats and mice with a cell permeable mimetic peptide to specifically disrupt 

this interaction display a phenotype characteristic of absence epilepsy (Bockaert et al., 

2010).  

Serotonin receptors were the focus of many similar studies as well. It is suggested 

that targeting the interaction between 5-HT2C receptor and PTEN (protein phosphatase and 

tensin homolog) might be an effective strategy for the treatment of addiction-related 

behaviors, with perhaps less pronounced side effects than 5-HT2C agonists (Ji et al., 2006). 

Other proteins with important associations with the serotonin receptors are the PDZ 

domain-binding proteins. Proteins like PSD-95 and MAGUK p55 subfamily member 3 

(MPP3) can mediate receptors desensitization and internalization (Gavarini et al., 2006). 

Therefore, targeting 5-HTR-PDZ protein interactions can be an attractive strategy to 

develop new drugs that may improve the therapeutic efficacy of antidepressants. P11 (also 
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called S100A10 or calpactin 1 light chain or annexin 2 light chain) is another important 

interactor with 5-HT receptors (Svenningsson et al., 2006; Warner-Schmidt et al., 2009). 

The interaction between p11 and 5-HT1B receptors is implicated in the response of 

Parkinson’s disease patients to L-DOPA treatment. It is also suggested to be involved in 

the anxiolytic effects of 5-HT1B and 5-HT4 receptors (Bockaert et al., 2010). 

1.7 Corticotropin Releasing Factor Receptors 

This family consists of two Class B GPCRs; CRFR1 and CRFR2. They are both 

activated by CRF and although they share 71% sequence homology, CRFR1 has ten-fold 

higher affinity for CRF than CRFR2 (Dautzenberg and Hauger, 2002). CRF is released in 

response to stress and it regulates the secretion of adrenocorticotropin (ACTH) from the 

anterior pituitary gland. In addition to anxiety and depression, CRF receptors are also 

known to regulate cardiovascular and inflammatory processes since they were shown to 

play a role in cardio-protection against ischemia reperfusion injury (Brar et al., 2004) and 

in the regulation of IL-18 expression. 

The tissue distribution of CRFR1 and CRFR2 is also different. CRFR1 is expressed 

widely in the brain (neocortex and cerebellum) and pituitary, while CRFR2 is usually found 

in the heart and skeletal muscle (Chalmers et al., 1995; Dautzenberg and Hauger, 2002). 

Also, CRFR1 has a PDZ-binding motif on the carboxyl-terminal tail composed of three 

amino acids; threonine, alanine and valine (TAV), while CRFR2 does not (Myers et al., 

1998; Chen et al., 2005). Upon CRF activation, both receptors mainly signal via coupling 

to Gαs to activate adenylyl cyclase resulting in the formation of cAMP.  Interestingly, this 

cAMP pathway plays a central role in amplifying and diversifying the signaling pathways 

activated by CRF receptors. cAMP formation results in the activation of PKA and this leads 

to the activation of diverse downstream signaling molecules including membrane guanylyl 

cyclase, the NF-kB transcription factor, glycogen synthase kinase-3 and the Wnt/β-catenin 

pathway, ERK1/2, tyrosine hydroxylase and ion channels (Haug and Storm, 2000; 

Aggelidou et al., 2002; Kovalovsky et al., 2002; Zhao and Karalis, 2002; Facci et al., 2003; 

Nemoto et al., 2005; Khattak et al., 2010). One of these important signaling pathways is 

the MAPK pathway. Studies show that PKA activation can have opposite effects on 
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ERK1/2 signaling depending on the tissues or type of cells investigated. For example, in 

the hippocampus, neuronal cells or pituitary, PKA activation leads to enhanced ERK1/2 

phosphorylation, while in the myometrium, endometrial adenocarcinoma and breast 

cancer, PKA activation via CRF results in the inhibition of ERK activity (Elliott-Hunt et 

al., 2002; Kovalovsky et al., 2002; Graziani et al., 2007) (Fig. 1.4). 

1.8 Serotonin Receptors 

This family consists of 7 receptor types and 15 subtypes that belong to Class A 

GPCRs (except for 5-HT3Rs which are ligand-gated ion channels). Serotonin receptors are 

involved in the modulation of sleep-wake cycles, appetite, mood, memory, breathing, 

cognition and sexual behavior (McCorvy and Roth, 2015). Serotonin has been the focus of 

many pharmacological studies for the treatment of neuropsychiatric disorders with drugs 

that target either the serotonin receptors or serotonin reuptake. Examples include serotonin-

selective reuptake inhibitors (SSRIs), dual serotonin-norepinephrine reuptake inhibitor 

(SNRI) and partial agonist or antagonist for the serotonin receptors. 

The 5-HT1 subfamily consists of 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F and 

mainly couples to Gαi resulting in the inhibition of the activity of adenylyl cyclase and 

reduction in cAMP formation. 5-HT1AR has been implicated in anxiety and depression 

while the other subtypes have been associated with migraine. 

5-HT2 subfamily consists of three subtypes; 5-HT2A, 5-HT2B and 5-HT2C. The 

family mainly couples to Gαq for the activation of phospholipase C (PLC) which 

hydrolyzes the phosphatidylinositol diphosphate releasing diacylglycerol (DAG), protein 

kinase C (PKC) and inositol triphosphate (IP3). This also leads to the release of Ca2+ from 

intracellular stores (Roth et al., 2004; Gray and Roth, 2001). 5-HT2AR has been suggested 

to be a good target for the treatment of a number of mental illnesses including 

schizophrenia, depression, and Tourette’s syndrome given its high levels in the cortex 

(Meltzer and Roth, 2013). Similarly, 5-HT2CR is ubiquitously distributed in the CNS and 

has been shown to regulate dopamine release upon treatment with antidepressants   
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Figure 1.4: Signaling pathways activated by CRFR1: CRFR1 couples mainly to Gαs to 

stimulate Adenylyl Cyclase (AC) leading to the formation of cAMP. It can also signal via 

the MAPK pathway to activate ERK1/2 phosphorylation. 
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(Mengod et al., 1996; Millan et al., 2005). Little is known about the 5-HT2BR other than 

being unselectively activated by 5-HT2A and 5-HT2C receptor ligands. There is also some 

evidence to support that 5-HT2B activation can result in cardiac hypertrophy. 

5-HT4 receptors couple to Gαs to activate AC leading to cAMP release. They are 

expressed in different tissues and therefore their activation can result in variable effects 

such as long-term potentiation (LTP) in hippocampus and peristalsis in the gut (McCorvy 

and Roth, 2015). It has been suggested that blocking the receptor with selective 5-HT4R 

antagonists can be useful in the treatment of atrial fibrillation, irritable bowel syndrome, 

and urinary incontinence. 

Similar to 5-HT1, 5-HT5 receptors couple to Gαi. The family has two subtypes; 5-

HT5A and 5-HT5B that have been associated with psychiatric disorders but have not been 

used as pharmacological targets (Thomas, 2006). Both 5-HT6 and 5-HT7 receptors, are 

Gαs-coupled and expressed in the CNS (thalamus, hypothalamus and hippocampus) and 

peripheral tissues. Similar to the rest of serotonin receptors, they have been proposed as 

targets for the treatment of depression (McCorvy and Roth, 2015). 

Among these serotonin receptor subtypes, the most ubiquitous and extensively 

studied serotonin receptors in the human brain are the 5-HT1AR and 5-HT2AR. These 

receptors have been shown to have potential roles in different neuropsychiatric diseases 

such as Alzheimer’s disease, Schizophrenia, depression and suicide (Burnet et al., 1995). 

This project particularly focuses on 5-HT2AR which is expressed in the neocortex (mainly 

prefrontal, parietal, and somatosensory cortex). It is involved in the modulation of mood 

and perception (Hall et al., 2000). Similar to the CRFR1, the 5-HT2AR has a PDZ-binding 

motif at the carboxyl-terminal tail formed by three amino acids; serine, cysteine and valine 

(SCV). Furthermore, in addition to coupling to Gαq for the activation of PLC, it can activate 

the MAPK pathway resulting in ERK1/2 phosphorylation (Fig. 1.5). 
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Figure 1.5: Signaling pathways activated by 5-HT2AR: 5-HT2AR couples mainly to Gαq 

to stimulate phospholipase Cβ (PLCβ) leading to the hydrolysis of phosphatidylinositol-

4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3). 

IP3 results in the release of Ca2+ from intracellular stores while DAG activates PKC. It can 

also signal via the MAPK pathway to activate ERK1/2 phosphorylation. 
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1.9 Corticosteroid-Serotonin Interactions 

The studies on stress-related disorders such as depression have revealed that the 

two main systems involved are the Hypothalamo-Pituitary-Adrenal (HPA) Axis and the 

monoaminergic system and in particular the serotonergic (5-hyroxytryptamine) system. 

Studies show cross-regulation of the HPA axis and 5-HT system under normal 

physiological conditions, as well as pathological conditions. 

1.9.1 Hypothalamo-Pituitary-Adrenal (HPA) Axis 

The Hypothalamo-Pituitary-Adrenal (HPA) Axis is a neuroendocrine system that 

is responsible for regulating the stress response to restore homeostasis (Macri et al., 2007; 

Pompili et al., 2010). When the body is exposed to a stressor, the paraventricular nucleus 

(PVN) of the hypothalamus releases corticotrpoin-releasing hormone (CRH) and arginine-

vasopressin (AVP). CRH and AVP activate the anterior pituitary gland to release 

adrenocorticotropin hormone (ACTH). ACTH which is secreted into the circulation 

stimulates the adrenal cortex to produce glucocorticoids. These are represented by the 

secretion of cortisol in human and corticosteroids in rodents. These hormones can control 

the response via a negative feedback mechanism by activating glucocorticoid receptor 

(GR) in the adrenal cortex, anterior pituitary gland, hypothalamus and hippocampus 

(Lanfumey et al., 2008; Pompili et al., 2010). Many reports demonstrate the effect that the 

serotonin system has on the release of corticosteroids. One example is the increase in 

ACTH and cortisol levels upon administration of 5-HT1A agonists. Other studies show that 

5-HT acts via synaptic contacts between the serotonergic terminals and CRH-containing 

cells in the PVN (Liposits et al., 1987). This is demonstrated when the activation of 5-HT1A 

receptors on the PVN results in the secretion of ACTH (Lanfumey et al., 2008). 

1.9.2 Serotonergic System 

The serotonergic network is one of the most important systems in the brain, since 

the serotonergic neurons project to all parts of the CNS (Macri et al., 2007; Lanfumey et 

al., 2008; Pompili et al., 2010). One of these main structures is the hippocampus which 

receives many 5-HT projections from the neurons in the raphe nucleus. Therefore, different 
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5-HT receptor types are expressed in the hippocampus. The serotonin system can regulate 

variable functions such as food intake, learning and memory, thermoregulation, 

locomotion, cardiovascular function, sleep, endocrine regulation and sexual behavior. 

Studies demonstrate that the activation of HPA axis can result in a significant increase in 

the synthesis and production of 5-HT. 

1.10 Hypothesis and Objectives 

The previous section highlighted that there is plenty of evidence to support the 

interaction between the HPA axis and the serotonergic system. Interestingly, a recent study 

from our laboratory illustrates a crosstalk between the two systems at the receptor level. 

The study demonstrates a sensitization effect of 5-HT2AR signaling upon pretreatment with 

CRF (Magalhaes et al., 2010). The study also proposes that this phenomena is dependent 

on the internalization and trafficking pathways of both receptors and suggests the 

involvement of a PDZ protein as a key regulator for this crosstalk. The role of PDZ proteins 

in regulating GPCRs function has been the focus of many studies in the last decade which 

confirms their significance and the important roles they play in that field. However, many 

interactions remain to be characterized to gain better understanding of the role of PDZ 

proteins in regulating GPCRs activity. Achieving complete characterization of PDZ-

GPCRs interactions can provide an interesting pharmacological tool to develop more 

specific drugs. Targeting protein-protein interactions that are involved in pathological 

conditions is a challenging, yet very attractive, concept and focusing on the domains that 

mediate these interactions (such as PDZ domains) should be the priority. Such drugs will 

be very selective compared to agonists/antagonists of receptors and will therefore have 

fewer side effects. In order to be able to assess the effects of different PDZ proteins on the 

crosstalk between CRFR1 and 5-HT2AR, we would have to first study these effects on each 

receptor separately. The PDZ proteins that this project focuses on are CAL, MAGI-1, 

MAGI-2 and MAGI-3. The MAGI proteins have been shown to regulate synaptic function 

and have effects on learning and memory. CAL on the other hand has not been shown to 

be associated with mental disorders, but it is expressed in multiple regions of the brain 

including the cortex, hypothalamus and hippocampus which suggests a role that still needs 

to be explored. 
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Our HYPOTHESIS is that MAGI and CAL PDZ domain-containing proteins can 

differentially regulate the activity of GPCRs. The objectives are to determine the role of 

our PDZ proteins of interest in regulating the trafficking and signaling of CRFR1 and 5-

HT2AR. The three main aims for this project are: 

1. To determine the role of CAL in regulating the trafficking and 

signaling of CRFR1 and the mechanism for this regulation 

 

2. To determine the role of MAGI proteins in regulating the trafficking 

and signaling of CRFR1 and the mechanism for this regulation 

 

3. To determine the role of MAGI proteins in regulating the trafficking 

and signaling of 5-HT2AR and the mechanism for this regulation 

 

We use Human Embryonic Kidney 293 (HEK 293) cells to test the effects of 

overexpressing or knocking down the PDZ proteins of interest. We use co-

immunoprecipitation and immunofluorescent microscopy to assess the interactions 

between the receptors and PDZ proteins. We employ flow cytometry assays to assess the 

trafficking and internalization of receptors. We examine the effects of PDZ proteins on 

GPCR signaling by BRET-based assays for cAMP formation, scintillation proximity 

assays for IP formation and western blotting for ERK1/2 activation. 
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Chapter 2  

2 Role of CAL in regulating CRFR1 activity 

A version of this chapter has been published in the Journal of Cellular Signaling 

Hammad, M.M., Dunn, H.A., Walther, C., and Ferguson, S.S., (2015). Role of cystic 

fibrosis transmembrane conductance regulator-associated ligand (CAL) in regulating the 

trafficking and signaling of corticotropin-releasing factor receptor 1. Cell. Signal. 27 , 

2120-2130. 
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2.1 Introduction 

Corticotropin-releasing factor (CRF) is a 41 amino acid polypeptide that is secreted 

from the paraventricular nucleus of the hypothalamus in response to stress subsequently 

leading to the activation of the hypothalamic-pituitary-adrenal axis (HPA axis) (Vale et al., 

1981; Arzt and Holsboer, 2006). CRF activates two Class B G protein-coupled receptor 

(GPCR) subtypes, CRFR1 and CRFR2, which are widely expressed in the brain (neocortex 

and cerebellum) and pituitary (Chalmers et al., 1995; Palchaudhuri et al., 1998). CRF can 

regulate the endocrine response to stress by triggering the anterior pituitary gland to release 

adrenocorticotropin hormone (ACTH) into circulation. ACTH then stimulates the secretion 

of glucocorticoids from the adrenal cortex. Glucocorticoids regulate various functions both 

in the central nervous system (CNS) and at the periphery (Lanfumey et al., 2008). In 

addition, studies have shown a link between pathophysiological changes in the CRF system 

and various neuropsychiatric disorders such as major depression, panic disorder, anorexia 

nervosa, and Alzheimer's disease (Behan et al., 1996; Lanfumey et al., 2008). CRFRs are 

primarily coupled to Gαs for the activation of adenylyl cyclase leading to the formation of 

cyclic adenosine monophosphate (cAMP) (Chalmers et al., 1996) as well as the mitogen 

activated protein kinase (MAPK) signaling pathway (Kageyama et al., 2007). 

GPCRs can interact with a wide range of different proteins that control the 

trafficking, cell surface expression and signal transduction. Examples of these proteins 

include: β-arrestins, GPCR-associated sorting proteins (GASPs), small GTPases and 

PSD95/Disc Large/Zona Occludens (PDZ) proteins (Magalhaes et al., 2012). Many 

GPCRs, including CRFR1, encode a short class I PDZ domain recognition motif (S/T-x-ϕ, 

where ϕ is any aliphatic amino acid residue) at the end of the carboxyl-terminal tail. PDZ 

proteins are comprised of one or more 90 amino acid residue protein interaction domains 

that are thought to scaffold signaling complexes (Lee and Zheng, 2010; Romero et al., 

2011). PDZ proteins function to regulate the subcellular localization, trafficking and signal 

transduction of multiple GPCRs and different PDZ proteins have both overlapping and 

distinct roles in the regulation of GPCR activity (Harris and Lim, 2001; Lee and Zheng, 

2010; Romero et al., 2011; Magalhaes et al., 2012). 
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It is now recognized that PDZ proteins have distinct functions depending upon the 

particular GPCR with which they are associated. For example, MUPP1 interactions 

enhance GABAB receptor signaling (Balasubramanian et al., 2007), whereas MUPP1 

functions to uncouple the melatonin-1 receptor from Gαi (Guillaume et al., 2008) and 

facilitates resensitization of the 5-HT2CR (Parker et al., 2003). In the case of the β1-

adrenergic receptor (β1-AR), MAGI-2 has been shown to promote β1-AR internalization, 

whereas MAGI-3 selectively attenuates β1-AR-mediated ERK1/2 signaling (Xu et al., 

2001; He et al., 2006). In contrast, PSD-95 inhibits the internalization of β1-AR and 

facilitates the formation of β1-AR heterodimer with N-methyl-D-aspartate receptors (Hu et 

al., 2000). SAP97 functions to antagonize the internalization of both CRFR1 and 5-HT2AR, 

whereas PDZK1 reduces the extent of 5-HT2AR internalization, but has no significant effect 

on the endocytosis of CRFR1 (Dunn et al., 2013; Dunn et al., 2014; Walther et al., 2015). 

Although SAP97 regulates GPCR ERK1/2 signaling in a receptor-interaction independent 

manner, PDZK1 overexpression increases CRFR1- but not 5-HT2AR-mediated ERK1/2 

activity. 

The Golgi-localized cystic fibrosis transmembrane conductance regulator-

associated ligand (CAL) is a single PDZ domain-containing protein with two coiled-coil 

motifs and two evolutionally conserved regions which are required for its Golgi 

localization (Charest et al., 2001; Yao et al., 2001; Cheng et al., 2002). CAL is also known 

as GOPC, PIST and FIG. CAL overexpression reduces the cell surface expression of the 

β1-AR and mGluR1a by retaining the receptor inside the cell via a direct interaction (He et 

al., 2004; Zhang et al., 2008). CAL interacts with mGluR5a and stabilizes receptor 

expression by a mechanism that is proposed to involve the inhibition of ubiquitination-

dependent degradation (Cheng et al., 2010). CAL also contributes to the regulation of 

somatostatin receptor recycling and degradation (Wente et al., 2005; Bauch et al., 2014). 

In the present study, we have identified CAL as a protein that interacts with CRFR1. 

We find that CAL overexpression leads to the retention of CRFR1 in the Golgi apparatus 

and alters the post-translational N-glycosylation status of the receptor, suggesting that CAL 

negatively regulates the anterograde transport of CRFR1 from the ER-Golgi to the plasma 

membrane surface. We also find that CAL knockdown enhances ERK1/2 phosphorylation 
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in response to CRFR1 activation, but that CAL expression does not influence cAMP 

signaling. Taken together, our results indicate that CAL interactions with CRFR1 play an 

important role in regulating the maturation and cell surface expression of CRFR1. 
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2.2 Materials and Methods 

2.2.1 Materials 

Protein G beads were purchased from GE Healthcare (Oakville, ON, Canada). CRF was 

purchased from R&D Systems (Minneapolis, MN, USA). HA peroxidase high affinity 

antibody was purchased from Roche (Mississauga, ON, Canada). Rabbit anti-GFP 

antibody was obtained from Invitrogen/Life Technologies (Burlington, ON, Canada). ECL 

Western blotting detection reagents were purchased from Bio-Rad (Mississauga, ON, 

Canada). Alexa Fluor 647 anti-mouse IgG antibody was purchased from 

Invitrogen/Molecular Probes (Burlington, ON, Canada). Rabbit CAL antibody was 

purchased from Abcam (Toronto, ON, Canada). Rabbit anti-phospho-p44/42 MAP kinase 

(Thr202/Tyr402), and rabbit anti-p44/42 MAP kinase antibodies were obtained from Cell 

Signaling Technology (Pickering, ON, Canada). Mouse anti-HA antibody, 

endoglycosidases F and H and all other biochemical reagents were purchased from Sigma-

Aldrich (Oakville, ON, Canada). 

