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Abstract 

Surface waters of the Great Lakes are known to be contaminated with microplastics, 

however, microplastics in the sediments of the region are poorly documented. This study 

provides a baseline of micro- and macro-plastics contamination in nearshore, tributary 

and beach sediments of Lake Ontario and the upper St. Lawrence River. Microplastics 

were quantified and characterized by morphology and composition using visual 

identification and Raman spectroscopy. Microplastics are most concentrated in nearshore 

sediments in the vicinity of urban and industrial regions. Concentrations in Humber Bay 

and Toronto Harbour consistently measured > 500 particles per kg dry sediment, and 

maximum concentrations of ~28,000 particles per kg dry sediment were quantified at 

Etobicoke Creek. Sourced from consumer and industrial activity, abundant plastics in 

Lake Ontario coastal environments are unnatural persistent contaminants warranting 

urgent action for the protection of benthic fauna and ecosystem health.  
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Chapter 1  

1 Introduction 

The Laurentian Great Lakes provide large surrounding populations with significant 

recreational and ecosystem services in both Canada and the United States of America; 

however, these services and resources are jeopardized by urban and industrial activity. A 

multitude of environmental stressors including eutrophication, invasive aquatic species, 

climate change and various anthropogenic contaminants have been identified as threats to 

the integrity of the Great Lakes system (Allan et al., 2013).  

This study focuses on one particular stressor: microplastic debris contamination.  

Microplastics are generally defined as any piece of plastic debris ≤ 5 mm in the largest 

dimension (Barnes et al., 2009; Ryan et al., 2009; Thompson et al., 2009). Microplastics 

have only recently been documented in the Great Lakes, and the existing studies focus 

mainly on larger size beach debris (Zbyszewski & Corcoran, 2011; Zbyszewski et al. 

2014; Corcoran et al., 2015; Hoellein et al., 2015) and surface water contamination 

(Eriksen, Mason, et al., 2013). This thesis investigates the abundance, morphology, 

composition and distribution of microplastic debris in tributary, beach and near-shore 

sediments of Lake Ontario.  

1.1 The current state of microplastics research 

In 1974, Colton et al. documented microplastic debris as a widespread aquatic 

contaminant in the northwestern Atlantic Ocean; however, significant attention from the 

scientific community began to expand only in the 2000s with the identification of the 

widespread accumulation of plastics in the North Pacific Ocean gyre (Moore et al., 2001) 

and in the western North Atlantic Ocean gyre (Law et al., 2010; Morét-Ferguson et al., 

2010). Since then, investigation of plastics pollution has encompassed most aquatic 

environments, however, freshwater systems and benthic environments are not thoroughly 

studied.  
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Since the 1960s, the industrial production of commercial plastic has increased 

exponentially, with global production levels reaching 311 million tonnes per year in 2014 

(PlasticsEurope, 2013; PlasticsEurope, 2015, Fig. 1.1). 

 

Figure 1.1 Global plastics production in millions of tonnes from 1950 to 2014 (Data 

from PlasticsEurope, 2013; PlasticsEurope, 2015). 

Petroleum-based plastic products have become ubiquitous in the modern urban lifestyle 

as a cost-effective replacement for traditional materials such as glass, paper, metal, 

ceramic and natural fibres. Major advancements in the medical, food, transport, 

technological, automotive, construction and cosmetic industries have been driven by the 

innovation and use of plastics (Neufeld et al. 2016). The scale of the plastics industry, 

low recycling rates, poor product designs that do not account for the post-consumer stage 

of the product, insufficient recovery systems, and a lack of policies in support of a 

circular plastics economy (Neufeld et al., 2016) have led to microplastics contamination 

becoming a global issue by creating a system where plastics production is greater than 

plastics recovery and use, with a substantial fraction being lost to the environment 

(Jambeck et al., 2015). For example, packaging accounts for ~26 % of global plastics use, 

of which only 14% is recycled; recovered plastics account for only 5% of the initial value 

of the packaging industry (Neufeld et al., 2016). A circular plastics economy would 
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attempt to close the supply chain by increasing recovery of plastics and reducing virgin 

plastics production (Neufeld et al., 2016), with a side-effect of limiting waste lost to the 

environment. 

