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Abstract

Anisotropic Traveltime Tomography and Full Waveform Inversion were applied first to syn-
thetic and then to real data following the development of a transversely isotropic model for
handling anisotropy. Best-fitting models of seismic velocity and Thomsen’s anisotropy param-
eters were initially obtained from traveltime tomography, and then used as the starting models
for Full Waveform Inversion. The use of a Laplace transform approach effectively damps late
arriving S-wave artifacts that introduce errors into the modelling process. The results of the
synthetic study highlights the tradeoffs in resolution between the two parameter classes, but
verify anisotropic traveltime tomography as a valid method for generating starting models for
Full Waveform Inversion. The joint technique was then applied to field gathers from Western
Canada and compared to a similar analyses that used a simpler anisotropy model. The trans-
versely isotropic approach yielded a Full Waveform Inversion model with superior resolution
that better predicted the true data.

Keywords: Tilted Transverse Isotropy, Traveltime Tomography, Full Waveform Inversion,
Seismic Wave Modelling, Crosswell Seismic Survey, Anisotropy Modelling, Inverse Methods
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Chapter 1

Introduction

Geophysics can be broadly defined as the study of Earth and Space’s natural processes using
well established physical phenomena. More specifically, Exploration Geophysics is an applied
branch of Geophysics in which these physical methods are used to locate, delineate or quantify
important features within the Earth’s subsurface. A simple example of this is the study of
Earth’s varying magnetic field to develop models of magnetic susceptibility, which can then be
used to locate economic metals that are included in, or are associated with, magnetic minerals
(see Nabighian et al. (2005) for a recent review of this exploration technique).

The study of vibrations in the form of seismic waves travelling through the earth’s subsur-
face has emerged as the most widely-used technique in modern geophysical applications due to
its extreme relevance to the hydrocarbon exploration industry. Over the last five decades, seis-
mic surveys have been conducted for a variety of industrial applications, including the imaging
of layered sediments for hydrocarbon exploration (Bois et al., 1972; Shin and Min, 2006), fault
delineation (Pratt and Shipp, 1999), gas hydrate imaging (Pratt et al., 2005), ore grade estima-
tion in mines (Perozzi et al., 2012) and geotechnical site investigation (Pinches and Thompson,
1990). The primary objective of such surveys is to develop a model of the distribution of seis-
mic velocities from the seismic arrivals measured between each source and receiver pair. These
velocities are then used to image structures such as fracture networks, identify map lithologies
and changes in porosity, locate stratigraphic differences as well as to characterize the in-situ
stress regime, as these features all typically correlate with contrasts in seismic velocity.

In present day studies, seismic velocity models can be determined in high resolution from
the joint analysis of the arrival times, as well as the recorded waveforms themselves (see
Brenders and Pratt (2007) and Symes (2008) for successful applications of these joint anal-
yses). Traveltime Tomography models and inverts traveltimes along raypaths, using simplified
physics. Full Waveform Inversion (FWI) is concerned with fitting the amplitude and phase of
waveform data. Traveltime analyses are often limited by over-simplified assumptions, whereas
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2 Chapter 1. Introduction

the multifrequency approach of FWI produces superior resolution and yields more information
about the propagation medium (Brenders and Pratt, 2007). A limitation of FWI, however, is a
stringent requirement that the starting velocity models be significantly closer to the true veloc-
ities when compared to the traveltime tomography case. Consequently, best-fitting velocities
obtained from traveltime tomography are often used as starting models for FWI. In this work,
I will refer to the joint analyses of arrival times followed by waveform phase and amplitude as
Waveform Tomography (WT), after Brenders (2011).

Two major limitations that must be considered during WT are the presence of significant
velocity variations across the media (inhomogeneity), as well as dependencies on the direction
of propagation (anisotropy). Figure 1.1 illustrates the differences between these two variational
properties. Although large velocity variations introduce significant complexities into the equa-
tions, this is well accounted for by several complete modelling techniques, such as the finite
difference schemes proposed by Virieux (1986) and Pratt (1990) for the time- and frequency-
domain modelling of elastic waves respectively. Properly accounting for anisotropy, however,
is nontrivial as it requires a more complex forward modelling algorithm, and typically re-
quires a priori information about the symmetric properties of the rockmass. Chapman and
Pratt (1992) proposed techniques for traveltime tomography in weakly anisotropic, heteroge-
neous media. This approach has been used in tandem with the frequency-domain waveform
inversion method of Pratt et al. (1998) for the past two and a half decades to resolve velocity
models for several case studies (see Pratt et al., 2005; Afanasiev et al., 2014).

Isotropic	  Homogenous	  

Isotropic	  Heterogeneous	  

Anisotropic	  Homogenous	  

Anisotropic	  Heterogeneous	  

Figure 1.1: Illustration showing the differences between heterogeneity and anisotropy.
In this context, the length of the arrows represents the magnitude of seismic veloc-
ity and the boxes represent the geological medium. Original image modified from
http://www.waterrights.utah.gov/wellinfo/theis/darcy5.gif.



1.1. Crosswell Seismic Imaging 3

Results of this joint technique, however, have been restricted to date by the fact that the
method of Pratt et al. (1998) assumes isotropic or simplified one-dimensional anisotropic wave-
form modelling. Presently, the two methods are only compatible if the results produced by the
traveltime method are simplified significantly. This can have severe implications in struc-
turally complex environments where significant anisotropy exists, as they require substantial
anisotropy models for the waveform inversion solution to converge. For example, Afanasiev
et al. (2014) required an alternative approach for generating the starting models for FWI af-
ter the ones obtained from traveltime tomography produced unsatisfactory results. The focus
of this thesis, therefore, is to improve the accuracy of Anisotropic Waveform Tomography
(AWT) by recasting the frequency-domain method of Pratt et al. (1998) to follow a more gen-
eral isotropy system.

1.1 Crosswell Seismic Imaging

At the exploration scale, early seismic experiments were limited to the traditional ‘surface seis-
mic’ acquisition geometry, whereby all source and receiver locations are placed at the surface
of the survey region. This setup relies on waves travelling directly into the subsurface from the
source location and then returning to the surface where the arriving energy is measured at the
receiver locations. More specifically, the seismic data are analyzed for the presence of reflected
waves, which are reflected back to the surface when a velocity contrast is encountered, as well
as transmitted and diving waves, which are refracted waves bent back towards the surface in
strong velocity-gradient zones. In present day surface seismic experiments are still the most
widely used geophysical survey due to the expansive coverage that acquisition geometries can
provide, as well as their ability to successfully image subsea geological structures through the
use of ocean bottom streamers (OBS) and other marine acquisition technology. These features
coupled with the growing investment in seismic migration analyses (see Yilmaz, 2001) make
surface seismic surveys the ideal candidate when surveying large regions to image complex
hydrocarbon fields or to understand the local tectonic regime (Claerbout et al., 1985; Sava and
Fomel, 2003).

Despite the numerous successes surrounding the surface seismic technique, there are also
several limitations which called for and gave rise to alternative acquisition methods. Transmis-
sion of higher frequencies is limited by the intrinsic attenuation of the earth, as these frequen-
cies attenuate faster and are therefore restricted in the temporal bandwidth of the data when the
signal-to-noise ratio (SNR) is considered. Furthermore, survey aperture is limited by the spatial
position of receivers which can be restricted by surface topography, the expected quality of the
source signal, as well physical constraints on the geophone arrays themselves. The latter two



4 Chapter 1. Introduction

are less significant in modern studies, as the development of source and receiver technology
has made the collection and analysis of wide-aperture surface data more feasible (Hill et al.,
2006; Savazzi and Spagnolini, 2008).

To overcome the bandwidth limits imposed by surface acquisition geometries, seismic re-
searchers began deploying source and receiver arrays down boreholes, which led to the simul-
taneous development of two seismic acquisition methods: well-to-surface/surface-to-well and
well-to-well measurements. The former is commonly referred to as a vertical seismic profile
(VSP) survey, with applications dating back to the late 1940s (Gardner, 1949). The latter is also
referred to as a crosswell or crosshole survey. One of the first known applications of crosswell
seismic imaging was presented by Ricker (1953) who studied wave propagation through the
Pierre Shales in eastern Colorado by deploying dynamite charges and receiver into boreholes
that were a few hundred meters deep. Crosswell surveys are ideal for smaller scale projects
where the target’s location is known to within a certain degree of accuracy. This allows the
borehole locations to be chosen to cover specific areas within the subsurface. Due to the in-
trinsic downscaling of crosshole applications, the observed propagation distances for seismic
waves are greatly reduced, which relaxes the high frequency limit on the bandwidth imposed
by surface acquisitions. As crosswell techniques saw increasing popularity, several seismic
source types were developed, such as downhole airguns (Lee et al., 1984), vibratory sources
(Airhart, 1989), piezoelectric transducers (Wong et al., 1983) and electric discharge sources
(Owen et al., 1988). Crosswell imaging techniques can be broadly classified into direct arrival
methods (Lines and LaFehr, 1989; Chapman and Pratt, 1992) and reflection methods (Harris
et al., 1995). The former of these will be employed within this thesis. Figure 1.2 illustrates the
acquisition geometry for a conventional crosswell survey.
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Figure 1.2: Typical acquisition geometry for crosswell seismic surveys. The sources are de-
noted by ‘S’ and the receivers are denoted by ‘G’. Original image modified from
http://asstgroup.com/images/crosshole seismic profiling s.jpg.
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1.2 Seismic Anisotropy

A substance is classified as ‘anisotropic’ if its physical properties vary as a function of the
direction from which they are observed. If this is not the case, these properties are the same
in all orientations, and the medium is said to be isotropic. In the context of seismic wave
propagation, significant advancements in modelling anisotropy were not realized until the early
1970s. Accounting for anisotropy greatly increases the number of parameters required when
solving the elastic wave equation, increasing the computational power required, as well as the
overall complexity of the system. One of the major developments related to seismic anisotropy
studies is attributed to Thomsen (1986) who proposed the anisotropy notation necessary to
describe one of the possible symmetry systems in modern anisotropy studies (the one used in
this thesis). These parameters, known as ‘Thomsen’s Parameters’, relate seismic velocity to
an ‘isotropic’ velocity along a predefined axis of symmetry (VP0). The first parameter, ε, is
commonly referred to as the ‘P-wave anisotropy’ as it relates the fractional difference between
horizontal (VH) and vertical (VV) P-wave velocities. The second parameter, δ, can be thought of
as ‘angular anisotropy’, as it describes the rate of change of velocity as a function of the angle
away from the vertical axis (Tsvankin, 2012). Figure 2.3 in Chapter 2 shows an anisotropic
wavefront for several combinations of ε and δ compared to the isotropic counterpart.

Significant anisotropy in rock sequences can be caused by preferential crack orientation
and alignment of anisotropic mineral grains (e.g. clay), or the presence of thin inter-bedded
isotropic layers (Winterstein, 1990). Thomsen (1986) showed that elliptical anisotropy (ε =

δ), a common approach for modelling anisotropy, is usually inappropriate for cases where sig-
nificant anisotropy might exist, such as thin-interbedded rock sequences within hydrocarbon-
bearing sedimentary basins. This provides motivation for the further study and refinement of
more general symmetry systems within the seismic modelling context. This thesis will focus
primarily on Transverse Isotropy (TI), a common anisotropic model encountered in the subsur-
face due to the intrinsic properties of sedimentary formations. In the TI case, anisotropy varies
in one symmetry direction while the other two directional variations remain equal (Winterstein,
1990). The most straightforward case of TI symmetry is one in which the symmetry axis is
equal to the vertical (VTI) or horizontal (HTI) axis, the former of which will be used for the
data cases in this thesis. In structurally complex regions, however, anisotropic layers might
dip, such that the symmetry axis may be tilted at an angle to the vertical; this dip can be ac-
counted for using the Tilted Transverse Isotropy (TTI) approach to the TI modelling technique.
Grechka et al. (2001) showed that TTI layers can cause significant errors in current imaging
techniques, but demonstrated the feasibility of this anisotropy model by performing anisotropic
velocity analysis on reflection data from an overthrusted area of the Canadian Foothills.
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1.3 Waveform Tomography

WT is the joint approach of traveltime tomography followed by FWI to develop high resolution
models of seismic velocity (Brenders, 2011). Here I will describe the major elements pertaining
to each of these techniques.

1.3.1 Traveltime Tomography

Models of seismic velocity are commonly derived from a non-linear data processing and in-
version technique known as Traveltime Tomography, whereby seismic raypaths are forward
modeled and the resulting arrival times are computed and compared to the observed data. The
differences between the expected and the true arrivals are then used to iteratively improve the
velocity model (Pratt and Chapman, 1992). Traveltime tomography is a widely accepted tech-
nique for imaging complex earth structure as it is both a robust and inexpensive method, as
demonstrated by the work of Hole (1992), Pratt and Chapman (1992) and Zelt and Barton
(1998) who successfully applied traveltime tomography to both real and synthetic data.

Conventional raytracing methods are based on the high-frequency wave approximation,
whereby seismic energy of infinitely high frequency can be modeled as rays and will propagate
in the same direction until a velocity contrast is encountered (Červený et al., 1977). The total
traveltime of the wave, T, can thus be computed efficiently as the line integral measured along
the infinitesimally-thin raypath from the source to the receiver, such that:

T =

∫
ray

1
c(x)

dl, (1.1)

where c(x) is the seismic velocity at each location along the raypath and dl is the incremental
length (Cervený, 1972; Chapman and Pratt, 1992). The simplest method of raytracing is the
straight-ray approximation, describing the shortest path between the source and receiver as a
straight line between them. For heterogenous media, this is a poor assumption as it disregards
entirely the deflection of the raypath at contrasts in seismic velocity. In modern tomographic
studies, geological complexity requires more complex raytracing techniques. The ‘bending’
method, which was first suggested by Wesson (1971), is one such approach for more accurately
computing raypaths in complex media. In this technique, an initial assumption is made of the
raypath, which is then discretized into segments of varying length. With the two endpoints
remaining fixed, the inner nodes along the raypath are then perturbed to minimize the total
traveltime (Um and Thurber, 1987; Davison, 1991).

The resolution of ray tomography (rmin) has been characterized on the basis of the assump-
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tions made about scattering effects. Williamson (1991) suggested that the lateral resolution of
ray-based tomographic methods is restricted to the width of the first Fresnel zone, such that:

rmin =

√
λ2

4
+ λL, (1.2)

'
√
λL (for small values of λ), (1.3)

where λ is the wavelength and L is the propagation distance. Nolet (1987) states that the as-
sumption of an infinitely narrow ray only holds where λ approaches zero, which is only valid
when the wavelength is small compared to the scale of the heterogeneity. The literature sug-
gests that, when the velocity perturbation is on the scale of the wavelength, the ‘ray’ approxi-
mation breaks down. The width of the first Fresnel zone is often underestimated (the reduction
of equation (1.2) to equation (1.3) is difficult to justify for finite frequency data), such that the
claimed lateral resolution for ray-based methods must be questioned. This holds significance
on the exploration scale, where broadband seismic surveys rely on the lower frequency (long
wavelength) components of the data to attain maximum coverage of the surveyed region. Nev-
ertheless, traveltime tomography is a versatile and inexpensive method for resolving velocity
structure in the subsurface. As we will see further on, the models obtained from traveltime
tomography are excellent candidates as starting models for Full Waveform Inversion as they
describe the low wavenumber (spatial wave frequency) features of the models accurately; a
characteristic which greatly aids in waveform inversion model convergence.

Chapman and Pratt (1992) proposed a traveltime perturbation method for accounting for
anisotropy in weakly anisotropic, inhomogeneous media. They applied the linearized travel-
time perturbation method (an application of the aforementioned ‘bending method’) developed
by Cervený (1972, 1982); Cervený and Jech (1982) to both real and synthetic tomographic
experiments, allowing for the simultaneous recovery of 2-D models of velocity, ε and δ (Pratt
and Chapman, 1992). This technique has since been used to obtain adequate starting models
of both velocity and anisotropy for several real data cases (Pratt et al., 2005; Afanasiev et al.,
2014) without a priori information of which anisotropy system is suitable.

1.3.2 Full Waveform Inversion

In an attempt to overcome the resolution limits imposed by traditional ray tomography, mathe-
maticians and geophysicists looked to more thorough modelling techniques that utilized the full
range of information contained within the seismic signal. This gave birth to FWI; a technique
whereby two-way wave equations are implemented within forward modelling and inversion
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techniques to simulate waveform amplitude and phase for direct comparison against observed
seismic gathers. Younger than its traveltime counterpart, FWI is based on a more complete
modelling technique and is thus able to overcome some of the resolution limits imposed by
traveltime tomography, with Wu and Toksöz (1987) finding the resolution to be governed by
half of the seismic wavelength of the data. Until the early 1980s, seismic waveform inversion
was disregarded due to its high computing and memory costs, as estimating the synthetic wave-
field at each measured location was expensive. The feasibility of seismic waveform inversion
saw significant improvement following the work of Lailly (1983) and Tarantola (1984), who
improved the efficiency of the inversion algorithm with an adaptation of traditional pre-stack
migration algorithms whereby the data residuals are back propagated and directly correlated
with the forward propagated wavefields in order to obtain a model update. Despite this, the
problem of model convergence (i.e. the failure of the algorithm to find a solution) was still an
important consideration.

As forward modelling techniques were refined and technological advancements allowed
for greater computing power and storage of larger sparse matrices (in which most of the ele-
ments are zero), Pratt (1990) and Pratt et al. (1998) designed and implemented a viscoacoustic,
finite-difference method for solving the seismic waveform inversion problem in the frequency-
domain, applying these ‘borrowed’ computational improvements. For this method, the wave-
field is modelled isotropically, or a layer-by-layer coordinate stretch is applied to the isotropic
grid to simulate 1-D elliptical isotropy (an approximation first proposed by Pratt et al. (2005)
that is based on the earlier work of Dellinger (1991)). For ‘weak anisotropy’, the elliptical
assumption is able to kinematically account for the effects of anisotropy; for more complex
anisotropy systems, this approximation is poor as it restricts variations to one dimension and
enforces ε to be equal to δ which is not representative of typical hydrocarbon-bearing sedi-
mentary formations (Thomsen, 1986). Nevertheless, this method of accounting for anisotropy
has been employed successfully for several real data cases (Pratt et al., 2005; Afanasiev et al.,
2014).

Accounting for anisotropy within the wave equation operator has attracted great interest
from FWI researchers in recent years. Operto et al. (2009) developed a 2-D finite-difference
frequency-domain (FDFD) approach for modelling viscoacoustic wave propagation in trans-
versely isotropic media with an arbitrary tilted axis; this work was based on the 2-D acoustic
wave equation for Tilted Transverse Isotropy (TTI) media proposed by Zhou et al. (2006b):
an extension of the intial equation proposed by Zhou et al. (2006a) to incorporate the angle of
the symmetry axis from the vertical (θ0). In this approach, the mixed grid method of Jo et al.
(1996) is modified to follow the parsimonious staggered-grid method of Hustedt et al. (2004);
the resulting system is discretized on two distinct coordinate systems and combined linearly
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to form the parsimonious mixed-grid method. Operto et al. (2009) show good kinematic and
dynamic accuracy for several synthetic anisotropic examples when compared to a time-domain
elastic method, promoting their technique as a suitable candidate for handling anisotropy in
FWI.

Still, the question of a suitable inversion parameterization remains due to the ill-posed na-
ture of waveform inversion. Plessix and Cao (2011) highlighted the tradeoffs between the
velocity and anisotropy parameter classes during simultaneous multiparameter FWI for VTI
symmetry. Gholami et al. (2013b) performed sensitivity analyses for several possible combi-
nations of parameters (their Table 1 on page R84) that showed wave speed as the most dominant
influence on the data, followed by Thomsen’s anisotropy parameters. For the crosshole case,
they recommended monoparameter FWI of vertical velocity (VP0) while keeping the ε and δ
models fixed. With continued computational advancements in the form of distributed memory
platforms and massively parallelized solvers, multiparamter FWI for 2-D and 3-D surveys is
now plausible for both the acoustic case (Plessix and Cao, 2011; Gholami et al., 2013a) and
the elastic case (Brossier, 2011; Kamath and Tsvankin, 2013), however this thesis will focus
entirely on the acoustic case1.

1The 2-D method of Operto et al. (2009) has been extended to the 3D case by Operto et al. (2014), but this is
also outside the scope of this project.
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1.4 Objective of Thesis

The primary goal of this thesis is to develop and validate an anisotropic waveform tomography
(AWT) workflow for obtaining high resolution models of seismic velocity and anisotropy for
2-D crosshole field gathers where significant anisotropy is known to exist. First, I apply the
anisotropic traveltime tomography method of Chapman and Pratt (1992) to obtain best-fitting
models of VP0 , ε and δ. These models are then used as starting models for VTI FWI using the
finite-difference frequency-domain (FDFD) method of Operto et al. (2009) and the parameter-
ization proposed by Gholami et al. (2013b). I adapt the inversion and optimization scheme of
Pratt et al. (1998) to allow for these more general anisotropy models. To do this, I implement
the FDFD stencil into a seismic waveform modelling framework developed in Python (Smithy-
man et al., 2015), which is part of an open-source framework for waveform inversion called
Zephyr (https://zephyr.space). Tables 1.1 and 1.2 summarize the mathematical notation used in
this thesis.