2.2.2 Plasmids 

HA-CRFR1 and HA-CRFR1-ΔTAV were described previously (Holmes et al., 2006; 

Magalhaes et al., 2010). Human CAL was kindly provided by Dr. Randy Hall (Emory 

University, School of Medicine). The CAL cDNA was subcloned into the expression 

vector pEYFP-N1. CAL siRNA (Hs_GOPC_3) GCUGCAGCUUCAUGCUAAATT was 

purchased from Qiagen (Toronto, ON, Canada). For the negative controls, we used Silencer 

Negative Control #1 AM4635 AGUACUGCUUACGAUACGGTT from Invitrogen 

(Burlington, ON, Canada). The exchange proteins directly activated by cAMP biosensor 

(EPAC) was a gift from Drs. Ali Salahpour (University of Toronto) and Marc Caron (Duke 

University) (Barak et al., 2008). TGN-CFP was kindly provided by Dr. Stephen Pasternak 

(University of Western Ontario). Site-directed mutagenesis was used to introduce N to Q 

in the following constructs: CRFR1 N38Q, CRFR1 N78Q, CRFR1 N90Q and CRFR1 

N98Q and mutations were confirmed by sequencing. 
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2.2.3 Cell culture and transfection 

Human embryonic kidney (HEK 293) cells were grown in Eagle's minimal essential 

medium supplemented with 10% fetal bovine serum. Cells were plated on 10-cm dishes 

24h prior to transfection. All experiments were performed on 75–80% confluent plates. 

Transfections were performed using calcium phosphate protocol except for siRNA 

transfections which were performed using Lipofictamine 2000 following manufacturer's 

instructions. Transfections were performed with 1 μg of each construct. Empty pcDNA3.1 

vector was used to equalize the total amount of plasmid cDNA used to transfect cells. 18h 

post transfection, cells were washed with phosphate-buffered saline (PBS) and 

resuspended with trypsin, 0.25% EDTA. Experiments were performed approximately 48h 

after transfection except for knockdown experiments which were performed 72h post 

transfection since this protocol resulted in the maximum knockdown of CAL. 

2.2.4 Co-immunoprecipitation 

24h after transfection, HEK 293 cells were seeded onto 10-cm dishes. Cells were starved 

with HBSS for 1h at 37 °C then stimulated with 100 nM CRF agonist for 30 min. Cells 

were then lysed in 500 μL lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, and 0.1% 

Triton X-100) containing protease inhibitors (1 mM AEBSF, 10 μg/ml leupeptin, and 2.5 

μg/ml aprotinin) for 20 min on a rocking platform at 4 °C. Samples were collected into 1.5 

ml Eppendorf tubes and centrifuged at 15,000 g for 15 min at 4 °C to pellet insoluble 

material. A Bradford protein assay was performed, and 150 μg of protein was incubated 

for 2–4h at 4 °C with protein G-Sepharose and mouse anti-HA antibody (1:50). Beads were 

washed three times with cold lysis buffer and incubated overnight at room temperature in 

3xSDS loading buffer containing 2-mercaptoethanol. Samples were separated by SDS-

PAGE, transferred to a nitrocellulose membrane, and western blots were then performed 

with the indicated antibodies (rabbit anti-GFP, 1:10000), (HA-POD, 1:1000). 

2.2.5 Confocal microscopy 

HEK 293 cells were co-transfected with HA-CRFR1, CAL-YFP and TGN-CFP in 10-cm 

dishes and 24h after transfection, cells were reseeded onto glass coverslips. 24h later, cells 

were washed with HBSS, fixed with 4% paraformaldehyde in PBS, and permeabilized with 
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0.5% Triton X-100 in PBS for 5 min at room temperature. After rinsing with PBS, cells 

were blocked with 5% donkey serum in PBS for 1h at room temperature then labeled with 

mouse HA antibody (1:1000) for 1h at room temperature. The reaction proceeded by 

incubation with a secondary antibody, donkey anti-mouse Alexa Fluor 647 (1:1000) for 1h 

at room temperature. Coverslips were mounted on slides using Pro- Long Gold Antifade 

Reagent. Confocal microscopy was performed using a Zeiss LSM510 META laser-

scanning confocal microscope equipped with a Zeiss 63X, 1.4 numerical aperture, oil-

immersion lens. 

2.2.6 Receptor endocytosis 

Following transfection, HEK 293 cells were re-seeded into 12- well plates. Cells were 

serum-starved in HBSS for 1h at 37 °C then stimulated for 0, 30 or 60 min with 500 nM 

CRF in HBSS at 37 °C. Cells were washed with cold HBSS and incubated with mouse 

anti- HA antibody (1:1000) for 1h on ice. Cells were washed with cold HBSS then labeled 

with Alexa Fluor 647 donkey anti-mouse IgG (1:1000) for 1h on ice in the dark. Cells were 

washed with cold HBSS and treated with 5 mM EDTA in PBS for 5 min on ice. Cells were 

collected and transferred to flow cytometry tubes containing 4% formaldehyde in PBS. 

Samples were run on a FACS Calibur cytometer using BD Cell Quest Pro software (BD 

Biosciences, Mississauga, ON, Canada) until 10,000 cells were counted. The geometric 

mean of fluorescence was determined using Flow Jo analysis software and was 

representative of the expression levels of the receptor on the plasma membrane (BD 

Biosciences, Mississauga, ON, Canada). 

2.2.7 Bioluminescent Resonance Energy Transfer-based biosensor 
cAMP assay 

HEK 293 cells were co-transfected with HA-CRFR1 (WT or ΔTAV) and either pcDNA3.1, 

CAL, scrambled (SCR) siRNA or CAL siRNA as well as 2 μg of an EPAC (exchange 

proteins directly activated by cAMP) construct in 10-cm dishes. 48h post-transfection, cells 

were re-seeded into 96-well plate (~10,000 cells/well) and left for another 24h. On the 

following day, cells were serum-starved for 1h in induction buffer (200 μM isobutyl-1-

methylxanthine (IBMX) in HBSS). Coelenterazine was then added to the wells at a final 
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concentration of 5 μM. Cells were then stimulated with increasing concentrations of CRF 

peptide for 10 min. The plate was then read by a Victor Plate Reader (Perkin-Elmer) and 

the BRET signal was determined by calculating the ratio of the light emitted at 505 to 555 

nm to the light emitted at 465 to 505 nm. 

2.2.8 ERK phosphorylation 

Following 48h of transfection, HEK 293 cells were re-seeded into 6- well plates. Cells were 

serum starved for 1h at 37 °C in HBSS and then stimulated with 500 nM CRF agonist for 

0, 5 and 15 min. Cells were lysed with lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 

and 1% Triton X-100) containing protease inhibitors (1 mM AEBSF, 10 μg/ml leupeptin, 

and 2.5 μg/ml aprotinin) and phosphatase inhibitors (10 mM NaF and 500 μM Na3VO4) 

for 20 min on a rocking platform at 4 °C. Samples were collected into 1.5 ml Eppendorf 

tubes and centrifuged at 15,000 g for 15 min at 4 °C to pellet insoluble material. A Bradford 

protein assay was performed, and 30–50 μg of protein was incubated overnight at room 

temperature in 3xSDS loading buffer containing 2-mercaptoethanol. Samples were 

separated by SDS-PAGE, transferred to a nitrocellulose membrane, and western blot 

analysis was performed for ERK1/2 (rabbit anti-p44/42MAPK, 1:1000), phospho-ERK1/2 

(rabbit anti-phospho-p44/42 MAPK, 1:1000), CAL-YFP (rabbit CAL, 1:1000), HA-

CRFR1 (HA-POD, 1:1000), and actin. 

2.2.9 Western blot analysis 

75–90 μl of the samples from the different assays which is equivalent to about 30–50 μg 

of protein was diluted in β-mercaptoethanol containing 3x loading buffer and then applied 

to 10% SDS-PAGE (30% acrylamide mix, 1.5 M tris-HCl, 20% SDS, 10% ammonium 

persulfate and TEMED). Separated proteins were then transferred to nitrocellulose 

membranes and membranes were then blocked in 10% milk in TBS for 1h. Membranes 

were then blotted overnight by incubation with the appropriate antibody at 4 °C. 24h later 

membranes were washed at least three times with 1X TBS with 0.05% Tween 20, and then 

incubated with a horseradish peroxidase- conjugated secondary antibody (1:10,000) for 1h. 

Membranes were finally washed again with 1X TBS with 0.05% Tween 20 three times 

before being developed using a BioRad chemiluminescence system. 
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2.2.10 Statistical analysis 

All measurements are represented as mean ± SEM. Comparisons were performed using 

one way analysis of variance test (ANOVA) followed by Bonferroni's or Dunn's Multiple 

comparisons test to determine significance. The symbol * indicates P values less than 0.05 

and is considered to be significant.  
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2.3 Results 

2.3.1 CAL interacts with CRFR1 in a PDZ-binding motif-dependent 
manner 

CAL is a PDZ domain-containing protein that was previously shown to interact with the 

β1-AR and Group I mGluRs (He et al., 2004; Zhang et al., 2008; Cheng et al., 2010). We 

previously identified CAL as one of several PDZ domain-containing proteins that interact 

with a GST fusion of the CRFR1 carboxyl-terminal tail (Dunn et al., 2013). To further 

validate this potential interaction between CAL and CRFR1, we performed co-

immunoprecipitation experiments with CAL-YFP and either wild-type HA-tagged CRFR1 

(HA-CRFR1) or a HA-tagged CRFR1 mutant that lacked a class I PDZ-binding motif (HA-

CRFR1-ΔTAV) in transiently transfected HEK 293 cells. We found that CAL-YFP was 

co-immunoprecipitated with HA-CRFR1, but not CRFR1-ΔTAV and that the interaction 

of CAL-YFP with HA-CRFR1 was not increased following agonist treatment with 100 nM 

CRF (Fig. 2.1A and 2.1B). We also observed that CAL overexpression resulted in a shift 

in the molecular weight of CRFR1 and this will be discussed in section 2.3.6. 

2.3.2 HA-CRFR1 co-localizes with CAL-YFP in the Golgi apparatus 

To further address whether CAL forms a complex with CRFR1, we assessed whether the 

two proteins could be co-localized in HEK 293 cells in a PDZ motif-dependent manner. In 

cells transfected to express HA-CRFR1 and YFP as a control, the HA-CRFR1 labeled with 

Alexa Fluor 647 primary mouse anti-HA antibody in permeabilized cells showed 

predominant localization at the cell surface with some co-localization with Golgi marker 

TGN-CFP (Fig. 2.2A). In HEK 293 cells transfected with HA-CRFR1 and CAL-YFP, 

CAL-YFP fluorescence was extensively co-localized with TGN-CFP consistent with 

previous reports where CAL was localized to the Golgi apparatus and could be used as a 

marker for this organelle (Fig. 2.2B) (Charest et al., 2001; Yao et al., 2001). In 

permeabilized HEK 293 cells, HA-CRFR1 immunofluorescence was co-localized with 

CAL-YFP with extensive co-localization in the Golgi (Fig. 2.2B). Similar to what was 

observed for HA-CRFR1, HA-CRFR1-ΔTAV immunofluorescence was localized at the 

cell surface of HEK 293 cells in YFP transfected cells (Fig. 2.2C), but unlike what was   
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Figure 2.1: CAL-YFP co-immunoprecipitates with HA-CRFR1 in a PDZ-binding 

motif-dependent manner: HEK 293 cells were co-transfected with HA-CRFR1 (WT or 

ΔTAV) and YFP or CAL-YFP. A) Representative immunoblot of CAL-YFP co-

immunoprecipitated (IP) with HA-CRFR1 but not HA-CRFR1-ΔTAV which lacks the 

PDZ-binding motif. SDS-PAGE was used to analyze samples and immunoblots were 

performed with rabbit anti-GFP. B) Effect of CRF treatment was quantified using 

densitometry and had no significant difference on the amount of CAL-YFP co-

immunoprecipitated with HA-CRFR1. Data are representative of 5 independent 

experiments. NT: non-transfected, IB: immunoblot.  
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Figure 2.2: CAL-YFP co-localizes with HA-CRFR1 in the Golgi in a PDZ-binding 

motif-dependent manner: A) Representative confocal microscopy image of fixed HEK 

293 cells transfected with TGN-CFP (blue), YFP (green), and HA-CRFR1 (red). B) 

Representative confocal microscopy image of fixed HEK 293 cells transfected with TGN-

CFP (blue), CAL-YFP (green), and HA-CRFR1 (red). C) Representative confocal 

microscopy image of fixed HEK 293 cells transfected with TGN-CFP (blue), YFP (green), 

and HA-CRFR1-ΔTAV (red). D) Representative confocal microscopy image of fixed HEK 

293 cells transfected with TGN-CFP (blue), CAL-YFP (green), and HA-CRFR1-ΔTAV 

(red). Scale bar=10 μM. Images are representative of 20 cells from five independent 

experiments. 
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observed for HA-CRFR1 it was not extensively localized to the Golgi to co-localize with 

CAL-YFP (Fig. 2.2D). In contrast, HA-CRFR1-ΔTAV immunofluorescence remained 

predominantly localized to the cell surface. Taken together these observations support the 

concept that CAL forms a complex with CRFR1 resulting in the accumulation of the 

receptor in the Golgi. 

2.3.3 Effect of CAL expression on agonist-stimulated CRFR1 
endocytosis 

To determine whether CAL contributed to the regulation of CRFR1 endocytosis, we 

employed flow cytometry to assess the loss of cell surface HA-CRFR1 

immunofluorescence. We found that CAL overexpression attenuated agonist-stimulated 

HA-CRFR1 internalization following treatment with 500 nM CRF for 30 and 60 min (Fig. 

2.3A). The internalization of the mutant HA-CRFR1-ΔTAV was not altered by CAL 

overexpression (Fig. 2.3B). Thus, CAL overexpression attenuated CRFR1 endocytosis in 

a PDZ motif-dependent manner. 

2.3.4 Effect of CAL expression on cAMP signaling 

PDZ domain-containing proteins were previously shown to have the potential to regulate 

cAMP signaling of some GPCRs (Wang et al., 2007; Magalhaes et al., 2012). Therefore, 

we tested whether CAL contributed to the regulation of CRFR1- mediated cAMP 

formation. In HEK 293 cells transfected with either HA-CRFR1 or HA-CRFR1-ΔTAV, 

with or without CAL, and treated with increasing concentrations of CRF for 10 min, there 

was no significant change in the maximum efficacy for CRF-stimulated cAMP signaling 

(Fig. 2.4A and 2.4B). In addition we assessed whether the attenuation of CAL expression 

might alter CRFR1 cAMP signaling. We found that transfection of HEK 293 cells with 

CAL siRNA previously demonstrated to knockdown CAL expression (Cheng et al., 2010) 

had no effect on either HA-CRFR1- or HA-CRFR1-ΔTAV- stimulated cAMP signaling in 

response to the treatment of transfected HEK 293 cells with increasing concentrations of 

CRF (Fig. 2.4C and 2.4D). These results suggest that CAL does not contribute to the 

regulation of CRFR1 activation of the cAMP pathway. 
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Figure 2.3: Effect of CAL expression on agonist-stimulated CRFR1 endocytosis: 
Agonist stimulated internalization of either A) HA-CRFR1 or B) HA-CRFR1-ΔTAV in 

the presence and absence of CAL overexpression following 500 nM CRF treatment for 

either 30 or 60 min. The data represent the mean ± SEM of 4 independent experiments. *P 

< 0.05 versus empty vector control.  
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Figure 2.4: CAL does not regulate CRFR1-mediated cAMP formation: Dose response 

for CRF stimulated cAMP formation assessed using a BRET-based cAMP biosensor assay. 

A) CRFR1- and B) CRFR1-ΔTAV-mediated cAMP formation in either plasmid vector or 

CAL transfected HEK 293 cells. C) CRFR1- and D) CRFR1-ΔTAV-mediated cAMP 

formation in either scrambled or CAL siRNA transfected HEK 293 cells. The data 

represent the mean ± SEM of 3–5 independent experiments. 
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2.3.5 Effect of CAL expression on ERK1/2 signaling 

In addition to being coupled to the Gαs-dependent activation of adenylyl cyclase, agonist 

activation of CRFR1 leads to increased ERK1/2 phosphorylation (Kageyama et al., 2007; 

Dunn et al., 2013; Dunn et al., 2014). Therefore, we assessed whether either CAL-YFP 

overexpression or siRNA-mediated knockdown of endogenous CAL would alter CRFR1-

mediated ERK1/2 phosphorylation in a PDZ interaction- dependent manner in response to 

500 nM CRF treatment for 5 and 15 min. CAL overexpression resulted in a statistically 

significant reduction in ERK1/2 phosphorylation and siRNA knockdown of endogenously 

expressed CAL increased HA-CRFR1- stimulated ERK1/2 phosphorylation following the 

activation of HA-CRFR1 for 5 and 15 min with 500 nM CRF (Fig. 2.5A). In contrast, 

neither CAL overexpression nor CAL knockdown affected HA-CRFR1-ΔTAV-stimulated 

ERK1/2 phosphorylation (Fig. 2.5B). Taken together, these data suggested that CAL 

negatively regulates CRFR1-mediated ERK1/2 signaling via a PDZ binding motif 

interaction-dependent signaling mechanism. 

2.3.6 Effect of CAL on CRFR1 glycosylation and degradation 

CAL overexpression consistently altered the molecular migration of HA-CRFR1, but not 

HA-CRFR1-ΔTAV by SDS-PAGE (Fig. 2.1 and Fig. 2.5). To further characterize this 

CAL expression-dependent change in the molecular mass of the HA-CRFR1, we co-

transfected HEK 293 cells with either HA-CRFR1 or HA-CRFR1-ΔTAV along with 

increasing cDNA concentrations of CAL and then performed western blotting on HEK 293 

cell lysates for receptor expression (Fig. 2.6A). We found that, even at the lowest levels of 

CAL overexpression, the molecular mass of a substantial proportion of HA-CRFR1 

decreased as evidenced by an increased mobility on the SDS-PAGE gel, suggesting that 

this represented an immature, non-glycosylated form of the receptor (Fig. 2.6A). In 

contrast, CAL overexpression did not alter the mobility of the HA-CRFR1-ΔTAV on an 

SDS PAGE gel (Fig. 2.6A). Densitometric analysis of the gels revealed that there was a 

significant reduction in the higher molecular mass HA-CRFR1 receptor band following 

CAL overexpression, whereas, CAL overexpression did not alter the proportion of the 

higher molecular mass HA-CRFR-ΔTAV band (Fig. 2.6B). To ascertain that the lower  
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Figure 2.5: CAL negatively regulates HA-CRFR1-mediated ERK1/2 

phosphorylation: A) Representative immunoblot showing ERK1/2 phosphorylation in 

response to 500 nM CRF treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 

cells, and HEK 293 cells transfected with HA-CRFR1 along with either YFP, CAL-YFP, 

scrambled (SCR) siRNA or CAL siRNA. Also shown are corresponding immunoblots for 

total ERK1/2, CAL and HA-CRFR1 protein expression. Shown below is the densitometric 

analysis of ERK1/2 phosphorylation in response to 500 nM CRF treatment for 0, 5, and 15 

min in non-transfected (NT) HEK 293 cell, and HEK 293 cells transfected with HA-

CRFR1 along with either YFP, CAL-YFP, scrambled (SCR) siRNA or CAL siRNA. The 

data represent the mean ± SEM of six independent experiments. * P < 0.05 versus SCR 

siRNA treated cells. B) Representative immunoblot showing ERK1/2 phosphorylation in 

response to 500 nM CRF treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 

cells, and HEK 293 cells transfected with HA-CRFR1-ΔTAV along with either YFP, CAL-

YFP, scrambled (SCR) siRNA or CAL siRNA. Also shown are corresponding 

immunoblots for total ERK1/2, CAL and HA-CRFR1-ΔTAV protein expression. Shown 

below is the densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells 

transfected with HA-CRFR1-ΔTAV along with either YFP, CAL-YFP, scrambled (SCR) 

siRNA or CAL siRNA. The data represent the mean ± SEM of 6 independent experiments. 

* P < 0.05 versus SCR siRNA treated cells.  
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 molecular mass species of the HA-CRFR1 construct was not the consequence of increased 

receptor degradation following CAL overexpression, we stimulated HA-CRFR1 

expressing cells with 100 nM CRF for 0, 2, 4 or 6 h in the presence of scrambled siRNA, 

CAL or CAL siRNA. However, we did not observe any time-dependent change in the 

fraction of the lower molecular mass HA-CRFR1 species in CAL overexpressing cells (Fig. 