Synthetic polymers are generally resistant to biological decay (Tokiwa et al. 2009), 

however, mechanical forces, photo-degradation, thermo-oxidative degradation and 

hydrolytic degradation (breakdown in the presence of water) cause embrittlement and 

fragmentation of plastic through the reduction of the molecular weight of the polymer 

(Andrady, 2011). These processes contribute to the generation of microplastic particles 

from products that are littered or otherwise enter the environment (Andrady, 2011).  

Other sources of microplastic particles include the manufacture of microbeads which are 

used in personal care products (Gregory, 1996; Andrady, 2011) and as sand-blasting 

medium (Andrady, 2011), the spillage of virgin industrial pellets used for the production 

of plastic goods (SPI and ACC, 2015), and the loss of fibres from fishing gear and 

synthetic fabrics such as carpet, fleece and other clothing (Browne et al., 2011).  

The dispersal of non-point source plastic litter in the terrestrial environment ultimately 

leads to its transport by surface runoff through tributaries and storm drains (Moore et al., 

2011; Lechner et al., 2014; Rech et al., 2014; Lechner & Ramler, 2015) into freshwater 

bodies (Eriksen, Mason, et al., 2013; Free et al., 2014) and marine environments (Morét-

Ferguson et al., 2010; Eriksen, Maximenko, et al., 2013; Law et al., 2014). Buoyant 

plastic accumulates in the neustonic zones of lakes and exposed sediments in freshwater 

systems (Zbyszewski & Corcoran, 2011; Zbyszewski et al. 2014; Corcoran et al. 2015) 

and also in oceanic gyres (e.g. Cózar et al., 2014), beach sediments (e.g. Liebezeit & 

Dubaish, 2012; Dekiff et al., 2014; Mathalon & Hill, 2014) and abyssal sediments (e.g. 

Claessens et al., 2011; Van Cauwenberghe et al., 2013; Vianello et al., 2013) of marine 

systems. Our understanding of the fate of non-buoyant plastics in the environment is 

lacking. The few studies that have examined microplastics in marine sediments give 

evidence for wide-spread dispersal (e.g. Claessens et al., 2011; Vianello et al., 2013; 

Mathalon & Hill, 2014; Alomar et al., 2016). 
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Recent research suggests that microplastics contamination in beach and near-shore 

sediments may negatively impact coastal ecosystems (e.g. Vianello et al., 2013; Mathalon 

& Hill, 2014). Organisms of many trophic levels, including several benthic organisms 

and benthic feeders, have been shown to ingest or otherwise take up microplastic and 

associated chemicals with severe consequences to the healthy functioning of the 

organisms’ physiological systems (e.g. Browne et al., 2013; Besseling et al., 2014; Watts 

et al., 2014; Avio et al., 2015; Besseling et al., 2015; Nobre et al., 2015).  

With respect to the Laurentian Great Lakes, plastic debris has been found on both the 

beaches (Zbyszewski & Corcoran 2011; Zbyszewski et al. 2014; Corcoran et al. 2015) 

and in surface waters with particularly high microplastic abundances in southern Lake 

Erie (Eriksen, Mason, et al., 2013). Lake Ontario is the basin of lowest elevation within 

the Laurentian Great Lakes freshwater system and drains into the North Atlantic Ocean 

via the St. Lawrence River. The drainage basin of Lake Ontario is highly urbanized and 

industrialized in certain regions, specifically, in the corridor between Lake Huron and 

Lake Ontario. As such, Lake Ontario is expected to be prone to high levels of plastic 

pollution. Microplastics in the offshore sediments of Lake Ontario extended to a 

maximum of 8 cm below the sediment surface at two sites, one off the northern shore 

near Pickering and the other off the southern coast on the Niagara Bar (Corcoran et al., 

2015). Detailed investigation into the abundance and distribution of microplastic on a 

system wide scale in the sediments of Lake Ontario had not been conducted prior to the 

present investigation. 

