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Abstract 

It is proposed that mesh-type bubble breakers can be used in two-phase gas-liquid vertical 

cocurrent pipe flow to enhance the heat and mass transfer rates. Two experimental studies 

were performed to investigate the effect of mesh-type bubble breakers with varying 

geometries on two-phase flow behaviour. The first used highspeed imaging to measure 

bubble size and observe the resulting flow regime for two-phase vertical co-flow consisting 

of air and water. A Froude number correlation that can be used to predict the bubble size 

generated by mesh-type bubble breakers is proposed. Flow regime maps for two-phase flow 

in the presence of bubble breakers with varying geometry were produced. The second study 

investigated two-phase flow heat transfer. A correlation to predict the two-phase Nusselt 

number (limited to superficial liquid and gas Reynolds number of ReSL < 2000 and 

ReSG < 100 respectively) was proposed. A thorough investigation of the effect of mesh-type 

bubble breakers on two-phase heat transfer is discussed. 

Keywords 

Two-Phase Flow, Cocurrent, Experimental Fluids, Bubble Breakup, Flow Regime, 

Convective Heat Transfer 
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Chapter 1  

1 Introduction 

1.1 Global Demand for Air Conditioning 

Global energy demand for residential air conditioning has increased in recent years.  In 

Canada, energy demand for residential space cooling has increased by 68% from 1990 to 

2009 [1]. In the United States, the percentage of homes with air conditioning has 

increased from 68% in 1993 to 87% in 2009 [2]. Throughout the world, developing 

countries have seen even larger increases in residential air conditioning demand. In urban 

China, the number of air conditioning units per household increased from 8 units per 100 

households in 1995 to 106 units per 100 households in 2009 [3]. India stands out as 

another country with the potential for a significant increase in air conditioning demand 

[4]. In spite of the fact that only a small fraction of India’s population can afford air 

conditioner, its potential demand for cooling is twelve times that of the United States [4].  

Air conditioning is used to provide thermal comfort in building interiors. If temperatures 

inside a building are too high for thermal comfort, an air conditioning system is used to 

remove heat, reduce the interior temperature, and maintain it in the thermal comfort 

range. Energy demand for air conditioning can fluctuate due to outdoor temperatures and 

solar radiation intensity. In Ontario, Canada, this leads to peak energy demands in the 

Summer months that are too great for its base supply from Nuclear and Hydro [5]. During 

peak times, natural gas power plants must be turned on to overcome the higher energy 

demand. Using natural gas to produce electricity is more harmful to the environment than 

the base energy sources, as it produces greenhouse gases. Electricity produced by natural 

gas is also more expensive than the base energy sources causing Ontario electricity prices 

to be higher during times of peak demand [6]. Other issues can arise from peak energy 

demands from air conditioning units such as blackouts. In 2012, a power outage in India 

caused by overloading of power stations left an area populated by 670 million people 

without power [7]. Fluctuations in power demand for air conditioning units can overload 

power stations, leaving millions of people without power. 
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Studies have been done to predict the effect of global warming, population growth and 

economic trends on the demand of residential air conditioning. A study by Petri and 

Calderia [8] analyzed historical data from weather stations and used current models of 

global warming to predict the change in cooling degree-days (CDD) throughout regions 

in the United States. Cooling degree-days are defined as the number of degrees that a 

day’s temperature is above 65oF [8]. For example, if the average daily temperature in a 

region over a period of 30 days is 70oF, the CDD value for that period is 150. The 

number of cooling degree-days in a region can be used to estimate the amount of energy 

required for air conditioning. The median yearly CDD value for the contiguous United 

States is expected to increase to 2215 by 2080 from a value of 792 in 2010 [8]. Although 

all regions in the United States are expected to see an increase in CDD values, the largest 

increases will be seen in southern United States with high historical CDD values. For 

example, the CDD value for California is expected to increase by 1962 and the CDD 

value for Southern Texas is expected to increase by 2250 [8]. The increase in CDD 

values in regions that already have high demand for air conditioning will lead to even 

larger peak energy demands during periods of high outdoor temperatures.  

Sivak [9] presented an estimation for global energy demand for air conditioning. In his 

study, current populations and CDD values for metropolis regions throughout the world 

were used to predict the potential global air conditioning energy demand. If ownership of 

air conditioning systems throughout the world is equal to the current level of ownership 

in the United States, it is estimated that the global energy demand for air conditioning is 

50 times higher than that of the United States [9]. Energy for air conditioners already 

accounts for 5% of the 3800 TWh of electricity produced yearly in the United States 

[10, 11]. A study by Isaac and van Vurren [12] projects the increase in global demand for 

air conditioning as a function of income trends, population growth and increase in global 

temperature due to global warming. At current ownership of air conditioning units, global 

energy demand for air conditioning by 2100 is expected to increase by 72% from its 2000 

level, due to global warming alone [12]. When population growth and economic trends 

are added, global demand energy demand for air conditioning is estimated to grow to 

10000 TWh by 2100 from 300 TWh in 2000 [12]. A large factor in the estimated increase 

from the Isaac and van Vurren’s [12] study is the predicted acceleration of global 
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warming due the increase in energy use. Since most of the world’s electricity is currently 

produced by sources that generate greenhouse gases, the increase in energy demand for 

air conditioning will increase the production of greenhouse gases. This in turn will 

increase global temperatures leading to a further increase in the demand for air 

conditioning. This cycle causes the predicted global energy demand for air conditioning 

to increase exponentially [12].  

The studies discussed previously have all assumed that the technology for electricity 

generation, building design and air conditioning remains unchanged. By producing 

electricity with renewable resources such as solar, wind or hydro that don’t produce 

greenhouse gases, the acceleration of global warming caused by an increase in air 

conditioning demand could be curtailed. Change in building design and materials used in 

residential buildings can reduce the energy needed to cool an interior space. The main 

goal of the change in building design is to reduce the solar radiation entering the space 

(directly or indirectly) or the internal heat gains. Use of double skin roofs have been 

shown to reduce heat gain by solar radiation through a building roof by 50% [13]. Heat 

gain through windows can be substantially reduced by installing double pane windows 

with optimal spacing and shading [14]. Planting trees in urban areas has also been 

suggested to provide shade in summer months that prevents solar radiation from entering 

residential buildings [15]. Recent technological improvements have also made air 

conditioning systems more energy efficient leading to a decrease in energy needed for 

cooling. Residential air conditioning systems on the market today can be up to 40% more 

efficient than systems sold 10 years ago [16]. 

1.2 Vapor Compression Refrigeration 

Air conditioning and refrigeration systems currently used in residential and commercial/ 

institutional sectors operate on vapor-compression refrigeration cycle. A schematic of the 

vapor-compression refrigeration cycle is shown in Figure 1.1.  Various thermodynamics 

processes involved in the complete refrigeration cycle are described below [17]. A 

refrigerant, typically R-104A, flows throughout the cycle. Beginning at state (1) in 

Figure 1.1, a mixed phase liquid-gas refrigerant at a low pressure and low temperature 

enters the evaporator. The evaporator is located within the space that requires cooling. 
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The temperature of the refrigerant must be below the temperature of the cooling 

environment to allow heat transfer from the air in the cooling environment to the 

refrigerant in the evaporator (Q̇E). As the refrigerant flows through the evaporator, the 

heat being transferred from the interior air causes the refrigerant to undergo a phase 

change to a vapor form at a constant temperature. The refrigerant leaves the evaporator as 

a saturated vapor and enters the compressor at state (2). The compressor adds energy to 

the refrigerant in the form of work (ẆComp). The pressure and temperature of the 

refrigerant are increased and the refrigerant leaves the compressor as a superheated vapor 

at state (3). After the compressor, the superheated vapor refrigerant enters the condenser. 

The condenser is located outside of the cooling environment allowing heat to be 

transferred from the refrigerant to the warm environment, typically outside atmosphere 

(Q̇Con).  The compressor must add enough energy to the refrigerant to increase its 

temperature to a higher value than the temperature of the atmospheric air to allow heat 

transfer from the refrigerant to the atmospheric air to occur. The heat transfer from the 

refrigerant causes its enthalpy to decreases. The refrigerant undergoes a phase change at 

constant temperature and exits the condenser as saturated liquid at state (4). The 

refrigerant then enters the expansion valve. The expansion valve causes a reduction in 

pressure and temperature at constant enthalpy, bringing the refrigerant back to the mixed 

phase liquid-gas at state (1).  

The energy demand for air conditioning in the form of electricity is the energy required to 

operate the compressor. Compressing a vapor to increase its temperature and pressure is a 

very energy intensive process. Typically, the efficiency of a residential air conditioning 

system is measured as the energy efficiency ratio (EER). The EER is the ratio of the 

cooling output (Q̇E, BTU/h) to the electricity input required for the compressor (ẆComp, 

W). In Canada, air conditioning units that receive an ENERGY STAR® rating must have 

an EER of 10.7 [16].  
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Figure 1.1: Schematic of a vapor-compression refrigeration cycle. 

1.3 Heat Absorption Refrigeration 

An alternative refrigeration process exists that requires less energy in the form of 

electricity to operate: the heat absorption refrigeration cycle. A schematic of the heat 

absorption refrigeration cycle is shown in Figure 1.2. Components such as the evaporator, 

condenser and expansion valve are common to both the vapor compression refrigeration 

cycle and the heat absorption refrigeration cycle and operate in the same way. The 

primary difference between the two cycles is that the heat absorption refrigeration cycle 

is heat-driven. That is, the heat absorption refrigeration cycle does not have a compressor 

and instead uses a secondary absorption cycle. Another difference between the two 

systems is that they both use different types of refrigerants. Various thermodynamics 

processes involved in the heat absorption refrigeration cycle are described below based 

on ammonia-water cycle [17].  
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Starting at state (1) in Figure 1.2, the low temperature and low pressure ammonia enters 

the evaporator as a mixed phase liquid-gas flow. Similar to the evaporator component in 

the vapor-compression cycle, heat is removed from the cooling environment space by 

ammonia which leads to its phase transformation into the vapor form. The ammonia 

leaves the evaporator as saturated vapor and enters the absorber at state (2). The absorber 

component is unique to the heat absorption refrigeration cycle. The saturated vapor 

ammonia is mixed with a high temperature liquid water-ammonia mixture. The saturated 

vapor ammonia is absorbed into the liquid mixture, increasing the ammonia 

concentration. During the absorption process, heat must also be transferred from the 

ammonia-water mixture to the outside atmosphere (Q̇A). After the ammonia vapors are 

fully absorbed, the high concentration mixture enters a pump at state (3). The pump 

increases the pressure of the mixture by inputting energy in the form of work (ẆP). After 

leaving the pump, the high pressure, high concentration ammonia-water mixture enters a 

heat exchanger at state (4) to recover heat from the low concentration ammonia-water 

mixture entering the absorber.  The high concentration mixture, after recovering the heat, 

enters the generator at state (5). Heat is added to the mixture (Q̇G) causing ammonia to 

desorb from the liquid mixture in the form of superheated vapor. The remaining low 

concentration liquid exits the generator at state (6) and enters the heat exchanger allowing 

heat to be recovered by the high concentration mixture. After the heat exchanger, the low 

concentration liquid enters an expansion valve at state (7) to reduce its pressure to be 

equal to the pressure of the ammonia vapor exiting the evaporator at state (2). The low 

pressure, low concentration ammonia-water mixture is fed back into the absorber at state 

(8). The pure ammonia superheated vapor that was separated by the heat added to the 

generator enters the condenser at state (9). Similar to the vapor compression cycle, heat is 

transferred from the refrigerant in the condenser to the warm environment or outside 

atmosphere causing the refrigerant (ammonia) to loose enthalpy and undergo phase 

transformation at a constant temperature. The ammonia exits the condenser as saturated 

liquid at state (10) and enters an expansion valve to reduce its temperature and pressure at 

constant enthalpy before entering back into the evaporator as a mixed phase liquid-gas 

flow at state (1).  
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Figure 1.2: Schematic of a heat absorption refrigeration cycle. 

The main advantage of a heat absorption refrigeration cycle compared to a vapor-

compression cycle is the reduction of electricity needed to operate the system. In the heat 

absorption refrigeration cycle, the only electrical energy input needed is for operation of 

the pump. Although both the pump, in the heat absorption refrigeration cycle, and the 

compressor, in the vapor-compression cycle, are used to increase the pressure of the 

refrigerant, increasing the pressure of a liquid via a pump requires far less energy than 

increasing the pressure of a vapor via a compressor (due to the lower specific volume of 

the former). The primary input energy required for the heat absorption refrigeration cycle 

is for the generator in the form of thermal energy. For large industrial cooling, the input 

energy for the generator can be obtained in the form of waste heat from industrial 

processes. For example, waste heat from natural gas combustion for electricity generation 

is used as the heat input for absorption refrigeration systems for cooling applications in 

the oil and gas industry [18]. For smaller applications like residential cooling, it has been 

proposed that solar thermal heat can be used as the input heat for the heat absorption 

refrigeration cycle [19]. 
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1.4 Challenges with the small-scale implementation of heat 
absorption cycle 

The number of residential air conditioning units has increased substantially in recent 

years. It has been estimated that currently 100 million households have an air 

conditioning system in the United States alone [2]. Demand for air conditioning will rise 

drastically due to strengthening economies in developing countries and rising global 

temperatures resulting in a large increase in global energy demand [8-12].  

As mentioned earlier, the heat absorption refrigeration system requires a heat source. In 

large-scale applications in the industrial sector, these systems operate on industrial waste 

heat which is often of high grade. The waste heat in residential units is not significant and 

mostly in the form of low grade heat. A potential heat source for the residential 

applications is solar thermal energy. It is not only an excellent source of high-grade heat 

but also a clean energy source. It should be noted that regions with high air conditioning 

demand are typically those with high solar insolation.  

Currently, no small-scale solar heat absorption refrigeration systems are commercially 

available for use as residential air conditioning systems. Many studies have been 

conducted to investigate the feasibility of such a system for residential or other small 

scale cooling applications. Aman et al. [20] performed a thermodynamic analysis for a 

solar heat absorption refrigeration system intended to provide 10kW (34000 BTU/hr) of 

cooling to a residential building. The analysis found that the system could operate with a 

generator temperature of TG=80oC, a temperature easily attainable by a roof mounted 

solar collector. The input energy required for the pump was found to be ẆP=0.89 mW. 

For a vapor-compression system with the same cooling requirement and an EER of 10.7, 

the electrical input required to operate the compressor would be ẆComp=3.2 kW. The 

electrical input for the heat absorption refrigeration cycle is almost negligible when 

compared to the vapor-compression system.  

The study by Aman et al. [20] identifies the areas of potential concern when using a heat 

absorption refrigeration cycle for residential cooling. The study found that the rate of heat 

transfer required for the generator and absorber units far exceed the rate of heat transfer 
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required by the evaporator and condenser components. This is especially concerning for 

the absorber unit. Since the temperature of the fluid in the absorber unit is lower as 

compared to the condenser, rate of heat transfer from the absorber to the outside 

atmosphere would be lower than that of the condenser. The absorber unit was also found 

to have the highest rate of exergy loss, affecting the overall efficiency of the system.  

Hourly analysis of a small-scale solar heat absorption refrigeration system was performed 

by Ozgoren et al [21]. Their study simulated solar conditions of Southern Turkey and 

used available models of evacuated-tube solar collectors to predict the performance of a 

system designed to provide 3.5kW (12000 BTU/hr) of cooling to residential and office 

buildings. Their analysis showed that the coefficient of performance (COP), the ratio of 

cooling capacity (Q̇E) to the input energy required for the generator (Q̇G), increased with 

increasing generator temperature for TG > 110oC. The study also showed that the heat 

transfer rate required for the absorber unit (Q̇A), increased with increasing generator 

temperature. The heat transfer rate required for the absorber unit can be up to four times 

that of the cooling capacity of the system [21]. Boudehenn et al. [22] performed an 

experimental study on a 5kW (15200 BTU/hr) cooling capacity heat absorption 

refrigeration cycle. A full scale system was built and tested in a lab using hot water to 

provide heating for the generator. A comparison between the experimental results and a 

theoretical thermodynamic model revealed a significant decrease in the performance of 

the experimental apparatus due to limitations of the mass transfer rate of the absorber unit 

[22].  

1.5 Absorber Improvements 

Both in theoretical and experimental studies, the absorber unit of the heat absorption 

refrigeration cycle appears to limit the performance of the cycle for use as a small-scale 

residential air conditioning system. Castro et al. [23] compared two types of absorber 

units for use in a small-scale heat absorption refrigeration cycle. Theoretical and 

experimental studies were performed on both a falling film absorber (used by Boudehenn 

et al. [22]) and a cocurrent bubble column absorber. Both the theoretical and 

experimental results revealed that a bubble column absorber has a higher rate of mass 

transfer between the ammonia vapor and ammonia-water mixture when compared to the 
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falling film absorber. Use of bubble column absorbers can allow for more efficient and 

more compact small-scale heat absorption refrigeration systems.  

Despite being more compact than a falling film absorber, a bubble column absorber is 

quite sizeable when compared to a conventional vapor-compression system. Studies by 

Fernandez et al. predicted the number of tubes and length of tubes needed for air-cooled 

[24] and water-cooled [25] vertical tubular absorbers for use in a small-scale heat 

absorption refrigeration system. Using an air-cooled system, which is more likely to be 

used in a residential setting, the modelled absorber unit required 60 tubes with a length of 

1.1m each, representing a total footprint of 0.9m2. Just the absorber unit alone is 

comparable in size to an entire conventional vapor compression refrigeration unit. If the 

components of the system are too large when compared to a conventional vapor 

compression refrigeration system, a small-scale heat absorption refrigeration system may 

not be desirable for use as a residential air conditioning unit. 

The studies by Fernandez et al. [24-25] also showed that in a vertical tubular absorber in 

which the gas is injected into a vertically flowing liquid from a single nozzle, the flow 

regime at the entrance of the absorber would be a churn or slug flow rather than a bubbly 

flow due to the high gas-liquid volumetric flowrates ratio. This flow regime limits mass 

transfer rate between the gas and liquid phases as the surface area to volume ratio of the 

gas-liquid interface is reduced. Since the length of the vertical tubular absorber is 

dependent on the mass transfer rate, it is possible to reduce the length of the absorber 

tubes if the flow regime can be changed from churn to bubbly, increasing the interfacial 

area between liquid and vapor phases. This would allow for more compact and efficient 

vertical tubular absorbers and heat absorption refrigeration systems that are designed for 

residential use.  

1.6 Bubble Formation Process 

Vertical tubular absorbers, as seen in Figure 1.3, typically come in the form of a bundle 

of vertical tubes. In each individual tube, the liquid phase of the absorber enters through 

an opening at the bottom of the tube causing a vertical upward liquid flow. A small 

diameter nozzle in the center of the bottom opening of the tube injects the gas phase 
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cocurrently into the upward flowing liquid. As the gas and liquid travels cocurrently up 

the tube, the gas phase is absorbed into the liquid phase and exits the tube at the top outlet 

as a single phase liquid flow. The mass transfer rate between the gas and liquid phase is 

highly dependent on the surface area to volume ratio of the gas phase. A two-phase flow 

with a larger interfacial area between the gas and liquid phase will have a higher mass 

transfer rate. For designers of vertical tubular absorbers, it is important to know the 

bubble size or flow type generated by the single nozzle.  