2.6C). Consistent with the hypothesis that CAL interactions with HA-CRFR1, but not 

CRFR1-ΔTAV, affected the maturation of the glycosylation state of the receptor, both 

endoglycosidase F (1h) and H (3h) treatment reduced the molecular mass of the lower 

molecular weight HA-CRFR1 species (Fig. 2.6D). Taken together, these results indicated 

that PDZ motif-dependent interactions with the CRFR1 altered CRFR1 glycosylation. The 

amino-terminal domain of CRFR1 has five potential N-linked glycosylation sites at 

positions N38, N45, N78, N90 and N98 (Assil and Abou-Samra, 2001). Therefore, we 

generated point mutations where potentially glycosylated asparagine residues were 

replaced with glutamine, HA-CRFR1-N38Q, HA-CRFR1-N78Q, HA-CRFR1-N90Q and 

HA-CRFR1-N98Q. When expressed with YFP in HEK 293 cells HA-CRFR1-N38Q and 

HA-CRFR1-N78Q exhibited a wild-type pattern of protein expression (Fig. 2.7). However, 

when transfected with YFP, HA-CRFR1-N90Q and HA-CRFR1-N98Q had a mobility 

pattern on SDS-PAGE that was similar to what was observed following CAL-YFP 

overexpression with HA-CRFR1 (Fig. 2.7). However, overexpression of CAL-YFP 

resulted in the appearance of a lower molecular mass species for the wild-type, as well as 

the N38Q and N78Q CRFR1 mutants (Fig. 2.7). CAL-YFP overexpression resulted in 

nearly the complete loss of upper molecular mass protein band for the HA-CRFR1-N90Q 

and HACRFR1-N98Q mutants (Fig. 2.7). Taken together, CRFR1 N90 and N98 appear to 

be the primary residues that undergo receptor glycosylation.  
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Figure 2.6: Effect of CAL on CRFR1 glycosylation and degradation: A) Representative 

immunoblot of 1 μg HA-CRFR1 and HA-CRFR1-ΔTAV cell lysates from transfected 

HEK 293 cells immunoblotted with HA antibody. Cells were co-transfected with 

increasing amounts of plasmid cDNA encoding CAL (0, 0.25, 0.5, 1, and 2 μg plasmid 

cDNA). Shown below are representative immunoblots for CAL and actin expression. B) 

Densitometric analysis of the relative amount of the upper molecular mass CRFR1 

immunoreactive band compared to total receptor immunoreactivity. The data represent the 

mean ± SEM of 5 independent experiments. * P < 0.05 versus cells expressing receptor 

alone. C) Representative immunoblot (n= 3) of 1 μg HA-CRFR1 cell lysates from 

transfected HEK 293 cells immunoblotted with HA-antibody following CRF treatment 0, 

2, 4, 6 h, in cells transfected with scrambled siRNA, CAL, or CAL siRNA. Shown below 

is a representative immunoblot for CAL expression. D) Representative immunoblot (n= 5) 

of 1 μg HA-CRFR1 and HA-CRFR1-ΔTAV cell lysates from transfected HEK 293 cells 

immunoblotted with HA-antibody. Cells were co-transfected with and without plasmid 

cDNA encoding CAL-YFP and treated with and without endoglycosidase (Endo) F and H 

for 60 and 180 min, respectively. Shown below is representative immunoblot for CAL 

expression.  
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Figure 2.7: Glycosylation of HA-CRFR1-N38Q, -N78Q, -N90Q and -N98Q mutants 

in the absence and presence of CAL: Shown is a representative immunoblot of 1 μg HA-

CRFR1, HA-CRFR1-N38Q, HA-CRFR1-N78Q, HA-CRFR1-N90Q and HA-CRFR1-

N98Q cell lysates from HEK 293 cells co-transfected with either YFP or CAL-YFP. Blots 

are representative of four independent experiments.  
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2.3.7 Subcellular localization and signaling of CRFR1 glycosylation 
mutants 

To examine whether the glycosylation status of the CRFR1 was important for cell surface 

expression, we assessed the subcellular localization of both the HA-CRFR1-N78Q mutant 

that exhibited a wild-type glycosylation pattern, and the HA-CRFR1-N90Q mutant that 

exhibited altered glycosylation in the presence and absence of CAL-YFP by 

immunofluorescence microscopy. We found that the HA-CRFR1-N78Q mutant was 

expressed at the cell surface of HEK 293 cells and was not co-localized with TGN-CFP 

Golgi marker in YFP expressing cells (Fig. 2.8A), but was retained in the Golgi following 

CAL-YFP overexpression (Fig. 2.8B). In contrast, the HA-CRFR1-N90Q mutant exhibited 

extensive co-localization with TGN-CFP Golgi marker in both the absence and presence 

of CAL-YFP (Fig. 2.8C and 2.8D). Consistent with this observation, the cell surface 

expression of both the HA-CRFR1-N90Q and HA-CRFR1-N98Q mutants was reduced to 

the same extent as what was observed for the HA-CRFR1 in the presence of CAL-YFP 

while the cell surface expression of the HA-CRFR1-N38Q and HA-CRFR1-N78Q was 

similar to the HA-CRFR1 (presented as the dotted line) (Fig. 2.9A). The reduction in cell 

surface expression was not sufficient to impair G protein coupling but all glycosylation-

deficient mutations decreased the efficacy of CRF treatment for CRFR1-stimulated cAMP 

formation (Fig. 2.9B). Thus, a fully glycosylated CRFR1 was required for appropriate cell 

surface expression of the CRFR1 and mutation of any glycosylation site reduces the 

efficacy for CRF-stimulated cAMP formation. This unique effect on cAMP formation was 

not observed with the over-expression of CAL which suggests that introducing mutations 

and their effect on the structure and folding of the receptor has a more prominent effect 

than CAL interaction with the receptor. In addition to cAMP formation, we have also 

assessed ERK1/2 signaling by the glycosylation-deficient mutants. Our data showed that 

both CRFR1-N90Q and CRFR1-N98Q have altered ERK1/2 signaling illustrated as a 

reduction in phosphorylation that is about 50% less compared to CRF-stimulated ERK1/2 

phosphorylation by CRFR1 (Fig. 2.9C). 
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Figure 2.8: Subcellular localization of HA-CRFR1 glycosylation site mutants in the 

presence and absence of CAL: A) Representative confocal microscopy image of fixed 

HEK 293 cells transfected with TGN-CFP (blue), YFP (green), and HA-CRFR1-N78Q 

(red). B) Representative confocal microscopy image of fixed HEK 293 cells transfected 

with TGN-CFP (blue), CAL-YFP (green), and HA-CRFR1-N78Q (red). C) Representative 

confocal microscopy image of fixed HEK 293 cells transfected with TGN-CFP (blue), YFP 

(green), and HA-CRFR1-N90Q (red). D) Representative confocal microscopy image of 

fixed HEK 293 cells transfected with TGN-CFP (blue), CAL-YFP (green), and HA-

CRFR1-N90Q (red). Scale bar= 10 μM. Images are representative of 12 cells from three 

independent experiments. 
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Figure 2.9: Cell surface expression, cAMP signaling and ERK1/2 signaling of CRFR1 

glycosylation site mutants: A) Cell surface expression in HEK 293 cells expressing either 

HA-CRFR1 along with CAL, HA-CRFR1-N90Q, HA-CRFR1-N98Q, HA-CRFR1-N38Q 

or HA-CRFR1-N78Q expressed as measured by flow cytometry. Data is normalized to 

HA-CRFR1 expression (as illustrated by the dotted line). The data represent the mean ± 

SEM of 5 independent experiments. * P < 0.05 versus HA-CRFR1 cell surface expression. 

B) Dose-response for CRF-mediated cAMP activation in HEK 293 cells expressing either 

HA-CRFR1, HA-CRFR1 along with CAL, HA-CRFR1-N90Q, HA-CRFR1-N98Q, HA-

CRFR1-N38Q or HA-CRFR1-N78Q. The data represent the mean ± SEM of 5 independent 

experiments. C) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM 

CRF treatment for 0, 5, and 15 min in HEK 293 cells transfected with HA-CRFR1, HA-

CRFR1-N90Q, HA-CRFR1-N98Q, HA-CRFR1-N38Q or HA-CRFR1-N78Q. The data 

represent the mean ± SEM of three independent experiments. * P < 0.05 versus cells 

transfected with HA-CRFR1.  



73 

 

On the other hand, ERK1/2 signaling of both CRFR1-N38Q and CRFR1-N78Q was similar 

to that of CRFR1. This data is consistent with the mobility patterns observed in Fig. 2.7 

where both CRFR1-N90Q and CRFR1-N98Q had a similar pattern to CAL overexpression 

with the receptor and CAL overexpression also reduced ERK1/2 phosphorylation. This 

confirms the importance of CRFR1 glycosylation specifically of resides Asn90 and Asn98 

for proper maturation and signaling. It also supports our hypothesis that CAL's interaction 

with CRFR1 and the effects it has on receptor trafficking and signaling is the result of its 

role in mediating glycosylation.  
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2.4 Discussion 

We previously reported that CAL is one of a series of CRFR1- interacting PDZ 

proteins identified in a proteomic screen, but the functional role of this interaction has not 

been characterized (Dunn et al., 2013). In this study, we have identified the role of CAL in 

the regulation of the CRFR1 function as a protein that negatively regulates cell surface 

CRFR1 expression. We propose that CAL can regulate cell surface expression by 

modulating the post-translational modification involving the glycosylation of amino-

terminal Asn residues which is required for proper maturation and folding of GPCRs 

(Wheatley and Hawtin, 1999; Duvernay et al., 2005). This suggests an important role for 

CAL in the anterograde trafficking of transmembrane proteins through the ER-Golgi 

complex. We also demonstrate a negative functional effect of CAL on CRFR1-stimulated 

ERK1/2 signaling in the absence of alterations in CRFR1-mediated cAMP formation. 

Mutagenesis analysis of putative sites of glycosylation revealed active glycosylation at Asn 

residues 90 and 98 and that mutation of these residues reduced cell surface CRFR1 

expression and decreased the efficacy for CRF-stimulated cAMP formation. 

The role of PDZ proteins is generally considered to be limited to scaffolding molecular 

complexes, but these proteins have started to emerge as important regulators of GPCR 

expression and signaling (Magalhaes et al., 2012). CAL has been shown to associate with 

and regulate the activity of a number of other GPCRs including: the β1-AR (He et al., 2004), 

metabotropic glutamate receptor 1 and 5 (mGluR1a and mGluR5) (Zhang et al., 2008; 

Cheng et al., 2010) and the somatostatin receptor subtype 5 (SSTR5) (Wente et al., 2005; 

Bauch et al., 2014). A common finding in both our current study and previous reports 

examining the role of CAL in regulating GPCR function is that the overexpression of CAL 

results in the intracellular retention of the receptors in the ER-Golgi resulting in the 

reduction of receptor expression at the plasma membrane and this has been shown in 

multiple different cell lines. Moreover, CAL appears to play a role in the ER-Golgi 

retention not only of GPCRs, but also of other transmembrane proteins such as the CFTR 

(Cheng et al., 2002) and the voltage-gated potassium channel (KV10.1) (Herrmann et al., 

2013). However, the mechanism for this regulation is still not clear, especially for GPCRs. 

It has been suggested that CAL can reduce cell surface expression of CFTR by enhancing 



75 

 

their ubiquitination, thereby targeting them for lysosomal degradation. In contrast, opposite 

conclusions were drawn with regards to the mechanism by which CAL regulates mGluR5. 

In the case of mGluR5 it is suggested that CAL may stabilize the receptor by inhibiting its 

ubiquitination-dependent degradation process. This is not the case for CRFR1 as we have 

found that CAL overexpression does not contribute to increased CRFR1 degradation 

following CRF stimulation for up to 6h. 

We find that CAL overexpression results in the appearance of a lower molecular mass 

HA-immunoreactive protein band that is not prominently observed in the absence of CAL 

expression. We have hypothesized that this band represents an immature partially 

glycosylated form of the CRFR1. Similar conclusions have been previously made 

regarding the effect of CAL overexpression on the glycosylation status of SSTR5 (Wente 

et al., 2005; Bauch et al., 2014). GPCR maturation is associated with post-translational 

modification of the receptors that can result in the glycosylation of Asn residues localized 

on the extracellular surfaces of the receptors. In the present study, we find that the 

introduction of point mutations at Asn90 and Asn98, results in impaired CRFR1 

glycosylation that is indistinguishable from the effect of overexpressing CAL. We show 

that the addition of polysaccharide chains at either of these two residues is important for 

cell surface CRFR1 expression and the efficacy for CRF-stimulated cAMP formation. 

These results are in contradiction with a previous study of CRFR1 and the parathyroid 

hormone receptor (PTH) glycosylation (Assil and Abou-Samra, 2001). In the previous 

study, altered CRFR1 function required the mutation of at least three N-glycosylation sites 

and suggested that the loss of either one or two polysaccharide chains is well-tolerated 

(Assil and Abou-Samra, 2001). It is likely that the observed differences between these 

studies may be attributed to differences in the methodologies used to measure cell surface 

expression and cAMP formation and the cell types used. 

CAL has been shown to interact with Golgi proteins involved in sorting such as 

Syntaxin 6 or Golgin160 (Herrmann et al., 2013). In addition, CAL can associate with 

many transmembrane proteins and retain them in the transgolgi network (Cheng et al., 

2002; Herrmann et al., 2013). This suggests that CAL may play an important role as either 

an ER-Golgi sorting molecule or contribute directly to the ER-Golgi quality control process 
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to ensure that only properly folded terminally glycosylated proteins exit the ER-Golgi 

complex to traffic to the plasma membrane. If the protein is still not ready, CAL retains it 

to allow for other scaffolding proteins to bind and complete the folding process. This can 

also be used to explain CAL's role in mediating glycosylation. There is currently no known 

sorting mechanism for glycosyltransferases which are the key enzymes in the addition of 

glycans to proteins (Moremen et al., 2012). Given the ubiquitous distribution of CAL 

throughout the different Golgi compartments and its potential role as a sorting molecule, 

we can speculate that it is involved in the vesicular transport and sorting of 

glycosyltransferases and hence mediate the glycosylation of transmembrane proteins. 

A very recent paper has demonstrated that CAL interacts with the β1-AR (Koliwer et 

al., 2015). This interaction with the β1-AR appears to play an important role in regulating 

the internalization and recycling of the β1-AR and is proposed that this occurs as the 

consequence of an effect of CAL on the endosomal degradation of the receptor following 

endocytosis (Koliwer et al., 2015). The authors also demonstrate that β1-AR expression 

levels are decreased in the hippocampus of CAL knockout mice. Therefore, based on this 

study and our own data showing that CAL is predominantly localized to the Golgi 

apparatus, we propose that CAL may mediate its effects on GPCR function by serving as 

a GPCR sorting protein via two distinct mechanisms. Specifically, by acting as a regulator 

of post-translational GPCR modifications involved in receptor glycosylation, as well as 

functioning as a regulator of endosomal degradation.  

Our data show that CAL overexpression can block agonist-stimulated endocytosis. We 

are suggesting that CAL can mediate post-translational modifications and we have 

provided evidence for it regulating the glycosylation of CRFR1. We can speculate that it 

can mediate other modifications that might be important for receptor internalization like 

phosphorylation. In addition, other PDZ proteins were shown to regulate the recruitment 

of β-arrestin to GPCRs which is a key step in receptor endocytosis (Dunn and Ferguson, 

2015). It has been shown that NHERF1 can enhance β-arrestin recruitment to the 

chemokine receptor CCR5 (Hammad et al., 2010) while PSD95 blocks β-arrestin 

recruitment to 5-HT2AR (Schmid and Bohn, 2010). Therefore, it is possible that CAL 
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interferes with β-arrestin recruitment to the receptor and further studies are needed to 

investigate those mechanisms. 

In addition to its role in CRFR1 trafficking, we find that CAL overexpression affects 

CRFR1-dependent activation of the ERK1/2 signaling pathway. Specifically, CAL 

expression significantly attenuates CRFR1- mediated ERK1/2 phosphorylation in a 

manner that is dependent upon an intact CRFR1 PDZ-binding motif. Similar results have 

been observed for mGluR1a, where CAL overexpression reduces mGluR1a-stimulated 

ERK1/2 phosphorylation (Zhang et al., 2008). Thus, it will be important in the future to 

examine the role of CAL interactions with CRFR1 and other GPCRs that encode PDZ- 

binding motifs in the central nervous system. PCR analysis of mouse tissue revealed that 

CAL is ubiquitously distributed in many different regions of the brain (cerebellum, cortex, 

hippocampus and hypothalamus) as well as the heart, kidney, lungs, testis and spinal cord 

(Duvernay et al., 2005). CAL-deficient mice are infertile so it has been suggested that CAL 

is important in the early stages of development.  

We have reported previously that other PDZ proteins, SAP97 and PDZK1 are also 

important for the regulation of CRFR-mediated activation of the ERK1/2 signal 

transduction pathway. Unlike CAL, both SAP97 and PDZK1 facilitate CRFR1-mediated 

ERK1/2 phosphorylation and SAP97 contributes to GPCR-mediated ERK1/2 activation in 

the absence of PDZ binding motif interactions (Dunn et al., 2013; Dunn et al., 2014; 

Walther et al., 2015). Thus, CAL functions differently than both SAP97 and PDZK1 to 

antagonize CRFR1-mediated activation of ERK1/2 signaling and CAL siRNA increases 

CRFR1-stimulated ERK1/2 phosphorylation. Thus, it appears that, while a number of PDZ 

proteins contribute to the regulation of CRFR1 ERK1/2 signaling they have opposing 

effects and mediate their actions by distinct mechanisms. The precise mechanism by which 

CAL regulates the activation of the ERK1/2 pathway remains to be determined, but it does 

not appear to involve reduced cell surface expression of CRFR1, as cAMP formation is not 

altered following CAL overexpression. 
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2.5 Conclusion 

In conclusion, we find that CAL regulates N-glycosylation and cell surface 

expression of CRFR1 as well as negatively regulates CRFR1- mediated ERK1/2 

phosphorylation. This adds CRFR1 to a growing list of CAL-interacting GPCRs. The 

effects of CAL on CRFR1 glycosylation, cell surface expression and ERK1/2 signaling are 

all dependent upon an intact PDZ binding motif. Taken together, these observations and 

previous studies examining CAL function suggest that CAL represents another important 

PDZ domain containing protein that contributes to distinct aspects of GPCR trafficking 

and signaling.  
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Chapter 3  

3 Role of MAGI proteins in regulating CRFR1 activity 

A version of this chapter has been accepted for publication in the Journal of Molecular 

Signaling 

Hammad MM, Dunn HA, and Ferguson SS (2016) MAGI proteins regulate the trafficking 

and signaling of corticotropin-releasing factor receptor 1 via a compensatory mechanism 
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3.1 Introduction 

Membrane-associated guanylate kinase (MAGUK) family proteins are synaptic 

scaffolding proteins within a structured protein network responsible for the spatial 

organization of the presynaptic and postsynaptic compartments. They play a crucial role in 

the formation and function of synapses in the central nervous system (CNS) by regulating 

multiple aspects of synapse physiology such as synaptogenesis, receptor trafficking, 

synaptic function, and plasticity (Funke et al., 2005; Feng and Zhang, 2009; Yamagata and 

Sanes, 2010). MAGUKs are well-conserved throughout evolution and are widely-

expressed in the brain and periphery. They include multiple subfamilies including 

membrane palmitoylated proteins (MPPs), zona occludens (ZO), caspase recruitment 

domain-containing MAGUK protein (CARMA), discs large (DLGs) and MAGUK with 

inverted orientation PSD-95/Disc Large/Zona Occludens (PDZ) (MAGIs) proteins (Oliva 

et al., 2012). Generally, these proteins contain multiple domains that control their function 

and facilitate their interactions with their targets. The two common domains among all 

members are PDZ domains and the guanylate kinase (GK) domain. (Oliva et al., 2012). An 

important target for the MAGUKs scaffolding proteins is the G protein-coupled receptors 

(GPCRs) family (Dunn and Ferguson, 2015). Many GPCRs encode a short class I PDZ-

binding motif (S/T-x-ϕ, where ϕ is any aliphatic amino acid residue) at the end of their 

carboxyl-terminal tail that is recognized by the PDZ domain of the MAGUK proteins. This 

protein-protein interaction between the receptor and MAGUKs results in the regulation of 

GPCR function. MAGUK proteins play a key role in mediating the subcellular localization, 

trafficking, cell surface expression and signal transduction of multiple GPCRs and different 

proteins have both overlapping and distinct roles in the regulation of GPCR activity (Harris 

and Lim, 2001; Lee and Zheng, 2010; Romero et al., 2011; Magalhaes et al., 2012). One 

of the important subfamilies of MAGUKs is the membrane-associated guanylate kinase 

with inverted orientation (MAGI) protein subfamily (Dunn and Ferguson, 2015), which 

consists of three members; MAGI-1, MAGI-2 and MAGI-3. All three proteins share a 

similar structure containing one guanylate kinase-like (GK) domain, two tryptophan 

tryptophan (WW) domains and six PDZ domains. MAGI proteins, particularly MAGI-2 

and MAGI-3, have been shown to regulate the trafficking and signaling of multiple GPCRs. 
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MAGI-1, also known as BAP-1 (BAI-1-associated protein 1), has 7 isoforms that 

are widely expressed in different tissues. Isoform 1, isoform 2 and isoform 6 are highly 

expressed in colon, kidney, lung, liver, and pancreas. Isoform 5 is predominantly expressed 

in brain and heart. Isoform 3 and isoform 4 are highly expressed in pancreas and brain 

(Dobrosotskaya et al., 1997; Laura et al., 2002). MAGI-1 interacts with BAI-1 (brain-

specific angiogenesis inhibitor-1), a family B GPCR that functions as an adhesion 

molecule. Therefore, it is suggested that MAGI-1 might play an important role in the 

organization of membrane proteins and cytoskeleton by transmitting signals related to cell- 

cell or cell- matrix interactions through BAI-1 (Shiratsuchi et al., 1998; Stetak et al., 2009; 

Stephenson et al., 2014). MAGI-1 also regulates AMPA receptor activity and modulate 

behavioral plasticity (Emtage et al., 2009). 

