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Abstract

In the first part of this thesis, a noncommutative analogue of Gross’ logarithmic Sobolev
inequality for the noncommutative 2-torus is investigated. More precisely, Weissler’s re-
sult on the logarithmic Sobolev inequality for the unit circle is used to propose that the
logarithmic Sobolev inequality for a positive element a = ) a,, ,U™V™ of the noncom-
mutative 2-torus should be of the form

7(a*loga) < Z (|m| + [n])|@mn)® + 7(a?) log(7(a®))"?,

(m,n)€Z2

where 7 is the normalized positive faithful trace of the noncommutative 2-torus. A
possible approach to prove this inequality for arbitrary positive elements will involve a
noncommutative multinomial expansion and seems to be exceedingly complicated. In
this thesis the above inequality is proved for a particular class of elements of the non-
commutative 2-torus.

In the second part of this thesis, the scalar curvature of the curved noncommutative
3-torus is studied. In fact, the standard volume form on the noncommutative 3-torus
is conformally perturbed and the corresponding perturbed Laplacian is analyzed. Then
using Connes’ pseudodifferential calculus for the noncommutative 3-torus, the first three
terms of the small time heat kernel expansion for the perturbed Laplacian are derived.
Moreover, by using the third term of this expansion and the Cauchy integral formula,
the scalar curvature of the curved noncommutative 3-torus is defined. Finally, proving
a rearrangement lemma, the scalar curvature is computed and an explicit local formula
that describes the curvature in terms of the conformal factor is given.

Keywords: Logarithmic Sobolev inequality, Noncommutative 2-torus, Scalar curva-
ture, Noncommutative 3-torus, Conformal perturbation, Modular operator, Pseudodif-
ferential calculus, Asymptotic expansion, Laplace operator, Spectral triples, Rearrange-
ment.
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Chapter 1

Introduction

The field of noncommutative geometry was introduced by Alain Connes in the 1980’s
[1.1], and since then it has grown very quickly. Noncommutative geometry is based on
the idea that one can study the geometric or topological properties of a space by looking
at the function algebras (which are commutative) on that space. Exploiting this idea
one can relax the commutativity condition and define noncommutative spaces through
noncommutative algebras.

In this chapter we will briefly recall some of the ideas of noncommutative geometry,
through certain examples. For more details and advanced discussion one can see [1.2],
[1.9] and [1.11].

1.1 Noncommutative Topology

The roots of noncommutative geometry can be seen in the seminal work [1.8] of Gelfand
and Naimark, where the theory of C*-algebras was born. In this section we explain how
that work helps us define noncommutative locally compact topological spaces.

Definition 1.1.1. A complete normed algebra A over C is called a C*-algebra if
(i) [|abl] < llallf|b]] for a,b € A,

(ii) There is an involution, i.e. a conjugate linear map
x: A— A  a—a’,

such that (a*)* = a and (ab)* = b*a*,
(iii) ||a*al] = ||al|* for a € A.

Let H be a Hilbert space and T be a linear map on H. The operator norm of T is
defined by
1T = sup {||T'(2)]| - =€ H,[lxf| <1}.

If ||T']] < oo, then T is called a bounded operator. We denote the space of all bounded
linear operators on H by B(H). As an example of a C*-algebra, we can consider B(H)
endowed with the operator norm and the involution defined by the adjoints of operators.
Indeed, by a famous theorem known as the Gelfand-Naimark-Segal (GNS) theorem we
know that every C*-algebra can be embedded in B(H) for some Hilbert space H [1.8].



Let X be a locally compact Hausdorff space. A function f on X is said to be vanishing
at infinity if for every e > 0 there exists a compact set K C X such that for x € X \ K,
| flloo < €, where ||.||o is the uniform norm, i.e.

[flle = sup{[f(z)] : = € X}.

The space of all continuous functions on X vanishing at infinity forms an algebra
under the pointwise addition and multiplication. This algebra, which is denoted by
Co(X), endowed with the uniform norm and the involution defined by

x:Co(X) — Co(X), f=Ff

is a commutative C*-algebra. We will see soon that these C*-algebras are the only
commutative C*-algebras up to isomorphism.

For the C*-algebras A and B, the homomorphism ¢ : A — B is called a C*-
homomorphism, if it preserves the involution, i.e. for a € A,

A character of a C*-algebra A by definition is a nonzero multiplicative linear map
x : A — C. The set of all characters of such an algebra is called the spectrum of that
algebra and is denoted by A. For a commutative C*-algebra A, it can be shown that A
is a locally compact Hausdorff space with respect to the weak* topology which is indeed
the topology of pointwise convergence on the continuous dual space of A. The space A
is compact if and only if A is unital (see Theorem 1.3.5 in [1.12]). The next theorem
implies that there exists a unique commutative C*-algebra with a given spectrum up to
isomorphism.

Theorem 1.1.2. (Gelfand-Naimark Theorem). Let A be a commutative C*-algebra and
I' be the Gelfand transform, i.e. the linear map

~

' A— Cy(A), aw—a,
where @ is defined by a(h) = h(a) for h € A. Then T is an isometric C*-isomorphism.

Proof. See Theorem 1.31 in [1.7]. O

As we stated earlier, for a locally compact Hausdorff space X, Cy(X) is a commutative
C*-algebra. For x € X, we define a character x, by

The next theorem states that indeed all of the characters of Cy(X) are of this form.

Theorem 1.1.3. Let X be a locally compact Hausdorff space. Then the map

—

F: X — CyX), z~ Xa

18 a homeomorphism.



Proof. See Proposition 4.5 in [1.15]. O

Using the last two theorems we see that there is an equivalence between the category
of commutative C*-algebras and the opposite of the category of locally compact Hausdorff
spaces. In fact, the locally compact Hausdorff space associated to the commutative C*-
algebra A is A, and the C*-algebra associated to the locally compact Hausdorff space X
is OO (X)

Now we are at the point that we can define a noncommutative locally compact Haus-
dorff space. Indeed, it suffices to drop the commutativity condition. Therefore, we define
a noncommutative locally compact Hausdorff space to be a not necessarily commutative
C*-algebra. Clearly, if X is a compact space then Cy(X) is a unital C*-algebra and vice
versa. Accordingly, one can add more correspondences and form the following table:

locally compact Hausdorff space X | Cy(X)

compact Hausdorff space X unital C*-algebra C'(X)
one point compactification of X unitization of Cp(X)
Stone-Cech compactification of X | multiplier algebra of Cy(X)

Using this table we can also define new noncommutative spaces and processes and create
another table:

noncommutative locally compact Hausdorff space | C*-algebra A
noncommutative compact Hausdorff space unital C*-algebra A
one point compactification unitization of A
Stone-Cech compactification multiplier algebra of A

The next step is defining the noncommutative vector bundles. To define them we use
Swan’s theorem |[1.14], which states that there is a one-to-one correspondence between
vector bundles over a compact Hausdorff space X and finite projective C'(X)-modules.
Thus a finite projective A-module is called a noncommutative vector bundle over the
noncommutative compact space A.

1.2 Noncommutative Measure Theory

In this section we will use a theorem that characterizes commutative von Neumann
algebras to define noncommutative measure spaces.

Let H be a Hilbert space. The weak operator topology on B(H) is the topology
generated by the semi norms

IT)oy = 1(Tz,y)| =,y € H,
where (-, -) is the inner product on H.

Definition 1.2.1. Let H be a Hilbert space. A von Neumann algebra is a x-subalgebra
of B(H) which is closed in the weak operator topology.



Since the weak operator topology is weaker than the operator norm topology, any von
Neumann algebra is a C*-algebra.

Let X be a locally compact space and p be a positive Radon measure on X. One can
show that the following map

T LX) — B(LA(X,p), o= M,

is an injective map, where M, is the multiplication operator by ¢, i.e. for f € L*(X, u),
M,(f) = fe. Moreover, the range of the map 7 is a von Neumann algebra. The next
theorem states that indeed all of commutative von Neumann algebras are of this form.

Theorem 1.2.2. Let A be a commutative von Neumann algebra. Then there exist a
locally compact space X and a positive Radon measure p on it such that A, as an algebra,
is isomorphic to L>(X, ).

Proof. See Theorem 1.18 in [1.15]. O

The previous theorem leads us to call a not necessarily commutative von Neumann
algebra a noncommutative measure space.

1.3 The Noncommutative 2-Torus

One of the most famous examples of the noncommutative spaces is the noncommutative
2-torus. In fact, one can think of it as a noncommutative manifold of dimension two. This
space is a play ground for testing many interesting ideas, concepts and structures that
come to the mind in the noncommutative settings, and fortunately, most of them have
been proved to be a justifiable generalization of the commutative case. In this section we
shall briefly introduce the noncommutative two torus and see some of its properties. We
will start with the definition of the rotation algebras following M. A. Rieffel in [1.13].

Definition 1.3.1. Let # € R. The universal unital C*-algebra generated by two unitaries
U,V such that .
UV =™V,

is called a rotation algebra and is denoted by Ay.

By universality we mean that for any C*-algebra B with unitaries v and v, subject to
the relation uv = e*™yu, there exists a unique unital C*-morphism from A, to B that
sends U to u and V to v.

In the purely algebraic case we know that one can always find an algebra generated
by a set of generators and relations, while in the C*-algebra settings we have to also
check the C*-indentity. As a result, some times there is no such a universal C*-algebra.
Fortunately, in the case of the rotation algebras, there exists a solution to the universal
property. Indeed, one can represent Ay on L?(T), where T is the unit circle.

More precisely, we define the unitary operators U and V on L*(T) by

Uf(x) =™ f(z), Vf(z)=flx+0), feLT).



These operators satisfy the relation UV = eV . One can show that the C*-algebra
generated by U and V in B(L?(T)) satisfies the universal property (See [1.9], Proposition
12.1).

Let

Ay = Z A U™ V"™ ¢ @y, 1s rapidly decreasing
(m,n)eZ?

By rapidly decreasing we mean for all £ € N,

Sup (1 +m?+n?k|am.* < oc. (1.1)
(m,n)eZ?

The set Ag° is a dense subalgebra of Ay and is called the noncommutative 2-torus.
For 6§ = 0, the commutation relation is UV = VU, so Ay would be commutative. If
we set U and V to be functions on the 2-torus T?, defined by

U(¢17 ¢2) = 627m¢17 V(¢17 ¢2) = €2ﬂi¢27

where (@1, ¢2) is the angular coordinate for T2, then one can see that Ay is C'(T?), the
algebra of continuous functions on the 2-torus. Moreover, in this case the condition (1.1)
is exactly the same condition on the Fourier coefficients of the smooth functions on T2
Therefore, Ay and A$° are respectively the noncommutative deformations of C'(T?) and
C>(T?), and this justifies the name noncommutative 2-torus. In what follows we state
some facts about Ay and Ag°. For the proof of these facts see Sections 12.3 and 12.4 in
[1.9].

The algebra Ag° possesses two derivations, i.e. linear maps 0; : Ay° — Ag° for
1= 1,2, such that

di(ab) = 6;(a)b+ ad;(b),  a,be AF.

These derivations are defined by the following relations:
0n(U) = 2mil, 5 (V) =0,

(52(‘/) = 27rz'V, (52(U) = 0.
Using the derivation property, one can see that for a = Y a,,  , U™V" € AP,

01(a) = 2mi Z My, U™V, do(a) = 2mi Z Ny, U™V,

The last formulas are similar to the partial derivatives of a Fourier series on T?. Therefore,
we can think of §; and dy as the noncommutative partial derivatives of the elements in
A

For § € R\ Q, the rotation algebra Ay has a unique normalized positive faithful trace,
i.e. a linear functional 7 : Ay — C with the following properties:

(i) 7(ab) = 7(ba) a,b € Ay,

(ii) 7(a*a) >0  a #0,

(iii) 7(1) = 1.
This trace extracts the constant term of the elements in A3°, i.e. 7(a) = agp where



a=>Y an,UMV" € ApP. Indeed, this trace plays the role of integration and satisfies a
kind of integration by parts identity:

7(6;(a)b) = —7(ad;(b)), a,be AyF, i=12.

As we mentioned earlier, many ideas and structures have been tested and proved to
be reasonable on the noncommutative 2-torus. In addition to what we have discussed
so far, we can also mention a few more items. For example, A. Connes introduced a
pseudodifferential calculus on the noncommutative 2-torus in [1.1] which is indeed the
cornerstone for the noncommutative geometry. Moreover, A. Connes and P. Tretkoff
proved a noncommutative Gauss-Bonnet theorem on the ncommutative 2-torus [1.4].
This theorem was extended to all conformal classes of metrics by M. Khalkhali and F.
Fathizadeh [1.5]. It took three decades until the first purely geometric concept in the
noncommutative settings was born. In fact, the scalar curvature of the noncommutative
2-torus was introduced and computed by A. Connes and H. Moscovici in [1.3], and
independently by M. Khalkhali and F. Fathizadeh in [1.6].

One can also define a noncommutative n-torus. Indeed, the approach is the same
as the case of 2-torus. In this case we need n unitaries subject to some commutation
relations. We will work with the noncommutative 3-torus in Chapter 4.

1.4 Organization of the Thesis

In this thesis we do analysis and geometry on the noncommutative tori. In Chapter
2 we will gather the prerequisites needed in the thesis. Indeed, we will first introduce
Sobolev spaces and a family of Sobolev type inequalities. Then the logarithmic Sobolev
inequality [1.10] will be discussed. Moreover, the spin structure and the Dirac operator
will be introduced. Finally, we shall briefly introduce the notion of a noncommutative
Riemannian spin manifold, by defining spectral triples.

In Chapter 3, using a version of the logarithmic Sobolev inequality on the unit circle,
introduced by Weissler [1.16], we will state a conjecture concerning a possible logarithmic
Sobolev inequality on the noncommutative 2-torus. The conjecture states that for a

positive element a = > a,,,U™V" of the noncommutative 2-torus we have
(m,n)€z?

r(a*loga) < Y (Im| + [nl)lamnal* + llal3 log lall2,

(m,n)€Z?

where ||al|3 = 7(a*a). We will prove this conjecture for a certain class of elements in the
noncommutative 2-torus. Finally, in the last section of the chapter, we will show what
we can do towards proving the conjecture for an arbitrary positive element and what the
obstructions are.

In Chapter 4 we will use the ideas of [1.3|, [1.4], [1.5] and [1.6] to define and com-
pute the scalar curvature of the noncommutative 3-torus with a conformally perturbed
metric. This is the first odd dimensional case among the noncommutative tori that have
been studied so far. First, we will introduce the noncommutative 3-torus and then we



shall study the different classes of conformally perturbed metrics on the noncommutative
3-torus. Moreover, Connes’ pseudodifferential calculus on the noncommutative 3-torus
will be introduced and using that we will define the scalar curvature of the noncommu-
tative 3-torus. The main part of Chapter 4 will be dedicated to the computation of the
scalar curvature. A version of the original rearrangement lemma in [1.3] is needed in the
computations. So we shall manipulate the proof of that lemma and will prove a slightly
different version using exactly the same method. Finally, we will give the formula for the
scalar curvature of the noncommutative 3-torus with a conformally perturbed metric.
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Chapter 2

Preliminaries

2.1 The Logarithmic Sobolev Inequality

In this section we will first introduce Sobolev spaces and Sobolev inequalities. Then the
logarithmic Sobolev inequality will be discussed. The main reference of this section is
[2.1]. Throughout this section we shall use the Lebesgue measure on R" unless explicitly
stated otherwise.

Let I = (a,b) be an open interval in R and ¢ be a differentiable function on R such
that ¢(a) = ¢(b) = 0. Then using integration by parts, for a differentiable function u,
we get

b b
/ w(x)d (z)de = —/ u(z) ¢(x)dx.
This motivates us to define a wider class of differentiable functions, namely weakly dif-
ferentiable functions.

Definition 2.1.1. Let I = (a,b) and 1 < p < oo. The Sobolev space WP(I) is defined
to be

Whe(I) = {u € LP(I): 3g € LP(I) such that/ugb’: —/ggzﬁ Vo € Ccl([)}
I I

An element u € WHP(I) is called weakly differentiable with derivative in LP(I). It
can be shown that the function g in the definition is unique a.e.. We call g the weak
derivative of u. For example, the function u(z) = |z| on I = (—1,1) is an element of
WhP(T) for 1 < p < oo and its weak derivative is v’ = g, where

(z) = 1 O<ax<xl
I =121 “1<z<0”

We can immediately generalize the last definition to the domains in R™ and also to
the higher order derivatives. First we generalize it to the domains in R"™.

Definition 2.1.2. Let 2 C R" be an open set and 1 < p < oco. The Sobolev space

WhP(Q) is defined to be
391,92, -+, gn € LP(2) such that
Lp — P . O
W) UEL(Q)‘fQuaz—f:—ngiqb Vo e CX(Q) Vi=1,2,...,n

10



Moreover, for u € W1P(Q), we define gu = g;. The weak gradient of u is also defined
i

by

ou Ou ou )

Oxy’ Oxg’ 7 Oxy”

vu = gradu = (

The Sobolev space W1?(Q) is a normed space with the norm defined by

n
lllwrs = el + 3 122
v g i=1 Ox; "

where ||.|[, is the LP? norm. Now we define the higher order weak derivatives.

Definition 2.1.3. Let {2 C R™ be an open set and 1 < p < co. For an integer m > 2,
the Sobolev space W™P(€) is defined to be

ou
6@

W™P(Q) = {u c W hr(Q) e W™ hP(Q) Vi=1,2,... n} :

or equivalently

: o ,
WmP(Q) = {u e LP(Q) Vo with |a| < m,dg, € LP(2) such that} |

C JouD6 = (=1l [ 900 Vo € CZ(Q)

where a = (ay,qq,...,0qp,) is a mulli indez, i.e. an ordered m-tuple of nonnegative
integers, and
) 0o Om
Db — ay s am
6= (o) () ()

Accordingly, we set D*u = g, and define a norm on W™?(Q)) by

lullwmo =Y D%l

0<]a|<m

Proposition 2.1.1. Let 2 C R™ be an open set, m be a nonnegative integer and 1 <
p < 0o. The Sobolev space W"?(Q) is a Banach space with respect to the norm ||.||ym.r.

Proof. See Proposition 9.1 of [2.1] for m = 1. O

Now we turn to the classic Sobolev inequalities. In what follows we introduce a family
of inequalities known as Sobolev inequalities. A prototype of a Sobolev inequality is the
following inequality which is also known as Sobolev embedding.

Theorem 2.1.4. Let I = (a,b) be a open interval in R. There exists a constant C' such
that for uw € WHP(I) and for 1 < p < oo,

|| ooy < Cllullwre-

Proof. See Theorem 8.8 in [2.1]. O

11



The last theorem implies that one can embed W'?(I) by a continuous injection in
L>(1I). Although this result is not valid for the dimensions higher than one, still we can
embed WHP(Q) in LP () for some p* € (p,o0), by a continuous injection. The next
inequality which is called Sobolev, Gagliardo, Nirenberg inequality does the job.

Theorem 2.1.5. Let n be a positive integer and 1 < p < n. Also let p* be defined by
1 1 1

— = — — —. There exists a constant Cy,, such that for every u € WH(R"),

p p n

[|u pr S Cp,n” Vu”p'

Proof. See Theorem 9.9 in [2.1]. O

To set the stage for the next inequality we need to introduce a new notation. For an
open set @ C R” and 1 < p < oo, we denote by W, () the closure in WP(Q) of C}(Q),
the space of continuously differentiable functions on 2 with compact supports. The next
theorem states the Poincaré inequality.

Theorem 2.1.6. Let 2 be a bounded open set in R™ and 1 < p < oo. There exists a
constant C' such that for every u € Wy (Q),

[ull o) < Cll v ull o).
The constant C' depends on p and ).

Proof. See Proposition 9.18 and Corollary 9.19 in [2.1]. O

To move toward the logarithmic Sobolev inequality and justify its name we need to
introduce Orlicz spaces. The first step to define these spaces is defining N- functions.

