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Abstract 

Connexins (Cxs) and pannexins (Panxs) are protein families that form large-pore channels 

which exist at the plasma membrane for both intracellular and extracellular signaling. Given their 

potential for overlapping cellular signaling functions we proposed that mice lacking both a connexin 

and a pannexin would have a severe phenotype. To investigate this possibility we crossed Panx1 null 

mice with Cx40 knockout mice and characterized the first global connexin/pannexin double 

knockout mouse. Intriguingly, the combined ablation of both Cx40 and Panx1 caused decreased 

prenatal and newborn survival, but did not affect the fertility or lifespan of surviving mice. Cx40-/- 

and Cx40-/-Panx1-/- mice had cardiac hypertrophy, and furthermore, combined channel ablation in 

double knockout animals led to increasing severe hypertension and decreased endothelium 

dependent vasodilation. Overall, these studies suggest that even though Panx1 and Cx40 act via 

differential mechanisms, they have a co-regulatory role in certain physiological processes such as 

vascular response. 
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Chapter 1  

1  Introduction 

1.1 Large-pore protein channels in cellular signaling  

Normal cellular function, organ development, homeostasis, and repair after damage relies 

heavily on the initiation of a myriad of critical cellular signaling networks and the interaction of 

extracellular, intercellular, and intracellular cascades1. The connexin (Cx) and pannexin (Panx) 

families of large-pore forming channel proteins facilitate the passage of ions, adenosine 

triphosphate (ATP), and secondary messenger molecules such as calcium, inositol triphosphate 

(IP3) either between cells or in the case of pannexins between a cell and the extracellular milieu2. 

Connexins may act in either intracellular signaling as functional hemichannels, or more often 

form dihexameric gap junction (GJ) channels for direct intercellular communication3. On the 

other hand pannexins exist at the membrane as large-pore channels that function solely in 

extracellular signaling4. It is the interplay between these key cellular signaling modalities that 

allows critical biochemical cascades to occur within systems that rely heavily on gap junction 

and paracrine communication such as the heart and vasculature5.  

1.2 Connexins form gap junctions for direct intercellular 

communication  

Connexins are expressed throughout the body, in many different mammalian cell types. There 

are 21 connexin species in humans (20 in mice) and these polytopic membrane proteins are 

named according to the Cx prefix, followed by their predicted molecular weight in kDa6. Each 

connexin protein has a similar structural topology, and consists of four membrane-spanning 

domains, two extracellular loops (EL), an intracellular loop (IL), and an N-terminus (AT) and C-

terminus (CT)6.  Six Cx subunits oligomerize to form a connexon (Figure 1-1A), which may then 

be transported to the plasma membrane and act as a functional hemichannel in paracrine 

signaling7. Hemichannels are able to pass secondary messenger molecules such as ATP, IP3, 

Ca2+, and NAD+ 7.  However, more often a connexon docks with its counterpart on an opposing 
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cell to form a gap junction (GJ) channel8. Gap junctions allow for intercellular communication 

via the joining of cytosolic compartments between adjacent cells8. Areas of high membrane 

apposition that contain a large number of GJ channels are termed GJ plaques9. GJ plaques allow 

for a diverse range of intercellular signaling events including the passage of ions, electrical 

signal, and secondary messenger molecules less than 1000 Da9.  

Connexons can be homomeric or heterotypic depending on if they are composed of the same Cx 

isoform or are mixed10. Furthermore GJ channels are defined as homotypic if they are comprised 

of the same connexon subtype, or heterotypic if they are composed of two different homomeric  

or heteromeric connexons (Figure 1-1B)10. Each connexin channel has different GJ intercellular 

communication capabilities regulated by variations in pore size, conductance, open channel 

probability, pH gating, and charge selectivity11.  

In the human population just under half of the connexin family members (10 Cx subtypes) have 

been linked to genetically inherited diseases12. These diseases range from mild to severe, and 

include skin abnormalities, deafness, oculodentodigital dysplasia, hypertension and cardiac 

arrhythmias12.  This thesis will focus on Cx40, a connexin family member linked to hypertension 

and cardiac arrhythmias13, and its roles within the cardiovascular system.   
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Figure 1-1. Connexins are subunit proteins that form GJs for intercellular communication 

(A) A typical GJ protein contains 4 membrane spanning domains, two ELs, an IL, and an AT and 

CT. Six Cxs oligomerize to form a connexon. (B) Two connexons from apposing cells may dock 

to form GJs which may be homotypic, heterotypic, or mixed. Reused with permission: Laird 

DW. Life cycle of connexins in health and disease. The Biochemical Journal 2006;394:527–543. 
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1.3 Pannexins form large-pore channels for extracellular 

communication  

The pannexin family has three isoforms: Panx1, Panx2, and Panx3. Panx1 expression is 

ubiquitous, and it is found in many organs including the brain, heart, skin, spleen, lungs, blood 

vessels, and kidney14, 17. Panx2 has a more restricted expression, being localized to the central 

nervous system, particularly in brain structures such as the hippocampus and olfactory bulbs14. 

Finally, Panx3 has been discovered in varying levels in the arteriole networks, skin, cartilage, 

liver, lung, thymus, and spleen14. All three pannexin isoforms demonstrate similar predicted 

structural topology, but no sequence homology to their connexin cousins15. Panxs have four 

membrane-spanning domains, two EL’s, one IL, and AT- and CT15. Panx1 and Panx3 are more 

structurally homologous, whereas Panx2 exhibits a longer C-terminus15. Similarly to connexins, 

pannexins oligomerize to form pannexons that undergo initial posttranslational modifications in 

the endoplasmic reticulum (N-glycosylation) before they are transported through the Golgi 

apparatus to the plasma membrane. There they may act as large-pore channels to facilitate 

extracellular signaling of small nucleotides and secondary messengers such as ATP and Ca2+16. 

Interestingly, unlike connexins, pannexin 1 has a long half-life of up to 32 hours17. Panx1 is 

known to play a role in several human pathologies including cancer18 and hearing loss19. 

Unfortunately its role as a large-pore channel in the cardiovascular system, and its potential 

interactions with GJs in cellular signaling cascades within these systems has yet to be fully 

explored.    

1.4 Connexin hemichannels in paracrine signaling  
Since the discovery of pannexins the idea of connexin hemichannels, or connexons, remaining 

undocked at the plasma membrane to participate in paracrine cellular signaling events, and 

particularly in the release of ATP, has been a subject of debate12. Under standard physiological 

conditions connexin hemichannels are usually found in a closed conformation20. However these 

hemichannels have been induced to open experimentally, and act in the release of ATP as a 

secondary messenger. A caveat to these findings is that many experiments relied on artificial 

cellular environments to achieve their results21. For example, in most cases the release of ATP 

was only achieved through overexpression of connexin molecules in unpaired cells at a very low 



6 

 

extracellular Ca2+ concentrations, an environment which enhanced channel open probability21. In 

contrast, a few connexin subtypes, namely Cx26, Cx43, Cx46, and Cx50 have been found to 

form functional hemichannels under normal physiological conditions, although the extent to 

which they participate in extracellular signaling remains unclear22-24.  

Interestingly, both connexin hemichannels and pannexin channels have been reported to open 

under cellular stress conditions including ischemia, hypotonic stress, low oxygen tension, and 

mechanical stimulation (topic extensively reviewed by Lohman and Isakson)21. Hemichannels 

under pathological conditions experiencing uncontrolled opening are often referred to as leaky 

hemichannels25. Moreover, along with cellular stress responses, mutations in human connexin 

genes have also been linked to the formation of leaky hemichannels, and subsequent cell death25. 

An example of this phenomenon was demonstrated when researchers overexpressed human 

Cx40 gene mutants associated with idiopathic atrial fibrillation in N2A cells and found that one 

mutation (G38D) led to a gain-of-function in forming leaky hemichannels26. Unfortunately, Cx40 

hemichannels have yet to be identified in native cell systems.  

1.5 An overview of inter/intracellular communication in 

cardiovascular physiology  

The heart is composed of two main functional components: the conduction system, and the 

working myocardium27. It is the junctions within the heart, and in particular GJs, that allow for 

the spread of electrical activity from the conduction system to the working myocardium and 

consequently the synchronized contraction of the cardiac tissue28. Without coordinated 

contraction the heart is at risk for atrial and ventricular arrhythmias, which could ultimately lead 

to ischemic events and heart failure27. Furthermore, the regulation of paracrine signaling within 

the heart in normal physiology and under pathological conditions is of key importance because 

aberrant signaling may lead to triggered propagated contractions and arrhythmogenic 

phenotypes58. To date members of connexin and pannexin gene families have been implicated in 

cardiac physiology due to their roles in GJ intercellular communication and purinergic 

signaling29.    
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Another important part of the cardiovascular system in which both connexins and pannexins 

have been shown to participate in integral physiological processes is the vasculature30, 31. Arteries 

regulate blood flow and may be divided into distinct subcategories based on their size and 

function32. Conducting arteries, such as the aorta, are the largest vessels within the body, and are 

elastic in nature32. Conduit arteries are medium sized arteries that stem from conducting arteries 

and branch into resistance arteries to allow for the perfusion of organ systems and maintenance 

of adequate blood pressure. Resistance arteries, like the thoracodoral artery (TA) are muscular in 

nature33. Depending on their size arteries are composed of varying levels of smooth muscle and 

endothelial cells, and consequently display differential connexin/pannexin expression 

profiles34.35. Notwithstanding, both smooth muscle and endothelial cell layers within arteries 

require both intracellular and extracellular signaling for the spread of secondary messenger 

molecules, current, depolarization and hyperpolarization waves for vasoconstriction and 

vasodilation36. Intriguingly, both Cx40 and Panx1 channels have been found to play pivotal roles 

in the regulation of these processes37, 38 as will be explored in detail in subsequent sections. 

Finally, large-pore channels within the renal system contribute significantly towards 

cardiovascular homeostasis and the regulation of blood pressure39. In fact, connexins are highly 

involved in two central feed-back mechanisms instrumental to the control of arterial pressure40. 

Surprisingly, through its role as a large-pore ATP release channel, Panx1 has recently been 

implicated in these vital physiological processes as well41.  

1.5.1 The role of cardiac connexins in normal and diseased physiology   

The conduction system of the heart relies heavily on GJ intercellular communication for the 

spread of action potentials (AP) from one cardiomyocyte to the next beginning with the 

pacemaker cells in the sinoatrial node and propagating to the cristae terminalis and atrial tissue42. 

Next the AP travels through the atrioventricular (AV) node, atrioventricular bundle, bundle 

branches, purkinje fibers, and finally the ventricles42. Without the myocardium functioning as a 

synchronous unit the heart cannot pump blood throughout the body in an efficient manner and is 

prone to fibrillations and irregular rhythm43.  

Connexin family members that play a role in GJ communication in the heart are Cx43, Cx45, and 

Cx40, which are found throughout the heart and at the intercalated discs of cardiomyocytes43. 
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The presence of three different connexin family members within the heart allows for an 

increasingly diverse GJ composition and thus regulation of the speed and direction of impulse 

propagation43. Cx43 is the most abundant isoform present in cardiac tissue and is located at the 

junctions between cardiomyocytes in the working myocardium of the atria and ventricles44. 

Interestingly, although the ablation of this connexin in mice is neonatally lethal, it has been 

found that cardiomyocyte-specific ablation of Cx43 does not lead to alterations in heart 

morphology, however mice die spontaneously due to ventricular arrhythmias45. In addition, mice 

heterozygous for the Cx43 gene display no changes in cardiac conduction46.   Cx45 is essential 

for early embryonic myocardial development and its ablation in global and cardiac specific 

knockout mouse models causes embryonic lethality47. Interestingly, using a tamoxifen-inducible, 

cardiac specific, knockout mouse model it was shown that Cx45 is non-essential in the heart of 

older mice, as gene ablation produced only minor alterations in AV nodal propagation47. Finally, 

Cx40 is localized to the working myocardium in the atria and cardiomyocytes of the conduction 

system of the heart (Figure 1-2)44.  

The role of Cx40 within the heart is quite diverse as it is the only cardiac connexin expressed in 

both the working myocardium and the conduction system. Cx40 knockout mice are viable 

making them an amenable model to study the function of GJs within the cardiac system48. Not 

only does Cx40 function in the propagation of action potentials, slow wave calcium (Ca2+) 

signaling, and synchronous beating of atrial cardiomyocytes48, but it also plays a role in cardiac 

development. Previous studies performed on wild type mice show that both the Cx40 transcript 

and protein are dynamically regulated within the heart during development49. At embryonic day 

(E) 11 Cx40 is widely distributed throughout the atria and ventricle primordia in the unorganized 

embryonic conduction system49. However by E14 the ventricular conduction system begins to 

differentiate and Cx40 recedes from the ventricular trabecular network to take on a more 

restricted distribution in the proximal segment ventricular conduction system, namely the His-

bundle and the upper parts of the bundle branches, and throughout the atria49. Intriguingly, Cx40 

is also involved in the structural development of the heart. Assessment of the morphology of 

young and adult Cx40-/- mouse hearts revealed that this mutant possessed several structural 

anomalies including septation defects, and cardiac hypertrophy50. Cx40 also plays a crucial role 

in the propagation of action potentials within the cardiac conduction system, and throughout the 
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atria51. Functional studies performed on Cx40 knockout mice revealed that the absence of this 

protein caused decreased automaticity, slower AP propagation throughout the atria and AV-

node, and finally upper bundle branch block associated with first degree AV block51.   