In Chapter 2, I review in further detail the traveltime theory of Chapman and Pratt (1992)
and the inversion methods of Pratt et al. (1998), as well as the FDFD method of Operto et al.
(2009). In Chapter 3, I validate my proposed AWT workflow using a synthetic example in
which the starting models of VPO, ε and δ are known. In Chapter 4 I apply this technique
to crosshole seismic gathers from Western Canada. First presented by Pratt et al. (2008),
this crosswell survey was conducted across finely-layered sediments to identify the structures
present within local sandstone reservoirs. As these sedimentary layers appear to have a near
horizontal dip, I propose a VTI isotropy model derived from anisotropic traveltime tomography.
Frequency-domain wave modelling and waveform inversion have previously been conducted
on these data by Pratt et al. (2008), however they used the aforementioned 1-D elliptical model.
I compare my inversion results to those obtained by Pratt et al. (2008) in order to directly quan-
tify the benefits of properly accounting for velocity anisotropy. Finally, in Chapter 5 I give my
concluding thoughts on the success of the proposed AWT workflow and make suggestions for
further studies that will advance the work of this thesis.

The implementation of VTI during this study improves the accuracy of the FWI solution
for the anisotropic case by removing a significant source of error in the results where the ellip-
tical assumption is invalid, which serves as a technical advancement for modelling anisotropy
in FWI studies. Successful results potentially contribute to the development of reservoir mod-
els at the Western Canada crosshole site, as well as to the overall understanding of seismic
anisotropy in sedimentary basin environments. Furthermore, the application of VTI to this
problem promotes the implementation of this anisotropy approach for crosshole seismic stud-
ies, and validates FWI as a state-of-the-art technique for solving seismic inversion problems.
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Symbol Description
VV Vertical velocity
VH Horizontal velocity
ε Thomsen’s parameter relating vertical

to horizontal velocity
δ Thomsen’s parameter describing rate of change of velocity as a function

of angle from the vertical
θ Angle of the symmetry axis with respect to the vertical

VP0 ‘Isotropic ’ P-wave velocity along the symmetry axis
T Total traveltime
c Seismic velocity
dl Incremental ray length
r Lateral resolution
λ Seismic wavelength/‘Lamé’ parameter
L propagation distance

S H Horizontal shear wave component
S V Vertical shear wave component
κ Bulk modulus
µ Shear modulus
u Displacement
ρ Density
t Time
τ Elastic stress tensor
w Externally applied force per unit volume
c Fourth-order stiffness tensor
e Strain tensor
∇ Del operator
P Hydrostatic pressure field
A Wave amplitude
s Source function
G Forward modelling operator
m Model parameter vector
d Data vector
δd Data residuals

E(m) Objective function
M Model space
D Data space

∇mE(m) Gradient of the misfit function
H Hessian matrix
α Gradient step length
τ Time-domain damping function
p Slowness vector
q Traveltime model parameter matrix
a Density-normalized elastic tensor
F Partial derivative matrix of the arrival times

Table 1.1: Summary of all mathematical notation used in this thesis [1 of 2].
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Symbol Description
∆l Ray lengths for each model cell
Cd Data covariance matrix
Cp Model covariance matrix
σd Data variance
σp Model variance
ν Regularization parameter controlling deviation from starting model
β Regularization parameter controlling anisotropy penalty
ε Regularization parameter controlling model roughness
I Identity matrix
R Roughness matrix
ω Angular frequency
Ω Complex-valued frequency
S Impedance matrix
u Complex-valued pressure wavefield
f Source term vector
J Partial derivative matrix of the wavefield
v Complex-valued ‘back propagated ’ pressure wavefield
Ft Pressure wavefield in the time-domain
ph Horizontal slowness
pz Vertical slowness

Vnmo NMO velocity
η Anellipticity parammeter
v Interval velocity
k Wavenumber vector
q Auxilliary wavefield

V(θ) Phase velocity
θ̄ Phase angle with respect to the symmetry axis

V2
S 0

S-wave velocity along the symmetry axis
θ Phase angle with respect to the z-axis
θ0 Angle between the symmetry axis and the vertical

H̄,H̄0 Differential operators
κ0 Bulk modulus along the symmetry axis
b Buoyancy
ξ 1D CPML damping function
γ Damping coefficient
χ Damping coefficient
i Imaginary number

M Mass term diagonal
A,B,C,D Stiffness matrices

w1,wm1,wm2 Weighting coefficients

Table 1.2: Summary of all mathematical notation used in this thesis [2 of 2].



Chapter 2

Background Theory and Methodology

In this chapter I first derive the elastic wave equation from fundamental stress-strain relations
to show how the equation evolves and changes with the introduction of heterogeneity, source
terms, anisotropy etc. Next, I provide a brief overview of the foundational principles of both
forward modelling and inversion, which I will then describe in the context of the methods used
to perform the works presented in this thesis. Finally, I review in detail the contributions and
improvements that I have made to the techniques used by the Seismic Imaging group here at
Western University. To do this, I provide a full derivation of the acoustic anisotropic wave
equation, as well as a detailed description of the implementation I have adopted for tackling
seismic anisotropy in the FWI context.

2.1 The Elastic Wave equation

Whether one is solving for traveltimes or waveforms, a system that accurately describes the
behaviour of seismic waves through a given medium is a fundamental requirement. A material
is said to display elastic behaviour if its physical properties (shape and structure) are altered
by an acting force, but return to their original state once the acting force is removed (for a
modern review of linear elasticity, see Sadd, 2009). Elastic materials support both pressure
(P-wave) and shear (S H- and S V-wave) deformation from propagating seismic waves, which
can be related to the bulk (κ) and shear (µ) modulii of the rockmass respectively. The elastic
wave equation relates the observed displacement components (ui, for i= 1,2,3) at a given point
within a continuous elastic solid, to the elastic properties of the medium as they are subjected
to propagating elastic waves. As ui is a vector quantity, the equation must be solved for each
component of displacement.

Over the past several decades, the elastic wave equation has been implemented in inversion
techniques for both real data (Crase et al., 1990; Brossier et al., 2009) and synthetic data (Mora,

14
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1987; Pratt, 1990). Elastic modelling techniques are referred to as ‘complete’ as they account
for all types of seismic waves, as well as wave conversions at kinematic boundaries. As such,
solving the system of vector equations requires multiparameter, multicomponent modelling
techniques. Furthermore, the model grid size must be set in accordance with the shortest ob-
servable wavelength to avoid undersampling and to minimize numerical dispersion. This has
significant implications for elastic modelling, as shear wavelengths are smaller than their pres-
sure counterparts (λshear ' λpressure/3), significantly increasing model size and, hence, runtimes
as well as memory usage.

Here, I follow the derivation of the elastic wave equation outlined by Aki and Richards
(2002) and Tsvankin (2012). The general equation of motion for an elastic, heterogenous
medium is

ρ
∂2ui

∂t2 −
∂τi j

∂x j
= wi, (2.1)

where ρ is the density of the medium, u is the displacement vector (u1, u2, u3), t is the time, τi j

are components of the elastic stress tensor, x = (x1, x2, x3) is the cartesian coordinate system and
w = (w1, w2, w3) is the externally applied force per unit of volume (Aki and Richards, 2002).
Note that in equation (2.1) and from now on, summation over repeated indices is implied (as per
the Einstein summation convention). In order to extract information about the elastic properties
of a rockmass, we must first relate the displacement, u to the stresses, τ. In the case of small
strain, the generalized Hooke’s law states that the stress-strain relationship is approximately
linear, such that

τi j =ci jklekl, (2.2)

for strains

ekl =
1
2

(
∂uk

∂xl
+
∂ul

∂xk

)
, (2.3)

where ci jkl is the fourth-order stiffness tensor for the rockmass and ekl is the strain tensor.
We assume that this small strain approximation is appropriate for seismic wave propagation
(Tsvankin, 2012). Therefore, by substituting equations (2.2) and (2.3) into equation (2.1),
we obtain the anisotropic, heterogenous formulation of the elastic wave equation for general
displacement,
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ρ
∂2ui

∂t2 − ci jkl
∂2uk

∂x j∂xl
= wi. (2.4)

By setting the force term equal to 0, we then obtain the homogenous form of equation (2.4),

ρ
∂2ui

∂t2 − ci jkl
∂2uk

∂x j∂xl
= 0. (2.5)

To resolve the displacement field, we must know the components of ci jkl everywhere in space.
This tensor comprises 81 components which vary depending on the symmetric properties of
the rockmass. However, inherent symmetries within the tensor (cijkl = cklij = cjilk) reduce the
number of individual components to 21 (Aki and Richards, 2002). If we describe the elastic
tensor using Voigt’s notation for symmetric tensors (Musgrave, 1970), the elastic tensor can
now be expressed as a symmetric 6x6 matrix with 21 independent constants:

Cij =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


. (2.6)

For TI media, the elastic tensor in equation (2.6) can be reduced to a total of 5 independent
parameters, such that

Cij =



C11 C11 − 2C66 C13 0 0 0
C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


, (2.7)

which must be rotated if the axis of symmetry is not vertical. Thomsen (1986) showed that, for
TI media, several alternative parameters could be derived from the stiffness tensor in equation
(2.7):
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VP0 ≡
√

c33ρ; (2.8)

ε ≡
c11 − c33

2c33
; (2.9)

δ ≡
(c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
, (2.10)

where the number of independent parameters for P-wave studies in VTI media can be reduced
to 3. This notation gives each of the parameters a physical meaning that is relatable to seismic
wave propagation, rather than simply solving for the elastic coefficients. For weak anisotropy,
Thomsen (1986) showed that the P-wave phase velocity in TI media obeys the following the
relationship:

VP(θ) = α0

(
1 + δ sin2 θ cos2 θ + ε sin4 θ

)
, (2.11)

for

α0 =

√
c33

ρ
. (2.12)

By setting ε = δ, equation (2.11) reduces to

VP(θ) = α0

(
1 + ε sin2 θ

)
, (2.13)

which perfectly describes the shape of an ellipse for any angle, θ.

For the isotropic (simplest) case, the number of independent parameters in equation (2.6)
can be further reduced to 2; the bulk modulus, κ, and the shear modulus, µ such that

Cij =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


, (2.14)

where λ is the ‘Lamé’ parameter that relates to the bulk modulus, κ such that λ = κ + 2
3µ. Note

that here I am using the same notation for the ‘Lamé’ parameter as for seismic wavelength, as
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the λ symbol is universally recognized for both of these parameters.

It is well acknowledged in the literature that reservoir units should be characterized by
more general symmetry models. For example, Tsvankin (1997) suggests that reservoirs with
complex fracture networks may be represented by the orthorhombic symmetry system. In this
case, the number of individual parameters can only be reduced to 9, and the elastic tensor
becomes:

Cij =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


. (2.15)

In this thesis, I assume that all geological media observed in this study are well repre-
sented by the TI symmetry system. The more general symmetry models, while useful, increase
the parameterization of the problem, and we will see later on that this complicates both the
forward modelling and inversion processes. As such, I choose to restrict the number of indi-
vidual parameters to simplify forward modelling algorithms and improve model convergence
by exercising greater control over the number of parameters involved.

2.1.1 The Acoustic Approximation

The acoustic wave equation describes the passage of pressure waves through a continuous fluid,
such as sound waves emitted from a speaker or sonar waves traveling underwater, and is a good
approximation to the kinematics of P-wave propagation through a medium. The solution of the
acoustic wave equation is the temporal and spatial behaviour of the pressure field, which is a
scalar quantity. This equation relies on simpler model physics than its elastic counterpart, and
thus requires less complex modelling techniques. Acoustic wave modelling is an ‘engineering’
approach to modelling seismic wavefields, as it oversimplifies the physical model in an attempt
to reduce model complexity and simulation runtimes. This has significance for multisource,
exploration-scale data that are nontrivial to solve with elastic techniques.

Let us now derive the acoustic wave equation from its elastic equivalent. First, we can
recast equation (2.5) in terms of the elastic modulii of an isotropic medium. The equation now
takes the form
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ρ
∂2ui

∂t2 = (λ + µ)
∂

∂xi

(
∂u j

∂x j

)
+ µ

(
∂2ui

∂xk∂xk

)
, (2.16)

which can be described more compactly by introducing vector operators:

ρ
∂2ui

∂t2 = (λ + µ)∇(∇ · u) + µ(∇2u), (2.17)

where

∇ ≡
∂

∂xi
(2.18)

(remembering again that summation over all indices is implied). Since shear waves cannot
propagate within a fluid, we can set µ=0 in equation (2.17), such that λ is reduced to κ in the
first term and the second term is negated. Finally, we divide both sides of equation (2.17)
by density and introduce the definition of hydrostatic pressure for a fluid from Hooke’s Law.
After taking the divergence of both sides, the equation reduces to the source-free, acoustic
wave equation for heterogenous, isotropic media:

∂2P
∂t2 = κ

∂

∂xi

1
ρ

∂

∂xi
P, (2.19)

for

P ≡ −κ∇ · u. (2.20)

In realistic geological media, heterogenous density is expected as this physical property is
know to vary as a function of depth, mineralogy and structure. In order to implement equation
(2.19) for heterogenous model cases, however, we must utilize the finite difference schemes
described later on in this chapter. This is because a wave equation for heterogenous media
cannot be solved analytically.

Let us now assume homogenous density and bulk modulus in equation (2.19) and inject the
following ‘plane’ wave solution:

P = As
(
t −

x
c

)
, (2.21)
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where A is the amplitude of the wave, c is the velocity, x is the ‘x coordinate’ and s(t) is the
time-dependent source function. The solution is labelled as a plane wave as it only varies in
one spatial dimension. Based on equation (2.21), we see that the wave travels in the positive
x-direction with a velocity, c by an amount, x/c. By taking the derivatives of P with respect
to time and x-direction, it can be shown by simple substitution that equation (2.21) satisfies
equation (2.19) provided

c =

√
κ

ρ
, (2.22)

which in turn describes the velocity for pressure wave propagation in an isotropic, homogenous
medium. It is important to note that the isotropic acoustic wave equation (2.19) for heteroge-
nous media is the one that is currently implemented within the inversion strategies of Pratt et al.
(1998), and has been utilized by Dr. Gerhard Pratt and his students and collaborators over the
past two decades. The novel works presented in this thesis are not based on equation (2.19),
however I will compare my results in Chapter 4 to an elliptically isotropic solution obtained
using this equation. Thus, I considered it important to show the reader how this equation was
obtained, as well as how it differs from the anisotropic equivalent derived later on.

2.2 Modelling and Inversion Techniques

The term forward modelling refers to the process of generating the response (u) to a given
physical property model (m) based on the governing physical process or processes (G), or:

G(m) = u, (2.23)

where m and u are column vectors of lengths n and m respectively. In mathematical terms, we
say that the governing physics ‘acts’ on the model parameters in order to produce the predicted
data. Forward modelling is fairly intuitive and is prevalent across many disciplines of science.
Let us illustrate this with a fairly straightforward example, such as predicting the horizontal
distance that a projectile travels after it is launched off of a surface. To keep things simple, we
will assume that such projectiles share a common point of origin (xs0), the gravitational field
(g) is uniform across the surveyed region, and the influence of additional forces (such as wind
drag) is negligible. The maximum horizontal distance, commonly referred to as the Range (R)
of the projectile obeys
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R =
v2

i sin(2θi)
g

, (2.24)

where vi is the velocity at the point of origin. g is the gravitational acceleration and θi is the
launch angle. In this case, G is the physical model that describes the object’s range, vi, g and θi

are the model parameters (m = m1, m2, m3) and the travelled horizontal distance is the observed
response, u. Experiments can thus be conducted for numerous discrete combinations of model
parameters, and the predicted ranges can be tabulated and compared against the observed dis-
tances to draw conclusions about the correctness of the model parameters, m.

Inversion is the reverse operation of forward modelling, as we are attempting to recover the
physical model properties from the observed data. In this case, we are attempting to estimate
the model parameters from the data:

m = G−1u, (2.25)

where equation (2.25) is often referred to as the ‘inverse problem’. Inversion is widely used
in geophysics, as the physical properties of the subsurface are often unknown or difficult to
measure reliably. In many realistic cases, the ‘true’ model parameters cannot be obtained
as simply as in equation (2.25), as the forward operator is often singular and extremely ill-
conditioned (small changes or errors in the inputs greatly impact the output), making G−1

impossible to compute directly. Furthermore, equation (2.23) is an oversimplification of the
forward modelling process (as we will see later on, G requires a more general approach). As
such, our primary goal becomes obtaining a set of model parameters that best fit the data.
We are forced to relax the equality in equation (2.25), and our result for m can now only be
described as an ‘estimate’ of the true model.

Once sufficient data have been obtained, the important question becomes: how can one
obtain the best-fitting model? The most common approach is to make a starting guess, forward
model the data with these starting values and compare the predicted data to those obtained when
conducting the experiment. Based on the differences between the predicted and observed data,
adjustments can be made to the model values and the entire process can then be repeated until
the predicted data match the observed data to within an acceptable degree of error. Figure 2.1
outlines the important steps involved in the inversion process. This iterative approach is the
basis for inversion studies and has been employed successfully across numerous disciplines
over the past five decades (see for example, Aki et al., 1977).
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1	  

Make	  an	  ini)al	  guess	  
	  at	  the	  star)ng	  model	  

Forward	  model	  the	  data	  with	  these	  
values	  

Compare	  the	  predicted	  data	  to	  the	  
observed	  data	  

Do	  the	  predicted	  data	  match	  the	  
observed	  data	  to	  within	  an	  
acceptable	  degree	  of	  error?	  

Yes	   ✔

Make	  adjustments	  to	  the	  
model	  parameters	  

No	  

  Hadden et al. 2016 Figure 2.1: A simplified flow chart highlighting each of the important steps involved in the
inversion process.

In order to fully comprehend the intricacies of inversion modelling, we must further ex-
amine the optimization process. This requires us to think again about the equality in equation
(2.25), as well as what exactly it means to ’solve’ the inverse problem. Here I follow the deriva-
tion and discussion of Pratt (2011). Let us first define the differences between the predicted
and observed data. If we conducted our trajectory experiment n times, the experimental data,
d, and the predicted data, u, can be expressed as n-dimensional column vectors of observed
and predicted ranges, such that

d =



d1

d2

d3

...

dn


, u =



u1

u2

u3

...

un


. (2.26)

The differences, referred to as the data residuals, δd, can then be defined as

δdi = ui − di (for i = 1, 2, 3, ..., n). (2.27)
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The next question one might ask is how exactly can we use the data residuals to alter or
improve our model parameters? To answer this, we must first define the ‘misfit’ or ‘objective’
function, E(m), which is a quantitative measure of how well our current model fits the observed
data. Several formulations of this function exist in the literature that consider the role of the
data residuals as well as their relative weighting with respect to one another. The simplest
formulation, and the one I adopt in the inverse methods described herein, is the least squares
or L2 norm:

E(m) =
1
2
δdTδd =

1
2

n∑
i=1

δd∗i δdi, (2.28)

where δdT is the Hermitian transpose and d∗i is the complex conjugate, introduced to allow a
formulation of the misfit functional for complex-valued data. Until this point, our data have
been horizontal distances, which are real-valued by design. In FWI, we formulate the problem
in the frequency-domain, so the data will be complex-valued. We account for this in equation
(2.28), noting that the norm of the data residuals is real-valued, as expected by the definition
of E(m). We should also note that equation (2.28) neglects the incorporation of any a priori

statistical information, such as the measure of uncertainty in the data or the model. We can
finally answer the philosophical question posed earlier. In order to ’solve’ the inverse problem,
we seek to find the set of model parameters that minimize the misfit function in equation (2.28)
by searching for models that make the data residuals small.

With a clear definition of our objective, we must now discuss the methods by which we plan
to minimize the misfit function, E(m). To do this, we should first define the model space,M
spanned by the elements of m, and the data space, D, spanned by the elements of d (m ⊂ M,
d ⊂ D). Global inverse methods put little emphasis on the ‘topography’ of the misfit function,
and instead attempt to find the best-fitting model by exploring the full range of models within
M. Similarly, semi-global inverse methods search a large portion ofM, and some emphasis is
put on the local topography of the misfit function. Afanasiev et al. (2014) successfully applied
the semi-global inverse method of simulated annealing to develop best-fitting 1-D anisotropy
models for acoustic frequency-domain waveform tomography, after unsuccessful inversions
were obtained using the anisotropy models recovered from traveltime tomography. While ro-
bust, true global methods have been largely disregarded in the field of waveform tomography
due to the computational costs incurred by multiple forward model runs, as well as due to the
enormous size of the model space. We will see later on that the incorporation of anisotropy
into the acoustic wave equation greatly increases the size of the model space. Furthermore, for
real data applications, FWI relies on the highest frequencies to resolve the finer structure in the
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model. This in turn requires a finer grid size, further increasing model size and runtimes. As
such, global and semi-global inverse methods will not be considered further in this thesis.