Definition 2.1.7. A strictly increasing continuous function ¥ : [0,00) — [0, 00) is
called an N -function if
(a) U is convex, i.e. for s, > 0and 0 < A < 1,

v(t)

t
(b) limt_m T =0 and hmt_mo T o0,

(©) v(t)

For example, the following functions are N-functions:

T+ (1= N)s) < AT(E) + (1 — A)T(s),

is increasing.

U(t) =tP for 1 <p< oo,

U(t)=e —t—1,
U(t) =t*Int.

Now we can define Orlicz spaces.

12



Definition 2.1.8. Let 2 be an open set in R", i be a o-finite measure on 2 and ¥ be an
N-function. The linear span of the set of all equivalence classes of measurable functions
f Q2 :— C modulo equality a.e. such that

/Q Y| (2))) dyu(z) < oo,

is denoted by Ly (€2, 1) and is called an Orlicz space.

For example, for 1 < p < oo, LP(€2, \) is an Orlicz space associated to the function
U(t) = tP, where A represents the Lebesgue measure.

Finally, in the next theorem we have Gross’ logarithmic Sobolev inequality. For the
proof of that see [2.7].

Theorem 2.1.9. Let v be the Gaussian measure on R", i.e.

e
dV(l') = We Iz /QdCC,

where dx is the Lebesgue measure. Then for a smooth function f,

f(@)[* | f ()] dv(z) < /]R V£ ()" dv(x) + || £113 1 | £]]2,

R”
where ||.||s is the L*-norm with respect to the Gaussian measure.

The last theorem implies that if f and s/ f are in L?(v), then f is in the Orlicz space
Ly (v), where ¥(t) = t?*Int. So we can think of this inequality as a logarithmic version
of the Sobolev inequalities.

2.2 Pseudodifferential Operators and Asymptotic Ex-
pansion of the Heat Kernel

In this section we will briefly introduce the theory of pseudodifferential operators and
then we shall explain how this theory helps one find an asymptotic expansion of the heat
kernel. Indeed, we will gather the necessary material for Chapter 4. The main reference
of this section is [2.5].

First we need to fix some notation. Let o = (aq,ag, ..., a,,) be a multi index, and
x = (x1,T9,...,2,) € R™. We define

lal = a1 +ag+ -+ + ap,

al = arlag! -+ - ay!,
and
= aftey? - anm.
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We also define the following operators on C*>°(R™), the space of the smooth functions on

R™: P 5 5

a_ (A yar( P2 yaz o DM yam
di = (3x1 8x2) (9xm) ’
Dy = (—i)ldg.

Now with the notations defined above we can define a differential operator on C*°(R™).

a1

Definition 2.2.1. Let d be a nonnegative integer. A differential operator P of order d
is defined by

P=p,D)= Y au(@)DL,

laf<d

where a,, is a smooth function on R™. The symbol 0 P = p of this operator is also defined
to be the polynomial

P =p(,6) = 3 aa(2)E

la|<d

where £ € R™.

The leading symbol of P is a homogeneous polynomial in £ defined by

oL P(x,€) = ) an(z)E.

|a|=d

Definition 2.2.2. A smooth function f on R™ is called a Schwartz class function if all
its derivatives decrease at oo faster than the inverse of any polynomial i.e. for any multi
indices o and 3, there exists a constant C, g such that

’anff(-fE)‘ < Ca,/)’,

or equivalently for any multi index a and any nonnegative integer n, there exists a
constant C, , such that
D3 f(x)] < Cra(l 4 [2])7"

The set of all Schwartz class functions is denoted by S.

Let f € S and f be the Fourier transform of f, i.e.

f(6) = / e f(2)da,

Then one can show that R o
DEf(E) = (1)l (aaf)(€)

and

~ —

£ f(&) = (D))

Using the latter, if we apply the Fourier inversion formula
o) = fl-o) = [ =< fepe
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to Pf, we get

Pf(x) = /6”"519(% ) f(€)de = /6i($‘y)'€p(fr,§)f(y)dydf7 (2.1)
where P is the differential operator with the symbol

p(x,) = aa(w)E™

laf<d

In (2.1) even if we replace the polynomial p(z,§) with a function possessing some nice
properties that control the growth rate of the function and its derivatives, still we get a
well defined operator from S to §. This leads to defining the pseudodifferential operators.

Definition 2.2.3. Let p(z,€) be a smooth complex valued function on R™ x R™ that
has compact z support and let d € R. Then p(x,§) is called a symbol of order d if for all
pairs (o, #) of multi indices there exist constants C, g such that

| DD, p(w,€)| < Cap(1+ 1€,

The set of all symbols of order d is denoted by S¢.

We can associate an operator P(z, D) : S — S to a symbol p(x,£) € S¢. Indeed, a
pseudodifferential operator of order d with symbol p(z,£) is defined by

Pl D)(f)w) = [ e*pla 7€) = [ (.0 f(y)dyds.
For example, if f is a smooth function with compact support, then

p(x, &) = fx)(1+[EH)*?

is a symbol of order d.
We also define

= (5
deR
The elements of ST are called smoothing symbols. The symbols p,q are said to be
equivalent if p —q € S7°°. We denote this relation by p ~ ¢. Let d; be a sequence in
R such that dj — —oo and p; € S%, for j € N. Then we say the symbol p has the
asymptotic expansion Z;’;l p; and we write p ~ Zj’;l pj, if for each d there exists an
integer k4, such that p — 2?21 p;j € S% for all k > k4. Now in the next proposition we
will see that the space of symbols modulo the smoothing symbols is an algebra.

Proposition 2.2.1. Let P,(Q be pseudodifferential operators with the symbols p, q re-
spectively. Then P() is a pseudodifferential operator with a symbol which is asymptoti-
cally given by

Q) ~ > dgp- Dig/al
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Proof. See [2.5]. O

Since we are going to introduce the pseudodifferential operators on compact manifolds,
we need to restrict the domain of the pseudodifferential operators. Let U be an open set
in R™ with compact closure. Moreover, assume U includes the x support of p(z, &) € S%.
If we restrict the domain of P to C°(U), clearly the range is also in C'°(U), where
C>*(U) is the space of all smooth functions on U with compact support. We define
U, (U) to be the space of all pseudodifferential operators P : C°(U) — C°(U) of order
d. We also define the set of all pseudodifferential operators and the set of smoothing
pseudodifferential operators on U respectively by

() = [ Jwa(v)

and
V_o(U) = (Ta(V).

Definition 2.2.4. Let U and U; be open sets in R™ such that U; € U. A symbol p €
Sd(U) is called elliptic on Uy if there exists an open set Us such that Uy C Uy C Uy C U
and if there exists a symbol ¢ € S~ such that pg—1 € S~ over Us,. A pseudodifferential
operator is called elliptic if its symbol is elliptic.

Now we can extend the definition of pseudodifferential operators to compact mani-
folds.

Definition 2.2.5. Let M be a compact manifold without boundary and C*°(M) be the
space of smooth functions on M. A linear operator

P C%(M) —s C®(M)

is called a pseudodifferential operator of order d, if for every open chart U on M and all
functions ¢, € C(U), the operator ¢ Py € V,(U) and it is called elliptic if ¢P is
elliptic where ¢ # 0.

We denote the set of the pseudodifferential operators of degree d on M by W, (M),
and define the set of all pseudodifferential operators and the set of smoothing pseudod-
ifferential operators on M respectively by

(M) = | Jwa(h)

and
V_o(M) = (Wa(M).

To define the symbol of a pseudodifferential operator P on M we need to fix a coordinate
chart. For a fixed coordinate the symbol o(P) is defined to be the symbol of ¢P¢,
where ¢ is a function which is identical to 1 near the point around which we have picked
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the chart. The symbol is unique modulo S™*°. Of course this symbol depends on the
chart. If P, @ are pseudodifferential operators on M, then in every coordinate chart, the
asymptotic expansion for P(Q) in Proposition 2.2.1 remains valid.

Let (M, g) be a Riemannian manifold of dimension n, and L?(M,dvol) be the space
of square integrable functions on M with respect to the volume measure. The Laplace
operator A is an elliptic differential operator of order 2 on L?*(M,dvol), which is locally
defined by

|detG|g" 0;),

ZZW

7=1 =1

where G = (g;;), and G~ = (¢%) .

Proposition 2.2.2. Let (M, g) be a closed oriented Riemannian manifold. The Laplace
operator is an unbounded formally self adjoint operator on L?*(M, dvol), and its spectrum
is contained in the positive part of the real line.

Proof. See [2.2], Chapter 4, Corollaries 18, 19 and 20. ]

Now we turn to the heat operator e=** for t > 0. The heat operator is a smoothing
integral operator with a smooth kernel K (¢, x,y), which is called the heat kernel. In fact,
the heat kernel is the fundamental solution of the heat equation

0

(5 + D) f(t2) =0,

for t > 0 and f(0,2) = f(z). In what follows, using the Cauchy integral formula and the
pseudodifferential calculus, we will give an asymptotic expansion of the heat kernel.

Let (M, g) be a closed, oriented Riemannian manifold of dimension n, and A be the
Laplace operator acting on C*°(M), the algebra of smooth functions on M. Moreover,
let v be a contour going counterclockwise around the nonnegative part of the real axis
without touching it. This way it goes around the spectrum of the Laplace operator.
Therefore, we have the Cauchy integral formula

1
e = — [ eT™A = X))t

211

For A ¢ [0,00), the operator (A — A\)~! is not a pseudodifferential operator, but we
shall approximate it by a pseudodifferential operator to find an asymptotic expansion of
the heat kernel . To this end, we need to generalize the pseudodifferential theory that
we discussed before.

Let P : C®(M) — C>(M) be a self adjoint elliptic differential operator of order
d such that its spectrum is contained in [C,00) for some real number C' and let v be a
contour going counterclockwise around [C,00) without touching it. Also let R be the
region in C consisting of v plus the component of C — « that does not contain [C 00).
For an open set U in R™ with compact closure and A € R we define:
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Definition 2.2.6. The smooth function ¢ = ¢(z,&,A) on R™ x R™ x R is called a
symbol of order k depending on the complex parameter \ € R if it satisfies the following
conditions:

(a) It has compact z-support in U, and is holomorphic in A,

(b) For all multi indices «, 3, v, there exist constants C, g~ such that

|D2DZD}q(, €, M)| < Caypn(1+ [€] + [A[/E)e181=dn],

The set of such symbols is denoted by S*(\)(U). Moreover, the symbol g(x, £, \) is said
to be homogeneous of order k in (&, \) if for t > 1,

(@, t&, tN) = t*q(z, &, N).

We also denote the set of all operators Q(\) : C*(U) — C°(U) with symbols
q(z,&,X) € SE(\)(U) by Up(A)(U). Clearly for each A € Rp, Q(A\) € ¥, (U). Moreover,

we set
T)(U) = JuW)(U).

This is the set of all pseudodifferential operators that depend on A € R and are defined
over the open set U, and obviously depends on the order d that we fixed at the beginning
and also the region R.

Similarly, for the symbols ¢, ¢; (j € N), we say ¢ ~ >_72, g; if for each k > 0 there
exists n(k) such that for n > n(k), ¢ — 377, ¢; € STHA)(U).

The statement of Proposition 2.2.1 remains valid in the generalized case, i.e. if
Pe VU, (N)(U) and Q € Yy, (N)(U) have symbols p; and ¢ respectively, then PQ €
Wiy 4k, (A)(U) and

a(PQ) ~ Y d¢p: - Dig/al. (22)

Finally we can define the generalized pseudodifferential operators of order k on a
manifold M, in the way that we defined pseudodifferential operators on it. We denote
this class of operators by Wy (A)(M), and we set

W) (M) = [ Jue(N)(M).

Recall that P : C®°(M) — C*(M) is a self adjoint elliptic differential operator of
order d such that its spectrum is contained in [C, 00) for some real number C' and assume
that the symbol of P has the decomposition

oP =pg+pi—1+ -+ Do,

where for j = 0,1,---d, p; is a homogeneous polynomial of order j in {. Although for
A € R, (P—\)"!is not a pseudodifferential operator, we are going to approximate it
by a pseudodifferential operator R(\). Indeed, using the formula (2.2), we want to find
R()) such that

ag(RA)(P—=X)—1~0.
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We will inductively find R(\) = ro+ 71 +rg + - -+, such that r; € S7¥9()). For j < d,
we set pi(x, &, \) = p;j(z,§). We also set pj(z,§,A) = pa(z,§) — A. Then we have

o(P =X =py+py+- +pa

Applying the formula (2.2) to R(\) and (P — A) , we get
ZZngrj -D%pJal ~ 1.
a i k

In the above series we can group the homogeneous terms of order —n together and write

Z Z dgry - Dapy/al ~ 1.

n |a|+j+d—k=n

where 7,k > 0 and k < d. In the series we do not have terms with n < 0. Considering
the term with n = 0, we get rop); = 1. Therefore, ry = (p;) ™' = (pg — A\) ™! and also

T = —T0 Z dgry - Dypy/al. (2.3)
|a|+j—_&-d—k=n
The conditions |a| +j+d — k =n and j < n imply that if £ = d, then |« > 0. So in

the sum in (2.3), Dp,. = D{py and we can write

Trn = —T0 Z dgr; - Dipy/al. (2.4)
lo|+j+d—k=n
j<n

We will use a slightly different version of (2.4) in Chapter 4. In fact, we shall use a
noncommutative version of that in which rq is multiplied from the right.

Now we return to our special case where P = A, the Laplace operator, and d = 2.
In fact, we have all the materials needed to state the asymptotic expansion of the heat
kernel except one. In what follows, for a nonnegative integer k£ we introduce the norm
| oo, 00 C°(M), where M is a compact manifold of dimension n.

Let U be an open set in R". We first define [.| , for a smooth function f with
compact support in U by

flocse =sup Y [Dgf(x)].

xelU la|<k

Now to define |.|_, on M, we choose a finite number of coordinate charts V; with dif-
feomorphisms h; : U; —> V;, where U;’s are open sets in R” with compact closure. For
f e Cx(V;) we define

AL e = 1 (hi)l o

Moreover, let {¢;} be a partition of unity subordinate to the chosen cover. For f €
C>*(M) we define

‘f‘oo,k = Z |w1f|<(>2k ‘
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It is known that this is independent of the choice of the cover and also the choice of the
partition of unity.

Now we will state the main theorem of this section. For the proof of the next theorem
one can see Sections 1.7 and 4.8 in [2.5]. With the notations that we have introduced we
have:

Theorem 2.2.7. Let (M, g) be a closed, oriented Riemannian manifold of dimension n,
A be the Laplace operator acting on C*(M) and 7 be a contour going counterclockwise
around the nonnegative part of the real axis without touching it. Also for x € M and
nonnegative integer m let

a2m(x> = % // 67)\T2m(x7£7 )‘>d)‘d£

If K(t,x,y) is the kernel of the heat operator e=**, then K(t,z,x) has the asymptotic
ETPAnsLon

K(t,z,2) ~t"/? Z g ()"
m=0

ast — 0T, i.e. for any nonnegative integer k, there exists my, € N and a constant C,
such that

K(t,z,z) —t"? Z Ao ()™ < Cyt* for 0 <t<1.

mmg, 00,k

Moreover, as(x) is a constant multiple of the scalar curvature of M at the point x € M.

In Chapter 2, based on the last theorem, and using an analogy we will define the
scalar curvature of the noncommutative 3-torus.

2.3 Spin Structure and the Dirac Operator

In this section we will introduce the structure needed to define a Dirac operator on an
oriented Riemannian manifold. For the proofs of the facts and theorems that we will
state in this section refer to [2.10]. More details can also be found in [2.9].

Throughout this section for a smooth manifold M, by TM and T*M, we mean,
respectively, the tangent bundle and the cotangent bundle of M. Moreover, for a vector
bundle E over M, we denote its space of smooth sections by C*(E). We start with the
definition of connections.

Definition 2.3.1. Let M be a smooth manifold and £ be a vector bundle over M. A
connection on E is a linear map

V: C®(TM) ® C®(E) — C®(E), (X,Y) = VyY,

such that for a smooth function f on M, a smooth vector field X and a smooth section

Y of F,
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(i) VixY = fVxY

(il)) Vx fY = fVxY + (X - /)Y, where X - f is the directional derivative of f along
X.

Note that we can also think of V as a map from C*(E) to C*(T*"M ® E).

Let M be a manifold and V be a connection on T'M. Moreover, let v : [a,b] — M
be a curve in M. A vector field X is called parallel along v if V4 X = 0, where ¥ is the
derivative of . Let ¢ty € [a,b]. It is known that for a given vector Xy in T, M, the
tangent space of M at (o), there exists a unique parallel vector field X along ~ such
that Xto = Xo.

Let (M, g) be a Riemannian manifold. A connection V on T'M is called torsion free
if for X, Y € TM,

ViY — VyX = [X,Y],

where [X,Y] = XY — Y X. A connection V on T'M is called compatible with the metric
if for X,Y,Z € TM,
XY, Z)=(VxY,Z)+ (Y,VxZ),

where X - (Y, Z) is the directional derivative of (Y, Z) along X.

The fundamental theorem of Riemannian geometry asserts that every Riemannian
manifold M has a unique torsion free connection on T'M compatible with its metric.
This connection is called the Levi-Civita connection.

Now we introduce principal bundles.

Definition 2.3.2. Let P and M be smooth manifolds and G be a Lie group that acts
freely on P on the right. The manifold P is called a principal G bundle over M if

(i) M = P/G, and the canonical projection 7 : P — M is differentiable,

(i) P is a locally trivial fiber bundle with fiber G over M.

Let P be a principal G bundle over M. For p € P, let T, P be the tangent space
of P at p. We denote the subspace of T),P consisting of all vectors tangent to the fiber
through p by V,,. Indeed, V,, is the kernel of m,,. A connection on the principal G' bundle
P, by definition, is a choice of a subspace H,, of T,,P for each point p € P such that

(1) TPP - HP @ V;)v

(ii) Hpy = (Ry).H, for every g € G, where (R,). is the derivative of the map

R,: P — P, R,(a) = ag,

(iii) H, depends differentiably on p.

We call V,, and H,, respectively the vertical subspace and the horizontal subspace of
T,P. Every vector X,, € T,P can be decomposed into X = v.X + hX such that v.X €V,
and hX € H,. Condition (iii) above means that if X is a smooth vector field on P,
then vX and hX are so. Since V,, is the kernel of ,,, the restriction of m,, to H, is an
isomorphism and given a vector X, € Tr(,), one can find a unique lifting of X, to T, P
which is horizontal. We denote this unique lifting by X# .

Given an n dimensional vector bundle E over a manifold M, we can construct a
principal bundle. In fact, the bundle over M whose fiber at each point p consists of all
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frames of E,, the fiber in E over p, is a principal GL(n) bundle, where GL(n) is the
group of real n x n invertible matrices. This bundle is called the frame bundle of E.

Conversely, if we have a principal G bundle P over a manifold M, and a representation
of G on a finite dimensional vector space V', we can construct a vector bundle over M.
Indeed, suppose p : G — GL(V) is a representation of G on V. Then we denote by
P x,V the quotient space of P x V' by the action of G defined by

(e,0)g = (eg.plg™ W), € BEveV,ged.

The quotient space P x,V is a vector bundle whose fibers are isomorphic to V' and is
called the vector bundle associated to P by the representation p. The space of sections
of P x,V can be identified with the set of all maps ¢ : P — V/, such that for p € P

and g € G, o(p- 9) = plg~")p(p)-
Given a principal G bundle P over a manifold M endowed with a connection, and a

representation p of G on the vector space V', we can define a connection on the vector
bundle P x, V. In fact, we define

V: C®(TM) @ C®(P x, V) — C®(P x, V)

by (Vx¢)(p) = dpp(X7), where p e P, X € TM,p € C®(P x,V) and X/ is the unique
lifting of X, to 7T,P which is horizontal. One can see that Vx¢ is well defined, i.e.

(Vxe)(p-9) =p(g~)(Vxe) (D).
In order to define Dirac operators we need to define Clifford algebras.

Definition 2.3.3. Let V' be a vector space endowed with a symmetric bilinear form (-, -).
The unital algebra generated by V' as a linear subspace, subject to the relations

uwv 4+ vu = =2 (u,v) 1, u,v €V,
is called the Clifford algebra, and is denoted by Cl(V).