 

Figure 1.3: A schematic of an air-cooled vertical tubular absorber depicted in a 

study by Fernández et al. [25]. 

Bubble formation from a single nozzle in cocurrently upward flowing liquid has been 

studied extensively by many researchers. The size of the bubble generated by the nozzle 

depends on many variables. The general mechanism for bubble formation from a 

submerged nozzle was proposed by Ramarkrishin et al. [26]. Bubble formation from a 

submerged nozzle occurs in two stages: Expansion Stage and Detachment Stage (see 

Figure 1.4).  
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Figure 1.4: Two stages of bubble formation (Expansion and Detachment) as 

proposed by Ramarkrishin et al. [26]. 

They proposed a model to predict the size of the bubble at the end of the expansion stage 

as well as at the detachment stage for a bubble forming from a vertical nozzle in stagnant 

liquid. During the expansion phase, the bubble grows as a sphere. The volume at a given 

time in the expansion phase is determined by the gas flowrate and the time since the 

formation began. The size of the bubble at the end of the expansion stage can be 

determined from a force balance of the upward and downward forces acting on the 

bubble, which are depicted in Figure 1.5. At small gas flowrates, the end of the expansion 

phase occurs when the buoyancy (FB) of the bubble in the liquid becomes greater than the 

force of surface tension (FST) holding the bubble to the nozzle. As the gas flowrate 

increases, the inertia of the gas flow adds an upward force (FI) on the bubble. The 

increased flowrate also increases the rate of expansion of the bubble, which in turn, 

causes a downward force due to the viscous drag (FV) from the liquid resisting the 

movement of the leading surface of the bubble [26].  
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Figure 1.5: Force balance of a bubble in stagnant liquid during the expansion phase. 

For a low gas flowrate, the Viscous Drag force (Fv) and Gas Intertia Force (FI) 

would be negligible. 

During the detachment stage, the upward forces, mainly the buoyancy, is greater than the 

viscous drag resisting the bubble’s upward movement and the surface tension that holds 

the bubble to the nozzle. This causes the bubble to accelerate upwards. As the bubble 

accelerates upwards, a thin column of gas keeps the bubble in contact with the nozzle and 

allows it to continue expanding. Detachment occurs when the buoyancy force becomes 

greater than the force of the surface tension of the gas column. As the surface tension 

force decreases with increasing local radius, the surface tension of the gas column 

decreases as the bubble travels further from the nozzle tip. Once the buoyancy and gas 

inertia overcomes the surface tension, the gas column breaks in the middle, closing out 

the spherical bubble at the bottom, and allowing a new bubble formation to begin at the 

nozzle [26]. Similar to the expansion phase, the upward movement of the expanding 

bubble is resisted by the viscous drag of liquid. The force balance for the detachment 

stage of a bubble in a stagnant liquid is shown in Figure 1.6. 
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Figure 1.6: Force balance of a bubble in stagnant liquid during the detachment 

phase. 

For tubular absorbers, the upward co-flowing liquid exerts additional drag force on the 

bubble causing an early bubble detachment that results in smaller bubble size when 

compared to bubble formation in stagnant liquid. A study by Sada et al. [27] identified 

the upward forces aiding bubble detachment. Like bubble formation in stagnant liquid, 

the gas inertia and bubble buoyancy result in an upward force that opposes the surface 

tension holding the bubble to the nozzle. Since the upward flowing liquid must move 

around the spherical bubble, the liquid exerts a drag force (FD) on the bubble in the 

upward direction. This increases the magnitude of the net the upward force opposing the 

surface tension, resulting in smaller bubbles due to early detachment. The force balance 

for a bubble in the expansion and detachment phase in upward co-flowing liquid is shown 

in Figure 1.7. 
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Figure 1.7: Force balance of a bubble during the expansion phase (left) and the 

detachment phase (right) in an upward flowing liquid. 

Ramarkrishin et al. [26] discussed the effects of surface tension on the bubble size at 

detachment. At low gas flowrates in stagnant fluid, the surface tension and buoyancy 

equally contribute to the bubble detachment. As the surface tension of the bubble 

increases, the bubble size at detachment increases. As the flowrate increases, the 

influence of surface tension on the detached bubble size decreases. Sada et al. [27] also 

discussed the effect of surface tension on bubble formation in co-flowing liquid. Due to 

the addition of the upward drag force from the co-flowing liquid, the influence of surface 

tension decreases further. For inertia (from both the gas and liquid phases) dominated 

two-phase flow, surface tension has a negligible effect on bubble size [27]. 

Another variable that effects the detached bubble size is the nozzle diameter. In the study 

by Sada et al. [27] it was observed that a decrease in nozzle size resulted in a decrease in 

bubble size at the detachment. If the gas and liquid flowrates remain the same, as the 

nozzle diameter decreases, the gas velocity in the nozzle increases, resulting in an 

increase in the inertial force of the gas flow acting upwards on the bubble, causing an 

FD FD 

FD FD 

Gas Flow 

Liquid Flow 

Bubble 
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early bubble detachment. For capillary nozzles (diameters <<1mm), it has been shown 

that the liquid flow rate has negligible effect on the bubble size [28].   

Terasaka et al. [29] reported that the bubble shape at detachment in a liquid co-flow 

cannot be spherical. During the expansion stage, the bubble initially has the spherical 

shape when it is smaller in size. As it grows, the viscous drag of the co-flowing liquid 

stretches the bubble vertical deforming it shape as shown in Figure 1.8. They proposed a 

two-dimensional finite element model to predict the bubble shape during formation and 

the final bubble volume at detachment. The finite element model considered a balance 

between the pressure of the surrounding liquid and the pressure inside of the bubble. It 

also considered the force balance between the bubble buoyancy, gas inertia, liquid drag 

and surface tension (expressed as the equivalent radii of the gas stem attaching the bubble 

to the nozzle) for prediction of detached bubble volume. They compared their predicted 

bubble volume from their non-spherical model to the size predicted by spherical bubble 

models proposed in previous studies like Sada et al. [27]. It was found that the spherical 

bubble models were still able to accurately predict the bubble volume despite not 

accurately predicting the bubble shape at the detachment.   

 

Figure 1.8: Bubble shapes during bubble formation from a submerged vertical 

nozzle in upward flowing liquid as predicted by Terasaka et al. [29]. 

The model proposed by Terasaka et al. showed the effect of liquid pressure on the bubble 

size at detachment [29]. An increase in pressure of the liquid phase generally causes a 

decrease in bubble size at detachment. During the detachment phase, the increase in 



17 

 

pressure exerts a greater force onto the thin column of gas that attaches the bubble to the 

nozzle. This increased force causes the gas column to collapse and detach a smaller 

volume bubble when compared to the bubble volume at a decreased pressure. The 

pressure effect on bubble size is mainly due to the hydrostatic pressure of the liquid 

column. An increase in liquid velocity will decrease the static pressure of the liquid, 

however, the increased inertial force will be more than the decrease in the effect of 

pressure on the gas column. 

1.7 Two-Phase Flow Regimes 

The gas flow into a wall-bounded liquid stream could establish a specific structure of the 

two-phase flow that depends on the gas and liquid flow rates (GLR). At low gas flow 

rates, the gas injected into the liquid forms individual bubbles that are dispersed into the 

liquid stream and each bubble remained surrounded by the liquid phase. This flow regime 

is called the bubbly flow. As the gas flow rate increases, the bubbles begin to form and 

detach more frequently. Eventually the frequency becomes great enough that the bubbles 

begin to coalesce after they detach from the nozzle. If the gas flowrate is increased 

further, the expansion of the bubble at the nozzle will be fast enough that it coalesces 

with the previously detached bubble while still connected to the nozzle. This leads to 

flow regimes that can no longer be classified as bubbly flow as there is no clear 

separation between bubbles. Through observation of two-phase vertical pipe flow using 

x-ray and flash photography, Hewitt and Roberts [30] identified five different flow 

regimes namely, Bubble, Slug, Churn, Annular and Wispy (see Figure 1.9). Bubble, or 

bubbly flow is defined as dispersed spherical gas bubbles evenly dispersed in the liquid 

phase. As the gas flowrate increases, the bubbles begin to coalesce to form the plug or 

slug bubbles present in the slug flow regime. Slug bubbles expand to the pipe wall 

causing an intermittent flow of regions of gas and liquid. Slug flow then transitions to 

Churn flow as the slug bubbles begin to coalesce and there are limited liquid breaks 

between gas phases. Eventually, the gas to liquid flow ratio becomes high enough that the 

gas flow becomes the dominant flow in Annular and Wispy flow where the gas 

predominantly occupies the core of the tube and the liquid flow is pushed along the tube 

wall in the form of the film flow [30].  
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Figure 1.9: Two-phase vertical flow regimes proposed by Hewitt and Roberts [30]. 

 

Through observations of the flow regimes at different flow conditions, Hewitt and 

Roberts [30] also proposed a flow regime map for the two-phase flow in vertical tubes 

(see Figure 1.10). This map can be used to predict the flow regime present in a vertical 

tube based on the density (ρ) and superficial velocity (j) of the gas and liquid flows.  
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Figure 1.10: Flow regime map for vertical tubular two-phase cocurrent flow 

proposed by Hewitt and Roberts [30]. The subscripts l and v represent liquid and 

gas respectively. 

A bubbly flow regime is most desirable for a vertical tubular absorber as it has the 

highest surface area to volume ratio. More surface area of the gas phase will allow for 

higher mass transfer rates from the gas phase to the liquid phase. Flow regimes such as 

slug or churn flow is undesirable as the surface area to volume ratio of the gas phase is 

decreased, reducing the mass transfer rate when compared to a bubbly flow. Vertical 

tubular absorbers for use in small scale heat absorption refrigeration systems, the required 

gas and liquid flowrates are expected to produce slug or churn flow in a conventional 

single nozzle system [24, 25], which affects the mass transfer rate. Hence, it is desirable 

that  the flow regime in the absorber should be bubbly flow to allow for the maximum 

mass transfer rate.  
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1.8 Motivation 

The need for more efficient air conditioning systems has motivated the current research. 

Increasing demand for air conditioning will increase global energy demand, resulting in 

potential blackouts as energy production struggles to accommodate peak demands. It can 

also accelerate the effects of global warming, causing exponential growth as more energy 

produced by greenhouse gas emitting sources is needed to provide thermal comfort in 

homes throughout the world. The development of a more efficient air conditioning 

system, which reduces energy demand from non-renewable resources, is needed. The 

heat absorption refrigeration cycle has the potential to greatly reduce energy demand for 

residential air conditioning if solar thermal energy is used as its driving energy source. 

Studies have been done to test the feasibility of implementing a small-scale heat 

absorption refrigeration as a residential air conditioning system and found that the 

absorber unit limited the systems performance and design. The performance and size of 

the absorber unit is limited by its need for high rates of mass and heat transfer in a two-

phase flow. The present study has been done to improve the understanding of two-phase 

gas-liquid flow behaviour in vertical circular pipes and to investigate means to improve 

the efficiency of a vertical tubular absorber. The investigation focuses on the use of 

passive devices to improve the heat and mass transfer rates in the vertical tubular 

absorbers. Use of mesh-type bubble breakers in vertical two-phase cocurrent flow has 

been shown to be able to reduce the size of a bubble produced by a single gas nozzle in a 

two-phase vertical cocurrent flow, thus being a means to increase the mass transfer rate 

of a two-phase flow [31]. The previous study on mesh-type bubble breakers [31] is 

limited to low liquid and gas flowrates and only covers the bubble breaker’s effect on the 

bubbly flow regime. The study also neglects the bubble breaker’s effect on heat transfer, 

an important design variable of vertical tubular absorbers. The current study expands on 

the previous bubble breaker investigation to investigate the bubble breaker’s effect on a 

larger range of two-phase flow regimes, the effect of varying bubble breaker geometry on 

flow behaviour, and the effect of mesh-types bubble breakers on heat transfer in two-

phase flows. 
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1.9 Objectives 

The specific objectives of this research work are to investigate the effect of various bubble 

breaker parameters in vertical two-phase cocurrent flow, on, 

 The bubble size distribution  

 The transitional behaviour of various two-phase flow regimes 

 The two-phase convective heat transfer coefficient  

1.10 Research Impact 

The results of the current investigation can be used in the development of compact 

vertical tubular absorbers for use in small-scale heat absorption refrigeration systems. By 

investigating the effect of mesh-type bubble breakers on two-phase flow behaviour, 

estimations of their effect on the mass transfer rate in a vertical tubular absorber can be 

made. The study on the bubble breaker’s effect on heat transfer in two-phase flow can be 

used to make estimates on the heat transfer rate of a vertical tubular absorber. By varying 

the geometry of the bubble breakers in both the flow characterization study and the heat 

transfer study, the results can be used to optimize the bubble breaker design to maximize 

the enhancement of heat and mass transfer rates.  

1.11 Thesis Outline 

The first chapter is intended to provide a broader overview of the problem of increasing 

energy demand for air conditioning and the challenges of implementing solar thermal 

heat absorption refrigeration systems as residential air conditioning units. In many studies 

that review the feasibility of small-scale solar thermal heat absorption refrigeration 

systems, the absorber unit is shown to limit the system performance. The main cause of 

the limitation is the reduced mass transfer rates between a gas and liquid phase. It has 

been proposed that mesh-type bubble breakers can be used to increase the surface area to 

volume ratio of the gas-liquid interface in a vertical tubular absorber to increase the mass 

transfer rate between the phases.  
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The second chapter focuses on the investigation of the effect of various parameters of 

mesh-type bubble breakers on the bubble size and two-phase flow regime transitions.  

The parameters considered in this investigation are the pore size, length and position of 

the bubble breaker. A wide range of gas and liquid flow rates were considered that 

covered the two-phase flow regimes from bubbly to churn. 

The third chapter investigated the effect of mesh-type bubble breakers on heat transfer in 

two-phase vertical pipe flow. The results of the effectiveness of mesh-type bubble 

breakers as heat transfer enhancement devices are presented and discussed. The effect of 

flow regimes on two-phase convective heat transfer is also discussed. 

The fourth chapter summarizes the objectives and scope of the present work along with 

the key findings from this research. Some future recommendations are also provided to 

extend this work and address some unanswered questions from this research. 

1.12 Co-Authorship Statement 

This thesis has been written in an integrated article format. The second chapter, titled 

“Bubble Size Prediction and Flow Regime Analysis for Two-Phase Vertical Co-flow in 

the Presence of a Mesh-Type Bubble Breaker” has been submitted to the International 

Journal of Multiphase Flow as a separate paper and is co-authored by Kamran Siddiqui. 

The third chapter, titled “Two-Phase Vertical Co-Flow in the presence of a Mesh-Type 

Bubble Breaker” is also co-authored by Kamran Siddiqui and will be submitted to an 

academic journal relating to fluid mechanics and heat transfer. 
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Chapter 2  

2 Bubble Size Prediction and Flow Regime Analysis for 
Two-Phase Vertical Co-flow in the Presence of a Mesh-
Type Bubble Breaker 

2.1 Introduction 

Bubble column reactors are essential components in many chemical and mechanical 

processes involving two-phase flows in which the mixing of gas and liquid phases is 

required [1-3]. They are widely used due to their capability to allow high rates of heat 

and mass exchange between gas and liquid phases. The basic structure of a bubble 

column reactor is a vertical cylinder containing flowing or stationary liquid with gas 

injected at the bottom of the vessel in the form of bubbles that rise and mix with the 

liquid phase and facilitate the heat and/or mass exchange. In the biochemical industry, 

bubble column reactors are used as bioreactors for the production of proteins, enzymes 

and antibiotics as well as other industrial products [7-12]. Other chemical processes such 

as wastewater treatment also utilize bubble column reactors [13-14]. For mechanical 

applications, bubble column reactors are used as absorbers units for heat absorption 

refrigeration systems [15-17].  

In bubble column reactors, the size of the bubble entering the liquid domain is an 

important design parameter, since it has a direct influence on the two-phase exchange 

process. A large single bubble will have relatively small surface area to volume ratio 

compared to numerous small bubbles with the same cumulative volume as the large 

bubble. The smaller surface area to volume ratio reduces the interfacial area between the 

two phases, which results in the lower heat and mass exchange rates between the two 

phases. The growth and detachment of bubbles formed in a two-phase gas liquid vertical 

cocurrent flow from a conventional single vertical gas nozzle has been well documented 

in the scientific literature. Sada et al. [18] performed an experimental study to measure 

the size of single and coalesced bubbles that detached from a single nozzle in an 

unbounded vertical liquid flow. Their results show that the bubble size for liquid-inertia 

dominated flow can be predicted by a modified Froude number correlation that relates the 
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gas inertial forces, bubble buoyancy forces and the liquid drag on the generated bubble, 

to the bubble size and nozzle diameter. They observed that the bubble size increases with 

increasing gas flow rate and decreases with increasing liquid flow rate. Teresaka et al. 

[19] also investigated the bubble formation in upward flowing liquid in a column. 

Through observation of bubble growth at the nozzle tip, they proposed a non-spherical 

bubble growth model considering the balance of internal and external pressure forces as 

well as the inertial forces from both gas and liquid flows exerted onto the bubble 

interface. The model predicted the growth of the bubble volume at the nozzle and the 

volume of the bubble after detachment. The bubble size predictions from their model 

were in good agreement with experimental results over a range of gas-liquid flow rates 

ratio (GLR). However, the model was not able to accurately capture the shape of the 

formed bubbles. Chen et al. [20] proposed an interfacial element model to predict the 

shape and growth of non-spherical bubbles. They compared the bubble size predicted 

from their model with the experimental results from Teresaka et al. [21] and found the 

model predictions to be in good agreement with the experimental data. The model also 

effectively predicted the shape of a single bubble forming at a nozzle in an upward liquid 

flow. 

In some applications of bubble column reactors, the ratio of gas-liquid flow rates (GLR) 

exceeds the condition at which a single vertical nozzle can produce bubbly flow [15, 16]. 

Hence, two-phase flow regimes at higher GLRs have been studied in the past. Hewitt [21] 

and Hewitt and Roberts [22] studied two-phase flow regimes in both vertical and 

horizontal pipes. Through experimental observation of two-phase vertical co-flow, they 

identified four regimes: Bubbly, Slug, Churn and Annular. Generally, as the GLR 

increases, the flow regime transitions from a bubbly flow to slug, to churn and finally to 

annular flow. It has been found that the flow conditions at which the transition from 

bubbly to slug flow regime occurs is not very sensitive of the pipe geometry [23]. Flow 

transition maps were created to predict the flow regime based on the fluid properties and 

flowrates of both phases [21, 22]. However, these maps are valid for the fully developed 

region of the flow, downstream of the entrance.  
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Ujang et al. [24] and Waltrich et al. [25] studied the evolution of two-phase flow from the 

entrance region to the fully developed region. These studies show that the flow regime is 

not only dependent on the GLR but also that the flow regime changes along the length of 

the pipe as the gas regions coalesce. When the gas is injected into the liquid flow, the 

initial flow regime may not be the same as the predicted regime from the flow transition 

maps proposed by Hewitt, and Hewitt and Roberts [21, 22]. A two-phase flow with gas 

and liquid flowrates corresponding with a slug flow regime can begin as a bubbly flow 

regime at the pipe entrance immediately downstream of the gas nozzle. As the two-phase 

flow continues through the pipe, the initial nozzle generated bubbles begin to coalesce 

forming plug and slug bubbles eventually reaching its fully developed flow regime as 

predicted by Hewitt [21], and Hewitt and Roberts [22].  