MAGI-2, also known as S-SCAM (synaptic scaffolding molecule), is specifically 

expressed in the brain and has 2 isoforms (Wood et al., 1998). A previous study has 

illustrated an association between MAGI-2 and β1-AR that is enhanced upon agonist 

stimulation (Xu et al., 2001). The study also reports an increase in agonist-induced 

internalization of β1-AR when MAGI-2 is co-expressed, but no effect on cAMP generation 

induced by isoproterenol stimulation. In contrast, MAGI-2 has been shown to inhibit both 

vasoactive intestinal polypeptide type 1 (VPAC1) receptor-mediated cAMP production and 

internalization (Gee et al., 2009). 

MAGI-3 is also widely expressed in different tissues. It has been shown to interact 

with β2-AR and reduce signaling via the extracellular signal-regulated kinase 1 and 2 

(ERK1/2) pathway (Yang et al., 2010). MAGI-3 also associates with lysophosphatidic 

acid-activated receptor subtype-2 (LPA2R) and opposite to the effect that is observed for 

the β2-AR, knockdown of MAGI-3 results in a decrease in LPA2R-mediated ERK 1/2 

signaling (Zhang et al., 2007). The study also reports a significant reduction in Rho 

activation upon knockdown of MAGI-3. 

The corticotropin releasing factor receptor 1 (CRFR1) is activated by corticotropin-

releasing factor (CRF), a 41 amino acid neuropeptide secreted from the paraventricular 

nucleus of the hypothalamus in response to stress. Release of CRF can lead to the activation 

of the hypothalamic-pituitary-adrenal axis (HPA axis) (Vale et al., 1981; Arzt and 

Holsboer, 2006). CRF can also bind to and activate CRFR2, however the affinity of CRF 
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for CRFR1 is much higher than that for CRFR2. Both CRF receptors are widely expressed 

in the brain (neocortex and cerebellum) and pituitary (Chalmers et al., 1995; Palchaudhuri 

et al., 1998). A number of studies have elucidated a link between the pathophysiological 

changes in the CRF system and various neuropsychiatric disorders such as major 

depression, panic disorder, anorexia nervosa, and Alzheimer's disease (Behan et al., 1996; 

Lanfumey et al., 2008). CRFRs can primarily couple to Gαs for the activation of adenylyl 

cyclase leading to the formation of cyclic adenosine monophosphate (cAMP) (Chalmers et 

al., 1996) as well as the activation of the mitogen-activated protein kinase (MAPK) 

signaling pathway (Kageyama et al., 2007). CRFR1 encodes a PDZ-binding motif at the 

carboxyl-terminal tail presented by the last three amino acids, threonine - alanine - valine 

(TAV). Our laboratory has reports of the interaction between CRFR1 and multiple PDZ 

domain-containing proteins including SAP97, PSD-95, CAL and PDZK1. These studies 

showed that both SAP97 and CAL function to antagonize the internalization of CRFR1 

(Dunn et al., 2013; Hammad et al., 2015). Interestingly, the two proteins had opposite 

effects on CRF-stimulated ERK1/2 signaling where knockdown of SAP97 suppressed 

ERK activation while knockdown of CAL resulted in a significant enhancement of this 

activation. CAL, a Golgi PDZ protein, seems to regulate CRFR1 function via mediating 

the post-translational modifications since it prevents the glycosylation of the receptor in 

the Golgi. On the other hand, SAP97 regulation of ERK signaling is a general regulatory 

mechanism that is independent from the receptor-PDZ protein interaction. This only further 

confirms the distinct functions of PDZ proteins depending on the particular GPCR with 

which they are associated. PDZK1 had no significant effect on the endocytosis of CRFR1 

but enhanced ERK1/2 signaling (Walther et al., 2015). 

A PDZ overlay assay previously performed utilizing the carboxyl-terminal tail of 

the CRFR1 suggests an interaction between the first PDZ domain of all three MAGI 

proteins with the receptor (Dunn et al., 2013). Therefore, we have further investigated these 

interactions and examined the effects of the MAGI family members on CRFR1 signaling 

and trafficking. We find that all three MAGI proteins as MAGUK proteins can interact 

with CRFR1 via the class I PDZ-binding motif. We find that MAGI proteins can regulate 

the endocytosis of CRFR1 by mediating β-arrestin recruitment upon stimulation with CRF. 

We also demonstrate that siRNA knockdown of MAGI proteins can result in an 
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enhancement in ERK1/2 signaling. Furthermore, we show that knocking down one of the 

MAGI proteins results in the upregulation of the expression levels of the other members of 

the MAGI subfamily suggesting a compensatory mechanism for regulation. Taken 

together, our results indicate that MAGI proteins interactions with CRFR1 play an 

important role in regulating CRFR1 function. 
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3.2 Materials and Methods 

3.2.1 Materials 

Protein G beads were purchased from GE Healthcare (Oakville, ON, Canada). CRF was 

purchased from R&D Systems (Minneapolis, MN). HA peroxidase high affinity antibody 

was purchased from Roche (Mississauga, ON, Canada). Rabbit anti-GFP antibody was 

obtained from Invitrogen/Life Technologies (Burlington, ON, Canada). MAGI-1, MAGI-

2 and MAGI-3 antibodies were purchased from Thermo Fisher (Burlington, ON, Canada). 

ECL Western blotting detection reagents were purchased from Biorad (Mississauga, ON, 

Canada). Mouse anti-HA antibody and all other biochemical reagents were purchased from 

Sigma-Aldrich (Oakville, ON, Canada). 

3.2.2 Plasmids 

HA-CRFR1, CRFR1-YFP and HA-CRFR1-ΔTAV were described previously (Holmes et 

al., 2006; Magalhaes et al., 2010). His-MAGI-1, HA-MAGI-2 and His-MAGI-3 were 

kindly provided by Dr. Randy Hall (Emory University, School of Medicine). MAGI-1 

siRNA, MAGI-2 siRNA and MAGI-3 siRNA were purchased from Thermo Fisher 

(Burlington, ON, Canada). For the negative control, we used Silencer Negative Control #1 

AM4635 AGUACUGCUUACGAUACGGTT from Thermo Fisher (Burlington, ON, 

Canada). The exchange proteins directly activated by cAMP biosensor (EPAC) was a gift 

from Drs. Ali Salahpour (University of Toronto) and Marc Caron (Duke University) (Barak 

et al., 2008). 

3.2.3 Cell Culture and Transfection 

Human embryonic kidney (HEK 293) cells were cultured in Eagle’s minimal essential 

medium supplemented with 10% fetal bovine serum. Cells were plated on 10-cm dishes 

24h prior to transfection. All experiments were performed on 75-80% confluent plates. 

Transfections were performed using calcium phosphate protocol except for siRNA 

transfections which were performed using Lipofectamine 2000 following manufacturer’s 

instructions. Transfections were performed with 1 µg of each construct. Empty pcDNA3.1 

vector was used to equalize the total amount of plasmid cDNA used to transfect cells. 18h 
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post-transfection, cells were washed with phosphate-buffered saline (PBS) and 

resuspended with trypsin, 0.25% EDTA. Experiments were performed approximately 48h 

after transfection except for knockdown experiments which were performed 72h post 

transfection since this protocol resulted in the maximum knockdown of the different MAGI 

proteins. 

3.2.4 Co-immunoprecipitation 

24h after transfection, HEK 293 cells were seeded onto 10-cm dishes. Cells were starved 

with HBSS for 1h at 37°C then stimulated with 100 nM CRF agonist for 30 min. Cells 

were then lysed in 500 µL lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, and 0.1% 

Triton X-100) containing protease inhibitors (1 mM AEBSF, 10 µg/ml leupeptin, and 2.5 

µg/ml aprotinin) for 20 min on a rocking platform at 4°C. Samples were collected into 1.5 

ml Eppendorf tubes and centrifuged at 15,000 g for 15 min at 4°C to pellet insoluble 

material. A Bradford protein assay was performed and 300 µg of protein was incubated 

overnight at 4°C with protein G-Sepharose and mouse anti-HA antibody (1:50). Beads 

were washed three times with cold lysis buffer and incubated overnight at room 

temperature in 3xSDS loading buffer containing 2-mercaptoethanol. Samples were 

separated by SDS-PAGE, transferred to a nitrocellulose membrane, and western blots were 

then performed with the indicated antibodies (rabbit anti-GFP, 1:10000), (HA-POD, 

1:1000), (rabbit anti-MAGI-3, 1:1000), (rabbit anti-V5, 1:1000). 

3.2.5 Bioluminescent Resonance Energy Transfer-based biosensor 
cAMP Assay 

HEK 293 cells were co-transfected with 1 µg HA-CRFR1 (WT or ΔTAV) and either 1µg 

pcDNA3.1, MAGI-1, MAGI-2, MAGI-3, 80 pmoles scrambled (SCR) siRNA or siRNA 

against MAGI-1, MAGI-2 or MAGI-3 as well as 2 µg of an EPAC (exchange proteins 

directly activated by cAMP) construct in 10-cm dishes. 24h post-transfection, cells were 

reseeded into 96-well plate (~10,000 cells/well) and left for another 24h. On the following 

day, cells were serum-starved for 1h in induction buffer (200 μM isobutyl-1-

methylxanthine (IBMX) in HBSS). Coelenterazine was then added to the wells at a final 

concentration of 5 µM. Cells were then stimulated with increasing concentrations of CRF 
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peptide for 10 min. The plate was then read by a Victor Plate Reader (Perkin-Elmer) and 

the BRET signal was determined by calculating the ratio of the light emitted at 505 to 555 

nm to the light emitted at 465 to 505 nm. 

3.2.6 Receptor Endocytosis 

Following transfection, HEK 293 cells were re-seeded into 12-well plates. Cells were 

serum-starved in HBSS for 1h at 37°C then stimulated for 0 or 30 min with 500 nM CRF 

in HBSS at 37 °C. Cells were washed with cold HBSS and incubated with mouse anti-HA 

antibody (1:1000) for 1h on ice. Cells were washed with cold HBSS then labeled with 

Alexa Fluor 647 donkey anti-mouse IgG (1:1000) for 1h on ice in the dark. Cells were 

washed with cold HBSS and treated with 5mM EDTA in PBS for 5 min on ice. Cells were 

collected and transferred to flow cytometry tubes containing 4% formaldehyde in PBS. 

Samples were run on a FACS Calibur cytometer using BD Cell Quest Pro software (BD 

Biosciences, Mississauga, ON) until 10,000 cells were counted. The geometric mean of 

fluorescence was determined using Flow Jo analysis software and was representative of 

the expression levels of the receptor on the plasma membrane (BD Biosciences, 

Mississauga, ON). 

3.2.7 Western Blot Analysis 

75-90 μl of the samples from the different assays which is equivalent to about 50-70 μg of 

protein was diluted in β-mercaptoethanol-containing 3xSDS loading buffer and then 

applied to 10% SDS-PAGE (30% acrylamide mix, 1.5 M tris-HCl, 20% SDS, 10% 

ammonium persulfate and TEMED). Separated proteins were then transferred to 

nitrocellulose membranes and membranes were then blocked in 10% milk in TBS for 1h. 

Membranes were then blotted overnight by incubation with the appropriate antibody at 

4°C. 24h later, membranes were washed at least three times with 1X TBS with 0.05% 

Tween 20, and then incubated with a horseradish peroxidase-conjugated secondary 

antibody (1:10000) for 1h. Membranes were finally washed again with 1X TBS with 0.05% 

Tween 20 three times before being developed using a BioRad chemiluminescence system. 
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3.2.8 Bioluminescent Resonance Energy Transfer 

Cells were co-transfected with the indicated cDNA using Lipofictamine 2000. β-arrestin 

was tagged with Renilla luciferase (Rluc) and used as the energy donor while CRFR1 was 

tagged with YFP and used as the energy acceptor. 72h after transfection, cells were starved 

with HBSS for 1h at 37°C. The reaction was then started by the addition of Coelenterazine 

at a final concentration of 5 μM followed by increasing concentrations of CRF. Signal was 

collected on a Synergy Neo2 plate reader (Thermo Fisher) using 460/40-nm (luciferase) 

and 540/25-nm (YFP) band pass filters. Whether or not BRET occurred was determined 

by calculating the ratio of the light passed by the 540/25 filter to that passed by the 460/40 

filter. This ratio is referred to as the BRET ratio. 

3.2.9 Statistical Analysis 

All measurements are represented as mean ± SEM. Comparisons were performed using 

one way analysis of variance test (ANOVA) followed by Bonferroni’s or Dunn’s Multiple 

comparisons test to determine significance. * indicate P values less than 0.05 and is 

considered to be significant.  
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3.3 Results 

3.3.1 MAGI proteins interact with CRFR1 via the PDZ-binding motif 
independent of CRF activation 

The different members of the MAGI subfamily of proteins were previously shown to 

interact with different GPCRs. MAGI-2 was shown to interact with β1-AR, mGluR1a and 

VPAC1 while MAGI-3 was shown to interact with β1-AR, β2-AR, BAI-1 and LPA2R. We 

previously identified the first PDZ domains of MAGI-1, MAGI-2 and MAGI-3 as positive 

hits among several PDZ domains that interact with a GST fusion of the CRFR1 carboxyl-

terminal tail (Dunn et al., 2013). To further validate this interaction between MAGI 

proteins and CRFR1, we performed co-immunoprecipitation experiments with His-MAGI-

1 or His-MAGI-3 and either wild-type HA-tagged CRFR1 (HA-CRFR1) or HA-tagged 

CRFR1 mutant that lacked the PDZ-binding motif (HA-CRFR1-TAV) in transiently 

transfected HEK 293 cells. We found that His-MAGI-1 and His-MAGI-3 co-

immunoprecipitated with HA-CRFR1 but not CRFR1-TAV (Fig. 3.1A and 3.1C) and that 

the interaction with HA-CRFR1 was not altered following agonist treatment with 100 nM 

CRF for 30 min (Fig. 3.1B and 3.1D). Similarly, MAGI-2 was previously shown to interact 

with CRFR1 via the carboxyl terminal tail by another group (Bender et al., 2015). 

3.3.2 Effect of MAGI proteins expression on cAMP signaling 

PDZ domain-containing proteins were previously shown to have the potential to regulate 

cAMP signaling of some GPCRs (Magalhaes et al., 2012; Dunn and Ferguson, 2015) and 

MAGI-2 in particular was shown to reduce cAMP formation upon activation of VPAC1 

(Gee et al., 2009). Therefore, we tested whether MAGI proteins contributed to the 

regulation of CRFR1-mediated cAMP formation. In HEK 293 cells transfected with either 

HA-CRFR1 or HA-CRFR1-TAV, with or without MAGI-1, MAGI-2 or MAGI-3, there 

were no significant changes in the maximum efficacy for cAMP signaling in response to 

treatment with increasing concentrations of CRF for 10 min (Fig. 3.2A-C). In addition, we 

examined whether the attenuation of MAGI proteins expression could alter CRFR1-

mediated cAMP signaling. We found that transfection of HEK 293 cells with siRNA 

directed to knockdown MAGI-1, MAGI-2 or MAGI-3 had no effect on either HA-CRFR1- 
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Figure 3.1: MAGI proteins co-immunoprecipitate with HA-CRFR1 in a PDZ-binding 

motif-dependent manner: HEK 293 cells were co-transfected with HA-CRFR1 (WT or 

ΔTAV) and pcDNA or His-MAGI-1-V5. (A) Representative immunoblot of His-MAGI-1-V5 

co-immunoprecipitated (IP) with HA-CRFR1 but not HA-CRFR1-ΔTAV which lacks the 

PDZ-binding motif. SDS-PAGE was used to analyze samples and immunoblots were 

performed with rabbit anti-V5. (B) Effect of CRF treatment was quantified using densitometry 

and had no significant difference on the amount of MAGI-1 co-immunoprecipitated with HA-

CRFR1. HEK 293 cells were co-transfected with HA-CRFR1 (WT or ΔTAV) and pcDNA or 

His-MAGI-3. (C) Representative immunoblot of His-MAGI-3 co-immunoprecipitated (IP) 

with HA-CRFR1 but not HA-CRFR1-ΔTAV which lacks the PDZ-binding motif. SDS-PAGE 

was used to analyze samples and immunoblots were performed with rabbit anti-MAGI-3. (D) 

Effect of CRF treatment was quantified using densitometry and had no significant difference 

on the amount of His-MAGI-3 co-immunoprecipitated with HA-CRFR1. Data are 

representative of three independent experiments. 
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Figure 3.2: MAGI proteins do not regulate CRFR1-mediated cAMP formation: Dose 

response for CRF-stimulated cAMP formation assessed using a BRET-based cAMP biosensor 

assay. CRFR1- and CRFR1-ΔTAV- mediated cAMP formation in either plasmid vector or 

MAGI-1 (A), MAGI-2 (B) or MAGI-3 (C) transfected HEK 293 cells. CRFR1- and CRFR1- 

ΔTAV- mediated cAMP formation in either MAGI-1 siRNA (D), MAGI-2 siRNA (E) or 

MAGI-3 siRNA (F) transfected HEK 293 cells. Shown are representative immunoblots 

showing siRNA knockdown of (G) MAGI-1, (H) MAGI-2, and (I) MAGI-3 with 80 pmol 

siRNA for 72 hours. The data represent the mean ± SEM of at least three independent 

experiments.  
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or HA-CRFR1-TAV- stimulated cAMP signaling in response to treatment with 

increasing concentrations of CRF for 10 min (Fig. 3.2D-F). These results suggested that 

MAGI proteins did not contribute to the regulation of CRFR1 activation of the cAMP 

pathway. We validated the knockdown of MAGI proteins by co-transfecting HEK 293 cells 

with MAGI proteins cDNA (MAGI-1, MAGI-2 or MAGI-3) and 80 pmoles of either SCR 

siRNA or MAGI-siRNA. We observed 90% knockdown with MAGI-1 siRNA (Fig. 3.2G), 

50% knockdown with MAGI-2 siRNA (Fig. 3.2H) and 65% knockdown with MAGI-3 

siRNA (Fig. 3.2I). 

3.3.3 Effect of MAGI proteins on cell surface expression 

A previous study from our laboratory illustrated an effect of CAL, a Golgi PDZ protein, 

on cell surface expression of CRFR1 (Hammad et al., 2015). Therefore, we used flow 

cytometry to measure the plasma membrane expression of CRFR1 upon overexpression as 

well as knockdown of MAGI proteins. While overexpression of MAGI proteins had no 

effect on receptor expression levels (Fig. 3.3A-C), knockdown of certain MAGI proteins 

altered CRFR1 membrane expression. Our data show that knockdown of MAGI-1 resulted 

in an enhancement in CRFR1 expression at the plasma membrane (Fig. 3.3D). Knockdown 

of MAGI-2 and MAGI-3 on the hand had no effect on CRFR1 expression levels (Fig. 3.3E-

F). This illustrated the importance of MAGI proteins in regulating receptor expression and 

reflects distinguished effects among the members of the subfamily. 