We denote CI(V) for V= R™ and V = C", equipped with the standard Euclidean
inner product, respectively by Cl(n) and Cl(n). Moreover, it is known that

Cl(n) = Cl(n) ® C.

Let Cl(n)* be the group of invertible elements in Cl(n). The multiplicative subgroup of
Cl(n)* generated by the unit vectors in R" is denoted by Pin(n). We also define the Spin
group by

Spin(n) = {wjug - ug : k € N, and forj =1,2---2k, u; € R", |u;| = 1}.

Let O(n) be the group of orthogonal n x n matrices. We define p : Pin(n) — O(n)
by
p(u)(v) = uvu*, u € Pin(n),v € R",

where u* = xpxp_1... 21 if u = x129...2,. One can check that p is well defined, i.e.

p(u) € O(n).
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Let SO(n) be the group of orthogonal n x n matrices with determinant 1. It can be
shown that p(Spin(n)) = SO(n), i.e. if we restrict p to Spin(n), we have

p : Spin(n) — SO(n).

For n > 2, p is a covering map and Spin(n) is the universal 2-fold covering of SO(n)
(see Proposition 4.7 in [2.10]). If n is even, the Clifford algebra Cl(n) has a unique
irreducible representation whose restriction to Spin(n) is called the spin representation.
However, the spin representation is not irreducible and is decomposed into two irreducible
representations.

Let (M, g) be an oriented Riemannian manifold. For each m € M, T,, M is equipped
with a symmetric bilinear form (-,-), induced by the metric g. So we can construct
CUT,,M). A bundle of Clifford modules over M is a bundle S whose fiber S, over m is
a left CI(7,,M) ® C module.

Definition 2.3.4. A Clifford bundle S over a Riemannian manifold M is a bundle of
Clifford modules endowed with a Hermitian metric (-, -), and a connection V¢ such that
for XY € TM, and S, S1, S € C*(9),

(i) X - (S1,52), = (VSi,92), + (51, V&S2),, where X - (Sy,5), is the directional
derivative of (S1,55), in the direction of X,

(i) (X - S1,59), + (51, X - S2), =0,

(iii) V& (Y - 9) = (VxY) - S+ Y - VLS, where V is the Levi-Civita connection on
TM.

In the previous definition V¢ is called a Clifford connection. Now we can define Dirac
operators.

Definition 2.3.5. Let (M, g) be a Riemannian manifold and S be a Clifford bundle over
M equipped with the Clifford connection V¢. A generalized Dirac operator is an operator
D : C*>(S) — C°(S) which is defined as the composition of the following maps

C=(8) L C®(T*M ® S) — C(TM ® S) == C™(S),

where the second map is induced by identifying T'M and T*M using the metric g, and ¢
denotes the Clifford action.

We just saw that to define the generalized Dirac operators we need a Clifford bundle.
The spin structure is what guarantees the existence of such a bundle. Let M be an
oriented Riemannian manifold of dimension n, and F' be the bundle over M whose fiber
over each point m € M is the set of all oriented orthonormal frames of 7}, M. The bundle
F is a principal SO(n) bundle and is called the bundle of oriented orthonormal frames
for the tangent bundle of M.

Definition 2.3.6. Let (M, g) be an oriented Riemannian manifold of dinension n and
F' be the bundle of oriented orthonormal frames for the tangent bundle of M. A spin
structure on M is a principal Spin(n) bundle F over M which is a double covering of F,
and if we restrict the double covering F' — F to each fiber, we get the double covering
p : Spin(n) — SO(n). If M has a spin structure, it is called a spin manifold.
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Let M be an even dimensional spin manifold with spin structure . The vector
bundle associated to F by the spin representation is called the spin bundle of M. The
spin bundle has a natural Hermitian metric (see [2.4], page 24). Our next goal is to
construct a connection on the spin bundle of M.

It is known that V, the Levi-Civita connection on 7'M, induces a connection on F'; the
principal SO(n) bundle of the orthonormal frames of T M. Now since Fisa covering of F
we can lift the connection induced on F' by the Levi-Civita connection to a connection on
the principal Spin(n) bundle F'. Using this lifted connection and the spin representation
and applying the argument before Definition 2.3.3 we obtain a connection on the spin
bundle. This connection is called the spin connection and is denoted by V*. It can be
checked that the spin bundle equipped with its Hermitian metric and the spin connection
is a Clliford bundle.

Finally we can define the Dirac operator:

Definition 2.3.7. Let M be an even dimensional spin manifold, S be the spin bundle
over M and V? be the spin connection on S. The Dirac operator D : C*°(S) — C*(S)
is defined as the composition of the following maps

C=(8) L5 C(T"M ® S) —s C®(TM ® S) - C*(8S),

where the second map is induced by identifying T'M and T M using the metric g, and ¢
denotes the Clifford action.

2.4 Spectral Triples

In this section we shall introduce the notion of a spectral triple, which is indeed the
noncommutative analogue of a Riemannian spin manifold.

Definition 2.4.1. Let A be an involutive algebra, H be a Hilbert space, 7 : A — B(H)
be a s-representation of A. Also let D be an unbounded self adjoint operator on H. The
triple (A, H, D) is called a spectral triple if

(i) The operator D has a compact resolvent, i.e. for A ¢ R, the operator (D — \)~!
is a compact operator,

(ii) For a € A, [D,7(a)] is a bounded operator, where [D, n(a)] = D7(a) — 7(a)D.

The following example is a prototype of spectral triples:
Let M be a compact spin manifold, S be the spin bundle of M, and L?(S) be the
Hilbert space of square integrable sections of the spin bundle S. We define

7 C®(M) — B(L*(S)), [ My,

where My is the multiplication operator by f. If D is the Dirac operator, then the triple
(C°°(M), L*(S), D) is a spectral triple which is called the canonical triple. Moreover, for
p,q € M, we have

dg(p,q) = sup {|f(p) = f(@)] = D, =(HI <1},

fec=(M)

24



where d,(p, q) is the geodesic distance between p and ¢ (see [2.3], Section VI.1 for the
proof). This distance formula means that we can reconstruct a geometric structure using
an operator algebraic process.
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Chapter 3

A Logarithmic Sobolev Inequality for
the Noncommutative 2-Torus

3.1 Introduction

The subject of logarithmic Sobolev inequalities has its roots in the paper of E. Nelson
[3.11], where he proved the contractivity of the semi-group generated by the Gauss-
Dirichlet form operator. Shortly after that, L. Gross introduced a new logarithmic
Sobolev inequality in [3.6] and using this gave a different proof of the contractivity of the
semi-group generated by the Gauss-Dirichlet form operator.

Let v be the Gauss measure on R" and

N :D(N) C L*(R",v) — L*(R",v),
be the Gauss-Dirichlet form operator defined by

(Nf.og)= | vf(x) vg(x)dv(z)
R

where (f, g) fRn dl/( ), and v/ f is the weak gradient of f. Nelson showed that
for 1 < g <p< o0, 1f

6—2t < (q - 1)

T -1

then

le™ llg—sp < 1,
where

le | gmp = sup {le™™ fll, : f € L*(v) N LYw), || fllg < 1}
This means that for

t>1n, /22
n 1
e~V is a contraction from L(R",v) to LP(R™,v). He proved more. Indeed, he showed
that e7* is an unbounded operator from LI(R",v) to LP(R™,v) if

tN

—1
t<lIn p_
qg—1
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The classical Sobolev inequality states that for f € C2°(R"),

I flla@ndz) < Conll IV 1 2o @e da) (3.1)

1 1
where 1 < p < oo, — = — — —, dx is the Lebesgue measure and C),,, is a constant
n

depending only on nqand }Z; So (3.1) implies that if the gradient of the function f is
in LP(R", dz), then f must be in LI(R™, dx). These inequalities strongly depend on the
dimension of R".

In [3.6], Gross proved the logarithmic Sobolev inequality

[ erni@law < [ wiePa@+ gl 62)

for a smooth function f, and showed that this inequality is equivalent to Nelson’s result
of contractivity that we just mentioned.

Unlike the classical Sobolev inequality, Gross’ logarithmic Sobolev inequality is di-
mension independent. Using (3.2) we see that if the function f and its gradient are in
L*(R",v), then f is in the Orlicz space L?*In L(v). This somehow justifies the name
logarithmic Sobolev inequality. Gross also derived in [3.6] a weaker version of (3.2), from
Nirenberg’s form of the classical Sobolev inequality [3.12]. This version, not surprisingly
depends on the dimension.

Since then people have given various proofs of logarithmic Sobolev inequalities by
different methods: O. Rothaus [3.15] has proved it using Jensen’s inequality and the
positivity of the lowest eigenfunction for a Sturm-Liouville boundary value problem with
Dirichlet boundary conditions. R. A. Adams and F. H. Clarke also have given a simple
proof based on the calculus of variations [3.1].

One can also replace (R",v) with a probability space (X, ) and the Gauss-Dirichlet
form with a densely defined positive quadratic form on L?*(X, i), say €. Then we say the
logarithmic Sobolev inequality holds for £ if, for f € Dom(€),

/X @) |f(2)] dp(z) < ECF f) + 1A f -

This way one can talk about logarithmic Sobolev inequalites on Riemannian manifolds
[3.8].

F. Weissler has proved in [3.17] a logarithmic Sobolev inequality on the circle. Indeed,
using Fourier series he has shown that for a positive function f in L*(T, 1), where T is
the unit circle and g is the normalized Lebesgue measure, if

f(e): Z anei'n@7
then -
[ o san< 3 lnllanf + 113 g 11 (33)

n=—oo
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Since

S lla < S nPlaa? = || v £I2 = / /1 dp,

n=—oo n=—oo

Weissler’s result is even stronger than the original logarithmic Sobolev inequality

/ £ log fdyu < / S g+ 1112 og 1 ]
T T

There is a useful survey of related topics and applications of logarithmic Sobolev
inequalities by Gross in [3.7]. One can also find more references therein.

Since the introduction of noncommutative geometry by Alain Connes in [3.3]| (see
also [3.4]), noncommutative tori have proved to be an invaluable tool to understand and
test many aspects of noncommutative geometry that are not present in the commutative
case. The results are simply too many to be cited here. The present paper should be
seen as a step in understanding aspects of measure theory and analysis on noncomutative
tori that have been largely untouched so far. The combinatorial challenges one faces in
extending the logarithmic Sobolev inequality, at least in the form that we understand it,
seemed to us as a very interesting problem by itself.

Let 0 € R\ Q. The universal unital C*-algebra generated by two unitaries U, V' such
that UV = €™V U, is called an irrational rotation algebra and is denoted by Ag. It is
a simple algebra and has a unique positive faithful normalized trace 7. The C*-algebra
Ay is the noncommutative deformation of C'(T?), the algebra of continuous functions on
the 2-torus. More details about Ay can be found in (3.4, 3.9, 3.13]. Let

Ay = Z A U™ V"™ ¢ @y, 1s rapidly decreasing
(m,n)eZ?

By rapidly decreasing we mean for all £ € N,

Sup (1 +m?+n?)¥|am.* < oc.
(m,n)eZ?

The set Ag° is a dense subalgebra of the irrational rotation algebra and it is the analogue
of C*°(T?), the algebra of smooth functions on the 2-torus. The algebra A is called the
noncommutative 2-torus.

Leta= Y, an,U™V" bein AP. Then

(m,n)€Z2

a* = Z UV U™

(m,n)€Z?

— § am’n€727rzmn9U7mV7n

(m,n)€Z?

— § aim’inefQﬂ'zmn@Umvnl

(m,n)€Z?
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So if a = a*, we have

A = a_mv_ne_%imne. (3.4)
Moreover, if b= Y~ b, U™V" € A3°, we have
(m,n)eZ?
ab= Y ¢ UV,
(m,n)eZ?
where '
Cpg = Z Upmnbp—mgme” 2TIP7TINY (3.5)

(m,n)€Z?

The unique trace 7 on Ay which plays the role of integration in the noncommutative
setting, extracts the constant term of the elements of Ag°, i.e. 7(a) = apo. This trace
can be used to define an L?-norm on A3 by

lall3 == 7(a”a).

Using (3.4) and (3.5) one can show [|a]|3 = > |ama|?>. One can also define Sobolev
(m,n)ez?

norms on Ag°. For more details see [3.14|, where J. Rosenberg has developed the Sobolev

theory on the noncommutative 2-torus.

In this paper we will use Weissler’s method [3.17| to prove a logarithmic Sobolev
inequality for a class of elements of the noncommutative 2-torus. In Section 2 we will
prove some lemmas that we will need later on. In Section 3 we will first state our
conjecture about a logarithmic Sobolev inequality for the noncommutative 2-torus and
then we will prove that conjecture for a class of elements of the noncommutative 2-torus.
This would be the main result of this paper. Although we have not been able to prove the
logarithmic Sobolev inequality for arbitrary positive elements, we think the inequality
must hold for those elements as well. In Section 4 we will try to generalize the proof of
the main result to prove the conjecture, but in the middle of the way we will see that we
will face a problem. We hope that we can bypass this problem in a follow-up paper.

3.2 Preliminaries

In this section we will prove some technical lemmas that will be needed later on.

Lemma 3.2.1. Let G be an analytic function in some complex neighborhood of the in-
terval [0, 1]. Suppose all the coefficients in the power series expansion of G around r = 0
are nonnegative. Then G(1) > 0.

Proof. First we show that we can find finitely many points
O=zg< 1 <2< ... <z2,=1
in [0,1] and finitely many discs Dg, D1, Ds, ..., D, such that x; for i = 0,1,...,n, is

the center of D;, G has a power series expansion around z; on D; and x; € D;_4, for

30



i=1,2,...,n. To show this let N be the open set in C containing [0, 1] on which G is
analytic. Define
F:[0,1] — R>?

by sending r +— dist(r, N¢). The function F' is continuous on a compact set, so it attains
its minimum. Let § be the minimum of F' and

4] 36 —1)0
xo=0,21 = 5772 =0,13 = 50 Il = %,xn: 1,
2 , :
where n = =] + 1. For i =0,1,...,n, let R; be the radius of convergence of the power

series expansion of G around z;, and D; be the disc centred at x; with radius R;. For
1=20,1,...,n, we have g < R;. Sox; € D;_q,fori=1,2,... n.
Let -
G(z) = Z wzk (3.6)
k=0

be the power series expansion of G around 0 on Dy. Since x; € Dy, we evaluate z as x;
in (3.6), and since for k > 0, G*)(0) > 0, we have

—~ GW0) 4
1

G(ry) = Y

> 0.
k=0

If we substitute x; into the derivative of (3.6), we will get

G(l) (Il) =

i

which is non-negative by the same reason. Differentiating (3.6) repeatedly, we can show
that the derivatives of G at x; which form the coefficients of the power series expansion
of G around z; on D; are nonnegative.

Repeating this argument, we can show that all derivatives of G at each x; and in
particular at x, = 1 are non-negative. So G(1) > 0. O

We will need the following standard and elementary result of spectral theory in C*-
algebras.

Proposition 3.2.1. Let A be a C*-algebra, x € A and N an open subset of C containing
o(x), the spectrum of x. Then there exists 6 > 0, such that for y € A, ||y — z| < J
implies o(y) C N.

Proof. See Theorem 10.20 in [3.16]. O

The following proposition will be needed in the proof of the main result of this paper.
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Proposition 3.2.2. Let a = >  a,,,,U™V" be in A3°, such that a > 0, app = 1 and
(m,n)eZ?
at most finitely many number of a,,,’s are nonzero. For r € C, we put

T, = Z CLT,LJJ‘("“'H”DUmVn

(m,n)€Z?
(m,n)#(0,0)

and P.(a) = 1+ x,. Then there is an open neighborhood W of [0,1] in C, such that for
all 7 in W, log P,(a) can be defined.

Proof. Since a is self-adjoint, using (3.4) for real r we have

r(‘m“H"D |—m\+|—n\)€—27rzmn6.

Am.n - a—m,—nr(

So P,(a) is self-adjoint for real r, and consequently the spectrum of P,.(a) is real for
real 7. Now we show for 0 < r < 1, P.(a) is a strictly positive element. Suppose for
some 0 < r <1, P.(a) is not strictly positive. Let [tg,¢;] be the smallest closed interval
containing the spectrum of P,(a). We know that there exists a state ¢ of Ay, such that
¢(Pr(a)) =ty < 0. Now let

M = {(m,n) € Z*: (m,n) # 0, a,,, # 0},

M, ={(m,n) e M : m=>0,n=>0},
My ={(m,n) € M : m>0,n<0}.

Then since a is self-adjoint, using (3.4) we have

a=14 > apU"V" (3.7)

(m,n)eM

=14+ Y an UMV + > ap UV

(m,n)eM; |J M2 (—m,—n)eM; | M2

Y et Y a v

(mun)eMl UM2 (m,n)EMl UM2
=14+ > @ UV ) Ggge UV
(mn)eMy | Ma (m,n)eM; |J M2
=1 —+ Z amanmVn + Z me—QﬂimnG eZﬂ'imnOv—nU—m
(m,n)€M1 UM2 (m,n)EMl UM2
=1+ D> UV Y @V U

(m,n)EMl UM2 (m,n)eMl UM2

By the same reasoning we can show

Pa)=1+ Y apurmmgmyn

(m,n)eM
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=14+ Z Ay TIHIPD Y7

(m,n)eMyJ Mz
+ Y galmeby g,
(m,n)eMy U Mz
Since a is strictly positive, using (3.7) we see that

dla)=1+ > apad(U™V")

(’ITL,’I’L)EM1 UM2
+ > @uae(VUTT) >0,
(m,n)GMl UM2

Let Ry = Amn@(U™V™). Then regarding the fact that

PUTV") = p(VrU—™),

we have

dla)=1+ Y (hnn+hmn) > 0.

(m,n)€M1 U Mo

On the other hand,

¢(Pr<a)) =1+ Z am,nr(|m|+|"|)¢(Umvn)

(m,n)€M1 U Mo

+ Y G MgV = 4 < 0,

(m,n)EMl U Mo

So

oPa) =1+ 3 N 4 ) <0,

(m,n)€M1 U Mo

Then let
pmoltinol) — \Mip {r(lmmn‘) : (m,n) € M}

and note that 0 < r(Imol+noD) < 1. Now we have two cases. Either

—1 < Z (hm,n + hm,n) S 07

(m,n)€M1 U Mo

or

> (hmn+ hn) > 0.

(m,n)eMl U Mo

In the first case, since

Z (h'm,n + hm,n) < r(\m0|+|n0\) Z (hm,n + hm,n);

(mvn)EMluMQ (m,n)GMl UMQ
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we have

D DL TU M

(m,n)EMl U Mo

< S oDyt ).
(m,n)€M1UM2

So
S gy o) > 1,

(m,n)EMl U Mo

which contradicts (3.9). In the second case again we have

S okt (g, T

(m,n)EM1 U Mo

< Y e, T < -,
(m,n)EMlLJMQ

which means

Z r(|m0|+\n0|)(hm7n + hmm)

(m,n)EM1 U Mo

is strictly negative. But this contradicts (3.10), for

S e, T,

(m,n)GMl U Mo

and

> ()

(m,n)GMl U Mo

have the same signs.
Then we show there exist By, By > 0 such that for 0 < r < 1, o(P,(a)) C [B1, Ba),
where o(P,.(a)) is the spectrum of P.(a). Since for 0 < r <1,

|1P(a)]| = |11+ Z (DY

(m,n)eM

<14 Y amar MUV <14 Y Jamal,

(m,n)eM (m,n)eM

and since the spectral radius of P,(a) is less than ||P,(a)||, it suffices to put

By=1+ Y lamal

(m,n)eM

Now suppose there is no such B;. So for each n > 0 there exists r, € [0,1], and

1
An € (0,5), such that A, € o(P,, (a)). Obviously lim A, = 0. Since {r,} _, is a
n—oo
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bounded sequence, it has a convergent subsequence. For simplicity we will call that
sequence again {r,} - . Let limr, =ro. Then lim P, (a) = P, (a). Let Inv(A4y) be the
n—oo n—oo
set of invertible elements in Ay. It is an open set, hence its complement is closed. Then
for n > 0, since A\, € (P, (a)),
P, (a) — A\, 1 ¢ Inv(Ay).