For bubble column reactors that operate at high GLRs, the regime is not expected to be of 

the bubbly flow, which constitutes the highest surface area to volume ratio for the gas 

phase. Hence, to achieve higher mass exchange in the column reactors at high GLRs, a 

mechanism needs to be used to break large (slug or churn) gas regions and transition the 

regime back to bubbly flow which otherwise would be in slug or churn flow mode. 

Several techniques have been reported in literature to generate smaller bubbles or to 

break large bubbles. Fadavi et al. [26] investigated the use of a sparger and found a 

reduction in the bubble size by adding a rotational flow with a passive swirl device to the 

liquid before the gas was released through the sparger. This swirl increased the shearing 

force from the rotational liquid and caused early bubble detachment that resulted in 

smaller bubble generation. The effect of rotational flow was also investigated by Sobrino 

et al. [27]. They used a perforated plate, rotating at a set speed, to release gas into a 

fluidized bed. It was found that an increase in the rotational speed of the bed decreased 

the bubble size at detachment due to the increase in shearing forces. Manabu et al. [28] 

investigated the use of a porous nozzle in a stationary water bath. At low gas flow rates, 

the porous nozzle was found to reduce the size of the injected bubbles. As the gas flow 

rate increased, the pores’ effectiveness reduced and the gas region similar to the slug 

regime was formed in the pipe. They concluded that the pore has no effect at the higher 

gas flow rates and the size of the gas region was only dependent on the nozzle diameter.  
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The generation of turbulent liquid flow is a common way to control bubble and droplet 

size in two-phase flows. The study of turbulence in two-phase flow is dated back to the 

pioneering work of Kolmogorov and Hinze [29, 30]. Their studies showed that the size of 

a stable liquid droplet in a turbulent liquid flow is dependent on the integral length scale 

of the turbulent flow and the turbulent intensity. They proposed a critical Weber number 

to predict the stable droplet size in a two-phase flow that relates the shear stress of a 

turbulent eddie to the surface tension of the dispersed phase. If the Weber number of a 

flow is greater than the critical Weber number, the turbulent shear stress would cause the 

droplet to split until the stable droplet size has reached. The same relation can be used in 

gas-liquid flows to predict the stable bubble size when the liquid flow is turbulent. In 

recent years, studies have been performed to estimate the critical Weber number and 

stable bubble or droplet size for a range of specific flows including gas-liquid flow in 

tubes [31-34]. By increasing the turbulent intensity in a gas-liquid flow, the chance and 

frequency of bubble break-up can be increased allowing smaller and more dispersed 

bubbles to be generated. 

Passive devices placed downstream of a single nozzle or bubble dispersion system have 

also been studied as mechanisms to break up bubbles into smaller daughter bubbles. 

These devices can be used to add a shearing force to the flow similar to that of a turbulent 

eddie. Miyahara et al. [35, 36] investigated bubble breakup in a two-phase vertical co-

flow by using an orifice plate and a converging-diverging nozzle. Bubbles were formed 

from a single nozzle in an upward flowing liquid. The two-phase flow continued through 

an orifice plate or converging-diverging nozzle forcing a turbulent jet to form. The 

increased turbulence broke the initial bubble into multiple smaller daughter bubbles. A 

critical Weber number correlation was developed as a function of the Reynolds number 

of the flow through the orifice [36]. The use of multiple sieve trays has been shown to 

increase mixing of liquid and gas phases for a variety of flow regimes [37-39]. The 

positioning of the trays, the pore size and the opening ratio of the sieves can affect the 

bubble size distribution, liquid mixing and gas holdup in a vertical tube. Wire meshes 

were studied by Prasser et al. [40] and were found to significantly reduce the size of a 

single nozzle-generated bubble in a bubbly flow regime. The wire mesh had an 
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insignificant effect when the flow downstream of the wire mesh was in the slug regime 

[40].  

A honeycomb monolith breaker with elongated pores of uniform size was studied by 

Gadallah and Siddiqui [41]. Their bubble breaker was able to reduce the size of nozzle-

generated bubbles by 60%. They also proposed the existence of an optimal liquid velocity 

that allows for minimal bubble coalescence downstream of the bubble breaker. Mesh-

type bubble breakers are an interesting solution as they combine both a shearing force of 

wire mesh and the two-phase flow dynamics in microchannels. The study of two-phase 

flow regimes in microchannels has recently been an active topic of research [42-44]. The 

flow regime maps for microchannels differ from those of previously mentioned studies 

that investigated the bubble dynamics and two-phase flow in larger diameter pipes.  

The above literature review shows that there are several methods to reduce the size of 

bubbles in a two-phase vertical co-flow. The studies of break-up techniques are mainly 

limited to low gas flow rates and were only implemented in a bubbly flow regime. The 

present study is focused in a detailed investigation of the effect of mesh-type bubble 

breakers downstream of a single gas nozzle in upward flowing liquid flow. The effect of 

bubble breaker pore size, length and position are studied for a large range of two-phase 

flow regimes. 
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2.2 Nomenclature 

Variables  

a Major axis length, m 

b Minor axis length, m 

db Bubble/Drop Diameter, m 

Di Inside tube diameter, m 

Do Outside tube diameter, m 

Dbb Bubble breaker diameter, m 

Fr Froude number, dimensionless 

g Acceleration of gravity, m/s2 

GLR Gas-liquid flow ratio, dimensionless 

H Height, m 

L Length, m 

N Number of samples 

pd Pore density, pores/m2 

QG Gas flowrate, LPM 

QL Liquid flowrate, LPM 

ReS Bubble breaker pore Reynolds number, dimensionless 

sf Bubble breaker shape factor, dimensionless 

S Pore Size, m 
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U Superficial liquid velocity, m/s 

u Superficial gas velocity, m/s 

V Turbulent velocity difference, m/s 

We Weber number, dimensionless 

ρG Gas density, kg/m3 

ρL Liquid density, kg/m3 

σ Surface tension, N/m 

δ Nozzle inside diameter, m 

ν Kinematic viscosity,  

2.3 Experimental Setup and Procedure 

The experimental setup used in this study is shown in Figure 2.1. The setup consisted of a 

vertical glass pipe with an inside diameter of Di=15mm and an outside diameter of 

Do=19mm. The glass pipe was placed inside a transparent polycarbonate channel with a 

square cross section, filled with water. The outer transparent channel was used to offset 

the image distortion caused by the curvature of the center glass pipe. Tap water at room 

temperature entered through the inlet on the upper side of the square channel, flowed 

down through the square channel and entered the glass pipe at the bottom of the channel, 

inducing an upward vertical flow through the center glass pipe (see Figure 2.1). The 

outlet of the vertical glass pipe was open to the atmosphere. The hydrostatic pressure of 

the water at the nozzle tip was 103 kPa. Air from a pressurized supply line at room 

temperature entered through an inlet at the bottom of the square channel. The air flowed 

through a glass nozzle with an inside diameter of Di=2.5mm and an outside diameter of 

Do=3.2mm. To avoid pressure fluctuations from the pressurized supply line for the air 

flow, the air first entered a settling tank located in the laboratory. From the settling tank, 

the air flowed through a small diameter tube to the glass nozzle to provide a large 
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pressure drop, reducing the pressure fluctuations even further. The air pressure was 

monitored by a pressure gauge at directly upstream of the nozzle and found to be between 

150-250 kPa for the range of gas flowrates used in testing. The nozzle tip, where the air 

was injected into the upward flowing water, was at a height of 30 mm from the entrance 

of the center glass pipe.  

The water and air flowed co-currently up the center pipe and exited the apparatus as a 

two-phase mixture through the outlet at the top of the square channel (see Figure 2.1). 

The flowrates of both water and air were controlled and measured by variable area 

flowmeters. An Omega FL-2012-SS flowmeter was used to measure and control the air 

flowrate. Two flow meters, Omega FL-2056-SS and Omega FL-2053-SS, were used to 

measure and control the liquid flowrate. The FL-2056-SS was used for liquid flowrates 

above 0.63LPM and the FL-2053-SS was used for liquid flowrates below 0.63LPM. 

During experiments, the liquid and gas flow rates varied from 0.06-3.79 LPM and 0.2-

2.5 LPM, respectively. The corresponding GLR ranged from 0.05 to 39.6 allowing the 

experiment to investigate bubbly, slug and churn flow regimes. 
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Figure 2.1: Schematic of the experimental setup. 

The dimensions of this experimental apparatus were chosen to allow for comparison of 

the results from this experiment to previous studies of mesh-type bubble breakers [41]. 

The dimensions are also similar to the component size of absorber units used in small 

scale heat absorption refrigeration components; the results of the current experiment can 

be used to provide insights on the design of these components [12, 13]. 

Mesh-type bubble breakers of different dimensions were made from PLA plastic using a 

Makerbot Replicator 3D printer. A cross-sectional view of the bubble breaker design is 

shown in Figure 2.2, which also illustrates the geometric parameters of the breaker 

design. A bubble breaker was placed in the center glass pipe above (downstream of) the 

glass nozzle (see Figure 2.3). The key geometric parameters varied in this study to 

investigate their influence on the bubble breakup and two-phase flow regime were the 
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length of the bubble breaker (L), the distance of the bubble breaker from the glass nozzle 

tip (H), and the pore size (S) as shown in Figures 2.2 and 2.3. The effect of pore size was 

studied using four bubble breakers with pore sizes of S=1mm, S=2mm, S=3mm and 

S=4mm while the bubble breaker position and length remained constant at H=25mm and 

L/DBB=1, respectively. The effect of bubble breaker length was studied using bubble 

breakers with lengths of L/Dbb=0.5, L/Dbb=1 and L/Dbb=2 while the bubble breaker pore 

size and position remained constant at S=2mm and H=25mm respectively. The effect of 

the bubble breaker position was studied at the bubble breaker positions of H=13mm, 

H=25mm and H=50mm while the length was held constant at L/Dbb=1. Pore sizes of 

S=1mm and S=2mm were used at each bubble breaker position. Other parameters such as 

the mesh wall thickness (t=0.5mm) and the diameter of the bubble breaker (Dbb=15mm) 

were constant for all bubble breakers used in the study.  

 

Figure 2.2: Bubble Breaker cross section showing various geometric parameters; 

bubble breaker thickness (t), diameter (Dbb) and pore size (S). 
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Figure 2.3: Schematic of the positioning of the bubble breaker in the center pipe and 

other related parameters; the distance between the nozzle tip and bubble breaker 

(H) and the bubble breaker length (L). 

A Photron Fastcam (SA4) high-speed camera was used to capture greyscale images of the 

two-phase flow. A backlit shadowgraphy technique was implemented using a halogen 

lamp and diffuser screen to improve the signal to noise ratio of the images and provide a 

clear contrast between the liquid and gas phases of the flow. For each experimental run, 

images were captured at a rate of 1000 fps for approximately 5 seconds. The images were 

used for both qualitative analysis for flow regime characterization and quantitative 

analysis for bubble size estimation.  

For bubble size estimation, an in-house interactive image-processing algorithm in the 

MATLAB environment was used to determine the mean diameter of the bubbles 

generated by the nozzle and by the bubble breaker. The size of individual bubbles were 

approximated from individual images.  

In this algorithm, the user interactively identifies the major and minor axis of each 

individual bubble in a given image (see Figure 2.4). Using the major and minor axis, the 

bubble was then approximated as an ellipse. The bubble size was calculated for bubbles 

within 80 mm column height from the breaker exit.  The equivalent bubble diameter for 
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each bubble was calculated using Equation (1) where a and b are the major and minor 

axes lengths, respectively. Figure 2.5, shows an image and the corresponding bubbles 

detected and used for bubble size computation. 

 

Figure 2.4: Illustration of the major and minor axes detection of an individual 

bubble in an image segment. 
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Figure 2.5: The identified bubbles approxiated as ellipses are shown plotted over an 

original image. 

 

𝑑b = √𝑎2𝑏
3

                                                    (1) 
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As seen in Figures 2.4 and 2.5, the backlit shadowgraphy technique allowed for easy 

manual identification of the bubbles and the accurate approximation of their boundaries. 

The uncertainty in the bubble size measurement was due to the pixel resolution of the 

image and the interactive bubble detection algorithm. The pixel resolution for each image 

was 8 pixels/mm or 0.125pixels/mm. The uncertainty in interactively detecting and 

recording the bubble boundaries (the major and minor axes) was within ±2pixels or 

±0.24mm. Considering the error propagation from these elemental error sources, the 

uncertainty in the calculated equivalent diameter for an individual bubble was ±0.21mm. 

The depth of field could also cause error using this method. Depending on the location of 

the detected bubble in the vertical pipe, it may appear to be of different sizes. The error 

due to the depth of the field was also computed and for the most extreme cases i.e. at the 

closest and farthest locations, it was found to be 3%.  

In order to determine the mean bubble size at a particular operating condition and bubble 

breaker geometry, the average equivalent diameter of 120 bubbles was calculated. As 

seen in Figure 2.5, the size of every bubble could not be determined as some bubbles 

were partially covered by other bubbles present in the pipe. For each frame used in the 

analysis, only the bubbles with visible boundaries were measured using the MATLAB 

algorithm. One frame did not have enough bubbles to collect all 120 measurements. As 

the bubbles were moving slowly through the image segment, detection of bubbles in 

consecutive images would result in the duplication of the bubbles, which would bias the 

statistical estimates. Hence, to ensure no bubble duplication, 250 frames were skipped in 

between each considered frame allowing for an entirely new set of bubbles to be sized. 

The uncertainty in the mean equivalent bubble diameter was estimated in the form of the 

standard error of the mean given as, 

∆𝑑b
̅̅ ̅ =

√
1

𝑁
∑(𝑑b−𝑑b̅̅ ̅̅ )2

√𝑁
                                                     (2) 
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2.4 Results and Discussion 

2.4.1 Bubbly Flow Analysis 

The images acquired by the high-speed camera were used to analyze the effect of the 

bubble breaker when a bubbly flow regime was present downstream of the bubble 

breaker. All bubble breakers tested in the experiment were observed to reduce the size of 

the nozzle-generated bubbles by breaking them into multiple small bubbles that are 

dispersed downstream. The bubble breakers were also observed to breakup some 

instances of slug and churn flow allowing for bubbly flow at higher GLRs. A qualitative 

comparison of the two-phase cocurrent pipe flow in the presence and absence of a bubble 

breaker is provided in Figure 2.6. The figure also shows the relative performances of 

bubble breakers with different pore sizes. A more detailed analysis of the flow regime 

transition is discussed in the following section. 
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Figure 2.6: Qualitative comparison of the two-phase flow without a bubble breaker 

and in the presence of bubble breakers with different pore sizes (shown underneath 

the respective images). The bubble breaker was located 25 mm downstream of the 

nozzle tip. The length of each bubble breaker was L/Dbb=1. The liquid and gas flow 

rates in all the images were QL=2.5 LPM and QG=0.5 LPM, respectively. 

As seen in Figure 2.6, the large bubbles generated by the nozzle pass through the pores of 

the bubble breaker to create smaller and more dispersed daughter bubbles. When 

comparing bubble breaker pore size, it can be seen that the size of the bubbles generated 

by the bubble breaker increase as the pore size increases. Using the in-house MATLAB 

code described in the Experimental Setup and Procedure section, the mean diameter of 

the bubbles generated by the bubble breakers at each set of flow combinations was 

determined. Figure 2.7 shows a plot comparing the mean bubble size downstream of 
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bubble breakers of different pore sizes, as a function of the GLR. The error bars on the 

plot represent the standard error of the mean bubble diameter. 

 

Figure 2.7: Mean diameters of bubbles generated by bubble breakers of different 

pore sizes versus the volumetric gas-liquid flow ratios for gas-liquid vertical co-flow. 

Two trends can be seen in Figure 2.7. Firstly, the plot shows that bubble size increases 

with increasing pore size. Similar to the slug bubbles moving though a microchannel, the 

size of the gas phase inside the bubble breaker pore is limited by the pore size. However, 

as seen in Figure 2.7, the bubble size is not equal to the pore size. The bubbles generated 

by the smallest pore sizes, S=1mm, are larger than the pore spacing. The bubbles 

generated by the largest pores, S=4mm, are smaller than pore spacing for most of the 

GLR range. This can be explained by the flow regime within the pores of the bubble 

breaker. For smaller pore sizes, the flow is more likely to form an elongated slug flow 
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and reduce the amount of mixing between the liquid and gas phases within the bubble 

breaker pores. As shown by Akbar et Al. [45], the flow regime of two-phase flow in a 

micro channel is highly dependent on the liquid Weber number and gas Weber number 

defined in Equations 3 and 4, respectively [45]. 

𝑊𝑒L =
𝑈2𝑆𝜌L

𝜎
                                               (3) 

𝑊𝑒G =
𝑢2𝑆𝜌G

𝜎
                                               (4) 

In a microchannel of S < 1mm, Akbar et al. [45], found that the gas Weber number at 

which the flow transitions from surface tension dominated flow (bubbly and slug flow) to 

inertia dominated flow (churn and annular flow), decreased as the liquid Weber number 

decreased. At a given liquid flow rate, a reduction in the pore size reduces the liquid 

Weber number and the flow within the bubble breaker pores will more likely be of churn 

or annular flow type. For a bubble breaker with a pore size of S=1mm, the gas phase 

passing through the bubble breaker pores will form elongated slugs or annular flow. The 

gas phase will then exit the pore and begin forming a spherical bubble until the liquid 

breaks between the gas slug and forces the bubble to detach from the pore. A longer gas 

phase exiting the breaker pore will form a bubble with a diameter greater than the pore 

size. For a bubble breaker with a pore size of S=4mm, the gas phase will more likely 

form a bubbly or weak slug flow regime with more frequent liquid breaks between the 

gas phases. This would lead to the formation of bubbles that are equal to or smaller than 

the bubble breaker pore size.  

The second trend that can be seen in Figure 2.7 is the increase in bubble size as the GLR 

increases. The trend, which can be seen for all four sizes of pores that were tested, shows 

a steeper increase in the bubble size in the lower range of GLR and a levelling off of the 

bubble size as the flow begins to transition towards slug flow. This trend is similar to the 

increase in bubble size with an increase in GLR reported previously for a single nozzle 

generated bubble in two-phase co-current flow [18]. For a single nozzle, the size of the 

generated bubble is dependent on the inertia of the gas flow, inertia of the liquid flow, the 

buoyancy of the formed bubble, the nozzle size and the surface tension holding the 
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bubble to the nozzle tip. As the GLR increases, more gas can enter the bubble before the 

liquid inertial forces and gas buoyancy causes bubble detachment. For the bubbles 

generated by the bubble breaker, the initial bubble exiting the pore channel is limited in 

size by the pore dimension, as discussed previously. Throughout the entire range of GLR, 

it was observed that the size of the bubbles exiting the bubble breaker were relatively 

constant and of the same size as the pore spacing. Even at the highest GLR, small bubbles 

were generated by the bubble breaker. The increase in mean bubble size in the 

measurement area (up to 80mm downstream of the bubble breaker outlet) is due to the 

coalescence of the bubbles downstream of the bubble breaker. As the GLR increases, the 

chance of coalescence between multiple bubbles increases leading to larger bubble 

formation. The increase in the mean bubble size is caused by the increase in number of 

large coalesced bubbles rather than the increase in size of each individual bubble leaving 

the bubble breaker. This effect can be seen from the bubble size distribution at varying 

GLRs. Figure 2.8 shows the size distribution of bubbles generated by a bubble breaker 

with a pore size of S=2mm at three GLRs. 
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Figure 2.8: The size distribution of bubbles generated by a bubble breaker with a 

pore size of S=2mm for three gas-liquid flow ratios. 