Much like the mouse, in the human population Cx40 also plays a role in cardiac health52. Patients 

with idiopathic paroxysmal or chronic atrial fibrillation (AF) display up to a 77% reduction of 

Cx40 protein in atrial tissue compared to tissues obtained from a non-diseased heart52. As well, it 

has been found that a few idiopathic AF patients display either somatic and germline mutations 

in GJA5, the gene encoding Cx40. So far, 6 germline mutations, and 3 somatic mutations in the 

GJA5 gene have been identified in a total of 23 patients53. Functional studies on several of these 

mutations revealed compromised Cx40 GJ and hemichannel function, pointing towards the 

importance of this connexin family member in heart health53. All in all, the ablation of Cx40 in a 

transgenic mouse model seems to be the most attractive method to study the role of GJs in 

cardiovascular physiology, not only because these mice are viable and still display an irregular 

cardiac phenotype, but also because the knockout of this gene may result in similar pathologies 

to those seen in loss of function GJA5 gene mutations within the human population.  
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Figure 1-2. Localization of connexins within the heart 

Cx40, Cx43, and Cx45, can be found throughout the heart, in both the working myocardium of 

the atria and ventricles and the cardiac conduction system. Reused with permission: Severs NJ, 

Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in 

diseased myocardium. Cardiovascular research 2008;80:9–19. 
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1.5.2 Panx1, slow wave Ca2+ propagation, and atrial arrhythmias 

Panx1 is the most prevalent pannexin family member expressed in the cardiovascular system, 

and the only Panx localized to the heart54. Panx1 mRNA is present throughout the heart, in both 

the atria and ventricle with slightly higher transcript levels being localized to the atria54. It has 

also been identified in various cardiovascular cell types including cardiomyocytes, endothelial 

cells, and smooth muscle cells55. Its function within the cardiac system remains somewhat 

unclear, however, it is known that Panx1 acts as a major ATP release channel in cardiomyocytes 

following injury or inflammation56.  As well, it has been hypothesized by several groups that 

Panx1 may contribute to inter- and intracellular slow wave calcium signaling via purinergic 

signaling and subsequent Ca2+ release from intracellular stores that then diffuses from cell to cell 

via GJs57 (Figure 1-3). Slow wave calcium signaling within the heart typically occurs at a rate of 

0.1 mm/s, and can lead to a depolarization wave and triggered propagating contractions 

(TPCS)58. TPCs may lead to an arrhythmogenic phenotype58. Remarkably, Panx1-/- mice also 

exhibit increased susceptibility to atrial fibrillation, a prolonged QT wave phenotype, and a 

higher incidence of AV block54. Although Cx40 GJ channels and Panx1 single membrane 

channels play different roles in cardiac physiology as previously outlined, they are both localized 

similarly, in the atria, participate in similar signaling cascades such as slow wave calcium 

signaling, and their ablation within knockout mouse models leads to a similar arrhythmogenic 

cardiac pathology.  
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Figure 1-3. Cx40 and Panx1 large-pore channel calcium wave propagation 

Proposed mechanism concerning the participation of Cx40 and Panx1 large-pore channels in 

paracrine and GJ signaling interactions involving the passage of ATP and secondary messenger 

molecules IP3 and Ca2+ in order to cause intracellular calcium store release and contribute to slow 

wave calcium propagation in some cell types. Modified with permissions from: D’hondt C, 

Ponsaerts R, Smedt H De, Bultynck G, Himpens B. Pannexins, distant relatives of the connexin 

family with specific cellular functions? BioEssays 2009;31:953–974. 
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1.5.3 Connexins in vascular physiology  

The regulation of vascular tone and coordination of vasomotor response is essential for the 

control of blood pressure in normal physiology. Often, these responses are regulated by the 

passage of ions and secondary messengers between coupled vascular cells59. Endothelial-

endothelial, smooth muscle-smooth muscle, and myoendothelial cell coupling is accomplished 

by Cx37, Cx40, Cx45, and Cx4360. More specifically, Cx40 allows for coupling between 

endothelial cells and the spreading of vasodilatory signals, Cx43 and Cx45 for the coupling of 

smooth muscle cells, and finally Cx37, Cx40, and Cx43 for the formation of myoendothelial 

junctions60. In large arteries, such as the aorta or coronaries, Cx37 and Cx40 are the most 

abundant connexin subtypes in the endothelium, and Cx43 the most abundant in smooth 

muscle61. Contrastingly, in small resistance arteries Cx40 and Cx45 are more abundant in the 

smooth muscle cells than Cx4361. Certain pathologies such as hypertension may cause alterations 

in the connexin expression profile in a tissue specific fashion, and this effect has been 

demonstrated both within the blood vessels and within the kidneys62. For example in mouse and 

rat models in which renal hypertension is experimentally induced it has been found that Cx43 

and Cx40 transcript and protein levels are increased in the kidneys62. In contrast, when 

hypertension is induced by inhibiting endothelial nitric oxide synthase, an enzyme associated 

with the production of nitric oxide in the vasculature, Cx37 and Cx43 levels are reduced within 

the vessels and Cx40 remains unaffected62.   

Unfortunately Cx37 null mice mainly exhibit phenotypes that are non-vessel related63. 

Contrastingly, Cx45 knockout mice exhibit a severe vascular phenotype and embryonic lethality 

(E9.5-E10.5) characterized by abnormally enlarged or narrowed vessels, diminished yolk sack 

vessel formation, and hindered smooth muscle cell differentiation around large arteries63. 

Endothelial cell specific knockouts of Cx43 have demonstrated that this connexin protein may be 

important in vasodilation as select knockout models exhibit hypotension that was hypothesized 

to be due to increased nitric oxide (NO) production64.  Finally, transgenic mice in which the 

Cx40 gene has been ablated show impairments in vasomotor responses including altered 

contraction and relaxation profiles65. Mice lacking Cx40 display blunted conducted vasodilation 

responses in both arterioles and larger arteries in response to endothelium dependent vasodilators 

like acetylcholine65. Interestingly, receptor dependent vasocontractile responses to phenylephrine 
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agonists are enhanced in some Cx40-/- mouse stuides66. This was hypothesized to be due to 

endothelial dysfunction leading to a lack of coordinated contraction/relaxation balance within the 

vessels in question66.  

1.5.4 The functional role of Panx1 within large and small arteries  

Although there are three Panx family members, Panx1 is the primary species expressed in the 

vasculature67. Panx1 has been localized to both endothelial cells and smooth muscle cells68. 

Intriguingly, the distribution of Panx1 in smooth muscle cells is graded, and vessels greater than 

300 μm in diameter do not express Panx1 in smooth muscle67. Therefore, in large arteries like the 

aorta, Panx1 is predominately localized to the endothelium. As well, interestingly, it has been 

reported that global Panx1 knockout mice show compensatory upregulation of Panx3 channels in 

the thoracodorsal artery (TDA)68.  

In the vasculature Panx1 has been implicated in altered vasomotor responses in conduit arteries 

by regulating endothelium derived hyperpolarizing factor (EDHF)38 and in small resistance 

arteries by modulating vasoconstriction68. The ability of the Panx1 channel to regulate vasomotor 

responses is speculated to be due to their ability to act as an ATP release channel in order to 

modulate slow wave Ca2+ signaling under differential physiological conditions55, 56, 69. For 

example in conduit arteries Panx1 participates in the relaxation response by mitigating EDHF 

responses. In fact, global Panx1-/- mice display increased resistance due to the blunted response 

of arterioles to muscarinic receptor agonist acetylcholine38. Meanwhile in small resistance 

arteries like the TDA it has been found that Panx1 shares a functional link with α1D-adrenergic 

receptors (α1D-AR)70. When norepinephrine is released from sympathetic nerves to activate 

α1D-ARs there must be concomitant activation of purinergic receptors or the contractile 

response of the artery is blunted70. Furthermore, it was found that Panx1 played a role in 

purinergic receptor activation because when phenylephrine, a α1D-AR agonist was applied to the 

TDA after Panx1 channel inhibition vasoconstriction was blunted70.  

Contrastingly, in two separate studies it has been found that a) Panx1 does not mediate α1D-AR 

vasoconstriction in resistance arteries, and b) that ATP is not required for α1D-AR-mediated 

constriction71, 72. Their protocols utilized both TDA and mesenteric small resistance arteries, and 

a variety of Panx1 inhibitors71, 72. Therefore due to the controversy in this field concerning the 
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roles of Panx1 in small resistance arteries, and the exhaustive amount of research that has already 

been performed on the contributions of Panx1 to vasoconstriction in the TDA, we propose 

instead to assess the role of Panx1 in endothelial cell function. As mentioned, endothelium 

integrity was previously measured in conduit arteries of Panx1-/- mice and found to be 

dysregulated. We therefore postulate that in an increasingly large artery, such as the aorta, which 

contains higher levels of endothelial Panx1, the severity of the phenotype would be increased.  

Much like in the atria of heart, the roles of Panx1 and Cx40 in large arteries and consequently, 

the aorta seem to overlap. Within larger arteries both of these key large-pore channels are 

localized to the endothelium61, 67, play a role in vasodilation albeit via differential mechanisms, 

and their ablation leads to endothelial dysfunction38, 65, 66. It is therefore worth considering what 

the effect of the combined ablation of Cx40/Panx1 large-pore channel proteins would have not 

only on the heart, but also within the vasculature.  

1.5.5 Connexins and pannexins in the renal system  

The kidneys play a pivotal role in modulating cardiovascular system response by regulating 

blood pressure and peripheral resistance through two central processes: pressure natriuresis 

regulation and by releasing neurohormonal vasoactive factors73. Interestingly, both of these 

processes are in part modulated by connexins76. Pressure natriuresis is a feedback mechanism in 

the renal system used to control blood pressure by closely regulating sodium and water balance74. 

In short, rises in arterial pressure lead to increased perfusion pressure within the renal artery. 

This then causes increased sodium and water excretion, and decrease in the level of extracellular 

fluids ultimately resulting in decreased blood pressure73. Pressure natriuresis is a regulatory 

mechanism that occurs irrespective of the stimulus that provoked the initial increase in arterial 

pressure73.  

The renin-angiotensin-aldosterone system (RAAS) in the kidney works alongside the pressure 

natriuresis mechanism to maintain a normalized blood pressure by releasing neurohormonal 

factors74. Increases in arterial pressure lead to the inhibition of the RAAS system, a reduction of 

angiotensin II production, reduced vasoconstriction on the afferent arterioles of the kidney, and 

finally decreased sodium reabsorption74. Contrastingly, the activation of RAAS through the 

secretion of renin from the kidneys provokes angiotensin converting enzyme to convert 
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angiotensin I into angiotensin II which then acts to cause increased vessel constriction, increases 

in blood pressure, and ultimately hypertension through increased fluid reabsorption75.  

Connexins have been localized to the cortex and medulla of the kidney, and throughout the renal 

vasculature76. Importantly, within the nephron Cx43, Cx40, Cx30, Cx37, and Cx45 are found77. 

Physiologically within the kidney connexins participate in several regulatory mechanisms 

including the RAAS, in tubuloglomerular feedback and pressure natriuresis76. More specifically 

Cx40 is found within the endothelial cells of the juxtaglomerular apparatus, and other parts of the 

renal microcirculation78. As a prominent member of the kidney microcirculation Cx40 may act as 

a mediator of slow wave Ca2+ signaling in order to modulate vascular conductance and 

endothelium mediated vasodilation of the arteries in order to control glomerular filtration rates77. 

Studies have also shown that Cx40 plays an important role in renin synthesis and release, 

contributing to autoregulation mechanisms (RAAS feed-back) within the kindey78, 79.  

In addition, Panx1 and Panx3 channels have been localized within the kidney. Panx1 is present 

in both cortical and medullary tubule segments of the kidney and in the renal vasculature80, while 

Panx3 has a more restricted distribution pattern and is found only within the renal vasculature77. 

Unfortunately little is known about the role of Panx1 in the renal system. However based on its 

similar localization profile to Cx30 within the apical collecting ducts, and its role in purinergic 

signaling, it has been hypothesized that Panx1 may play a role in pressure natriuresis80. It has 

also been postulated that Panx1-/- mice might possess a salt retention phenotype that would 

consequently lead to hypertension80. 