1.2 Study objectives 

The regional abundance and depositional patterns of microplastics in the nearshore lake-

bottom, tributary and beach sediments of Lake Ontario and the upper St. Lawrence River 

are analyzed along the coastline of the province of Ontario. Distribution patterns and 

major sinks of non-buoyant sedimentary microplastics, are contrasted with variations in 

watershed population and the plastics industry on a regional scale using ArcGIS. The 

objectives of this study are to (i) provide a baseline for future monitoring of microplastics 

abundance in Lake Ontario coastal sediments, (ii) provide a means to assess potential 

sources of microplastics to the lake and (iii) scientifically support the efforts of political 
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and non-governmental organizations in changing public and industrial mindsets towards 

single-use plastics.  

Anticipated sinks for microplastics, semi-permanent to permanent depositional zones that 

allow for accumulation of microplastic particles, include environments where turbulence 

is low enough for plastic particles and other organic debris such as decaying plant 

material to settle. Near-shore regions such as harbours, coves and protected shorelines 

where flows are restricted are expected to have greatest accumulations of microplastic 

debris. Greatest abundances on beaches are expected to be found along the backshore and 

downwind margins where obstacles such as vegetation and retaining walls facilitate the 

collection of buoyant debris during storm and high water events. Microplastics are 

expected to be most abundant in urban and industrial regions with decreasing numbers 

with increasing distance from tributaries and urban point source outlets. 
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Chapter 2  

2 Context 

Various sizes and terminologies have been used to describe plastics contamination as 

outlined by Rocha-Santos & Duarte (2014). In the present study, the description of 

microplastics given by the National Oceanic and Atmospheric Administration (NOAA, 

2016) is used. Microplastics are plastic particles that have been fragmented to or were 

manufactured at a size < 5 mm. Plastics debris > 5 are referred to as ‘macroplastics’.  

2.1 Plastic: a modern material 

Plastics comprise a broad category of materials that are composed of polymers; 

macromolecules that can be processed and shaped. A wide range of organic molecules, 

monomers, are used to produce polymers of repeating units. Conventional plastics are 

produced from organic substances, such as crude oil, by a process of distillation of the 

source material followed by polymerisation and processing. During distillation, the crude 

oil (or other source substance) is heated by which certain components of the substance 

become vaporized and are separated from the starting material. In the case of natural gas 

and crude oil, hydrocarbon molecules such as ethane and propane are broken into 

ethylene in a heating process termed ‘cracking’. The monomer molecules, e.g. ethylene 

and propylene, are joined into long chains of repeating units in catalyzed reactions called 

polymerisation reactions. Large masses of the resulting long polymer chains, e.g. 

polyethylene, polypropylene, form the plastic material in two main ways. Thermoplastics 

are those plastics made up of polymer types which coalesce by only “intermolecular 

attractions” (Byrdson, 1999, p. 23), not chemical bonds. Thermoplastics are plastic 

materials that can be melted, moulded and re-solidified repeatedly. Thermosets, in 

contrast, are plastic materials made up of polymers which upon formation, form 

irreversible chemical bonds between polymers, generally as a catalyzed reaction. 

Thermosetting plastics cannot be melted and reprocessed after initial production 

(Byrdson, 1999). Most types of plastic used in consumer goods, and expected to be found 

in environmental samples, are thermoplastics and therefore can be recycled. 