The size distribution of bubbles generated by the bubble breaker in Figure 2.8 shows the 

effect of bubble coalescence. As observed in the figure, the bubble size distribution at the 

lowest GLR is quite narrow with a peak bubble size between 2-3mm. However, as the 

GLR increases, the bubble size distribution peak shows a slight increasing trend but the 

distribution tail extends significantly and monotonically with the GLR. This extension of 

the distribution tail towards the larger bubble size indicates the coalescence of two or 

more bubbles after the gas phase has exited from the bubble breaker. Although the peak 

bubble size remains nearly the same, the shift in distribution increases the mean bubble 

size. While the process is different, the trend of increased bubble size with increased 

GLR is similar for both nozzle-generated and bubble breaker generated bubbles.  

The results in Figures 2.7 and 2.8 show systematic trends of mean bubble diameter with 

respect to GLR and the bubble breaker pore size. This suggests that a generalized trend 

can be obtained to represent the bubble diameter in dimensionless form.  



46 

 

Sada et al. [18] proposed that the bubble size in an unbounded two-phase (air and water) 

cocurrent vertical flow could be predicted by modified Froude number (see Equation 5), 

that represents the ratio of the gas inertia, and the drag and buoyant forces acting on the 

spherical bubble.  

𝐹𝑟 =
𝑢2

𝑔𝑑b+0.33𝑈2
                                               (5) 

where u represents the velocity of the gas in the nozzle and U represents the velocity of 

the liquid phase. They proposed a correlation to predict the size of single bubbles 

detaching from the gas nozzle, which is presented below: 

𝑑b
𝛿

⁄ = 1.55𝐹𝑟0.2                                        (6) 

where δ is the inside diameter of the gas nozzle. The correlation of Sada et al. [18] was 

compared with the nozzle-generated bubble size in the present study to determine if the 

same correlation exists for a bounded vertical two-phase co-current flow. The results are 

presented in Figure 2.9 as Froude number versus db/δ. The correlation of Sada et al. [18] 

(presented in Equation 6 above) is also plotted for comparison. 
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Figure 2.9: Froude number versus the normalized diameter of nozzle-generated 

bubble.  The Froude number correlation proposed by Sada et al. [18] is plotted as 

the dashed line. 

As Figure 2.9 shows, the present results agreed well with the correlation of Sada et al. 

[18] at higher Froude numbers (Fr > 100). However, as the Froude number decreased, the 

present results started to deviate from the Sada et al. [18] correlation. The plausible 

explanation for this deviation is that Sada et al. [18] neglected surface tension in their 

correlation based on the argument that the gas inertia is the dominant factor in bubble 

detachment. However, the gas inertia decreases with a decrease in the Froude number and 

hence, the surface tension becomes a significant factor in the bubble formation and 

detachment and thus, in controlling the bubble size at detachment. The above results 

indicate that at low Froude numbers, ignoring the effects of surface tension could 

underestimate the bubble size. Furthermore, another potential cause for the discrepancy is 

the difference in the experimental setups. Sada et al. [18] used an unbounded vertical 
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liquid flow whereas the flow in the present study was bounded by a cylindrical pipe. At 

lower Froude numbers where the liquid inertia was higher relative to the gas inertia, the 

liquid boundary layer developing on the pipe wall could have affected the detachment of 

the bubble from the nozzle. Nevertheless, the results in Figure 2.9 indicate that the 

correlation presented by Sada et al. [18] reasonably well predicts the nozzle-generated 

bubble size in bounded flow domains for Fr > 1. 

For a mesh-type bubble breaker, the process of bubble generation is more complicated 

than that of a single bubble generated by a nozzle. The breakup of the initial nozzle-

generated bubble by the bubble breaker is dependent on the gas and liquid inertia, the 

buoyancy of the bubble, the surface tension at the interface of the two phases, the pore 

size of the bubble breaker and the radius of curvature of the leading face of the bubble. 

Once inside the bubble breaker, much like a two-phase flow in a microchannel, the 

surface tension, local gas and liquid inertia, and the pore spacing determines the flow 

regime and slug spacing. As the gas phase leaves the bubble breaker pores, much like a 

bubble forming at a nozzle in a two-phase cocurrent flow, the length of the gas segments 

within the pores, the local gas and liquid inertia and the surface tension determines the 

bubble size at the breaker exit. Immediately after and sometimes during the detachment 

phase from the bubble breaker, the individual bubbles may coalesce and form larger 

bubbles. The probability of coalescence increases with an increase in GLR, as observed 

during the current experiment. It is also dependent on the proximity of the bubble breaker 

pores. The bubble breaker with a pore size of S=1mm was found to produce more 

coalescence within the measurement area. It was also observed that for the same pore size 

(S=1 mm), most of the gas phase passed through only a limited number of pores located 

in the center of the bubble breaker. Since the smaller pore size also causes an elongated 

gas slug within the pore channel, numerous bubbles that extend beyond the limits of the 

pores are formed close to each other causing a high probability of coalescence.  

To predict the bubble size generated by the mesh bubble breaker, the correlation of Sada 

et al. [18] cannot be used due to some of the scaling parameters used in the equation. The 

equation for Froude number presented by Sada et al. [18] (Equation 4 above), used the 

diameter of the generated bubbles as the length scale. As discussed above and also shown 
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in Figure 2.8, the characteristic length scale that influences the bubble size generated by 

the breaker is the pore size (S). Hence, for the bubble breaker, the length scale used in 

Froude number scaling has been changed to the pore size. The other variables, u and U, 

representing the gas and liquid inertia are still characterizing parameters for the bubble 

formation by the breaker and hence necessary in the equation. For the bubble breaker 

correlation, u and U will represent the superficial gas and liquid velocities respectively. 

The modified Froude number scaling is given as, 

𝐹𝑟 =
𝑢2

𝑔𝑆+0.33𝑈2
                                               (7) 

The other dimensionless parameter used by Sada et al. [18] as given in Equation (6), is 

the ratio of the bubble size and the internal nozzle diameter, which characterizes the 

bubble shape. For a mesh-type bubble breaker, various length scales are involved in the 

bubble shape factor, which are the bubble diameter, pore size and bounding pipe 

diameter. The pore size can be used to describe the initial bubble diameter leaving the 

bubble breaker and the pipe diameter can influence the probability of coalescence. 

Another important variable is the pore density (number of pores per unit area, pd), which 

relates the pore proximity to the occurrence of coalescence. As mentioned earlier, the 

close proximity of pores of the bubble breaker leads to the higher occurrence of bubble 

coalescence downstream of the bubble breaker when compared to the larger pore sizes. 

Hence, the shape factor (sf) is defined as, 

𝑠𝑓 =
𝑑b𝐷i

𝑆√𝑝𝑑
                                             (8) 

Equations (7) and (8) combine the properties of both bounded two-phase co-current flow 

and two-phase flow through a pore. The bubble size data for all given pore sizes over the 

range of gas and liquid flow rates, in non-dimensional form using the proposed new 

scaling in Equations (7) and (8), is plotted in Figure 2.10.  
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Figure 2.10: Modified shape factors plotted versus the modified Froude for all cases. 

The best-fit equation and ±20% confidence limits are also plotted. 

The results in Figure 2.10 show that the bubble size data for different pore sizes collapsed 

within a narrow band confirming that the modified dimensionless shape factor and 

Froude number accurately characterize the size of bubbles formed by the mesh-type 

bubble breaker independent of the pore size in the given measurement range. The data in 

Figure 2.10 also shows strong correlation between the shape factor and the Froude 

number. The correlation is quantified through the best-fit curve expressed as Equation 9. 

All of the data points fit within ±20% of the values predicted by this correlation as 

indicated by the confidence limits on Figure 2.10. 
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𝑠𝑓 = (8 × 10−5)𝐹𝑟0.095                                          (9) 

It is also observed that the bubble size in the present correlation has relatively weaker 

dependency on the Froude number as compared to the correlation of Sada et al. [18] 

(Equation 5). This is due to the reason that the initial bubble size leaving the bubble 

breaker is limited by the pore size and the eventual increase in mean bubble size is due 

mainly to the bubble coalescence. Hence, the rate of bubble growth is much smaller than 

that of a single bubble generated by a nozzle. The individual bubbles that coalesce will 

have larger size compared to the mean bubble size, but as shown in Figure 2.7, the 

coalesced bubbles are at the tail end of the distribution and have a relatively weak 

influence on the mean bubble size.  

The correlation in Equation 9 is obtained from the bubble data for different pore sizes 

over a range of gas and liquid flow rates. However, the bubble breaker length (L) as well 

as its distance from the nozzle (H) were constant. The correlation was further tested for 

its ability to predict the size of bubbles generated from a bubble breaker with a constant 

pore size but different length and position. Figure 2.12 shows the data for bubble breakers 

of pore size S=2mm, lengths of L/Dbb=1 and 2, and heights of H=13mm and 25mm.  The 

plot shows that the data collapsed in a narrow band and follow the proposed correlation 

closely, confirming that the proposed correlation accurately captures the effect of the 

breaker’s length and position. Like the data plotted in Figure 2.10, the data plotted in 

Figure 2.11 is fits within ±20% of the values predicted by the correlation shown as 

Equation 9. 
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Figure 2.11: Modified shape factors plotted versus the modified Froude number for 

different lengths and positions of the bubble breaker of 2 mm pore size. The 

correlation from Equation 9 is also plotted for comparison. 

It is important to note that the proposed correlation is valid when bubbly flow is present 

after the bubble breaker. The range of liquid and gas flowrates that produce bubbly flow 

may differ when the bubble breaker configuration is changed. The Froude number 

prediction is also limited to air and water. Similar to Sada et al. [18], the proposed 

correlation ignores the surface tension effects at the phase interface. Surface tension can 

affect the flow through the bubble breaker pores, the detachment of the gas phase from 

the bubble breaker and the probability of coalescence or further bubble breakup 

downstream of the bubble breaker. 
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2.4.2 Flow Regime Characterization 

The flow regime in a bubble column reactor can have a large impact on both the heat and 

mass transfer rates. Knowledge of the flow regime under the given operating conditions, 

will allow designers to properly size reactor columns for their desired applications. As 

shown in the previous section, the mesh-type bubble breaker is effective in reducing the 

bubble size in a bubbly flow regime. In the current section, the influence of mesh-type 

bubble breakers on the flow regime transition over the given range of GLRs is presented 

and discussed. 

The images from the high-speed camera were used to identify a specific flow regime for 

each combination of flow and bubble breaker geometric variables. These flow regimes 

varied from bubbly to churn flow. As per Hewitt [21], and Hewitt and Roberts [22], 

bubbly flow is defined as separate spherical regions of gas dispersed throughout the 

liquid. Whereas, slug flow is defined as large elongated regions of gas separated by slugs 

of liquid flow. The gas phase fills the majority of the cross sectional area of the tube and 

is surrounded by a thin layer of liquid that separates the gas from the tube wall. Churn 

flow is defined as an unstable and oscillatory flow that occurs when slug regions begin to 

coalesce and form gas columns [21, 22]. Images illustrating these flow regimes with and 

without a bubble breaker are shown in Figures 2.12 and 2.13, respectively. 

When no bubble breaker was present, as shown in Figure 2.12, the gas phase quickly 

coalesced and formed slug and churn flow. Even at the highest liquid flow rates, the flow 

transitioned from bubbly to slug flow at a relatively low gas flow rate. When a bubble 

breaker was added, as shown in Figure 2.13, the bubbles generated by the nozzle were 

effectively broken up into smaller and more dispersed bubbles. As the gas flow rate 

increased, the bubble breaker prevented the gas from transitioning into a slug flow at the 

same flow conditions at which the bubbly flow transitioned to the slug flow in the 

absence of a bubble breaker. Eventually, in most cases, the flow with a bubble breaker 

did reach slug and then churn flow in the upper range of the gas flowrates used in the 

present study.  
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Figure 2.12: Images of Two-Phase flow with no bubble breaker. From left to right 

the images show bubbly flow (QL=0.63 LPM, QG=0.2 LPM, GLR=0.32), slug flow 

(QL=0.63 LPM, QG=1.0 LPM, GLR=1.59), and churn flow (QL=0.63 LPM, 

QG=2.0 LPM, GLR=3.17). 
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Figure 2.13: Images of Two-Phase flow after passing through a bubble breaker 

(S=2mm, H=25mm, L/Dbb=1). From left to right the images show bubbly flow 

(QL=0.63 LPM, QG=0.5 LPM, GLR=0.79), slug flow (QL=0.63 LPM, QG=1.5 LPM, 

GLR=2.38), and churn flow (QL=0.63 LPM, QG=2.5 LPM, GLR=3.97). 

When slug and churn flow form in the presence of a bubble breaker, the surface area to 

volume ratio of the gas phase was higher compared to the slug and churn flow generated 

by the nozzle. The bubble breaker first breaks the slug and churn flow into individual 

small bubbles. For slug or churn flow to reform, the small bubbles exiting the bubble 

breaker pores must coalesce. Although a large number of small bubbles and gas regions 

coalesce, there remain significant number of detached small gas regions (see Figure 

2.13). These small and numerous gas regions increase the surface area to volume ratio of 

the gas phase compared to that in the absence of a breaker.  The images also show that in 

the presence of a bubble breaker, generally, for slug flow, each gas slug region produced 
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by the bubble breaker is followed by a liquid section containing small bubbles. Whereas 

in churn flow, the diameter of the center column of gas is reduced as small bubbles 

remain close to the pipe wall (see Figure 2.13).  

To quantify the effect of various geometric parameters of the mesh-type bubble breaker 

on the flow transition, the high-speed images were used to generate flow transitional 

charts that map flow regimes as a function of operating conditions [21].  In the present 

study, the charts are produced based on the observed flow regimes from the imaging data 

covering 80 mm height from the bubble breaker or the nozzle (in the absence of a bubble 

breaker). Figure 2.14 shows the flow transitional chart in the absence of a bubble breaker 

over the given range of gas and liquid flor rates.  

 

Figure 2.14: Flow transition chart for cases without a bubble breaker over a range 

of air and water flow rates. The coloured symbols depict each flow regime 

(blue=bubble, green=slug, red=churn). 
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As Figure 2.14 shows, the transition from bubbly to slug flow occurs at the lower end of 

gas flow rates used in this study. For the lower range of liquid flow rates, only a gas flow 

rate of 0.2 LPM was able to produce bubbly flow. For the two highest liquid flow rates 

(3.15 LPM and 3.79 LPM), bubbly flow was observed up to a gas flow rate of 1 LPM. 

For liquid flowrates of 1 LPM and above the observed bubble to slug transition GLR 

remained constant at GLR≈0.3. At liquid flowrates lower than 1 LPM, the bubble-to-slug 

transition GLR increases as the liquid flowrates decrease. The observed transition GLRs 

for liquid flowrates of 0.63 LPM, 0.38 LPM and 0.06 LPM are ~0.55, ~0.92 and ~5.0, 

respectively. At low liquid flowrates, the bubble formation and breakoff from the nozzle, 

and eventual coalescence is driven by the buoyancy forces rather than the inertia of the 

liquid phase. The low liquid flowrate causes the gas phase to behave as if it was in a 

stagnant bounded water column. The changes in liquid flowrate have negligible effect on 

the change in flow type. Once the liquid flowrate is high enough, the inertial forces begin 

to influence the bubble behaviour allowing the GLR to be used as a predictor of the flow 

transition.  

The results in Figure 2.14 for a two-phase vertical co-current flow with no bubble breaker 

will be used as a baseline to compare the influence of mesh-type bubble breaker 

geometry on the flow regime transition. The first geometry variable to be discussed is the 

pore size. The transition charts for bubble breakers with different pore sizes are shown in 

Figure 2.15. When comparing the transition charts in Figure 2.15 with that in Figure 2.14, 

it can be seen that a mesh-type bubble breaker, of any pore size, is effective in increasing 

the GLR range over which bubbly flow is present. For example, at a pore size of S=2mm, 

the bubble to slug transition GLR is increased to GLR≈0.8 at a liquid flowrate of 

QL=2.5LPM. 
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Figure 2.15: Flow transition charts for the cases with bubble breakers of different 

pore sizes (1-4 mm). The length of the bubble breaker and the height above the 

nozzle tip remain constant at L/Dbb=1 and H=25mm, respectively. 

Differences between the flow regime transitions can be seen when comparing the 

transition charts of four different pore sizes. In general, the GLR at which transition from 

bubbly flow to slug flow occurs decreases as the pore size increases. This is due to the 

increased bubble size caused by the pore spacing. The bubbles detaching from the 4mm 

pore size breaker will be larger than the bubbles from the 1mm pore size breaker. If the 

bubbles from the larger pore size breaker coalesce, they will be more likely to form a 

bubble large enough to be considered as a slug region. For the bubbles from a smaller 

pore size breaker, it will take more interactions of multiple bubbles to form a slug region.  
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A contrast to the general trend is seen in the flow transition chart of the bubble breaker 

with a pore size of S=1mm. For liquid flowrates up to QL=2.5LPM, the bubble breaker 

was effective in increasing the GLR at which the flow transitioned from bubbly to slug 

regime. For these liquid flowrates, the S=1mm bubble breaker allowed for the highest 

GLR for transition from bubbly to slug flow. At QL=2.5LPM, the transition from bubbly 

flow to slug flow occurred at GLR≈1.  However, for the liquid flow rates above 2.5LPM, 

the bubble breaker was not able to increase the transition GLR when compared to a flow 

in the absence of a bubble breaker. For instance, at QL=3.8LPM the transition from 

bubbly flow to slug flow occurred at GLR≈0.4, which is lower than the no bubble breaker 

case. By analyzing the images captured by the high-speed camera, it was observed that at 

higher liquid flow rates, the S=1 mm bubble breaker was not able to disperse smaller gas 

regions throughout the entire cross section and slug regions started to form almost 

immediately after the gas phase left bubble breaker (see Figure 2.16). 

 

Figure 2.16: Image sequence showing the slug formation downstream of a bubble 

breaker with a pore size of S=1mm at a liquid flowrate of QL=3.2LPM and a gas 

flowrate of QG=1.5LPM (GLR=0.47). The time interval between images is 0.005 

seconds. The gas slug regions are highlighted by red outlines. 
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The process of slug formation downstream of the bubble breaker begins with the entrance 

of gas into the bubble breaker pores. The pore structure of a bubble breaker can be 

considered as a mechanism to introduce shearing force on the bubbles passing through 

the breaker, which may be similar to a shearing force caused by turbulent eddies. For 

bubble breakup in turbulent flow, the Weber number has been used to determine the 

critical size of a bubble to trigger breakup [30]. This critical Weber number is 

expressed as,  

𝑊𝑒 =
𝑉𝑏

2𝑑b𝜌L

𝜎
                                                            (9) 

where the velocity scale, Vb
2, of the Weber number is defined as the average value across 

the flow field of the squares of velocity differences over a distance equal to the bubble 

diameter, ρL is the liquid density and σ is the surface tension of the bubble. The length 

scale, db, is the diameter for a spherical droplet or bubble, and for a non-spherical bubble 

or droplet, it refers to the local radius of curvature at the phase interface. In order for a 

bubble to break, the Weber number must be greater than the critical Weber number for 

the given flow conditions [30]. 