1.6 Signaling in receptor-dependent and independent vasomotor 

responses   

Vascular tone is an important part of system homeostasis and is maintained by local 

vasoconstriction and dilatory responses81. In general vasoconstriction may be either receptor-

dependent or independent and is regulated by smooth muscle cell contraction82. Contrastingly, 

vasodilation is mediated by the endothelium which releases a variety of vasoreactive factors in 

the regulation of smooth muscle relaxation such as nitric oxide (NO) and endothelium-derived 

hyperpolarizing factor (EDHF)81. The assessment of the vasoreactivity of a vessel to various 
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agonists causing constriction/relaxation is often used as a measure of endothelial function83, and 

therefore this approach will be utilized in this thesis to study the effects of the ablation of 

Panx1/Cx40 in the aorta. Because these methodologies will be employed, key signaling 

pathways involved in these responses are delineated.  

α-adrenergic receptor mediated contraction is one of the central pathways that mediate 

vasoconstriction, and one that has been utilized in this thesis to examine the contractile responses 

of the aorta. Adrenergic receptors are G-protein coupled receptors (GPCR) that are activated by 

catecholamine agonists84. They are found within the in the cardiovascular system and have been 

divided into two main subtypes: α-adrenergic receptors (α-ARs) and β-adrenergic receptors84. In 

the vasculature α-ARs are surface receptors located on smooth muscle cells that play a role in 

vasoconstriction85. α1-ARs are activated by the release of neurotransmitters from the 

sympathetic nervous system or by drug agonists such as phenylephrine (PE) and methoxamine85. 

The GPCR then initiates an intracellular cascade by activating the membrane bound 

phospholipase C protein (PLC). Once activated PLC stimulates the production of IP3 and 

diacylglycerol, two secondary messengers which act on intracellular Ca2+ stores and cause their 

release. The rise in intracellular Ca2+ ultimately leads to vasoconstriction of the artery84, 85.  

Similarly potassium (K+) channels are important for the regulation of smooth muscle cell 

membrane potential and excitability. In brief the phenomenon of K+ mediated vasodilation and 

vasoconstriction will be explained86. The opening of these channels leads to K+ efflux, 

hyperpolarization of the membrane, closure of voltage gated Ca2+ channels, and ultimately 

smooth muscle cell relaxation86. In contrast, the closing of these channels causes membrane 

depolarization, opening of voltage gated Ca2+ channels, and ultimately vasoconstriction87. In total 

there are four different types of K+ channels including: calcium activated-K+ channels, voltage 

dependent K+ channels, ATP-sensitive K+ channels, and inwardly rectifying K+ channels87.  

Nitric oxide is a potent vasodilator and acts through activation of intracellular cascades which 

ultimately cause shifts in actin/myosin chain dynamics, muscle relaxation, and thus 

vasodilation88. In endothelial cells nitric oxide is synthesized from amino acid L-arginine by 

endothelial nitric oxide synthase88.  NO can then diffuse from endothelial cells into SMCs and 

activate membrane bound receptor soluble guanylyl-cyclase (sGC)89. Activated sGC produces 
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secondary messenger cyclic guanylyl monophosphate, which induces protein kinase G (PKG). 

PKG, causes the reuptake of cytosolic Ca2+, promotes the opening of Ca2+ dependent K+ 

channels, and activates myosin light chain phosphatases89. These factors cause the 

dephosphorylation of the myosin light chain, and the hyperpolarization of SMCs, which inhibits 

muscle contraction and subsequently leads to vasodilation88, 89.   

Sodium nitroprusside is a NO donor, often used to study nitric oxide mediated vasodilation in an 

endothelium independent manner90. SNP acts by breaking down into its molecular components 

and releasing nitric oxide into the blood stream90. Nitric oxide can then act directly on SMCs to 

induce a vasodilatory response91. The use of SNP along with other endothelial dependent 

vasodilators such as methacholine allows researchers to assess endothelium function91.  

Muscarinic (M3) receptor mediated vasodilation is a pathway that causes smooth muscle cell 

relaxation in the vasculature92. M3 receptors are GPCRs located on the endothelium that may be 

stimulated by various non-selective agonists such as methacholine and acetylcholine92. Once 

activated these GPCRs act to initiate PLC and IP3 secondary messenger signaling cascades that 

lead to rises in intracellular Ca2+, and the formation of NO93. Nitric oxide may then diffuse from 

the endothelium to SMCs in order to exert a vasodilatory effect as previously mentioned. 

Intriguingly, this pathway is often used to assess endothelial function, as the NO mediated 

vasodilatory function of the endothelium is often deregulated upon damage92. 

Ca2+ is required for the contraction of smooth muscle cells, where the extent of contraction is 

dependent on the intracellular levels of this ion. Intracellular rises in Ca2+ cause decreases in 

membrane polarization and activation of voltage-gated calcium channels and influxes of this 

molecule into the cell94. Interestingly, voltage-gated calcium channels are expressed in a graded 

manner the vasculature, wherein channel number increases as vessel size decreases93. Although 

calcium is vital to vasoconstriction, it is not thought that this secondary messenger itself could 

cause synchronized contraction over long distances, rather that it acts through GJs as a 

messenger molecule along the length of vessel or from cell to cell to amplify or maintain the 

contractile response93.  

Calcium also plays an important role in endothelium mediated vessel relaxation. Endothelial 

cells lining the lumen have a variety of surface receptors that are stimulated upon interaction 
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with ATP, circulating hormones or by changes in blood flow95. Many of these receptors such as 

metabotrophic P2Y receptors, are G-protein coupled receptors, which will then initiate 

intracellular cascades to cause rises in IP3 and subsequently Ca2+ concentration95. Rises in 

endothelial cell Ca2+ will activate ion channels and promote synthesis of secondary messenger 

molecules, such as prostacyclin, nitric oxide (NO), and endothelium derived hyperpolarizing 

factor96. These signaling molecules are termed endothelium derived relaxing factors, and 

ultimately cause the relaxation of the smooth muscle cell layer of the vessel96.  

1.7 The role of Cx40 and Panx1 in blood pressure regulation  

Previous studies have shown that the ablation of the Cx40 gene in the mouse creates a 

hypertensive phenotype37, 79. Research has found that this increase in systolic/diastolic pressure is 

not a consequence of Cx40 channel loss from the vasculature97. This was determined when Cx40 

was selectively deleted from the endothelium and transgenic mice remained normotensive 

despite blunted arteriole relaxation97, 98. Remarkably, it was found that the hypertensive 

phenotype in the global Cx40 knockout mouse was not salt sensitive but rather due to alterations 

in the renin-angiotensin-aldosterone system (RAAS)99. More specifically, the ablation of Cx40 

impairs the negative feedback loop of pressure on renin release, resulting in excess renin 

excretion99. To elaborate on these findings, hypertensive Cx40-/- mice were rendered 

normotensive when the RAAS was inhibited via ACE or angiotensin II receptor blockers100. 

When this hypertension was further explored it was found that selective ablation of Cx40 from 

the renin producing cells of the kidney created the same phenotype found in the global Cx40 

knockout mice100. Furthermore Cx40-/- mice have increased plasma renin and aldosterone 

concentrations100, 79.  

In humans, single nucleotide polymorphisms in both the intron and promotor region of the Cx40 

gene (GJA5) have been associated not only with idiopathic atrial fibrillation but also 

hypertension and left ventricular hypertrophy in males101, 102. More specifically, polymorphisms 

were located in the promoter region of the minor Cx40 allele at position S44AA/R71GG and 

within the intron at RS791295101, 102.  
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Previous reports have demonstrated a role for Panx1 in blood pressure regulation and peripheral 

resistance through various mechanisms. One involves Panx1 channels on erythrocytes being 

activated to release ATP in conditions where there is low blood pO2
69. This nucleotide would 

then induce vasodilation in the artery in question69.  Similarly, the carotid body, known for its 

role in maintaining blood pO2 balance, possesses Panx1 channels, and has been shown to act as 

an ATP amplifier by releasing of ATP onto receptor type II cells which then propagates this 

release onto afferent nerve terminals103. Afferent nerve terminals would ultimately relay this 

signal to cardiorespiratory centers in the medulla oblongata for the regulation of blood pressure 

and respiratory rate103. Therefore, it has been shown that Panx1 plays a significant role in 

hypoxia-induced vasodilation69, 103.  

In addition, a previous mouse study shows that when Panx1 is specifically ablated from smooth 

muscle cells, those partial knockout animals are slightly hypotensive104. This effect was 

hypothesized to be due to the role that Panx1 channels play in mediating α-1D-adrenergic 

receptor signaling in vasocontraction in small resistance arteries104. As well, as previously 

delineated Panx1 may play a role in pressure natriuresis80 and Panx1-/-mice might possess a salt 

retention phenotype and consequently hypertension80. 

Therefore not only have Cx40 and Panx1 channels been implicated in similar localization 

profiles within the atria44, 54 and aorta31, 67, and similar functions within the heart and vessels, but 

they are also both linked to blood pressure regulation80, 100, 104. As this is a widespread 

physiological process that occurs via the interaction of multiple organ systems and mechanisms 

within the body it would be interesting to observe the effect of the combined ablation of these 

two large-pore channel proteins on blood pressure regulation.  

1.8 Hypertension and its associated risk factors  

Arterial pressure depends on two main variables: peripheral resistance and cardiac output105. 

Peripheral resistance is mediated by small arteries, whereas cardiac output is influenced by blood 

volume, and is thus under renal control105. Hypertension is defined as abnormally high blood 

pressure, and is a rising epidemic that affects more than 25% of the global population and is one 

of the leading causes of mortality in developed countries106. Hypertensive vessels are 
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characterized by increased medial and reduced luminal area, along with increased ECM 

proteins107. This disease if often asymptomatic until later in life and is associated with several 

risk factors such as cardiac hypertrophy, myocardial infarction, aortic dissection, endothelial 

dysfunction, atherosclerosis, stroke, and chronic kidney disease108. In relation to the role that 

hypertension plays in the development of myocardial hypertrophy, endothelium dysfunction will 

be delineated as well as the roles that both connexin and pannexin large-pore channels play in the 

development of this multifactorial disease109. 

1.8.1 Cardiac hypertrophy induced by pressure overload  

Cardiac hypertrophy is an adaptive response, and a pathophysiological condition that arises due 

to increased volume/pressure load, sarcomeric mutations or dysfunction, and decreased myocyte 

contractility after tissue injury110. Hypertrophic growth induced by increased pressure/volume 

load is secondary to several pathologies including hypertension, ischemia, valvular disease, and 

heart failure110. Pressure overload hypertrophy is a topic that is central to this thesis project and 

will therefore be discussed in detail.  

Arterial hypertension is the most common cause of pressure overload within the heart and may 

lead to pronounced left ventricular hypertrophy (LVH)111. Pressure induced hypertrophy is 

believed to occur as a physiological compensation mechanism that the myocardium undergoes in 

order to decrease left ventricular wall stress and oxygen consumption111. The left ventricle is 

often the most affected cardiac region as it has the greatest workload111. At the molecular level 

muscle wall thickening is due to biomechanical stress potentiating changes in cardiac gene 

expression, the reactivation of the fetal gene program (α-myosin heavy chain, atrial natriuretic 

peptide, and brain natriuretic), and ultimately the growth of the cardiomyocytes112. Along with 

increases in cardiomyocyte area cardiac hypertrophy is often accompanied by augmented 

interstitial myocardial fibrosis, GJ and cytoskeletal remodeling, which may lead to a detrimental 

arrhythmogenic phenotype and ultimately heart failure113.  

More recently it has been suggested that hypertension associated LVH may not be due to 

pressure overload alone, but that neurohormonal factors can exert trophic effects and ECM 

deposition which may play an import part in the establishment of cardiac hypertrophy114. These 

neurohormones include angiotensin II, aldosterone, norephinephrine, and insulin114. They 
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directly stimulate cardiac hypertrophy and protein synthesis by stimulating the production of 

cytokines and growth factors114.  

Meanwhile, genetic factors have also been hypothesized to play a role in LVH because there is a 

considerable amount of interindividual variability associated with a hypertensive phenotype and 

increases in left ventricular mass111. For example, large cohort studies show that only 50% of the 

variability in left ventricular mass can be explained by increased systolic blood pressure and 

other associated risk factors110. Furthermore, it has been found that the extent of cardiac growth 

in response to pressure load is not uniform among patients experiencing hypertension. Therefore, 

these data, as reviewed by Drazner et al. suggest the presence of an unknown, unmeasured risk 

factor111.  

Another important consideration is the regulation and/or suppression of cardiac hypertrophy via 

different effector molecules. Increasing amounts of evidence show that NO may act through the 

Ca2+/calcineurin-NFAT cascade to suppress the hypertrophic signal that causes cardiomyocyte 

enlargement112.  As well, it has been shown that cardiac remodeling in response to pressure 

overload is inhibited by the NO-cGMP pathway112.  