Local inverse methods utilize the topography of the misfit function to develop perturba-
tions about the starting model. These techniques operate under the assumption that the starting
model is within an acceptable degree of accuracy, such that the global minimum can be ob-
tained by searching locally about the starting model, m. To do this, we must first apply a
Taylor Series expansion to the misfit function by applying an infinitesimal perturbation to the
model parameters, δm:

E(m + δm) = E(m) + δmt∇mE(m) +
1
2
δmtHδm + O(||δm||3), (2.29)

where ∇mE(m) is the gradient of the misfit function and H is the Hessian, a matrix of second
derivatives. If p is the number of model parameters, these terms can be represented mathemat-
ically as follows:

∇mE =


∂E
∂m1
∂E
∂m2

...
∂E
∂mp

 , (2.30)

and

Hi,j =
∂2E

∂mi∂mj
, (2.31)

where Hi,j is the element of the Hessian in the ith row and jth column, and i,j ⊂ {1, 2, ..., p}

such that the Hessian is an pxp matrix. Since we are trying to find the model perturbation, δm,
that minimizes the misfit function, we differentiate equation (2.29) with respect to δm and set
the result to 0 to give

Hδm = −∇mE(m). (2.32)

To solve for the model perturbation, δm, one could apply the Newton algorithm, which is
to simply invert the Hessian in equation (2.32) to give
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δm = −H−1∇mE(m). (2.33)

The Newton method is simple to interpret and easy to implement from a coding standpoint,
however there are several structural downfalls which must be identified. First, we should re-
call the definition of the Hessian from equation (2.31), which shows that the Hessian matrix
requires one row and one column for all m model parameters. Even for small, isotropic prob-
lems, the size of the Hessian is very large, requiring the allocation of large portions of storage
memory. We must remember also that practical cases are constrained by computational costs.
Even if we disregard the size of the Hessian altogether, there is yet another potential problem.
For most real data cases, a lack of resolution for one or more sets of parameters is common,
which introduces zero eigenvalues (interpreted as directions of zero curvature) into the Hes-
sian matrix. The presence of zero curvature in any direction would make it a singular matrix,
therefore it cannot be mathematically inverted (H−1 is not possible).

An alternative to the Newton method that is both practical and computationally efficient
is to ignore the Hessian altogether and calculate the model update from the gradient directly.
This method, termed the ‘steepest descent’ or gradient algorithm, is based on the following
principle: If the gradient, ∇mE(m), shows where and in which direction the misfit function
is increasing most rapidly, why not simply find the direction that points ‘downhill’ i.e. the
direction in which the objective function is decreasing most rapidly? Thus, equation (2.33)
instead becomes:

δm = −α∇mE(m), (2.34)

where α is a positive scalar chosen to minimize the least squares norm in the direction opposite
to the gradient of E(m) (Pratt et al., 1998). It is common to implement the gradient algorithm
iteratively, whereby the model perturbation is calculated several times and repeatedly applied
to the most recent model:

mk+1 = mk − αk∇mEk, (2.35)

where k is the current iteration number. In this approach, the current ‘best’ model, mk, is
perturbed by the model update, −αk ∇mEk, where α is chosen to ensure that the model descends
to the point where the misfit function is optimally reduced. Note that both the step length and
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the gradient must be re-calculated at each iteration.

The gradient algorithm is ideal for its computational efficiency, as it avoids computation or
inversion of the Hessian and simply uses the same gradient that was required for calculating the
model update in the Newton method. One obvious pitfall of this method, however, is that we are
assuming that the absolute minimum lies ‘downhill’ from our starting model. This would not
be a concern if E(m) had a single definite minimum, whereby any local inverse method would
eventually arrive at the global minimum. In most realistic cases, however, E(m) is far more
complicated and may contain multiple local minima. Therefore, when implementing local
inverse methods, one runs the risk of instead converging to a local minimum. This illustrates
the stringent requirement that the starting model be ‘accurate enough’ to avoid converging to a
local minimum. In the following subchapters we will see that equation (2.35) has different but
specific meanings for both traveltime tomography and FWI, and the question of starting model
accuracy will be addressed for each of these cases respectively.

2.2.1 Traveltime Tomography

Let us now return to the traveltime tomography method for weakly anisotropic, inhomoge-
neous media proposed by Chapman and Pratt (1992) and Pratt and Chapman (1992). Here
I will review only the major elements from these works that pertain to P-wave propagation.
If we assume that the perturbations to the raypath can be ignored to first-order accuracy, the
traveltime perturbation based on equation (1.1) is simply:

δT =

∫
ray

1
δc(x)

dl, (2.36)

which is linear for small perturbations that do not change the path of the ray (Cervený, 1972,
1982; Cervený and Jech, 1982). For isotropic media, equations (1.1) and (2.36) are relatively
straight-forward, but for anisotropic media the application is more complicated as the group
slowness is now a function of both the media properties as well as the direction of propagation.
Pratt and Chapman (1992) showed that the traveltime perturbation, δT , for a small variation in
background elastic properties can be written as:

δT = −
1
2

∫
ray

1
V3

P0

p̂i p̂l p̂j p̂kδaijklds, (2.37)
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for

aijkl =
cijkl

ρ
, (2.38)

where p̂ = ( p̂1, p̂2, p̂3) represents the slowness unit vector in an undisturbed isotropic medium,
VP0 is the isotropic velocity and δaijkl is a small perturbation to the density-normalized elastic
tensor. Note that in equation (2.37), the traveltime perturbation is a function of perturbations
to the components of the elastic tensor. This gives flexibility in that the anisotropy formulation
can be completely general. Since we are only interested in 2-D traveltime data, the out-of-plane
terms in equation (2.37) can be ignored ( p̂2 = 0), and the number of independent terms can be
reduced to 5:

δT = −
1

2V3
P0

∫
ray

(
p̂4

1δq1 − p̂3
1 p̂3δq2 − p̂2

1 p̂2
3δq3 − p̂1 p̂3

3δq4 − p̂4
3δq5

)
ds, (2.39)

where

δq1 = δa1111, δq2 = 4δa1131,

δq3 = 2δa1133 + 4δa3131, δq4 = 4δa3331,

δq5 = δa3333. (2.40)

Let us now discuss the concepts of discretization and data coverage in the context of trav-
eltime tomography. We hope to acquire a dense coverage of the survey region through the
selection of source and receiver locations. These are ideally chosen such that, when the paths
between all source-receiver pairs are traced by rays, there is sufficient ray coverage in each
homogenous ‘cell’ of the tomography model. However, there exists both geometrical and
physical limitations to this idealization. Recall that the common geometrical setup for a cross-
well experiment employs vertical source and receiver boreholes. Therefore, even in the case of
a perfectly homogenous region, there will exist regions near the top and bottom of the model
where ray coverage is sparse. Furthermore, the governing physics of rays is that they will
bend at contrasts in seismic velocity. Therefore in more realistic heterogenous models, there
may exist regions, termed ‘shadow zones’, in which ray coverage is sparse due to this inherent
bending of the rays. Nevertheless, we define our data, d, as a vector of values containing the
traveltimes, T, for the path between each source-receiver pair.

After discretization, equation (2.39) becomes:
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δTk = Fkijδqij, (2.41)

where δTk is the traveltime perturbation for the kth ray, qij is the perturbation of the jth elastic
parameter (j=1, ..., 5) in the ith model gridpoint, and Fkij is the partial derivative of the arrival
time of the kth ray to changes in δqij (Pratt and Chapman, 1992). In this approach, the integral
in equation (2.39) is replaced with a summation over all elements of ∆l, where ∆lki is the length
of the kth raypath that travelled through the ith cell, such that:

Fkij =
∂Tk

∂qij
= −

1
2V3

P0

∆lki p̂
5−j
1 p̂j−1

3 , for j = 1, ..., 5, (2.42)

and equation (2.42) becomes:

δT = Fδq. (2.43)

We can now draw some comparisons between equation (2.43) and our generalized equation
for forward modelling shown earlier (G(m) = u) as equation (2.23). We see that F 7→G operates
on the elastic parameters, q7→m, to give the traveltime perturbation, δT7→d, where 7→ denotes
a mapping function. Until this point, we have formulated the forward problem under the basis
that the isotropic background velocity, VP0 , will remain unchanged throughout. This is a poor
assumption as without significant a priori knowledge of the survey region, it is unreasonable
to assume that our starting guess for the isotropic velocity is exactly correct. To account for
this, Chapman and Pratt (1992) added a sixth term, δq0, such that:

δq0 = δV2
P0
, (2.44)

where δVP0 is the perturbation to the isotropic background velocity. Before this term is intro-
duced, equations (2.41) and (2.42) form a system of linear equations for anisotropic tomogra-
phy. With the addition of δq0, however, the system becomes non-linear as the model update
q may now contain an update to the isotropic background velocity, and ∆lki in equation (2.42)
is dependant on the raypaths. These non-linearities are handled by iteratively recomputing the
distribution of VP0 , followed by re-linearizing equations (2.41) and (2.42) by retracing the new
rays (Pratt and Chapman, 1992).

The goal of anisotropic traveltime tomography is to develop best-fitting models of velocity
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(in this case, the P-wave velocity along the symmetry axis, VP0), as well as Thomsen’s param-
eters (i.e., models of ε and δ) for a set of observed or computed traveltimes. We are therefore
interested in solving the system of equations for the perturbations to the elastic parameters, δq.
It is important to clarify, however, that the elastic parameters in q are not the same parame-
ters that affect P-wave velocity in TI media shown in equation (2.7), nor the ones shown in
Thomsen’s notation (equations (2.8), (2.9) and (2.10)). This is due to the generalized P-wave
formulation of the forward problem that considers all possible symmetry systems. Instead, the
‘best-fitting’ TI parameters (VP0 , ε, δ and θ) are estimated from the solution of the tomography
problem (δq) by a coordinate transform, as described in Appendix E of Chapman and Pratt
(1992).

Recalling our earlier discussion of inverse theory, we must first define a ‘level of misfit’
for the data generated by our starting models through the definition of the objective or misfit
function, E(m). To do this, we must return to the least-squares formulation shown in equation
(2.28). For traveltime tomography, this formulation of the L2 norm is oversimplified, as it does
not take into account any a priori information that can be used to improve model convergence
and parameter resolution. In fact, anisotropic traveltime tomography is extremely ill-posed,
the reasons for which are two-fold. Firstly, each value in d is calculated from a raypath that
will only pass through a very small subset of the model cells. Secondly, for TI media, the
parameter-space is large as there are six model parameters for each cell. As such, the Fréchet
matrix, F, is both sparse and extremely ill-conditioned (Pratt and Chapman, 1992). Thus, our
inverse method must contain some criteria for choosing the components of the null space that
materialize in the solution, the incorporation of which serves as a form of matrix regularization
for ill-posed inverse problems (Tikhonov and Arsenin, 1977).

As described by Pratt and Chapman (1992), any combination of the following external
information can be incorporated to aid the traveltime tomography process:

1. Adequate starting models

2. An estimate of the magnitude and degree of anisotropy

3. The expectation that the elastic properties vary smoothly

In the simplest of cases, a homogenous background velocity can be chosen as a starting
model. However, it is common practice to use external information, such as borehole sonic
logs for the crosshole case, or Normal Moveout (NMO) Analyses for the surface reflection
case, to obtain a starting model that might be closer to the true model. Regarding anisotropy, it
is difficult to quantify the exact magnitude of the expected anisotropy parameters for many real
data cases. It is instead more common to anticipate the type of anisotropy. For example, if the



30 Chapter 2. Background Theory andMethodology

region is dominated by horizontal, unfractured sedimentary layers, one could anticipate VTI
symmetry. Finally, the assumption that the true elastic models are smooth is difficult to justify
for complex geological media, as we may expect sharp velocity (and anisotropy) contrasts
along faults, alteration zones, or within finely-laminated sedimentary formations. Nevertheless,
the success of traveltime tomography is reliant on the assumption of model smoothness, which
may seem counterintuitive as the method itself is based on a high-frequency approximation
to seismic wave propagation. Cervený (2005) states that the high frequency approximation
governing ray theory is valid for cases where the heterogeneities are significantly larger than
the seismic wavelength. For complex media containing strong, rapidly varying heterogeneities,
such as the sedimentary formations analyzed in Chapter 4, this assumption breaks down. We
will see later on, however, that our methodology relies on FWI to provide the short wavenumber
updates necessary to image finer structure. As such, the goal for traveltime tomography is to
find a long wavelength model that is accurate enough to serve as a starting point for FWI.

To incorporate these a priori information, let us follow the stochastic formulation of the
inverse problem presented by Tarantola (1987). Here, the solution of the inverse problem is
defined as a probability distribution over all possible models, δq, within the model space,M:

P (δq ⊆ M) = exp
(
−

1
2

E(δq)
)
, (2.45)

where the least-squares objective functional, E(δq), can be defined as follows:

E(δq) = (Fδq − δT)T C−1
d (Fδq − δT) + δqT C−1

p δq. (2.46)

Let us now directly compare the formulation above to the simple objective function defined
in equation (2.28). The major difference is that, in equation (2.46), we have introduced co-
variance matrices, Cd and Cp, to weight the relative contributions of the data residuals (the
differences between the predicted and observed data) and the parameter perturbations (the
differences between the estimated parameters and those obtained using a priori information)
within the objective function, E(δq) (Pratt and Chapman, 1992). Only if we assume that the
data have uniform variance and are uncorrelated (Cd = σ2

dI, where I is an identity matrix), and
that there is no a priori information to constrain our parameter estimates (there are infinite, a

priori model variances), can equation (2.46) be reduced to equation (2.28).

The stochastic formulation assumes a Gaussian probability distribution over the data and
model spaces, such that each solution to the tomography problem, δq, can be assigned a unique
probability value. In this sense, we are saying that the ‘solution’ to the inverse problem is to
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find the most probable model given the data and the prior model. The assumption of Gaussian
statistics is difficult to justify, however we accept this assumption on the basis that it is an
effective statistical model that describes this problem (Pratt and Chapman, 1992).

As earlier, we now differentiate with respect to the model perturbation, δq, and set the
solution of equation (2.46) to 0. If we also assume the data are uncorrelated and have uniform
variance (as described above), equation (2.46) becomes:

(
FT F + σ2

dC−1
p

)
δq =FTδT, (2.47)

∴ δq =
(
FT F + σ2

dC−1
p

)−1
FTδT. (2.48)

Let us carefully examine the structure of equation (2.48). If we compare it to our preliminary
solution for calculating the model update shown in equation (2.33), we see that the expression
inside the brackets is the Hessian (FT F), with the addition of the term for model covariance,
σ2

dC−1
p . Let us recall that the inverse of the Hessian does not exist in the case of a singular

matrix, which we have already addressed to be a common occurrence in the traveltime tomog-
raphy problem. Therefore, we rely on the finite-valued Cp to obtain a solution, and it is this
term that we can modify in order to incorporate external information.

I will now introduce a suite of regularization parameters, β, ν, ε and explain their role
within the regularization process. In Chapters 3 and 4, we will see how the selection of these
parameters affects the resulting tomographic models. Returning to our a priori assumptions,
let us first address the question of starting model accuracy. If we assume that each of the model
parameters are uncorrelated and have an uncertain variance (Cp = σ2

pI), equation (2.47) is
reduced to the damped least squares formulation, and

δq =
(
FT F + ν2I

)−1
FTδT, (2.49)

for

ν =
σd

σp
. (2.50)

Let us briefly examine the role of ν. For large values of ν, σd > σp and the inversion will
‘prefer’ solutions that are similar to the starting models, at the expense of trying to more accu-
rately fit the data. For small values of ν, σd < σp we are effectively trusting that our data are
reliable, so the inversion will search for best-fitting models that may stray considerably from
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the starting values.

Next, we must answer the question of variance between the isotropic velocity and the
anisotropic parameters. Recalling that we have defined q0 to represent isotropic velocity, and
qj, j={1,...,5} to represent the anisotropic parameters, we can modify Cp such that:

δq =
(
FT F + ν2I + β2I

′
)−1

FTδT, (2.51)

where

Cp = σ2
p

ν2

ν2 + β2 for qj, j , 0, (2.52)

and I
′

is a modified identity matrix in which the diagonal elements corresponding to q0 are
set to zero (Pratt and Chapman, 1992). Again, we pause briefly to examine the role of β. We
see that for large values of β, any perturbations to the anisotropic values will greatly impact
the misfit function, E(δq), thereby reducing the introduction of anisotropy into the model. For
small values of β, anisotropy can be introduced into the model without significant increases in
E(δq). Thus, β can be thought of as an ‘anisotropy penalty’, as increasing β forces the inversion
algorithm towards a purely isotropic result. Since the geological media of interest to this thesis
are known to be anisotropic, we will implement small values of β in our inversion strategies
throughout.

The third, and arguably most significant parameter of interest is that which imposes model
smoothness, ε (note here the subtle difference in notation when compared to the anisotropy
parameter ε). Recalling the theoretical limitations on the resolution of traveltime tomography
(equation (1.3)), as well as the high frequency approximation that models seismic energy along
infinitely thin raypaths, we are limited to models that only contain the long wavelength features
of the data. For regions with strong, rapidly varying heterogeneities, we will rely on subsequent
FWI to delineate the high wavenumber features. As Cp effectively serves as a smoothing
operator incorporating smoothness constraints, C−1

p will act as a ‘roughness penalty’ for the
tomographic solution. For the traveltime tomography results presented in Chapters 3 and 4,
we will see that smoothing is imposed at the expense of data fit, (E(δq)). To do this, equation
(2.52) is further modified to give:

δq =
(
FT F + ν2I + β2I

′

+ ε2RT R
)−1

FTδT, (2.53)
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where R is a discrete, sparse, difference operator referred to as the roughness operator, and
ε is a third regularization parameter introduced to give weighting to the various components
of R. Specifically, we introduce derivatives of the solution, δq, to the objective function to
compute the roughness, as direct incorporation of C−1

p would reduce the sparseness of the
matrix we need to invert (Constable et al., 1987; Pratt and Chapman, 1992). For this thesis, the
implementation includes three separate roughness matrices, Rxx, Rzz, and Rxz. The first two are
finite difference operators applied to the gradient in the x- and -z directions respectively, and
Rxz is a 2-D Laplacian finite difference operator that describes the curvature in the model (Pratt
et al., 1993).

Finally, we can combine all of the regularization terms described in this section to form the
system of equations:

δq =

(
F̂T F̂

)−1
F̂T
δT̂, (2.54)

where we introduce the augmented forms of the Fréchet matrix and data vector:

F̂ =



F
εRxx

εRzz

εRxz

ν2I
β2I

′


, (2.55)

and

δT̂ =



δT
0
0
0
0
0


, (2.56)

such that the traveltime perturbation vector, δT̂, has been augmented with the appropriate num-
ber of zeros. Note here that the augmented matrix F̂ is sparse by design. Pratt and Chapman
(1992) and Pratt et al. (1993) solved the above system using the LSQR solver first proposed
by Paige and Saunders (1982). In this approach the model update, δq, is calculated using a
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conjugate gradient algorithm that is analogous to the one shown in equation (2.35), as FT F is
large, and is therefore quite expensive to compute. We adopt this strategy as well, as the LSQR
formulation allows us to perform the inversions for several combinations of the regularization
parameters (β, ν and ε) at a relatively modest computational cost.

One final comment must be made regarding the accuracy in the models produced: The
results of traveltime tomography are extremely reliant on the choice of regularization parame-
ters, as well as the choice of starting models, so deciding when an acceptable result has been
obtained is problematic. Pratt and Chapman (1992) suggest an approach where several ini-
tial tests are performed using unique combinations of β, ν and ε. As the testing proceeds, the
values of the regularization parameters are ‘tightened’ and an ‘acceptable’ result can be de-
fined as one which looks geologically plausible, yet still provides an accurate fit of the data
to within the estimated traveltime picking error. If these models will be used as the starting
point for FWI, however, we will see in the next section that a more quantifiable level of start-
ing model accuracy is defined in order to overcome the cycle-skipping phenomena (Sirgue and
Pratt, 2004). Between inversion passes, Pratt and Chapman (1992) also suggest retracing the
rays, as changes to the velocity and anisotropy parameters determine the raypaths themselves.

2.2.2 Full Waveform Inversion

With the methods and goals of traveltime tomography clearly defined, let us now turn our
attention to FWI, and how its development over the years has made it an industry frontrunner
for developing high-resolution velocity models for complex geological media. Lailly (1983)
and Tarantola (1984) showed that the steepest descent direction of the inverse problem could be
determined for the acoustic wave equation without explicit calculation of the partial derivatives
themselves, an improvement to the computational cost that was critical in times before modern
memory storage and matrix solving capacities. In this approach, the gradient was calculated by
‘back propagating’ the data residuals from the receiver location, and cross-correlating the result
with the forward propagated wavefield from the source. Several numerical implementations of
this technique exist throughout the literature, such as the time-domain formulation suggested
by Gauthier et al. (1986), and the frequency-domain formulation suggested by Pratt (1990).