Then
lim P, (a) — 1\, = P, (a) ¢ Inv(Ay),

which means 0 € o(P,,(a)). But this is a contradiction, for we have shown for 0 <r <1,
P,(a) is strictly positive.
Now we pick a neighborhood of [B;, By] away from the y-axis. Let

Clearly for 0 <r <1, o(P.(a)) C N. So by Proposition 3.2.1, for 0 <r < 1, there exists
d, such that for y € Ay, ||y — P.(a)|| < 6, implies o(y) C N. Since

P(a):C— Ay, 7+ P.(a),

is a continuous map, for 4, there exists v, > 0, such that for ' € C, |r' —r| < 7,
implies ||P/(a) — P.(a)| < 6,. Soif 7’ € B,,(r), then o(P.(a)) C N where B, (r) is the
2-dimensional open ball centred at r with radius 7,. Now let

Obviously W is a complex open neighborhood of the interval [0, 1] and the way that we
have constructed W implies if » € W, then o(P,(a) C N. Since N is in the right half
plane, using the standard branch of the logarithm, for » € W, we can define log P,(a). O

3.3 The Main Result

In this section we will first state our conjecture about a logarithmic Sobolev inequality
for the noncommutative 2-torus and then we will prove it for certain elements.

Conjecture 3.3.1. Leta= > an, U™V"™ be in Ay and assume a > 0. Then
(m,n)€Z?

7(@’loga) < Y (Jm| +|n])|amnl* + lalllog [lall2, (3.11)
(m,n)eZ?

which s the same as

r(@®loga) < D (Im|+ [n])|apa|* + 7(a*) log(r(a®)) .
(m,n)eZ?
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Our main goal was of course to prove the conjecture in general using Weissler’s method
[3.17], however, because of the noncommutativity, in the last step we encountered a
technical problem. So we decided to restrict ourselves to a certain class of elements. Now
we will prove the conjecture for the case m = sn for some s € Z \ {0} and later on
in Section 4 we will give more details of what we have set up for the general case and
explain what the problem is in this setting.

Theorem 3.3.2. Let a = Y a,U"V*" be in Ay where s € Z\ {0}, and such that a > 0.

nez
Then
7(a®loga) < Y _(1+|s])|nllan|* + lla]3log |l (3.12)

ne”L

which s the same as

N |+

7(a*loga) < Z(l + 18] |nl|an|? + 7(a?) log(T(a?))2.

neL

Proof. First suppose 7(a) = 1, i.e. ap = 1, and suppose that at most finitely many

number of a,’s are nonzero. Put x = a —1 = > a,U"V*". Using the fact that |a|? =

nez
n#0

1+ ||z||3, it can be shown that
2 Lo
lallzlog [lallz > Flz]>-
Following Weissler, we shall prove the theorem by proving the stronger inequality

1
0< > 1+ [shlnllanl? + Sl - T(a?loga). (3.13)

nez

For a complex number r we define

neE”L

n#0
and P.(a) = 1+ z,. By Proposition 3.2.2, for r in some complex neighborhood of the
interval [0, 1], we can define log P, (a).

Let

G(r) = Y20+ DA, 2 4+ Sl — (P(0))? og Pr(@).

nez

Therefore, to prove (3.13) it suffices to show G(1) > 0. The function G(r) is analytic
in a complex neighborhood of [0,1]. So to prove G(1) > 0, using Lemma 3.2.1, we shall
show that all the coefficients of the expansion of G(r) around r = 0 are nonnegative.

First note that for » with small enough |r| we have ||z,|2 < 1 (note that the sum is
a finite sum). So

(Pr(a))*log Pr(a) = (1 + ,)*log(1 + =)
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1 1 1
=142z, +22)(1 — 2?2+ 2> — 222 4 -..)

2" 3 4"
_ 3 o o k-1 (k= 3)!
k=3
So )
Gr) = 3o+ sl a, 4 5 [l 3 (3.14)
neL
l
—7(x )—-T +2Z (x';).
Using the facts that 7(z,) = 0 and
7_( |er2 ZT2(1+\ s) |n\‘a ‘2
neZ
n#0
combined with (3.14), we get
=2> ((1+]s)n — 1)r?F1Dq, |2+2ng (3.15)

nez
n=0

k—3)!
where gi(r) = (—1)k(k—')7(xff) Now we try to find the Taylor expansion of 7(z%).

First we need to fix some notation. Let
M={neZ:n+#0,a, # 0},
={neM:n>0}
For a function P : M — ZJ, we put
Mp={neM: P(n)#0}.

So (Mp, P) is a multiset. Indeed, the multiplicity of n is P(n). Moreover, let S(Mp)
be the set of all permutations of the multiset (Mp, P). Let I be the set of all functions
P: M —s Z§ such that

> P(n) =

neM

and I o be the set of all functions in I; such that

ZP(n)n =

neM

For P: M — 7§, we also define

QP M1 —>Z+
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by Qp(n) = P(—n).

Using the multinomial expansion of x, we have

II; = Z (H (anr(1+5)|”)P(n)) Z ﬁ UU(nf)Vso(nf)

Pcl, \neM oceS(Mp) i=1

where n’, for i = 1,2,...k, is a labeling of elements of Mp when P € I. Then

(2 = Z (H (anr(H'S')")P(n))T Z HUan )y so(nf)

PEIk’O neM O’GS Mp)
So we have
- Z H (anT(I—HS\)n)P(n) H (anr_(H's')")P(n)
Pely o neM; —ne My
k
< T Z H Ucr(nf)vsa(nf)
c€S(Mp) i=1
Hence Z H ) H Q )
(ayr (15D F (L +]s)n) Qe (e
Pel}, o neM; neM;
<7 Z H Ua n} )Vsa(nf)
ceS(Mp) t

Then since a is self-adjoint, using (3.4) we have

= T (a0 T (@0 e

(P,Q)eH neM neM;

(—2misd > Q(n)n?)

e nEM, . Z ﬁ Uo(nf’Q)vsa(nZPvQ) ’

seS(Mp o) i=1

where Hj, is the set of all pairs (P, Q) such that
P:M, — I,

QZM1—>Z8_,

Z P(n)n = Z Q(n)n

neM, neMy

Z P(n) + Z Qn) = k.

neMy neM;
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Also (Mpg, [P, Q]) is a multiset defined by
Mpg = Mz U Mg,

where

Mp ={n¢€ M, : P(n) #0},

My ={neM: —ne M,Q(-n) # 0},

and
[P,Q] : MP,Q — ZS_,

is defined by . () mear
[P, Q](n) = {Q(—n) ne My

Also, nf’Q fori=1,2,...,k is a labeling for elements of Mp.
So regarding (3.16), we see that

= T (a0 T (@)

(PQ cH, neM; neM
—orisd 2 k
Xe( 2mis nezl\/llQ(n)n ) Z - (H Ua(niP’Q)ng(nf‘Q)) .
c€S(Mp,Q) =1

Now we will calculate 7 <Hf:1 U"(”ZP’Q)V”(”ZRQ)» for 0 € S(Mpg), the set of permuta-

tions of the multiset Mpg. For simplicity we drop the superscripts P, Q). Using (3.17),
we have

Za(ni) = 0. (3.19)

Hence

k
. (H Ua(m-)vscr(ni)> _
i=1

where for o € S(Mpg),

In fact, we know that
B, = —so(ng)o(ny)

—s0(ng) [o(n1) + o(ns)]
—so(na) [o(m) + o(n2) + o(ns)] —
—s50(ng—1) [o(n1) + o(ng) + - + o(ng—2)]
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—so(ng) [o(n1) + o(ng) + - + o(ny)]

We also define
Ay = so(ny) [o(ny) + o (ng) + -+ 4+ o (ng)]

+s0(na) [o(na) + o(ng) + - + o(ng)]
+s0(ng) [o(ng) + o(ng) + -+ + o(ng)]
+s0(na) [0(na) + o(ns) + -+ o(ng)] + - -

+so(ng—1) [o(ng—1) + o(ng)]
+so(ng)o(ng).

1
Using (3.19), we get B, — A, = 0. So B, = §(BU + A,). On the other hand,

So we have proved

Therefore,

= 3 T (anrCtihmy P) I @+ Q)

(P,Q)eH neM neM;

(—27ish Y Q(n)n?)

Xe n€M; § : eQm‘@BU .

O’GS(M}{Q)

Since
k!

[T P(n)1Q(n)!

neMy

S(Mpg)| =

we see that

y=k > T (awr®m) )H (a_nr(mspn)cz(n)

PQ EHk neM; neM;

1 727ri30( X):EM Q(n)n? 7ri59< EZIZVI (P(n)+Q(n))n2>
X m,n 1 n 1
[T PmQ(n)!* )

neM
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Z H anm (+ls D" P H (mr(lﬂsbn)Q(n)

(P,Q)EH neM; neMy
1 wisd > (P(n)—Q(n))n?
X e neMq
[I P(n)!Q(n)!
neM;

> (1+[shn(P(n)+Q(n))

= k! Z r<”€M1 >
(P7Q)€Hk
Tis n)n? P(n) _n; n)n? ——\Q(n)
L %, P T ™, 0 3 Q) @
P(n)! Q(n)!

neMy neMy

Now for a function P : M — ZZ, define

Tis6 P(n)n? _ P(n)
D(P)=e ”621:”1 " —( an)

(3.20)

Then we have

k (2 Pn)+Qn) ( X (I+]shn(P(n)+Q(n))) _
T(af) =kl Y (=1 P M D(P)D(Q).

T(zF) = k‘Zrz(”” > DP)D@Q) ] . (3.21)

(P»Q)GGl
where G| the set of all pairs (P, Q) such that
P:M, — I,
Q M, — ZS_,

S P+ Y Q) =

neMy neMy

Z P(n)n = Z Q(n)n =

neMy neM

One should note that in (3.21), [ starts from 2. Here we shall show why that is the

| S Py < 3 Plan. (3.22)

neMy neM

> Q)< > Qnn, (3.23)

neM; neMy

and

Similarly we have
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So

k=Y Pm)+ Y Qn)< Y Phn+ Y Qn)n=

neM; neM, neM; neMy

So for a fixed k, g < [ and since k is at least 3, [ >
Now for [ and ¢ > 1 define

C(t,1):= Y D(P),

PEthl

where H;; is the set of all functions P : M; — Z¢ such that

> P)=t, (3.24)

and

> P(nn =1. (3.25)

When there is no such P then the sum is taken to be 0. For instance if ¢ > [ then there
is no such P, for

neMy neMy
Then we have -
> DP)D(Q) = > D(P)D(Q)
(P,Q)EG, t=1 Q€eHp_4;
PEeHy;
k-1 k—1

(]
]
S
3
]
S
s

I
(]
Q
2

ol

|

t=1 \PeH,, Q€H)_4y t=1

Now using this in (3.21), we get

( _ k'ZT (1+[s)i Z tl)ma

and this implies

ng<r>=2<k—3>!fjr“*'”20” Clk-tD)
_ i F2(1+s) Z(k; —3)! z_: C(t,)C(k —t,1)
_ ZTQ(IHS lzz i+ 37— 3)C6E,1C3,1).

=1 j=1
3<i+j<N
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Therefore, for N > 21 the coefficient of 720+1D0 in SV g, (r) is

D> (i+i=3)1C6NCHD), (3.26)

and this is also the coefficient of of r2(+sDlin Y2 g, (r).
Now we show that for [ > 0,

c(1,1) = — e

In fact, this is true, for if [ ¢ M, then a; = 0 and also H;; = @ which implies C(1,1) = 0.
If l € M, then

1 n =1

0 otherwise

P ={
is the only element in H;;. So using (3.20), we have
C(1,l)= Y D(P)=—ae™"’ (3.27)
PeHy,
Recall that

_22 1+||n_1) 2(1+|Sn|a |2+229k

nez
n=0

Therefore the coefficient of 720Dt (1 > 2) in G(r) is

l l
2((1+ |l — D]as* + zz > (i+j=3)CENCD).
iy

Using (3.27), this is equal to

l l

2((1 4 |s))l = 1)C(1,1)C(1,1) +2ZZ@+]—3'C@Z)O( 1),

which can be written as

2> N Ai, §)C6EDCGD), (3.28)

i=1 j=1

where the matrix A; defined by

g JOrlshi-1i=j=1
Az(l,])—{(i+j_3)! i+§>3"
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In [3.17] it has been shown that for [ > 2, A, is a positive semi-definite matrix. Hence
the coefficient of r2(+1sD! (I > 2) in G(r) is positive. So we have proved (3.12) for a
positive element a with ag = 1 in which only finitely many coefficients are non-zero.

Homogeneity of (3.12) implies that it should hold for a positive element a (with only
finitely many non-zero coefficients), even if ay # 1.

Finally, we shall prove (3.12) for an arbitrary strictly positive element of the form
> a, UV, For a = > a,U"V*" and b= > b,U"V"" in A3°, we define

neL nez nez

axb=" (axb),U"V>

PEZL

where (a *b), = ayb,. We also define d; in A for j > 0 by

dy=> UV,

nel

dj:{l In| <

where

n 0 otherwise "

Then we have .
I(d; % @) —all3 =D _|dan — anl> = Y |an|”
nez [n|>j

So

lim dj xa = a, (3.29)

j—o0
in the ||.||2 topology.

Moreover,
I(d; % @) = all = 1D _(dan — a,)U"V"|

nez
<> lal,
[n|>j

which implies

lim d; xa = a,
Jj—o0

in the C*-norm topology. Now let

a= ZanU"VS”

ne”L

be a strictly positive element in A3° and F' be a complex open neighborhood of ¢(a) in
the right half plane away from the y-axis. Since a is strictly positive, we can choose such
a set. Therefore, using Proposition 3.2.1, we see that for large enough j, o(d; * a) is
inside F'. On the other hand, since a is self-adjoint, (3.4) implies that for n € Z,

_ _9min?
Ay, = a_pe 2mwin 9‘
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So for n € Z, and j € N we have
dﬂan — dzld_ne—QﬂinQQ,

which guarantees that d; * a is self-adjoint. Therefore, o(d; * @) C R Hence for large
enough j, d; * a is strictly positive and we can define log(d; * a).

Since for j > 0, d; * a is an element of Ag° which has at most finitely many non-zero
coefficients, we shall apply (3.12) to d; * a for large enough j and we will get

7((d; + a)*log(d; * a)) < Y (1+ |s)nllds Planl® + |d; * all3log ||d; * all. — (3.30)

nez
Let L
h=>Y (1+]s))z|n2a,U"V"".
neZ
Then '
Id;  hl3 =Y (1 + s nlld}]?|an|*,
nez

and

limd;jxh=h (3.31)

j—)OO

in the [|.||2 topology.
Thus

Tim S0+ [sl) ] Plan? = Tim ;b3 = Tim 813 = 3 2(1+ [snlladf®. (3.32)

nez nez

To prove (3.12), taking the limit of (3.30) as j — 0o, we use (3.29), (3.32) and also
the continuity of 7 with respect to ||.||2. In fact, 7 is continuous with respect to ||.||2, for
one can show (See [3.10] Theorem 3.3.2.) for a € Ay,

m(@)* < lIrlIm(a%a).

3.4 Towards Proving the Conjecture

In this section, as promised in Section 3, we will give the details of what we have done
towards proving Conjecture 3.3.1 and we will explain what the remaining technical prob-
lem is. It seems to us that a part of the solution should involve the noncommutative
binomial theorem of Choi, Elliott, and Yui in [3.2|, and its extension in [3.5]. Another
possible approach would be to first try to prove this inequality for rational values of
0 and then extend it to irrational #’s. In what follows we will use the assumptions of
Conjecture 3.3.1.
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First suppose 7(a) = 1, i.e. agp = 1 and suppose that at most finitely many of the
Amp’s are nonzero. Put z =a—1= >  a,,U™V". Using the fact that

(m,n)€Z?
(m,n)#(0,0)
lall3 =1+ ||=|3,
it can be shown that |
lal31og [|all> = QHiUH%-

We are going to try to prove the conjecture by proving an stronger inequality:
1
0< D (Iml+[n)lamnn® + §|yxug — 7(a*loga). (3.33)

(m,n)€Z?

For a complex number r we define

T, = Z amvnr(|m|+|n‘)UmV”

(m,n)eZ?
(m,n)#(0,0)
and P,(a) = 1+ z,. By Proposition 3.2.2, for r in some complex neighborhood of the
interval [0, 1], we can define log P,(a).
Let
1
Gy = 32 PO ] - fnl) gl + 3l — 7(P(@) og P (a).

(m,n)€Z?

Therefore, to prove (3.33) it suffices to show that G(1) > 0. The function G(r) is analytic
in a complex neighborhood of [0, 1]. So to prove G(1) > 0, using Lemma 3.2.1, we need
to show that all the coefficients of the expansion of G(r) around r = 0 are nonnegative.
First note that for r with small enough |r| we have ||z,|l2 < 1 (note that the sum is
a finite sum). So
(P(a))?log P(a) = (1 + x,)* log(1 + ;)
1

1 1
:(1—1—21;—#@%)(1—éxf—i-gx‘;’—zxf%—-“)

3 = 4 (k=3
=z, + §‘T§ +2 Z(_l)k 1%13T'
k=3
So )
Gry= P (m| + [n])lan ol + 5l 3 (3.34)

(m,n)€Z2
3 oy o=y
—7(wy) = 57(E) + 2;(—1) ().
Using the facts that 7(z,) = 0 and

(@) = alz= Y e,

(m,n)€Z?
(m,n)#(0,0)
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in (3.34), we get

G(r) =2 (m+n = )20 gy, > + 2 gi(r) (3.35)

(m,n)eZ? k=3

where gi.(r) = (—1)’“@

First we need to fix some notation. Let

7(2F). Now let us try to find the Taylor expansion of 7(z¥).

M = {(m,n) € 22+ (m,n) # 0,4y # 0},
M, ={(m,n) € M : m>=0,n>0},
My = {(m,n) € M : m>0,n <0}
For a function P : M — ZJ, we put

Mp ={(m,n) e M : P(m,n) #0}.

So (Mp, P) is a multiset. Indeed, the multiplicity of (m,n) is P(m,n). Moreover, let
S(Mp) be the set of all permutations of the multiset (Mp, P). For o € S(Mp), by
o1(m,n) and o9(m,n) we mean the first and the second components of o(m,n), respec-
tively. Let I, be the set of all functions P : M — Z such that

Z P(m,n) =k,

(m,n)eM

and I o be the set of all functions in I; such that

Z P(m,n)m = Z P(m,n)n = 0.

(m,n)eM (m,n)eM
For P: M —s Zg, we also define
QP : M1 U MQ — Zar

by Qp(m,n) = P(—m, —n).
Using the multinomial expansion of x, we have

:L‘ff _ Z H (am’nr‘m‘_,’_'m)lj(mm) Z f[ Ual(mf,nf)vag(mf,nf)

Pel, \(mmn)eM ceS(Mp) i=1

where (mF,nl’), for i = 1,2, -k, is a labeling of elements of Mp when P € I;. Then

T(Q]f) = Z H (am’nr|m|+|n|)P(m,n) - Z ﬁ Ucrl(mf),nf))vcm(mf,nf)

Pelro \ (mn)eM ceS(Mp) i=1
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So we have

Z H U™ ) Pm.n) H (am,nr‘m‘”)P(m’”)

Pelp,o (mn)eM (—m,—n)EM;

X H am nr" n Flmyn) H (amvnr”_m) Pm.n)
(m,n)eMas (—=m,—n)eM>

<7 Z HUal(m nF Vagm Pl
ceS(Mp) =1
Then
Z H am nrm—&-n P(mn) H (a_m _nrm—i-n) Qp(m,n)

Pely o (m,n)eM; (m,n)eM;

X H (am T n) P(m,n) H (CL,m 7n7”m7n)QP(m n)
(m,n)€Mas (m,n)eMs

T Z ﬁ yorm? nl)yoa(mf nf)

oeS(Mp) i=1

Then since a is self-adjoint, using (3.4) we have

Z H am nrm—i-n P(m,n) H (mrm+n) Q(m,n) (336)

(P,Q)EH), (m,n)eM; (m,n)eMy
« H am o™ n P(m,n) H (mrm—n) Q(m,n)
(m,n)eMo (m,n)eM>
(=270 >  Q(mun)mn) (=278 >,  Q(m,n)mn)
xe (m,n)e My e (m,n)eMy

|3 HUalm n; ) yoamyn ) |

0€S(Mp,q) =1

where Hj, is the set of all pairs (P, Q) such that
P:M UM, — 77,
Q: M UM, — 7,
Z P(m,n)n = Z Q(m,n)n, (3.37)

(m,n)eM1UM> (m,n)eM1UMa2

Z P(m,n)m = Z Q(m,n)m, (3.38)
(m,n)eMiUMs (m,n)eM1UM>

>, Pmm+ Y Qmon)= (3.39)
(m,’n)EMluMQ (m,’n)EMluMQ
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and (Mpg, [P, Q]) is a multiset defined by
Mpgo = My* U Mg ™

where

MY? = {(m,n) € M\ UM, : P(m,n)# 0},

Mélf? ={(m,n) € M : (m,n) ¢ M; UMy, Q(—m,—n) # 0},
and
[P,Q] . MP,Q — ZS_,
is defined by .
[ P(m,n) (m,n) € Mp
[Pa Q](man) - {Q(—m, _n) (m,n) c Méllj,—Q .