1.8.2 Hypertension induced endothelium dysfunction  

The endothelium is the innermost lining of a blood vessel and plays a critical role in maintaining 

normal physiology. It is involved in a number of processes including barrier function, regulation 

of vascular tone, neutrophil recruitment, and hormone trafficking115. Endothelial dysfunction 

may be defined as a diminished capacity of the endothelial cells to produce nitric oxide and other 

vasodilators and/or an increase in the production of endothelium-derived vasoconstrictors. 

Functionally, this imbalance leads to impairments in endothelium-mediated vasodilation115. At 

the molecular level endothelial dysfunction is characterized by pro-thrombotic, pro-

inflammatory, and pro-constrictive changes in the endovascular tissue116. Hypertension and 

endothelial function are entwined, wherein hypertension may lead to endothelium dysfunction or 

vice versa. In fact, it has been previously reported that increasingly hypertensive phenotypes 

presented with decreased endothelial function and that this response was graded116. These 

experiments were performed in both men and women by measuring brachial artery reactivity 

while co-administering antihypertensive therapy116. It is also worth noting a study performed by 
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Hamasaki et al. that found that only patients with both hypertension and LVH presented with 

coronary endothelial dysfunction, however endothelial responses in patients with hypertension 

without LVH were similar to those of normotensive individuals117.  

Several mechanisms have been implicated in the development of hypertension mediated 

endothelium dysfunction including: excessive reactive oxygen species (ROS) production, and 

local vascular and systemic inflammation118, 119. In brief, endothelium dependent vasodilation was 

assessed while mouse carotid arteries were exposed to increasing intraluminal pressure118. It was 

found that under increasing pressure there was a parallel decrease in vasodilation and an 

upregulation in nicotinamide adenine dinucleotide phosphate oxidase activity118. In addition it 

has been found that the anti-inflammatory interleukin-10 diminishes endothelium dysfunction in 

experimentally induced hypertensive animals advocating for the adverse role of inflammation in 

the development of this pathology119.  

1.9 Synopsis of the cardiovascular phenotypes found in Cx40 

and Panx1 null mice  

1.9.1 Cx40 null mice  

There are two global Cx40 knockout mouse models central to the cardiac gap junction field, 

which were engineered in the laboratories of Dr. Klaus Willecke, and Dr. David Paul. Both of 

these Cx40 null mice possess similar cardiac physiology including decreased conduction 

velocities due to increased P-wave and QRS-complex duration, and a normal basal heart rate49, 50, 

120, 121. The altered cardiac physiology found in these mice has been hypothesized to be due to the 

inability of the atria and conduction system to fully compensate for the loss of this GJ channel 

protein120, 121. Furthermore, Cx40 ablation leads to altered electrical foci and the inability of the 

myocardium to correctly propagate action potentials, Ca2+ waves, and function as a syncytium122. 

However there is one caveat as only the Willecke Cx40-/- mouse model has been reported to have 

an arrhythmogenic phenotype49. Although the mice were designed in the same manner, this 

discrepancy could be due to slightly different mouse backgrounds, the amount of backcrossing 

that was performed, or due to the fact that the measurements performed not sufficiently sensitive 

(3-lead ECG and 6-lead ECG)49, 50.  
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The cardiac structure of the Cx40-/- mouse was assessed and a mild ventricular septation defect, 

and decreased pre and postnatal survival were reported. It was found that offspring of single 

Cx40 knockout dams had increased in utero death between E11.5 and E13.5 and that 16% of 

newborns died shortly after birth49. The authors hypothesized that embryonic death was due to 

functional rather than structural factors, and that postnatal fatalities were due to septatation 

defects and the improper establishment of pulmonary circulation at birth49. 

Along with cardiac abnormalities, Cx40 knockout mice (both global and endothelial/kidney 

specific knockout models) present with pathophysiological alterations in the vasculature and 

renal system. To summate previous studies it was found that Cx40 ablation led to a perturbed 

renin-angiotensin-aldosterone system, increased renin release, and consequently arterial 

hypertension98 99, 100. As well, Cx40 transgenic mice have irregular perturbed smooth muscle 

calcium dynamics and irregular arteriole vasomotion, characterized by decreased vasorelaxation 

in response to endothelium derived agonists41, 79.  

The Cx40-/- mouse model generously provided to our laboratory was engineered using a targeted 

vector approach. A herpes simplex virus thymidine kinase cassette driven off of a 

phosphoglycerate kinase promotor targeted a portion of exon 2 of the Cx40 gene for deletion120. 

A neomycin resistance cassette driven by the phosphoglycerate kinase promotor was inserted in 

its place120. We decided to proceed with the David Paul knockout mouse due to the fact that this 

model has been extensively characterized in terms of both cardiac and vascular physiology.  

1.9.2 Panx1 mutant mouse models  

Over the past decade at least 5 different mutant mouse lines have been generated to knockout 

Panx1 expression as reviewed by Hanstein et al. 14, 123. Our global Panx1-/- was generated via the 

deletion of exon 2 using Cre-Lox recombination technology by Dr. Vishva Dixit at Genentech124 

and has been utilized in multiple studies, although the cardiovascular system of this mouse has 

yet to be characterized70,126,127,128. As this thesis is concerned with the cardiovascular 

characterization of the Panx1 transgenic mouse line findings relevant to this aim will be 

discussed. 
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The cardiac physiology of the Panx1-/- (Monyer) mouse was recently defined by Petric et al. 

(2016), and is currently the only study to assess the roles of this large-pore channel protein in the 

heart.  They found the hearts of Panx1-/- mice to be normal in weight, size, cardiomyocyte 

arrangement, free from excess fibrosis, and that all functional cardiodynamics as measured by 

echocardiography were similar to wild-type54. As well, electrocardiogram studies revealed that 

this mouse showed a normal heart rate, a prolonged QT interval, higher incidences of AV-block 

only at lower heart rates, and an increased susceptibility to atrial arrhythmias after burst 

stimulation54. This study is in line with previous speculations that Panx1 may contribute to slow 

wave calcium signaling within the heart, and that alterations in these dynamics could lead to 

arrhythmias55.  

 An inducible model in which Panx1 was selectively ablated from smooth muscle cells was 

created and the effects of Panx1-/- on the vasoconstriction were studied. It was found that the 

deletion of Panx1 lowered blood pressure creating a slightly hypotensive phenotype, and that 

vasoconstriction to PE was reduced in the TDA indicating that Panx1 may be involved in α1-

adrenoreceptor mediated vasomotor response in resistance arteries70,104. Alternatively conduit 

arteries have been found to have impaired vasorelaxation to endothelium derived relaxation 

factors such as acetylcholine due to a blunted EDHF response38,125.  
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1.10 Rational, Hypothesis, and Objectives 

Due to the overlapping roles of Cx40 and Panx1 large-pore channels in multiple processes in the 

cardiovascular system from slow wave Ca2+ signaling to the regulation of vascular tone, 

modulation of blood pressure, and involvement in arrhythmogenic pathology, it was postulated 

that these channel proteins might have co-regulatory roles. Interestingly, both Panx1 and Cx40 

are localized to similar locations in the cardiovascular system including the atria and the 

endothelium of the aorta. Hence, due to their similar ability to regulate homeostatic processes 

and comparable localization profiles, we speculated that the ablation of these two channels could 

lead to severe cardiovascular phenotypes, as these channels appear to engage in important cross-

talk mechanisms. Thus the engineering and characterization of a novel global knockout mouse 

model in which both Cx40 and Panx1 channels are ablated will allow for an increased 

understanding of the roles that these two large-pore channels play in the heart and vessels in both 

health and disease.  

Due to the lack of knowledge on this topic this thesis will aim to examine the function of Cx40 

and Panx1 individually and elucidate their potential for overlapping functions within the 

cardiovascular system by using single Cx40 and Panx1 null mice and a novel Cx40/Panx1-double 

knockout mouse. In addition the Cx40-/-Panx1-/- mouse will be characterized for survival and any 

overt phenotypes, as it is the first global Cx/Panx knockout mouse model of its kind.  

It is hypothesized that the ablation of Cx40 and/or Panx1 will lead to reduced mutant mouse 

survival and dysregulated cardiovascular function in vivo. 

 My aims are:  

1. To characterize the phenotype and survival of mice lacking Panx1, Cx40 and 

Panx1/Cx40.  

2. To determine if mice lacking Panx1 and/or Cx40 suffer from cardiac hypertrophy and 

fibrosis.  

3. To assess if mutant mice are subject to hypertension and dysregulated vasomotor 

responses. 
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Chapter 2  

2 Decreased Survival and Increased Hypertension in Mice 
Lacking Both Cx40/Panx1 

Connexins (Cxs) and pannexins (Panxs) are large-pore channel forming proteins that participate 

in cell signalling via the passage of small molecules. Given their potential for overlapping cell 

signaling functions, we proposed that mice lacking both a Cx and a Panx would have a severe 

phenotype. In particular, Cx40 and Panx1 have been reported to potentially share functional 

overlap in the cardiovascular system where they are both expressed.  Thus, we crossed Panx1 

null mice with Cx40 knockout mice and characterized the first global connexin/pannexin double 

knockout mice. All studies performed were carried out on Cx40-/-Panx1-/- mice and compared to 

wild-type mice or mice lacking Cx40 or Panx1.  Mice lacking both Cx40 and Panx1 were fertile 

but ~50% of the pups died either in utero or as newborns.  Both Cx40-/- and Cx40-/-Panx1-/- mice 

exhibited cardiac hypertrophy and a slight increase in cardiac fibrosis. Surprisingly, tail-cuff 

blood pressure measurements of conditioned or anaesthetized mice devoid of Panx1 or Cx40 

were found to be hypertensive with hypertension being increasingly elevated in mice lacking 

both Cx40 and Panx1. Interestingly, mice null for Panx1 did not exhibit the accompanying 

cardiac hypertrophy seen in Cx40-/- and Cx40-/-Panx1-/- mice. Furthermore, the combined ablation 

of Cx40 and Panx1 decreased endothelium-dependent vasodilation characteristic of endothelial 

dysfunction.  Overall, these studies suggest that even though Panx1 and Cx40 may act via 

differential mechanisms, they have a co-regulatory role in vascular response. 
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2.1 Introduction  
Normal cellular function, organ development, homeostasis, and repair after damage relies 

heavily on the initiation of a myriad of critical signaling networks and the interaction of 

extracellular, intercellular and intracellular cascades1. The connexin (Cx) and/or pannexin (Panx) 

families of large-pore forming channel proteins facilitate the passage of various ions, nucleotides 

and secondary messenger molecules such as calcium, adenosine triphosphate (ATP), and inositol 

triphosphate (IP3) either between cells or between a cell and the extracellular milieu2. Connexins 

may act in either intracellular signaling as functional hemichannels, although this is not well 

documented in vivo, or more classically form gap junction (GJ) channels for direct intercellular 

communication3. On the other hand, pannexins typically exist at the cell surface as large-pore 

channels that function in extracellular signaling4. It is the interplay between these key-signaling 

modalities that allow critical cellular cascades to govern many functions of the heart and 

vasculature5.  

The heart requires cell-cell communication for the spread of electrical activity, the propagation 

of action potentials, and the synchronized contraction of the myocardial tissue6. The primary 

connexin family members present in the heart are Cx43, Cx40, and Cx457. Interestingly in the 

murine heart, Cx40 is developmentally regulated with peak expression throughout the entire 

heart at embryonic day 14 before its expression is confined to the developing atria and 

conduction system8. Cx37, Cx40, and Cx43 present within the vasculature allow for the coupling 

of endothelial cells and vascular smooth muscle cells at the myoendothelial junction, the 

alteration of vasomotor responses, and the propagating slow Ca2+ waves9. For example in the 

renal vasculature, Cx40 and extracellular ATP are key mediators of slow wave calcium signaling 

between endothelial cells. Slow wave Ca2+ signaling acts not only in vasodilation of the vessels 
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to control glomerular filtration rate, but may also play an important role in renin synthesis and 

release10, 11.  Characterization of a Cx40 global knockout mouse revealed myocardial 

hypertrophy, fibrosis, arrhythmias, and increased P-wave and QRS complex duration12, 13. 

Furthermore, these animals suffer from renin/angiotensin-mediated hypertension and perturbed 

smooth muscle calcium dynamics14.  

Panx1 is the most prevalent pannexin family member expressed in the cardiovascular system, 

and is found in cardiomyocytes, endothelial cells, and smooth muscle cells15. The abundance, 

localization and function of Panx1 within the heart are not well characterized. However, it is 

known that Panx1 acts as a major ATP release channel in cardiomyocytes following injury or 

inflammation16.  As well, Panx1 may contribute to inter- and intra- cellular slow wave calcium 

signaling via extracellular purinergic signaling in order to amplify Ca2+ release from intracellular 

stores17. In the vasculature, Panx1 has been implicated in altered vasomotor responses in large 

arteries by regulating endothelium-derived hyperpolarizing factor18 and in small resistance 

arteries by modulating vasoconstriction19. The ability of Panx1 channels to regulate vasomotor 

responses is due to their ability to act as an ATP release channel in order to modulate α-

adrenergic and slow wave Ca2+ signaling under differential physiological conditions20, 21, 22. In the 

heart, it has been reported that Panx1-/- mice have an increased incidence of AV-block, a 

prolonged QT interval and an increased risk of atrial fibrillation after burst stimulation23. 