To increase the probability of bubble breakup in a turbulent flow, the integral length scale 

of the turbulent structures must be of the same size as the generated bubbles. This ensures 

that a larger enough shearing velocity difference will be generated across the bubble 

surface [30]. Even if a large shearing velocity difference is formed by a small eddie, it 

may not be enough to break the bubble surface. Small eddies tend to cause disturbances 

on the bubble as the inertia contained in the eddie is not enough to overcome the bubble 

surface tension. If an eddie is much larger than a bubble, the shearing velocity difference 

will be small at a distance equal to the bubble diameter. Large eddies cause the entire 

bubble to be translated rather than causing a break [30]. For break up caused by a bubble 

breaker, the pore walls cause a shearing stress and the pore spacing can be thought of as 

the shear spacing, similar to the eddie size. Decreasing the pore size can decrease the 

Weber number. 
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A factor that influences the Weber number, when it used to describe the break up of a 

bubble caused by a bubble breaker, is the radius of curvature at the leading edge of the 

nozzle-generated bubble. It has been observed that nozzle-generated bubbles, at high 

liquid flowrates, undergoes stretching near the leading edge as they advect downstream, 

which reduces the leading edge radius of curvature. The image sequence in Figure 2.16 

illustrates this phenomenon. The process of the bubble tip forming in a flow unobstructed 

by a bubble breaker is illustrated by an image sequence in Figure 2.17. At high liquid 

flowrates, the liquid inertia elongates the bubble as it is forming at the nozzle tip. Right 

before the detachment from the nozzle, as the lower portion of the bubble stretches, a 

neck is formed at the lower end of the bubble that maintains the supply of gas into the 

bubble from the nozzle. Once the bubble detaches, the neck rebounds and pushes the air 

mass upwards into the bulk of the bubble. This upward push of mass causes the 

deformation of the leading edge, which then leads to the tip formation (see Figure 2.17).  

 

Figure 2.17: An image sequence, illustrating the formation of a tip at the leading 

edge of a nozzle-generated bubble at liquid and gas flowrates of QL=3.2LPM and 

QG=1.5LPM (GLR=0.47). The time separation between images is 0.003 seconds. 

Since the leading edge tip of the bubble is the first point of contact with the bubble 

breaker, its curvature plays a crucial role in the bubble breakup and the dispersion of 

airflow into the bubble breaker pores.  Figure 2.18 depicts a conceptual model of the 

bubble breakup process for smaller pore size at higher GLRs due to the presence of 

bubble’s leading edge.  
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Figure 2.18: An image showing the flow of a gas region through a bubble breaker 

that is unable to split the bubble into multiple pores due to the bubble tip formed 

after detaching from the nozzle. 

As the radius of curvature of bubble’s leading edge becomes smaller, the bubble is 

exposed to a smaller number of pores in the centre of the breaker. The pores’ edge causes 

the rupture of the interface and the air from the bubble starts to flow through these pores. 

Since the cross-sectional area of gas flow in the breaker becomes smaller than that of the 

bubble itself, the gas accelerates as it enters the breaker pores. The liquid passes through 

the rest of the breaker pores. The reduction in the gas flow area at the bubble breaker 

entrance results in an increase in the liquid flow area, which leads to the deceleration of 

the liquid as it enters the breaker pores (see Figure 2.18). At the breaker exit, gas moves 

faster than the liquid causing a rapid expansion of the gas, which increases the probability 

of bubble coalescence and the reformation of slug bubbles at smaller pore size (see 

Figure 2.18). The images in Figure 2.16 confirm this behaviour. 
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Although the reduction in Weber number due to the reduced radius of curvature occurs 

for each of the bubble breakers tested, a small pore size provided an additional 

contribution to the reduction in the Weber number to allow the slug region reforming. It 

is expected that if the pore size is reduced further, the bubble breaker will not be able to 

increase the GLR at which the flow transitions from bubbly to slug regime at even lower 

liquid flowrates than those observed for the S=1mm bubble breaker. Eventually, the pore 

size can be reduced enough that the will have no effect on the transition GLR when 

compared to a flow with no bubble breaker.  

The influence of bubble breaker’s distance from the nozzle tip on the flow transitional 

behavior is presented in Figure 2.19 for two different pore sizes. Once again, all bubble 

breakers were able to increase the GLR at which the flow transitioned from bubbly to 

slug or churn when compared to the case with no bubble breaker. The placement of the 

bubble breaker did have an effect on the transition GLR; placing the bubble breaker 

further downstream from the nozzle tended to decrease the transition GLR. 

When comparing the flow transition charts for bubble breakers with a pore size S=2mm 

at heights of H=13mm and H=50mm above the nozzle, it can be seen that the bubble 

breaker that is closer to the nozzle tip is more effective in delaying the transition of 

bubbly flow to slug flow to higher GLRs as well as the transition from slug to churn flow. 

At a liquid flowrate of QL=2.5LPM, transition from bubbly to slug flow occurred at 

GLR=0.8 at a height of H=13mm, which reduces to GLR=0.6 for a height of H=50mm. 

At the same liquid flowrate, the bubble breaker at a height of H=13mm was able to 

completely prevent churn flow from occurring whereas the transition occurred at a 

GLR=0.8 when the bubble breaker was at a height of H=50mm. The analysis of the data 

also shows that the change in transitional GLR is not significant if the bubble breaker is 

moved to a lesser distance above the nozzle. For example, the difference in transitional 

GLR is minimal when the bubble breaker moved from a distance of 13 mm to 25 mm 

away from the nozzle (see Figure 2.15). A height of H=50mm allows for gas regions that 

detach from the nozzle as single bubbles to form into slugs before coming into contact 

with the bubble breaker. Once a slug region has formed, the bubble breaker becomes less 

effective as there will be less mixing between the gas and liquid phase within the pore 
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channels. Since a slug region could be longer than the bubble breaker length, the gas 

region passing through a pore channel may fill the entire length of the pore with gas 

without letting any liquid in. With no liquid in the pore, the gas region will not break into 

multiple bubbles and the gas will exit the bubble breaker pores as elongated jets rather 

than bubbles. The gas jets emerging from bubble breaker pores interact with each other to 

reform a slug region. By placing the bubble breaker closer to the nozzle, the flow regime 

between the bubble breaker and nozzle tip remains bubbly at higher GLRs. Once at an 

optimal height, any further decrease in the height of the bubble breaker will have little to 

no effect on the flow regime transition. 

 

Figure 2.19: Flow transition charts for the cases with bubble breakers at two 

different positions above the nozzle tip for two different pore sizes. 
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The flow charts for the bubble breaker with a pore size of S=1mm and heights of 

H=13mm and H=50mm (see Figure 2.19) can be compared to the flow chart for the 

bubble breaker with the same pore size and a height of H=25mm (see Figure 2.15). As 

discussed earlier, this pore size was very effective at increasing the transition GLR for 

liquid flowrates up to QL=2.5 LPM. Due to a decrease in Weber number, the pore size did 

not increase the transition GLR for liquid flowrates above QL=2.5 LPM compared to the 

flow with no bubble breaker. A similar trend can be seen when the bubble breaker was 

lowered to a height of H=13mm and raised to a height of H=50mm. At liquid flowrates 

up to QL=2.5 LPM the transition GLR from a bubbly to slug flow regime was higher than 

or equal to a bubble breaker at the same height and a pore size of S=2mm (with the 

exception of a liquid flowrate QL=2.0 LPM). Above the liquid flowrate of QL=2.5 LPM, 

the transition GLR for the bubble breaker with a pore size of S=1mm and height of 

H=13mm becomes less than the transition flowrate of the bubble breaker with a pore size 

of S=2mm and the same height. The same trend occurs when the bubble is at a height of 

H=50mm. The transition GLR is still higher when the bubble breaker is compared to a 

flow with no bubble breaker case.  By moving the bubble breaker closer to the nozzle tip, 

the bubbles will come in contact with the bubble breaker before the bubble tip, is formed 

(see Figure 2.18). Moving the bubble breaker further downstream of the nozzle allows 

the bubbles to reform into a more spherical shape after the tip is formed. The radius of 

curvature of the leading edge of the bubbles as they come into contact with the bubble 

breaker is increased allowing the bubbles to break into more pores, reducing the chance 

of coalescence immediately downstream of the bubble breaker. At the two highest gas 

flow rates tested in this study, the increase in radius of curvature is still not large enough 

to overcome the effect of the small pore size and the gas reforms into slug flow after 

passing through the bubble breaker.  

The influence of the bubble breaker length on the flow transition is illustrated in 

Figure 2.20. The bubble breaker length was found to have a significant influence on the 

bubble to slug transition GLR.  The bubble breaker with a length of L/Dbb=2 was able to 

completely eliminated slug and churn flow when the liquid flowrate was QL=3.79 LPM. 

 



66 

 

 

Figure 2.20: Flow transition charts for bubble breakers with two different lengths. 

The results in Figure 2.20 indicate that the change in length of the bubble breaker greatly 

influences the bubble to slug and slug to churn transitions. The results show that by 

reducing the length of the bubble breaker, the transitional GLR was decreased for each 

liquid flowrate over the given range of gas flow rates. The inlet Weber number remains 

the same due to the same pore size and bubble breaker position for these two cases. 

Hence, it is expected that the gas regions should be broken into the same number of pores 

for each bubble breaker. The significant difference at the breaker outlet indicates that the 

length of the bubble breaker pores controls the mixing between the gas and liquid regions 

occur before the flow exits the bubble breaker.  

As the flow through a pore in the bubble breaker is similar to that in a microchannel, the 

two-phase flow inside the pore can be explained based on the previous investigations of 

two-phase flows in microchannels. Yue et al. [45], through imaging, found that at the 

entrance of a T-junction microchannel, a region was formed in which the gas and liquid 

flowed side by side and created an elongated gas column. At the end of this region, the 

gas column was broken into a single slug, which filled the entire cross-sectional area of 

the channel, as it is squeezed by the surrounding liquid flow. Downstream of the entrance 

region, the gas slugs were evenly separated by regions of pure liquid. They found that the 
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entrance length of the microchannel could be up to five times the diameter of the channel 

and that the entrance length increases with increasing GLR. 

When the bubble breaker length is reduced, the entrance region described above may 

extend beyond the physical length of the bubble breaker. If the bubble breaker is not long 

enough for the separate slug regions of gas to form within the channel, a continuous gas 

flow will emerge from the breaker exit without liquid separation. That is, the gas can pass 

through the entire length of the bubble breaker with no breakage and exit as a column. 

The gas columns from multiple pores expand upon exiting the pores and coalesce to 

reform a large bubble or slug region, reducing the transitional GLR. Figure 2.21 

illustrates this process in the form of an image sequence when a bubble passes through a 

shorter bubble breaker (L/Dbb=0.5).  

 

Figure 2.21: Slug formation of a gas region passing through a bubble breaker with a 

length of L/Dbb=0.5. Images are separated by 0.006 seconds. 

In Figure 2.21, it can be seen that the nozzle generated gas region is almost unaffected by 

the bubble breaker with a length of L/Dbb=0.5. No mixing between the gas phase and 

liquid phase seems to have occurred within the pore channel as the gas region enters the 

bubble breaker. At the outlet of the bubble breaker, the gas regions expand and coalesce. 

Since the pore length is too short (pore length to spacing ratio of 3.75) to break up the gas 

region in the bubble breaker (i.e. the breaker length is smaller than the required entrance 
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length), a continuous flow of gas through the pore occurred. This is also evident in 

Figure 2.21, by comparing the shape profile of the bubble at the breaker inlet and the 

locations in the breaker exit plane where the gas flow emerged. To allow for mixing to 

occur between the gas and liquid phases, the pore channel must be longer than the 

microchannel entrance region. In general, it is observed that the bubble breaker should be 

longer than the gas slug region to effectively break it up. When the channel is longer than 

the entrance region, the gas regions separated by liquid slugs will leave the pores in the 

form of individual bubbles and will allow a dispersed bubbly flow to form after the 

bubble breaker. As seen in Figure 2.20, the bubble breaker with a length of L/Dbb=2 was 

the most effective bubble breaker tested in this study in terms of increasing the transition 

GLR for bubbly to slug flow. This is because even at high GLRs, the mixing between the 

gas and liquid phases can occur inside the pore channels. 

The results presented earlier show that all bubble breakers were effective in delaying the 

transition from bubble to slug flow in two-phase vertical co-flow, indicating that they can 

be effective devices in designing efficient bubble column reactors. A design variable that 

was not tested in this paper was the pressure drop caused by the bubble breaker. The 

pressure drop could have an effect on the bubble breaker selection. Although smaller pore 

sizes and longer bubble breakers are found to be most effective at increasing the GLR at 

which the flow transitions from bubbly to slug flow, these features would also cause the 

largest pressure drop. For a single phase flow passing through a bubble breaker, the 

pressure drop can be approximated using Equations 10 and 11 [43], 

∆𝑃 = 𝑓
𝐿

𝑆

𝜌𝑈2

2
                                               (10) 

𝑓 =
𝑘

𝑅𝑒𝑆
                                                   (11) 

where the Reynolds number of the liquid passing through a single pore is defined as, 

𝑅𝑒𝑆 =
𝑈𝑆

𝜈
                                                  (12) 
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using the superficial velocity of the liquid in the pipe, U, as the velocity of the liquid 

passing through the pore. For a square pore, the friction factor, k, is assumed to be 56.92 

[43]. For a bubble breaker with a pore size of S=2mm and a length of L=15mm, the 

pressure drop of a water flow of QL=3.8LPM (ReS=747) is estimated as ΔP=40Pa. The 

pressure loss is double to ΔP=80Pa for a bubble breaker with the same length and a pore 

size of S=1mm. These estimations are most likely low as they do not account for the 

losses due to the flow needing to split into the individual pores. It also des not account for 

the increased surface area of multiple pores. When a gas phase is added to the flow, it is 

expected that the pressure drop across the bubble breaker is increased as more energy is 

needed to overcome the surface tension of the gas-liquid interface to physically break 

split the gas phase into the pores. Further studies using bubble breakers in two-phase 

flows can be done to estimate the resulting pressure drop. 

2.5 Conclusion 

An experimental study was conducted to investigate the influence of a mesh-type bubble 

breaker in a two-phase vertical co-flow. The dynamics of the two-phase flow was 

characterized using high-speed imaging. The results have shown that a mesh-type bubble 

breaker is effective in reducing the size of a nozzle-generated bubbles in two-phase 

cocurrent vertical flow as well as delaying the transition from a bubbly to slug flow 

regime. By reducing the bubble size, the interfacial surface area between the gas and 

liquid phases of the flow is increased allowing for high rates of mass absorption in bubble 

column reactors. 

For the bubbly flow regime, a Froude number correlation was proposed to predict the 

mean size of the bubbles downstream of the bubble breaker. The correlation was found to 

accurately predict the bubble size generated by bubble breakers with a variety of pore 

sizes, lengths and positions relative to the nozzle.  

The geometry of the bubble breaker was shown to have an effect on the regime transition 

of the two-phase flow. At low liquid flow rates, QL ≤ 2.5LPM, a bubble breaker with a 

pore size of S=1mm was more effective in producing bubbly flow than bubble breakers 

with larger pore sizes. At higher liquid flow rates, the elongation of the bubbles by the 
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liquid inertia that causes a reduction in the bubble leading edge curvature reduced the 

effectiveness of the breaker with smaller pore size compared to the breakers with larger 

pore sizes. Moving the bubble breaker closer to the gas nozzle also allows bubbly flow to 

be produced at higher GLRs. A bubble breaker with a smaller height can prevent slug 

bubbles from being formed after the nozzle and allow more mixing of gas and liquid 

phases to occur within the bubble breaker pores. Lastly, an increased bubble breaker 

length was shown to be more effective to produce bubbly flow at high gas-liquid 

flowrates ratios.  
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Chapter 3  

3 Two-Phase Vertical Co-Flow Heat Transfer in the 
Presence of a Mesh-Type Bubble Breaker 

3.1 Introduction 

Bubble column reactors are common components in many processes where the gas and 

liquid phases are primarily engaged in chemical interactions [1-3]. Some common 

applications include the production of biological industrial products in the biochemical 

industry [4-9], wastewater treatment [10, 11] and absorber units for heat absorption 

refrigeration systems [12-14].  In addition to chemical interactions, the gas and liquid 

phases in a bubble column reactor may also undergo heat exchange among themselves or 

with the surroundings [15-17]. A good example is the absorber unit in a heat absorption 

refrigeration system, where the rate of heat transfer from ammonia-water two-phase 

solution is required to be higher than that of the condenser and evaporator in the 

system [18].   

A common type of bubble column reactor is a vertical tubular reactor. In this design, the 

gas phase is cocurrently injected from a single nozzle into a vertically upward flowing 

liquid. To effectively design bubble column reactors, engineers need to be able to 

accurately predict both the rate of chemical reaction and the rate of heat transfer required 

for the specific system.  

Heat transfer in two-phase flows has been an active area of research for several decades. 

A comprehensive review work by Butterworth and Hewitt [19] provides a detailed 

description of key parameters involved in two-phase flow heat transfer in both vertical 

columns and horizontal channels. They also discussed various methods of measuring 

two-phase flow heat transfer and presented a general empirical correlation to predict the 

convective heat transfer coefficient for fully developed two-phase vertical cocurrent flow. 

The correlation was limited to circular tubes with liquid flowrates of ReSL > 4000. 

Chu and Jones [20] performed experiments with upward and downward vertical two-

phase flows using air and water as working fluids. The study was conducted over a large 
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range of liquid Reynolds numbers (16000 < ReSL < 112000) that allowed for multiple 

flow regimes to be examined. A correlation for the two-phase Nusselt number was 

proposed. The correlation was similar to the correlation for the single-phase Nusselt 

number that was proposed by Seider and Tate [21]. 

Correlations like the one proposed by Chu and Jones [20] and many others are 

summarized in a study by Kim et al. [22]. The study compared twenty existing two-phase 

heat transfer correlations and their ability to predict two-phase convective heat transfer 

coefficients from seven existing datasets available in the literature. The datasets covered 

a large range of flow regimes for both vertical and horizontal two-phase flows. 

Comparisons between the actual results of the datasets and the predicted results from the 

existing correlations were made with and without considering the author-specified 

applicable range. It was found that no correlation was able to predict the results for all of 

the given datasets. Recommendations for each correlation were made to specify the flow 

patterns and liquid and gas combinations that can be accurately predicted by the specified 

correlation. 

Kim et al. [23], in a continuation of previous work [22], identified the key parameters 

common to existing heat transfer correlations in an effort to develop a correlation that can 

be to used predict the two-phase convective heat transfer coefficients for all possible fluid 

combinations in vertical tubes. They proposed a power law correlation to predict the two-

phase convective heat transfer coefficient as a function of the superficial liquid 

convective heat transfer coefficient, the void fraction, the mass fractions and the liquid 

and gas Prandtl numbers and dynamic viscosities. Exponent values for the correlation 

were determined by curve fitting the correlation to data from three existing studies that 

covered a large range of gas-liquid combinations, flow combinations and flow regimes. 