Also, (mP® nP@) for i =1,2,... k is a labeling for elements of Mp,g.

Now we show that for (P, Q) € Hy,

k
AT HUm(mf’@,nf’@)Vaz(mf”‘?,nf-”@) (3.40)

0eS(Mp,q) =1

0 S (Pmm)+QUmm))mn
—e (m,n)eM{UMo BP,Q;

where Bp is a real number which depends on P and Q. Indeed, for (P, Q) € Hj, and
o € S(Mpg) we have (for simplicity we drop the superscript P, Q)

k
H o (mi,ni)vaz(mi,m) — 627Ti930 U(Zf:l o1 (mwnz))V(Zf:l o2 (mi’ni)), (341)

=1

where
B, = —01(7712, 712)02(7711, nl)

—o1(ms,n3) [o2(my,n1) + oa(ma, ny))
—01(my, ny) [o2(ma, ny) + 0a(ma, ng) + oa(ms, ng)] — -
—o1(mg, ng) [o2(my, n1) + oa(ma, ng) + oa(ms, n3) + - - - + o2 (Mi—1,Mk—1)] -
Since (P, Q) € Hy, (3.37) and (3.38) implies

k

> oi(mi,n;) =0, (3.42)

=1

and

Zog(mi,ni) =0. (3.43)
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So using (3.41),

k
T(H o (mi,m)VCfQ(muni)) — 2mi0Bs (3.44)
=1
Let

Ay = o1(my, ny) [oa(my, n1) + oa(ma, n2) + - - - o2 (M, N )]
+01(mg, ny) [02(ma, n2) + 0a(ms, n3) + - - - o2 (M, nk) |
+o1(ms,n3) [o2(ms, ng) + oa(my, ng) + - - - oo(mg, ng)] + - - -
o1 (me—1,mp—1) [o2(mp—1, ng—1) + o2 (M, ny)]
+o1(my, ng) oo (mg, ng,).

Using (3.42) and (3.43), one can check that B, — A, = 0. So

1
B, = §(BU + A,). (3.45)
We also set
ki1
Dy = > lo1(mi,ni)os(my,ny) — o1(my, ny)os(mi, ny)]
j=2 i=1
One can see that
k-1  k
Do =Y Y [o1(mj,nj)oa(mi, ni) — o1(mi, ni)os(my, ny)) (3.46)
j=1i=j+1

Then we see that

k
Ba + Aa = DO’ + Z Jl(mia ni)02(mi7 nz)

i=1
=D, + Z [Pv Q](m7 n)mn
(m,n)eMp g
=D, + Z P(m,n)mn + Z Q(—m, —n)mn
(m,n)EM})”QQ (m,n)EMlgﬁgf2
=D, + Z P(m,n)mn + Z Q(—m, —n)mn
(m,n)eM1UM> (=m,—n)eM1UM>
=D, + Z P(m,n)mn + Z Q(m,n)mn.
(m,n)GMluMQ (m,n)€M1UM2

Therefore, by (3.45) we have

B, = % D, + Z (P(m,n) + Q(m,n))mn

(m,n)€M1UM2
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Then regarding (3.44) we have

T(H Uol(mi,ni)vog(mi,ni)) _ eQwi@Ba
=1

70

(P(m,n)+Q(m,n))mn
=c (m,n)eM1 UMy

e7r7,'9DU )

Now if we define

BP,Q — § eﬂzODJ 7

O'ES(Mpr)
we see that
70 P(m,n m,n))mn
. Z HUUl mPe, PQ)V02 mPQ Py | . (m’n)g:MIUMZ( (m,n)+Q(m,n)) Bro.
O'ES MPQ =1
So we have proved (3.40). Now we will show that Bpg is a real number. Indeed, for
o€ S(Mpg), we define 5, € S(Mpg) by

ﬁg(mi,ni) :U(mk,i+1,nk,i+1), 1= 1,2,...,k’.

Then we have

-1

<.

D, =

o

1

<
[|

[\
~
Il

—

[601(7”1'7 ni)ﬁ<72<mj7 nj) - 601<mj7 nj)602<mi7 nl)]

<.
|
—

M- 1M-

01 (mk—i-I—lu nk—i+1)0'2(mk:—j+la nkz—j—i—l)

—_

<.
|
—_

01 (mk G415 nk7j+1)<72 (mkfiJrl ) nkfiJrl)

7=2 =1

t+1

1
Z 01 msans UQ(mtant)
=k—

1(mt, nt)UQ(msa ns)]
1 s=

t
k—1

Z Z o1(ms, ns)oa(me, ny) — o1 (myg, ng)oa(ms, ns)|

1 s=t+1

k
Z 01 mtant 02(77157713) - 01(m37ns)02(mtant>] =—-D,,
=t+

where in the last equality we have used (3.46). Now we have

BP,Q = Z em@D" = %( Z 7”6D0 + Z 7r19D

UES(M}{Q) O'ES(MPQ)
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_ %( Z 71'29DU + Z 7”9Dﬁa

0eS(Mp,) 0eS(Mp,Q)
1 1 . .
— 5( Z WZGDU + Z —7r7,0D — 5 Z (emﬁDU + 6—7r7,9Dg)
oeS(Mp,q) oeS(Mp,q) o€S(Mp.q)

So Bp is real.
Now using (3.36), we see that

ar, n?”m+n P(m,n) am,nrer” Q(m,n)
(™) ( )

(P,Q)EH) (mn)EM; (m,n)eM;

% H (am,nrm—n> P(m,n) H (mrm—n) Q(m,n)

(m,n)eM> (m,n)eMa

—2mif > Q(m,n)mn wif > (P(m,n)+Q(m,n))mn
(m,n)eM{UMy e (m,n)e M UMoy BPQ

xXe

Then we have

P(m,n)+Q(m,n))(m+n)+ P(mn)+Q(m,n))(m—n
A= Y r((mgem(( QN 5 (P +Qma) )>

"
(P,Q)EH],

w6 > P(m,n)mn —mif S Q(m,n)mn
xe (m,n)eM{UMsoy e (m,m)eMUMoy

% H azg;n,n) H am’nQ(m»n) Bpo

(m,n)eM1UM2 (m,n)€M1UM2

> P(m,n)m+ > Q(m,n)m)

— E T((m,n)€M1UM2 (m,n)eMq | Moy

(P,Q)EH
< P(m,n)n— Z Q(mvn)n+ E Q(mvn)n_ Z P(mvn)n>
X (m,n)eMy (m,n)eMoy (m,n)eMy (m,n)eMso
wif > P(m,n)mn —mif > Q(m,n)mn
X e (m,n)EM1UMqg e (m,n)eEM1 UMy
P s o ;
x JI el II @ea®™Bre.
(m,n)eEM1UM>s (m,n)eM1UMs
So
© mif > P(m,n)mn
T(:L’f) _ E T2(l+s) E e (mm)EMUM, (347)
I+s=2 P
l;}fszo (P,Q)EGs
—7if S Q(m,n)mn
e (m,n) €My UMq H anPiLEnm,n) H am’nQ(m,n)BRQ7
(m,n)eMiUMs (m,n)eM1UMs

where G is the set of all pairs (P, ()) such that
P: M UM, — ZS_,
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QIM1UM2—>Z(—)’—,

and
> Pmn)+ > Qm,n) =k,
(m,n)GMluMz (m n)GMlLJMQ
> Pmam= ) Qmn)m
(m,n)€M1UM2 (m Tl EMlUMQ
Z P(m,n)n — Q(m,n)n = Z Q(m,n)n — P(m,n)n = s.
(m,n)eM; (m,n)eM> (m,n)eMy (m,n)eM>

One should note that in (3.47) (I + s) starts from 2. Here we shall show why that is the
case: for (m,n) € My if m = 0, then n # 0. So we have

Z P(m,n) < Z P(m,n)m + Z P(m,n)n. (3.48)

(m,n)eMy (m,n)eMy (m,n)eMy

Similarly we have

Z P(m,n) < Z P(m,n)m — Z P(m,n)n, (3.49)

(m,n)eMa (m,n)eMo (m,n)eMo
Zan Zanm—i— Zan n, (3.50)
(m,n)eM; (m,n)eM; (m,n)eMy
Y Qmn)< D> Qmmym— Y Q(m,n)n. (3.51)
(m,n)EMas (m,n)eMas (m,n)eMas
So
k= Z P(m,n) + Z Q(m,n) <
(m,n)eM1UMa2 (m,n)eM1UMa2
Z P(m,n)m + Z Q(m,n)m
(m,n)eEM1UMs (m,n)eEM1UMas
2 F - 2. Qmmn
(m,n)eM; (m,n)eM>
+ Z Q(m,n)n — Z P(m,n)n
(m,n)eM; (m,n)eM;
=2(s +1).

k
So for a fixed k, 5 < [+ s and since k is at least 3, [ + s > 2.
Let éhs be the set of all pairs (P, Q) such that

P:M— 7,

Q: M — 7,
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and

Z P(m,n) + Z Q(m,n) =k,

(m,n)EMluMQ (m,n)EMluMQ
Z P(m,n)m = Z Q(m,n)ym =,
(m,n)eM1UMa2 (m,n)eM1UM>
Z P(m,n)n — Z Q(m,n)n = Z Q(m,n)n — Z P(m,n)n = s.
(m,n)eM; (m,n)eMs (m,n)eM; (m,n)€ M,

There exists a one-to-one correspondence between éz,s and Gy ;. In fact, for (P,Q) € G,
we can define

~ B P(m,n) (m,n) € My U M,
Plm,n) = {@(—m, —n) (m,n) & My UM,
. (mn)  (m,n)
~ - Q(m,n m,n) € My U M,
Q(m,n) = {P(—m, “n) (m.n) ¢ My UM,
Using this correspondence and the fact that Bpo = Bpy, 1 61000, 12 (3.47), we
have

w6 > P(m,n)mn

(zk) = Z 2(0+5) Z e (mmEM UMy (3.52)

I4s=2 5 BVl
ZEOS,SZO (P7Q)6Gl,s
—mif > Q(m,n)ymn - ~
e (m,n) €My UMq H aig;mn) H am,nQ(m7n)Bﬁ7Q~
(mﬂ'L)EMlUMQ (m,n)EM1UM2

Now if we can decompose Bp 5 into two terms Bp and By, i.e.,
Bp 5 = BpBg, (3.53)

such that By and B depend only on P and Q, respectively, then we can continue the
proof of Theorem 3.3.2. Indeed, if (3.53) holds, for a function

P:M— 77,

we can define

w6 > P(m,n)mn
D(P)=¢ (mméinum, H (_amm)P(m,n) Bp, (3.54)
(m,n)eM1UM>

and the rest would be similar to the proof of Theorem 3.3.2.
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Chapter 4

A Scalar Curvature Formula for the
Noncommutative 3-Torus

4.1 Introduction

Since the beginning of noncommutative geometry in [4.2], noncommutative tori have
proved to be an invaluable model to understand and test many aspects of noncommutative
geometry. Curvature, one of the most important geometric invariants, is among those
aspects. Defining a suitable curvature concept in the noncommutative setting is an
important problem at the heart of noncommutative geometry. More precisely, we are
interested in curvature invariants of noncommutative Riemannian manifolds. In contrast
it should be noted that curvature of connections and the corresponding Chern-Weil theory
in the noncommutative setting has already been defined in [4.2].

In their pioneering work [4.5], Connes and Tretkoff (cf. also [4.1] for a preliminary
version) took a first step in this direction and proved a Gauss-Bonnet theorem for a
curved noncommutative two torus equipped with a conformally deformed metric. They
gave a spectral definition of curvature and computed its trace. This result was extended
in [4.6] to noncommutative tori equipped with an arbitrary translation invariant complex
structure and conformal perurbation of its metric. The full computation of curvature in
these examples was done independely and simultaneously in [4.4] and [4.7]. This line of
work has been continued and extended in different directions in many papers [4.8].

The approach used in the aforementioned papers is based on the heat kernel techniques
and Connes’ pseudodifferential calculus. In this paper using a similar technique we will
give a formula for the scalar curvature of a curved noncommutative 3-torus. This would
be the first odd dimensional case that has been studied among the noncommutative tori.
In [4.12] a general pattern for the scalar curvature of even dimensional noncommutatuve
tori is found. While a similar question in the odd dimensional case needs a close study
of the first.

This paper is organized as follows. In Section 2, we recall some facts about the heat
kernel expansion in the commutative case. In Section 3, we recall basic facts about
higher dimensional noncommutative tori and their flat geometry. Then we perturb the
standard volume form on this space conformally and analyse the corresponding perturbed
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Laplacian. In Section 4, we recall the pseudodifferential calculus of [4.3] for Tj. In Section
5, we review the derivation of the small time heat kernel expansion for the perturbed
Laplacian, using the pseudodifferential calculus. Then we perform the computation of the
scalar curvature for T3, and find explicit formulas for the local functions that describe the
curvature in terms of the modular automorphism of the conformally perturbed volume
form and derivatives of the Weyl factor.

4.2 Heat Kernel Expansion and Scalar Curvature

To motivate the definition of scalar curvature in our noncommutative setting, let us first
recall Gilkey’s theorem on asymptotic expansion of heat kernels. Let (M, g) be a closed,
oriented Riemannian manifold of dimension n, endowed with the metric ¢ and A be
the Laplace operator acting on C*(M), the algebra of smooth functions on M. If C
is a contour going counterclockwise around the nonnegative part of the x-axis without
touching it, then using the Cauchy integral formula

1
et = — [ e7NA =Nl
271 C
and approximating the operator (A —\)~! by a pseudodifferential operator R()\) one can
find an asymptotic expansion for the smooth kernel K (t,z,y) of e7'* on the diagonal
[4.9].
More precisely, using the formula for the symbol of the product of two pseudo differ-

o
ential operators one can inductively find an asymptotic expansion ) 7;(z,§, A) for the

j=0
symbol of R(\) such that r;(x, &, \) is a symbol of order —2— j depending on the complex
parameter A, where j € NU {0}, x € M and £ € R". Then one can see that for ¢t > 0,
the operator e ** has a smooth kernel K (¢, z,y) and as t — 0" there exist asymptotic
expansion

K(t,z,z) ~ 72 ag,(x)t™,

m=0
where .
canle) = 5 [ [ P rana g Nras (1.1)
It follows that -
Tryze 2 ~ t7/? Z Agmt™
m=0

where

Aom = / agm () dvol(z).
M
Moreover as(x) is a constant multiple of the scalar curvature of M at the point x, so that

as is the total scalar curvature [4.9]. In what follows we will explain how we exploit these
facts to define the scalar curvature of the curved noncommutative 3-torus by analogy.
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4.3 A Curved Noncommutative 3-Torus

Let 0 = (Oxe) € M3(R) be a skew symmetric matrix. The universal C*-algebra generated
by three unitary elements wy, us, ug subject to the relations

upuy = ey, k0=1,2,3

is called the noncommutative 3-torus and is denoted by A3. It has a positive faithful
normalized trace denoted by 7. This C*-algebra is indeed a noncommutative deformation
of C(T?), the algebra of continuous functions on the 3-torus.

For r = (ry,m9,73) € Z> we set

u" = exp(mi(ri101ara + 1101373 + T200373) Juy Uy Uy’

There is an action « of the 3-torus T? on A} which is defined by

where 2z = (21, 29,23) € T? and 2" = 2]'23223*. Let T3 be the set of all elements a € A}

for which the map
afa) : T> — A3 2+ a.(a),

is a smooth map. This set is a unital dense subalgebra of A5 and it is called the algebra
of smooth elements of A3. In fact, it is the analogue of C*°(T?), the algebra of smooth
functions on the 3-torus. It is known that

']I“S = {Z a,u" : (a,) is a rapidly decreasing sequence indexed by 23} .
reZ3
By rapidly decreasing we mean for all £ € N,
Sup(1 + |7*)*|a,|? < .

The trace on AJ, plays the role of integration in the noncommutative setting and
extracts the constant term of the elements of T3, i.e.

The algebra T3 also possesses three derivations, uniquely defined by the relations

5]-(2 a,u") = Z riau”,  j=1,2,3.

rez3 reZz3

These derivations are noncommutative counterparts of the partial derivatives on C*°(T?)
and they satisfy the integration by parts relation i.e.

7(ad;(b)) = —7(6;(a)b), a,be€ T;.
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More details can be seen in [4.10].

Our next goal is to introduce a spectral triple (A3, H, D) which encodes the geometry
of A3 with a flat metric. Then we will define the Laplace operator A by A = D? and
perturbing the metric in a conformal class we will define a Laplace type operator A,
by A, = k Ak, where k € A} is a positive element representing the conformal class
of the metric on Aj. Finally, we shall use A, = k A k to study the geometry of A}
with a conformally perturbed metric. Then by analogy with (4.1), we define the scalar
curvature of A} with the perturbed metric to be

1 /R 3 /C b (€, \ANE, (4.2)
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where C' is a contour going counterclockwise around the nonnegative part of the x-
axis and by(&, \) is the third term in the asymptotic expansion of the symbol of (k A
E — X)~!. We will find the first three terms of this asymptotic expansion by Connes’
pseudodifferential calculus [4.2] and finally we will compute (4.2).

Let (.,.), be the inner product on A3 defined by

{a,b)_=7(b*a), a,be€ Aj.

We denote the completion of A3 with respect to this inner product by H,. It is indeed
the representation space in the GNS construction associated to 7. Let H = H,. ® C? and
7 : Ay — B(H) be the representation defined by

m(a) = (8 2), a € Aj.

We define the Dirac operator D on H by

3
D = —’L Z O'jéj,
j=1

where o; for j = 1,2, 3 are Pauli spin matrices i.e.

(01 (0 —i (1 0
1=\1o) 27 o) BT N0 -1)-
It can be shown that (A3, H, D) is a spectral triple. Moreover, we define the Laplace

operator by A = D2, It can be seen that

3

A=> el
j=1

Next we define a conformal perturbation of this spectral triple. Let h € T} be a smooth
self adjoint element. We associate to h a positive linear functional ¢ = ¢}, on A3. This
positive linear functional is defined by

pla) = T(ae_h), a € Ag.
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Let A be the modular operator for ¢, i.e.
Ala) = e "ac", a € A},
and {n;}, t € R be a 1-parameter group of automorphisms of A3 defined by
n(a) = A"(a), ac€ A

Unlike 7, ¢ is not a trace. But it satisfies the KMS condition at 5 =1 for {n;}. In other
words,

plab) = p(bni(a)), a.be Aj.
In analogy with the 2-dimensional case we define a Laplace type operator by A, = kK AK,
where k = €/? should be thought as the left multiplication operator by k.

4.4 Connes’ Pseudodifferential Calculus

In this section, we will recall Connes’ pseudodifferential calculus that was introduced in
[4.2].