Furthermore, the Panx1 knockout mouse has been shown to possess decreased vasoconstriction 

in resistance arteries exposed to phenylephrine19, and decreased muscarinic receptor mediated 

vasodilation of large arteries18. 

Given that Cx40 and Panx1 appear to play critical roles in the heart and blood vessels, the 

question arouse as to whether mice that globally lacked both of these large-pore channel proteins 
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would even survive, and if so, would they exhibit a severe cardiovascular phenotype.  Currently 

there is only one other Cx/Panx double knockout mouse in existence where the conditional 

ablation of Cx43 and Panx3 lead to defective osteogenesis where both of these channel proteins 

are highly expressed24. In the current study we found approximately half the mice lacking both 

Cx40 and Panx1 did indeed survive, were fertile, exhibited a normal lifespan, and showed no 

overt phenotype. That being said, we discovered that Cx40-/-Panx1-/- mice had fewer offspring 

due to death in utero, and decreased post-natal survivability.  With respect to the cardiovascular 

system, Cx40-/-Panx1-/- mice were found to have cardiac hypertrophy and mild fibrosis. 

Interestingly, tail cuff blood pressure measurements revealed that mice lacking Cx40, Panx1 or 

both Cx40 and Panx1 were hypertensive and exhibited a decreased endothelium-dependent 

vasodilatory response, which was exaggerated in mice devoid of both Cx40 and Panx1.  

2.2 Materials and Methods 

2.2.1 Engineering and Characterization of Mice  

 Cx40-/-Panx1-/- mice were bred in house from Cx40-/- and Panx1-/- single knockout mice that had 

been previously backcrossed onto a C57BL/6N background for several generations. The Cx40 

knockout mouse was generated by Simon et al. and was a generous gift from Dr. David Paul via 

Dr. Donglin Bai (University of Western Ontario, London, ON)13.  Panx1 null mice were provided 

by Dr. Vishva Dixit at Genentech and have been previously characterized by Qu et al25. Wild-

type mice of the C57BL/6N strain from Charles River were used as controls. Mice were housed 

4 per cage, received food and water ad libitum, and were maintained on a 12 hour light/dark 

cycle at 24°C. PCR genotyping was performed to ensure the ablation of Cx40 and Panx1 as 

described previously using ear clip DNA as a template25, 26. For the characterization of male 

mouse weight/size, mutant and wild-type mice from 3-6 litters, with a minimum of 10 mice per 
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timepoint, were weighed periodically for up to a year. During tissue collection all animals were 

sacrificed via cervical dislocation, and organs were fixed in formalin or flash frozen and stored at 

-80°C. All studies performed were in accordance with the Animal Care Committee of Western 

University. 

2.2.2 q-PCR Analysis  

RNA was extracted using the Qiagen RNeasy kits (Qiagen) from the atria and ventricle of 3 

month old wild-type and Panx1-/- mice. cDNA was synthesized using the first-strand cDNA 

synthesis kit (SuperScript VILO). Panx1 transcript levels were determined using mouse Panx1-

specific primers (5'ACAGGCTGCCTTTGTGGATTCA3'; 5' GGGCAGGTACAGGAGTATG3') 

and the PowerUp SYBR green Mastermix (Life technologies) in a Bio-Rad CFX96 real-time 

system. Results were normalized to 18SrRNA. Brain tissue was used as a positive control as it 

expresses abundant levels of Panx1 transcript, and tissues from Panx1-/- mice were included with 

wild-type tissue as a negative control. N = 3 per group.  

2.2.3 Litter Size Characterization  

 Litter sizes of wild-type and mutant mice were tracked by setting up multiple breeder cages for 

each strain and counting the number of offspring per litter at birth and 3 days post-natal (N=12 

litters, approximately 5-10 mice/litter). Survivability was calculated wherein the amount of pups 

alive 3 days post birth was compared to the number of pups at birth. Furthermore fertility and 

incidences of in utero death were assessed in the Cx40-/-Panx1-/- double knockout mouse by 

counting the number of implantations, resorption sites, and in utero death (N=7 dams) prior to 

day 14.5. For timed pregnancies, E0.5 was taken as the morning on which a vaginal plug was 

found.   
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2.2.4 Heart Weight Characterization 

 Three week and 3 month old mice were euthanized via cervical dislocation, and their hearts 

were excised. Dry heart weights were then recorded and normalized to the initial mass of the 

animal to obtain a normalized heart weight (mg/kg N=6 hearts per group). 

2.2.5 Western Blot Analysis 

 Tissue lysates of mutant and wild-type hearts were prepared via homogenization of atria, or 

whole hearts on ice in lysis buffer (150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-

100, 10 mM Tris-HCl) with protease and phosphatase inhibitors (Roche-Applied Sciences; 100 

mM NaF and 100 mM Na3VO4). 30 μg of protein from lysates were resolved on a 10% SDS-

PAGE gel and then transferred to a nitrocellulose membrane using an iBlot Dry Blotting system 

(Invitrogen). Membranes were blocked in a 3% bovine serum albumin/0.05% Tween20 PBS 

solution (PBST) for 30 minutes at room temperature.  Membranes were then exposed to the 

following primary antibodies: rabbit anti-Cx43 (1:5000, Sigma, C 6219) goat anti-Cx40 (1:500, 

Santa Cruz, sc-20466); mouse anti-collagen 1 (1:500, Abcam, ab34710), rabbit anti-fibronectin 

(1:500, Abcam, ab2413), mouse anti-N-cadherin (1:200, BD Signal Transduction, 610920), and 

mouse anti-GAPDH (Santa Cruz, sc-365062), diluted in blocking solution at 4°C overnight. 

Membranes were then washed 3 times for 5-minute intervals with PBST. Fluorescent-tagged 

secondary anti-rabbit Alexa Fluor® 680 (1: 5000, LICOR Biosciences, ab175772) or anti-mouse 

IRdye 800 (1:5000, Rockland Immunochemicals, Inc., 610-132-003) were then used to detect 

primary antibodies. Blots were then imaged using Odyssey Infrared Imaging System (Li-Cor 

Biosciences) and densitometry analyses was performed wherein samples were normalized to 

GAPDH loading controls. N=4 samples per group. 
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2.2.6 Immunofluorescence Microscopy 

 Immunofluorescence was performed as previously described27. Briefly, 10% formalin fixed 

paraffin embedded heart sections (7 µm) were deparaffinized, antigen retrieved in Vector 

Antigen Unmasking Solution (Vector Labs), and then rinsed with PBS. For cryosections (10 μm) 

hearts were fixed in formalin fixative overnight and then cryoprotected in a 30% sucrose solution 

prior to sectioning. Sections were blocked in 3% BSA/0.1% Triton X-100 for 1 hour at room 

temperature. Sections were probed overnight at 4°C using the primary antibody dilutions: rabbit 

anti-Cx43 (1:1000, Sigma, C 6219); goat anti-Cx40 (1:200, Santa Cruz, sc-20466). Secondary 

Alexa Fluor® 555-conjugated anti-rabbit, anti-mouse or anti-goat (1:500, Molecular Probes, 

A21425, A21429 or A21431) and Alexa Fluor® 488-conjugated anti-rabbit or anti-mouse (1:500 

dilution, Molecular Probes, A11008 or A11017) was applied for 1 hour at room temperature to 

detect primary antibody binding. Hoechst (1:10, 000) was applied for a 10-minute period to label 

nuclei (1:1000 in ddH2O). Coverslips were mounted with Airvol and imaged using the Zeiss 

LSM 800 confocal microscope.   

2.2.7 Quantification of Cardiomyocyte Area 

 Cross sections (20 μm) of formalin fixed left atria and ventricle of wild-type, Cx40-/-, Panx1-/-, 

and Cx40-/-Panx1-/- mice were deparaffinized, and stained with wheat germ agglutinin (1:10, 000, 

ThermoFisher, W11261), diluted in PBS, to visualize sarcolemma membranes28. Airvol was used 

to mount coverslips and slides were then imaged using the Zeiss LSM 800 confocal microscope 

using a 40x lens. Images from all four genotypes were blinded to the investigator and quantified 

by measuring myofibril area by encircling cell membrane borders in Image J.  
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2.2.8 Cardiac Fibrosis Assessment  

Longitudinally sectioned hearts all mouse genotypes (7 μm) were deparaffinized and stained 

with Masson’s Trichrome using standard procedures to analyze the extent of cardiac fibrosis. 

Light microscopic images from the left atrial and left ventricular wall were analyzed for 

interstitial and perivascular collagen deposition29. 

2.2.9 Heart Rate and Blood Pressure Recordings 

Heart rates, systolic and diastolic blood pressures were recorded from male 3-month-old 

conscious mice from all four genotypes using the CODA tail-cuff blood pressure system (Kent 

Scientific, Torrington, CT, USA) as previously described30, 31(N=9). Briefly, mice were placed 

into restraint tubes and the tail cuff was positioned at the base of their tail. Mice were than given 

30 minutes to acclimatize before initiating the measurements, and 3 trials of preconditioning 

were performed before measurements were used to account for anxiety effects. To further 

account for the influence of anxiety on blood pressure and heart rate, measurements were also 

taken on anesthetized mice (ketamine 100 mg/kg and xylazine 10 mg/kg intraperitoneal). 

2.2.10 Vasomotor Studies 

Vascular reactivity in wild-type, Cx40-/-, Panx1-/-, and Cx40-/-Panx1-/- mice was assessed by 

performing isometric tension experiments on a wire myograph (DMT) as previously described32, 

33. 3-4 month old mice were sacrificed via cervical dislocation, thoracic aortas were excised, 

cleaned, cut into 2 mm rings, and mounted in organ bath chambers containing 5 mL of 37°C 

oxygenated KREBS buffer (in mmol/l: 130 NaCl, 14.9 NaHCO3, 10.0 glucose, 4.70 KCl, 1.17 

MgSO4, 1.18 KH2PO4, 1.60 CaCl2, and 0.027 EDTA). Contractile responses to phenylephrine (1 

nM to 30 μM), and KCl (10 to 100 mM) were recorded in vessels stretched to a passive resting 
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tension of either 1000 or 1250 mg (determined in preliminary experiments). Similarly, dilatory 

responses were assessed with either methacholine (0.1 nM to 30 μM) or sodium nitroprusside 

(0.01 nM to 30 nM) in phenylephrine (10 μM) pre-contracted rings.  

2.2.11 Statistical Analysis  

 Results are provided as means ± SEM.  Student’s t tests, one-way ANOVA, and repeated 

measures ANOVA with a post hoc Tukey test were used to evaluate statistical differences 

between treatment groups for various experiments. All statistical analyses were performed using 

graphpad. Values where p < 0.05 were deemed statistically significant. 

2.3 Results  

2.3.1 Mice lacking Panx1 and/or Cx40 are similar in size and weight 

To evaluate the levels of Panx1 present in the wild-type mouse heart, RNA was extracted from 

atrial and ventricular tissues and subjected to q-PCR analysis. Panx1 transcripts were abundant in 

both the atria and the ventricles, not unlike observations in brain tissue. Moreover, evaluation of 

Panx1 transcript levels from Panx1 null mice revealed that Panx1 was ablated from the heart and 

brain (Figure 2.1A). PCR genotyping further revealed that both Cx40 and Panx1 were ablated 

from the double knockout mouse generated from crossing Panx1 null mice with mice lacking 

Cx40. The presence of Cx43 mRNA in control and mutant mice confirmed the integrity of the 

samples used in genotyping (Figure 2.1B). In order to determine if mice lacking Panx1, Cx40 or 

both Panx1 and Cx40 exhibited any overt phenotypes, we tracked the size and weight of all 

mouse genotypes. It was found that all four-mouse genotypes exhibited no differences over a 1-

year time frame (Figure 2.1C, D). 
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2.3.2 Increased in utero and newborn pup death in Cx40-/-Panx1-/- mice  

Although no overt anatomical phenotypes were found, the Panx1 and Cx40 double knockout 

mouse produced 33% fewer pups per litter than wild-type control animals (Figure 2.2A). The 

survivability ratio revealed that 36% more Cx40-/-Panx1-/- pups die 1-3 days post birth than single 

knockout mice and wild-type controls (Figure 2.2B). Therefore, between embryonic and 

newborn pup death Cx40-/-Panx1-/- litter sizes are decreased by 69%. Pregnant dams were 

dissected on embryonic day (E) 14.5 to delineate if the in utero death was due to resorption, early 

embryonic death (prior to E14.5) or late fetal death. We found that the Cx40-/-Panx1-/- embryos 

had a similar number of implantations and percent resorption compared to wild-type mice 

(Figure 2.2C, D). Interestingly, 18% of in utero death in Cx40-/-Panx1-/- mice was found to occur 

at E14.5 (Figure 2.2E). These results indicate that Cx40-/-Panx1-/- mice die both prematurely in 

utero and soon after birth.  
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Figure 2-1 Characterization of Cx40/Panx1 knockout mice. 