Based on the aforementioned problems regarding matrix size, the gradient algorithm was
the preferred optimization choice in early FWI studies. This localized inversion method was
used in conjunction with finite-differencing modelling (FDM) for several crosshole field data
cases (see, for example, the time-domain approach of Zhou et al., 1995). Though other nu-
merical modelling techniques have been proposed for wave equation modelling, such as the
Spectral Element Method (SEM) described by Komatitsch et al. (1999), I rely solely on FDM
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methods in this thesis on the basis of their superior efficiency. Marfurt (1984) showed that, for
multisource modelling, frequency-domain FDM methods were most appropriate, which led to
further refinements of this approach by Jo et al. (1996) and Stekl and Pratt (1998). With regards
to time-domain vs. frequency-domain implementations, let us consider that the wavefield at ev-
ery point in the model must be computed and stored for every time step (δti, for i=1,...,Nt) in
the time-domain, versus every modelled frequency ( fi, for i=1,...,N f ) in the frequency-domain.
In most cases, especially when modelling in reduced time, or when inverting a limited number
of frequencies, N f << Nt.

Pratt (1990) and Pratt et al. (1998) proposed a matrix formulation of the seismic waveform
inversion problem that is based on a discrete frequency-domain FDM method, which incorpo-
rates the work of Marfurt (1984), Jo et al. (1996) and Stekl and Pratt (1998), and utilizes Lailly
(1983)’s computational improvements for calculating the gradient function. In this approach,
the resulting wavefield can be computed efficiently for each source in Fourier space, and the
resulting numerical system can be represented as follows:

S(ω,m) u(ω) = f(ω), (2.57)

where ω is the angular frequency, u is the complex-valued pressure wavefield, f contains the
source terms and S is the impedance matrix that represents the ‘wave physics’, which in this
case contains the Helmholtz operator (∇2−ω2/v2) for the pressure wavefield (Pratt, 1990; Mar-
furt, 1984). Note that in the Fourier domain, ω itself is real-valued. Shin and Cha (2009) pro-
posed an alternative formulation to equation (2.57) they termed the ‘Laplace-Fourier domain’
for waveform inversion. In this approach, ω is replaced by the complex-valued frequency, Ω,
such that:

Ω = ω +
i
τ
, (2.58)

where τ is a real-valued characteristic delay time (Phinney, 1965; Pratt, 1990; Kamei et al.,
2014) and u(Ω) is called the ‘Laplace-Fourier domain wavefield’ (Shin and Cha, 2009). The
value of τ is typically governed by the total modelled time and acts as a data preconditioner for
the arrivals (Brenders and Pratt, 2007), whereby a small value of τ would place more emphasis
on the earlier arrivals and surpress the later arrivals. As we will see later on, this will be
especially useful in the anisotropic case, where the predicted data are plagued by late-arriving
artifacts.

An advantage of the matrix formulation in equation (2.57) is that it is valid for any wave
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equation or parameterization, which has extreme significance for the works in this thesis. In
Chapter 4, we will use this formulation to solve the 2-D acoustic isotropic wave equation
(equation (2.19)) for Horizontal Velocity (VH), and in Chapters 3 and 4 we will use this for-
mulation to solve the 2-D acoustic anisotropic wave equation for TI media (equations (2.109)
and (2.110), derived in the next section of this chapter) for Vertical Velocity (VV). To adapt this
technique to the different wave equations and parameters, one only needs to adjust the physics
described within the impedance matrix, S. There are some subtle differences to the other terms
of equation (2.57) for the anisotropic case as well, but more on this later.

In FWI, we are attempting to match the waveform amplitude and phase, and as we shall see
we are interested in modelling the displacement field at any point in the model. Re-arranging
equation (2.57) in the Laplace-Fourier domain:

u(Ω) = S−1(Ω) f(Ω), (2.59)

which one might erroneously relate to the inverse problem (equation 2.25). Equation (2.59)
is the solution to the forward problem (equation 2.23), recalling the reformulation posed by
Lailly (1983) and Tarantola (1984). Here, S(m)−1f is anlagous to G(m) in equation (2.23) and
represents the forward propagated wavefield, and u is the displacement predicted at the receiver
position (Pratt et al., 1998). For computational efficiency, S−1 is never explicitly computed.
Rather, equation (2.59) is factorized into upper and lower triangular terms by the well known
LU decomposition technique (Press et al., 1992). In this approach, the matrix factors can be
re-used for new source terms, f, allowing for efficient calculation of both real and ‘virtual’
sources throughout the iterative inversion process (Pratt, 1990; Pratt et al., 1998).

With the forward model for FWI clearly defined, we turn our attention once again to the
inverse problem, and trying to find the best fitting model that predicts the data. Letting n

equal the number of receiver nodes and m equal the number of model parameters, we recall
our definitions of the data residuals, δd, (equation 2.27), the misfit function, E(m), (equation
2.28), and the gradient of the misfit function,∇mE, (equation 2.29). Here we start with the
simplified objective function (Cd = σ2

dI, and we assume infinite, a priori model variances). We
purposely omit these to avoid obscuring the simplicity of the algorithm (Tarantola, 1987; Pratt
et al., 1998). Let us recast equation (2.28) as follows:

∇mE =<
{
Jtδd?

}
, (2.60)



2.2. Modelling and Inversion Techniques 37

where Jt is the tranpose of the n x m complex-valued Fréchet derivative matrix such that:

Jij =
∂ui

∂mj
, (2.61)

noting that the real-part in equation (2.60) is taken to ensure that the gradient itself is real,
which is expected by its definition.

Let us add some physical interpretations to equation (2.60) in the context of seismic wave
equation modelling. If we define the estimated wavefield that is produced by propagating a
source into the current model by uest, and the observed wavefield as measured at each receiver
location by d, we see that the data residuals is simply the difference between these two wave-
fields (uest - d), and equation (2.60) becomes:

∇mE(m) =<

{(
∂uest

∂m

)
(uest − d)?

}
. (2.62)

While this equation might appear simple in its interpretation, we must be cautious and recall
the steps that were taken to define the gradient function in equation (2.28). For one, it is de-
rived for many small model perturbations, δm, therefore its use with an iterative model update
approach, such as the one described by equation (2.35), is expensive. This is because the for-
ward modelled wavefield (uest) must be calculated for each set of model parameters (equation
(2.59)), therefore the first term in equation (2.62) is prohibitive to the overall efficiency of the
inversion problem. As we will see in Chapters 3 and 4, it is not uncommon in FWI to perform
multiple iterations of FWI for different combinations of frequencies, offsets, regularization pa-
rameters etc. Therefore, the forward modelled wavefield would need to be calculated many
times, which is not ideal.

Fortunately, Pratt et al. (1998) provided an alternate, efficient approach for calculating the
gradient of the seismic waveform problem that does not require the explicit calculation of J at
each gradient step1. First, let us recast equation (2.60) above as follows

∇mE =<
{
Ĵt
δd̂?

}
, (2.63)

where we introduce the augmented forms, Ĵt
, d̂, recalling that the lengths of the unaltered terms

were n x m, and n x 1 respectively. Now, we introduce the dimensional parameter, l, equal to
the number of nodes within the model. We now augment Jt to Ĵt

by adding partial derivatives

1Note that this exact step was the ‘trick’ discovered by the works of Lailly (1983) and Tarantola (1984) which
made FWI computationally feasible.
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for all node points (ui, for i= 1, ..., l and l > n) such that J now becomes an l x m matrix. To
augment the data residual matrix, we simply add (l - m) zero terms after the nth term in d to
give an l x 1 matrix.

Now, let us return to the general formulation posed in equations (2.57) and (2.59). If we
take the derivative of both sides with respect to the ith model parameter, mi, and introduce the
terminology for the estimated and observed wavefields, we get:

S
∂uest

∂mi
= f(i), (2.64)

or

∂uest

∂mi
= S−1f(i), (2.65)

where we define the ith ‘virtual source’ as:

f(i) = −
∂S
∂mi

, (2.66)

which is itself, an l x l matrix (Pratt et al., 1998). A quick comparison between equation (2.65)
and the one used to derive equation (2.62) makes it clear that the partial derivative wavefields
are now determined locally for each model parameter by the propagation of the virtual sources
throughout the model. In this formulation, the virtual source represents the interaction of the
predicted wavefield with the nodal parameter or parameters (Pratt et al., 1998).

If we substitute equation (2.65) into equation (2.63), the gradient becomes2:

∇mE(m) =<
{(

Ft
(
S−1

))
δd̂?

}
, (2.67)

which can be written in the alternative form:

∇mE(m) =<
{
Ftv

}
, (2.68)

where v can be introduced to represent the ‘backpropagated wavefield’:

v =
(
S−1

)
δd̂?. (2.69)

2Substituting equation (2.65) into equation (2.63) actually gives (S−1)t, however S is symmetric.
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We can now summarize the calculation of the gradient as follows: First, the backpropagated
wavefield, v, is computed by propagating the time-reversed data residuals, d̂?, throughout the
model, m, by the forward operator, S−1. The backpropagated wavefield is then multiplied by
the virtual source at each nodal point, F, and the real part is taken (Pratt et al., 1998).

The gradient calculation in equations (2.67) and (2.68) can then be used in conjunction
with the gradient algorithm described by equation (2.39) by starting from an initial or starting
model, m0. We also require the linear step length estimate,

α =
||∇mE(m)||
||J∇mE(m)||

. (2.70)

As we have alluded to several times up until this point, the starting model m0 is often derived
from traveltime tomography, as described in Section 2.2.1. For synthetic FWI studies, it is
not uncommon to use a Gaussian-smoothed version of the true models as the starting model
(Gholami et al., 2013b). Note that by adopting the gradient algorithm, we have assumed that
the updated model, m, is simply a linear combination of the starting model, m0 and the model
update, δm; an assumption that is made in the framework of the Born approximation.

One final point of discussion is that of starting model accuracy, and how it is related to
both the gradient function as well as the gradient algorithm for inversion. When defining
the wavefield data residuals within the frequency domain, one has the option of incorporating
information regarding the wave amplitude, phase or both. For the inversions performed in
Chapters 3 and 4, I have performed ‘phase-only’ inversions, the reasons for which are two-fold:
Firstly, the accuracy of amplitudes modelled by the anisotropic wave equation (described in
Section 2.3) that I have adapted has not been studied or quantified to date (Operto et al., 2009).
Furthermore, it has been shown in the literature that, for rapidly varying heterogenous media
such as the ones described in Chapter 4, the phase-only adaptation of the misfit function is
more robust as the model gradient is extremely sensitive to strong amplitude variations (Kamei
et al., 2014).

Our choice of phase-only inversions does not overcome the problem of non-linearity due
to the oscillatory nature of the phase. The ‘half-cycle criterion’, described by Sirgue and Pratt
(2004), suggests that the gradient algorithm will converge to an erroneous final model if the
wavefield produced by the starting model (uest) is more than π/2 out-of-phase with the observed
wavefield (d). Luckily, the quality control check for this is rather simple, and can be determined
empirically by visual inspection of the time- or frequency-domain waveforms produced in the
starting model. Nevertheless, it is nearly impossible to generate a starting model that satisfies
the half-cycle criterion at every point, so some mismatch manifests in the models produced
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from inversion as artifacts, an occurance that has become commonly referred to in FWI studies
as the ‘cycle-skipping’ phenomena (Sirgue and Pratt, 2004; Brenders and Pratt, 2007; Virieux
and Operto, 2009).

It should be noted that FWI is a major field of research, therefore the techniques described
in this thesis may differ from those explained elsewhere. I refer the reader to Virieux and
Operto (2009) for a detailed, modern overview of FWI, and how it has developed over the
past several decades. The inversion techniques described in this Section have been commonly
referred to as ‘conventional’ FWI in recent years (Leeuwen et al., 2013), and several areas of re-
search have been aimed at improving all aspects of FWI, ranging from alternative calculations
of the misfit functional (Luo and Schuster, 1991; Leeuwen and Mulder, 2010) to expansion
and reformulation of the model search space (Haber et al., 2000; Leeuwen et al., 2013). The
primary focus of these works has been the non-linear nature of the seismic waveform prob-
lem, and how it relates to final model accuracy. For this thesis, I adopt the conventional FWI
approach and I assume that the models generated using anisotropic traveltime tomography are
accurate enough to serve as starting points for anisotropic FWI using the wave equation and
finite-difference approach described in the following section.

2.3 The Acoustic Anisotropic Wave equation for Transversely
Isotropic Media

In this subchapter, I show the evolution of the anisotropic wave equation for TI media from its
conception by Alkhalifah (1998) to the system of equations proposed by Operto et al. (2009).
I have integrated this system into the inversion strategies of Pratt (1990) and Pratt et al. (1998).
Here I show the full derivation as the equation has been modified by several authors throughout
the literature for several applications, as well as to be compatible with numerous modelling ap-
proaches. The objective of the derivation is to arrive at a set of coupled second-order equations
that describe anisotropic wave propagation in an acoustic medium as a function of the het-
erogenous VTI parameters ε, δ, θ0 and VP0 (equations (2.100) and (2.101)). In Section 3.2.1, I
describe the implementation that I have adapted to integrate this equation system into the FWI
workflow which includes a description of both the forward operator as well as the boundary
conditions.

Despite its comparative simplicity to its elastic counterpart, deriving an anisotropic equiv-
alent to the acoustic wave equation is non-trivial. For one, it describes a non-physical process
as anisotropic media are inherently elastic in nature (the pressure field is a scalar, therefore
it should not vary with direction). Nevertheless, Alkhalifah (1998, 2000) proposed an acous-
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tic wave equation for VTI media by setting the S-wave velocity along the vertical symmetry
axis equal to zero. Starting with his equation relating vertical and horizontal slowness in VTI
media:

V2
P0

p2
z = 1 −

V2
nmo p2

h

1 − 2V2
nmoηp2

h

, (2.71)

he derived a fourth-order time-domain acoustic wave equation for VTI media:

∂4Ft

∂t4 − (1 + 2η)v2
(
∂4Ft

∂x2∂t2 +
∂4Ft

∂y2∂t2

)
= v2

v
∂4Ft

∂z2∂t2 − 2ηv2v2
v

(
∂4Ft

∂x2∂z2 +
∂4Ft

∂y2∂z2

)
, (2.72)

with

η =
1
2

(
V2

h

V2
nmo
− 1

)
=

ε − δ

1 + 2δ
, (2.73)

where Ft (x,y,z,t) is the pressure wavefield in the time-domain, VP0 is the vertical p-wave ve-
locity, Vnmo is the normal move-out (NMO) velocity, ph is horizontal slowness, pz is vertical
slowness, vv is vertical velocity and v is the interval NMO velocity in isotropic and TI media.
For a finite-difference implementation, equation (2.72) is reduced from fourth order to second
order in t by introducing P = ∂2Ft/∂t2 and re-arranging in terms of P:

∂2P
∂t2 = (1 + 2η)v2

(
∂2P
∂x2 +

∂2P
∂y2

)
+ v2

v
∂2P
∂z2 − 2ηv2v2

v

(
∂4Ft

∂x2∂z2 +
∂4Ft

∂y2∂z2

)
, (2.74)

for heterogenous ε and δ (and therefore heterogeneous η).

For subsurface models represented by VTI symmetry, Alkhalifah (2000) showed that equa-
tion (2.74) is kinematically accurate when compared to the elastic wave equation for VTI me-
dia. There are, however, some limitations to this method that must be discussed. Firstly, this
equation is unable to accurately predict amplitudes, which has significance when inverting for
the Quality factor, Q, of the medium. Furthermore, although the S-wave velocity is set to zero
in the initial formulation of the phase velocity, S-wave energy is still excited within numerical
simulations of the anisotropic acoustic equation (first observed in Alkhalifah, 2000, some other
examples include Zhang et al., 2005 and Operto et al., 2009). These waves are believed to be
generated at a source located in a VTI or TTI medium, or converted from P-waves at seismic
boundaries. Herein, these S-wave artifacts will be referred to as ‘spurious S-waves’ and will
be discussed in further detail later on.
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Let us factor V2
nmo from each of the terms in equation (2.71):

V2
P0

p2
z = V2

nmo

(
1

V2
nmo
−

p2
h

1 − 2V2
nmoηp2

h

)
, (2.75)

and divide both sides by V2
P0

:

p2
z =

V2
nmo

V2
P0

(
1

V2
nmo
−

p2
h

1 − 2V2
nmoηp2

h

)
. (2.76)

We can then set ph =
√

p2
x + p2

y for p = (px,py,pz) since the slowness in TI media will behave
isotropically in the transverse plane, so that equation (2.76) now becomes:

p2
z =

V2
nmo

V2
P0

 1
V2

nmo
−

p2
x + p2

y

1 − 2V2
nmoη(p2

x + p2
y)

 . (2.77)

Finally, letting k = ωp for k = (kx,ky,kz) where k is the wavenumber and ω is the angular
frequency, equation (2.77) becomes:

k2
z =

V2
nmo

V2
P0

 ω

V2
nmo
−

ω(k2
x + k2

y)

ω − 2V2
nmoη(k2

x + k2
y)

 . (2.78)

From equation (2.78), the higher-order partial differential equations described by equations
(2.72) and (2.73) can be obtained, and have since been successfully implemented for several
seismic migration and modelling applications (Alkhalifah, 2000; Grechka et al., 2004).

Zhou et al. (2006b) proposed an alternative anisotropic acoustic wave equation that is based
on the same fundamental assumption as the one described by Alkhalifah (2000). Let us begin
by re-arranging equation (2.78) and introducing the relation described by equation (2.73):

k2
z =

ω2

V2
P0

− (1 + 2δ)(k2
x + k2

y) − (1 + 2δ)(k2
x + k2

y)

 2V2
P0

(ε − δ)(k2
x + k2

y)

ω2 − 2V2
P0

(ε − δ)(k2
x + k2

y)

 . (2.79)

By multiplying both sides of equation (2.79) by the wavefield function in Fourier space,
p(ω,kx,ky,kz), the fourth order partial differential equation described by equation (2.73) can be
reduced to a coupled system of second-order equations by introducing an auxiliary wavefield
function, q(ω,kx,ky,kz), such that:
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k2
z p(ω, kx, ky, kz) =

 ω2

V2
P0

− (1 + 2δ)(k2
x + k2

y)

 p(ω, kx, ky, kz)

− (1 + 2δ)(k2
x + k2

y)q(ω, kx, ky, kz), (2.80)

for

q(ω, kx, ky, kz) =
2V2

P0
(ε − δ)(k2

x + k2
y)

ω2 − 2V2
P0

(ε − δ)(k2
x + k2

y)
q(ω, kx, ky, kz). (2.81)

Finally, if we take an inverse Fourier transform of both sides of equations (2.80) and (2.81),
we obtain the final expressions for the anisotropic acoustic wave equation for VTI media:

1
V2

P0

∂2 p
∂t2 − (1 + 2δ)

(
∂2

∂x2 +
∂2

∂y2

)
p −

∂2 p
∂z2 = (1 + 2δ)

(
∂2

∂x2 +
∂2

∂y2

)
q, (2.82)

and

1
V2

P0

∂2q
∂t2 − 2(ε − δ)

(
∂2

∂x2 +
∂2

∂y2

)
q = 2(ε − δ)

(
∂2

∂x2 +
∂2

∂y2

)
p. (2.83)

equations (2.82) and (2.83) are easier to implement (compared to equations (2.73) and (2.75)),
and are kinematically accurate for modelling P-wave propagation in VTI media when com-
pared to an elastic solution (Zhou et al., 2006b).