3.3.4 Effect of MAGI proteins on CRF-mediated ERK1/2 signaling 

MAGI-3 was previously shown to regulate ERK1/2 signaling of other GPCRs in a 

distinctive manner as it was shown to enhance ERK1/2 activation in the case of LPA2R 

and BAI-1 and inhibit β-AR-stimulated ERK1/2 phosphorylation (He et al., 2006; Zhang 

et al., 2007). Since CRFR1 was shown to have the ability to activate the MAPK cascade, 

we assessed the effects of MAGI proteins overexpression on CRFR1-mediated ERK1/2 

phosphorylation. We found that the overexpression of MAGI-1, MAGI-2 and MAGI-3 did 

not have an effect on ERK1/2 phosphorylation (Fig. 3.4). Interestingly, when we 

knockdown endogenous expression of MAGI-1, MAGI-2 or MAGI-3, we observed a 

significant increase in ERK1/2 phosphorylation in response to stimulation of CRFR1  
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Figure 3.3: Effect of MAGI proteins on cell surface expression: Cell surface expression 

in HEK 293 cells expressing either HA-CRFR1 or HA-CRFR1-ΔTAV along with MAGI-1 

(A), MAGI-2 (B), MAGI-3 (C), MAGI-1 siRNA (D), MAGI-2 siRNA (E) or MAGI-3 siRNA 

(F) expressed as measured by flow cytometry. Data is normalized to HA-CRFR1 expression 

in the control pcDNA or SCR siRNA. The data represent the mean ± SEM of four independent 

experiments. * P < 0.05 versus HA-CRFR1 cell surface expression. 
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Figure 3.4: Effect of MAGI proteins overexpression on CRFR1-mediated ERK1/2 

signaling: (A) Representative immunoblot showing ERK1/2 phosphorylation in response to 

500 nM CRF treatment for 0, 2, 5, and 15 min in non-transfected (NT) HEK 293 cells, and 

HEK 293 cells transfected with HA-CRFR1 along with either pcDNA or His-MAGI-1. Also 

shown are corresponding immunoblots for total ERK1/2, MAGI-1 and HA-CRFR1 protein 

expression. (B) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 2, 5, and 15 min. The data represent the mean ± SEM of four independent 

experiments. (C) Representative immunoblot showing ERK1/2 phosphorylation in response to 

500 nM CRF treatment for 0, 2, 5, and 15 min in non-transfected (NT) HEK 293 cells, and 

HEK 293 cells transfected with HA-CRFR1 along with either pcDNA or MAGI-2. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-2 and HA-CRFR1 protein 

expression. (D) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 2, 5, and 15 min. The data represent the mean ± SEM of six independent 

experiments. (E) Representative immunoblot showing ERK1/2 phosphorylation in response to 

500 nM CRF treatment for 0, 2, 5, and 15 min in non-transfected (NT) HEK 293 cells, and 

HEK 293 cells transfected with HA-CRFR1 along with either pcDNA or MAGI-3. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-3 and HA-CRFR1 protein 

expression. (F) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 2, 5, and 15 min. The data represent the mean ± SEM of six independent 

experiments.  
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Figure 3.5: Effect of MAGI proteins knockdown on CRF-mediated ERK1/2 signaling: 

(A) Representative immunoblot showing ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells 

transfected with HA-CRFR1 along with either SCR siRNA or MAGI-1 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-1 and HA-CRFR1 protein 

expression. (B) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 5, and 15 min. The data represent the mean ± SEM of four independent 

experiments. (C) Representative immunoblot showing ERK1/2 phosphorylation in response to 

500 nM CRF treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 cells, and HEK 

293 cells transfected with HA-CRFR1 along with either SCR siRNA or MAGI-2 siRNA. Also 

shown are corresponding immunoblots for total ERK1/2 and HA-CRFR1 protein expression. 

The antibody was not sensitive enough to blot for endogenous MAGI-2. (D) Densitometric 

analysis of ERK1/2 phosphorylation in response to 500 nM CRF treatment for 0, 5, and 15 

min. (E) Representative immunoblot showing ERK1/2 phosphorylation in response to 500 nM 

CRF treatment for 0, 5, and 15 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells 

transfected with HA-CRFR1 along with either SCR siRNA or MAGI-3 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-3 and HA-CRFR1 protein 

expression. (F) Densitometric analysis of ERK1/2 phosphorylation in response to 500 nM CRF 

treatment for 0, 5, and 15 min. The data represent the mean ± SEM of four independent 

experiments. * P < 0.05 versus SCR siRNA control.  
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with 500 nM CRF for 5 or 15 minutes (Fig. 3.5). 

3.3.5 Effect of MAGI proteins expression on agonist-stimulated 
CRFR1 endocytosis 

Our laboratory previously reported that other members of the MAGUK family such as 

SAP97 and PSD-95, as well as the Golgi PDZ protein CAL could regulate CRF-induced 

CRFR1 internalization (Dunn et al., 2013; Hammad et al., 2015; Dunn et al., 2016). To 

determine whether MAGI proteins also contributed to the regulation of CRFR1 

endocytosis, we utilized flow cytometry to assess the loss of cell surface HA-CRFR1 by 

immunofluorescence. We found that the overexpression of MAGI-1, MAGI-2 and MAGI-

3 each attenuated agonist-stimulated HA-CRFR1 internalization following treatment with 

500 nM CRF for 30 min (Fig. 3.6A-C). However, although the internalization of the mutant 

HA-CRFR1-TAV was not altered by either MAGI-2 or MAGI-3, the overexpression of 

MAGI-1 significantly reduced HA-CRFR1-TAV (Fig. 3.6A-C). In addition, we assessed 

the effect of knockdown of endogenous MAGI proteins on agonist-stimulated CRFR1 

internalization. We observe that all MAGI siRNAs attenuated the internalization of CRFR1 

(Fig. 3.6D-F) and that MAGI-1 siRNA had the same effect on CRFR1-TAV 

internalization (Fig. 3.6D). Thus, MAGI proteins could regulate CRFR1 endocytosis. 

3.3.6 MAGI proteins can regulate CRFR1 endocytosis by mediating 
β-arrestin recruitment to the receptor 

The primary pathway contributing to CRFR1 internalization was previously shown to be 

β-arrestin-dependent (Holmes et al., 2006). Because of the effect of MAGI proteins on the 

regulation of CRFR1 endocytosis observed in Fig. 3.6, we decided to study the effect of 

MAGI proteins on β-arrestin recruitment to CRFR1. To do this, we employed a BRET 

assay to investigate this interaction between rLuc-tagged β-arrestin2 and YFP-tagged 

CRFR1. The overexpression of all MAGI proteins resulted in a right-ward shift in the CRF 

dose response curve for -arrestin2 recruitment (Fig. 3.7A). There was also a significant 

reduction in the maximal response for β-arrestin recruitment at 500 nM CRF with time 

(Fig. 3.7B). We also examined the effect of knockdown of MAGI proteins on β-arrestin2 

recruitment and similar results were observed, with a right-ward shift in the does response 
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Figure 3.6: Effect of MAGI proteins expression on agonist-stimulated CRFR1 

endocytosis: Agonist-stimulated internalization of either HA-CRFR1 or HA-CRFR1-

ΔTAV following 500 nM CRF treatment for 30 min in the presence of either MAGI-1 (A), 

MAGI-2 (B), MAGI-3 (C), MAGI-1 siRNA (D), MAGI-2 siRNA (E), or MAGI-3 siRNA 

(F). The data represent the mean ± SEM of at least three independent experiments. * P < 

0.05 versus empty vector or SCR siRNA control. 
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Figure 3.7: Effect of MAGI proteins expression on β-arrestin recruitment to CRFR1: 
BRET assays measured between β-arrestin-rLuc and CRFR1-YFP in the presence of 

MAGI-1, MAGI-2 or MAGI-3 (A, B) or MAGI-1 siRNA, MAGI-2 siRNA or MAGI-3 

siRNA (C, D). A and C show dose responses of the interaction while B and D show the 

interaction as a function of time upon stimulation with 500 nM CRF.   
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curve and significant reduction in the maximal response, with MAGI-3 exhibiting the most 

prominent effect (Fig. 3.7C and 3.7D). Taken together, these data suggested that MAGI 

proteins are regulating CRFR1 endocytosis by mediating β-arrestin recruitment to CRFR1. 

3.3.7 Knockdown of one MAGI proteins can lead to the upregulation 
in the expression level of the others 

The results we obtained from our internalization assays and β-arrestin recruitment assays 

were surprising in terms of having similar effects upon overexpression and knockdown of 

MAGI proteins. Therefore, we hypothesized that the expression levels of different 

members of the MAGI subfamily of proteins might be changing to compensate for the loss 

of another family member. In order to test this, we assessed the expression levels of each 

MAGI protein upon knockdown of the other MAGI proteins. We observed a significant 

up-regulation of MAGI-1 expression levels upon knockdown of MAGI-3 (Fig. 3.8A). 

Similarly, there was a significant up-regulation of MAGI-3 expression levels when MAGI-

1 is knocked down (Fig. 3.8B). This suggested a compensatory effect between MAGI-1 

and MAGI-3 that could explain the similar results observed for CRFR1 internalization and 

-arrestin2 recruitment following either MAGI protein overexpression or knockdown. 
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Figure 3.8: Knockdown of one MAGI protein results in an increase of expression of 

the other MAGI proteins: (A) Representative immunoblot showing the levels of MAGI-

1 in HEK 293 cells transfected with siRNA combinations as labeled. Densitometric 

analysis shows MAGI-1 levels after normalization to actin as a loading control. (B) 

Representative immunoblot showing the levels of MAGI-3 in HEK 293 cells transfected 

with siRNA combinations as labeled. Densitometric analysis shows MAGI-3 levels after 

normalization to actin as a loading control. The data represent the mean ± SEM of at least 

eight independent experiments. * P < 0.05 versus SCR siRNA control.  
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3.4 Discussion 

We have previously identified all three members of the MAGI subfamily as 

CRFR1-interacting PDZ proteins in the PDZ overlay assay (Dunn et al., 2013). Despite 

similarities in their molecular topology, the members of the MAGI subfamily, specifically 

MAGI-2 and MAGI-3, are known to have distinct function with respect to their functional 

regulation of different GPCRs, but their role in regulating CRFR1 activity has not been 

investigated (Xu et al., 2001; Sugi et al., 2007; Zhang et al., 2007; Gee et al., 2009; Yang 

et al., 2010). We find that all three MAGI proteins are co-immunoprecipitated with CRFR1 

in a PDZ motif dependent manner and that either overexpression or knockdown of each of 

the MAGI proteins is able to negatively regulate CRFR1 endocytosis with MAGI-1 

overexpression or knockdown negatively regulating CRFR1 endocytosis in a PDZ motif-

independent manner. This antagonism of CRFR1 endocytosis that is mediated by either 

MAGI protein overexpression or knockdown appears to involve the antagonism of -

arrestin recruitment to the receptor. In the case of siRNA-mediated knockdown of 

individual MAGI proteins there appears to be a compensatory up-regulation of the 

expression of other MAGI protein subtypes. In addition we find that while the 

overexpression of each of the MAGI proteins does not influence CRFR1-stimulated 

ERK1/2 phosphorylation, siRNA knockdown of each of the MAGIs results in a significant 

increase in CRFR1-mediated ERK1/2 phosphorylation. Taken together, our results indicate 

that MAGI protein interactions with CRFR1 play an important role in regulating CRFR1 

function. 

MAGUK proteins comprise a subfamily of scaffolding proteins that are defined by 

having PDZ, SH3 and GK domains with an emerging role in synapse formation and 

function. DLG (discs large) subfamily (mainly SAP97 and PSD-95) have been the focus 

of many studies and are shown to play key roles in synaptogensis, the creation of neural 

circuits, synaptic transmission, memory and learning, as well as glutamate receptor 

clustering and trafficking (Stetak et al., 2009). On the other hand, few studies have looked 

at the MAGI subfamily of MAGUK proteins, although they are abundantly expressed in 

the brain. Current understanding of MAGI protein function in the brain suggests a role on 

memory and learning, but the mechanism is still unknown (Funke et al., 2005; Stetak et al., 
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2009; Oliva et al., 2012). In terms of the MAGUKs role in regulating GPCRs function, 

studies from our laboratory illustrate distinct roles for SAP97 and PSD-95 in regulating 

CRFR1 trafficking and signaling (Dunn et al., 2013; Dunn et al., 2016). This is an 

intriguing observation because of the overlapping sequence and structural similarities of 

SAP97 and PSD-95. This lead to the hypothesis that MAGI proteins would also elicit 

diverse effects on receptor physiology. Although previous studies have looked at the effects 

of MAGI proteins on regulating GPCRs function, none of these previous reports have 

compared the relative function of all three MAGI proteins in regulating the activity of an 

individual GPCR, despite evidence that many GPCRs interact with all three MAGIs (Xu 

et al., 2001; He et al., 2006; Sugi et al., 2007; Zhang et al., 2007; Gee et al., 2009; Yang et 

al., 2010; Dunn and Ferguson, 2015). For example, MAGI-2 interacts with the β1-AR and 

enhances its internalization, whereas it also interacts with VPAC1 to regulate its 

intracellular localization in epithelial cells and inhibit agonist-induced internalization (Xu 

et al., 2001; He et al., 2006; Gee et al., 2009). MAGI-3 on the other hand is found to 

antagonize ERK1/2 activation by both the β1-AR and the β2-AR (Zhang et al., 2007; Yang 

et al., 2010; He et al., 2006). We find here that the overexpression of any of the MAGI 

proteins reduces CRF-stimulated CRFR1 internalization, which is similar to what is 

observed for VPAC1, but opposite to what is observed for the β1-AR. Interestingly, this 

effect is dependent on an intact CRFR1 PDZ-binding motif for MAGI-2 and MAGI-3, but 

not MAGI-1. This suggests that MAGI-1 may associate with CRFR1 via other interactions 

than those mediated by the PDZ domain. An alternative possibility would be that MAGI-1 

is antagonizing the formation of protein complexes required for GPCR endocytosis. 

Further studies on receptors that do not harbor a PDZ-binding motif such as CRFR2 would 

be required to further investigate this role of MAGI-1. It will also be important to study the 

effect of MAGI-1 on the ESCRT complex and its components. 

As is the case for many GPCRs, the primary internalization pathway utilized by the 

CRFR1 involves β-arrestin-dependent endocytosis via clathrin-coated pits (Ferguson et al., 

1998; Ferguson, 2001; Holmes et al., 2006; von Zastrow and Williams, 2012). The 

observation that each of the MAGI proteins antagonize CRFR1 endocytosis suggested the 

possibility that MAGI proteins may play a role in regulating β-arrestin recruitment to the 

receptor. Consistent with this hypothesis, the overexpression of all of the MAGIs resulted 
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in the antagonism of -arrestin2 recruitment to the receptor as measured by BRET assay 

as assessed by a right-ward shift in the CRF dose response curve and a blunting of the 

maximal translocation response. Surprisingly, when the same assay is repeated with siRNA 

against MAGI-1, MAGI-2 or MAGI-3 to knockdown the endogenous proteins, we still 

observe a right-ward shift in the dose response curve and an even more prominent reduction 

in the maximal response. This result is opposite to what we had anticipated. Therefore, we 

investigated whether changes in the expression levels of other MAGI protein subtypes is 

compensating for the loss of expression of the MAGI protein knocked down by siRNA. 

This concept of compensation is not entirely novel to the field of PDZ domain- containing 

proteins, as it is suggested that PSD-95 and PSD-93 can replace one another to regulate 

GPCR function in a similar manner (Sun and Turrigiano, 2011). Interestingly, we observe 

a compensatory up-regulation of MAGI-1 expression upon MAGI-3 knockdown and an 

up-regulation of MAGI-3 expression following MAGI-1 protein knockdown. Thus, 

compensatory MAGI protein expression provides a plausible mechanism by which 

knocking down individual MAGI proteins attenuates CRFR1 endocytosis and impairs -

arrestin2 recruitment. However, this mechanism may not be entirely sufficient to explain 

our results, as although MAGI-2 knockdown resulted in increased MAGI-1 and MAGI-3 

protein expression in the representative blots shown in Fig. 3.8, this result is not reliably 

reproduced when compared to MAGI-1 and MAGI-3 knockdown. Additional work would 

be necessary to further assess this interplay between the MAGI subfamily members. 

We have previously reported the interaction of other PDZ domain- containing 

proteins with CRFR1 and the consequences of that on receptor endocytosis. We have 

shown that the overexpression of SAP97 antagonizes agonist-stimulated CRFR1 

internalization, whereas single hairpin (shRNA) knockdown of endogenous SAP97 in 

HEK 293 cells results in increased agonist-stimulated CRFR1 endocytosis and that PSD-

95 elicits the same effects on CRFR1 endocytosis (Dunn et al., 2015; Dunn et al., 2016). 

Similarly, we also find that CAL negatively regulates CRFR1 endocytosis when 

overexpressed (Hammad et al., 2015). Despite seemingly having similar effects, the 

mechanism of GPCR regulation by these PDZ proteins is vastly different. SAP97 and PSD-

95 are suggested to regulate the internalization by affecting β-arrestin recruitment to 
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CRFR1, while CAL acts as a major sorting protein at different subcellular levels and by 

modifying the post-translational modifications that the receptor undergoes at the Golgi. 

Thus, the MAGI proteins employ a similar “MAGUK-like” mechanism to regulate CRFR1 

endocytosis via the attenuation of β-arrestin recruitment. However, their collective function 

is further complicated by a compensatory mechanism involving changes in protein 

expression of other subtypes. Future studies will examine this potential phenomenon and 

how it may affect other GPCRs function.

In addition to the role that MAGI proteins play in regulating the trafficking of 

CRFR1, we find that they have an important effect on the regulation of CRFR1 signaling, 

specifically via the MAPK pathway, but not G protein-mediated cAMP formation. While 

the overexpression of each of the MAGI proteins has no effect on CRFR1-mediated 

ERK1/2 phosphorylation, siRNA knockdown of all of the MAGIs results in a significant 

increase in the extent of ERK1/2 phosphorylation induced by CRFR1 activation. 

Interestingly, a study on LPA2R showed opposite effects on ERK1/2 activation where 

MAGI-3 knockdown reduced the signal. However, similar to our study, the LPA2R study 

which was performed on SW480 cells reported no difference in ERK activity upon 

overexpression of MAGI-3 suggesting that different tissues and cell lines express 

endogenous MAGI proteins in high levels. Previous experiments examining the regulation 

of CRFR1-mediated ERK1/2 activation by two other MAGUK family members, SAP97 

and PSD-95 yielded different results (Dunn et al., 2013; Dunn et al., 2016). Whereas, 

SAP97 expression significantly enhanced CRFR1-stimulated ERK1/2 phosphorylation, 

PSD-95 overexpression had no effect on ERK1/2 phosphorylation induced by CRFR1 

activation. In contrast, the observed increase in CRFR1-mediated ERK1/2 phosphorylation 

following siRNA knockdown of each of the MAGI proteins is similar to what we have 

previously observed following siRNA knockdown of PDZK1 (Walther et al., 2015). The 

mechanism by which siRNA knockdown of an individual MAGI protein results in 

compensatory changes in the expression levels of other MAGI proteins to attenuate CRFR1 

endocytosis without compensating for CRFR1-mediated ERK1/2 activation is unclear. 

However, these results might suggest that the observed increase in ERK1/2 

phosphorylation is mediated by a -arrestin-independent pathway as CRFR1/-arrestin 
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interactions are predominantly regulated by GRK5 phosphorylation, which is thought to 

preferentially allow activation of ERK1/2 via the -arrestin-mediated pathway (Holmes et 

al., 2006; Zidar et al., 2009). 

Now that we have a better understanding for the role of MAGI proteins in 

regulating CRFR1 function in HEK293 cells, the next step would be to asses these 

interactions in vivo. RT-PCR in mouse tissue showed that the MAGI proteins are expressed 

in different regions of the brain including the cortex, thalamus and cerebellum (Sugnet et 

al., 2006). We would predict that MAGI proteins are expressed in CRF-containing neurons 

and would regulate CRFR1 physiology. Some knockout mouse models of MAGI proteins 

are available (MAGI-1 and MAGI-2) and have exhibited some renal deficits (Ihara et al., 

2014). This reflects the importance of MAGI proteins in periphery. In addition, MAGI-2 

knockout mice show abnormal elongation of dendritic spines indicating a possible role for 

MAGI-2 during morphogenesis of neurons. (Iida et al., 2007). Furthermore, studies on C. 

elegans demonstrate a role for MAGI-1 in regulating the clustering of ionotropic glutamate 

receptors in certain neurons that are associated with learning and memory (Stetak et al., 

2009). Therefore, further characterization of MAGI proteins knockout models is required 

to determine the role of this subfamily in the CNS.