(A) Quantitative PCR revealed that Panx1 was highly expressed in both the atrial and ventricles 

of wild-type (WT) mice, similar to that found in brain tissue, but absent in Panx1 null mice. (B) 

PCR genotyping confirms that both Panx1 and Cx40 are ablated in double knockout mice as 

reveled in lanes 2-5. Cx43 was present in all mice and the insertion of the Cx40 neocassette 

(Cx40-NC) reaffirms the ablation of Cx40. (C) Photograph shows that the overall size of control 

and mutant mice are approximately the same. (D) Assessment of mouse weight over 1 year 

revealed that all control and mutant mice have similar weights and weight gain (N= 3-6 litters, 

10 mice/timepoint). 
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Figure 2-2 Cx40/Panx1 null mice have decreased survival in utero and postnatal 

 (A) WT and genetically-modified mouse mean litter size at birth and (B) survivability 3 days 

postnatal (N=12 litters). (C) Mean number of implantations, (D) % fetal resorption, and (E) % 

fetal deaths in utero prior to E14.5 for WT and Cx40-/-Panx1-/- mice  (N=7 damns). *p<0.05, 

***p<0.001, ns = not significant.  
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2.3.3 Ablation of Panx1 does not alter the expression/distribution of 
Cx40 

In order to determine if there was potentially regulatory cross-talk between Cx40 and Panx1 

channels, we assessed if the ablation of Panx1 altered the expression or distribution of Cx40.  

Immunofluoresence revealed the presence of Cx40 in GJ structures in the atria of wild-type and 

Panx1-/- mice which was appropriately absent from hearts obtained from Cx40 knockout mice 

(Figure 2.3A).  Western blots further revealed that there was no quantitative change in Cx40 

levels in mice lacking Panx1 (Figure 2.3B, C).  Thus, Cx40 levels or localization does not 

change in mice lacking Panx1.  

2.3.4 Cx40-/- and Cx40-/-Panx1-/- mouse hearts are hypertrophic  

Given the enlarged appearance of Cx40-/- and Cx40-/-Panx1-/- mouse hearts (Figure 2.4A), it was 

not unexpected that both these mutant mice had higher heart mass compared to Panx1-/- and wild-

type mice at 3 weeks (Figure 2.4B) and 3 months (Figure 2.4C) of age. Left and right kidney 

weights were also assessed and found to be similar among all four genotypes (Figure 2.4D). To 

validate that the increased heart mass seen in the Cx40-/- and Cx40-/-Panx1-/- mice was due to 

cardiomyocyte hypertrophy, myofibril area was measured after denoting the boundaries of the 

cells by labeling with wheat germ agglutinin. Representative micrographs of atrial (Figure 2.5A) 

and ventricular (Figure 2.5B) cross-sections of myofibril bundles in 3-month-old mice and 

quantitation revealed that cell area   
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Figure 2-3 Cx40 levels and localization are unchanged in Panx1 ablated mice. 

(A) Fluorescent micrographs reveal similar localization of Cx40 (green) in WT and Panx1-/- 

mouse atria. The absence of Cx40 gap junction plaques in Cx40-/- and Cx40-/-Panx1-/- confirms 

the ablation of Cx40. (B) Western blot and (C) quantification reveals similar levels of Cx40 in 

wild-type and Panx1-/- mice, and its ablation in Cx40-/- and Cx40-/-Panx1-/- atria (N=3). Scale bar= 

20 µm. 
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Figure 2-4 Increased heart mass found in Cx40 and Cx40/Panx1 knockout mice. 

(A) Photographic examples of representative hearts from all mouse cohorts highlighting the 

enlarged hearts in Cx40-/- and Cx40-/-Panx1-/- mice. When heart weights were examined it was 

found that Cx40-/- and Cx40-/-Panx1-/- mice had increased heart weight relative to body weight at 

the ages of (B) 3 weeks (N=4) and (C) 3 months (N=6) as compared to WT and Panx1-/- mice. 

(D) Mean kidney weights were compared in 3 month old mice and found to be similar (N= 6). 

Different letters represent significant changes, p<0.001. ns = not significant 
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Figure 2-5 Cx40 and Cx40/Panx1 mice have hypertrophic cardiomyocytes. 

Wheat germ agglutinin staining (red) of the cardiomyocyte cell surface in left (A) atrial and (B) 

ventricular heart cross sections taken from 3-month old wild-type and mutant mice. 

Quantification of the average cardiomyocyte cell circumference revealed increased (C) atrial 

(N=6) and (D) ventricular (N=5) cardiomyocyte area in Cx40-/- and Cx40-/-Panx1-/- mouse hearts, 

p< 0.05. Scale bar = 20 µm. 
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was significantly increased in the left atria (Figure 2.5C) and left ventricle (Figure 2.5D) of Cx40 

and Cx40/Panx1 knockout cohorts of mice.  

2.3.5 Fibrotic and structural analysis of mutant mouse hearts 

Cardiac fibrosis in 3-month-old wild-type and mutant mouse hearts was assessed via Masson’s 

Trichrome staining and Western blotting for various extracellular matrix (ECM) proteins. 

Masson’s Trichrome staining of the left atria (Supplementary Figure 2.1A) and ventricle 

(Supplementary Figure 2.1B) suggested that there was minimal interstitial fibrosis in the left 

ventricle of both single knockouts, and double knockout mice. Immunoblotting indicated similar 

levels of collagen 1 and fibronectin present in the atria and entire heart among all four genotypes 

(Supplementary Figure 2.1 C, D). Overall findings are similar among all four genotypes with 

little to no fibrosis present.  

Since heart hypertrophy and fibrosis are indicators of cardiovascular disease wild-type, Cx40-/-, 

Panx1-/-, and Cx40-/-Panx1-/- hearts were examined for structural anomalies. Localization of Cx43 

plaques to the intercalated disc in the atria (Figure 2.6A) and ventricles (Figure 2.6B) in mutant 

mice were comparable to wild-type. To assess for compensatory effects by the upregulation of 

other connexins, immunoblotting revealed that the levels of Cx43 were similar in the atrial tissue 

of knockouts and wild-type mice (Figure 2.6D). Western blotting for   N-cadherin (Figure 2.6E) 

revealed similar levels of this junction protein among all four genotypes. These results indicate 

that the loss of Cx40, Panx1 or both had no detrimental effects on the structure of the intercalated 

disc. Finally, myofibril arrangement was evaluated by phalloidin staining (Figure 2.6C) and it 

was found that F-actin structure was comparable among all four genotypes. 
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Figure 2-6 Junctional proteins and F-actin are unaltered in the hearts of mutant mice. 

In 3-month-old wild-type, Cx40-/-, Panx1-/-, and Cx40-/-Panx1-/- mice Cx43 (green) localization 

was assessed by immunofluorescence in the (A) atria and (B) ventricles. (C) Phalloidin (red) was 

used to visualize F-actin in the ventricle of WT and mutant mice. (D) Western blots of Cx43 and 

(E) N-cadherin in atrial lysates revealed no difference in the abundance of these junctional 

proteins (N=3). Scale bar = 20 µm. 
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2.3.6 Physiology of the cardiovascular system in mutant mice   

To begin to characterize the cardiovascular physiology of the mutant mice, blood pressure testing 

via the Coda tail-cuff system was performed on all four genotypes at 3 months of age. Somewhat 

to our surprise, we discovered that Cx40-/- and Panx1-/- mice were both hypertensive, and mice 

lacking both large-pore channels were more severely hypertensive (Figure 2.7A). To confirm 

that the hypertension observed was not due to experimentally-induced anxiety, blood pressure 

measurements of anesthetized mice were performed and it was found that the three knockout 

strains remained hypertensive while the wild-type mice were normotensive  (Supplementary 

Figure 2.2A). Furthermore, heart rates (HR) were measured and found to be comparable among 

all four genotypes ranging from a mean HR of 598 beats per minute (BPM) in wild-type mice to 

630 BPM in the Cx40-/-Panx1-/- mouse (Figure 2.7B). Interestingly, heart rates in anesthetized 

mice were variable, and it is speculated that this was due to individual differences in drug 

metabolism (Supplementary Figure 2.2B). 

To determine if the aortic vasomotor signaling properties were affected by the ablation of Cx40 

and/or Panx1 from endothelial cells, or if the hypertension found in the mutant mice caused 

endothelial damage, isometric tension experiments were performed on aortic rings using a wire 

myograph. Four parameters were assessed; vasocontractile responses to phenylephrine (PE) and 

to potassium chloride (KCl) agonists, and vasodilation to methacholine (MCh) and sodium 

nitroprusside (SNP) agonists. It was found that contractile responses to PE and KCl were similar 

amongst mutant and wild-type mice (Figure 2.8A, B). Contrastingly, MCh mediated vasodilation 

was significantly decreased in Cx40-/-, Panx1-/-, and Cx40-/-Panx1-/- mice after the addition of 100 

nM or more of agonist. Nevertheless, receptor independent vasodilation as assessed by SNP was 

unaltered among all four genotypes (Figure 2.8C, D).   
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Figure 2-7 Panx1 and Cx40/Panx1 mice are hypertensive. 

(A) Tail-cuff hypertension testing revealed that mutant mice have significantly higher systolic 

and diastolic blood pressure than wild-type mice, with the double knockout of Cx40 and Panx1 

having an additive effect (N=9). (B) Mean heart rate is similar among all four genotypes (N=9). 

One-way ANOVA, a, b, c, d = p<0.001. 
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Figure 2-8 Endothelium-dependent vasodilatory responses are blunted in mutant mice. 

Time course dose response curves to (A) phenylephrine (PE) and (B) potassium chloride (KCl) 

were generated to assess thoracic aorta contractility and to (C) methacholine (MCh) and (D) 

sodium nitroprusside (SNP) to assess aorta vasodilation among 2-4 month old wild-type, Cx40-/-, 

Panx1-/-, and Cx40-/-Panx1-/- mice. *p<0.05.  
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2.4 Discussion  
Both Panx1 tissue-specific and global knockout mice have been engineered in recent years to 

assess the roles of these large-pore channels in normal physiology and disease34, 35. Through these 

studies Panx1 has emerged as an important player in cardiovascular physiology. This point was 

emphasized when Petric et al.  reported high levels of Panx1 within murine atria, and that Panx1 

ablation led to increased susceptibility to atrial fibrillation23. As well, Panx1 has been implicated 

in α1-adrenoreceptor mediated vasoconstriction19, blood pressure regulation36, and renal 

function37. Interestingly, the gap junction protein Cx40 shares many of these characteristics 

including its abundance in the atria, and involvement in cardiac, vascular, and renal function38, 39. 

Therefore in the current study we addressed the consequences of ablating both Panx1 and Cx40 

channels in the same mouse model as we hypothesized this would lead to an increasingly severe 

cardiovascular phenotype.   

2.4.1 Engineering and phenotyping of mice lacking both Cx40/Panx1 

Our novel Cx40-/-Panx1-/- mouse is the first global knockout mouse model in which a connexin 

and pannexin channel type have been co-ablated, and complements one other similar strategy 

where Cx43 and Panx3 were conditionally ablated in bone tissue24. Since both Cx40 and Panx1 

have been reported to release overlapping small members of the metabolome from intracellular 

stores to the extracellular milieu3,4, we anticipated that the double knockout mouse might have a 

reduced ability to survive. Intriguingly, while double-knockout mice were fertile and viable, the 

combined ablation of Cx40/Panx1 caused a severe reduction in prenatal and newborn pup 

survival. A previous report describes mild pre/postnatal death in the Cx40-/- mouse. Those 

authors hypothesized that prenatal embryo death was due to inadequate propagation within the 

cardiac conduction system, while postnatal pup death was likely a combination of improper 
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septation and increased cardiac workload during the establishment of pulmonary circulation12. 

Similarly, in our study, although not statistically significant, Cx40 null mice had 22% fewer 

offspring and 10% newborn death compared to wild-type. Intriguingly, this phenotype although 

minor in the single Cx40 knockout mouse became detrimental when Panx1 and Cx40 were co-

ablated as over half of the Cx40-/-Panx1-/- litter was lost either to pre or postnatal mortality. These 

findings point towards a concomitant role for Cx40 and Panx1 in the development of the 

maturing embryo. Qualitative evaluation of the dead Cx40-/-Panx1-/- embryos revealed that in 

utero death might be due to insufficient cephalic circulation and hemorrhaging in the thorax. 