Polyurethanes, polyesters, epoxies and vulcanized rubbers are common thermosets. 
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Raw plastic material is often produced in the form of pellets (granules) for transport 

purposes and for consistent heating and flow of plastics in extrusion and injection 

moulding production processes (Byrdson, 1999). The raw plastics are combined with 

organic and inorganic compounds, termed additives, to alter the physical properties of the 

plastic material. Additives comprise fillers, plasticizers, lubricants, flame-retardants, 

colorants, substances which prevent aging of the plastic, substances to improve properties 

for blowing extrusion processing, substances that promote crosslinking between 

polymers, and photo-degrading agents (Byrdson, 1999).  

There are thousands of different types of plastic (Byrdson, 1999), however, these are 

composed of a relatively small number of distinct of synthetic polymers. Aliphatic 

polyolefins, have the simplest structure; for example, polyethylene (PE) is composed of 

CH2— repeating units. Polystyrene (PS) plastics are processed into a variety of forms 

including PS which is produced as solid, non-expanded material, closed-cell extruded 

foam (e.g. Styrofoam), and expanded PS commonly used for the production of single-use 

cups and plates. Polyamides comprise a wide array of Nylons. Other types of 

thermoplastics include polyacetals, polycarbonates, polyvinyl chloride (PVC) and 

polyvinyl acetate (PVA) and most polyesters including polyethylene terephthalate (PET). 

Silicones, most polyurethanes, epoxide resins and some polyesters are thermosetting 

plastics. Acrylics such as poly (methyl methacrylate) (PMMA), may be either 

thermoplastic or thermosetting.  

Plastics can also be classified according to density. The density of a substance or object 

can affect how it is transported through the environment, which is of interest when 

investigating contaminant dispersal. The density of plastic materials depends on the 

molecular structure and crystallization properties of the polymer; i.e. the mass of the 

atoms in the molecule and the way that the molecules and polymers are arranged in space 

(Byrdson, 1999). The density of a polymer is increased with longer chain lengths and 

with reduced branching of chains. For example, PE density ranges between 0.89 and 0.97 

g cm-3 depending on the amount of branching of the polymers; in low-density 

polyethylene (LDPE) polymers are linear but branch repeatedly, whereas high-density 

polyethylene (HDPE) polymers are unbranched and packed together more tightly 
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(Byrdson, 1999; Morét-Ferguson et al., 2010). Polypropylene (PP), LDPE and HDPE are 

the three types of plastic that are less dense than water (Table 2.1), and are expected to be 

found primarily in the surface compartments of aquatic systems. Most other types of 

plastic including solid PS, Nylon, PVC and PET are more dense than water (Table 2.1), 

and are therefore expected to be found only in the benthic environment of aquatic 

systems. The addition of additives, such as air inclusions and mineral fillers, which are 

often incorporated into plastics can also alter the density of plastic materials.   

Table 2.1 Common plastics with abbreviations, density range, for 25° C and common uses. Each 

polymer is identified by type: thermosetting (TS) or thermoplastic (TP). 

Plastic Name Abbreviation  Density 

(g cm-3) 

Common uses Type 

Polypropylene PP 0.85 – 0.92 Packaging, textiles TP 

Polyethylene  PE 0.89 – 0.97 Packaging, plastic bags TP 

Polystyrene PS 1.04 – 1.08 Single use cutlery TP 

Acrylonitrile butadiene styrene ABS 1.06 – 1.08 Lego TP 

Nylon 6 Nylon 1.15 Clothing, electronics TP 

Polymethyl methacrylate PMMA 1.18 Lenses, cases TP 

Polyvinyl acetate PVA 1.19 Elmer’s glue TP 

Polyurethane PU 1.20 Foams, seals, wheels TS 

Polycarbonate PC 1.20 – 1.22 CD-ROM TP 

Polyvinyl chloride PVC 1.6 – 1.41 Construction, packaging TP 

Polyethylene terephthalate PET 1.38 – 1.41 Water bottles, clothing TP 

2.2 Trends in plastics manufacturing – globally and in 
Canada 

The global production of plastics, including thermosetting and thermoplastic resins and 