In summary, the current study completes a series of investigations examining the 

role of PDZ proteins in regulating the expression, trafficking and signaling of CRFR1. We 

find that PDZ proteins play an overlapping but distinguishable role in regulating the post-

translation modification, ER-Golgi trafficking, endocytosis and signaling of CRFR1 (Dunn 

et al., 2013; Hammad et al., 2015; Walther et al., 2015; Dunn et al., 2016). Although each 

of these proteins had a similar effect on CRFR1 endocytosis, as they each, with the 

exception of PDZK1, function to antagonize CRFR1 internalization, they exhibit 

pleiotropic effects on the regulation of CRFR1-mediated ERK1/2 activity. These 

observations indicate that there is likely no redundancy of function for PDZ proteins in the 

regulation of GPCR activity in vivo, and suggest that in a cellular context these proteins 

may interchangeably interact with GPCRs to differentially regulate the recruitment of 

signaling complexes required for their activation of mitogenic signaling pathways. 
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3.5 Conclusion 

In conclusion, our data demonstrate an interaction between all three MAGI 

proteins, MAGI-1, MAGI-2 and MAGI-3 with CRFR1 that leads to the regulation of 

receptor activity. We illustrate that all MAGI proteins can regulate the internalization of 

the receptor by mediating β-arrestin recruitment. We also provide evidence that MAGI 

proteins can regulate CRFR1 signaling via the MAPK pathway but not the G protein-

dependent pathways presented by cAMP formation. We also suggest a compensatory effect 

of regulation among the members of the MAGI subfamily. Taken together, these 

observations along with our previous studies on CRFR1 confirm the distinctive functions 

of PDZ domain-containing proteins in regulating GPCRs function. 
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4 Role of MAGI proteins in regulating 5-HT2AR activity 
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4.1 Introduction 

The family of serotonin receptors (5-HTRs) consists of 7 receptor types and 15 

subtypes that belong to Class A G protein-coupled receptors (GPCRs), except for 5-HT3Rs 

which are ligand-gated ion channels (Gray and Roth, 2001; Lanfumey et al., 2008). 5-HTRs 

contribute to the modulation of various biological processes including sleep-wake cycles, 

appetite, mood, memory, breathing, cognition and sexual behavior (McCorvy and Roth, 

2015). Serotonin has been the focus of many pharmacological studies for the treatment of 

neuropsychiatric disorders with drugs that target either the serotonin receptors or serotonin 

uptake (Kroeze and Roth, 1998; Roth et al., 2004). Examples include SSRIs (serotonin-

selective reuptake inhibitors), SNRIs (dual serotonin-norepinephrine reuptake inhibitors) 

and partial agonists or antagonists for the 5-HTRs. Among the different serotonin receptor 

subtypes, the most ubiquitous and extensively studied 5-HTRs in the human brain are the 

5-HT1AR and 5-HT2AR. These receptors have been shown to have potential roles in 

different neuropsychiatric diseases such as Alzheimer’s disease, schizophrenia, depression 

and suicide (Burnet et al., 1995; Roth et al., 2004). 

The 5-HT2R subfamily consists of three subtypes: 5-HT2A, 5-HT2B and 5-HT2C. The 

family is primarily coupled to Gq leading to the activation of phospholipase Cβ (PLCβ) 

which hydrolyzes the phosphatidylinositol diphosphate (PIP2) to release diacylglycerol 

(DAG) and inositol triphosphate (IP3) (Gray and Roth, 2001; Roth et al., 2004). 5-HT2R 

coupling to Gq ultimately culminates in the release of Ca2+ from intracellular stores and 

the subsequent activation of protein kinase C. In addition to activating Gq-dependent cell 

signaling, 5-HTRs can activate the MAPK pathway resulting in the extracellular signal-

regulated kinase 1 and 2 (ERK1/2) phosphorylation. 5-HT2AR also encodes a class I PDZ-

binding motif at the distal end of its carboxyl-terminal tail that consists of three amino 

acids; serine, cysteine and valine (SCV). It was shown to be regulated by multiple PSD-

95/Disc Large/Zona Occludens (PDZ) domain-containing proteins such as SAP97, PSD-

95, PDZK1 and MUPP1 (Xia et al., 2003; Jones et al., 2009; Jones et al., 2009; Dunn et 

al., 2014; Walther et al., 2015). SAP97 and PSD-95 belong to the membrane associated 

guanylate kinase (MAGUK) subfamily of PDZ proteins (Funke et al., 2005; te Velthuis et 

al., 2007; Oliva et al., 2012). 
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The MAGUK family of proteins are synaptic scaffolding proteins that belong to a 

protein network responsible for the spatial organization of the presynaptic and postsynaptic 

compartments. One of their primary functions is to regulate the formation of synapses in 

the central nervous system (Funke et al., 2005; Zhang et al., 2009; Yamagata and Sanes, 

2010). MAGUKs are widely-expressed in the brain and periphery and they consist of 

multiple subfamilies including membrane palmitoylated proteins (MPPs), zona occludens 

(ZO), caspase recruitment domain containing MAGUK protein (CARMA), discs larges 

(DLGs) and MAGUK with inverted orientation PDZ proteins (MAGIs) (Oliva et al., 2012). 

As scaffolding proteins, they contain multiple domains to control their function and 

facilitate their interactions with their targets. The two common domains among all 

members are PDZ domains and guanylate kinase (GK) domains (Oliva et al., 2012). One 

of the important targets for MAGUKs are GPCRs (Dunn and Ferguson, 2015). The protein-

protein interaction between GPCRs and MAGUKs have crucial effects on the regulation 

of GPCR activity (reviewed by Dunn and Ferguson, 2015). MAGUK proteins play a central 

role in mediating the subcellular localization, trafficking, cell surface expression and signal 

transduction of multiple GPCRs and different proteins have both overlapping and distinct 

roles in the regulation of GPCR activity (Harris and Lim, 2001; Lee and Zheng, 2010; 

Romero et al., 2011; Magalhaes et al., 2012). MAGI protein represent an important 

subfamily of MAGUK proteins and is comprised of three members: MAGI-1, MAGI-2 and 

MAGI-3. All three proteins share a similar structure containing one guanylate kinase-like 

(GK) domain, two tryptophan tryptophan (WW) domains and six PDZ domains (te 

Velthuis et al., 2007; Oliva et al., 2012; Dunn and Ferguson, 2015). 

MAGI-1 is also called BAP-1 (BAI-1-associated protein 1) and has 7 different 

splice variants that exhibit distinct but overlapping tissue distributions (Dobrosotskaya et 

al., 1997; Laura et al., 2002). MAGI-2 or S-SCAM (synaptic scaffolding molecule) has 

two alternative splice variants and is brain-specific, whereas MAGI-3 exhibits a 

widespread expression pattern. MAGI-1 through its interaction with the brain-specific 

angiogenesis inhibitor-1 (BAI-1) is proposed to contribute to regulating the cytoskeletal 

organization and membrane protein distribution, likely by relaying signals via BAI-1 that 

control both cell- cell and cell- matrix interactions (Shiratsuchi et al., 1998; Stetak et al., 

2009; Stephenson et al., 2013). MAGI-2 interacts with β1-AR in an agonist-dependent 
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manner to facilitate β1-AR endocytosis without altering cAMP responses (Xu et al., 2001) 

In contrast, MAGI-2 negatively regulates the internalization and Gs-coupling of the 

vasoactive intestinal polypeptide type 1 receptor (VPAC1R) (Gee et al., 2009). MAGI-3 

overexpression inhibits β2-AR-mediated signaling via the extracellular signal-regulated 

kinase 1 and 2 (ERK1/2) pathway, whereas a loss of MAGI-3 expression antagonizes 

lysophosphatidic acid-activated receptor subtype-2 (LPA2R)-stimulated ERK1/2 

phosphorylation (Yang et al., 2010). We previously identified all three MAGI protein 

subtypes as 5-HT2AR-interacting proteins using a 96 well PDZ protein array. In the present 

study we confirm the interaction of each of the MAGI proteins with 5-HT2AR and 

investigate their role in regulating 5-HT2AR cell surface expression, trafficking and 

signaling. 
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4.2 Materials and Methods 

4.2.1 Materials 

MAGI-1, MAGI-2 and MAGI-3 antibodies were purchased from Thermo Fisher 

(Burlington, ON, Canada). Rabbit anti-phospho-p44/42 MAPK (Thr-202/Tyr-402) and 

rabbit anti-p44/42 MAPK antibodies were obtained from Cell Signaling Technology 

(Pickering, ON, Canada). Rabbit anti-PLCβ3 was purchased from abcam (Toronto, ON, 

Canada). ECL Western blotting detection reagents were purchased from Biorad 

(Mississauga, ON, Canada). Rabbit anti-Flag antibody and all other biochemical reagents 

were purchased from Sigma-Aldrich (Oakville, ON, Canada). 

4.2.2 Plasmids 

FLAG-tagged 5-HT2AR and 5-HT2AR-ΔSCV constructs were described previously 

(Magalhaes et al., 2010). His-MAGI-1, HA-MAGI-2 and His-MAGI-3 were kindly 

provided by Dr. Randy Hall (Emory University, School of Medicine). PLCβ3 was kindly 

provided by Dr. Alan Smrcka (University of Rochester Medical Center). MAGI-1 siRNA, 

MAGI-2 siRNA and MAGI-3 siRNA were purchased from Thermo Fisher (Burlington, 

ON, Canada). For the negative controls, we used Silencer Negative Control #1 AM4635 

AGUACUGCUUACGAUACGGTT from Invitrogen (Burlington, ON, Canada). 

4.2.3 Cell Culture and Transfection 

Human embryonic kidney (HEK 293) cells were grown in Eagle’s minimal essential 

medium supplemented with 10% fetal bovine serum.  Cells were plated on 10-cm dishes 

24h prior to transfection. All experiments were performed on 75-80% confluent plates. 

Transfections were performed using calcium phosphate protocol except for siRNA 

transfections which were performed using Lipofictamine 2000 following manufacturer’s 

instructions. Transfections were performed with 2 g of each construct. Empty pcDNA3.1 

vector was used to equalize the total amount of plasmid cDNA used to transfect cells. 18h 

post-transfection, cells were washed with phosphate-buffered saline (PBS) and 

resuspended with trypsin, 0.25% EDTA. Experiments were performed approximately 48h 

after transfection except for knockdown experiments which were performed 72h post 
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transfection since this protocol resulted in the maximum knockdown of the different MAGI 

proteins. 

4.2.4 Co-immunoprecipitation 

24h after transfection, HEK 293 cells were seeded onto 10-cm dishes. Cells were starved 

in HBSS lacking serum for 1h at 37°C then stimulated with 10 µM 5-HT for 30 mins. Cells 

were then lysed in 500 L lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, and 0.1% 

Triton X-100) containing protease inhibitors (1 mM AEBSF, 10 g/ml leupeptin, and 2.5 

g/ml aprotinin) for 20 min on a rocking platform at 4°C. Samples were collected into 1.5 

ml Eppendorf tubes and centrifuged at 15,000 g for 15 min at 4°C to pellet insoluble 

material. A Bradford protein assay was performed and 300 µg of protein was incubated 

overnight at 4°C with 40 µl Flag-immunoprecipitation beads. Beads were washed three 

times with cold lysis buffer and incubated overnight at room temperature in 3xSDS loading 

buffer containing 2-mercaptoethanol. Samples were separated by SDS-PAGE, transferred 

to a nitrocellulose membrane, and western blots were then performed with the indicated 

antibodies (rabbit anti- Flag, 1:1000), (rabbit anti-MAGI-2, 1:1000), (rabbit anti-MAGI-3, 

1:1000), (rabbit anti- V5, 1:1000), (rabbit anti-PLCβ3, 1:1000). 

4.2.5 Measurement of Inositol Phosphate Formation 

HEK 293 cells were transiently co-transfected with 2 μg Flag-5-HT2AR or Flag-5-HT2AR-

ΔSCV with 2 µg of MAGI-1, MAGI-2 or MAGI-3. 48h post-transfection cells were 

incubated overnight in inositol-free Dulbecco’s modified Eagle’s medium with 1 μCi/ml 

myo-[3H]-Inositol. For all experiments cells were incubated for 1h in warm HBSS and were 

then incubated with 10 mM LiCl alone for 10 minutes followed by increasing doses of 5-

HT in LiCl for 30 minutes. Cells were placed on ice and the reaction was stopped with 500 

μl of perchloric acid and was neutralized with 400 μl of 0.72 M KOH, 0.6 M KHCO3. Total 

cellular [3H] inositol incorporation was determined in 50 μl of cell lysate. Total inositol 

phosphate was purified by anion exchange chromatography using Dowex 1-X8 (formate 

form) 200–400 mesh anion exchange resin and [3H] inositol phosphate formation was 

determined by liquid scintillation using a Beckman LS 6500 scintillation system. 
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Alternatively for siRNA experiments, HEK 293 cells were transiently transfected with 2 

μg Flag-5-HT2AR or Flag-5-HT2AR-ΔSCV with either MAGI-1, MAGI-2 or MAGI-3 

siRNA as described in the figure legends. 24h post-transfection, cells were reseeded into 

96-well poly-lysine coated plates. Cells were left to recover for another 24h and were then 

incubated overnight in inositol-free Dulbecco’s modified Eagle’s medium with 1 μCi/well 

myo-[3H]-Inositol. On the next day, cells were incubated for 1h in HBSS and were then 

incubated with 15 mM LiCl for 15 minutes followed by increasing doses of 5-HT in LiCl 

for 30 minutes. Cells were then lysed with 50 mM formic acid. 30 μl of cell lysates were 

mixed with 75 μl of 2.67 mg/ml of SPA beads diluted in water (RNA binding YSi beads, 

GE Healthcare) in a 96-well/plate and agitated at 4°C for 3h. The radioactivity was counted 

with a Wallac MicroBeta luminescence counter (PerkinElmer). 

4.2.6 Receptor Endocytosis 

Following transfection, HEK 293 cells were re-seeded into 12-well plates. Cells were 

serum-starved in HBSS lacking serum for 1h at 37°C then stimulated for 0 or 30 min with 

10 µM 5-HT in HBSS at 37 °C. Cells were washed with cold HBSS and incubated with 

mouse anti-Flag antibody (1:1000) for 1h on ice. Cells were washed with cold HBSS then 

labeled with Alexa Fluor 647 donkey anti-mouse IgG (1:1000) for 1h on ice in the dark. 

Cells were washed with cold HBSS and treated with 5 mM EDTA in PBS for 5 min on ice. 

Cells were collected and transferred to flow cytometry tubes containing 4% formaldehyde 

in PBS. Samples were run on a FACS Calibur cytometer using BD Cell Quest Pro software 

(BD Biosciences, Mississauga, ON) until 10,000 cells were counted. The geometric mean 

of fluorescence was determined using Flow Jo analysis software and was representative of 

the expression levels of the receptor on the plasma membrane (BD Biosciences, 

Mississauga, ON). 

4.2.7 Western Blot Analysis 

75-90 μl of the samples from the different assays which is equivalent to about 50-70 μg of 

protein was diluted in β-mercaptoethanol-containing 3xSDS loading buffer and then 

applied to 10% SDS-PAGE (30% acrylamide mix, 1.5 M tris-HCl, 20% SDS, 10% 

ammonium persulfate and TEMED). Separated proteins were then transferred to 
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nitrocellulose membranes and membranes were then blocked in 10% milk in TBS for 1h. 

Membranes were then blotted overnight by incubation with the appropriate antibody at 

4°C. 24h later membranes were washed at least three times with 1X TBS with 0.05% 

Tween 20, and then incubated with a horseradish peroxidase- conjugated secondary 

antibody (1:10,000) for 1h. Membranes were finally washed again with 1X TBS with 

0.05% Tween 20 three times before being developed using a BioRad chemiluminescence 

system. 

4.2.8 ERK Phosphorylation 

Following 48h of transfection, HEK 293 cells were re-seeded into 6-well plates. Cells were 

serum starved overnight in DMEM. On the day of the experiment, cells were starved for 

1h at 37°C in HBSS and then stimulated with 10 µM 5-HT agonist for 0, 5 and 10 min. 

Cells were lysed with lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, and 1% Triton X-

100) containing protease inhibitors (1 mM AEBSF, 10 μg/ml leupeptin, and 2.5 μg/ml 

aprotinin) and phosphatase inhibitors (10 mM NaF and 500 μM Na3VO₄) for 20 min on a 

rocking platform at 4°C. Samples were collected into 1.5 ml Eppendorf tubes and 

centrifuged at 15,000 g for 15 min at 4°C to pellet insoluble material. A Bradford protein 

assay was performed, and 30–50 μg of protein was incubated overnight at room 

temperature in 3xSDS loading buffer containing 2-mercaptoethanol. Samples were 

separated by SDS-PAGE, transferred to a nitrocellulose membrane, and western blot 

analysis was performed for ERK1/2 (rabbit anti-p44/42 MAPK, 1:1000), phospho-ERK1/2 

(rabbit anti-phospho-p44/42 MAPK, 1:1000), MAGI antibodies (1:1000), Flag-5-HT2AR 

(rabbit anti-Flag, 1:1000). 

4.2.9 Statistical Analysis 

All measurements are represented as mean ± SEM. Comparisons were performed using 

one way analysis of variance test (ANOVA) followed by Bonferroni’s or Dunn’s Multiple 

comparisons test to determine significance. * indicate P values less than 0.05 and is 

considered to be significant.  
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4.3 Results 

4.3.1 MAGI proteins co-immunoprecipitate with Flag-5-HT2AR 

All the MAGI subfamily proteins (MAGI-1, 2 and 3) were identified using a PDZ domain 

proteomic array as potential 5-HT2AR-interacting proteins (unpublished data). To validate 

this interaction we assessed whether V5-His-MAGI-1, HA-MAGI-2 and V5-His-MAGI-3 

were co-immunoprecipitated with either Flag-tagged 5-HT2AR (Flag-5-HT2AR) or a Flag-

5-HT2AR construct lacking the PDZ binding motif (Flag-5-HT2AR-ΔSCV). We found that 

all of the MAGI proteins were effectively co-immunopreciptated with Flag-5-HT2AR, but 

not Flag-5-HT2AR-ΔSCV (Fig. 4.1A-C). However, the interaction between Flag-5-HT2AR 

and each of the MAGI proteins was not altered by agonist activation of the receptor (Fig. 

4.1D). 

4.3.2 Effect of MAGI proteins on agonist-stimulated 5-HT2AR 
endocytosis 

MAGI proteins were previously shown to regulate the endocytosis of other GPCRs, such 

as VPAC1 and β1-AR (Xu et al., 2001; Gee et al., 2009). In addition, the internalization of 

both CRFR1 and 5-HT2AR was shown to be mediated by the MAGUK protein SAP97 

(Dunn et al., 2013; Dunn et al., 2014). Therefore, we assessed the effects of MAGI protein 

overexpression and knockdown on both Flag-5-HT2AR and Flag-5-HT2AR-ΔSCV 

internalization by flow cytometry. We found that the overexpression of each of the MAGI 

proteins had no effect on either Flag-5-HT2AR or Flag-5-HT2AR-ΔSCV internalization 

following agonist treatment with 10 µM 5-HT for 30 min (Fig. 4.2A-C). In contrast, while 

MAGI-2 siRNA knockdown did not alter either Flag-5-HT2AR or Flag-5-HT2AR-ΔSCV 

endocytosis, MAGI-3 knockdown significantly decreased Flag-5-HT2AR internalization 

(Fig 4.2D and 4.2E). Thus, MAGI protein expression could differentially regulate 5-HT2AR 

endocytosis. 
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Figure 4.1: MAGI proteins co-immunoprecipitate with Flag-5-HT2AR in a PDZ-

binding motif-dependent manner and an agonist-independent manner: HEK 293 

cells were co-transfected with Flag-5-HT2AR (WT or ΔSCV) and pcDNA3.1 along with 

MAGI-1, MAGI-2 or MAGI-3. Shown are representative immunoblots for the co-

immunoprecipitation (IP) of (A) MAGI-1, (B) MAGI-2, and (C) MAGI-3 with Flag-5-

HT2AR, but not Flag-5-HT2AR-ΔSCV which lacks the PDZ-binding motif. (D) 

Densitometric quantification of changes in agonist-stimulated (10 M 5-HT) co-

immunoprecipitation of MAGI-1, MAGI-2 or MAGI-3 with Flag-5-HT2AR. Data are 

representative of 3-4 independent experiments. NT: non-transfected. 
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Figure 4.2: Effect of MAGI proteins on 5-HT2AR endocytosis: Agonist-stimulated 

internalization of Flag-5-HT2AR and Flag-5-HT2AR-SCV in response to 10 M 5-HT 

for 30 min in HEK 293 cells upon overexpression of either (A) MAGI-1, (B) MAGI-2 

or (C) MAGI-3. Agonist-stimulated internalization of Flag-5-HT2AR and Flag-5-

HT2AR-SCV in response to 10 M 5-HT for 30 min in HEK 293 cells upon siRNA 

knockdown of either (D) MAGI-2 or (E) MAGI-3. SCV, Flag-5-HT2AR-SCV. * P < 

0.05 versus pcDNA or scrambled siRNA peptide (SCR) control. 
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4.3.3 MAGI proteins modulate 5-HT2AR-stimulated IP formation 

5-HT2AR can couple to Gαq/11 protein resulting in the activation of PLC and the formation 

of DAG and IP3. Both SAP97 and PSD-95 regulate 5-HT-mediated IP formation where 

knockdown of SAP97 reduces IP signaling and overexpression of PSD-95 enhances it (Xia 

et al., 2003; Dunn et al., 2014). Therefore, we examined whether either the overexpression 

or knockdown of MAGI proteins can alter 5-HT-stimulated IP formation in either Flag-5-

HT2AR or Flag-5-HT2AR-SCV expressing HEK 293 cells. We found that the 

overexpression of each of the MAGI proteins significantly increased the maximum 

response for 5-HT-stimulated IP formation mediated by both Flag-5-HT2AR and Flag-5-

HT2AR-SCV, compared with cells transfected with receptor alone (Fig. 4.3A-C). In 

contrast, we found that whereas siRNA knockdown of endogenous MAGI-1 or -3 had no 

effect upon Flag-5-HT2AR-stimulated IP formation, knockdown of MAGI-2 resulted in a 

reduction of Flag-5-HT2AR-induced IP formation significantly (Fig. 4.3D). The siRNA 

knockdown of either MAGI-2, or -3 resulted in a significant reduction of Flag-5-HT2AR-

ΔSCV-mediated IP formation (Fig. 4.3E). This suggested that this effect does not require 

a direct interaction between the receptor and the MAGI proteins, because each of the MAGI 

proteins did not immunoprecipitate with the truncated receptor mutant. 