Until this point, we have derived all of our anisotropic wave equations under the assumption
that the symmetry axis is parallel to the vertical (z-axis). The data cases in this thesis are limited
to VTI media, however I still implement an equation than can handle a tilted symmetry axis for
the purpose of future studies. Following on their earlier work, Zhou et al. (2006a) developed an
anisotropic acoustic wave equation for 2-D TTI media that utilizes the same coupled strategy
as their VTI method. Let us begin with the phase velocity relation for TI media developed by
Tsvankin (1996):

V2(θ)
V2

P0

= ε sin2 θ̄ −
f
2

+ −
f
2

√(
1 +

2ε sin2 θ̄

f

)2

−
8(ε − δ) sin2 θ̄ cos2 θ̄

f
, (2.84)
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for

f = 1 −
V2

S 0

V2
P0

, (2.85)

where V(θ) is the phase velocity, θ̄ is the phase angle with respect to the symmetry axis, and
V2

S 0
is the S-wave velocity along the symmetry axis. Before going any further, note that the

velocity relation for VTI media can be obtained from (2.84) by substituting the eikonal solution
for phase velocity:

V2(θ) =
1

p2
h + p2

h

, (2.86)

such that

ph =
sin θ
V(θ̄)

, (2.87)

pv =
cos θ
V(θ̄)

. (2.88)

Returning to the derivation of the TTI wave equation, if we set V2
S 0

= 0, equation (2.84) can
be re-arranged as follows:

cos2 θ̄

V2(θ)
=

1
V2

P0

− (1 + 2δ)


sin2 θ̄
V2(θ)

1
V2

P0

1
V2

P0

− 2(ε − δ) sin2 θ̄
V2(θ)

 . (2.89)

Next, we introduce the following relations:

sin θ =
V(θ)kx

ω
, cos θ =

V(θ)kz

ω
, (2.90)

where θ is the phase angle with respect to the z-axis. If we let θ0 be equal to the angle between
the symmetry axis and the vertical, we have θ̄ = θ−θ0. Substituting this expression and equation
(2.90) into equation (2.89) gives us the dispersion relation for TTI function as a function of the
angle of symmetry axis:
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f1 =
ω2

V2
P0

− (1 + 2δ) f2 − (1 + 2δ)2(ε − δ)
f1 f2

ω2

V2
P0

− 2(ε − δ) f2

, (2.91)

for

f1(kx, kz, θ) =k2
z cos2 θ − kxkz sin 2θ0 + k2

x sin2 θ, (2.92)

and

f2(kx, kz, θ) =k2
x cos2 θ + kxkz sin 2θ0 + k2

z sin2 θ, (2.93)

where the variables f1 and f2 can be introduced for clarity. As in Zhou et al. (2006b), we now
multiply both sides of equation (2.91) by the wavefield function, p(ω,kx,kz), and introduce the
auxiliary wavefield function, q(ω,kx,kz), such that

f1 p =

 ω2

V2
P0

− (1 + 2δ) f2

 p − (1 + 2δ) f2q, (2.94)

for

q(ω, kx, kz) =
2V2

P0
(ε − δ) f2

ω2 − 2V2
P0

(ε − δ) f2
p(ω, kx, kz). (2.95)

Finally, we take the inverse Fourier transform of both sides of equations (2.94) and (2.95) to
obtain the final coupled system of partial differential equations for 2-D TTI media:

1
V2

P0

∂2 p
∂t2 − (1 + 2δ)H̄p − H̄0 p = (1 + 2δ)H̄q, (2.96)

1
V2

P0

∂2q
∂t2 − 2(ε − δ)H̄q = 2(ε − δ)H̄p, (2.97)
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where two new differential operators, H̄ and H̄0 can be defined as follows

H̄ = cos2 θ0
∂2

∂x2 + sin2 θ0
∂2

∂z2 − sin 2θ0
∂2

∂x∂z
, (2.98)

H̄0 = sin2 θ0
∂2

∂x2 + cos2 θ0
∂2

∂z2 + sin 2θ0
∂2

∂x∂z
. (2.99)

Note that, if we set θ0=0◦, equations (2.95),(2.96), and (2.97) are reduced to their 2-D VTI
equivalents (equations (2.81),(2.82), and (2.83) respectively. Zhou et al. (2006a) implement
equations (2.96) and (2.97) in the time-domain and show good kinematic agreement with the
elastic equivalent for θ0= 0◦, 45◦ and 90◦.

Up until this point, we have derived all of our equations for a constant density medium.
This is also a poor assumption as density will vary based on several factors such as mineral
composition and depth (Gardner et al., 1974). Operto et al. (2009) modify the coupled system
of Zhou et al. (2006a) to allow for heterogenous density. By introducing heterogenous buoy-
ancy (the inverse of density) into the H̄ and H̄0 operators and remembering that the isotropic
acoustic P-wave velocity, VP0 =

√
κ0b, where κ0 is the bulk modulus along the symmetry axis

and b is buoyancy, the system of equations becomes

1
κ0

∂2 p
∂t2 − (1 + 2δ)H̄p − H̄0 p = (1 + 2δ)H̄q, (2.100)

1
κ0

∂2q
∂t2 − 2(ε − δ)H̄q = 2(ε − δ)H̄p, (2.101)

with

H̄ = cos2 θ0
∂

∂x
b
∂

∂x
+ sin2 θ0

∂

∂z
b
∂

∂z
−

sin 2θ0

2

(
∂

∂x
b
∂

∂z
+
∂

∂z
b
∂

∂x

)
, (2.102)

and

H̄0 = sin2 θ0
∂

∂x
b
∂

∂x
+ cos2 θ0

∂

∂z
b
∂

∂z
+

sin 2θ0

2

(
∂

∂x
b
∂

∂z
+
∂

∂z
b
∂

∂x

)
. (2.103)

Before going further, a couple of important cases can be mentioned here. By setting both ε and
δ equal to zero, equation (2.101) goes to zero and equation (2.100) is reduced to the second
order isotropic wave equation. Furthermore, if ε=δ, such as in the case of elliptical transverse
isotropy, equation (2.101) will again vanish. In this sense, equation (2.100) can be thought
of as a measure of ellipticity, while equation (2.101) can be thought of as a compensation or
correction term for the changing wavefront in both the lateral and depth dimensions (Zhou
et al., 2006a).
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Operto et al. (2009) then recast the system of second-order equations into a hyperbolic
system of first-order equations by introducing the auxiliary wavefields, px, pz, qx and qz, such
that:

1
κ0

∂p
∂t

= Ax
∂px

∂x
+ Bx

∂pz

∂x
+ Cx

∂qx

∂x
+ Dx

∂qz

∂x
+ Az

∂px

∂z
+ Bz

∂pz

∂z
+ Cz

∂qx

∂z
+ Dz

∂qz

∂z
, (2.104)

1
κ0

∂q
∂t

= Ex
∂px

∂x
+ Fx

∂pz

∂x
+ Gx

∂qx

∂x
+ Hx

∂qz

∂x
+ Ez

∂px

∂z
+ Fz

∂pz

∂z
+ Gz

∂qx

∂z
+ Hz

∂qz

∂z
, (2.105)

∂px

∂t
= b

∂p
∂x
,
∂pz

∂t
= b

∂p
∂z
, (2.106)

∂qx

∂t
= b

∂q
∂x
,
∂qz

∂t
= b

∂q
∂z
, (2.107)

where the following coefficients are introduced for clarity and compactness:

Ax = 1 + 2δ cos2(θ0), Bx = −δ sin(2θ0),

Cx = (1 + 2δ) cos2(θ0),Dx = −(1 + 2δ)
sin(2θ0)

2
,

Az = Bx, Bz = 1 + 2δ sin2(θ0),

Cz = Dx,Dz = (1 + 2δ) sin2(θ0),

Ex = 2(ε − δ) cos2(θ0), Fx = −(ε − δ)sin(2θ0),

Gx = Ex,Hx = Fx,

Ez = Fx, Fz = 2(ε − δ) sin2(θ0),

Gz = Fx,Hz = Fz. (2.108)

Next, we introduce 1D damping functions, ξx and ξz for convolutional Perfectly Matched Lay-
ers (c-PML) absorbing boundary conditions, which are discussed in detail in Drossaert and Gi-
annopoulos (2007) and Komatitsch and Martin (2007). These functions define a zone around
the boundaries of our model in which the waves are gradually damped as they travel further
into the PML layer, thus mitigating erroneous reflections off boundary edges. In all other areas
of the grid, ξx = ξz = 1. Now, if we take an inverse Fourier transform of the hyperbolic system
of first order equations, we arrive at the frequency-domain 2-D acoustic wave equation for TI
media that we will implement into our anisotropic FWI approach:
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−iω
κ0
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1
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∂px
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∂x
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+
1
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∂px
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∂qx
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), (2.109)

−iω
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∂qx

∂z
+ Hz

∂qz

∂z
), (2.110)

−iωpx =
b
ξx

∂p
∂x
, −iωpz =

b
ξz

∂p
∂z
,

−iωqx =
b
ξx

∂q
∂x
, −iωqz =

b
ξz

∂q
∂z
, (2.111)

for

ξx =γx +
dx

χx + iω
, (2.112)

ξz =γz +
dz

χz + iω
, (2.113)

where d represents the distance into the PML layer and χ and γ are damping functions (Drossaert
and Giannopoulos, 2007; Komatitsch and Martin, 2007).

Although we are able to utilize the inversion strategies of Pratt et al. (1998) for the works
presented in this thesis, the anisotropic wave equation is not compatible with the differencing
operator and matrix factorization scheme that is typically coupled with this technique. Most
studies by Dr. Pratt and his collaborates to date have used the mixed-grid approach of Jo
et al. (1996), a nine-point isotropic FD operator, to perform isotropic or elliptically isotropic
FWI studies (Pratt et al., 2005; Brenders and Pratt, 2007; Afanasiev et al., 2014). A simple
comparison between the system of anisotropic equations above, to the isotropic wave equa-
tion described in equation (2.19) shows that there is an additional wavefield (q) present in the
anisotropic case. If we recall the matrix formulation in equation (2.57), this additional wave-
field must be accounted for within the u term, which in turn must be accounted for within the
structure of the S and f terms as well. In the next subsection, I describe the finite-difference
frequency-domain implementation that I have adopted to allow the inversion strategies of Pratt
et al. (1998) to be compatible with the anisotropic wave equation for TI media (equations
(2.109) and (2.110)).
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2.3.1 The Frequency-Domain Finite-Difference Implementation
for Anisotropic Media

For accurate simulations, we require a differencing operator that can account for changes to
the anisotropic parameters in both directions. Furthermore, it must be compatible with the
first-order velocity-stress hyperbolic system of equations (2.109) and (2.110). As such, I adopt
the ‘parsimonious mixed-grid approach’ proposed by Operto et al. (2009). This discretization
is based on the original mixed-grid method proposed by Jo et al. (1996), but recast into the
framework of the parsimonious staggered-grid method proposed by Hustedt et al. (2004). In
the original formulation proposed by Jo et al. (1996), spatial derivatives of a second-order
wave equation (such as equation (2.19)) are computed on two separate coordinate systems, the
results of which are then combined linearly to form one compact stencil. In the parsimonious
approach, the wave equation is instead written as a first-order velocity-stress hyperbolic system
and discretized on staggered-grid stencils for the same two coordinate systems as the mixed-
grid approach (Virieux, 1986). In the parsimonious case, the particle wavefields are eliminated
during discretization, such that the resulting solution on each coordinate system is the second-
order pressure wavefield (in the acoustic case). Finally, the result on each coordinate system
can be combined linearly to form one discrete wave equation, provided that the wavefields kept
after elimination are discretized onto the same coordinate system (Operto et al., 2009).

Following Operto et al. (2009), I discretize equations (2.109) and (2.110) on two coordinate
systems. The first is the well-known Cartesian System (CS), and the second is a coordinate
system rotated 45◦ from the cartesian system (RS). All further mentions of the cartesian and
rotated coordinate systems with be denoted by the subscripts ‘c’ and ‘r’ respectively. After
discretization and linear combination of the two stencils, the particle wavefields px, pz, qx, qz

are eliminated, and the system of equations can be written in matrix form for the source-free
case as follows:

 Mp + w1Ar + (1 − w1) Ac w1Br + (1 − w1) Bc

w1Cr + (1 − w1) Cc Mq + w1Dr + (1 − w1) Dc

 x

 p
q

 =

 0
0

 , (2.114)

where Mp and Mq denote the diagonals of the mass matrix for the p- and q-wavefields, blocks
Ar, Br, Cr, Dr and Ac, Bc, Cc, and Dc are the stiffness matrices for the RS and CS stencils,
and w1 is the experimentally determined coefficient that weights the relative components of
each of the two stencils (Operto et al., 2009). It is important to note here that the notation of
the stiffness matrices should not be confused with the alphabetical notation used to describe
the coefficients in the system of anisotropic wave equations (equation 2.108). Rather, each of
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the stiffness matrices is comprised of nine-point stencils that utilize a unique subset of these
alphabetical coefficients. I refer the reader to Appendices A and B of Operto et al. (2009) for
a full description of these stencil coefficients, as they are quite lengthy, and therefore imprac-
tical to show here. To improve stencil accuracy, we adopt the ‘anti-lumped mass’ technique
proposed by Stekl and Pratt (1998), whereby the mass term is averaged across the nine points
of the stencil. For the ijth term in the mass diagonals Mp and Mq, the diagonal is replaced by
its weighted average, such that:

ω

κij
→ wm1

ω

κij
+

wm2

4

(
ω

κi+1,j
+

ω

κi-1,j
+

ω

κi,j+1
+

ω

κi,j-1

)
+

(1 − wm1 − wm2)
4

(
ω

κi+1,j+1
+

ω

κi-1,j-1
+

ω

κi-1,j+1
+

ω

κi-1,j-1

)
, (2.115)

where the arrow denotes a replacement and wm1 and wm2 are weighting coefficients determined
jointly with w1 during dispersion analysis. As we did not perform these analyses, we use the
weighting coefficients recommended by Operto et al. (2009), the values of which are summer-
ized in Table 2.1. The reader should note that these coefficients are subtly different to those
proposed by Jo et al. (1996), which is probably related to the incorporation of anisotropy into
the modelling process.

Let us pause briefly to carefully examine the structure of equation (2.114). First, we can
clearly see it is analogous to the forward problem presented in equation (2.57). That is, the first
term forms the operator (S) which contains the ‘wave physics’, and the second term contains
the p- and q-wavefields (u) for a given source (f). It is also important to note that the mass
diagonals are only applied to the first and fourth quadrants. This is because each row of every
quadrant represents one point in the model, so applying the mass term to the second and third
quadrants as well would double count the mass effect for the p- and q-wavefields respectively.
Setting ε = δ = θ = 0, or ε = δ , 0, we see that equation (2.110) vanishes (the q-wavefield is
nil), and equation (2.114) is reduced to the upper left block only, or:

(
Mp + w1Ar + (1 − w1) Ac

)
p = 0. (2.116)

Let us now examine the size of the matrices in equations (2.114) and (2.116) in more detail.
For simplicity’s sake, we will only consider a single-frequency, single-source case so that the
arrays themselves are 2-D. For multi-source multi-frequency problems (Chapters 3 and 4), I
store the source information in the third array dimension, and parallelize the computation over
frequencies. Let us first consider the isotropic case. Letting nx equal the number of gridpoints
in the x-dimension and nz equal the number of gridpoints in the z-dimension, each of the terms



2.3. The Acoustic AnisotropicWave equation for Transversely IsotropicMedia 51

in the forward operator in equation (2.116) will have nx*nz x nx*nz complex-valued elements,
the p-wavefield will have nx*nz x 1 elements, and the source term also having nx*nz x 1 ele-
ments. Let us note here that this would also be the case if we used the isotropic wave equation
with the mixed-grid method of Jo et al. (1996). If we now assume elliptical anisotropy, the
number of matrix elements remains the same (thus, the runtimes will be unaffected), however
the use of the isotropic wave equation with the mixed-grid method would no longer be justified,
as this does not account for changes to the anisotropic parameters in both directions.

Finally, if we consider the anelliptical case (ε , δ), the additional matrices are non-zero and
we must utilize the entire system described by equation (2.114). First, we have an additional
wavefield parameter, q, which must be accompanied by an additional source term (f = ( fp, fq)T ).
For all of the works presented in this thesis, the source term for the q-wavefield ( fq) is set to
zero. Nevertheless, we account for this additional source term by doubling the length of the
wavefield and source vectors, such that the u and f terms now comprise 2*nx*nz x 1 elements.
Since each of the four quadrants in the differencing operator are now non-zero, its size is sig-
nificantly increased when compared to the isotropic/elliptical case, increasing to a total size of
2*nx*nz x 2*nx*nz elements. The overall increase in matrix components has a significant im-
pact on computation runtimes, as well as computational storage for the anisotropic case. How-
ever, these increases are necessary as we are introducing a more thorough modelling approach
that better represents anisotropic wave behaviour. For the anisotropic FWI results presented in
Chapters 3 and 4, I implement the FDFD system described by equation (2.114) into a seismic
waveform modelling framework developed in Python (Smithyman et al., 2015), which is part
of an open-source framework for waveform inversion called Zephyr (https://zephyr.space).

w1 wm1 wm2

0.4382634 0.6287326 0.3712667

Table 2.1: Optimal weighting coefficients for equations 2.114 and 2.115 determined jointly
during dispersion analysis by Operto et al. (2009).

To ensure that I implemented Operto et al. (2009)’s technique correctly, I replicate some
of the time-domain forward modelling results published in their paper (their Figure 3 on page
T82). Table 2.2 summerizes the forward modelling parameters used for this simulation, and
Figure 2.2 shows the time-domain snapshot for a source located at the very centre of the grid.
My results in Figure 2.2 are most comparable with panel (c) of their results, as no anisotropic
weighting of the source region was used, so I show this panel for comparison. Operto et al.
(2009) shows that for their modelling technique, a secondary wave that travels at approximately
one-third the speed of the pressure wave is erroneously injected when the source is located in
a medium where ε > δ. These slow-moving waves have become known as ‘spurious S-wave
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artifacts ’ in the literature (Alkhalifah, 2000; Zhou et al., 2006b; Operto et al., 2009). In Chapter
3 I discuss some of the strategies that have been developed to address these artifacts, as well
as the ones that I have adopted for these analyses. For this simulation, the source is a Ricker
wavelet with a dominant frequency of 4 Hz, and ε > δ such that the spurious S-wave energy
can observed. By comparing the two images, it is obvious that the wave modelling techniques
are the same.

Using the same modelling parameters, I re-perform this analysis for several unique combi-
nations of ε and δ to show how the wavefront differs from its isotropic counterpart in each case
(Figure 2.3). Note how the spurious S-wave energy is only injected where ε > δ, as expected.
The first four panels of Figure 2.3 were computed for VTI symmetry (θ0 = 0◦), while the fifth
and sixth panels were computed for TTI symmetry (θ0 = 45◦). The primary reason that I have
restricted my analyses in Chapters 3 and 4 of this thesis to the VTI case is related to the spu-
rious S-wave artifacts. Operto et al. (2009) showed that when ε > δ and θ0 , 0, significant
instabilities are observed within the source and PML regions of the model (their Figure 9 on
page T87) that become more prominent as the number of grid points per wavelength increases.
These instabilities are clearly present in panel (e) of my Figure 2.3, but not panel (f) as δ > ε

in this case. It is also apparent that the magnitude of anellipticity (the difference between ε and
δ) is positively correlated with the amplitude of the S-wave artifacts. This is not a published
relationship, but rather an observation that I have made over the course of this thesis. This has
implications for some of my results shown in Chapter 4, but more on this later.

Parameter Value
Dominant Frequency [Hz] 4

VP0[km/s] 2.0
ε 0.2
δ 0.1

Grid Interval [m] 10

Table 2.2: Forward modelling parameters used in Figures 2.2 and 2.3.
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(a) Operto et al. (2009)’s Result
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Figure 2.2: Forward modelled time-domain snapshot for comparison to Operto et al. (2009)’s results. Modelling parameters for this
simulation are summarized in Table 2.2. The source is located at the very centre of the grid.
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(a) θ = 0◦, ε = 0.2, δ = 0 (b) θ = 0◦, ε = −0.2, δ = 0 (c) θ = 0◦, ε = 0, δ = 0.2

(d) θ = 0◦, ε = 0, δ = −0.2 (e) θ = 45◦, ε = 0.2, δ = 0.1 (f) θ = 45◦, ε = 0.1, δ = 0.2

Figure 2.3: Forward modelled time-domain snapshots for several combinations of ε and δ. An overlay in yellow representing a perfect
circle corresponding to the isotropic case (δ = ε = 0) is provided for reference. In panels (a) and (b) we see that the effect of ε is
analgous to stretching or compressing perpendicular to the symmetry axis. In panels (c) and (d) we see that δ affects the curvature of the
wavefront as a function of the distance away from the symmetry axis. If we observe the wavefront as it moves from the vertical to the
horizontal, we see that for δ > 0 it appears to overtake the isotropic wavefront, whereas for δ < 0 it appears to fall behind. For panels (e)
and (f) we see that the axis of symmetry is tilted from the vertical, and that the S-wave energy in panel (e) is less stable when compared
to the energy observed in panels (a) and (d).



Chapter 3

Synthetic Crosshole Study

In this Chapter, I apply the joint methods of anisotropic traveltime tomography and VTI FWI
to a synthetically generated dataset. The primary objective of this study is to determine if the
traveltime methods of Chapman and Pratt (1992) and Pratt and Chapman (1992) are suitable
for generating adequate starting models for FWI using the inversion strategies of Pratt et al.
(1998) and the FDFD approach of Operto et al. (2009). More specifically, I tackle the question
of whether or not the traveltime inversion is capable of producing multi-parameter (VV , ε, δ) re-
sults that satisfy the half cycle criterion for anisotropic FWI. First, I provide a brief introduction
to the survey, as well as a review of parameterization and resolution studies from recent years.
Next, I show the traveltime tomography results for several cases, as well as the corresponding
FWI results produced from these starting models. Finally, I conclude with a discussion regard-
ing the compatibility of the two techniques as well as the implications of applying this joint
method to field data.

3.1 Introduction

The feasibility of multiparameter inversions and parameter resolution tradeoff have been topics
of significant interest in modern FWI studies (Plessix and Cao, 2011; Kamei et al., 2013; Gho-
lami et al., 2013b). Due to the extremely ill-posed nature of FWI, non-uniqueness (in which
multiple models fit the data equally well) is a significant issue that is further amplified by the
introduction of additional inversion parameters. The inversion results are contaminated by pa-
rameter ‘crosstalk’, whereby the poor resolution of one parameter can impact the resolution of
another and vice-versa (resulting in an a posteriori dependance between model parameters).
This leads to ambiguities when claiming that one has simultaneously inverted for two or more
parameters. There are no studies to date that claim to have fully overcome the problems re-
lated to parameter crosstalk. Rather, modern studies have adapted several approximations or
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imposed constraints on the inversion with the goal of mitigating crosstalk in multiparameter
FWI. One such example of this is the hierarchical approach, in which preliminary inversions
are focused around resolving the most impactful parameter first before incorporating other pa-
rameters into the inversion process (Shipp and Singh, 2002; Plessix and Cao, 2011; Kamei
et al., 2013).