excluding some types of fibres, increased from 1.7 million tonnes in 1950 to 311 million 

tonnes in 2014 (PlasticsEurope, 2013; PlasticsEurope, 2015; Fig. 1.1). In the 1950s, the 

development of the Ziegler-Natta reactions, which use catalysts for controlled 

polymerization, allowed for the development of high-density plastics including high-

density PE (HDPE) and PP. Other developments around the same time, included the 

invention of high-impact polystyrene, acrylonitrile butadiene styrene (ABS), and 

polycarbonates (Byrdson, 1999). These advancements allowed for the rapid 

commercialization of plastics. Discoveries of new plastics are still occurring, particularly 
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of special purpose plastics and new catalyzing reactions such as the metallocene catalyst 

polymerization of PE which can produce extremely high molecular weight PE.  

Plastics manufacturing in Canada currently accounts for ~2% of the global total 

(Government of Canada, 2013). According to two statistical reports published by the 

Canadian Chemical Industry (CIAC, 2014; CIAC, 2015), production of synthetic resins, 

fibres and rubbers included PE, ethylene vinyl acetate, PS, PVC, polyacrylamides, PET, 

nylons, latex emulsions, polyesters, silicones and butyl and halobutly rubbers. The 

manufacturing companies associated with the CIAC are BASF Canada; Dow Chemical 

Canada ULC; Imperial Oil, Products & Chemicals Division; Lanxess Inc.; Nalco Canada 

Co. (An EcoLab Co.) and NOVA Chemicals Corporation. Shipment (total manufacturing 

revenue) values of synthetic resins and rubbers combined increased from ~6.5 to 10.8 

billion CAD between 2009 and 2014. Exports and imports were valued almost equally 

(~4 - 8 million CAD yr-1) and both increased from 2009 to 2014. CIAC member 

companies operated out of ~100-150 establishments, employing between ~4.9 and 6.9 

million people between 2009-2014 (CIAC, 2015).  

Approximately 55% (~6 billion CAD) of the production of synthetic resins, rubbers and 

fibers occurred in the province of Ontario in 2014, the most recent year for which a CIAC 

statistical report has been published (CIAC, 2015). The largest aggregation of the CIAC 

production facilities in Ontario is located in Sarnia, on the southern shore of Lake Huron, 

with the second largest aggregation located in the ‘Golden Horseshore’, which is the 

highly urbanized region along the NW shores of Lake Ontario. The demand for plastic 

products is driven by three main economic sector end-use markets in Canada: packaging 

(39%), construction (33%), automotive (14%). (Government of Canada, 2013). The 

plastic type which is produced at the highest volume annually in Canada as of 2011 is PE, 

derived most commonly from petroleum products (Government of Canada, 2013). 

Polyethylene production by CIAC member companies between the years 2009-2014 was 

consistently above 3 Mt; ~3.5 Mt and ~3.4 Mt, respectively for 2013 and 2014 (CIAC, 

2015).  
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2.3 Plastics degradation 

The degradation of plastic waste into smaller pieces allows for widespread distribution of 

microplastics and makes plastics available to smaller organisms. Small particles are more 

susceptible to changes in density and to adsorption of contaminants, as a result of their 

large surface area to volume ratio, and are thus possibly more ecologically hazardous 

than intact plastic items and macroplastics. Plastics are generally resistant to 

biodegradation and aging processes due to the high molecular weight of synthetic 

polymers. Polymers must be cleaved into molecules of lower molecular weight to be 

assimilated into living cells or mineralized into bioavailable nutrients such as CO2 or H2O 

(Lucas et al., 2008).  