4.3.4 MAGI proteins can enhance cell surface trafficking of 5-HT2AR 
to the plasma membrane 

MAGUK proteins were previously shown to regulate the cell surface expression of the 

CRFR1 (Dunn et al., 2013; Dunn et al., 2016). Therefore, we examined whether either the 

overexpression or the siRNA knockdown of MAGI-1, -2 or -3 altered the cell surface 

expression of 5-HT2AR. We found that the overexpression of MAGI-1 did not alter cell 

surface expression of either Flag-5-HT2AR or Flag-5-HT2AR-ΔSCV (Fig. 4.4A). In 

contrast, the overexpression of both MAGI-2 and MAGI-3 increased the cell surface 

expression of Flag-5-HT2AR, whereas MAGI-3 also increased the plasma membrane 

expression of Flag-5-HT2AR-ΔSCV (Fig. 4.4B and 4.4C). The siRNA-mediated 

knockdown of both MAGI-2 and MAGI-3 did not alter the relative cell surface expression 

of either Flag-5-HT2AR or Flag-5-HT2AR-ΔSCV (Fig. 4.4D and 4.4E). 

  



126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: MAGI proteins regulate 5-HT2AR-stimulated IP formation in PDZ motif-

independent manner: Dose response curves for 5-HT-stimulated (30 min) inositol 

phosphate (IP) formation in HEK 293 cells co-transfected with either Flag-5-HT2AR or 

Flag-5-HT2AR-SCV along with either (A) MAGI-1, (B) MAGI-2 or (C) MAGI-3. Inositol 

phosphate formation in cells expressing either (D) Flag-5-HT2AR or (E) Flag-5-HT2AR-

SCV along with MAGI-1 siRNA, MAGI-2 siRNA or MAGI-3 siRNA and treated with 

10 M 5-HT for 30 min. * P < 0.05 versus scramble (SCR) peptide treated control. SCV, 

Flag-5-HT2AR-SCV.  
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Figure 4.4: Effect of MAGI proteins on the trafficking of 5-HT2AR to the plasma 

membrane: Cell surface expression of Flag-5-HT2AR and Flag-5-HT2AR-ΔSCV at basal 

level following the overexpression of MAGI-1 (A) or MAGI-2 (B) or MAGI-3 (C) or the 

knockdown of MAGI-2 (D) or MAGI-3 (E). SCV, Flag-5-HT2AR-ΔSCV. * P < 0.05 

versus pcDNA or scrambled peptide (SCR) control.  
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4.3.5 MAGI-3 can enhance the recruitment of PLCβ3 to 5-HT2AR 

Overexpression of MAGI proteins appeared to significantly enhance 5-HT2AR signaling 

via Gαq/11 pathway for which the key effector enzyme is PLC. It was previously reported 

that MAGI-3 could interact directly with PLCβ3 to alter LPA2 receptor-stimulated IP 

formation (Lee et al., 2011). Therefore, we assessed by co-immunoprecipitation whether 

PLC could be co-immumoprecipitated with both Flag-5-HT2AR and Flag-5-HT2AR-

SCV and whether this was influenced either by agonist treatment or by MAGI-3 

overexpression. We found that PLC3 could be co-immunoprecipitated with Flag-5-

HT2AR and that 5-HT treatment (10 M) for 30 min increased the association with the 

receptor (Fig. 4.5A and 4.5B). In contrast, PLC3 co-immunoprecipitation with Flag-5-

HT2AR-SCV was enhanced when compared to Flag-5-HT2AR but did not exhibit agonist 

regulation. Interestingly, we observe a stronger interaction between the Flag-5-HT2AR and 

PLCβ3 in the presence of MAGI-3, but not Flag-5-HT2AR-SCV. This could provide 

another possible mechanism to explain the enhancement in 5-HT-stimulated IP formation. 

4.3.6 Effect of MAGI proteins on regulating 5-HT-mediated ERK1/2 
phosphorylation 

MAGI proteins were previously shown to have distinct effects on ERK1/2 signaling since 

it has been reported that MAGI-3 can enhance BAI-1- and LPA2R- mediated ERK1/2 

phosphorylation and attenuate the same pathway if the β1- and β2- adrenergic receptors are 

stimulated (He et al., 2006; Zhang et al., 2007; Yang et al., 2010; Stephenson et al., 2013). 

Therefore, we assessed whether MAGI overexpression or siRNA-mediated knockdown of 

endogenous MAGI proteins would alter Flag-5-HT2AR-mediated ERK1/2 phosphorylation 

in response to 10 µM 5-HT treatment for 5, 10 and 30 min. We found that the 

overexpression of MAGI-1, MAGI-2 or MAGI-3 had no effect on ERK1/2 signaling (Fig. 

4.6A-F). However, when siRNA was used to silence the expression of endogenous MAGI 

proteins, we found a significant increase in the signal following stimulation with 10 µM 5-

HT for 5, 10 and 30 min for MAGI-1 (Fig. 4.6A and 4.6B), 5 and 10 min for MAGI-2 (Fig 

4.6C and 4.6D), but only 5 min for MAGI-3 (Fig. 4.6E and 4.6F). When ERK1/2 

phosphorylation was tested in response to Flag-5-HT2AR-SCV activation in the presence 
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Figure 4.5: MAGI-3 can enhance the association of PLCβ3 with 5-HT2AR: A) HEK 

293 cells were co-transfected with Flag-5-HT2AR (WT or ΔSCV) and PLCβ3 or MAGI-3 

+ PLCβ3. Representative immunoblot of PLCβ3 co-immunoprecipitated (IP) with both 

Flag-5-HT2AR and Flag-5-HT2AR-ΔSCV. SDS-PAGE was used to analyze samples and 

immunoblots were performed with rabbit anti-PLCβ3. B) Densitometric analysis of the 

effect of MAGI-3 co-transfection. Data are representative of four independent experiments. 

* P < 0.05 versus 5-HT2AR + PLC.  
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of overexpressed MAGI proteins no change in phosphorylation was observed (Fig.4.7A-

F). In contrast, siRNA knockdown of MAGI-1 increased Flag-5-HT2AR-SCV-stimulated 

ERK1/2 phosphorylation following 5 and 10 min 5-HT treatment (Fig. 4.7A and 4.7B) and 

MAGI-2 knockdown increased ERK1/2 phosphorylation in response to 10 min 5-HT 

treatment (Fig. 4.7C and 4.7D). MAGI-3 knockdown had no effect on Flag-5-HT2AR-

SCV activated ERK1/2 phosphorylation (Fig. 4.7E and 4.7F).  
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Figure 4.6: Effect of MAGI proteins on 5-HT2AR-mediated ERK1/2 signaling: (A) 

Representative immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 

0, 5, 10, and 30 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with 

Flag-5-HT2AR along with either pcDNA, MAGI-1, SCR siRNA or MAGI-1 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-1 and Flag-5-HT2AR protein expression. 

(B) Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment for 0, 5, 10, 

and 30 min. The data represent the mean ± SEM of four independent experiments. (C) 

Representative immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 

0, 5, and 10 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with Flag-

5-HT2AR along with either pcDNA, MAGI-2, SCR siRNA or MAGI-2 siRNA. Also shown are 

corresponding immunoblots for total ERK1/2, MAGI-2 and Flag-5-HT2AR protein expression. (D) 

Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment for 0, 5, and 10 

min. The data represent the mean ± SEM of four independent experiments. E) Representative 

immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 0, 5, 10, and 30 

min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with Flag-5-HT2AR 

along with either pcDNA, MAGI-3, SCR siRNA or MAGI-3 siRNA. Also shown are 

corresponding immunoblots for total ERK1/2, MAGI-3 and Flag-5-HT2AR protein expression. (F) 

Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment for 0, 5, 10, 

and 30 min. The data represent the mean ± SEM of four independent experiments. * P < 0.05 versus 

pcDNA or scramble peptide (SCR) control. 
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Figure 4.7: Effect of MAGI proteins on 5-HT2AR-SCV-mediated ERK1/2 signaling: (A) 

Representative immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 

0, 5, and 10 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with Flag-

5-HT2AR-SCV along with either pcDNA, MAGI-1, SCR siRNA or MAGI-1 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-1 and Flag-5-HT2AR-SCV protein 

expression. (B) Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment 

for 0, 5, and 10 min. The data represent the mean ± SEM of four independent experiments. (C) 

Representative immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 

0, 5, and 10 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with Flag-

5-HT2AR-SCV along with either pcDNA, MAGI-2, SCR siRNA or MAGI-2 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-2 and Flag-5-HT2AR-SCV protein 

expression. (D) Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment 

for 0, 5, and 10 min. The data represent the mean ± SEM of four independent experiments. E) 

Representative immunoblot showing ERK1/2 phosphorylation in response to 10 µM treatment for 

0, 5, and 10 min in non-transfected (NT) HEK 293 cells, and HEK 293 cells transfected with Flag-

5-HT2AR-SCV along with either pcDNA, MAGI-3, SCR siRNA or MAGI-3 siRNA. Also shown 

are corresponding immunoblots for total ERK1/2, MAGI-3 and Flag-5-HT2AR-SCV protein 

expression. (F) Densitometric analysis of ERK1/2 phosphorylation in response to 10 µM treatment 

for 0, 5, and 10 min. The data represent the mean ± SEM of four independent experiments. * P < 

0.05 versus pcDNA or scramble peptide (SCR) control.  



133 

 

4.4 Discussion 

Recent studies have illustrated the importance of PDZ domain-containing proteins 

in the regulation of GPCR activity (Dunn and Ferguson, 2015). Furthermore, studies on 

the 5-HT2AR demonstrated the roles of MAGUKs such as PSD-95 (Xia et al., 2003) and 

SAP97 (Dunn et al., 2014) and other PDZ proteins including MUPP1 (Jones et al., 2009) 

and PDZK1 (Walther et al., 2015) in mediating the trafficking and signaling of the receptor. 

In a PDZ overlay assay performed in our laboratory, we found that all three MAGI proteins 

can associate with the carboxyl-terminal tail of 5-HT2AR (unpublished data). Therefore, we 

decided to further characterize this interaction and determine its functional consequences 

on the signaling and trafficking of 5-HT2AR. Despite the similarity in sequence and domain 

structure of these proteins, we hypothesized that they would exhibit distinct functions. We 

find that MAGI proteins regulate both IP3 and ERK1/2 signaling downstream of the 

activation of the 5-HT2AR. We propose that the observed increase in 5-HT-mediated IP3 

signaling is mediated at least in part by the regulated recruitment of PLCβ to the receptor. 

We also show that silencing the expression of endogenous MAGI proteins using siRNA 

can enhance 5-HT-mediated ERK1/2 signaling. 

MAGI-2 has been shown to play an important role in regulating the trafficking and 

signaling of multiple receptors including β1-AR and VPAC1 (Xu et al., 2001; Gee et al., 

2009). In the current study, we were able to show an effect of MAGI-2 knockdown on 

regulating ERK1/2 activation. This is the first report to implicate MAGI-2 with the MAPK 

pathway. Our data also showed that MAGI-2 can regulate IP formation where 

overexpression resulted in an enhancement of the signal and knockdown reduced it. This 

is the first report of MAGI-2 regulation of a Gαq-dependent pathway as well, however 

MAGI-2 was previously shown to regulate Gαs-mediated cAMP formation by VPAC1 (Gee 

et al., 2009). Despite previous reports indicating an effect of MAGI-2 overexpression on 

GPCR internalization where it had a positive effect on β1-AR (Xu et al., 2001) and a 

negative effect on VPAC1 (Gee et al., 2009), our observations indicated that MAGI-2 did 

not affect the endocytosis of 5-HT2AR. However, we observed a significant increase in 

receptor expression levels upon MAGI-2 overexpression. Therefore, it seems that MAGI-

2 is involved in regulating both the signaling and trafficking of 5-HT2AR. 
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MAGI-3 has also been shown to regulate the signaling of a number of GPCRs 

including LPA2R and β-adrenergic receptors (Zhang et al., 2007; Yang et al., 2010; Lee et 

al., 2011). Our current study showed that MAGI-3 can regulate both G protein-dependent 

as well as G protein- independent signaling pathways. Our data demonstrated that MAGI-

3 can regulate IP formation in a PDZ motif-independent manner. This is illustrated by the 

enhancement in IP formation mediated by both 5-HT2AR and 5-HT2AR-ΔSCV upon 

overexpression of MAGI-3 and the reduction in this effect upon MAGI-3 knockdown. The 

effect of MAGI-3 knockdown was statistically different only for the 5-HT2AR-ΔSCV-

tranfected cells despite a trend for reduction with the 5-HT2AR-transfected cells suggesting 

that the assay needs to be repeated for more conclusive statistical data. Interestingly, 

opposite effects were previously observed when LPA-induced IP formation was studied 

where MAGI-3 overexpression resulted in a decrease in IP formation and MAGI-3 

knockdown led to an enhancement in this signaling pathway (Lee et al., 2011). We showed 

that MAGI-3 could also mediate the MAPK cascade. While overexpression of MAGI-3 

did not have an effect on ERK1/2 activation, knockdown led to an enhancement in ERK1/2 

signaling. Interestingly, this effect is opposite to what was reported with LPA2R where 

MAGI-3 knockdown reduced ERK activity (Zhang et al., 2007). However, similar to our 

study, the LPA2R study which was performed on SW480 cells reported no difference in 

ERK activity upon overexpression of MAGI-3 suggesting that different tissues and cell 

lines express endogenous MAGI-3 in high levels (Zhang et al., 2007). Nonetheless, studies 

on both β1-AR and β2-AR showed that MAGI-3 overexpression could lead to a decrease in 

ERK1/2 signaling (He et al., 2006; Yang et al., 2010). It is noteworthy to mention that 

MAGI-3 was also shown to regulate Gα12/13-mediated RhoA activation by LPA2R (Zhang 

et al., 2007). Taken together, our data and previous studies confirmed the importance of 

MAGI-3 in regulating GPCR signaling via multiple pathways and the distinct effects it 

elicits based on the receptor being investigated. In addition to its role on signaling, we also 

illustrated a role for MAGI-3 on 5-HT2AR internalization where MAGI-3 knockdown 

resulted in a significant reduction in the internalization of the receptor. This is the first 

report of a role for MAGI-3 in receptor endocytosis and as mentioned previously, MAGI-

2 was usually the MAGI protein responsible for this regulation for other receptors (Xu et 

al., 2001; Gee et al., 2009). This emphasized the importance of investigating all PDZ 
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proteins that interact with a receptor to gain complete understanding of how they regulate 

its function. 

To our knowledge, no previous reports studied the functional role of MAGI-

1/GPCR interactions. MAGI-1 was first characterized as a BAI-1 (Brain-specific 

angiogenesis inhibitor 1) interacting protein and has been shown to co-immunoprecipitate 

with VPAC1, but more studies are required to investigate the role it plays in regulating 

GPCRs. Data from our current study suggest that MAGI-1 seems to be more important for 

regulation of 5-HT2AR signaling as opposed to its trafficking. We demonstrate that MAGI-

1 overexpression can increase IP formation, while its knockdown can enhance ERK1/2 

activation. 

We proposed two mechanisms of regulation for 5-HT2AR signaling by MAGI 

proteins. First, the increase in receptor expression level at the plasma membrane could 

partly explain the enhancement in IP formation upon overexpression. However, this would 

not apply to MAGI-1 which despite enhancing IP signaling had no effect on cell surface 

levels. It also does not completely explain the fact that this effect on IP formation did not 

require an intact PDZ motif, while the effect on receptor expression level was PDZ-

dependent for MAGI-2 and PDZ-independent for MAGI-3. Second, the other mechanism 

we presented here involved the effect of MAGIs on PLCβ3 recruitment to the receptor. We 

specifically tested MAGI-3, since it has been shown to interact with PLCβ3 (Lee et al., 

2011). We found that MAGI-3 overexpression can increase the association between 5-

HT2AR and PLCβ3. However, although the representative blot in Fig. 4.5A shows this 

enhancement with 5-HT2AR-ΔSCV, it was not a reproducible effect and therefore, we could 

not conclude that it was PDZ-independent. These mechanisms might also provide a general 

MAGUK regulation of IP signaling since both SAP97 and PSD-95 were shown previously 

to mediate IP formation (Xia et al., 2003; Dunn et al., 2014). Another possibility that can 

be explored is to examine whether MAGI proteins can affect the coupling of Gαq to 5-

HT2AR in a PDZ motif-independent manner. This is particularly important because MAGI-

3 has been shown to associate with different G proteins and has been suggested to bias the 

coupling of different G proteins to LPA2R (Lee et al., 2011). 



136 

 

The mechanism of regulation of the MAPK cascade remains unknown and further 

studies are required to understand it. However, one speculation would be an effect of the 

MAGI proteins on the recruitment of β-arrestin to the receptor. The activation of MAP 

kinase pathway by GPCRs can be mediated by both arrestin- dependent and independent 

pathways and previous studies showed a role for multiple PDZ proteins in mediating β-

arrestin recruitment either by enhancing it or by interfering with it (Hu et al., 2002; 

Hammad et al., 2010). 

Now that we have demonstrated the distinct roles of MAGI proteins in regulating 

the function of the 5-HT2AR in HEK 293 cells, it would be important to further examine 

this association and its physiological consequences in vivo. RT-PCR in mouse tissue 

revealed that MAGI proteins are expressed in different regions of the brain including the 

cortex, thalamus and cerebellum (Sugnet et al., 2006). We would predict that MAGI 

proteins are expressed in serotonergic neurons where they co-localize with 5-HT2AR but 

their effects need to be explored. In light of the involvement of 5-HT2AR in multiple mental 

disorders such as schizophrenia and anxiety, it will also be important to study how 5-

HT2AR- MAGIs interactions contribute to using the receptor as a pharmacological target 

(Gray and Roth, 2001; Roth et al., 2004). In fact, a study showed that PSD-95, another 

MAGUK protein, is essential for the actions of atypical antipsychotics on 5-HT2Rs. 

Therefore, a better understanding of PDZ protein regulation of 5-HT2AR function in vivo 

is vital. 

In conclusion, in this study, we compare the function of three PDZ proteins in 

regulating 5-HT2AR activity. This is unique because previous studies have focused on one 

MAGI protein based on the strength of interaction or tissue distribution despite reporting 

the interaction with at least two of the MAGI proteins (Xu et al., 2001; Zhang et al., 2007; 

Gee et al., 2009). It will be important to further investigate the dynamics between the three 

MAGI proteins to determine if they have synergistic or competitive effects with one 

another and one way to do so could be simultaneous overexpression and knockdown of the 

MAGI proteins followed by an assessment of the receptor function. 
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Chapter 5  

5 Discussion 

5.1 Summary 

Previous research from our laboratory illustrated a crosstalk between CRFR1 and 

5-HT2AR (Magalhaes et al., 2010). Magalhaes et. al showed that the activation of CRFR1 

mediates the signaling of 5-HT2AR since pretreatment with CRF enhances 5-HT2AR- 

mediated inositol phosphate formation. This effect was abolished when mutant forms of 

the receptors that lack the PDZ motif are used indicating that intact PDZ motifs are required 

for the crosstalk to occur and suggested a role for PDZ proteins in regulating the process. 

They also reported that this effect was dependent on receptor internalization and recycling 

by showing that using dominant negative forms of Rab4, Rab5 or dynamin could lead to 

blockade of the crosstalk. Moreover, infusion of CRF peptide (1.5 μg) into the medial 

prefrontal cortex of mice followed by the intraperitoneal administration of the 5-HT2R-

selective agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) (0.15 mg/kg) results in 

enhanced 5-HT2 receptor-stimulated anxiety-related behaviors. Our hypothesis was that a 

PDZ-binding protein was recruited for the CRFR1-mediated sensitization of 5-HT2AR 

signaling and it could enhance the expression of both receptors by regulating the 

internalization and recycling of CRFR1/5-HT2AR complexes. To better understand the 

molecular mechanism behind this crosstalk between receptors and to be able to use this 

phenomenon in the development of therapeutic agents, the overall objective of this study 

was to determine the PDZ protein responsible for CRFR1-mediated sensitization of 5-HT2A 

receptor signaling. 