The resulting correlation was able to predict all 255 data points from the three data sets 

within ±30% of the actual value. As per the proposed correlation, the convective heat 

transfer coefficient increases with increasing gas flowrate. The correlation however, 

ignores the effects of flow regime transition and was limited to fully-developed two-

phase flows with a superficial liquid Reynolds number ReSL > 4000. In several 

applications involving vertical tubular bubble column reactor, the heat transfer in the 
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entrance region comprises a significant fraction of the overall heat transfer. Similarly, in 

many applications, the column reactor operates at low liquid flow rates (ReSL < 4000). A 

good example is the vertical tubular absorber for a small-scale heat absorption 

refrigeration system, where multiple tubes are used and the liquid flowrate in each 

individual tube has a superficial Reynolds number of ReSL < 4000 [12, 13]. 

Relatively limited work has been reported in the literature on the heat transfer in two-

phase flows at low liquid Reynolds numbers. Kaminsky [24] used a method similar to 

that of Kim et al. [23] to present a general correlation for the laminar convective heat 

transfer correlation for two-phase vertical pipe flow. Kaminsky’s [24] laminar correlation 

only takes into account the liquid hold-up of the flow and the convective heat transfer 

coefficient for the liquid at the given superficial liquid flow conditions. Furthermore, the 

correlation assumed uniform surface temperature of the pipe to consider the constant 

liquid Nusselt number value for the laminar flow i.e. NuL=3.66. The proposed correlation 

was able to predict the majority of the two-phase convective heat transfer coefficients 

from previous studies within 33% for flows with a liquid hold-up of H > 0.2. For flows 

with smaller gas hold-up values, the correlation overestimated the heat transfer 

coefficient with an error of up to 70% [24]. In addition, the influence of two-phase flow 

regime transition on the heat transfer has not been taken into consideration in the reported 

correlation. 

Researchers have conducted similar studies for horizontal two-phase pipe flows. Kim and 

Ghajar [25] proposed a correlation to predict the two-phase convective heat transfer 

coefficient for horizontal two-phase flow using the same key parameters found in existing 

correlations. To determine the exponent values for the correlation, results from an in-

house experiment as well as a previous study by Kim and Ghajar [26] were used for data 

curve fitting. Although the correlation for vertical two-phase flow predicted that the heat 

transfer rate increases with increasing gas flow rate, the results from the in-house 

experiment for horizontal flow revealed deviations from this trend. It was found that the 

heat transfer coefficient increases with increasing gas flowrate in the plug flow regime. 

Once transitioned to slug and slug-bubbly flow, the heat transfer coefficient was found to 

decrease with an increase in the gas flow rate. However, as the flow transitioned to the 
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annular flow regime, the heat transfer coefficient started to increase again. To account for 

the change in flow regime, a new variable, the flow pattern factor, was added to the 

correlation [26]. This accounted for the change in wetted pipe surface that was not 

accurately predicted by the void fraction alone. With the flow pattern factor added to the 

correlation, the exponent values were determined by curve fitting the correlation to the 

experimental values allowing the correlation to predict 93% of the experimental values 

within ±20% deviation [26]. Vaze and Banerjee [27], proposed another power law 

correlation for the two-phase Nusselt number for horizontal pipe flow using variables that 

are easy to attain as a priori such as the superficial liquid and gas Reynolds numbers, 

liquid and gas Prandtl numbers and dynamic viscosities, and the Lockhart-Martinelli 

parameter (non-dimensional pressure drop). To overcome changes in heat transfer due to 

flow regime change, Vaze and Banerjee [27] proposed that different exponents should be 

used for different flow regimes. The correlation exponents for eight flow patterns were 

determined from in-house experimental data as well as data from the literature.  

The studies of two-phase heat transfer for horizontal pipe flow highlighted the deficiency 

in the current scientific knowledge to characterize the influence of flow regime change on 

the heat transfer in two-phase vertical pipe flow. The current correlations proposed by 

Kim et al. [23] and Kaminsky [24], do not account for the flow regime change and use 

variables that are difficult for designers to determine as a priori. Further, all of the 

previous studies for both horizontal and vertical two-phase flow only consider the heat 

transfer rate from a fully developed flow, limiting their use for predictions for bubble 

column reactors where the entrance region contributes significantly to the heat transfer. 

Bubble column reactors that involve the absorption of the gas into the liquid, higher rate 

of mass exchange between the two phases is critical for the efficient operation of the 

reactor. The interfacial exchange of heat and mass or chemical reactivity between the two 

phases is heavily dependent on the contact area between the two phases. Higher the 

interfacial surface area, higher will be the specie transport across the interface. It is well 

known that in a bubble column reactor, the gas-liquid interfacial area increases by 

generating smaller and more numerous bubbles, since it increases the bubble surface area 

to volume ratio. Several techniques have been used to generate smaller bubbles or break 
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large bubbles into smaller ones. These techniques include the generation of turbulence 

within the liquid phase to split bubbles by the action of shear stress [28-31]. The use of 

inserted devices with small pores such as perforated plates, wire mesh screens and 

honeycomb mesh to physically shear and split bubbles as they pass through the pores [32-

34]. Previous studies on bubble breakup were mainly focused on bubble size reduction in 

the two-phase bubbly flow regime. There is a scarcity of studies investigating the effects 

of bubble breakup techniques on the heat transfer. Since it has been shown by Kim and 

Ghajar [26] and Vaze and Banerjee [27] that the flow regime in a two-phase pipe flow 

can affect the heat transfer rate, the use of devices that alter the two-phase flow structure 

and shift the regime transition will likely affect the heat transfer rate. 

The current study investigates the heat transfer in a two-phase gas-liquid cocurrent flow 

in a vertical pipe under laminar liquid flow conditions (ReSL < 2000). Flow types ranging 

from bubbly to churn are considered to investigate the effect of flow regime on the 

convective heat transfer coefficient. The study also examines the effect of mesh-type 

bubble breakers on heat transfer.  

This study is a continuation of the work presented in the previous chapter. Although a 

new experimental apparatus is built for the purpose of heat transfer measurement, results 

from the flow characterization apparatus presented in the previous chapter will be utilized 

as necessary.  

3.2 Nomenclature 

Variables 

D  Tube Diameter, m 

H  Gas Holdup, dimensionless 

H  Convective Heat Transfer Coefficient, W/m2K 

ID  Inside Diameter, m 

L  Length, m 
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N  Number of samples 

Nu  Nusselt Number, dimensionless 

OD  Outside Diameter, m 

Pr  Prandtl Number, dimensionless 

Q  Volumetric Flowrate, m3  

Q̇  Rate of Heat Transfer, W   

Re  Reynolds Number, dimensionless 

S  Pore Size, mm 

t  Thickness, mm 

T  Temperature, oC 

x  Mass Fraction, dimensionless 

y   Position, m 

α  Void Fraction, dimensionless 

μ  Dynamic Viscosity, kg/m s  

Subscripts 

L  Liquid 

G  Gas  

r  Room 

b  Bulk 

SL  Superficial Liquid 
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SG  Superficial Gas 

s  Surface 

TP  Two Phase 

3.3 Experimental Setup and Procedure 

The experimental apparatus used in this study is shown in Figure 3.1. It comprised of a 

thin-walled stainless steel tube (OD=16mm, ID=15mm) 80cm long placed vertically 

above a plenum (5cm × 5cm cross section and 10cm high). Air and water were used as 

test fluids. Water was pumped into the plenum from a reservoir via a pump (Rigid 

AC11301). A flow meter (Omega FL-2053-SS) was installed downstream of the pump to 

control the water flow rate. The accuracy of the flowmeter for the volumetric flowrate 

was ±5%. To ensure the same inlet conditions of water into the test apparatus, the water 

temperature inside the reservoir was maintained via an electric heating element controlled 

by a PID controller, with an accuracy of ±0.05oC, using a feedback control loop (see 

Figure 3.1). In this study, the temperature of water in the reservoir was maintained at 

80oC.  

The air was supplied from a compressed air line into the lab. The compressed air first 

entered a settling tank to dampen any line pressure fluctuations. A flowmeter (Omega 

FL-2012-SS) was installed downstream of the settling tank to control air flowrate. The 

accuracy of the flowmeter for the volumetric flowrate was ±5%.  The air then passed 

through a brass tube inserted in the water plenum. This allowed the air temperature to rise 

to approximately the same temperature as the inlet water.  A glass nozzle (OD=3.2mm, 

ID=2.5mm) was inserted into the brass tube through which the air was injected into the 

upward flowing liquid stream inside the steel tube. The tip of the glass nozzle was located 

at a height of 30mm from the steel tube inlet. The geometry of the apparatus was chosen 

to be identical to the flow characterization apparatus from the previous chapter. This will 

ensure that the flow characteristics at given flow conditions are identical and results from 

the flow characterization apparatus can be used to describe the flow in the heat transfer 

apparatus. 
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Figure 3.1: The schematic of the apparatus used to measure the two-phase heat 

transfer rate. Separate computers were used to record the data from the in-flow 

thermocouples and the thermal camera. A PID Temperature controller was used to 

keep the water reservoir at a constant temperature of Tb=80oC.  

Three mesh-type bubble breakers with square pores were used to investigate their effect 

on the two-phase convective heat transfer. All three bubble breakers were cylindrical in 

shape, had lengths of L=15mm, a wall thickness of t=0.5mm and a diameter of 

Dbb=15mm allowing for a press fit into the stainless steel tube. The bubble breakers were 

made using a Makerbot Replicator 3D printer with ABS plastic. Bubble breakers with 

pore sizes of S=1mm, S=2mm and S=4mm were used. The cross section of the bubble 

breaker with a pore size of S=2mm is shown in Figure 3.2.  
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Figure 3.2: Bubble Breaker cross section showing various geometric parameters; 

bubble breaker thickness (t), diameter (Dbb) and pore size (S). 

As both hot fluids travelled up the tube as a two-phase flow, heat was lost to the air 

(Tr=23oC) surrounding the tube. To increase the rate of heat transfer for better 

characterization, three small fans were placed on a side of the stainless steel tube in a 

vertical series using a wooded frame (see Figure 3.3). The fans generated a uniform 

horizontal airflow with a velocity of 2m/s that induced forced convection around the tube 

over its length.  
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Figure 3.3: A schematic showing the placement of three small fans to induce a 

uniform horizontal airflow across the vertical stainless steel pipe causing forced 

convection heat transfer to occur between the pipe surface and the surrounding air. 

Ten thermocouples were placed inside the steel tube at different vertical locations. The 

thermocouple were carefully inserted such that their sensors were positioned in the center 

of the tube to measure the bulk fluid temperature. The thermocouples were evenly spaced 

between 5 cm and 50 cm above the tube entrance. The thermocouples were connected to 

data acquisition cards (thermocouple modules: NI-9214 and NI-9211) installed in a 

chassis. The cards were connected to a PC via USB port. LabVIEW software was used to 

acquire temperature data from these thermocouples at a rate of 10 Hz. To measure the 
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outside surface temperature of the stainless steel tube, a FLIR SC6000 thermal camera 

was used. The camera was connected to a PC via an Ethernet port. Therma CAM 

Researcher Pro 2.9 software was used to control the camera and record thermal images.  

Experiments were conducted at liquid flowrates of QL = 0.13, 0.38 and 0.63 LPM and gas 

flowrates of QG = 0.2, 0.5 and 1 LPM. These correspond to superficial liquid Reynolds 

numbers of ReSL = 380, 1150 and 1900 and a superficial gas Reynolds numbers of 

ReSG = 16, 40 and 79. The superficial gas Reynolds numbers were calculated as, 

𝑅𝑒SG =
4𝜌𝐺𝑄𝐺

𝜋𝜇𝐺𝐷
                                                           (1) 

where D represents the inside diameter of the stainless steel tube. The superficial liquid 

Reynolds number was calculated using the same equation by replacing the values with 

the liquid flowrate and liquid properties. The volumetric gas-liquid flowrates ratio (GLR) 

range for the study was 0.3 – 8.1.  

For each experimental run, the measurements were started once the system reached 

steady state. The thermocouple data were recorded for 60 seconds and one image was 

recorded from the thermal camera. The time-averaged value of the temperature from each 

thermocouple was used as the bulk flow temperature at the given location, although the 

data over the 60 seconds had low statistical variance as the temperatures were at steady 

state. The surface temperature at nine positions along the length of the tube was obtained 

by averaging the surface temperature from the thermal image over an area of 45 mm2 that 

corresponds to the position halfway between two in-flow thermocouples during the 

steady state. The temperature of the tube surface was measured over an area rather than a 

single point to overcome the non-uniform temperature along the surface area of the pipe 

due to the forced convection heat transfer. In the cross-sectional plane, the leading edge 

of the pipe that the force airflow comes into contact with, causes a stagnation point that 

reduces the local heat transfer; this causes a local hot spot to occur on the pipe surface. 

On the sides that were perpendicular to the direction of the flow, the air velocity was 

highest, resulting in an increased heat transfer and generated a local cold spot. The 

trailing surface of the tube remains in the wake of the flow where, like the leading edge, 
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the heat transfer rate is decreased causing a hot spot to occur. The thermal camera faced 

the stainless steel tube perpendicular to the forced air flow. The area on the tube used to 

measure the temperature at a given height spanned the regions of the local hot and cold 

spots to provide an accurate estimation of the surface temperature for the purposes of 

estimating the heat transfer rate. Since the stainless steel tube was thin walled and had a 

high conductivity it was assumed that the outside surface temperature was equal to the 

inside surface temperature. For the purposes of error analysis, it is assumed that the 

uncertainty in the temperature measurements is equivalent to the accuracy of the 

measuring instrument which was ±0.05oC for both thermocouples and the thermal 

camera. An example of the temperature data obtained during this study at superficial 

liquid Reynolds number of ReSL=1150 and a superficial gas Reynolds number of Re-

SG=40, in the absence of a bubble breaker is shown in Figure 3.4. 

The plot in Figure 3.3 shows, as expected, that both the bulk flow and surface 

temperatures decreased with an increase in the height. The plot also shows that the trends 

of the temperature decrease are linear. The local heat transfer coefficient at a given height 

was calculated from the measured temperature data using the energy conservation law 

(Equation 2), and Newton’s law of cooling (Equation 3), and is shown in Equation 4.  
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Figure 3.4: A temperature plot of a two-phase flow with a superficial liquid 

Reynolds number of ReSL=1150 and a superficial gas Reynolds number of ReSG=40. 

�̇�′(𝑦) = (�̇�L𝑐𝑝L + �̇�G𝑐𝑝G)(𝛿𝑇b 𝛿𝑦⁄ )                         (2) 

�̇�′(𝑦) = ℎTP(𝑦)𝐷𝜋(𝑇s(𝑦) − 𝑇b(𝑦))                                  (3) 

ℎTP(𝑦) =
(�̇�L𝑐𝑝L+�̇�G𝑐𝑝G)(𝛿𝑇b 𝛿𝑦⁄ )

𝐷𝜋(𝑇s(𝑦)−𝑇b(𝑦))
                                    (4) 

The value of δTb/δy was calculated as the difference in the measured bulk temperature 

between two adjacent thermocouples. The value of Tb in Equation (4) is the average of 

the bulk temperatures at two adjacent thermocouples, while the value y represents the 

height along the length of the tube halfway between those two thermocouples. Ts is the 

temperature of the tube wall at the positon y. The average convective heat transfer 
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coefficient for the entire tube length was calculated by averaging the local convective 

heat transfer coefficient values at nine heights along the tube corresponding to the 

locations halfway between the inserted thermocouples. A plot of the local convective heat 

transfer coefficient as a function of the position along the tube length for the same flow 

conditions as Figure 3.4 is shown in Figure 3.5. Error analysis was conducted to estimate 

the uncertainty in the computed values of the convective heat transfer coefficients, hTP(y) 

by taking into consideration the measurement error from the flowmeters, thermocouples 

and thermal camera. These are the error bars seen in Figure 3.5. For the average heat 

transfer coefficients the uncertainty was estimated as the root mean square of the 

propagated errors given as, 

Δℎtp
̅̅ ̅̅ = √

∑(Δℎtp(𝑦))2

𝑁
                                                (5) 
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Figure 3.5: Local convective heat transfer coefficients along the tube length for a 

two-phase flow (ReSL=1150 and ReSG=40). The error bars represent propagated 

measurement error from the thermocouples, thermal camera, and flowmeters. 

To validate the method, testing was conducted using a single-phase liquid (water) flow 

and the results were compared with the classical Nusselt number value of NuL=4.36, for 

single-phase laminar pipe flow with uniform heat flux at the surface of a pipe [35]. 

Figure 3.6 shows the single-phase liquid Nusselt numbers obtained in the validation 

testing at different liquid Reynolds numbers. The error bars shown for the Nusselt 

number values was calculated as, 

∆𝑁𝑢 = 𝐷i
Δℎtp̅̅ ̅̅ ̅

𝑘L
                                                 (6) 
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Figure 3.6: The measured Nusselt number for a single phase flow at different 

Reynolds number compared to the classical Nusselt number for laminar pipe flow 

with constant surface heat flux, NuL=4.36 [33]. The error bars represent the root 

mean square of the propagated measurement errors. 

The results presented in Figure 3.6 show that for 1000 < ReL < 2000, the measured values 

of the Nusselt number are very close to 4.36. The average difference was 4.6%. The 

results however show that the measured Nusselt number value at the lowest Reynolds 

number was significantly lower than the classical value. At the lowest flowrate, the 

inertia of the flow is not strong enough to overcome the buoyancy effects of natural 

convection. At this flowrate the ratio of Grashof Number to the square of the Reynolds 

number is Gr/ReL
2 = 8, indicating that natural convection was more dominant than forced 

convection [35]. The value of NuL=4.36 is only used for inertia dominated (forced 

convection) laminar flow when Gr/ReL
2 << 1. Due to the dominance of natural 
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convection in this case, the value of the convective heat transfer coefficient is expected to 

be lower than that for the forced convection case. Nevertheless, the results in Figure 3.6 

show that the apparatus is able to provide accurate measurements of the convective heat 

transfer coefficient. 

The classical case of NuL=4.36 will be used as a comparison case when analyzing the 

two-phase convective heat transfer coefficient. Two-phase convective heat transfer is 

inherently more complex than convection in a single-phase flow. This is attributed to the 

fluid mixing caused by the gas-phase as it passes within the liquid stream as well as the 

differences in the thermophysical properties of the two fluids.  