For n € NU {0}, a differential operator on T3 of order n is a polynomial in dy, 0y, d3
of the form

P(51,65,05) = Y _ a;61 63:6%°

l7l<n

where j = (j1,J2, J3) € Z2y, |j| = j1 + j2 + j3 and a; € T;. Now we extend this definition
to pseudodifferential operators.

Definition 4.4.1. A smooth function p : R* — T3 is called a symbol of order n > 0 if
for all nonnegative integers i, o, 73, j1, j2, j3 there exists a constant C', such that

07 6285 (885205 p(€))I| < C (1 + €]y,
and if there exists a smooth function & : R3\ {(0,0,0)} — T3 such that
Tim A(AE1, A6, A&s) = K(6s, . 65).
In the last definition by 0y, J5, J3 we mean partial derivatives, i.e.
01 =0/0&, 0y =20/0&, 05=0/0¢s.

The space of symbols of order n is denoted by S,. To any symbol p € S, an operator
P, on T} is associated which is given by

P,(a) = (2m)~3 // e p(&)as(a)dzdé,  a € T,

and is called a pseudodifferential operator.

Definition 4.4.2. Let p and p’ be symbols of order k. They are called equivalent if and
only if p — p’ € S, for all n € Z. This equivalence relation is denoted by p ~ p'.
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The next proposition which plays a key role in our computations in this paper, shows
that the space of pseudodifferential operators is an algebra. Given the differential opera-
tors P and (), by the next proposition we can find the symbols of P() and P* up to the
equivalence relation ~, where P* is the adjoint of P with respect to the inner product
(-,-). on H, (See [4.5]).

Proposition 4.4.1. Let p and p’ be the symbols of the pseudodifferential operators
P and Q. Then PQ and P* are pseudodifferential operators, and o(PQ) and o(P*),
symbols of PQ) and P* respectively, can be obtained by the following formulas

! /
U(PQ) ~ E W@flag2a§3(p(£>)5f15525§3(p (6)),
(f1,€27€3)e(220)3 1:£2:43-
* 1 1 2 3 1 o 3 "
UL DI AT L R G

(£1,02,03)€(Z>0)3

4.5 The Main Result

In this section, using Connes’ pseudodifferential calculus, we will define the scalar curva-
ture of the curved noncommutative 3-torus and we will compute it.

To define the scalar curvature of the noncommutative 3-torus we analyze A, = k Ak
on H,.. Exploiting the formula in Proposition 4.4.1 and considering k as a pseudodiffer-
ential operator of order 0 with the symbol o(k) = k, plus the fact that the symbol of A

is
o(p)=) &,
we can find the symbol of k A k. Indeed, we can show that
o(k Ak) = ao(§) + ai(§) + ax(§),
where & = (£, &2, &3) and .
ao(§) =Y kéidi(k),
i=1

3
ai(§) = 22§¢k5i(k),
i=1
3
as(§) = Y K€
i=1

Let A € C. We need to find an asymptotic expansion of the symbol of (k Ak — )7L
Indeed, we have to find an operator R, such that

o(Ry- (kA k—N) ~ao(])
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where [ is the identity operator. Using the formula in Proposition 4.4.1 and following the
steps in page 52 of [4.9], we can find a recursive formula for the terms of an asymptotic
expansion of (k Ak — \)~!. In fact, one can show that

o(k ANk —\)~ Zb (€M),

where b, (&, \) is a symbol of order —2 — n given by the following recursive formula:

3

bo(&,0) = () &2 = N7,

=1

bu(§,A) = — Z gl%lgg 8618@2823( )5f15§26§3(am)b07 (4.3)

2+j+l1+Lla+Ll3—m=n
0<j<n, 0<m<2

forn > 1.

Now we are able to define the scalar curvature of A} with the perturbed metric.
Indeed, (4.1) motivates us to define the scalar curvature of A3 with the perturbed metric
as follows:

Definition 4.5.1. Let C be a contour going counterclockwise around the nonnegative
part of the z-axis and by (&, \) for A € C be the third term in the asymptotic expansion of
the symbol of (k Ak — A)~!. Then the scalar curvature of A3 with the perturbed metric
is defined to be the element S € A3 given by

/ / e by(€, N)dNdE.
27'('2 R3

a0 = [ bale e

The function « is homogeneous of degree —1/2 with respect to A. We also define

Let

BN = A 2a(N).

The function 8 is homogeneous of degree —1 with respect to A. For the square root
function we consider the nonnegative part of the real axis as the branch cut. Then we

have
I

To compute the latter, we consider the contour C' = C; + Cs + Cs, where C} = re™* for
r € (00,1), Cy = € for § € (7/4,7r/4) and Cy = re™™/4 for r € (1,00). One can see
that

/ —egl/gdA = (=1)7/%e% y/xErfe [(-1)"%],
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/C e v (—Erf [(-1)Y8] + Exf [(—1)7%])

—\1/2
and N
/03 %cu = (—=1)VBeS /(14 Erf [(—1)7/%]).
Therefore,

67)‘

and this implies that

1 ~1
S=5— /R /CeAbQ(g, N dédN = ﬁa(—l).

By this argument, to find S, it suffices to work with A = —1 and compute

(1) = /R bo(E, —1)dE.

We devote the rest of the paper to the calculation of a(—1).

4.6 The Computation of by(&, —1)

In this section we will use the recursive formula (4.3) to find by(&, —1). In what follows,
we set b, = b,(&, —1) for n € N.
We know that

3
bo= (k) & +1)"
=1

Now using (4.3), we have

3

by = —boarby — (O 9i(bo)6;(az2))bo.

i=1
Simplifying the above formula we obtain
by = 26505k 01 (k)bo + 260€7b3k>62(K)bo + 263€703K>5(K)bo + 2656105k (k) by
+25§§1b(2)k351(k)b0 + 25353k352(k)bo + 25§bgk353(k>bo + 2525§bgk352(k)b0
+2§§§3b§k3§3(l€)bo + 2£f'bgk251(k)bok + 2£2£fb§k252(k)b0k:
+2§3§%b3k253(k)bok + 2§§§1b3k261(k)b0k; + 2532,511)3/{?251(]{?)50/?
+2E5b3 k255 (k)bok + 26305k*3(k)bok + 2626203k 0o (K )bk
+253535(2)]f253<k)b0k — 2&1bokd1 (k)by — 2€2bpkda(k)by — 2E3bokds(k)bo.
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Now we use by in (4.3) to obtain by. We have
b2 = —boao — b1a1

—1(bo)d1(a1) — 92(bo)d2(a1) — O3(bo)ds(ar)
—01(b1)d1(az) — D2(b1)d2(az) — O3(b1)ds(az)
—0h2(b0)01(d2(az)) — Oi3(bo)d1(d3(az)) — Oa3(bo)d2(d3(az))
—(1/2)011(bo)dF (a) — (1/2)a(b0)d3 (a2) — (1/2)Ds3(bo)d5 (az).

After doing computations we get a simplified formula for by. Here we exhibit the first 10
terms of by. The entire formula can be seen in Appendix A.

by = —bokdy (01(k)) bo—bokdy (82(k)) bo—bokds (5(k)) bo-+6£7b3K>61 (k)2bo+2£5b5k>51 (k)*bo

+26202K201 (k)2 bo+2E202 k% 0 (k) 2bo+6E2b2 k259 (k) 2bo+-26202K2 05 (k)b + 26202 k> 65 (K ) 2bg -+ - -

4.7 Integrating by(£,—1) over R?

In this section, first we will change the variables and then we will use a rearrangement
lemma to integrate by(£, —1) over R3.

To integrate by(&, —1) with respect to & = (&1, &2,&3), we apply the spherical change
of coordinates

&1 =rsin®cosl, & =rsind®sinf, & =rcosd,

where 0 < 0 < 27,0 < ® < 7 and 0 < r < oo. Considering this change of coordinates
and integrating the formula for b3(¢, —1) in Appendix A, with respect to 6 and ®, one

finds that
/ b(€, —1)de,
R3

Ambmn

B(r) = 4r°02k25,(k)b2k*6: (k)b + 4r®b3k36; (k) bak>6; (k) bo
+878ba k0, (k)bok?8i(k)bo + 8r8bk®d; (k)bokd; (k)bo
+8r8b3k" (k) bod; (k)bok + 4r®bZk>8;(k)bk>6; (k)bok
+4r802k36; (k) bak26; (k) bok + 8r8b3k20; (k) bo ki (k)bok — 8r5b3k*6;(k)>by
—4rSB3K56; (0:(K)) bo — 4rSB3kA6; (5:(K)) bok — 5bokd; (k)b2k36; (k)bo
— 147502 k26, (k)bok28: (k)b — 18r°b2k>5; (k) bk (k) bo
— 1470235, (k)boo; (k) bok — 4150k, (k) bak>6; (k)bok

up to an overall factor of 47 /3, is

where
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—10T6b(2)k’251(l€)b0k’51(k3)b0k + 10T4b(2)l€2(51(k)2b0
+611bokd; (k)bod; (k)bok — 3r2boks; (6;(k)) bo.

In the above sum by = (r?k? + 1)~! and summation over 4 is understood.
Moreover, one can see that for x € T3, vk™ = k"A™?(x). Using this relation plus the
fact that bok = kby, we can see that

B(r) = 4r8ESbEA2(5:(k))b26;(k)bo + 4rSKSBA3/2(8,(k))b26; (k)bo

+8r8 kDI A (6:(k))bods (k)b + SrOESHEAY2(8;(K))bod; (k)bo
+8r8KSbIAY2(8;(k))bo AV (8;(k))bo + 4r® b2 A% (6;(k)) D2 AY2(5:(k))bg
+4r8ESBEA2(5;(k))BEAY2(5;(k))bo + 8rESBEA(8;(k))bo AY2(5;(k))bo
—8rOk4 b6, (k)?by — 4rSkPb36; (05(k)) by — 4rSkPb3AY2(8; (5;(k)))bo
—4rS kAo AP (5;(k)) b0 (k)bo — 147K B2A(8;(k))bod; (k)b
— 18K B2 A2 (6;(K))bod; (k)by — 14rSk*D2AY2(5,(k))bo AY2(8;(k))bo
—4rS kg A2 (8, (k))BRAY2(8;(k))bo — 10rE*B2A(6:(k))bo AY2(5:(K) )by
+10r k2026 (k)b + Trik3b30; (6;(k)) bo + 3rik3b2 AY2(5; (6;(k)))bo
+10r4 K2 AV (6;(K) ) bodi (k) bg 4 61 E2bo AY2(8;(k))bo AY2(8;(k))bo
—3r%kbod; (6:(k)) bo.

To integrate the terms of B(r), we need a lemma similar to the rearrangement lemma
in [4.4]. In the following lemma we will use exactly the same method as in the proof of
the rearrangement lemma in [4.4], to prove a slightly different statement.

)
)

Lemma 4.7.1. Let p; € T3 and m; € Z, for j =0,1,2,...,1. Then

- (zm ~3/2)
/ (K*u +1)"™py (K*u + 1)7™ - py(KPu + 1) ™y 9= ’ du
0

(*2]§lm1+1)
=k =0 Ergmymam (8, D@y, - Aw)(prp2 -+ o),

) Jj=l h=j M (jz::lm._g/Q)
J
Fogmamymy (U1, Uy - wy) = / (u+ 1)’m°H (uHuh + 1> u =0 du,
0 h=1

j=1

and Ay means that A acts on the jth factor, for j =0,1,2,... 1.

66



Proof. Let G,, and G,,, be the inverse Fourier transforms of the functions defined re-
spectively by
gn(t) _ (et/2 + eft/Q)fn

and
H,.(t) = e(”_a)t(et +1)7",

where n € N and a € (0,n). Then G, +(s) = Gi(s —i(n/2 — a)). So we have
Hyo(t) = / (s — i(n)2 — a))e—*!ds, (4.4)

Let J be the integral in the left hand side of the equation in the lemma. Now we use
the substitutions v = e* and k = ef/? to compute J. Therefore, we have

Jj=l

00 (>X"m;—1)s
J = / (e(s+f) + 1)_m°p1(e(5+f) +1)7m pl(e(s+f) + 1) Me =0 T e s

j=I
Then for j = 0,1,2,...,1, we pick a positive real number «; such that ) a; = 1. We
7=0
i=l
also set B; = —>_(m; — a;). Replacing (e(+f) 4+ 1)7m by e(mi=a)(f+s)(els+H) 4 1)=m5 in

i=j
J, we get

j=l
—(Xmy=1)f [
T =& T Hy a5 D) 01) Ho 5 4 0) - A% ) o5+ )
Let p}; = AP (p;). Using (4.4), J can be written as an integral of the form

Jj=l
—(Cm—1)f
7=0

e Hingao(5 + f)phe” D0 ply o7t OHDl premilsr Dt gs/2 (4.5)

with respect to the measure

Now we can write the term (4.5) as

= A h=t 2
~(Zm—1)f —i(Z t)(s+)) —iy
~

Hypga0(s + fle = AT (g )el.
h=1

e
We also have

j=l
o0 —i( - t5)(s+f)
/ Hmo,ao(S + f)e J=1 ’ 68/2d8 =

o0
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= LS ) s ) i=t
e_f/2 / 6(s—"_f)/2HT'/L07CV0 (S + f)e =t ’ dS - 27T€_f/2Pm07a0(_th)7

j=1

. . . . 2
where P, o, is the inverse Fourier transform of the function e¥/2H,,, o,(5)-
So we have

= h=l = j=l =l
(X m;=-1)f i3t
J = 9net12 im0 / [Ta ]-=hJ(p;L)PmO,ao(—th)Hij,aj(tj)dtj.
h=1 j=1 =1
Replacing p; by APi(p;) we have
j=l J=l
—i >t —i ) t;+0n

A (o) = A = (pn)-

j=l
=i > ti+Bn
j=h
Up,
We define
A
— j=h
Fogmama ooy (u1, ug, ..., w) = 2me 7 / Huh ’ Pmoyao(_ztj)Hijvaj (tj)dtj'
h=1 j=1 =1
Moreover, we can write
= ~ i)
27 P~ 3 1) = [ P Hpn(e s
. —00

J=1

Using this and assuming that u; = e°», we can do the integration. Then, the coefficient
of t; in the exponent is

h=j
—18 — 1 E Sp.
h=1

h=j
So integrating in ¢; gives the Fourier transform of G, , at s+ _s;. On the other hand
h=1
we have

h=j

et o) ot N
h=1 h=1

=l
When we multiply these terms from j = 1 to j = [, the exponent of uj, is ) (m; — «;).
j=h
So ufh disappears and we get

Fmo,m17m27---7ml (ulv Uz, - - - >ul) =

68



Fmo,ml,ml ----- my (ulv Ug, . .- 7ul) = Hm07m1,m1 ,,,,, ml(ula U2, -« -, UL " 'ul)a
where
0o j=l igl
—mo _m; (> m;j—3/2)
Hmo,ml,ml ,,,,, my (uh U2,y . .. 7Ul) = (U + 1) H ('U/Uh + 1) u I=0
0 .
Jj=1

We only need some of these functions:

™

x4+

Hyq(z) = / (u+ 1) uz + 1) du =
0

Hiya(z,y) = / (w4 1) (uz 4+ 1) (uy + 1) du =
0

T (VE+VT+)
VDV Vi) (Ve i)

T)= Oou “2(uz _1u3/2u:ﬂ

Hy,(x) /0(+1) (ux +1) d 2(\/54—1)2’

Hyya(2,y) = / (w4 1)2(uz 4+ 1) (uy + 1)~ 2du =
0

w<\/§(\/§+2)2+x(\/§+2)+2(\/§+1)2)
2(va+ 1) Vi (Vi + 1) Vi (VE+ Vi)

Hig1(2,y) = / (w+ 1) uz + 1) (uy 4+ 1) 'u2du =
0

W(2$3/2+4$(\/§+1)+2\/§(\/§+ 1)2+y—|—\/§>
2+ 1" a2 (V5 +1) Vi (Ve + o)’

Hyoa(z,y) = / (w4 1)2(uz 4+ 1) 2(uy + 1)~ 2du =
0

I

(22 +4r+ 4T+ 1) y+ (2% + 22 + 130+ Tz + 1) )
2(VE+ 1) a2 (V1) Vo (Va + E)°
w((x+3\/5+1)y3/2+2(\/§+1)3\/§>
2(Va+ 1" 282 (5 +1)" i (Vo + i)
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7 (3x 4+ 9y/x + 8)
8(va+1)" o

Hs,(z) = / (u+ 1) (uz + 1) ' 2du =
0

and N
H o (x,y) = / (w4 1)3(uz 4+ 1) (uy + 1) 2du =
0

80+0Va+8 8 _ 5 2 . 8
C(E)'vE VD ()t ()’ Ve
8(z — ) '
Now with the notations that we have set up, we can state and prove the main result
of this paper:

Theorem 4.7.2. The scalar curvature of A3 with the perturbed metric, is the element
S € A% given by the following formula multiplied by —4+/m/3.

3 7
S =k (=5 Hi1+ 5 Han = 2Hs 1) (D) (0 (6:(k)))

+k73(3H 10 — THap + 4Hs10) (A, AayAey) (AY2(6; (k) AY2(8:(k))))

+k™3(5H1 10 — 9Ha 11 + 4H311) (A, Ay D) (AV2(6;(k))d:(k))
3

k
+(2

Ha — 2Hy)(Aw)(AY2(5, (8:(k)))) + b~ (5Haa — 4Hs ) (M) (6:(k)%)

kT (=5 Ha11 4 2Hz1,0) (D), An)A ) (A(Gi(k)AY2(5:(k)))
k3 (=2H1 20 + 2Ha0.1) (D), Ay D)) (A (8 (k) A2 (6,(K)))
k™ (=THy +4H3,1,1)(A(1)aA(1 A2))(A(6i(k))di(F))
K3 (=2H 20 + 2Ha20) (D), Ay Do) ) (AY(8(k)) i (k)
+25 7 Ho o1 (Ay, Ay A )(AZ(@(k))Al/Q( i(k)))
+2k* Hy91(Aq), Ag 1A 2)) (A% (6: (k)6 (k)).

/0 " B(r)dr.