In order to find PDZ domain-containing proteins that would be good candidates for 

this regulation, a screen of 96 PDZ domains with the carboxyl-terminal tails of 5-HT2AR 

and CRFR1 was performed (Dunn et al., 2013). This resulted in a sub-group of common 

PDZ proteins that interacts with both receptors. These were SAP97, PDS-95, MAGI-1 

MAGI-2, MAGI-3, CAL, PDZK1, MUPP1 and PTPN13. The proteins I chose to work 

with for my thesis projects were CAL, MAGI-1, MAGI-2 and MAGI-3. These proteins 

have been previously shown to regulate the trafficking and signaling of some members of 
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the GPCRs family (Dunn and Ferguson, 2015).  However, their role in regulating CRFR1 

and 5-HT2AR was yet to be determined. It was essential to characterize the functional roles 

of the interaction between the PDZ proteins and the two receptors separately before we 

could assess the effects on the crosstalk regulation. Therefore, the three specific objectives 

of this thesis were: 

1. To determine the role of CAL in regulating the trafficking and 

signaling of CRFR1 and the mechanism for this regulation 

 

2. To determine the role of MAGI proteins in regulating the trafficking 

and signaling of CRFR1 and the mechanism for this regulation 

 

3. To determine the role of MAGI proteins in regulating the trafficking 

and signaling of 5-HT2AR and the mechanism for this regulation 

In the second chapter of this thesis, the interaction of CAL with CRFR1 is 

characterized and shown to be dependent on the PDZ-binding motif of the receptor. CAL 

is shown to localize with CRFR1 at the Golgi and is demonstrated to have a role in 

inhibiting CRFR1 endocytosis, cell surface expression, and CRF-mediated ERK1/2 

signaling via the CRFR1 PDZ-binding motif (Hammad et al., 2015). CAL does not have 

an effect on CRF-mediated cAMP formation. Interestingly and contrary to studies where 

the mechanism of CAL regulation of receptor expression is attributed to an effect of CAL 

on degradation (Cheng et al., 2010; Koliwer et al., 2015), our work demonstrates that CAL 

can elicit its effects on CRFR1 by mediating the post-translational glycosylation of the 

nascent receptor at the Golgi. By characterizing glycosylation-deficient mutants of CRFR1 

with a point mutation on the asparagine residues, we find that the effects that CAL has on 

CRFR1 expression are comparable to the receptor expression levels of CRFR1 mutants. In 

addition, the cellular distribution of the glycosylation-deficient mutants reveals that they 

are mainly expressed in the Golgi. Similar localization of CRFR1 is observed upon 

overexpression with CAL since a big portion of the receptor is retained intracellularly in 

the Golgi. We also find that the signaling of the mutants via the MAPK pathway is similar 

to that of CRFR1 in the presence of CAL. Although multiple PDZ proteins were shown to 
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regulate GPCRs, mediating post-translational modifications seems to be exclusive to CAL 

(Hammad et al., 2015; Dunn and Ferguson, 2015). It is also unique to show an effect for a 

PDZ- binding protein during the early biosynthesis pathway as opposed to the later stages 

during the life cycle of a GPCR. 

Data presented in the third and fourth chapters illustrate distinct functions for the 

MAGI subfamily of proteins in regulating the trafficking and signaling of CRFR1 

compared to that of 5-HT2AR. Furthermore, we present different mechanisms by which 

MAGI proteins can elicit their effects. In terms of their effect on trafficking and 

internalization, we show that MAGI proteins can regulate CRFR1 endocytosis, but have 

no effect on 5-HT2AR internalization.  We also show that MAGI proteins can mediate their 

effect on CRFR1 internalization by interfering with β-arrestin2 recruitment to the receptor, 

a key step in the endocytic pathway. We also show that while no effect is observed on the 

basal plasma membrane expression of CRFR1 in response to overexpression or knockdown 

of MAGI proteins, there is a trend for an increase in expression levels of 5-HT2AR when 

MAGI proteins are overexpressed. The results from investigating the trafficking and 

internalization reflect the specificity and distinct functions of the proteins in regulating the 

receptors. Our findings from studying the effects on the signaling pathways are also very 

intriguing. CRFR1 and 5-HT2AR differ in the G protein subtypes that they couple to, but 

they both have the ability to activate the ERK1/2 signaling pathway. There is no effect of 

MAGI proteins on Gαs-mediated cAMP upon activation of CRFR1. On the other hand, 5-

HT-stimulated IP accumulation via Gαq coupling appears to be enhanced by MAGI 

proteins. There are two possible mechanisms for this regulation of IP3 formation. It could 

be in part due to the increase in receptor expression levels at the plasma membrane but the 

more appealing mechanism is the enhancement of PLCβ3 association with the receptor 

when MAGI proteins are overexpressed. Studying signaling via the MAPK pathway, we 

find that knockdown of the endogenous MAGI proteins results in an enhancement in both 

CRF-mediated and 5-HT-mediated activation of ERK1/2 signaling. Taken together, the 

data from the third and fourth chapters suggest that MAGI proteins play important roles in 

regulating the trafficking of CRFR1 and the signaling of 5-HT2AR. 
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5.2 Regulation of GPCRs Trafficking by MAGI and CAL 
Proteins 

Data presented in this thesis illustrate an important role for PDZ domain-containing 

MAGI and CAL proteins in regulating the trafficking of CRFR1 and 5-HT2AR (Fig. 5.1). 

The effect on CRFR1 is prominent upon studying agonist-induced internalization of the 

receptor. The main effect that is reported here is a decrease in CRFR1 internalization when 

CAL is overexpressed and when levels of MAGI proteins are altered either by 

overexpression or siRNA-mediated knockdown. An effect on 5-HT2AR plasma membrane 

expression levels is observed following altered MAGI protein expression. Although not 

significant for all the MAGI transfection conditions, there is a trend towards an enhanced 

surface receptor levels. The reason for the big variation in the flow measurement of 5-HT-

mediated endocytosis, as well as surface receptor levels could be attributed to the nature of 

the receptor which exhibits constitutive internalization activity and exhibits poor 

dependence on β-arrestins for internalization (Albert and Tiberi, 2001; Bhatnagar et al., 

2001; Gray et al., 2001; Bhattacharyya et al., 2002). Therefore, it might be worth repeating 

the assays with a more sensitive approach to arrive at more conclusive results. Interestingly, 

previous work from our laboratory demonstrates an effect of other PDZ proteins on the 

trafficking of CRFR1 and 5-HT2AR. These include SAP97, PSD-95 and PDZK1. SAP97 

and PSD-95 function to reduce the internalization of both CRFR1 and 5-HT2AR (Dunn et 

al., 2013; Dunn et al., 2014; Dunn et al., 2016). PDZK1 also reduces 5-HT2AR 

internalization, but has no effect on CRFR1 internalization (Walther et al., 2015). Other 

groups show a role for MAGI-2 in regulating GPCR trafficking, where it reduces VPAC1 

internalization (Gee et al., 2009), enhances β1-AR internalization (Xu et al., 2001) and 

facilitates localization of mGluR1 to the Golgi (Sugi et al., 2007). MAGI-1 and MAGI-3 

have not been shown to affect GPCRs trafficking prior to the studies presented in this 

thesis. 

Another aspect of GPCRs trafficking is the regulation of CRFR1 surface expression by 

CAL. We show that overexpression of CAL results in the retention of CRFR1 

intracellularly in the Golgi. Previous studies show a similar effect of CAL on other GPCRs 

such as mGluRs, SSTR5 and β1-AR, as well as other transmembrane proteins including  
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Figure 5.1: A schematic representation of the processes in GPCRs endocytosis and 

biosynthesis summarizing the findings of this thesis in terms of the role of MAGI 

and CAL proteins in regulating these functions. 
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CFTR and the voltage-gated potassium channel KV10.1 (Cheng et al., 2002; Wente et al., 

2005; Zhang et al., 2008; Cheng et al., 2010; Herrmann et al., 2013; Koliwer et al., 2015). 

It has been previously suggested that CAL might be playing a role as a sorting molecule, 

but the mechanism was believed to be via ubiquitination and degradation (Cheng et al., 

2010; Koliwer et al., 2015). However, we show here that at least for the regulation of 

CRFR1, CAL contributes to the regulation of post-translational glycosylation and to the 

assessment of the maturation state of the receptor and whether it has achieved proper 

folding to be transported from the Golgi and expressed at the plasma membrane. 

5.3 Regulation of GPCRs Signaling by MAGI and CAL 
Proteins 

Data presented in the previous chapters demonstrate distinct roles for MAGI and 

CAL proteins in regulating both G protein-dependent as well as G protein-independent 

signaling pathways (Fig. 5.2). Although MAGI-2 has previously been shown to reduce 

cAMP signaling mediated by VPAC1, it does not seem to affect Gαs-mediated signaling by 

CRFR1 and neither did MAGI-1, MAGI-3 nor CAL. However, the MAGI proteins do have 

a significant effect on Gαq-mediated IP3 formation as a result of 5-HT2AR activation. It is 

of interest to observe an effect of the MAGI proteins on one G protein sub-type, but not 

another and confirms the selectivity of their effect on G protein signaling pathways. 

Previous studies from our laboratory have shown an effect of SAP97 and PDZK1 on 5-

HT-induced IP3 formation where knockdown of endogenous expression of the PDZ 

proteins results in a reduction in Gαq-mediated signaling by 5-HT2AR (Dunn et al., 2014; 

Walther et al., 2015). However, a noticeable difference among the previous studies with 

SAP97 and PDZK1 and the data reported here is that the effects shown here with MAGI 

proteins were observed with both 5-HT2AR and 5-HT2AR-ΔSCV, while SAP97 and PDZK1 

could only elicit their functional effects on 5-HT2AR. This most likely suggests that the 

effects of SAP97 and PDZK1 on 5-HT2AR signaling are PDZ motif-dependent and the 

effects of MAGIs on 5-HT2AR signaling are PDZ motif-independent. Other examples of 

PDZ domain-containing proteins that are known to regulate Gαq signaling include 

NHERF1, which was demonstrated to increase coupling and activation of Gαq by 

parathyroid 1 receptor (PTH1R), and NHERF2 which increases secondary messenger IP3  
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Figure 5.2: A schematic representation of the signaling pathways activated by CRFR1 

and 5-HT2AR and the involvement of MAGI and CAL proteins in regulating these 

pathways as reported in this thesis. 
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accumulation via LPA2R (Oh et al., 2004; Wang et al., 2010). 

It is also essential to study the effects of our PDZ proteins of interest on the MAPK 

pathway, which represents a signaling pathway shared by both CRFR1 and 5-HT2AR. 

Interestingly, our data show that MAGI proteins can regulate ERK1/2 activation by both 

CRFR1 and 5-HT2AR in a similar manner. We find that the overexpression of MAGI 

proteins do not alter the extent of ERK1/2 phosphorylation stimulated by the activation of 

either the CRFR1 or the 5-HT2AR. On the other hand, siRNA-mediated knockdown of 

endogenous MAGI proteins in HEK 293 cells results in a significant enhancement in 

MAPK activation by the CRFR1 and the 5-HT2AR. The only other MAGI protein to exhibit 

an effect on ERK1/2 signaling is MAGI-3. MAGI-3 has been reported to show distinctive 

effects on the MAPK pathway depending on the receptor being investigated (He et al., 

2006; Zhang et al., 2007; Yang et al., 2010; Stephenson et al., 2013). MAGI-3 expression 

results in an enhancement in signaling for BAI-1 and LPA2R and a reduction in signaling 

for the adrenergic receptors. Our laboratory has previously investigated the role of SAP97 

in regulating GPCR-mediated ERK1/2 signaling (Dunn et al., 2013). This work 

demonstrates a general role for SAP97 in regulating the MAPK signaling pathway 

independently from the PDZ motif, since the effects are observed with CRFR1-ΔTAV as 

well as CRFR2. Interestingly, SAP97 has an opposite effect to MAGI proteins in regulating 

ERK1/2 phosphorylation by both CRFR1 and 5-HT2AR, as the knockdown of endogenous 

SAP97 results in a reduction in ERK1/2 activation. 

In this thesis, we also study the effects of CAL on CRFR1-mediated ERK1/2 

signaling and demonstrate that CAL can negatively regulate this pathway. Our data indicate 

that CAL overexpression results in a significant attenuation of ERK1/2 activation, while 

CAL siRNA knockdown of endogenous levels of the CAL protein results in enhanced 

CRFR1-mediated ERK1/2 signaling (Hammad et al., 2015). Similarly, CAL 

overexpression reduces ERK1/2 activation by mGluR1 (He et al., 2004; Zhang et al., 2008) 

and β1-AR (He et al., 2004). The effect of CAL on regulating 5-HT-mediated ERK1/2 

signaling remains to be determined. 
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5.4 Mechanisms of GPCRs Regulation by MAGI and CAL 
Proteins 

The various mechanisms underlying the functional regulation of PDZ motif 

expressing GPCRs examined in the present thesis highlight the specificity and uniqueness 

of this group of scaffolding proteins. While CAL mediates its effects via regulation of post-

translational glycosylation, MAGI proteins perform their functions by regulating receptor 

interactions with key elements such as β-arrestin and PLCβ. This confirms the importance 

of PDZ domain-containing proteins in regulating GPCRs functions and given that more 

than 50% of pharmaceutical drugs directly or indirectly act on GPCRs, proper 

characterization of PDZ protein-receptor interactions is essential. 

Despite some differences in the extent of their effects on different aspects of 

CRFR1 and 5-HT2AR activity, it is fair to say that MAGIs 1, 2 and 3 share some similar 

effects on the trafficking and signaling of CRFR1 and 5-HT2AR. Therefore, we further 

investigated their ability to compensate for one another and provided evidence for a 

possible compensatory protein expression mechanism of up-regulation between MAGI-1 

and MAGI-3 based on their similar functional roles, when the expression of either protein 

is altered by siRNA knockdown. This is not the first report to suggest either compensatory 

or complimentary effects of PDZ proteins. It has been previously documented that PSD-

93 and PSD-95 can compensate for one another (Sun and Turrigiano, 2011) and regulate 

GPCRs function similarly. 

5.5 MAGI and CAL Proteins in Disease 

CAL-deficient mice are infertile and it has been suggested that they can present a 

unique model for human globozoospermia, an inherited infertility syndrome in humans 

where the acrosome is lost. The acrosome is a unique organelle that plays an important role 

at the site of sperm-zona pellucida binding during the fertilization process and has been 

reported to be completely lost in CAL knockout mouse models (Yao et al., 2002). It is 

therefore suggested that CAL plays a role in the fusion of transport vesicles to the 

acrosome. PCR analysis of mouse tissue reveals that CAL is ubiquitously distributed in 

many different regions of the brain (cerebellum, cortex, hippocampus and hypothalamus) 
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as well as the heart, kidney, lungs, testis and spinal cord (Charest et al., 2001; Cheng et al., 

2002; Herrmann et al., 2013). However, other than spermatogenesis, no overt abnormalities 

are noted in CAL knockout mice (Yao et al., 2002). A study shows that β1-AR expression 

levels are decreased in the hippocampus of CAL knockout mice (Koliwer et al., 2015). 

Given its wide distribution in multiple areas of the brain as well as its confirmed role as an 

essential sorting protein, further examination is required to understand the role of CAL and 

whether it has any implications for mental illnesses. 

MAGI proteins are important scaffolding proteins and have been implicated in 

various physiological functions (Funke et al., 2005; Oliva et al., 2012). MAGI proteins are 

suggested to be involved in learning and memory. All MAGI proteins are also believed to 

be involved in cancer cell signaling via their interaction with PTEN, a tumor suppressor 

gene (Zaric et al., 2012; Matsuda et al., 2013). MAGIs expression level is correlated with 

the cancer cell invasion where their levels were shown to be reduced in different cancer 

types (Matsuda et al., 2013). PCR results performed in our laboratory indicate that MAGIs 

1, 2 and 3 are expressed in the human brain. RT-PCR in mouse tissues show that MAGI-1 

is expressed in the colon, kidney, lung, liver, and pancreas and different areas of the brain 

including the cerebellum, cortex and thalamus. MAGI-2 is expressed in the cortex and 

thalamus as well as the kidneys and testis. MAGI-3 is very widely distributed in the 

cerebellum, cortex and thalamus as well as heart, kidney, colon and lung (Wu et al., 2000; 

Sugnet et al., 2006). 

MAGI-1 expression is decreased in cancers and this correlates with poor prognosis, 

suggesting MAGI-1 as a novel prognostic marker for cancer (Zaric et al., 2012). On the 

other hand, overexpression of MAGI-1 induces stabilization of E-cadherin and β-catenin 

localization at cell-cell junctions, enhances actin stress fiber and focal adhesion formation, 

increases cell adhesion to matrix proteins and suppresses anchoragein dependent growth 

and migration. In fact, MAGI-1 overexpression suppresses subcutaneous primary tumor 

growth and attenuates spontaneous lung metastasis in experimental colon cancer 

(Pleasance et al., 2010). MAGI-1 deficient mice are suggested to have renal problems but 

further characterization of this model is required. 
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MAGI-2 has been found to localize to the postsynaptic density area of the spine 

and bind to N-methyl-D-aspartate receptor (Hirao et al., 1998; Iida et al., 2007; Sumita et 

al., 2007). Furthermore, MAGI-2 has been shown to be localized to both excitatory and 

inhibitory synapses. Taken together, this data suggest a neuronal role for MAGI-2. In fact, 

MAGI-2 knockout mice models show abnormal elongation of dendritic spines, indicating 

a possible role for MAGI-2 during morphogenesis of neurons (Iida et al., 2007). MAGI-2 

has also been shown to be expressed in the kidneys and was recently found to play a critical 

role in the formation and maintenance of the glomerular filtration barrier (Ihara et al., 

2014). It is reported that the renal function of excretion of waste matter was entirely lost in 

MAGI-2 knockout mice and this caused neonatal lethality. MAGI- 2 gene has been shown 

to undergo rearrangement in the genome of a melanoma cell line and prostate cancer 

(Berger et al., 2011). 

MAGI-3 has been shown to interact with Lysophosphatidic Acid (LPA) receptor 

type 2 and regulate its signaling pathways. LPA is a potent inducer of colon cancer and 

LPA receptor type 2 is overexpressed in colon tumors (Zhang et al., 2007). No reports are 

published about a knockout model of MAGI-3. 

5.6 Future Directions 

Now that we have a better understanding for the role of MAGI proteins in 

regulating both CRFR1 and 5-HT2AR, the next step would be to assess whether MAGI 

proteins are involved in regulating the crosstalk between the receptors. The best way to test 

this is by performing IP3 assays in cells transfected with 5-HT2AR and CRFR1 and either 

overexpressed MAGI proteins or siRNA against the MAGI proteins. We could then 

pretreat cells with CRF and measure IP3 formation to examine the effects of MAGI 

proteins on the enhancement of signaling that was observed in Magalhaes et al. (2010). We 

would expect that overexpression of MAGI proteins will result in further enhancement in 

IP3 formation, because it had this effect even without CRF pretreatment. Given the similar 

function of the three MAGI proteins and the apparent compensation mechanism governing 

that function, one should also consider the possibility that a certain combination of 

overexpression or knockdown might be involved and therefore, these conditions would 

have to be tested as well. 
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The effect of CAL on the signaling and trafficking of 5-HT2AR remains unknown. 

CAL is one of the PDZ proteins that was detected as an interacting protein in the PDZ blot 

overlay assay performed with the carboxyl-terminal tail of 5-HT2AR to screen 96 PDZ 

domains. Despite containing one PDZ domain, it is still a candidate regulator of the 

crosstalk between CRFR1 and 5-HT2AR because of its ability to self-dimerize via the coiled 

coil motif. Given that CAL overexpression results in the reduction of expression of CRFR1 

at the cell surface, it would be unlikely for CAL to be required for CRFR1-mediated 5-

HT2AR sensitization. In fact, we could speculate that maybe a knockdown of CAL would 

facilitate this crosstalk since CAL seems to be retaining receptors in the intracellular 

compartments as reported by us for CRFR1 and by others for mGluRs, β1-AR and SSTR5. 

This would suggest that it is indeed a group of PDZ proteins that collectively work in 

regulating the crosstalk as opposed to one PDZ protein. 

Our studies confirm the importance of the family of PDZ domain-containing 

proteins in regulating GPCRs activity. We illustrated the distinct function of the MAGI 

subfamily of proteins in regulating the trafficking and signaling of CRF1 and 5-HT2A 

receptors. We also showed a unique mechanism of regulation for CAL in mediating post-

translational modifications of the receptors. Considering the fact that more than 40% of 

currently available pharmaceuticals act directly or indirectly on GPCRs, it is essential to 

fully characterize their interacting partners and the consequences such interactions have on 

receptor function. Multi-domain-containing proteins such as PDZ proteins present exciting 

models since it would be possible to target either their interaction with the receptor, their 

PDZ domains, the PDZ motifs of the receptor or allosteric sites on the proteins to change 

their conformation. Therefore, the findings from these studies can be utilized in the design 

of new pharmacological tools for the treatment of diseases including mental disorders. 
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