3.4 Results and Analysis 

3.4.1 Two-Phase Convective Heat Transfer Coefficient (no bubble 
breaker) 

The measured two-phase convective heat transfer coefficients over a range of superficial 

gas and liquid Reynolds numbers are shown in Figure 3.7. At a given condition, the value 

presented in the figure is the average of the local heat transfer coefficient values 

computed over the tube length. The figure shows that at a given superficial liquid 

Reynolds number (ReSL), the convective heat transfer coefficient decreased with an 

increase in the superficial gas Reynolds number (ReSG). While, at a given ReSG, the 

convective heat transfer coefficient increased with an increase in ReSL. The classical case 

of single-phase laminar pipe flow with uniform heat flux (NuL = 4.36) [35], corresponds 

to the single-phase convective heat transfer coefficient of hL=174 W/m2K in the present 

setup. Comparison of this classical case with the two-phase convective heat transfer 

coefficients in Figure 3.7 show that the two-phase flows with the two highest liquid 

flowrates (ReSL=1150 and 1900) have higher convective heat transfer coefficients than 

the single-phase liquid heat transfer coefficient. While the two-phase flows at the lowest 

liquid flowrate (ReSL=360), have convective heat transfer coefficients lower than that the 

classical value for single-phase liquids.  
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Figure 3.7: Convective heat transfer coefficients for two-phase vertical pipe flow at 

various superficial gas and liquid Reynolds numbers. The error bars represent the 

root mean square of the propagated errors from the local heat transfer coefficient 

values. 

At the lowest liquid flowrate, the liquid inertia was weak and hence the buoyancy forces 

were dominant in the upward movement of the gas volumes exiting from the nozzle, 

similar to the flow in the stagnant liquid column. As the gas phase was travelling upwards 

at a faster velocity than the liquid, it was pushing the liquid phase towards the pipe walls 

resulting in the formation of thin liquid layer along the pipe wall. This liquid layer lost 

heat quicker due its close proximity to the pipe wall whereas, the heat transfer from the 

gas phase occupying the bulk of the pipe domain was relatively low, causing an overall 

reduction in the two-phase heat transfer coefficient compared to that in a single-phase 

liquid flow.  
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Figure 3.7 also shows a general trend of decreasing heat transfer coefficient with an 

increase in the superficial gas Reynolds number. This is likely due to the reason that at a 

given liquid flow rate, an increase in the gas flow rate reduces the bubble detachment 

frequency, and hence generates larger gas bubbles. Furthermore, it also reduces the liquid 

space between each individual bubble, thus supressing the wakes. When wakes are 

formed behind the gas phases [36] which induces mixing between the high temperature 

liquid in the central region of the pipe with the liquid layer at the wall, thus, enhancing 

the heat transfer at the wall. A suppression or reduction of the wake reduces the heat 

transfer. Furthermore, at a given liquid flow rate, an increase in the gas flowrate may also 

lead to the transition of the two phase flow regimes from bubbly to slug to churn. This 

transition also influences the dynamics and interaction between the gas and liquid phases 

and hence influences the heat transfer. The trend observed in Figure 3.6 is opposite to the 

correlation proposed by Kim et al. [22]. Their correlation, as shown in Equation (6), 

predicts that the two-phase heat transfer coefficient increases with increasing gas 

flowrate. Their correlation is intended for two-phase flow with a superficial liquid 

Reynolds number of ReSL > 4000. 

ℎTP = (1 − 𝛼)ℎL + 0.27 [(
𝑥

1−𝑥
)

−0.04

(
𝛼

1−𝛼
)

1.21

(
𝑃𝑟G

𝑃𝑟L
)

0.66

(
𝜇l

𝜇𝐺
)

−0.72

]       (6) 

The plausible causes of the difference are that the correlation proposed by Kim et al. [22] 

uses the single-phase liquid convective heat transfer coefficient at the given superficial 

flow conditions and applies a correction based on the liquid hold-up of the flow and does 

not account for changes in the two-phase flow regimes. As shown by Kim and Ghajar 

[26], and Vaze, and Banerjee [27], the heat transfer coefficient of a two-phase flow in a 

horizontal pipe is dependent on the flow regime. Their studies showed that the heat 

transfer coefficient reached minima in the slug flow regime. They also observed that in 

the annular flow regime, where the gas volume occupies almost the entire domain and the 

liquid phase is transformed into a thin layer at the wall, the heat transfer coefficient 

increased with increasing gas flowrate. 
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As mentioned earlier, in the introduction section, in the previous phase of this research 

work, the characterization of two-phase flow regimes in the absence and presence of a 

mesh-type bubble breaker was conducted in a vertical pipe. Various two-phase flow 

regimes that were observed at different superficial gas and liquid Reynolds numbers 

corresponding to those presented in Figure 3.7 are summarized in Table 1.  

Table 3.1: Two-Phase Flow Regime Characterization with no Bubble Breaker 

Present 

 

The results from Table 1 show that over the given range of gas and liquid Reynolds 

numbers, various regimes including bubbly, slug and churn flow were observed. At 

superficial liquid Reynolds numbers of 380 and 1150, the two-phase flow transitioned 

from bubbly to slug to churn flow regime as the superficial gas Reynolds number 

increased from 16 to 79, whereas, at ReSL=1900, churn flow was not observed over the 

entire range of gas Reynolds numbers. The transition from bubbly to slug to churn flow 

regimes, supresses the wake size and reduces the mixing, hence the heat transfer rate. 

This is evident in the results shown in Figure 3.7. The trends observed in Figure 3.7 for 

the vertical two-phase flow are consistent with those of Kim and Ghajar [26] and Vaze 
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and Banerjee [27] in the horizontal two-phase flow. However, the present results indicate 

that in vertical two-phase pipe flows, the minima of two-phase heat transfer coefficient 

extends from slug flow regime to the churn flow regime. 

The two-phase convective heat transfer coefficient values are converted into 

dimensionless form (two-phase Nusselt number, NuTP) to present results in a generalized 

form. The two-phase Nusselt number is calculated using Equation 7. In this equation, the 

conductivity of the liquid phase, kL, is used as a scaling parameter rather than a 

combination of the gas phase and liquid phase conductivity. For all of the observed flows, 

the inner pipe surface was always covered by a thin layer of liquid, even with the added 

mixing from the gas phase and hence, the liquid phase is the medium in which the 

conduction heat transfer takes place.    

𝑁𝑢TP = 𝐷i
ℎTP̅̅ ̅̅ ̅

𝑘L
                                                  (7)   

The experimental data are plotted in the form of NuTP versus the ratio of superficial gas to 

liquid Reynolds numbers in Figure 3.8. The results show a clear linear trend of 

decreasing Nusselt number with an increase in the Reynolds number ratio. The best-fit 

line to the data is also plotted in figure, which represents the proposed correlation, 

presented below in the mathematical form as Equation 8. 

𝑁𝑢TP = 1.5 (
𝑅𝑒SG

𝑅𝑒SG
)

−0.33
                                       (8)                                                           
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Figure 3.8: Two-phase Nusselt number plotted vs. the gas-to-liquid Reynolds 

number ratio. The best-fit equation is also plotted. 

The correlation proposed in Equation 8 to predict the two-phase heat transfer coefficient is 

applicable to two-phase vertical co-flows with superficial liquid Reynolds number of ReSL
 

< 2000 and a superficial gas Reynolds number of ReSG
 < 100, covering the two-phase flow 

regimes from bubbly to churn. An important feature of this correlation is its dependency 

on Reynolds numbers, which are parameters easy to compute. As per Vaze and Banerjee 

[27], the dependency of a correlation on easy to computer parameters is very critical for 

the designers of two-phase heat transfer systems. Since the present study used a constant 

inlet temperature and only varied the gas and liquid flowrates, the effects of gas and liquid 

Prandtl numbers and viscosities could not be determined. It is assumed that the effect of 

gas and liquid Prandtl numbers and viscosities will be manifested in the correlation 

constant. Further studies are needed to account for the liquid and gas Prandtl numbers and 

viscosities effect. 
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3.4.2 Influence of the Bubble Breaker on Heat Transfer 

Three bubble breakers with pore sizes of S=1mm, S=2mm and S=4mm were used to test 

the effect of a bubble breaker on heat transfer in a vertical two-phase pipe flow. Each 

bubble breaker was placed in the stainless steel tube (see Figure 3.1), 13 mm above the 

gas nozzle tip. The two-phase heat transfer coefficient values for bubble breakers of 

different pore sizes and three superficial gas Reynolds numbers are shown in Figures 3.8, 

3.9 and 3.10 for superficial liquid Reynolds numbers of 380, 1150 and 1900, respectively. 

The two-phase heat transfer coefficient values for the same gas and liquid Reynolds 

number cases in the absence of a bubble breaker are also plotted in the figures for 

comparison. The convective heat transfer coefficient values in the presence of bubble 

breakers, in general, show trends similar to those without a bubble breaker. That is, the 

heat transfer coefficient decreased with an increase in ReSG and increased with an 

increase in ReSL. At a given condition, the results in the presence of bubble breakers show 

variations with respect to the corresponding case without a bubble breaker.  

The results in Figure 3.9, at the lowest liquid flow rate (ReSL=380), show that the heat 

transfer coefficient in the presence of a 1 mm pore-size bubble breaker was higher than 

that without a bubble breaker over the entire range of ReSG. For the 2 mm pore-size 

bubble breaker, the heat transfer coefficient was lower than that without a bubble breaker 

at ReSG =16 and 40 but became higher that the no bubble breaker case at ReSG=79. The 

heat transfer coefficient values for the 4 mm pore-size bubble breaker were lower than 

that for the no bubble breaker case over the entire range of ReSG. As the liquid Reynolds 

number increased to ReSL=1150 (Figure 3.10), the results show that the heat transfer 

coefficient for the 1 mm pore-size bubble breaker was higher than that for the no bubble 

breaker case at the lowest and highest gas Reynolds number. The 2 mm pore-size bubble 

breaker has a lower heat transfer coefficient at ReSG=16, almost equal value at ReSG=40 

and higher value at ReSG=79, with respect to the no bubble breaker case. The 4 mm pore-

size bubble breaker showed lower heat transfer coefficient values relative to no bubble 

breaker case at ReSG=16 and 40 and higher at ReSG=79. At the highest liquid Reynolds 

number, ReSL=1900 (Figure 3.11), the results show that except for the 1 mm pore-size 

bubble breaker case at ReSG=16 and 40, the heat transfer coefficients without a bubble 
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breaker were higher than that in the presence of the bubble breaker. At ReSG=16, the heat 

transfer coefficient for the 1mm pore size is equal to coefficient in the absence of a 

bubble breaker causing it to be covered by the 1mm pore size result. The uncertainty, not 

shown in Figures 3.9, 3.10 and 3.11, for heat transfer coefficients shown in all three plots 

is similar to the uncertainty shown in Figure 3.7. The uncertainty is mainly dependent on 

the mass flow rate. For the results plotted in Figure 3.9, corresponding to a superficial 

liquid Reynolds number of ReSL=380, the uncertainty for the convective heat transfer 

coefficient is Δhtp≈±8W/m2K. For the results plotted in Figure 3.10, corresponding to a 

superficial liquid Reynolds number of ReSL=1150, the uncertainty for the convective heat 

transfer coefficient is Δhtp≈±12W/m2K. For the results plotted in Figure 3.11, 

corresponding to a superficial liquid Reynolds number of ReSL=1150, the uncertainty for 

the convective heat transfer coefficient is Δhtp≈±15W/m2K. Error bars were left off the 

plots to ensure the results could be easily read. 
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Figure 3.9: Convective heat transfer coefficients for two-phase vertical pipe flow 

with and without bubble breakers at a superficial liquid Reynolds number of 

ReSL=380 and different superficial gas Reynolds numbers. 

 

 

 

 

0 10 20 30 40 50 60 70 80 90 100
50

60

70

80

90

100

110

120

130

140

150

Superficial Gas Reynolds Number

C
o
n
v
e
c
ti
v
e
 H

e
a
t 

T
ra

n
s
fe

r 
C

o
e
ff

ic
ie

n
t 

(W
/m

  2
K

)

Re
SL

=380

 

 

No Breaker

S=1mm

S=2mm

S=4mm



100 

 

 

Figure 3.10: Convective heat transfer coefficients for two-phase vertical pipe flow 

with and without bubble breakers at a superficial liquid Reynolds number of 

ReSL=1150 and different superficial gas Reynolds numbers. 
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Figure 3.11: Convective heat transfer coefficients for two-phase vertical pipe flow 

with and without bubble breakers at a superficial liquid Reynolds number of 

ReSL=1900 and different superficial gas Reynolds numbers. 

The results in Figures 3.9, 3.10 and 3.11 show that contribution of a bubble breaker to 

enhance heat transfer coefficient is evident only at the small pore size, higher gas 

Reynolds number and low to moderate liquid Reynolds number. It is found that in the 

presence of 1 mm pore-size bubble breaker, the heat transfer coefficient on-average 

increased by 3% relative to the heat transfer coefficient in the absence of a bubble 

breaker over the given range of gas and liquid Reynolds numbers. The maximum 

enhancement of the heat transfer coefficient for 1 mm pore-size breaker relative to the no 

breaker case is found to be 12% at ReSG=79 and ReSL=1150.   
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the bubble breaker affects the convective heat transfer coefficient. The regime 

characterization results for the bubble breakers used in this study are shown in Table 2. 

Table 3.2: Two-Phase Flow Regime Characterization with Bubble Breakers of 

Varying Pore Sizes 

 

Table 2 shows that all three bubble breakers were effective in delaying the transition from 

bubbly to slug or churn flow. The bubble breaker with the smallest pore size, S=1mm, 

was the most effective in delaying the transition as it eliminated slug and churn flows for 

all of the flow combinations at a superficial liquid Reynolds numbers of ReSL=1150 and 

ReSL=1900. The bubble breaker with the largest pore size, S=4mm, was still effective as it 

eliminated churn flow at all three liquid flowrates.  

When the flow regime results in Table 2 are compared to the heat transfer results in 

Figures 3.9, 3.10 and 3.11, there is no clear relationship between the flow regimes, and 

the heat transfer trends. In many cases, for example at ReSG=40 and ReSL=1900, all three 

bubble breakers were able to produce the same flow type; however the heat transfer 

results varied between the bubble breakers. A more thorough analysis through 

observations of the flow made from the high-speed camera images is used to get a better 
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understanding of the effect of the flow generated by the bubble breakers on the two-phase 

convective heat transfer coefficient. 

At the lowest liquid flowrate, ReSL=380, where the liquid inertia was relatively weak, the 

breakup of the bubbles in the bubble breaker was primarily caused by the buoyancy force 

of the rising gas phase. The force required by the bubble to detach from the nozzle and 

travel through the pores of the bubble breaker increases with decreasing pore size. For the 

1mm pore size bubble breaker, it was observed that a large amount of gas-holdup 

occurred immediately upstream of the bubble breaker. The gas phase builds up 

underneath the bubble breaker until the buoyancy force of the accumulated gas phase is 

enough to overcome the surface tension. The gas phase then travels through multiple 

pores of the bubble breaker and leaves as smaller daughter bubbles. As the pore sizes 

increase, the buoyancy force needed for the gas phase to pass through the bubble breaker 

is decreased, reducing the gas-holdup before the breaker. Images of the flow generated by 

the three bubble breakers at ReSL=380 and ReSG=40 respectively are shown in Figure 

3.12.   The higher gas-holdup by the 1mm pore size bubble breaker is clearly evident in 

the image, which causes the gas phase to travel through the bubble breaker intermittently. 

Although smaller bubbles were created, they would travel in clusters allowing wakes to 

from behind the clusters similar to the wakes formed in slug flow [39]. The 2mm pores 

allowed the gas-phase to pass through the bubble breaker with less intermittency while 

still producing a bubbly flow or slug flow with dispersed small bubbles. The more 

continuous passage of the gas-phase caused a flow with fewer liquid breaks in-between 

the clustered gas phases. The 4mm pore size bubble breaker produced the least amount of 

gas-holdup among three pore sizes; however, the bubbles generated by the pores were 

large and quickly coalesced to form bubbly or slug flow that resembled the flow in the 

absence of the bubble breaker. 
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Figure 3.12: Highspeed camera images of the flow generated by three bubbles 

breakers at the same flow conditions (ReSG=40 and ReSL=380). 

For the 1mm pore size bubble breaker, the combination of bubbly flow causing liquid 

mixing at the pipe wall along with wakes forming behind the clustered bubbles resulted in 

increased convective heat transfer rates, relative to the flow with no bubble breaker (see 

Figure 3.9). By reducing the spacing between the gas-phase, thus reducing the wake mixing 

of the liquid phase, the 2mm pore size bubble breaker reduced the convective heat transfer 

rate (see Figure 3.9). The large gas slug regions generated by the 4mm pore size bubble 

breaker allowed more liquid mixing in the wake region compared to the 2mm pore size 

bubble breaker. The flow generated by the 4mm pore size bubble breaker did not have the 

added benefit of mixing at the wall surface, due to numerous small bubbles like the flow 
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generated by the 1mm pore size bubble breaker. The few small bubbles in the wake region 

of the slugs generated by the 4 mm pore size bubble breaker reduced the mixing effect of 

the wake when compared to the flow in the absence of a bubble breaker, reducing the heat 

transfer coefficient slightly, relative to the flow with no bubble breaker present 

(see Figure 3.9).  

At superficial liquid and gas Reynolds of ReSL=380 and ReSG=79, both the 1mm and the 

2mm pore size bubble breakers were able to increase the heat transfer coefficient when 

compared to the case with no bubble breaker (see Figure 3.9). This is due to the delay of 

the transition to churn flow (see Table 2). Churn flow is described as an oscillatory flow 

regime with long chaotic columns of gas travelling in the centre of the vertical pipe [19]. 

The churn flow regime causes the liquid phase to form a thin layer at the pipe wall. This 

layer will quickly approach the temperature of the pipe surface, and if not removed, will 

decrease the heat transfer rate from the two-phase flow to the surrounding air. By 

changing the flow regime to slug or bubbly flow, the bubble breakers allows wakes to 

form in the liquid regions between the separated gas slugs or clustered bubbles.  The 

flows generated by all three bubble breakers at this flow condition can be seen in 

Figure 3.13. All three bubble breakers were able to delay the transition to churn flow. The 

1mm and 2mm bubble breakers produced slug flow consisting of multiple small gas slug 

regions whereas the 4mm bubble breaker produced a slug flow with much larger gas slug 

regions. 

The slug flows generated by the 1mm and 2mm pore size bubble breakers seen in 

Figure 3.13 allowed for liquid mixing at the pipe wall due to the chaotic gas-liquid 

interfaced generated by the numerous small slug regions. The flow also created liquid 

breaks between the clustered gas phases allowing wakes to be formed that generated 

more liquid mixing, thus enhancing the convective heat transfer coefficient (see 

Figure 3.9). The slug flow consisting of single large slugs generated by the 4mm pore 

size bubble breaker restricted the liquid closer to the pipe wall due to the presence of 

elongated smooth gas-liquid interface. The flow generated by the 4 mm pore size bubble 

breaker reduced the occurrence of liquid breaks between the gas phases causing a further 
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reduction in liquid mixing, thus reducing the convective heat transfer coefficient relative 

to the other bubble breaker configurations (see Figure 3.9). 

 

Figure 3.13: High-speed camera images of the flow generated by three bubbles 

breakers at the same flow conditions (ReSG=79 and ReSL=380). 