In the simplest of cases (acoustic isotropic media), FWI is restricted to inversions for P-
wave velocity and/or P-wave attenuation. Kamei et al. (2013) investigated the resolution trade-
off between velocity and attenuation by conducting several synthetic crosshole experiments
using two approaches. The first was a simultaneous approach with a scaling term applied to
the gradient of the attenuation parameter, and the second was termed a ‘sequential’ approach,
in which initial inversions were conducted for velocity only, followed by the incorporation of
attenuation inversions once an acceptable velocity model was obtained (a version of the hier-
archical approach described above). In both cases, Kamei et al. (2013) showed the presence
of parameter crosstalk, but further showed this can be mitigated by applying the regulariza-
tion term to the gradient of the attenuation parameter, or by adapting the sequential inversion
technique.

Moving from an isotropic to an anisotropic medium introduces additional parameters per
spatial location depending on the selected parameterization. Plessix and Cao (2011) and Gho-
lami et al. (2013b) performed sensitivity and trade-off analyses for acoustic FWI in a VTI
medium for surface reflection data. In both cases, the diving and reflected waves were found to
be more sensitive to the velocity parameter classes than the anisotropy parameter classes, with
δ having the least influence on the kinematics of the propagating waves. Furthermore, Gholami
et al. (2013b) explored several possible combinations of parameters in order to determine the
optimal parameterization for FWI. They concluded that, for the crosshole case, a parameter-
ization consisting of the velocity along the symmetry axis,VP0 , and Thomsen’s parameters ε
and δ is the most suitable provided that the long wavelength features of the background ε are a
sufficient representation of the subsurface.

It is important to acknowledge, however, that these studies were initially conducted for
surface reflection data and the conclusions were extended to the crosshole case. There has
been no conclusive study on the optimal parameterization for acoustic FWI in VTI media for
crosshole data. Therefore, I adopt the suggested parameterization of Gholami et al. (2013b) and
make the assumption that the ε model provided by anisotropic traveltime tomography satisfies
the success criteria outlined in their paper. In regards to mono- versus multiparameter FWI,
Plessix and Cao (2011) suggested that a monoparameter approach for updating velocity could
be suitable if traveltime tomography provides accurate models for the Thomsen parameters.
Furthermore, Gholami et al. (2013b) concluded that the aforemetioned parameterization (VV , ε
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and δ) is best coupled with a monoparameter FWI approach, as significant tradeoff is observed
between velocity and Thomsen’s anisotropy parameters.

I test my joint approach using a modified version of the synthetic crosshole experiment first
presented by Pratt and Chapman (1992). The ‘true’ models consist of a smooth background
velocity (Vbackground = 3000 m/s) with a square anomaly (Vanomaly = 3200 m/s) in the centre,
with homogenous models for the anisotropy parameters (ε = 0.2, δ=0.1, θ0 = 0◦). The original
dimensions are 100 m by 200 m, however I have padded the model by 15 m in all directions
to minimize internal reflections from the PML boundaries. Source and receiver locations were
chosen at 0.5 m intervals spanning the entirety of the depth dimension on either side of the
model before padding was applied, for a total of 201 sources, 201 receivers and thus 40401
traces.

Figure 3.1 shows the true vertical velocity model with the source and receiver geometries
overlaid. This is a relatively simple test case, and obtaining satisfactory results will be greatly
aided by the level of a priori information that one can infer from the true models (the expecta-
tion of VTI symmetry). Furthermore, the modelling approach used to generate the true models
is the same one that was used for forward modelling during inversion, which is commonly
referred to as committing the ‘inverse crime’ (Kaipio and Somersalo, 2007). Here, the inter-
mediate step involves raytracing which is based on a different algorithm, so perhaps this is only
partially an inverse crime. Nevertheless, the primary objective of this study is to observe and
quantify the level of tradeoff between parameters, and it is critical to utilize controlled exper-
iments like this one for testing specific additions and alterations to the FWI process (Kamei
et al., 2013; Gholami et al., 2013a; Afanasiev et al., 2014).

Before one can develop an efficient strategy for traveltime tomography or FWI, selection of
appropriate modelling parameters is an important consideration. As this is a synthetic test, we
must first forward model with the true models and perform first-break picking on these data.
The picked traveltimes are then input into traveltime tomography as the observed data, d. For
this I take advantage of the fact that this is a synthetic test, therefore the data are ‘noise-free’.
As such, I utilize an auto-picker that is based off of the short-term and long-terms averages
(STA/LTA) of the traces (Allen, 1978) to perform first break picking reliably and efficiently.
Table 3.1 summarizes the selected model parameters for generating the synthetic crosshole
data. The spacing between model grid points is an important consideration, as finer grid sizes
allow for higher frequencies and improved resolution of the target structures, but consequently
increase inversion runtimes. The maximum frequency was chosen in accordance with the
minimum wavelength required to resolve the central velocity anomaly based on the chosen
grid size. Synthetic shot gathers were generated in the time-domain using a Keuper wavelet
with a dominant frequency of 533 Hz and a maximum frequency of 1600 Hz. Here, I model in
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reduced time (treduced = t − offset/v) to mitigate computational costs. For FDFD modelling, I
use a Kaiser windowed sinc function to spatially distribute the source term (Hicks, 2002).

At this point the choice was made to keep ε > δ. By choosing these values the S-wave
artifacts are purposely injected into the modelled data. The condition that ε > δ is almost guar-
anteed to occur for heterogenous media as δ is known to be rapidly varying in realistic geolog-
ical formations. Therefore, I purposely inject them in the synthetic test so that I can observe
their behaviour and develop strategies to address them for the field data case. Figure 3.2 shows
a forward modelled shot gather with the true models. Several studies have been focused on
eliminating or attenuating the S-wave artifacts discussed in Chapter 2. In the simplest of cases,
these S-waves can be removed by placing the source in a thin, isotropic or elliptically isotropic
layer, however this introduces modelling inaccuracies. Fletcher et al. (2009) introduced a small
amount of shear wave velocity along the symmetry axis to stabilize the simulation of S-waves
for reverse time migration in TTI media. Métivier et al. (2014) implemented a small zone
around the source in which strong S-wave damping is imposed. In our implementation, we
attempt to attenuate the excited S-waves using Laplace-domain damping (as described in Sec-
tion 2.2), and by applying an anisotropic weighting term to the source region, as suggested by
Operto et al. (2009).

Model Frequencies 80-1600 Hz
Frequency interval, ∆ f 80 Hz

Total Modelled Time Interval 12.5 ms (reduced)
Time Sampling, ∆t 0.05 ms

Grid Spacing in x-dimension, ∆x 0.5 m
Grid Spacing in z-dimension, ∆z 0.5 m

Number of Gridpoints in x-dimension, Nx 131
Number of Gridpoints in z-dimension, Nz 231

Minimum Wavelength, λmin 1.875 m
Reduction Velocity 3000 m/s
Number of Sources 201

Number of Receivers 201
Source-receiver spacing 0.5 m

Table 3.1: Waveform modelling parameters for the synthetic crosshole study.
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Figure 3.1: True Vertical Velocity Model for the Synthetic Crosshole Study. The source and
receiver geometry is shown in red.
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Figure 3.2: Forward modelled shot gathers with the true models. Note the presence of diffrac-
tions off the central anomaly in panel (b), as well as the absence of S-wave artifacts within the
modelled time interval. The data are modelled in reduced time with a reduction velocity of
3000 m/s.
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Following traveltime picking, I apply the anisotropic traveltime tomography method de-
scribed in Chapter 2.2.1 to recover best-fitting models of VV , ε and δ. For traveltime tomog-
raphy I use the unpadded model (100 m by 200 m) as raytracing is robust with regards to
boundary conditions. The final models are then interpolated onto a grid that is consistent with
the padded dimensions of the starting models for FWI. Finally, I perform monoparameter FWI
to update the starting VV model only, keeping the ε and δ models fixed. FWI results will be
shown for three separate cases, each using a different strategy for the anisotropy models. These
three cases are as follows:

1. FWI using the anisotropy models as recovered from traveltime tomography (unaltered)

2. FWI using the anisotropy models recovered from traveltime tomography with a spatial
Guassian smoothing filter applied

3. FWI using the ‘true’ anisotropy models

The first case can be viewed as the ‘optimistic’ approach, as I am using the anisotropy models
as recovered from traveltime tomography. Several studies related to anisotropic FWI suggest
smoothing of the anisotropy models, or imposing smoothing during the preliminary inversions
of the anisotropy parameters as a candidate for improving velocity model convergence (Operto
et al., 2009; Gholami et al., 2013a; Alkhalifah and Plessix, 2014). This is due to the fact that,
despite the efforts to improve modelling and inversion algorithms, the simultaneous recovery
of at least three parameters is still extremely challenging for anisotropic FWI. Thus, the second
case can be viewed as the ‘realistic’ approach. For field data, the true anisotropy models are
not known, therefore I perform inversions using the true anisotropy models solely to obtain a
qualitative estimate of the success of the first two inversion cases. In other words, the final case
should only be viewed as a benchmark for the results obtained from the previous two.

3.2 Traveltime Tomography

Table 3.2 summarizes the survey specifications for traveltime tomography. Following the sug-
gestions of Chapman and Pratt (1992) and Pratt and Chapman (1992), the inversion strategy
was as follows: I performed several initial tests using a wide variance of the three regulariza-
tion parameters described in Section 2.2.1 (β, ν and ε), as well as for different starting velocity
models to observe the tradeoffs between vertical velocity and ε. Based on empirical observa-
tions of the resulting tomograms, the range of the parameters was then reduced to encompass
the ‘optimal’ values for each. All traveltime inversions were conducted using 400 iterations of
the LSQR solver, which were computed quickly due to the relatively small size of the synthetic
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survey. It is common during the traveltime tomography process to re-trace the raypaths after
initial updates to the model parameters. During the preliminary testing stages, this step was
performed however it was eventually removed from the inversion workflow as it did not appear
to be providing substantial improvements to the raypaths (which was most likely due to the
inherent simplicity of the true models).

Number of grid points in x-dimension 66
Number of grid points in z-dimension 116

Grid size in x-dimension [m] 2
Grid size in z-dimension [m] 2

Number of sources 130
Number of receivers 130

Table 3.2: Traveltime tomography model parameters for the synthetic crosshole study.

Table 3.3 shows the combinations of parameters tested in the initial inversion passes, and
Figure 3.3 shows the resulting tomographic models for horizontal velocity, VH. Note here that
the VV model is obtained by dividing the VH model obtained from traveltime tomography by
the corresponding ε values. Let us discuss the choices made regarding the ranges of regulariza-
tion parameters that were tested. Recalling that ν penalizes large deviations from the starting
model, I only test negligible (ν = 0.001) values to allow the inversion to deviate significantly
from the starting model if required. The reason for this is that traveltime tomography is often
the first step in the model building process, therefore the starting model chosen is simply a
‘best guess’ as to what the true values might be. Next, I test two very different values of β;
the first (β = 0.001) places little penalty on anisotropic solutions, whereas in the second case
(β = 1.0), I am effectively forcing the tomographic algorithm to obtain an isotropic solution
(by placing a strong penalty on anisotropic solutions). As shown in both the traveltime resid-
uals as well as by visual inspection of the tomographic models, the anisotropic solutions are
superior which is expected for these data (I show the results of β = 1.0 for illustrative purposes
only). Finally, testing of the ‘roughness’ or ε parameter requires consideration of the prede-
termined knowledge that anisotropic FWI favors smooth anisotropy models to improve model
convergence, but also the a priori knowledge that a velocity anomaly exists near the centre of
the model. Therefore, I investigate ε values that provide relatively smooth anisotropy models
(but also acceptable traveltime residuals) while still resolving the anomaly present within the
velocity solution.

From this analysis, the optimal suite of parameters was determined to lie somewhere be-
tween the values for panels (b) and (c) in Figure 3.3. A final inversion pass was then conducted
to obtain the best-fitting models of VV , ε and δ for anisotropic FWI. Table 3.4 shows the opti-
mal traveltime parameters, and Figures 3.4 and 3.5 show the models obtained from traveltime
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tomography for velocity and Thomsen’s anisotropy parameters respectively, together with the
true velocity model alongside the recovered model for comparison.

Panel ν ε β E(m) [ms]
a 0.001 0.01 0.001 0.0146
b 0.001 0.3 0.001 0.0174
c 0.001 2.0 0.001 0.0256
d 0.001 0.01 1.0 0.1885
e 0.001 0.3 1.0 0.3346
f 0.001 2.0 1.0 0.4837

Table 3.3: Traveltime inversion parameters investigated during preliminary inversions for the
synthetic crosshole study.

ν ε β E(m) [ms]
0.001 0.400 0.001 0.0196

Table 3.4: Optimal traveltime inversion parameters determined for the synthetic crosshole
study.
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a	   b	   c	  

d	   e	   f	  

Figure 3.3: Preliminary traveltime tomography results for the parameters summarized in Table
3.3. From left to right: ε = 0.01, 0.3 and 2.0. From top to bottom: β = 0.001 and 1.0. For all
cases, ν = 0.001. Note that these are horizontal velocities (VH) and the units are in km/s, as
these are the defaults for the traveltime tomography software.
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Figure 3.4: Best-fitting vertical velocity model, VV , obtained from traveltime tomography for the synthetic crosshole study. The true
model, which consists of a background velocity of 3000 m/s with a positive central anomaly of 200 m/s is also shown for comparison.
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Figure 3.5: Best-fitting ε and δ models obtained from traveltime tomography for the synthetic crosshole study. It should be noted that
the true models are homogenous with ε=0.2 and δ=0.1.
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The results show that the velocities obtained from traveltime tomography are closer to the
true background velocity when compared to the starting model, and the positive anomaly in the
centre of the model is now apparent. However, the overall resolution of the anomaly is poor,
and there are low-velocity ‘lobes’ directly above and below the central anomaly. Furthermore,
there is a cross-shaped artifact thats extends from the four corners of the model that slightly
resembles the shape of the first Fresnel zone. These artifacts can be attributed to the resolution
limits of traveltime tomography coupled with the lack of ray coverage near the extremities
of the model region as well as directly adjacent to higher velocity regions. If the source and
receiver lines were instead oriented in the x-direction, the low-velocity lobes would mirror this
transition.

Recalling the values of the true anisotropy models (ε = 0.2, δ=0.1), we see that the ε

model is well-recovered (with values ranging from 0.18 to 0.195) but has been contaminated
by the presence of the central anomaly. Comparitavely, the δ model is less resolved and shows
more significant contamination from the central anomaly. Gholami et al. (2013b) showed that
inaccuracies in the δ model have the least impact on wave propagation accuracy. I chose to
accept these results as my starting models for anisotropic FWI on the basis of the accuracy in
the final velocity and ε models, and I will evaluate whether the inaccuracies in the δ model
obstruct the success of FWI.

3.3 Full Waveform Inversion

In this Section I describe the application of FWI for each of the aforementioned subcases of
anisotropy models. For this, I use the same inversion strategy in all three cases so that the
results are directly comparable. As FWI is an ill-posed and non-linear process, it is possible to
take advantage of several regularization strategies to help guide the inversion process. Higher
inversion frequencies improve the resolution of the sharper features, but are at higher risk
of introducing artifacts due to cycle-skipping. The risk of introducing these artifacts can be
mitigated by the initial use of lower frequencies. It has become common practice to adopt a
multi-scale approach, whereby preliminary inversions are conducted on a coarse grid or with
stronger smoothing while inverting for the lower frequencies. Once a satisfactory model update
has been obtained, the model is then interpolated onto a finer grid, and inversions are conducted
for the higher frequencies within the data (Bunks et al., 1995; Sirgue and Pratt, 2004). I use a
modified multi-scale approach, as I do not refine the model grid size when transitioning to the
higher frequencies.

Spatial tapering of the gradient in either direction allows greater or lesser emphasis to be
placed on certain regions of the model. One such approach to gradient tapering is the layer-
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stripping approach, whereby the model is resolved in sequential layers, typically beginning
with the shallower parts and extending to the deeper model layers thereafter (Pratt et al., 1996;
Shipp and Singh, 2002; Virieux and Operto, 2009); this is only applicable for surface seismic
data, as overburden effects can be isolated using only near offset data. Due to the relative
simplicity in the synthetic survey geometry, I do not apply tapering of the gradient to these
analyses, however we will see in Chapter 4 that tapering of the gradient is an important regu-
larization tool for real data, especially in the anisotropic case.

The use of offset weighting allows control over which data are input into the inversion
process based on their relative travel distance from the source to receiver location. In surface
seismic data, the near offsets typically contain elastic noise such as ground roll, while the far
offsets carry a greater risk of introducing cycle-skipping (Brenders and Pratt, 2007). In the
crosshole case, the offset is defined as the absolute distance between the source and receiver
position. As these data comprise transmitted waves, they do not suffer from the presence of
surface waves in the near offsets. Therefore, it is important to utilize the full angular coverage
of the data as the far offset (wide-aperture) data will yield important information about lateral
variations in velocity. For this synthetic test, I do not apply offset weighting to the data as the
primary focus is to observe the resolution of the anomaly. We will see in Chapter 4, however,
that sequentially increasing the range of data offsets considered in the inversion process is
critical to avoid converging to local minima.

There are two aspects of the wavefield that can be taken into account when defining the
objective function, E(m): wave amplitude and phase. Amplitude modelling in the acoustic
framework for FWI studies is somewhat problematic due to the shortcomings of the acoustic
model in representing the true earth (Alkhalifah and Plessix, 2014). Furthermore, in acoustic
FWI we are only interested in P-waves, but field data contain several other wave types rang-
ing from surface waves and converted waves in the surface reflection case to tube waves for
the crosshole case. As such, an important step in waveform preprocessing is the removal of
these sources of noise by applying high- or low-pass filters and/or mutes to the traces, such
that a small window containing only the P-wave energy remains. This is significant for am-
plitude modelling, as wave amplitudes are almost certainly affected by these pre-processing
steps. Nevertheless, Brenders and Pratt (2007) formulate their objective function for acoustic
isotropic FWI with both wave amplitude and phase by applying amplitude scaling to the pre-
processed waveforms. The incorporation of anisotropy adds another layer of complexity to this
problem. Operto et al. (2009) concluded that it is difficult to quantify the level of amplitude
mismatch with their modelling method. Plessix and Cao (2011) state that although the acous-
tic wave equation for anisotropic media is kinematically accurate for P-wave modelling, it is
impossible to interpret the dynamic behaviour of the waveforms as it describes a non-physical
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process. Therefore, I follow Kamei et al. (2014) and formulate the objective function using the
phase-only approach.

The final preconditioning feature for discussion is that of wavenumber filtering. Wu and
Toksöz (1987) showed that the maximum wavenumber spectral coverage, kmax, is theoretically
bounded by the minimum observed velocity, vmin, as well as the maximum model frequency,
fmax (kmax = 2 fmax/vmin). It is therefore possible to filter out unstable high wavenumber compo-
nents by applying a spatial low-pass filter in the wavenumber domain based on the maximum
expected wavenumber per block of inversion frequencies; this is not a major concern for the
synthetic data case, but we will see the importance of this preconditioning operator in Chapter
4.

Table 3.5 outlines each of the frequency blocks selected for anisotropic FWI. Inversion fre-
quencies were chosen to cover the frequency range in the data. For each block of frequencies,
I use a total of 5 FWI iterations. It is common to utilize a line search method for the first
iteration of FWI to reduce the risk of converging to a local minimum. Line searches require
multiple forward modelling runs, and are therefore expensive when compared to linear esti-
mates. As the overall scale of the synthetic test is relatively small, I accept the increase in
computational cost by applying a line search method for the first iteration of each frequency
block only. Figures 3.6, 3.7, and 3.8 show the final FWI model of vertical velocity for the three
subcases respectively.

Frequency Block Inversion Frequencies [Hz]
1 80, 240, 400
2 560, 720, 880
3 1040,1200, 1360

Table 3.5: Selected inversion frequencies for anisotropic FWI of the synthetic dataset.
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Figure 3.6: Final VV model obtained from FWI using the δ and ε models as recovered from traveltime tomography. The true velocity
model is also shown for comparison.
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Figure 3.7: Final VV model obtained from FWI using the δ and ε models with a Gaussian smoothing function applied. The true velocity
model is also shown for comparison.
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Figure 3.8: Final VV model obtained from FWI using the true δ and ε models. The true velocity model is also shown for comparison.
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The FWI results show that the algorithm was successful in delineating the outer edges of
the velocity anomaly, as they are much closer to the true model than the traveltime results
for all three cases. It is important to note here that the top and bottom edges of the anomaly
are more clearly defined than the lateral edges, which is a direct consequence of the survey
geometry. There are some minor artifacts present, such as those proximal to the source and
receiver boreholes as well as the cross-shaped pattern introduced by traveltime tomography.
The primary objective of this study was to see whether or not the anomaly could be clearly
defined, and I conclude the presence of these artifacts to be less critical. I suggest that further
inversions with some of the regularization features discussed above could aid in the removal of
these features.