This observation points towards a cardiovascular cause for embryonic lethality, and potentially 

to the dynamic regulation of Panx1 along with Cx40 in fetal heart development8.  The 

developmental regulation of Panx1 has been reported in skin40 further suggesting that Panx1 may 

play critical roles in the development of multiple organs.  

2.4.2 Cx40-/-Panx1-/- mice have cardiac hypertrophy due to Cx40 
ablation  

Arterial hypertension is the most common cause of pressure overload within the heart and often 

leads to pronounced cardiac hypertrophy, with the left ventricle being the most severely affected 

heart chamber. Within this organ, hypertrophic growth is due to biomechanical stress, which 

causes cardiomyocyte enlargement by potentiating changes in cardiac gene expression and 

reactivation of the fetal gene program41. This phenomenon has been previously reported in Cx40 

null mice wherein hypertrophic characterization relied exclusively on the quantification of heart 

weight13. Here, we observed cardiac hypertrophy in young and adult Cx40-/- mice and confirmed 

that it was due to the enlargement of left ventricular cardiomyocytes. Contrary to our 

expectations, the phenotype observed in mice lacking both Cx40 and Panx1 was not exacerbated. 
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This indicates that the cardiac hypertrophy found in the Cx40-/-Panx1-/- mouse is unilaterally due 

to the knockout of Cx40 channels. Additionally, both Cx40-/- and Cx40-/-Panx1-/- mice had 

pronounced left atrial cardiomyocyte enlargement. This is intriguing because unlike left 

ventricular cardiomyocyte hypertrophy, which is often associated with a hypertensive phenotype, 

left atrial dilatation may be due to pathologies that arise from defects in the cardiac conduction 

system like atrial fibrillation42 and both the Cx40-/- and Panx1-/- mice are increasingly susceptible 

to atrial arrhythmias13, 23.  

2.4.3 Mutant mouse hearts lack fibrosis & display normal GJ/myofibril 
arrangement  

Hypertrophy-induced myocardial remodeling is characterized by augmented interstitial fibrosis, 

gap junction lateralization, and cytoskeletal remodeling which are alterations that often lead to a 

detrimental arrhythmogenic phenotype and heart failure43. Interstitial fibrosis was only minimally 

identified by Masson’s trichrome staining and there were no significant changes in collagen 1 or 

fibronectin in either the left atria or ventricle of any mice suggesting that mutant mouse hearts 

were not particularly fibrotic. Likewise, the intercalated disc distribution of Cx43 and N-

cadherin, as well as the myofibril arrangement was unaltered in mutant mice. Taken together 

these findings indicate that the cardiac hypertrophy found in single Cx40 and double 

Cx40/Panx1 knockout mice may lead to myocardial remodeling however mutant hearts do not 

yet possess detrimental ECM protein depositions or alterations in intercalated disc integrity that 

would lead to heart failure. Because hypertrophy is often an adaptive physiological process in 

response to increases in cardiac workload, and is dynamically regulated, we speculate that in 

later life, markedly increased fibrosis, gap junction and cytoskeletal remodeling may occur in our 

mutant mice44.  
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2.4.4 Mutant mice are hypertensive and possess altered vasomotor 
responses  

Because the development of cardiac hypertrophy is often secondary to hypertension, tail-cuff 

blood pressure measurements were performed on all mutant mice. The hypertensive phenotype 

of Cx40 knockout has already been reported to be mediated by the renin-angiotensin-aldosterone 

system45. Previous findings of hypotension in an inducible model of selective Panx1 ablation 

from smooth muscle cells led to speculation that the combined ablation of Cx40/Panx1 would 

lead to a more normalized blood pressure36.  Surprisingly, it was found that, along with the Cx40-

/- mice, Panx1 global knockout mice had increased systolic and diastolic blood pressures whether 

mice were awake or anesthetized. Furthermore, hypertension in the double knockout was 

potentiated in awake mice by the combined ablation of Cx40 and Panx1. These results were 

intriguing and unexpected because not only do they point towards a role for Panx1 in blood 

pressure regulation, but also imply that Panx1 may protect the heart from hypertension-induced 

growth. However, since hypertension is a multifactorial disease and all mice used in this study 

were global knockouts, this raised questions as to where Panx1 was contributing to blood 

pressure regulation.  

Hypertension is due to many different factors, which cause alterations in peripheral resistance 

and cardiac output. Peripheral resistance is mediated by small arteries, whereas cardiac output is 

influenced by blood volume, and thus under renal control46.  As of yet the cause of hypertension 

in Panx1 global knockout mouse remains unknown but several possibilities exist.  Extensive 

research previously performed on resistance arteries in a mouse model in which Panx1 was 

selectively ablated from smooth muscle cells indicates that the hypertension observed in our 
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study is not due to increased vasoconstriction of the small arteries themselves but rather a 

consequence of system wide ablation of Panx1 19,36.  

The first possibility involves the participation of Panx1 in endothelium derived hyperpolarization 

factor relaxation. In fact, global Panx1-/- mice display increased resistance due to the blunted 

response of Panx1-/- mouse arterioles to muscarinic receptor agonist acetylcholine47. The second 

possibility involves Panx1 channels on erythrocytes releasing ATP during low blood pO2 to 

stimulate vasodilation. Without this feedback mechanism it is possible that peripheral resistance 

could be increased48.  A third regulatory mechanism that could be absent in Panx1-/- mice and 

govern its hypertension involves altered feedback between the carotid body and brainstem.  In 

short, it has been shown that type II cells in the carotid body propagate ATP released from Panx1 

channels onto afferent nerve terminals that synapse with cardiorespiratory centers in the 

brainstem for the regulation of blood pressure and respiratory rate49. In addition, Panx1 channels 

have been localized in both cortical and medullary tubule segments of the kidney and in the renal 

vasculature. Functionally little is known about the role of Panx1 in the renal system, however 

based on its similar localization profile to Cx30 within the apical collecting duct system, and its 

role in purinergic signaling, it has been previously hypothesized that Panx1 may play a role in 

pressure natriuresis, and that Panx1-/- mice might possess a salt retention phenotype50 and 

consequently hypertension. All in all because there is evidence that Panx1 plays such a diverse 

role in blood pressure regulation it is hard to speculate if one or all of the aforementioned factors 

as a conglomerate are producing the hypertensive phenotype found in the global knockout 

mouse, however selective ablation of Panx1 in these various organ systems using Cre-lox 

technology could help predict causation. We therefore postulate that Cx40 and Panx1 act either 

via similar or different mechanisms to induce hypertension in the double knockout mouse. 
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Another important consideration to address is why the hypertension found in Panx1-/- mice did 

not cause cardiac hypertrophy. More recently it has been suggested that hypertension associated 

left ventricular hypertrophy may not be due to pressure overload alone as large cohort studies 

show that only 50% of the variability in left ventricular mass can be explained by increased 

systolic pressure51. Recently neurohormonal factors that can exert trophic effects via cytokine 

and growth factor production, the NO-cGMP pathway, and genetic factors have come into the 

limelight for their suggested roles in the induction of hypertrophy52, 53. Therefore, these data 

suggest the presence of an unknown, unmeasured risk factor and implicate Panx1 in the 

regulation of cardiac hypertrophy.   

The endothelium also plays a critical role in maintaining normal physiology and is involved in 

the modulation of vascular tone through the balanced release of relaxing and contracting factors. 

In certain cardiovascular pathophysiologies such as hypertension this balance may be disrupted 

which leads to impairments in endothelium –mediated vasodilation and endothelial 

dysfunction54. Both Cx40 and Panx1 are primarily localized to endothelial cells in elastic arteries, 

are implicated in the regulation of arterial tone by acting as facilitators of vasodilation, and both 

Cx40 and Panx1 mutant mice have been found to possess a decreased vasodilatory response in 

conduit arteries55, 56, 57.  Our study demonstrated that the combined ablation of Cx40 and Panx1 

had an additive effect on the impairment of vasodilation but did not produce alterations in 

vasoconstriction. In fact, Cx40-/-Panx1-/- mouse aorta was found to possess severe endothelial 

dysfunction, characteristic of its minimal relaxation response to muscarinic receptor agonist 

MCh but unaltered response to endothelium independent vasodilator SNP. We postulate that the 

drastic decrease in vasodilation seen in the Cx40/Panx1 double knockout mouse is a combination 

of hypertension induced endothelial damage and the combined alteration of multiple 



77 

 

endothelium derived vasodilatory pathways most notably nitric oxide mediated signaling in the 

case of Cx4057 and endothelium-derived hyperpolarizing factor in regards to Panx1 ablation47.  

In summary we have engineered and characterized the first Cx/Panx global knockout mouse that 

was bred from mice lacking Cx40 or Panx1 that exhibited distinct cardiovascular phenotypes.  

Consistent with earlier reports, Cx40 knockout mice produced approximately normal litter sizes 

but exhibited pronounced cardiac hypertrophy accompanied by minimal fibrosis, yet no GJ or 

myofibril remodeling. These mice were hypertensive and displayed decreased vasodilatory 

responses to methacholine. Here, we present the first evidence that Panx1 mutant mice are 

hypertensive, and confirm that they have normal heart mass and decreased vasodilatory 

responses to muscarinic receptor agonists. Importantly, the combined ablation of Cx40 and 

Panx1 led to decreased pre- and postnatal litter sizes, increased hypertension, and severe 

endothelial dysfunction. However, in other cases the phenotype of the Cx40 null mouse closely 

mirrored the Cx40-/-Panx1-/- mouse including the cardiac hypertrophy. This suggests that even 

though Panx1 and Cx40 large-pore channels may act via differential mechanisms, they have a 

co-regulatory role in controlling vascular response.  
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2.6 Supplementary Figures 
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Figure 2-9 (Supplementary Figure 2.1) Masson's Trichrome staining and assessment of 

ECM proteins in the hearts of mutant mice. 

Light micrographs of Masson’s Trichrome staining in the left (A) atria and (B) ventricle of 3 

month old mice revealed minimal fibrosis in all mutant mice. Western blotting revealed that the 

levels of collagen I and fibronectin were similar in mouse lysates of (C) atria and (D) whole 

hearts (N=3). Bar = 40 μm. 
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Figure 2-10 (Supplementary Figure 2.2) Mutant mice remain hypertensive under 

anesthesia. 

 (A) Tail-cuff hypertension testing revealed that anesthetized mutant mice have significantly 

higher systolic and diastolic blood pressure than wild-type mice, showing that anxiety effects did 

not cause previously reported hypertensive phenotypes (N=4). (B) Mean heart rate is variable 

among all four genotypes due to differential metabolism (N=4). p<0.001. 
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Chapter 3  

3 General Overview 

3.1 Discussion and Conclusions  
The gap junction protein Cx40 has long been categorized as an integral large-pore channel in 

cardiovascular physiology, participating in cardiac1, vascular, and renal system function2. More 

recently however, the single membrane channel forming protein, Panx1, has also emerged as a 

participant in the maintenance of cardiovascular system physiology. In fact, recent reports 

highlight the overlapping roles of Cx40 and Panx1 within the heart as the ablation of both of 

these genes leads to an increased susceptibility to atrial fibrillation3, 14. Within the vasculature 

Panx1 has also emerged as an important player and is implicated in α1-adrenoreceptor mediated 

vasoconstriction4, EDHF mediated vasodilation5, blood pressure regulation6, and renal function7. 

As well both Cx40 gap junction channels and Panx1 large pore channels are similarly localized, 

and abundant in the atria of the heart and within the arteries3, 8, 9, 10. Therefore due to the 

overlapping roles of these channels in cardiovascular function and their similar localization 

profiles we hypothesize that the global ablation of these two large-pore channels would lead to 

an increasingly severe cardiovascular phenotype.   