2

Proof. Tt suffices to find

For that we only need to use the substitution »* = u, and then apply Lemma 4.7.1. [
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Appendix A
The Formula for by(&, —1)

In Section 4.5 we gave the first 10 terms of by(§, —1). Here we have the entire formula:
by = —bokdy (01(k)) by — bokds (02(k)) by — bokds (93(k)) by

+6E202k20, (k)b + 26202k26, (k)b + 26202K201 (k) 2bo + 26202k26, (k) by
+6E202K20, (k) by + 26202 k26, (k) by + 26202205 (k) by + 26202k265 (k) by
+6£3b5k05 (k)b + BE bk 01 (01(K)) by + E3bgk>61 (81(k)) bo
FE202K301 (01(K)) by + 4&1Eb2K 01 (02(K)) by + 4€1E3b2K 6, (03(K)) bo
46,63 K2 65 (81(k)) by + Eb3k> 05 (02(k)) by + HEIbaK> 0o (82(K)) bo
+E202K30, (82(K)) bo + 462E3D2 k305 (05(k)) by + 4&1E5b2k305 (81(k)) bo
+A&E3b5 05 (02(k)) bo + E7bk 05 (33(k)) bo + E3b5 k>3 (03 (k) bo
+5E5k 03 (33(K)) bo — 8&1 0ok 01 (k)b — 8€7€3b0k* 01 () Do
—8ETEK" 01 (K)*by — 8E7E3bok" 2 (k) ?bg — 8&;Dk" 92 (k)b
—8E5E5bok 02 (k)b — 8ETEF bk 05 (k)b — 8EFE3bK 05 (k) o
—8E3bok " 0 (k) bo — AE105k 61 (61(K)) bo — 4E7E3b5K>01 (61()) bo
—AETE bk 01 (61(K)) by — 8E7Ebk 61 (02(k)) bo — 8616500k°61 (82(K)) bo
—8&16,83bk 01 (02(k)) bo — 8E7E3bok01 (d3(K)) bo
—86165E3b0k>01 (03(k)) bo — 8&1&5b0k 01 (85(k)) bo — 4E1E5bok> 05 (62(k)) bo
—4E5b0k> 05 (82(K)) by — 4E3€3b3k 02 (02(k)) bo — 8T €365k b, (35(K)) bo
—8E3E3bpk 02 (05(k)) by — BEESbIK b5 (03(k)) by — 4EE5bok> 05 (d5(k)) bo
—AE5E5K 55 (53(K)) bo — 4€3boK03 (J3(K)) bo
A€ EobRE201 () 0o (k) bo + 4E1E3D2 k26, (k)3 (k) bo
+ETK?61 (61(K)) bok + &bk (81(k)) bok + E305Kk>61 (01(k)) bok
+46,ED2 K255 ()81 (k) by + 4E2E5D2k205 (k)5 (k)b + E2b2K25, (2(k)) bok
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+E202K205 (65(K)) bok + E202K25 (82(k)) bok + 4&1E5b2k205 (k)6 (K)bo
+4&83b5k7 05 (k)02 (k)bo + E7b3k? 05 (95(k)) bok + E3b5k>d5 (5(k)) bok
+&3b5k> 05 (03(k)) bok — 8E &bk 81 (K)o (k)by — 8&1E3b3k™ 01 (k)02 (K )bo
—8E16E203K1 51 (k) 0o (k) by — 8EXED3K* 61 (k)5 (k )by
—86165€3b3k" 81(k)d5(k)bo — 8&1&3bgk™ 61 (k)03 (k)by — AE1b3k 01 (61(k)) bok
—AETE bk 01 (61(K)) bok — 4E7€3b0k* 01 (01(k)) bok
—8E7 &bk 61 (82(K)) bok — 861500k 61 (82(K)) bo
—8E16E23K 51 (82(k)) bok — 8E3&3b3 K6, (65(k)
— 86162630320, (65(k)) bok — 8&,E303K5, (d3(k)
—8E3E,b3k 05 ()01 (k)b — 8E1E3b3 K55 (k )51(k)bo
— 81 6,E2b3k 0 (k)01 (k)b — 8E26,E3b3 K04 (k)03 (K)bo
—8E3E3bak0(K)03(k)by — 8&E3b3K* 55 (k)S5(k)bo
—4E7 300k 02 (62(F)) bok — 4E5b0Kk" 52 (02(k)) bok
—4E2E203k 5 (89(k)) bok — 8E2&2E3b3K 05 (03(K)) bok
—8E3E3b3K10, (05(k)) bok — 8&,E3b3k* 05 (65(K)) bok
—8E3¢3b3k 03 (k)01 (K)by — 8€1£5€3b3K 65(K )61 (K )bo
—8&1E5bk 03(k) 01 (k)b — 863€263b3K™ 53 (K) (k) by
— 83305k 55(k) 02 (K )by — 8&:83b5k* 55(k) 02 (K )by
—4E1E5bK 55 (05(k)) bok — 465€3b3k 03 (35(k)) bok
—A&3b3k* 05 (63(K)) bok + 6£2bokdy (k)boky (k)bo
+2&5b0k61 (k)bokdy (K )by + 26500k (k)bokdy (k)b
+4€1E9bok Sy (K )bk (K )bo + 4€1E3bokdy (k)bokds(k)bo
+267bokdy (k)body (k)bok + 265bokdy (k)body (k) bok
+262bokd1 (k) boby (k)bok — 4€1bokd1 (k)bEE> 61 (k)bo
—4&7E3bokd 1 (k)bik® o1 (k)bo — 4€7E3bokd1 (k)b3k> 01 (k)bo
—4€3¢5bokdy (k)bRk305 (k) by — 4€,E5bokdy (k)bRk30(k)bg
—4E65E2bok 0y (k)DEK3 5 (k)by — 4E3E3bokdy (k)bEE05(k)bo
—4£1E3€3bok 01 (K)DEEP 63 (K )by — 4€1E3bokdy (K)D2k3S5(k)bo
+4€1E9bok S (k)bokS1 (k)bo + 2E2bokdy (k) bokds (k)bo
+6&3b0k s (Kk)bokda (K )bo + 26500k (K )bokda (K )by
+4£5E3b0k S (k)bokS3(k)bg + 2E3bokdy (k)boda (k)bok
+283bok6a (k)boda (k)bok + 283boka (k)boda (k)bok

o~

)
) bo
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—4E36,bo kb (K)bR301 (k)b — 4€1E5bokdy (k)D2K3S1 (k) by
— 41 65E2bok 0y (k)DEK3S, (k)by — 4€262bokd ()20, (k)bo
—4E5bokdy (kD285 (K )by — 4E2E2bokdy (k)D2k3 65 (k) by
—4E260E3bok o (k)DEK3 5 (k)by — 4€5E3boka (k)bEE05(k)bo
—4&E3bok S (k) baKP 03 (K)o + 4€1E3bokds (k) bk (k)bo
+4&E3bokd3 (k) bokda (k)bo + 26300k (k)bokds(k)bo
+2€2bo ks (k)bokds (k)bo + 6E2bokds(k)bokds(k)bo
+263bokd3 (k) bods (k) bok + 2€5bokds (k)bods (k) bok
+285bokds (k)bods (k)bok — 4€7E3bokds(k)bik>01 (k)b
— 4, E2€3bok s (k)DER3S1 (K)bo — 4€1E3b0ks (k)bEE01 (K )bo
—4E26,E3bok 03 (k)D2K3 5 (k)by — 4€5E3bokds(k)bEE> 0o (K )bo
—4&,E3bok S5 (k) bR 05 (k)b — 4E2€2b0ks (k) bEE> 05 (k) bo
—4E5€3bokds (k) byk>d3(k)bo — 4500k (k)bgk>d3(k)bo
—10&1b2K201 (K)bok?6, (k)by — 1262€2b3K201 (k) bok? 61 (K )bo
—263b3k? 61 (k)bok?0y (k)bo — 1267€3b0k>01 (k) bok™ 61 (k) bg
—4E2E202K261 (k)bok?1 (k)by — 2£5bak201 (k) bok? 61 (K )bo
— 836,201 (k) bok205 (K )by — 8ELESLEE1 (k) bok?6(K)bg
—8E16E203K21 (k) bok? 02 (K )by — 8E3 €303k, (k) bok?03(k)bo
— 8, £2€3b2K20, (k)b k03 (k)by — 8€,Eb2K>61 (k) bk (k) bo
+AETO3E 61 (k)b k™61 (k) bo + 8€1E3b3k>01 (k) b3k 61 () bo
+AE2Eb3 k61 (k) bk 01 (k) by + 8&1E3ba k201 (k) bk 61 (K)bo
+8ETE3E3bak> 01 (k)K" 61 (k)bo + AETESURR61 (k)bgk* 01 (k)b
H4E2E,03K% 01 (k)D2K 05 (K )by + SE3E303K20, (k)bEE 04 (K )bo
HAE ESVER 01 ()b 02 () by + 8366303k, (K)bak*a (k)b
+8E1E3€5 05k 01 (k)b3k 82 (K )bo + 461€:63b3k> 61 (k)b k" 62 (k) bo
FALEDZK6, (K)D2K03(k)bo + 8E3E2E5bRS1 (K )bk 65(K)bo
+4€1656300k>01 (k) bok* 03 (K)o + 8EE500k> 01 (k)b k* 05 (k) bo
+8&1E5 €505k 01 (K )bgk™ 63 (k)bo + 4€1E5b5 k01 (k) bgk*d3(k)bo
—8E36,2 k205 (k) bok?61 (K )by — 8ELESLEE?0o (k) bok?61 (k) bg
— 8668202k 65 (k) bo k61 (k)by — 26103k 55 (k) bk (k) bo
— 12626202 K265 (k) bok?0 (k)by — 10E302K26 (K )bok>d2(k)bo
—AETERU k> 02 (K)bok? b (K)bo — 12636507 k> 52 (k) bok? b2 (K)bo
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—26302k26,5 (k) bok?0 (k)by — 8E26,E3b2 K04 (k) bk (k) bg
—8E3E3b2 k205 (k) bok203 (k)b — 8E,E302 K65 (k)bok>d5(k)bg
+4E &gk 62 (k) bk 61 (k)bo + 8E; &bk 02 (k) bgk* 61 (k)bo
48, E5a K55 (k) DA 61 (k) by + 836,630k (k) bk 6, (k) bg
+8E E3E22 K20, (k)b2K6, (k)bo + 461 €262 K05 (k) b2k6, (k) bo
HALTETOK? 02 (k) b3k (K)bo + 8E7E3b5 K> 82 (k) bk b2 (k) by
+AEGb3 0 (k)b k2 (k) bo + 8ETEFERbGK? 52 (k) bk 05 (k)bo
+8E,E500k> 02 (k) b3k (K)bo + 4€5€5b5k> 82 (k)b k™ 2 (k) by
FAEEL bR 05 (k) DRKA 05 (K)o + 8E2E3€3b2 K0y (K )b2 k05 (k) bo
HAE5E3ba k>S9 (k) DA 03 (k) by + 8E16,63b3k> S5 (k) bk 63 (k) bg
+8E3EID2K2 05 (k) bRk 03 (k) by 4 426002k 0o (k) b2K 05 (K )bg
—8E3¢5b2 k205 (K)bok201 (k)b — 8E1E2E5b2k25(k )bk (K )by
—8& E302 K205 (k) bok261 (K )by — SE2€,E3b2k>05(k)bok> 0o (K )bo
— 863632k 03(K)bok? 6 (K )by — 82,6362k 03(k)bok? 62 (K )bo
—281bak>63(k)bok? 05 (k)b — 4€1E3b5k> 05 (k) bok>d3(k)bo
—283bgk>05 (k) bok? 5 (k)bo — 12676303203 (k)bok? 33 (k) bo
— 126363 b5k> 03 (k)bok>d3 (k)bo — 10&505k>05(k)bok? 53 (K)bo
+AE7E3bG k05 (k)b k™01 (K )bo + 8E7E5E3b3k> 05 (k)b k™61 (k) bo
46, 65502 K205 (k) bRE* 01 (k)bo 4 8E3E302 K205 (K) b2k 6, (k)bo
+8E1 626302265 (k)bak* 1 (k)bo + 4616502k 65 (k) b2k 61 (Kk)bo
HAETEEs k> 5 (k)b k" 02(K)bo + 8E€5€5b5k> b5 (k)b k" 82(K)bo
+AE3E3b5 kb5 (k)b k™ 2 (k) bo + 8ETE2E5b5k> 05 (k)b k™62 (k) bo
+8E5E5b k03 (k) bgk 05 (k)bo 4 4E:6505k 05 (k) bk 62 () bo
HAETES bR 03 (k) by (k)b 4 8ETESETK? b5 (k) bG k" 83 (K)bo
+AESE3 bk 03 (k)oK b5 (k)b + 8ETESbK? 03 (k) bk 05 (k)bo
+885E500k> 03 (k) bk 05 (k) bo + 4E5b5 k> 05 (k)b k™ 33 (k) bo
—14€100k35y (k)bokdy (k)bg — 167303k, (k)bokdy (k) by
—263bgk> 01 (k)bokdy (k)b — 16£7E3b5k701 (k) bokdy (k)b
—4€3E505k>61 (k) boky (k)bo — 265b5k>01 (k) bokd1 (k) bo
— 1267605k 01 (k)bok (K)bo — 1261 €505k 01 (k)boks (k)b
— 12606620236, (k) bokdy (k)b — 1263502k36, (k) bokds (k) by
— 126, €2€52K361 (k) bokds (k)bo — 126,302k 6, (k)bokds (K )bo
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—10& b3k 61 (k)bod (k)bok — 1267E505k61 (k)body (k) bok
—28,b5k> 61 (K)body (K)bok — 1263 €305k 01 (k)body (k)bok
—4€363b3k>01 (k)body (k)bok — 283b5k>61 (k)body (k)bok
—8E36,02K301 (k)boda (k)bok — 8E1E302K36, (k) boda(k)bok

— 81 6,E22k30, (k) boda (k) bok — 8E3E3D2 K381 (K )bods(k)bok
— 8¢, £2¢3b2k30, (k) bods (k) bok — 8E1E3D2K381 (k) bods(k)bok
HAE 0k 01 () gk 01 (K)bo + 81 €305k 01 (k)bk>d1 (k) bo
HAETEIBRE 01 (k)bak3S1(k)bo + 8EEbaK3S, (K )bk 6, (k) bo
+8ETEFEUSR 01 (R) bk 01 (k)bo + A& €50k b1 (k) bgk>61 (k) bo
HAE2 603301 (k)DEE3 59 (K )by + SE3EI0RR30, (k) bEE> 0o (K )bo
+4&, ES03E3 0, (kD255 (K )by + SEE,E202 K38, (K )b2k38, (k) by
86163202581 (k)b2KP 55 (k)b + A€1E2£3b2K3 81 (K)D2K> 85 (K by
AL €301 (k) DR 55 (K )by + SEE2ED2K3 81 (k) bak3d3(k)bo
48165 E3b2 K301 (k) B2 03 (k) bo + S8EIEIDZE 6, (k) D265 (K
861656365k 61 (k) bk 3 (k)bo + 461 €500k, (K)bgk>ds (K
—12636,b3k3 55 (k) bokdy (k)by — 12€,E502Kk3 85 (k)bokdy (K )bo
— 126066202 K365 (K)bokdy (k)b — 26102 k385 (k) bokdy (K )bo
—16EE202K> 62 (k) bokdy (k) by — 14E502K3 85 (k) bokda (k) bo
—4E7 6303k 05 (k) bokda (k)by — 16E5E5b5k° 2(k)bokda (k)b
—26302K3 65 (k) bokdy (k)b — 1262€,63b3 k305 (k) bokds (k)bo
—1283&3b5k 02 (k) bo ks (k )by — 12628305k (k)bokds (k) bo

—8E7E,05k° 82 (K)bodi (K)bok — 861 €505k 2 (k)body (K)bok

—8&16,E202k3 65 (k) body1 (k)bok — 26202k3 6,5 (k) boda (K )bok

— 12676300k (k)boda (k) bok — 108505k 05(k)bod2 (k) bok

—A4ELE3bk 0o (K)boda (k)bok — 12656505k 05(k)boda (k)bok
—28305k" 8 (k) bod () bok — 8E7€x€3b5k" 0 (k)b (k)bok
—8E3¢3b2k>3 05 (k)bods (k)bok — 8€E302k36,5 (k) bods(k)bok
AL &5k 52 (k)DoE> 61 (k)bo + 8ELE3b5k 0 (k) bk b1 (K)bo
A& ED3R 0 (R)bgk> 61 (k)bo + 8E7€2€3b5k 0 (k) bk 61 () bo
+8&1E3E302 K> 0o (K)bRK361 (k)bo + 461 €650k 0o (k) BEK>S1 (K)bo
ALK 59 (k) bak> 02 (k) by + 8EEESDEKS 5o (k) b3k 02 (k) bo
HALIVGK 0y (K )bk 02 (K)o + 8ETEFESUTE? 02 (k)oK 52 (k) bo

)bo
)bo
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86,500k 0a (k) bgk* s (k)bo + 46565 b5 k2 (k)b k02 (k) bo
+4€1 &b kP 82 (k)b k>S5 (K )by + 8E1ES &Rk 0o (K )bak>d3(k)bo
AL Esb k> 0o (k)UK I3 (k)b + BETELEbK 6 (k)bik> 05 (k)b
+-8E3E302 K30 (k) bRk 05 (k) by + 4E2E002K3 65 (k) D2k 05 (k) bg
—1263€5b2k3 05 (k)bokdy (k) by — 126,626502k3 65 (k) bokdy () by
— 126, €302 K305 (k) bokdy (k)b — 1262€263b2 K> 03 (k)b kda (K )bo
—1263€5b2Kk305 (k) bokda (k) by — 12626302k 83 (k) bokda (k) bo
— 2602k 05 (k) bokds(k)by — 4E2E202k365(k)bokds (k)bg
—285b5k 03 (k)bokds(k)bo — 1667€3b5k> 03 (k)bokds (k)b
— 16626202 k365 (K )bokds(k)by — 14€302k365(k)bokds(k)bo
—8E3E3b2 k305 (K)body (k)bok — 8€,E263D2k355(K)body (k)bok
— 8 E302 K305 (K) Doy (k)bok — 8E2E263D2K3 85 (K)body (K )bok
—8E3€3b2k>3 03 (k) boda (k) bok — 8€2E302k3 65 (k) boda (K )bok
— 26102k 65(Kk)bods (k)bok — 4E1E202K> 63 (K )bods (k) bok
—285b5k>03(k)bods (k)bok — 1267€3b5 k03 (k)bods (k) bok
—1265€3b5k> 83 () bods (k)bok — 10&5b5k>03(k)bods (k)bok
AL Esb k> 03 (k)Uok>01 (k)b + 8ETE5Eb3k s (k)b3k> 01 (k)b
HA& & EDOK> 3 (k)UK 01 (k)bo + 8ELE3bG K0 (k) bk b1 () bo
+861E5€3b5k 03 (k) b3k 01 (k)bo + 461€3b5k 0 (k) bk 61 (k)bo
+4€1 & &bk 83 (k)b k>S9 (K )by + 8ETES &K 85 (K )bak> 5o (K )bo
HAE5 €33 03 (k) DR 5o (K )by + SEZELEIDEE355(K)bak3 52 (k) bo
+8EIESR" 53 (k)b 0a (k) bo + 46505k 05 (k) b3k 2 (k)bo
HALTEROOR? 03 (k) b3k 05 (k) bo + 8E7E5E500K" b3 (K) b3k b5 () bo
HALEI K> 03 (k)b k0 (K)bo + BETE LG 3 (k)bgk> 53 (k) bo
+8E5€3 b5k 03 (k)b k05 () bo + A€5b5k™ 3 (k) b k>3 (k) bo
+8ESBIR6, (K)bok?81 (K)bo + 1661205k 81 (K)bok?31 (k) bg
+8ERER 0, (k)bok? 81 (k)b + 1661 E2B3KS, (k) bok?5y (k) bo
+16E7E3E30k 101 (k)bok? 81 (K)bo + 8ELES K01 (k) bok® 81 (k) bo
+87 &bk 01 (k) bk (k)bo + 166505k 1 (k) bok™ba(k)bo
+8&1E5b3k 01 (k)bok?09 (K )by + 16€3¢263b3K* 01 (k)bok?S9 (k) by
+16£,E5€2b3k201 (k) bok?0o (K )by + 8&1E0€5b3k* 61 (k) bok? 02 (K )bo
+8&7E3b3k 01 (k)bok?03(K )by + 16£3¢5€3b3K* 01 (k)bok?S3(k)bg
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861 E5€5b3K 0, (k) bok>03(k)bo 4 16E3€3b3K401 (k) bok205 (k) by
+16E,E2€303 K01 (k) bok? 65 (k )by + 81563k 01 (k) bok? 63 (K )by
+887 &bk 02 (k)bok? 1 (k )by + 1665303k 02 (k) bok>61 (k) bo
8616503 02 (k) bo k81 (k)bo + 16E3 6,203k 05 (k) bok? 61 (K )bg
H+16&, €203 0 (k) bok?6, (k) by + 8&1E,6403Kk2 05 (k) bo k>0, (k)bo
H8ETE2L3 K5y (k) bok? 02 (K )by + 16E2E503k* 55 (k) bok?2 (k) bo
F8ESHEEA 5, (k) bok85(K)bo + L6E2E2E2L3K* 5, (k) bok205 (k) bo
+1685E505k 02 (k) bk (k)bo + 8E5E5b0k™ 2 (K)bok?ba () bo

861 6,83b3k 05 (k) bok?S5 (K )bg + 16€2€3€3b3k205 (k) bok>d3(k)bo
+-865E3b3K 02 (k) bok?S3(k)bo + 16E26,E3b3 k05 (k) bok? 83 (K )by
F 1665303k 55 (k) bok205 (K )by + 86,6303k 55 (k)bok>d3(k)bo
+-862E3b3 K 05 (k)bo k81 (k)bo + 16€3€263b3k 03 (k) bk 61 (K )bo