It is immediately obvious that the resolution of the central anomaly is improved when
the starting anisotropy models are smoothed, as well as when the true anisotropy models are
utilized. The latter is an obvious result, nevertheless the velocity model obtained using the
true models highlights the expected tradeoffs in resolution between the velocity and anisotropy
parameters, as the velocities recovered from this approach are closest in value to the true veloc-
ities used in forward modelling. The decision to smooth the anisotropy models obtained from
traveltime tomography paves the path for an interesting discussion. In this case, we had a priori

knowledge that the true anisotropy models were smooth, however for field data this informa-
tion may not be available. For the FWI results shown in the next chapter, significant smoothing
constraints were imposed during the traveltime inversions. This is both a fundamental limita-
tion of anisotropic traveltime tomography, which requires strong smoothing regularization to
achieve the desired parameter resolution (Pratt and Chapman, 1992), as well as a limitation of
the FDFD modelling technique that I have adopted.

I have shown in this Chapter that the anisotropic traveltime tomography method developed
by Chapman and Pratt (1992) and Pratt and Chapman (1992) is a suitable technique for gen-
erating starting models of velocity, ε and δ for anisotropic FWI. These FWI results serve as
a cross-verification that the FDFD implementation is working as intended, as it is consistent
with the well established traveltime tomography method. The implementation is compatible
with the inversion structure and methods of Pratt et al. (1998). The comparison of the veloc-
ity models recovered for each of the three subcases highlights the expected tradeoffs between
anisotropy and velocity, but also showcases the success of the inversion algorithm in recover-
ing the structure of the true anomaly. I propose that the results of this work indicate that the
joint methodology is a valid approach for TI media, therefore application to a field dataset is a
reasonable next step.



Chapter 4

Field Data Case Study - Western Canada
Crosshole Survey

In this Chapter I apply the joint techniques of anisotropic traveltime tomography and anisotropic
FWI to field data from a crosshole survey located in Western Canada. These data were pro-
vided on the condition that the true depths and formation names be withheld. While the focus
of Chapter 3 was to test the compatibility of the two methods and to observe the tradeoffs in
resolution, the primary objectives of this study were to develop an efficient FWI strategy for
anisotropic media, as well as to directly quantify the benefits of accounting for anisotropy in the
modelling process. These data were previously processed by Pratt et al. (2008), however they
used the isotropic modelling operator proposed by Jo et al. (1996) and then performed a coor-
dinate stretch on the resulting wavefield to simulate 1-D elliptical VTI, after Dellinger (1991).
Here, I use a more rigorous approach for handling anisotropy with the hope of improving the
FWI results.

I will first describe the details of the survey including the objectives, the geological back-
ground as well as the survey parameters. Next, I will summarize the data preprocessing per-
formed by Pratt et al. (2008), their strategies for traveltime tomography, and present the best-
fitting starting models chosen for FWI. I will then discuss the FWI strategy that I developed
which makes use of several of the regularization strategies discussed in Chapter 3. I apply
this inversion strategy to the field data twice: once using the anisotropic approach described
in Section 2.3 and then again with the elliptical isotropy approximation of Pratt et al. (2008).
From here on in, I will refer to these two approaches as ‘Anelliptical FWI’ and ‘Elliptical FWI’
respectively. The final FWI models will then be directly compared to determine the benefits
of properly accounting for anisotropy in this dataset, as well as to assess the overall success of
applying FWI to these data.

74
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4.1 Introduction

The crosswell seismic survey was conducted in Western Canada across finely layered sedi-
ments to identify the structures present within local sandstone reservoirs. The primary objec-
tive was to fully characterize the reservoir architecture by differentiating sandstone channels
from impermeable shale barriers through expected contrasts in seismic velocity, and to use the
velocity model obtained as an input for reservoir simulation and drainage area calculations.
Data were collected using a piezoelectric source for a sweep of frequencies ranging from 100
to 2000 Hz across source and receiver boreholes spaced 160 m apart. The survey was con-
ducted at a depth of over 2 km, with a source and receiver spacing of 1.5 m spanning the total
survey depth of 420 m. In each borehole, a series of petrophysical logs were also provided
(Pratt et al., 2008).

These data were selected for the application of anisotropic FWI for several reasons. The
expected lithology consists of finely-layered sedimentary rocks (sandstones, shales and silt-
stones) and correlation of the formation tops interpreted from the geophysical well logs in each
of the boreholes suggest that they are laterally continuous and horizontal to sub-horizontal
in nature; these together suggest that the region can be well represented by VTI symmetry.
Furthermore, these data are challenging as there is a low signal-to-noise ratio (SNR) and the
gathers are plagued by the presence of artifacts such as ‘tube waves’, which travel within the
boreholes before propagating through the rockmass or vice-versa. These data will therefore
provide a good benchmark for the anisotropic waveform tomography (AWT) implementation.
The final reason is that these data were previously analyzed by Pratt et al. (2008) using an
elliptical isotropy model, however the presence of artifacts in their final models, as well as
a significant mismatch observed between their predicted gathers and the field gathers at the
furthest offsets indicated that a more complete anisotropy model was required. This provides
further motivation for the use of the more generalized anisotropy approach to determine if an
interpretable result is achievable for this case study.

There are 4 sedimentary formations of interest throughout the surveyed region, referred to
as ‘Formation A’,‘Formation B’,‘Formation C’ and ‘Formation D’. Figure 4.1 shows the sonic
and gamma ray logs from the source and receiver boreholes with the interpreted formation
tops and thicknesses. Based on the variations in the sonic logs, Formation A is expected to
have more homogenous velocities, while the other three units appear to be more heterogenous.
Furthermore, the gamma logs suggests that Formation A is most consistent with a sandstone
lithology while the other three formations appear to be more shale-rich. For these reasons,
Formation A is believed to be the targeted reservoir of this crosshole survey. It is important
to note that there is an unconformity that lies at the boundary between Formations A and B,
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which correlates to a change in dip structure from near horizontal to gently dipping (Pratt,
2007). Figure 4.2 shows every 50th ray obtained from raytracing in the starting model using
the method described in Section 2.2, plotted with the sonic logs for comparison. Note here the
dense ray coverage within the target reservoir, but also the sparsity in coverage in the regions
directly above and below the reservoir.
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Figure 4.1: Borehole sonic (black) and gamma ray (blue) logs for both the source (left) and receiver (right) boreholes. The interpreted
formation tops and thicknesses are overlaid in red. The distance between the two wells is approximately 160 m. Original image modified
from Pratt et al. (2008).
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Figure 4.2: Every 50th ray traced in the starting model, plotted with the sonic velocities for comparison. The distance between the two
wells is approximately 160 m. Original image modified from Pratt et al. (2008).
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4.2 Traveltime Tomography

In this section I will briefly describe the anisotropic traveltime analyses conducted by Pratt
(2007) and Pratt et al. (2008) for these data. They noted a marked increase in the SNR with
depth, which corresponded to an increase in the number of pickable traces at larger offsets for
the deeper shot and receiver positions. From a possible 45,000 traces, approximately 25,000
traveltime picks were made, ranging from ±60 m vertical offset for the shallower parts to as
much as ±120 m offset in the deeper regions of the model. Although the traveltime inversion
scheme is capable of handling general 2-D anisotropy systems, they imposed VTI symmetry
based on the aforementioned a priori information (Pratt, 2007).

The starting model for vertical velocity was obtained by smoothing the sonic logs in each
borehole, followed by lateral extrapolation and interpolation of the two 1-D profiles to gen-
erate a 2-D model. As in Chapter 3, the first stage of inversion was concerned with testing
the various regularization parameters and observing the resulting tomograms and traveltime
residuals. From visual inspection of the handpicked traveltimes, Pratt (2007) estimated the
traveltime errors to be within 0.025 ms. Once an optimal set of regularization parameters were
chosen, Pratt (2007) performed two further passes of traveltime inversion by first re-calculating
the raypaths using the bending method of Um and Thurber (1987) and Davison (1991). Table
4.1 summarizes the optimal parameters selected for traveltime tomography (see Chapter 2 for a
review of these parameter definitions), and Figure 4.3 shows the best-fitting models of vertical
velocity, δ and ε obtained from traveltime tomography.

ν ε β E(m) [ms]
0.001 0.100 0.001 0.074

Table 4.1: Optimal traveltime inversion parameters determined for the Western Canada cross-
hole survey.

Some comparisons can be drawn between the optimal parameters selected by Pratt (2007),
and those presented in Chapter 3. We see that little penalty was placed on models that are
different from the starting model (ν is small), as the interpolated starting model is only a rep-
resentation of the rockmass directly adjacent to the boreholes and does not consider any lat-
eral variations throughout the surveyed region. Becuase the formations were expected to be
anisotropic in nature, the anisotropy penalty (β) was also relaxed to allow the inversion algo-
rithm to explore anisotropic solutions. Finally, the roughness penalty (ε) was relaxed until the
residuals were within the estimated traveltime errors.

The observed contrasts in seismic velocity correlate reasonably well with the major for-
mations. Formation B appears to consist of geological units with both low (≈ 4000 m/s) and
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high (≈ 5500 m/s) velocity regions, which is consistent with an interbedded shale and sand-
stone lithology, whereas Formation A mainly exhibits higher velocities, which is consistent
with a massive sandstone lithology (Han et al., 1986). When comparing the anisotropy models
to the well logs, correlations between the Thomsen’s parameters and either velocity or shale
content is more difficult. The overall trend of the ε model is reasonably consistent with the
lithology, with the largest observed values (10 to 15 percent) proximal to the reservoir region.
On the other hand, the δ model is more variable, which is consistent with the results obtained
in Chapter 3. It is also important to note that the anellipticity (the difference between ε and
δ) is greatest proximal to the reservoir region, which will be significant when we analyze the
elliptical and anelliptical FWI results in the next section.
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dataset. Source and receiver borehole locations are overlaid in yellow.
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4.3 Full Waveform Inversion

In order for acoustic FWI to be successful at inverting field data, stringent preprocessing tech-
niques must be applied to the data to remove any noise or artifacts that contaminate the pressure
wave arrivals. For the crosshole case, we are only interested in modelling the transmitted P-
waves which depart from the source and travel directly through the medium to the receiver. I
will briefly summarize the preprocessing techniques performed by Pratt et al. (2008), as I have
adopted the preprocessed dataset for my inversions. First, an f-k filter was applied to remove
the tube waves which are easily characterized by their higher amplitudes, slower speeds and
near-linear moveout. Next, top and bottom mutes (removal of all energy before or after a cer-
tain point in time) were applied such that the P-wave arrivals were contained within a 10 ms
window. To achieve this, all energy before the picked traveltimes was removed, followed by
the removal of any energy arriving later than 10 ms after the first arrival. Traces that did not
contain a traveltime pick were ‘killed’ or disregarded for the inversion process (Pratt et al.,
2008). Figure 4.4 shows the application of these preprocessing techniques to field gathers for
sources located at depths of 90 m and 275 m, with an overlay in red of the handpicked travel-
times for reference. Note the marked increase in the SNR of the deeper shot gather (panels (c)
and (d)).

The selection of an appropriate FWI approach for field data must be coupled with the
selection of appropriate modelling parameters, as there are no ‘true’ models to help guide
these decisions. Incorporating higher frequencies earlier on allows for greater resolution in the
preliminary inversions but requires lowering the grid interval. For large field datasets, such as
the one described here, computation costs can be mitigated by first inverting a smaller subset
of the data. For this reason, I adopt a variant of the multi-scale approach by performing a
preliminary stage of FWI, referred to from here on out as ‘Stage 1 Inversion’, using a filtered
subset of the field gathers that contains only frequencies up to 1000 Hz. This data subset was
generated by the application of a high-cut Ormsby minimum phase filter to obtain data that
contained little energy above 800 Hz. Once an acceptable result was obtained, I performed a
second pass of inversion that utilized the full frequency spectrum (up to 2000 Hz), referred to
as ‘Stage 2 Inversion’.

Tables 4.2 and Table 4.3 shows the selected survey parameters for Stage 1 and Stage 2
inversions respectively. The grid intervals were selected to allow the smallest useable wave-
length to be represented across a minimum of four grid nodes, and the minimum expected
velocity was estimated from the starting model (Figure 4.3) as well as from the sonic logs. I
model in reduced time in order to realize the significant reductions to forward modelling costs;
a reduction velocity of 4000 m/s was used. Finally, the time damping factor was estimated
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Figure 4.4: Left: Shot gathers for sources located at depths of 90 m (a) and 275 m (c) before
preprocessing. Right: Shot gathers for sources located at depths of 90 m (b) and 275 m (d)
following the suppression of tube wave energy and time windowing of the data guided by the
handpicked traveltimes, which are shown in red. Note that much of the tube wave energy has
been suppressed, with the exception of the highest frequencies. For these images, reduced time
modelling was not used. Original image modified from Pratt et al. (2008).

from the maximum modelled time (τ = 0.4 tmax) which, after bottom muting was applied, was
approximately 0.02 s in both cases.

Figure 4.5 shows a time-domain ‘snapshot’ as well as a shot gather for a source located at
a depth of 170 m in the FWI starting model for each modelling technique. Note the differences
in the propagating wavefront for each case, as well as the presence of the spurious S-waves in
the anelliptical case. The manually picked traveltimes are overlaid for each shot gather, and
clearly show that the anelliptical method better matches the picks in the starting model, which
is a further indication that anisotropic FWI will lead to an improved result.
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Parameter Value for Preliminary Inversions
Model Size in the X direction, Lx [m] 188
Model Size in the Z direction, Lz [m] 420

Maximum Model Frequency, fmax [Hz] 1000
Minimum Velocity, cmin [m/s] 4000

Minimum Wavelength, λmin [m] 4
Implemented Grid interval [m] 1

Number of Grid Points in the X Direction 189
Number of Grid Points in the Z Direction 421

Maximum Modelled Time, tmax [s] 0.02
Frequency Interval, δ f [Hz] 50

Number of Available Frequencies N f 20
Anti time-aliasing time domain damping, τ [s] 0.008

Table 4.2: FWI modelling parameters for Stage 1 inversion.

Parameter Value for Sucessive Inversions
Model Size in the X direction, Lx [m] 188
Model Size in the Z direction, Lz [m] 420

Maximum Model Frequency, fmax [Hz] 2000
Minimum Velocity, cmin [m/s] 4000

Minimum Wavelength, λmin [m] 2
Implemented Grid interval [m] 0.5

Number of Grid Points in the X Direction 379
Number of Grid Points in the Z Direction 441

Maximum Modelled Time, tmax [s] 0.02
Frequency Interval, δ f [Hz] 50

Number of Available Frequencies N f 40
Anti time-aliasing time domain damping, τ [s] 0.008

Table 4.3: FWI modelling parameters for Stage 2 inversion.
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Figure 4.5: Left: Time-domain snapshots (t=0.025 s) of wave propagation for the elliptical (left) and anelliptical (right) starting model.
The source is located at a depth of 170 m and is shown as a yellow cross on the panels. Note the presence of spurious S-wave energy
in the anelliptical wavefield. Right: Shot gathers for the elliptical (left) and anelliptical (right) starting model. The traveltime picks are
overlaid in orange. The source location is the same as for the snapshots. For these images, reduced time modelling was not used.
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I performed many inversions testing different combinations of regularization parameters
and techniques. The primary objective of this was to develop an efficient strategy for anisotropic
acoustic FWI of crosshole data. I believe that the strategies presented here can be extended to
future case studies provided that the survey region can be well represented by VTI symme-
try. I will first discuss each of the parameters that I investigated, as well as the final inversion
strategy. The results shown thereafter are obtained using the final approach, which was applied
to both the elliptical and anelliptical cases. This strategy is based solely on the results from
anisotropic inversions, therefore I am assuming that it is effective for the elliptical case as well.

Let us first discuss spatial weighting of the gradient function. Several preliminary inver-
sions were conducted without tapering of the gradient. These results were reasonably consis-
tent in terms of structure, however they were plagued with high velocity ‘lobes’ proximal to the
boreholes, as well as near the very top and bottom of the model. These high velocity lobes were
especially prevalent in the anelliptical case, with some predicted velocities as high as 7000 m/s,
which is most likely related to the sensitivity of the velocities to the ε values. High velocities
zones proximal to the boreholes is a common observation in crosshole FWI and is thought to
be related to the amplitude mismatches between the predicted and real data. The high velocity
regions near the top and bottom of the model are visible in the starting model, and are most
likely a consequence of the lack of ray coverage for these regions. Since the primary targets of
this survey are outside of these regions, I apply a tapering function to the gradient near the top
and bottom of the model, as well as to the regions proximal to the borehole in order to obtain
accurate velocity estimates for the target formations.

For wavenumber filtering, I use the filter values suggested by Brenders and Pratt (2007),
who set the maximum vertical wavenumber equal to the maximum expected wavenumber (kzmax

= kmax), and the maximum horizontal wavenumber equal to one fifth the value of the maximum
expected wavenumber (kxmax = 0.2 kmax), with a taper width equal to half the wavenumber
maximum. They suggest more aggressive filtering of the maximum horizontal wavenumber
at later stages, but I chose not to implement this as one of my primary goals was to resolve
lateral variations in the lithology. Further inversion parameters tested included the number of
iterations per block, as well as the number of inversion frequencies. Sirgue and Pratt (2004)
proposed a strategy for selecting waveform inversion frequencies for a homogenous layer that
is based on the theoretical limit of the wavenumber spectral coverage. For realistic data cases, it
is more common to select frequencies that cover the spectrum of the data. I adopt this approach
with some overlap in inversion frequencies, which is analogous to signal stacking is reflection
seismics. Finally, I determined that five iterations per block of frequencies was the optimal
choice when considering the tradeoff between model improvement and inversion runtimes, and
I adopted a line search method for the first iteration of each block as in Chapter 3.
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The last regularization parameter that was investigated was offset weighting of the data.
The gradual increase of offset ranges utilized by successive inversions is a common technique
for mitigating cycle-skipping during FWI, as modelling inaccuracies are most pronounced at
the furthest offsets (Sirgue and Pratt, 2004; Brenders and Pratt, 2007). The rate at which this
offset constraint is relaxed is often empirical, and can significantly increase computation costs
if a conservative approach is taken when allowing more offsets into the inversion. Furthermore,
restriction of the offsets can affect model resolution as wide-angle crosshole gathers contribute
significantly to resolving the lateral structures within the model. I adopt the following strategy
for offset weighting: for each frequency block, the first 5 iterations are performed with an offset
taper from 155 m to 165 m, meaning that data with greater than 165 m offset were disregarded
completely. The same frequencies were then inverted again using 5 iterations, except the offset
restriction was relaxed to instead taper from 160 m to 185 m which was the largest observed
offset with an acceptable SNR.

Table 4.4 summarizes the inversion frequencies for each stage of FWI. Recalling that each
frequency block was inverted twice for a total of 10 iterations, the entire FWI strategy com-
prises 60 iterations. Preliminary inversions below 400Hz offered no significant contributions
to the model resolution and were therefore disregarded to minimize computation costs. Each
frequency block was limited to three frequencies based on the memory limits of the system. A
source inversion was performed before and after each Stage in an attempt to recover the true
source signatures, which could also improve the results themselves. The models obtained from
Stage 1 Inversion were then interpolated onto the finer grid and used as the starting models for
Stage 2 Inversion. For all source and velocity inversions, a constant attenuation model (Q =

200) was used.

FWI Stage Inversion Frequencies [Hz]
1 400, 500, 600

600, 700, 800
1000, 1100, 1200

2 1200, 1300, 1400
1400, 1500, 1600
1600, 1700, 1800

Table 4.4: Inversion frequencies for anisotropic and elliptical FWI of the Western Canada
crosshole dataset.

Figure 4.6 shows the starting model obtained from traveltime tomography plotted alongside
the sonic logs from the source and receiver boreholes. 1-D vertical profiles have been extracted
from the starting model that are proximal to each borehole and plotted with the sonic logs for
a direct comparison. The x-locations for these were carefully chosen to be outside the tapered
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regions described above. Figures 4.7 and 4.8 show the FWI results for both the elliptical and
anelliptical cases for Stages 1 and 2 respectively. For a comparison of computational efficiency,
the elliptical result in Figure 4.8 was obtained after 3 hours, whereas the anelliptical result
required 60 hours for the same number of FWI iterations running on a workstation equipped
with an Intel Xeon CPU E5-2650 with 16 active processors. Figure 4.9 shows the results of the
source inversions performed before Stage 1 Inversion, after Stage 1 Inversion and after Stage 2
Inversion for the anelliptical case.
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Figure 4.6: Left and Right: Vp Sonic logs (red) from the source and receiver boreholes with 1-D traces from the elliptical (Green) and
anelliptical (Blue) models overlaid for comparison. Middle: Starting model for FWI.
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Figure 4.7: Left and Right: Vp Sonic logs (red) from the source and receiver boreholes with 1-D traces from the elliptical (Green) and
anelliptical (Blue) models overlaid for comparison. Middle: FWI results for vertical velocity after Stage 1 Inversion.
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Figure 4.8: Left and Right: Vp Sonic logs (red) from the source and receiver boreholes with 1-D traces from the elliptical (Green) and
anelliptical (Blue) models overlaid for comparison. Middle: FWI results for vertical velocity after Stage 2 Inversion.
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Figure 4.9: Results for the source inversions conducted before Stage 1 Inversion (a), after Stage 1 Inversion (b) and after Stage 2
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FWI results appear to have improved the coherency in the recovered source signals.
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After Stage 1 inversion, we see that both models show a more complex layering pattern,
with some lower velocity layers being introduced in the suspected reservoir (Formation A)
which could indicate the presence of interbedded shale layers within the predominantly sand-
stone formation. The inversion also appears to have further refined the top and bottom bound-
aries of the reservoir layer (beginning at the depth of approximately 150 m and extending to
a depth of 185 m), as well as the lower velocity layers directly above and below it within the
sedimentary sequence. Furthermore, the Stage 1 result seems to suggest a second high velocity
layer exists beginning at a depth of approximately 320 m, however these deeper features are
still poorly resolved at this frequency.