To this end, we engineered and phenotyped the first global knockout mouse model lacking both a 

connexin and a pannexin channel, specifically Cx40 and Panx1. Since both of these channel 

proteins have been reported to function in similar cellular signaling events and system 

physiology we predicted that the double knockout mouse would have a reduced ability to 

survive3, 11, 12, 13. This prediction was found to be accurate as the combined ablation of 

Panx1/Cx40 caused increased prenatal and neonatal mortality irrespective of fertility. Double 

knockout mice that survived 3 days post-birth were found to be viable and live normal lifespans. 
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Mutant mice lacking Cx40 and Panx1 were also similar in weight to single knockout and wild-

type mice up to a year of age indicating a normal metabolism.  Interestingly, there is conflicting 

evidence on Cx40-/- mouse survival and a previous report describes mild increases in 

pre/postnatal death in this mutant mouse line14. Comparably, although our findings were not 

statistically significant Cx40 null mice had 22% fewer births and 10% newborn pup deaths 

compared to wild-type mice. Moreover, although this phenotype presented as minor in the single 

Cx40 knockout mouse its severity was increased when Cx40 and Panx1 channels were co-

ablated as less than half of the Cx40-/-Panx1-/- litter survived to 3 days post birth.  These results 

may indicate a co-regulatory role for Cx40 and Panx1 in the development of the maturing 

embryo. They may also point towards the dynamic regulation of Panx1 channels along with 

Cx40 in embryonic heart development15 as previous authors hypothesized that single Cx40-/- 

pre/postnatal mortality was due to inadequate propagation within the cardiac conduction system 

and improper septation during the establishment of pulmonary circulation14. The developmental 

regulation of Panx1 throughout various organ systems is not a new idea and has been previously 

reported in skin16 in keeping with our findings that Panx1 may be developmentally regulated 

within the heart. Future studies to be performed should include a more in depth time point 

analysis of the in utero death of both Cx40-/-Panx1-/- and single Cx40 and Panx1 knockout strains 

in order to ascertain if embryo death is occurring before or after cardiac development. As well q-

PCR analysis of Panx1 transcript within the murine heart throughout embryonic development 

would allow us to conclude whether or not Panx1 is up or down regulated during embryo 

maturation and whether this dynamic regulation might be similar to that of the Cx40 large-pore 

channel.  
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Cardiac hypertrophy is often a secondary risk factor associated with hypertension induced 

pressure overload of the heart17. Within this organ, the left ventricle is the region primarily 

affected and may be characterized by reactivation of the fetal gene program and subsequent 

cardiomyocyte enlargement18.  Pathologic alterations associated with cardiac hypertrophy such as 

increased organ mass have been previously characterized in the Cx40 knockout mouse14. Here, 

we observed increased heart mass in young and adult Cx40-/- mice and confirmed that it was true 

cardiac hypertrophy by showing that left ventricular cardiomyocytes were enlarged. Somewhat 

surprisingly, the Cx40-/-Panx1-/- mouse possessed similar increases in cardiomyocyte area and the 

phenotype was not found to be increasingly severe. These findings are consistent with the 

conclusion that the ablation of Cx40 leads to the hypertrophic phenotype found in the Cx40-/-

Panx1-/- mouse irrespective of Panx1 ablation.  Additionally, increased left atrial cardiomyocyte 

area was observed in Cx40 and Cx40/Panx1 null mice. Intriguingly, unlike in the ventricle 

increases in left atrial cell size have been associated with cardiac conduction system 

abnormalities and the increased prevalence of atrial fibrillation19, which is curious since both 

Cx40-/- and Panx1-/- mice are increasingly susceptible to atrial arrhythmias3, 14.  

Cardiac hypertrophy is often accompanied by myocardial remodeling which may lead to 

arrhythmias, and subsequent heart failure20. Increased interstitial fibrosis, gap junction 

lateralization, and actin remodeling are all characteristic of this pathological process21. In our 

study this process had yet to be observed in the 3-month-old mice used here. To expand on these 

findings interstitial fibrosis due to excess ECM deposition was only minimally detected by 

Masson’s trichrome staining and there was no significant changes in collagen 1 or fibronectin in 

both the left atria and ventricle of all mice. This suggests that mutant mouse hearts were not 

particularly fibrotic. Similarly, the intercalated disc integrity and distribution of the gap junction 
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protein Cx43 and adherens protein N-cadherin was unaltered in mutant mice, and myofibril 

arrangement was not affected. Taken together these findings indicate that the cardiac 

hypertrophy found in single Cx40 and double Cx40/Panx1 knockout mice has not yet led to 

myocardial remodeling in these young adult aged mice. However because hypertrophy is often 

an adaptive physiological process in response to increased cardiac workload, and is plastic, we 

speculate that as Cx40-/- and Cx40-/-Panx1-/- mice age increases in fibrosis, and gap junction and 

cytoskeletal remodeling are likely to occur and therefore this phenomenon may be worthy of 

further investigation22.  

It has been documented that the ablation of one connexin may cause the down regulation of 

another family member23. The opposite has been found to be true for pannexins in the smooth 

muscle24. Recent reports have shown that when Panx1 is ablated Panx3 displays compensatory 

upregulation in smooth muscle cells24. Thus the assessment of levels and localization of the GJ 

protein Cx43 acted twofold, not only to confirm intercalated disc integrity, but also to ensure that 

this junctional protein had not been up or down regulated by the knockout of Cx40 and/or Panx1. 

Similarly, the profile of the GJ protein Cx40 was unchanged in wild-type and Panx1 null mice 

indicating that Cx40 and Panx1 do not act in a co-regulatory fashion.  An interesting follow up 

study would be to assess for Panx3 upregulation in the heart as this has yet to be done, and to 

characterize the aorta of the Cx40/Panx1 single knockouts and the double knockout mouse to 

ensure pannexin and connexins protein levels are unaltered.  

Due to previously published research describing the RAAS mediated hypertensive phenotype of 

the Cx40-/- mouse25 and the slightly hypotensive phenotype of smooth muscle specific Panx1-/- 

mice5, we postulated that Cx40/Panx1 co-ablation would have a normalizing effect on blood 

pressure. Therefore we performed tail-cuff blood pressure measurements on wild-type and 
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mutant mice and intriguingly not only was the Cx40-/- mouse found to be hypertensive but the 

Panx1-/- mouse possessed this phenotype as well.  Moreover the combined deletion of Cx40 and 

Panx1 created a double null mouse with a severely hypertensive phenotype. Although surprising 

these results were very interesting as they highlighted two key concepts; that Panx1 may play a 

role in blood pressure regulation irrespective of its function in smooth muscle cells, and that it 

may also play a protective role against the induction of cardiac hypertrophy.  

Hypertension is a multifactorial disease stemming from pathologies that provoke alterations in 

peripheral resistance and cardiac output26.  Because the Panx1 mutant mouse is a global knockout 

model it is hard to pinpoint the exact cause of its hypertensive phenotype however we can 

speculate here. Due to the widespread characterization of the small resistance arteries of a mouse 

in which Panx1 was selectively ablated from smooth muscle cells it is clear that the hypertensive 

phenotype found in the global Panx1-/- mouse is not due to increased arterial resistance but rather 

an effect of systemic knockout4, 5. Regulatory mechanisms that may be contributing to this 

phenomenon will be briefly delineated here, as they were previously discussed at some length in 

the introductory chapter.  There are two mechanisms linked to increased peripheral resistance 

that have been associated with Panx1 channel function. The first involves the stimulation of 

vasodilation during low oxygen conditions by the release of ATP from Panx1 channels located 

on erythrocytes27. The second mechanism involves Panx1 channels acting in feed-back 

regulation between the carotid body and brainstem for the regulation of arterial pressure28. 

Another factor that could contribute to increased arterial resistance in Panx1-/- mice is their 

blunted vasodilatory response to muscarinic agonists as shown previously29, and found in our 

current study. Moreover, Panx1 channels have been implicated in cardiac output changes due to 

their hypothesized role in pressure natriuresis and salt retention30. To summate Panx1 may play a 
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role in blood pressure regulation by modulating the aforementioned mechanisms either 

individually or together which is producing the hypertensive phenotype found in our global 

Panx1-/- mouse.  

The troubles in ascribing a specific mechanism to the increased blood pressure found in the 

Panx1-/- mouse emphasizes the drawbacks of the global ablation of a ubiquitous protein involved 

in many physiological responses. With new Cre-lox technology the selective ablation of Panx1 in 

relevant organs, such as the kidney, could help predict causality. To add, the Panx1 gene has yet 

to be selectively deleted from the kidney so this mouse model would not only be relevant to the 

study of hypertension in these animals, but also to help define the roles of Panx1 in renal 

physiology. An additional follow up study that could help shed some light on this phenomenon, 

without the involved process of creating a new transgenic mouse line would be to assess the 

levels of renin, angiotensin, and aldosterone in the plasma of the Panx1-/- mice. Kidneys could 

also be harvested, sectioned, stained and assessed for general structural characteristic such as 

nephron number, atrophy, and cell death.  

Another important consideration when addressing the results of the tail-cuff hypertension testing 

is the sophistication and sensitivity of the technique itself. Tail cuff testing is an indirect blood 

pressure monitoring technique that uses various sensing modalities to detect changes in blood 

flow during cuff occlusion31. Advantages in using this approach include: the non-invasiveness of 

the technique dissuading from costly and time-consuming surgical methods, the ability to 

perform repeat measures over a longer time-frame, the animals remain conscious, and the ability 

to perform measurements on large cohorts of animals32. It is said to be an optimal technique 

when trying to detect large changes in systolic/diastolic pressures33. Two main disadvantages of 

tail cuff blood pressure monitoring are the small sampling period which is measured and that it 
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may act as an acute system stressor34, 35. Many researchers have postulated that since tail cuff 

only measures a minute period of the circadian cycle and does not reflect changes in both day 

and night cycles it is not an accurate measure to obtain an average blood pressure34. As well, due 

to the fact that rodents are nocturnal, obtaining blood pressure values when they are most active 

may be of vital importance to the study34. A second caveat to the tail cuff blood-pressure 

monitoring system is that restraint induces acute stress in rodents, which may affect short-term 

pressure measurements35. In fact several studies have found that restraint stress causes acutely 

elevated blood-pressure and increased stress hormone production35, 36. In our study to circumvent 

this issue mice were given a 2-week acclimatization period in which they were conditioned to the 

CODA system. As well, tail-cuff blood pressure measurements were performed on anesthetized 

mice to rule-out acute stress and anxiety affects and all three mutant mouse lines remained 

hypertensive compared to wild-type. Furthermore, in order to validate our system for measuring 

blood pressure, a previous study was performed in which tail cuff blood-pressure measurements 

taken on the CODA system were compared to radiotelemetry measurements and found to be 

nearly identical37.  In the future radiotelemetric studies could be performed on our mutant mice to 

assess their blood pressure throughout the full length of the circadian cycle.  

Interestingly, although the Panx1 null mice presented with hypertension they did not show 

concomitant cardiac hypertrophy as was observed in Cx40-/- and Cx40-/-Panx1-/- mice. This 

finding although intriguing, is not entirely unique. In the human population a multitude of studies 

show that only half of the variability in left ventricular mass can be attributed to increased blood 

pressure (as reviewed by Katholi)38.  To try and elucidate alternative causes for the induction of 

cardiac hypertrophy genetic factors, the NO/cGMP pathway and neurohormones have been 

investigated and found to play a role in hypertrophic growth39, 40. Therefore our findings in the 
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Panx1-/- mouse model show that this large-pore channel may play a previously unknown role in 

the development of cardiac hypertrophy.  

Within blood vessels the endothelium is highly involved in the regulation of vascular tone by 

modulating contractile responses and mediating the release of vasodilators41. This balance is 

often disrupted secondary to hypertension leading to endothelial dysfunction and deficits in 

endothelium-mediated vasodilation41. As previously noted in the introductory chapter both Cx40 

and Panx1 large-pore channels influence vascular tone in elastic arteries by modulating 

vasodilatory responses, and Cx40-/- and Panx1-/- mice have been shown to possess blunted 

vasodilatory responses to muscarinic receptor agonists 42, 43, 44. As well, since both of these 

channel proteins are localized to endothelial cells in larger arteries, we hypothesized that the 

combined ablation of Cx40 and Panx1 would lead to a severe loss of endothelial function45, 46. 

Consistent with this notion our experimental results demonstrate that the concomitant ablation of 

Cx40 and Panx1 in our double knockout mouse model had a cumulative effect on vasodilatory 

responses and creating an increasingly blunted response. The minimal vasodilatory response in 

the aorta of double null mice to the muscarinic agonist MCh was not mimicked when an 

endothelium independent vasodilator was applied, indicating that these mice possess severe 

endothelial dysfunction. Due to its severity we speculate that the endothelial damage seen in the 

Cx40-/-Panx1-/- mouse is due to a combination of the down regulation of vasodilatory pathways 

regulated by Cx40 and Panx1, namely NO and EDHF mediated vasodilation, and hypertension 

damage29, 44.  

In conclusion this research contributed several distinct and unique findings to the gap junction 

and pannexin fields. We engineered the first ever connexin/pannexin global knockout mouse 

from Cx40 and Panx1 single knockout animals and characterized this novel model for overt 
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phenotypes. This characterization revealed Cx40-/-Panx1-/- mice that did survive past day 3, had 

normal weights, and were fertile. Single Cx40-/- mice exhibited previous reported phenotypes 

including cardiac hypertrophy, hypertension, and blunted vasodilatory responses. Interestingly, 

within the Cx40 null heart cardiac hypertrophy had not yet led to myocardial remodeling. 

Similarly, it was confirmed that Panx1 null mice possess normal heart size and decreased 

vasodilatory responses to muscarinic agonists. Remarkably global Panxl knockout mice were 

discovered to be hypertensive, a finding which has been previously unreported in the literature.  

As well, the combined ablation of Cx40 and Panx1 was found to lead to increased embryonic 

and neonatal mortality, severe hypertension, and augmented endothelial dysfunction.  Therefore 

the results found in this thesis suggest that Panx1 and Cx40 large pore channels have co-

regulatory roles in certain physiological processes including embryonic and neonate survival, 

hypertension, and vascular responses.  
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