86, 65€5b3k 05 (k) bo k61 (k)bo 4 16E3€3b3Kk405(k)bok?61 (k) bg
+166,E2€303 k03 (K )bk 6, (K )by + 8€1€5b3k 03 (k) bok? 61 (K )bo
861 6583b3k 05 (k) bok?S5 (k) bg + 16£2€3€5b3Kk205(k)bo k>0 (k)bo
+-865€3b3K 03 (k)bok?So(k)bo + 166,303k 03 (k) bok? 62 (K )bg
F 166533k 65(k)bok?5 (K )by + 86,6303k 03 (k)bo k>0 (k)bo
RELEZBR K05 (k) bok>0s (k)bo + 166262268k 63(k)bok>0s (k) by
+8&5E3b3k 03(k)bok?03(k)bo + 16£7E503Kk*55(k)bok?d3(k)bo
+H1685€505k 63 (k) bok03 (k)b + BESLK* 0 (k) bok? 83 (k) bo
F8ESLIRD, (k) bokdy (K)bo + 161 €263, (k)bokdy (k) bo
+8E7E03K 61 (k)bokdy1 (k)b + 16£1E503K"61 (k)bokdy (K)bg
H16E7E5E505k 81 (K)bok (K)bo + 8ETE3U5K 01 (k) boky (k) bo
+8E2E,b3K 61 (k) bokda (K)bo + 16E3E503K° 61 (k)bokda (K )bo
+861E5b0K 61 (K )bokdy (k) by + 16£3E,65b5k° 61 (k)bokdy(k)bo
+16£1E58500k" 61 (k)boka (k)bo + 81 €250k 61 (k) bokda (k)bo
+867E3bok 01 (k)bokds (k) by + 16£5E5€3b5k 61 (K )bokds(k)bo
+861€5E3bakP 01 (k) bokds (k) by + 16&5€3b3k° 6, (k)bokds (K )by
+16,E26303K5 0, (k) bokds (k)bo 4 8E1E5D3K 01 (k)bokds (k) bo
+8ETBK 61 (k) body (k)bok + 16&1€565k 01 (k)body (k)bok
+8E7E5b k01 (k)body (k)bok + 16€1 €305k (k)body (k)bok
+H1667€5€5b0k° 61 (K)body (k)bok + 8E7€305k61 (k) body (k)bok
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+8E2E,b3k 61 (k)boda (k) bok + 1663 €503k 6, (k)boda (k) bok
+861E500k° 61 (k)boda (k) bok + 16€7€:6305k° 61 (k)boda (k) bok
+1661E5€5b5k 01 (K)boda (k) bok + 8€1€:6505k" 61 (k)boda(k)bok
+8ET &bk 01 (K)bods (k)bok + 1663656303k 61 (k)bods(k)bok
+86165 &30k 01 (k)bods(k)bok + 16676505k 61 (k)bods (k) bok
+166,63€3b0k781 (k)bods (k)bok + 816563k 61 (k)bods (k)bok
+8E7Eb k02 (k) bokdr (k)bo + 16€3E5b3k 62 (k)bokdr (k)bo
+8&1E503k° 05 (K)bokdr (K)bo + 16€5 €260k 55 (k) bokdy (k) bo
+16£1£5E500k 05 (k)bokdy (k)bo + 8&1€285b0k° 02 (k) bokdy (k) by
+-8ETE2L3 K55y (k) bokda (K )by + 16E2E5b3 k505 (k) bokda(k)bg
+-8ESD3K5 55 (K )bokdy (K )bg + 16€2€2€203K5 6, (k) bokda (k) by
16836505k 62 (k) bokda (k)b + 8E3E3bok 2 (k) bokda (k) bg
+8E16,E3b3K 85 (k) bokds (k)by 4 166263 €3b3K56, (k) bokds (k)bo
+8E5E3b3k° 69 (k)bokS3(Kk )by + 16636,E3b3Kk° 6 (K )bokds (K )bo
H 1633035y (k) bokds (k)by 4 8E2E2b3 k62 (k) bokds (k)bo
+8E2E,b3 K 62 (k) body (k) bok + 1663 €503K 65 (k) body (k) bok
+86165b0k> 02 (K )bod (k) bok + 1667 €263b3k" b2 (k) body (k) bok
1681 E563b3k" 0 (k) body (k)bok + 8€16285b3k"52(k)body (k) bok
+8E1 &bk 02 (k) boda (k)bok + 16€7€5b5k> 05 (k)boda (k) bok
+8ESb 0 (k) boda (k)bok + 1673€3b5k02(k)bob2 (k) bok
168536505k 62 (k) bod2(k)bok + 8E3E3b0k 2 (k)boda (k) bok
+8E1E2E3b3 k505 (k) bods (k) bok + 16€1E3E3b3k5 55 (k)bods(k )bk
+885&3bpk 02 (k) bods (k)bok + 16£7E:€3b3k> 02 (K )bods (k)bok
+H1663€505k02(k)bobs (k) bok + 8E2€503k 62 (k) bods (k)bok
+867E3bok 03 (k)bokdy (K)bo + 16€3E5€3b3k" 03k )bokdy (k)bo
+861€5 €33k 03 (k) bokdy (k) by + 16&5€3b3Kk° 65 (k )bk, (K )by
166, E26303 K505 (k) bokdy (K )by + 81 €303k 83 (k) bokdy (k) by
+-8EHELE3DEK 55 (k) bokda ()b + 16€2€5€3b3K 05 (k) bokdy (k)bo
836303k 05 (k) bokdy (k)bo + 16€26,6303 k83 (k) bokda (k) bo
+16£5€3b5k° 05 (k) bokda (k)b + 82€3b3 k03 (K )bokda (k) bo
+8E1E3b3 k" 53(k)bokds (k)b + 16£7€5€5bak"03(k)bokds(k)bg
+8E5E2b3 k503 (k)bokds (k)b + 16£2¢5b3k503 (k) bokds(k)bo
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+16£5€5b5k" 65 (k) bokds (k)by + 8E5b3 k"5 (k)bokds(k)bo
+-8EDE3b3K°65(k)boS1 (k)bok + 1663 €263b3k°65(k)bod1 (k)bok
8, E4E5b3K% 05 (k) b0y (k) bok + 16E3€363K° 65 (k) body (k)bok
166, E26303K503(k)body (k) bok + 861503k 65 (K )body (k)bok
4861 E5E3b3 k205 (K)body (k)bok + 16€2€3€3b3k° 65k )boda (k)bok
+8E5E3bk° 03 (k)boda (k)bok + 16€76:E5b5k" 05 (k)bod2 (K )bok
+16E5E303K505(K)boda (k) bok + 8EE5b3K> 65 (k)boda (k)bok
+8E1E3b0k 03 (k)bods (k)bok + 16&7€5€3b3k"05(k)bods (k)bok
+88,E3bk 03 (k)bods (k)bok + 1667€5b5k>65(k)bods (k)bok
16656365k 03(k)bods(k)bok + 8E503K 5 (k)bods (k)bok
—4& 1ok (k)bk?61(k)bok — 4€7€5bokd1 (k)bk?d1 (k)bok
—4E2€2b0 k6, (K)D2K251 (k)bok — AE3€,bokdy (k)D2K25(k)bok
— 4 E3bok Sy (K)DRE 05 (k)bok — 4€165E2bokdy (K)D2k265(K)bok
—4E3€3boky (k)bak63(k)bok — 4&1E2E3bokdy (k)bak?S3(k)bok
—4&1&3bokdy (k)b 03(k)bok — A€7&bokda (k)bgk™61 (k)bok
—4€1E3bok o (k)bAK?S1 (k)bok — 4&162E2bokda (k)bak?S1 (k)bok
—4E3E3bokds (k)b3k? 02 (k)bok — 4€3bokds (k)b3k? 02 (k)bok
—4E5E3bok 0y (K)bgk 02 (k)bok — 4€7E83bok s ()bk 63 (k) bok
—4E3€3bo kb (k) bRk 03 (k)bok — 4€,E3bokdy(k)b2k265(k)bok
—AE3€3bokds (k)b2k>01 (k)bok — 4€1E2E3bok3(k)bak>6: (k) bok
— 4, E3bo kb5 (k)DRE 01 (k)bok — 4E2E2E5bokds(k)D2k265(K)bok
—4E5E3bok S5 (k)bak?0y (k) bok — 4&2E3bokds (k)bEE> 02 (K )bk
—AE3E3okas (k) bok>d3(k)bok — AE5E5bok s (k)bgk? b3 (k)bok
—4E3bokds(k)DEE205(k)bok — 6E202K25 (k)bokdy (k)bok
— 8222126, (k)bokdy (k) bok — 263b2Kk26, (k)bokdy (k)bok
—8E7E3b3k? 01 (K)boky (k)bok — 463€3b5k>1 (k) bokdy (k)bok
— 283505k 61 (K )bokdy (k)bok — 476,05k (k)boka (k)bok
— A&, E3D2K261 (k) bokda (K)bok — 4&1EE202 K20, (k)bokda (K )bok
—4E3E32K01 (k) bokds (k)bok — 46, E2€502K26, (k) bokds(k)bok
— A& €305k 01 (k)bokds(k)bok + 4€7b5k>01 (k)bGk>y (k)bok
+8E1E3ba K201 (k)81 (k)bok + A&7 €505k 6, (k)bak? 61 (k)bok
+8E1E3 bk 01 (k) b3k (k)bok + 8E7€5€5b5 k261 (k) b3k 01 (k)bok
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FALLEbR01 (R) bk (K)bok + 4E7E05K> 61 (k)bgk> 82 (k)bok
+-8E3€302 K26, (k)b 02 (k) bok + 4&1E502K26, (K)D2K3 85 (k)bok
+8ETEE5b k01 (k) b3k 0 (k) bok + 861 €5€5b5k>01 (k) bgk> b2 (k) bo
A6, 6650220, (K)BRK3 65 (K)bok + 4€2€5b2K261 (k)D2k305(k)bok
+8EPE3 &bk 01 (k) bgk® 05 (k) bok + 4€1€,63b5k>61 (k) bgk™ b5 (k)bo
+8EIERU K01 ()b k05 (K)bok + 8E1E5€5b5k>61 (k)bgk> 65 (k) bok
+46 E3D2 K26, (k)23 65 (k) bok — 4E3€,b2 k26, (k)bokdy (k)bok
— A& E302 K05 () Dok (k)bok — 4€165E202K2 0,5 (k)bokdy (k) bok
—261b3k> 62 (k) bokda(k)bok — 8E1E3b3K 02 (k)bokda (k)
—6EID2 K205 (K )bokdy (k) bok — 4E2€2b2k20, (k) bokda (k) bok
—8E2€202k26, (k) bokda (k)bok — 26302k28, (k) bokdy (K )bok
—4E26,E3b2 k205 (k)b kds (k) bok — AE3E5b2K2 05 (k) bokds (k) bok
—4E 302K 0o (k) boks (k) bk + 4E€2E,b3 k205 (k)21 (K )bok
+8ETEIDOR 05 (k) bgk>0y (k) bok + A€1E3bgk>05 (k)b3k> 61 (k) bokk
+8ETEE5 bk 02 (k) b3k 01 (k)bok + 8615505k (k) bk 61 () bo
46 EE50ER2 05 (K)DEEP 61 (K )bok + 41 €202k 65 (k) bk 5o (k)bok
+8E2E302 K205 (k) bRk 0 (k) bok + A€o (K)D2K3 65 (k) bok
+8ETEE5 bk 2 (k) bk? 5o (k) bok + 8E5E5b3k 02 (k) b3k 62 (k) bok
4268020 (k) bRK3 65 (k) bok + 4&1E2E3D2 K0y (k) bEE 03 (k) bok
(k (k ( (k)bok
(k (k (k (k

P?‘

N

o

b
FRE2EBED2 K205 (k) D205 (k) bok + AL E5bRK26, (K )b2k3 53 (k
+8E2E,E302 K205 (k)02 K305 (K)bok + SESESLRR05 (k) D2E> 55 (K )bok
HAEEDE K 6o (K)DAK3 55 (k)bok — 4E3€3b2K? 65 (K )bokdy (k) bok
— 4126302 k205 (k) bk (k)bok — 4€1E302k205(k)bokdy (K )bok
—4E26,63b3k> 03 (k) bokda (k)bok — 4€5E3b3K203(K)bokda(k)bok
—4&E5b5k> 53 (k) bk (K)bok — 26103k 0 (k) bokds (k) bok
—4E7E3 b5k 03 (k) bokds (k)bok — 2835k 55 (k) bokds (k)bok
—8ET &bk 05 (k)bokds (k)bok — 8E5E5b5k03(k)bokds (k)bok
—6E5b5 k05 (k)bokds (k)bok + 47 Esbik> 53 (k)bgk™ 81 (k) bok
+8ETE €K 05 (k)oK 61 (K )bok + 461 €,63b5k> 03 (k) b3k 01 (k)bok
+8EPE K05 (k )bk 01 (k)bok + 8163€5b0k> 65 (k)bgk™ 61 (k)bok
A6 ED2 K205 (k)DEEP 0, (k)bok + 4E1E0E3bEK205(k)DEE> 5o (K )bok
+-8E2€3E502k205(k)DAE3 0o (k) bok + 4€5€3b2 K05 (k) bR 02 (k) bok

)
)
)
)
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+8E26,E302 K205 (k) D2 k365 (k) bok + SESESLRE05(k) b2 K355 (K ) bok
ALK 05 (k)b k> 02 (k) bok + 41 €305 k> 03 (k) bgk> 63 (k)bok
+8ETEER K> 03 (k) bk 03 (k)bok + 4€5€5b3k> 03 (k)bgk> 03 (k)bok
+8ETE5 b3k 05 (k) b3k 5 (k)bok + 8€5€505k 05 (k) bgk> b5 () bok
+4ESD2 K205 (k)bak305(k)bok + 4E503K36, (k)D2K*6, (K)bok
+-RETEDA3 S, (k)bak201 (k) bok + 462503k 01 (k) b2E> 6, (k)bok
+8E1E5b k01 (k) b5k (k)bok + 8E3E5€5b3k> 61 (k)bgk?01 (k)bok
HAETESb kP01 (k) b3y (k)bok + A Eab5 k> b1 (k)b k> 62 (k) bok
+8ETE bk 01 (k) Dok (K)bok + A& E3b3 K> b1 (k)b k> 62 (k) bok
+8E7685b0k01 (k) 0ok 05 (k)bok + 8&1E5E505k> 01 (k)byk? 62 (k) bok
A1 E63bok>01 (k)b3K? 02 (k) bok + AETEab3k> 01 (kD3>0 (k) bok
+8ETES €K 01 (k)oK b5 (k) bok + 4€1E5E3b5k> 61 (k) b3k (k) bok
+8E7Eb k01 (k) b3k?0s (k)bok + 88156505k (k)b k> b5 (k) bok
46 E302EP 6, (K)D2K265(k)bok + 4€2 €202k 02 (k)D2K26, (k) bok
+8ETES bk 05 (k)03 k1 (K)bok + A& E3b5 k> 2 (k)b k> 61 (k) bok
+8ET 505K 0y (k) b5k 01 (K)bok + 861 E5€3b3k> 0 (k)b3k>61 (k) bo
k4 461628305 k> 05 (k)02 01 (k)bok + AE1 €300k 2 (k) bgk> b2 (k) bok
+8E2E0bak3 5y (k) bEK2 02 (K)bok + 4ESb3K3 05 (K)bEE? 6o (K )bk
+-8E2ELEIA P05 (k) bak 0 (k) bok + SEIED2E3 0y (k) D205 (k) bok
ALK 5o (k) bEK2 02 (K)bok + 4€1 €302k 65 (k)bak?5(k)bok
+-8E2€363b3k3 65 (k) D2k 03 (k) bok 4 4€5€3b3k3 65 (k) b2k 63 (k) bok
+8ETEE3b k> 02 (k) bgk> 05 (k) bok + 8E3E505k> 6 (k)bgk™ 65 (k)bok
+4EE505 K 02 (K)bak?S3(k)bok + 4€7E3b3K> 03 (K )bak?6, (k)bok
+-8E3€2¢302 k> 65 (k)bak?S1 (k)bok + 4€165 6303k 03 (k) b2k 61 (k)bok
+-8E3 32305 (k) bak26, (k) bok + 8&,E26302Kk3 65 (k)b2K2S1 (k) bok
+4E E3D2KP 65 (k)bak?S1 (k)bok + 4€1E263b3 k303 (k) bEE 6o (K )bok
+-8E2€363b3k3 65 (k) D2k 0o (K )bok 4 4€53b3k365(k) b2k 6o (k) bok
+8ETEE3b k> 03 (k) bgk> 02 (k) bok + 8E53€500k> 65 (k) bgk>ba (k) bok
ALK 05 (k)b k> 02 (k) bok + 41 €305k b5 (k)b k> 03 (k)bok
+8ETESERK I3 (k) bk 03 (k)bok + A€5€5b5k> 05 (k) b3k (k) bok
+8ETE bk 03 (k)bok 05 (k)bok + 8E5E5b5k> 05 (k)b k> b5 () bok
4502 K365 (k)bak?3(k)bok + 8E8b3k* 81 (k)bokd, (k)bok
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1681505k 61 (k) bok (k)bok + 8E7E3b3K" 01 (k)bokdy (k)bok
1616365k 61 (K)bokdy (k)bok + 16673€5b3k" 01 (k) bokdy (k) bok
+8E1E5bok* 81 (k)bokdy (k)bok + 8&7Eb3k* 81 (k)bokda (k)bok
+16E3E5b3k™ 61 (k)bokda(k)bok + 861E5b3k™ 61 (k) bokda (k) bok
+1667 66500k 81 (k)bokds (k)bok + 1661 E3€5b3k" 61 (k)bokda (k)bok
+8816:63b5k" 01 (K)boka (k)bok + 8EPEsbGK 61 (K)bokds (k)bok
166763630k 01 (k)bokds (k)bok + 861E,E3bgk™ 81 (k) bokds (k)bok
166805k 61 () bokds (k)bok + 166, E5E3b5k* 61 () bokds (k)bok
+81 €36k 01 (k) bokds (k)bok + 87 &bk 0o (k)bokdy (k)bok
H16EE3b0k 102 (k)bokd (k)bok + 8&1 €505k 52 (k)bokdy (k)bok
+167 6500k 8 (k)bokdy (k)bok + 1661 E3€5b3k" 62 (K )bokdr (k)bok
+8816:63b0k* 02(K)bokdy (k)bok + 8ETEILGK 62 () bokda (k)bok
+16£7E5b3k" 69 (k) bokSa(k)bok + 8ESb3K 62 (k) bokda (k) bok
+8b3 k03 (k) bokds (k)bok&S + 8b3k™ 03 (k)bokdy (k)bok&1£5
+8bjk* 59 (k) bokds (k)bok&als + 8bik*d3(k)bokda(k)bokéals
1605k 03 (k) bokds (k)bok &1 + 8bgk 0 (k)bokda (k)bokErEs
+16b3k"65(k)bokds(k)bok&5Es + 16b3k 03(k)bokdy (k)bok&ES
+16b3k* 05 (k)bokds (k) bokESES + 16b3k* 05 (k) bokda (k) bokESES
+16b3k 03 (k)bokd1 (k)bok&1E5E5 + 16b3k 0o (k) bokds(k)bok&rEEs
+16b3k 03 (k)bokda (k)bok&T €265 + 8bak™05(k)bokds (k)bok&lEs
1605k 02 (k) bokda (k) bok €53 + 8bgk 33 (K)bokds (k)bok&, &5
+16b5k"02(k)bokda (k) bok€E5€35 + 165k 05 (k) bokda (k) bok&T €363
+8bp k1 03(k)bokdy (k)bok&T €3 + 8bak da (k) bokds (k)bokESEs
+8b3 k" 53(k)bokda (k)bokESEs + 8b3k* 85 (k)bokdy (k)bok&1€5Es
+ 1663k 0 (k) bokds (k) bokE2ESES 4 1603k 65 (k) bokda (k) bokE2ESES
+ 16k 03 (k)bokSy (k)bok&3 €55 + bk 0o (K )bokds (k)bokél €ats
+-803K*65(k)bokdy (k)bokELExts.
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