It is apparent from the Stage 2 results that the introduction of the higher frequency data
further resolved some of the finer (≈3-10m) layers in the models. Figure 4.10 is a zoomed-
in version of Figure 4.8, shown to illustrate the finer differences between the two results in
the region of the suspected reservoir. Comparing the results between the two subcases, it is
apparent that the anelliptical result was more successful in resolving these finer structures. This
is especially obvious near the bottom of the reservoir region (≈180m depth), and the results are
also consistent with the structure observed in the sonic logs at this depth. Comparing the long
wavelength features of the 1-D profiles of both models with the sonic logs in Figure 4.8, it is
apparent that both models match this trend reasonably well. It is difficult to compare the values
of velocity, recalling that the expected tradeoffs between the velocity and ε parameters makes
it impossible to recover the true velocities exactly.
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Figure 4.10: Stage 2 FWI results for vertical velocity zoomed in to focus on the features within
the reservoir for the anelliptical (left) and elliptical (right) cases.

Regarding the source inversions, we see some incoherencies in the first ≈100 sources of the
initial inversion (panel (a) of Figure 4.9). These can be attributed to the lack of data coverage
in this region, recalling the decreased SNR observed for the shallower parts of the region.
One might also notice an increase in the sharpness of the source signatures recovered before
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and after Stages 1 and 2 of FWI (panels (b) and (c) of Figure 4.9). This is because these
inversions were conducted using the full frequency spectrum (up to 2000 Hz). In the initial
source inversion, we can see that the shallowest sources are slightly delayed in time, which
suggests a mismatch in velocity (the inversion algorithm is compensating for these velocity
mismatches by shifting the signatures in time). For the source inversion conducted after Stage
1 of anelliptical FWI, we see that the source signatures have shifted closer to zero time, and
some of the incoherencies in the first 100 sources have been resolved. For the source inversion
conducted after Stage 2 of anelliptical FWI, we see that the overall coherency of the signals has
been further improved, most notably from the 130th source onwards. No a priori information
regarding the source characteristics was provided, so I assume that the desired result is a suite
of sources which are coherent and are as close to zero time as possible. Therefore, the results
shown in Figure 4.9 support the hypothesis that FWI has improved the velocity model for
this region, based on the improvement in the source signals recovered after each successive
inversion.

It is also important to acknowledge the undesirable features in the FWI results as well,
the most noteworthy being the presence of steeply-dipping artifacts that appear to originate
from the boreholes. These artifacts are less drastic in the elliptical results which suggests that
they are directly related to the accuracy of the anelliptical anisotropy models. Afanasiev et al.
(2014) showed crosshole FWI results that also contain these steeply dipping artifacts and they
suggest that these are related to mismatches between the observed and predicted data at the
largest offsets. This is consistent with what I observe as well. Figures 4.11 and 4.12 shows
the results for Stage 2 inversion compared against a similar result obtained without using offset
weighting for the anelliptical and elliptical cases respectively. It is evident that the steeply
dipping artifacts are more prominent in the results without offset weighting, which suggests that
gradually increasing the range of data offsets reduces the magnitude of these artifacts. Still, the
reduced presence of these artifacts in the elliptical results draws the accuracy of the anisotropy
models obtained from traveltime tomography into question. As I have highlighted through
this thesis, tradeoffs in parameter resolution is an unfortunate consequence of multiparameter
inversions. I therefore conclude that these artifacts are a result of these tradeoffs and can only
be completely removed by obtaining more accurate starting models for ε and δ, or by updating
these models during FWI.
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(a) Anelliptical FWI with offset weighting
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Figure 4.11: Left: Anelliptical FWI results for vertical velocity after Stage 2 Inversion using the offset weighting parameters described
in the text. Right: Anelliptical FWI results for vertical velocity after Stage 2 Inversion without using offset weighting of the data.
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(a) Elliptical FWI with offset weighting
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Figure 4.12: Left: Elliptical FWI results for vertical velocity after Stage 2 Inversion using the offset weighting parameters described in
the text. Right: Elliptical FWI results for vertical velocity after Stage 2 Inversion without using offset weighting of the data.
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4.4 Data Fit

In Chapter 3, I was able to verify my traveltime tomography and FWI results by direct com-
parison to the true models. For field data cases, the true models are often not available in any
capacity. Therefore, in order to asses the data fit, I compare the forward modelling results in
the final FWI models (Figure 4.8) in both the frequency- and time-domains to the true data.

Figure 4.13 shows the phase component of the 800 Hz wavefield extracted from the field
data (a), the best-fitting velocity model obtained from traveltime tomography (b), and the final
FWI models obtained from Stage 2 inversion for the elliptical (c) and anelliptical (d) cases.
Here I chose to analyze the phase mismatch in the data as this was the only component of
the waveforms that was updated during FWI. Comparing the field data to the starting model,
it is apparent that traveltime tomography was successful in recovering the low wavenumber
features of the model, however some of the finer structure is not present in these results, which
is as expected. Comparing the elliptical and anelliptical wavefields to the field data, the dif-
ferences are subtle, although the elliptical result appears to better match the field data at the
near offsets (the elements nearest to the diagonal) in the shallower parts of the model. I suggest
that the inaccuracies in the anelliptical result could be related to the mismatches between the
long wavelength features of the velocity and anisotropy models (similar to the steeply-dipping
artifacts, as these are first introduced in the lower frequencies of FWI), however these differ-
ences are minor when you take into consideration the SNR of the data. There is also some high
wavenumber ‘ringing’ near the centre of the anelliptical result which I believe is related to the
spurious S-wave energy, as these artifacts do not appear in the elliptical results. Furthermore,
these artifacts are most apparent where the anellipticity is greatest, which is consistent with my
observations in Section 2.3. This would suggest that the Laplace transform was not successful
in completely damping the S-waves, although it appears to have damped them enough to allow
the FWI algorithm to succeed.

Figures 4.14 and 4.15 show the fields gathers for sources located at depths of 125 m and 325
m respectively, as well as my interpretation of the first arrivals in each case. Figures 4.16 and
4.17 shows the forward modelled shot gathers for the elliptical and anelliptical FWI models
with the first arrivals overlaid. It is evident that, while both models predict the near offsets
reasonably well, the anelliptical model better predicts the far offsets in both cases. Although
the improvements are minor, we can see that the elliptical model is at risk of cycle-skipping at
the deepest receivers (≈130 m and below in panel (a) of Figure 4.16, and ≈340 m and below in
panel (a) of Figure 4.17) in both cases. These observations are consistent with the frequency-
domain results for the elliptical case, as in panel (c) of Figure 4.13, the phase mismatch is most
pronounced at the furthest offsets in the deeper part of the model.
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Combining the observations in the final FWI models, as well as the differences between the
field data and the predicted data in both the time- and frequency-domains, I conclude that the
application of anisotropic FWI to these data was successful in improving the FWI results when
compared to those obtained using the elliptical isotropy assumption. These results validate the
hypothesis that properly accounting for anisotropy can lead to an improvement in the models
produced by FWI. The anelliptical result shows more complex structures within the reservoir
region, which could have an impact on reservoir simulations, as well as on the overall geolog-
ical interpretation of the area. Nevertheless, these results do contain some undesirable features
which suggests that further improvement is possible. I summarize my thoughts on the overall
success of this work, as well as my suggestions for future research in the fifth and final chapter
of this thesis.
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Figure 4.13: Phase component of the 800 Hz complex-valued frequency-domain wavefield for
the field data compared to the 800 Hz wavefield in the starting FWI model, as well as in the
models produced by Stage 2 Inversion for the elliptical and anelliptical cases. Note here that
the axes are source and receiver number.
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Figure 4.14: A selected field gather for a source located at a depth of 125 m with first arrivals overlaid in yellow. The data are modelled
in reduced time with a reduction velocity of 4000 m/s.
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Figure 4.15: A selected field gather for a source located at a depth of 325 m with first arrivals overlaid in green. The data are modelled
in reduced time with a reduction velocity of 4000 m/s.
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Figure 4.16: Forward modelled shot gather for a source located at a depth of 125 m for the Elliptical and Anelliptical FWI results with
the field arrivals overlaid in yellow. The data are modelled in reduced time with a reduction velocity of 4000 m/s. The source used
for this simulation is the best-fitting source obtained from Stage 2 inversion. The damping factor τ is set to 0.4*tmax. When directly
comparing the results (in particular, the gathers from ≈130 m to 155 m), it is evident that the anelliptical result better predicts the true
arrivals.
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Figure 4.17: Forward modelled shot gather for a source located at a depth of 325 m for the Elliptical and Anelliptical FWI results with
the field arrivals overlaid in green. The data are modelled in reduced time with a reduction velocity of 4000 m/s. The source used for this
simulation is the best-fitting source obtained from Stage 2 inversion. The damping factor τ is set to 0.4*tmax. When directly comparing
the results (in particular, the gathers from ≈200 m to 220 m, as well as ≈340 m to 380 m, ), it is evident that the anelliptical result better
predicts the true arrivals.



Chapter 5

Conclusions

In this thesis, I have applied the joint approach of anisotropic traveltime tomography and Full
Waveform Inversion to recover high resolution models of velocity and Thomsen’s anisotropy
parameters for both real and synthetic data. In order to do this, I implemented a wave mod-
elling technique for FWI that better accounts for anisotropy for applications where significant
anisotropy is known to exist.

I began in Chapter 1 by introducing crosshole seismic surveys as well as their applications
within the geophysical industry. Next, I discussed anisotropy in the context of seismic waves,
the challenges that anisotropy introduces and I described several anisotropy models that are
commonly encountered in realistic media. Following this, I gave a brief literature review of
traveltime tomography and FWI, including their inception, development and improvement over
time, strengths and pitfalls, as well as the current industry standard regarding implementations
of these techniques.

In Chapter 2, I derived the elastic wave equation from stress-strain relations and showed
how the internal stress tensor can be modified for different anisotropy systems, as well as how
the acoustic wave equation for isotropic media can be approximated from the elastic formula-
tion. Next, I introduced the fundamental concepts of forward modelling and inversion which I
then applied to the underlying methodologies of traveltime tomography and FWI. Derivations
of the governing system of equations for each technique were complimented by discussions re-
garding the justification of assumptions made, modelling limitations and strategies that can be
applied to aid in obtaining successful results. Next, I provided a full history of the anisotropic
acoustic wave equation that I have implemented into the FWI codebase maintained by Dr. Pratt
and his research colleagues. Beginning with the original derivation from phase velocity rela-
tions for VTI media, I show how the equation evolved over time through the contributions of
several authors, as well as how it compared to its isotropic counterpart. Finally, I presented the
FDFD modelling technique that I have adopted for accurate forward modelling of the wavefield
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in VTI media. To validate that I implemented this technique correctly, I replicated some of the
published results for this implementation.

In Chapter 3, I tested the joint approach with a synthetic VTI model. Several prelimi-
nary traveltime tomography inversions were conducted to determine the optimal combination
of regularization parameters that produced traveltime results that were suitable starting models
for FWI. Several inversions were conducted using different approaches for handling anisotropy
based on modern anisotropic FWI studies. Overall, these results were encouraging as the tar-
geted velocity anomaly was well resolved in all cases, which suggests that applying anisotropic
traveltime tomography to obtain starting models for monoparameter FWI is a valid approach
for transversely isotropic media. These results also highlighted the expected tradeoffs in res-
olution between the two parameters classes (velocity and anisotropy), which is a commonly
encountered problem in multiparameter inversion studies.

In Chapter 4, I applied anisotropic waveform tomography to field data from a crosshole
survey in Western Canada. Best-fitting models of velocity, ε and δ obtained from traveltime
tomography were used as the starting models for two separate applications of FWI: the first
was the anisotropic devlopment that I have implemented and the second was an isotropic mod-
elling approach with a coordinate transform applied to simulate elliptical isotropy. An efficient
two-stage FWI strategy was developed that encompassed several regularization techniques in-
cluding spatial weighting of the gradient, wavenumber filtering, as well as gradually increasing
the inversion frequencies and data offset range. Comparison of the final models obtained for
vertical velocity in each case showed that the anisotropic modelling technique was superior
in imaging the finer structure. Furthermore, comparison of the predicted data in each model
showed that the anisotropic result better matched the true data. These results suggest that the
more generalized approach for handling FWI led to an improvement of the results for this case
study. There were, however, some artifacts present in the anisotropic results that suggest the
anisotropy models were not fully representative of the furthest offsets. These results have im-
plications for future works related to transversely isotropic media, as well as multiparameter
FWI studies.

5.1 Final Thoughts and Future Directions

The primary conclusion of this thesis is that the extra computational costs and modelling com-
plexities introduced by properly accounting for anisotropy within the FWI process is justifiable
on the basis of the improvements that it provides to the velocity images, as well as the overall
accuracy of the model. This is evident in the results of Chapter 4 when comparing the data fit
for the elliptical and anelliptical results. Furthermore, the anisotropic modelling technique is
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fully compatible with the models produced from traveltime tomography, whereas the elliptical
approach requires the ε and δ models to be simplified significantly. From my results, I believe
that local optimization methods are capable of producing acceptable results from these starting
models in the anisotropic case.

There are, however, several outstanding issues related to this work that I would like to ac-
knowledge. Without effectively removing the S-wave artifacts that are generated at the source
when ε > δ, it is impossible to tell how these artifacts manifest themselves within the FWI
results, or whether they have any noticeable effect at all. As I have previously alluded to,
there are several techniques presented in the literature that attempt to remove these artifacts
(Fletcher et al., 2009; Operto et al., 2009; Métivier et al., 2014). I believe that the application
of the Laplace transform aided in the attenuation of these late arriving artifacts, although some
S-wave energy is still present in the frequency-domain results. Future FWI studies that adopt
this acoustic wave equation for TI media should investigate one or more of these techniques
to see whether or not the FWI images are improved by the effective removal of the spurious
S-waves. Another criticism is the simplicity in the synthetic model presented in Chapter 3. A
synthetic model that is more consistent with the layered lithology encountered in Chapter 4
would have allowed a better understanding of how the tradeoffs in resolution manifest them-
selves within this type of environment. This would have allowed for a more direct comparison
to be made between the traveltime results in each study as it is evident that the recovered
anisotropy models in Chapter 3 are contaminated by the velocity anomaly and vice-versa.

One might also question the decision to restrict the FWI analyses to monoparameter inver-
sions only. Plessix and Cao (2011), Gholami et al. (2013a) and Alkhalifah and Plessix (2014)
all presented strategies for multiparameter FWI for anisotropic media that are based on the data
dependancies and radiations patterns. The primary reason for this decision is that, presently,
the inversion methods of Pratt et al. (1998) support inversions for velocity and/or attenuation
only. Therefore in order to invert for the Thomsen’s parameters as well, the inversion methods
of Pratt et al. (1998) will need to be updated significantly. Nevertheless, the objectives of the
field survey presented in Chapter 4 were all concerned with the interpretation of the velocity
model only. As anisotropic studies are still relatively new in the context of seismic waveform
modelling, there is less understanding of how these parameters are related to different litholo-
gies/minerologies than its velocity (and to some extent, attenuation) counterparts.

I would also like to address the case in which the symmetry axis might be tilted from the
vertical (θ0 , 0). All of the data examples presented in this thesis were restricted to VTI sym-
metry. While this model is appropriate for some regions (such as the one presented in Chapter
4), more complex environments such as overthrusted regions or tilted orebody intrusions are
better represented by TTI symmetry. The sedimentary formations below the unconformity in
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Chapter 4 do appear to be dipping slightly, therefore it would be interesting to re-perform these
analyses with a TTI modelling approach for direct comparison. Operto et al. (2009) attributed
the instabilities observed in the tilted case to the slow-moving S-wave artifacts and show that
they can be effectively removed by matching the grid interval to the P-wavelength. This is a po-
tential solution for multifrequency datasets as the grid interval is often chosen to accommodate
the shortest wavelengths (highest frequencies).

This has been a topic of discussion within our research group for some time, and an idea
was put forth called the ‘multi-grid’ technique. In this approach, the wavefield at each fre-
quency is interpolated onto a separate grid where the interval is matched specifically to the
wavelength at that frequency. Some preliminary work has been done on this method, however
is remains incomplete and untested. Therefore, I propose that future research could be centred
around the further development of this technique for its application to TTI FWI. For the im-
plementation described in this thesis to be extended to TTI media, there are two approaches
that could be taken. The first would be to reformulate the boundary conditions entirely as
these instabilities are directly related to geometric limitations in the PML layer when the axis
of symmetry is tilted (Bécache et al., 2003). One such alternative was proposed by Métivier
et al. (2014) who replaced the PML layer with a new formulation called a SMART layer which
embeds the source in a small region in which only the S-wave energy is damped. The second
alternative would be to develop a novel technique that successfully attenuates the S-wave for
PML absorbing boundary conditions, such as the one described above.

I would like to leave the readers with one final thought. Some might be surprised that
the works described in this thesis are based on an unrealizable physical phenomena (acoustic
anisotropy). This can be related to the longstanding philosophical argument between the ‘En-
gineering’ approach and the ‘Scientific’ approach. As my academic background involves both
of these fields, this has certainly weighed on my thoughts over the course of this thesis. I have
come to the conclusion that, with today’s modelling and computation capabilities, completely
honoring the ‘science’ of the problem is often not feasible, as even in the fully elastic case
the science must be simplified significantly. As such, I employed several ‘engineering’ as-
sumptions, including the restriction to acoustic physics, the restriction to 2-D models, and the
imposition of regularization during the inversion processess. I believe that the results presented
in this thesis lie somewhere between the two end members of this debate. While one could ar-
gue that the acoustic framework (consideration of P-waves only) is suitable for answering all
of the crosshole survey objectives presented in Chapter 4 (as the client was not interested in
the S-wave models, and the P-wave models represent the data reasonably well), the presence
of artifacts in the final FWI models, as well as in the predicted frequency-domain data suggest
there is still the potential to ‘engineer’ a better solution.
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To quote the world renowned physicist Albert Einstein:

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible

basic elements as simple and as few as possible without having to surrender the adequate

representation of a single datum of experience. ” (Einstein, 1934).

From this influential philosophy, the following famous paraphrase has been extracted and ap-
plied across several scientific disciplines:

“Everything should be made as simple as possible, but no simpler.”

Perhaps the answer to these artifacts lies within one of the suggestions outlined above, or it
could be the case that the ‘true’ solution lies outside the realm of acoustic anisotropy. Nev-
ertheless, if there is one thing I would encourage the reader to take away from the works
presented in this thesis, it is that FWI is indeed a state-of-the-art technique for resolving fine
velocity structure within complex, geological environments. I would like to end on that note,
but I look forward to what the future holds for both FWI and seismic modelling studies, in the
context of meeting the challenges of seismic anisotropy.
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Alkhalifah, T. and Plessix, R.é. [2014] A recipe for practical full-waveform inversion in
anisotropic media : An analytical parameter resolution study. Geophysics, 79(3), R91–
R101.

Allen, R.V. [1978] Automatic earthquake recognition and timing from single traces. Bulletin

of the Seismological Society of America, 68(5), 1521–1532.

Bécache, E., Fauqueux, S. and Joly, P. [2003] Stability of perfectly matched layers , group
velocities and anisotropic waves. Journal of Computational Physics, 188(1), 399–433.

Bois, P., La Porte, M., Lavergne, M. and Thomas, G. [1972] Well-to-Well Seismic Measure-
ments. Geophysics, 37(3), 471–480.

Brenders, A. [2011] Strategies for Waveform Tomography of Long-Offset, 2-D Exploration

Seismic Data. PhD, University of Western Ontario.

109



110 BIBLIOGRAPHY

Brenders, A.J. and Pratt, R.G. [2007] Full waveform tomography for lithospheric imaging:
Results from a blind test in a realistic crustal model. Geophysical Journal International,
168(1), 133–151.

Brossier, R. [2011] Two-dimensional frequency-domain visco-elastic full waveform inversion:
Parallel algorithms, optimization and performance. Computers & Geosciences, 37(4), 444–
455.

Brossier, R., Operto, S. and Virieux, J. [2009] Seismic imaging of complex onshore structures
by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6), WCC105–
WCC118.

Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G. [1995] Multiscale seismic waveform
inversion. Geophysics, 60(5), 1457–1473.
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