As the liquid flowrate increased (ReSL=1150), the liquid inertia became a more dominant 

force in the role of bubble breakup and advection. This allowed for less intermittency of 

the gas phase passing through the bubble breakers and more evenly dispersed gas regions 

to form. At the lowest gas flowrate ReSG=16, intermittency still existed for the 1 mm pore 

size. The size of the bubbles generated by the nozzle decreases in size as the liquid flow 

rate increases [37]. Although the liquid inertia was increased, the buoyancy force was 
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lowered due to the decrease in bubble size. The combined effect of liquid inertia and 

buoyancy force was not enough to fully overcome the surface tension of the single 

bubble. Coalescence of the nozzle-generated bubbles occurred upstream of the bubble 

breaker which resulted in a higher buoyancy force that reduced the surface tension effects 

to allow the bubble to break pass through the pores. The resulting flow was similar to the 

flow of the 1 mm pore size bubble breaker shown in Figure 3.12. The intermittency of 

gas flow allowed wakes to form that increase liquid mixing, thus enhancing the 

convective heat transfer (see Figure 3.10).  The bubble breakers with larger pore size 

allowed for continuous flow of the gas phase, thus reducing liquid mixing between the 

gas phases and reducing the convective heat transfer (see Figure 3.10). At a higher gas 

flowrate (ReSG=40), the buoyancy force of the nozzle-generated gas phase combined with 

the liquid inertia force was large enough to overcome the surface tension and reduce gas-

holdup when the 1mm pore size bubble breaker was used. As seen in Figure 3.14, this 

causes a flow that is similar to the flow generated by the 2mm pore size bubble breaker. 

The flow consists of some large coalesced bubbles dispersed among small bubbles. At the 

same flow condition, the 4mm pore size bubble breaker was able to produce bubble flow; 

however, the number of small bubbles dispersed amongst the larger bubbles was reduced. 

The generation of a dispersed bubbly flow with few liquid breaks between gas phase 

clusters by the 1mm and 2mm pore size bubble breakers slightly reduced the convective 

heat transfer coefficient when compared to a flow with no bubble breaker at ReSG=40 and 

ReSL=1150. The reduced number of small bubbles in the flow produced by the 4mm 

bubble breaker reduced the mixing of the liquid at the pipe wall. This effect, combined 

with the reduced number of liquid breaks between the gas phases caused a large reduction 

in the heat transfer coefficient as seen in Figure 3.10. 
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Figure 3.14: High-speed camera images of the flow generated by three bubbles 

breakers at the same flow conditions (ReSG=40 and ReSL=1150). 

At the flow conditions of ReSL=1150 and ReSG=79, all three bubble breakers were able to 

increase the heat transfer coefficient when compared to the flow with no bubble breaker. 

Like the flow condition of ReSL=380 and ReSG=79, the bubble breakers were able to delay 

the transition to churn flow. As seen in Figure 3.15, all three bubble breakers were able to 

produce a dispersed bubbly flow or a slug flow with smaller bubbles dispersed among the 

slug regions. 
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Figure 3.15: High-speed camera images of the flow generated by three bubbles 

breakers at the same flow conditions (ReSG=79 and ReSL=1150). 

Although no liquid breaks are formed in between gas phase clusters in the flows shown in 

Figure 3.15, the generation of small, dispersed bubbles increases the mixing of the liquid 

phase at the pipe wall compared to a churn flow generated by a single nozzle. This 

allowed for the heat transfer enhancement seen in Figure 3.10 for all three bubble 

breakers at the flow conditions of ReSL=1150 and ReSG=79.  

At the highest liquid flowrate, ReSL=1900, the bubble breakers tended to decrease the 

heat transfer coefficient relative to the flow with no bubble breaker, over the entire range 

of gas flowrates. At this liquid flowrate, the bubbles or slug regions detached from the 

single nozzle at a higher frequency when compared to the lower liquid flowrates. The 
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high liquid flowrate caused the gas regions to stay separated allowing more numerous 

wakes to form that increases the liquid mixing compared to the flows with lower liquid 

flowrates. By adding bubble breakers to the pipe at the highest liquid flowrate, bubbly 

flows or slug flows with small bubbles dispersed between the slug regions were 

generated. Although the small bubbles can increase the liquid mixing at the pipe surface, 

in most cases it is not enough to overcome the reduction in the heat transfer coefficient 

caused by the reduction of wakes behind the gas regions. The 1mm pore size bubble 

breaker was able to slightly increase the heat transfer coefficient at ReSL=1900 and 

ReSG=40 and equal the value relative to the no bubble breaker case at ReSL=1900 and 

ReSG=16. For these cases, the added liquid mixing at the pipe wall caused by numerous 

small bubbles was able to overcome the decrease in liquid caused by the reduction of 

liquid wakes. 

It should be noted that different flow regimes listed in Table 2 at various gas and liquid 

Reynolds numbers were identified in the region immediately downstream of the bubble 

breaker or nozzle. It is known that the flow regime of a two-phase flow can change as it 

travels through a pipe and as coalescence occurs between the gas phases [38, 39]. That is, 

a flow may start as slug flow in the entrance region but as the gas slugs begin to coalesce, 

a churn flow may form.  Using the local heat transfer coefficient values, the effect of the 

developing flow regime on the two-phase flow heat transfer can be seen. The local heat 

transfer coefficients for all three bubble breakers and the flow without a bubble breaker is 

shown in Figure 3.16 for the flow conditions of ReSL=1150 and ReSG=79. At this flow 

condition, flow regime generated in the absence of the bubble breaker was observed to be 

a churn flow. This flow was transitioned to bubbly flow by the 1mm and 2mm pore size 

bubble breakers and to slug flow by the 4mm pore size bubble breaker (see Table 2).  
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Figure 3.16: Local convective heat transfer coefficients along the length of the pipe 

for all three bubble breakers and in the absence of a bubble breaker for a two-phase 

flow with superficial liquid and gas Reynolds numbers of ReSL=1150 and 

ReSG=79 respectively. 

From Figure 3.16 it can be seen that the bubble breaker geometry has a large effect on the 

change in the local heat transfer coefficients along the length of the vertical pipe. When 

no bubble breaker is present, there is little variation in the local heat transfer coefficients 

indicating that the flow regime observed immediately downstream of the nozzle is 

consistent throughout the length of the pipe. The 4mm pore size bubble breaker also had 

little variance in the local heat transfer coefficient. Since the larger pore size generates 

larger gas regions, less instances of coalescence need to occur before the fully developed 

flow regime is reached. As the bubble breaker pore size decreases, more variance in the 

local heat transfer coefficients can be seen. The local heat transfer coefficients for the 
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1mm pore-size bubble breaker varied by 12%. For this particular flow condition, both the 

1mm and 2mm pore size bubble breakers were observed to produce bubble flow in the 

region just downstream of the bubble breaker. As the flow continued through the pipe, 

coalescence can occur changing the regime to slug flow and eventually to churn flow. As 

the flow changes from a dispersed bubbly flow to a slug flow, the heat transfer coefficient 

may increase as liquid wakes can form behind the gas regions. As coalescence continues 

and the slug flow transitions to churn flow, the heat transfer coefficient will decreases. 

This indicates a strong dependency of the convective heat transfer coefficient on the flow 

regime. 

The results from the current study provided further evidence that the complex nature of 

the two-phase vertical pipe flow makes the prediction of the convective heat transfer 

coefficient difficult. By adding a bubble breaker downstream of the gas nozzle, the flow 

structure can be changed, which in turn may influence the rate of heat transfer from the 

pipe flow to the surroundings. The delay in the transition of the flow regime by the 

bubble breaker in the region immediately downstream of the bubble breaker and the 

occurrence of coalescence further downstream, makes the wake formation process 

throughout the pipe length unsteady and complex. Hence, the development of a 

generalized correlation to predict heat transfer in the presence of a bubble breaker is a 

challenging task.  Even the use of  correlations like the one proposed earlier in the present 

study or by Vaze and Banerjee [27] that accounts for the change in flow regime could 

produce greater than expected errors when predicting the heat transfer coefficient or 

Nusselt number for a flow altered by a bubble breakup device. While the results from the 

current study do not provide a generalized trend of the influence of a bubble breaker on 

the heat transfer coefficient due to the flow complexity, they indicate that under certain 

flow conditions, the bubble breaker could enhance the heat transfer coefficient in two-

phase vertical cocurrent flow. This trend is most evident when the bubble breaker 

supressed the transition of the flow regime to the churn flow. Further studies are certainly 

needed to properly characterize the two-phase flow behavior in near and far regions from 

the bubble breaker, which will further help in the better understanding of the overall heat 

transfer process.  
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3.5 Conclusion 

An experimental study was conducted to characterize the influence of mesh-type bubble 

breakers on the convective heat transfer in a two-phase vertical co-flow over a range of 

superficial liquid and gas Reynolds numbers, ReSL < 2000 and ReSL < 100, respectively. 

The local convective heat transfer coefficient for two-phase flow was measured at various 

locations along the pipe length for flow generated by three mesh-type bubble breakers of 

pore sizes 1, 2, and 4 mm as well as flow in the absence of a bubble breaker.  

The results show that the average convective heat transfer coefficient increased with 

increasing liquid flowrate and decrease with increasing gas flowrate for all cases (with 

and without a bubble breaker). Increasing the gas flowrate caused the flow to transition 

from a bubbly to slug or churn flow regime. This transition reduced the occurrence of 

wakes in liquid regions following the gas regions, reducing the mixing of the liquid phase 

and inhibiting the heat transfer. A correlation to predict Nusselt number in vertical two-

phase cocurrent flow is proposed.   

It is observed that the addition of a mesh-type bubbles breaker downstream of the gas 

inlet caused the convective heat transfer coefficient to change. The change was dependent 

on the flow regime and specific flow structure produced by the bubble breaker. In 

general, it was found that if the bubble breaker was able to produce a flow with a higher 

occurrence of liquid wakes behind rising gas phases; the bubble breaker was able to 

enhance the convective heat transfer coefficient relative to the case without a bubble 

breaker. 
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Chapter 4  

4 Conclusion 

4.1 Overview 

This research work comprised of two experimental studies focused on the investigations 

of the effect of mesh-type bubble breakers with square-shaped pores on two-phase 

cocurrent flow in vertical pipes. The research was motivated by the need for compact 

vertical tubular absorbers for use in small-scale heat absorption refrigeration systems. 

The performance of the absorber units are often limited by the required high rates of heat 

and mass transfer. It is proposed that mesh-type bubble breakers can be used in vertical 

tubular absorbers and other bubble column reactors to enhance the heat and mass transfer 

rates of the system allowing for the development of more compact and efficient units. 

The first study investigated the bubble breakers’ effect on the flow characteristics of two-

phase flow consisting of air and water in a circular glass pipe. The range of the 

volumetric gas-liquid flow ratio (GLR) used in the experiments was 0.05 to 39.6 to study 

the effect of bubble breakers on bubbly, slug and churn flow regimes. Various bubble 

breaker parameters including the length, pore size and position relative to the pipe 

entrance were varied and their effects on the flow behavior relative to the flow with no 

bubble breaker present were investigated. A high-speed camera was used to allow flow 

visualization and characterization. For a bubbly flow regime, it was found that the mean 

bubble size generated by the bubble breakers increased with increasing GLR and 

increasing pore size. A Froude number correlation proposed in a previous study to predict 

the size of bubbles generated by a nozzle was modified and improved to allow for the 

prediction of the size of bubbles generated by the bubble breakers with varying 

parameters. The effect of the flow regime transition was also investigated. All bubble 

breakers were found to increase the GLR at which the flow transitioned from bubbly to 

slug or churn flow compared to the transition GLRs when no bubble breaker was present. 

Flow regime maps for all of the bubble breakers were produced from observations of the 

high-speed camera images. The maps revealed that the GLR at which the flow 

transitioned from a bubbly to slug or churn flow regime increased with increasing bubble 
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breaker length and decreasing bubble breaker pore size. A deviation from this trend 

occurred at higher liquid flow rates with a bubble breaker with a pore size of 1 mm (the 

smallest pore size tested in this study). Due to a change in the bubble shape caused by the 

increased liquid inertia, the small pore size was unable to increase the GLR at which the 

flow transitioned from bubbly to slug.  

The second study investigated the effect of bubble breakers with different pore sizes on 

the convective heat transfer coefficient for two-phase vertical cocurrent flow. A second 

experimental setup was made to mimic the flow characterization setup; instead of using a 

glass pipe to allow for flow visualization, a stainless steel tube was used to allow for 

temperature measurements. Two-phase flow consisting of heated water and air was used 

in the apparatus over a range of superficial Reynolds numbers, ReSL < 2000 and 

ReSG < 100. Local convective heat transfer coefficients along the length of the steel pipe 

were measured using a combination of measurements from inflow thermocouples for the 

bulk fluid temperature and a thermal camera for the pipe surface temperature. First, the 

convective heat transfer coefficient for a two-phase flow without a bubble breaker was 

measured. It was found that the convective heat transfer coefficient increased with 

increasing liquid flowrate and decreasing gas flowrate. Observations from the flow 

characterization study showed the two-phase flow with more frequent liquid breaks 

between gas phases allowed for increased heat transfer due to mixing of the liquid in the 

wake of the gas phase. A correlation was proposed to predict the heat transfer coefficient 

for two-phase flow using the gas and liquid superficial Reynolds numbers. Three bubble 

breakers with different pore sizes were tested over the same range of gas and liquid 

flowrates. The general trend of increasing heat transfer rate with increasing liquid 

flowrate and decreasing gas flowrate remained when the bubble breakers were present, 

however the heat transfer coefficients for the flows in the presence of bubble breakers 

varied with respect to the no bubble breaker cases. For most flow conditions, the bubble 

breakers decreased the heat transfer coefficient due to the generation of more dispersed 

gas regions with less frequent and smaller liquid wakes behind the gas regions. When the 

bubble breakers were able to delay the transition to a churn flow regime, the heat transfer 

rate was enhanced relative to the flow with no bubble breaker as more liquid mixing 

occurred. The addition of the bubble breakers caused complex flow regimes with flow 
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behaviour that varied from case to case. A bubbly flow type produced by one bubble 

breaker may have different flow behaviour when compared to a bubbly flow produced by 

a different bubble breaker. This makes the prediction of heat transfer coefficients for 

flows in the presence of a bubble breaker very challenging. 

The results of this research can be useful to designers of vertical tubular absorbers. The 

bubble size correlation proposed in the first study can be used to help predict the 

absorption rate of the gas phase into the liquid phase. This can allow designers to select 

the length of pipe needed to ensure the gas phase is fully absorbed into the liquid phase. 

The flow regime maps can also be used to help estimate the absorption rate for flows that 

result in slug or churn flow. When selecting a bubble breaker to use in a vertical tubular 

absorber, the flow regime maps can also be used as a way to optimize the selection. 

Although it was found that generally, bubble breakers with increased length and 

decreased pore sizes are more effective at generating flows with high surface area-

volume ratios of the gas-liquid interface, both of the features are predicted to increase the 

pressure loss of the system. The flow regime maps can be used to determine if a desired 

flow can be achieved with a bubble breaker with a decreased length or increased pore 

size to reduce the pressure loss. Deviations from the trend of increased effectiveness with 

decreased pore size shown in the flow regime analysis can be used by absorber designers 

to avoid the generation of an undesirable flow regime that may decrease the performance 

of the vertical tubular absorber. 

The correlation proposed in the heat transfer investigation to predict the Nusselt number 

for two-phase flow can be used to predict the heat transfer rate of a vertical tubular 

absorber that do not use bubble breakers.  The investigation into the effect of bubble 

breakers on two-phase heat transfer did not result in a predictive coefficient. It also 

revealed that in many cases the use of bubble breakers can decrease the heat transfer rate. 

When the bubble breakers were able to increase the liquid mixing in the two-phase flow, 

the heat transfer coefficient increased relative to the flow with no bubble breaker present. 

The highest increase in heat transfer was found to be when a bubble breaker was able to 

delay the transition from slug to churn flow. Using this knowledge, along with the flow 
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regime maps presented in the first study, designers can determine if the bubble breaker 

will increase or decrease the heat transfer rate.  

Bubble breakers are shown to be effective devices for mass transfer enhancement for 

vertical tubular absorbers by increasing the surface area to volume ratio of the gas-liquid 

interface in a two-phase flow. For use as heat transfer enhancement devices, bubble 

breakers were not as effective. In some cases, where the bubble breakers allowed for 

increased liquid mixing, the bubble breakers were able to increase the heat transfer rate of 

a two phase flow. However, in many cases the increased gas dispersion generated by the 

bubble breaker led to decreased heat transfer rates. If the design and performance of a 

vertical tubular absorber is limited by the mass transfer rate, they can be great tools to 

allow for more compact and efficient designs. By allowing compact vertical tubular 

absorbers to be made, small-scale heat absorption refrigeration systems can be developed.  

4.2 Contribution 

 Improvement on an existing correlation for bubble size prediction in two-phase 

vertical cocurrent flow in the presence of mesh-type bubble breakers with varying 

pore size 

  

 Generation of flow regime maps to allow for the prediction of flow regimes of two-

phase vertical cocurrent flow in the presence of mesh-type bubble breaker with 

varying pore size, length and position relative to the gas nozzle 

 

 Proposed a correlation for Nusselt number prediction of two-phase vertical 

cocurrent flow at low liquid and gas flowrates (ReSL < 2000, ReSG < 100) 

 

 Analysis of the effect of mesh-type bubble breakers with varying pore size on the 

heat transfer rate of two-phase vertical cocurrent flow 
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4.3 Future Recommendations  

Future studies are recommended to improve the understanding of the effects of mesh-type 

bubble breakers on two-phase flow to allow for improved design of vertical tubular 

absorbers. A limitation of the current study is that only air and water were used as the 

fluids for the two-phase flows preventing the effect on mass transfer to be studied. 

Although the current work showed that mesh-type bubble breakers can be used to reduce 

the bubble size in two-phase flow, which will allow for higher mass transfer rates to 

occur, air is not absorbed into water and mass transfer measurements could not be made. 

Tests are needed to investigate bubble breakers’ effect on two-phase flows with fluids 

such as ammonia and water to allow for the measurement of mass transfer rates. Testing 

two-phase flow with varying fluids will also help to improve the proposed correlations 

from the current work that are limited to predicting the flow characteristics for air-water 

two-phase flow only.  

For two-phase flow heat transfer, future studies are needed to investigate the effect on 

flow development. Through analysis of the local heat transfer coefficients along the 

length of the pipe, it was observed that the bubble breaker pore size had a large effect on 

the variance of the local heat transfer coefficients. Since the high-speed camera images 

only captured the entrance region of the flow, proper analysis of the flow behaviour 

throughout the developing region could not be made. The use of fluids that allow for 

mass transfer will also have an effect on the two-phase flow development as the volume 

of the gas regions will decrease preventing some instances of coalescence. Observations 

of the flow in the entire length of the pipe is needed to gain a better understanding of the 

heat transfer rates for vertical tubular absorbers. 

It is also recommended that the effect of the mesh-type bubble breaker pore shape on 

two-phase flow be investigated. While the current studies varied the pore size of the 

bubble breaker, the pore shape always remained a square. Alternative shapes should be 

tested to allow for more optimization in the design of mesh-type bubble breakers. 

Lastly, an investigation on mesh-type bubble breakers’ effect on pressure loss in a two-

phase flow is recommended. For both the flow characterization study and the heat 
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transfer study, bubble breakers with smaller pore sizes were found to be more effective 

for use as mass and heat transfer enhancement devices. Decreasing the bubble breaker 

pore size increases the total surface area of the bubble breaker which can lead to an 

increased pressure drop across the bubble breaker. The pressure loss in a system like a 

heat absorption refrigeration cycle is a critical parameter to be known by the designers to 

allow for appropriate selection of components like pumps.  
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