Plastics are more susceptible to abiotic depolymerisation processes driven mainly by 

mechanical stress, increases in temperature and UV radiation, which take place in 

combination with the chemical alteration of the polymer strands by oxidation (presence 

of O2 or O3) or hydrolysis (presence of water) (Lucas et al., 2008; Andrady, 2011). The 

depolymerisation processes, whether driven by abiotic or biotic factors, are sustained by 

the formation of free radicals (atoms with a vacant space in the valence shell of the 

electron orbitals), which can attack the bonds within the polymer to cleave it (Lucas et 

al., 2008).  

The main chemical aging process affecting plastics is photo-oxidation. Photo-oxidation 

of plastics is a process by which UV radiation reacts with chromophores or other groups 

in the molecular structure of the plastic or added compounds. This results in polymer 

chain breakage and the generation of free radicals, as described by Singh & Sharma 

(2008). The radicals bind with oxygen and initiate a propagation reaction. Termination of 

the propagation reaction occurs when the free radicals react with each other, cross-linking 

the polymers (Byrdson, 1999). The use of additives, such as metals, can enhance the 

photodegradability of plastics by increasing the adsorption of UV-radiation and the 

formation of destructive reaction products, i.e. free radicals (Brydson, 1999). Photo-

oxidation results in the reduction of the molecular mass of the polymer, embrittlement, 

discolouration and fracturing of the plastic material (Byrdson, 1999). Embrittled plastics 

are subject to fragmentation by mechanical stresses due to reduced strength and 
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flexibility of the material (Singh & Sharma, 2008; Andrady, 2011). This has major 

implications for the spread and distribution of plastic debris throughout the environment, 

as smaller particles are more easily dispersed by natural forces including water and air. A 

thorough review of the types, mechanisms and methods of plastic degradation is given by 

Singh & Sharma (2008). 

Some types of plastic (e.g. cellophane) are biodegradable in the natural environment 

(Byrdson, 1999), but those synthetic plastics that are currently most commonly produced, 

including PE, PS, PP and PMMA, are not considered biodegradable in the natural 

environment (Byrdson, 1999; Lucas et al., 2008). The invention of degradable plastics 

has increased in recent years, however, most types require specific circumstances (e.g. 

the presence of certain microbes; a specific temperature range) for full biodegradation to 

take place (Eubeler et al., 2010). Studies on the degradation of plastics in various 

environments including soil (Ohtake et al., 1995; Mumtaz et al., 2010; Devi et al. 2015), 

marine sediments (Nauendorf et al., 2016) and seawater (O’Brine & Thompson, 2010) 

have been conducted, but report variable timescales of degradation. Roy et al. (2008) 

suggest that LDPE containing photodegrading additives is susceptible to biodegradation 

on shorter time scales, and report biodeterioration, biofilm development, and molecular 

weight loss of ~8% occurring over a period of 2 weeks.  

Microplastic particles take a variety of forms including fragments, pellets, beads and 

fibres. Fragments are derived from larger plastic debris as a result of mechanical erosion 

and aging processes. Fragments of solid, foam, film and sheet plastics have been found 

ubiquitously in marine and freshwater environments (e.g. Cole et al., 2011; Eerkes-

Medrano et al., 2015).  Pellets, a common form of raw plastic material, generally range in 

size from 1 - 10 mm in diameter and have a variety of morphologies, ranging from flat 

discs, to roughly spherical beads, to cylinders with flat, pinched or bulbous ends. Pellets 

may be spilled during transport by ship, train and truck, from the production facility to 

the processing facility, and also in facilities during production (SPI & ACC, 2015). 

Pellets have been identified in environmental water and sediment samples for decades 

(Colton et al., 1974; Ashton et al., 2010; Moreira et al., 2015). Microplastics that are 

manufactured as small beads generally < 1 mm in size, are termed ‘microbeads.’ 
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Microbeads are often used as abrasives in cosmetic and personal care products and in 

other applications such as sandblasting or deflashing (Hidalgo-Ruz et al., 2012; Eriksen, 

Mason, et al., 2013). Microbeads, as used in cosmetics, refer to particles with a range of 

sizes, polymer composition, and shapes ranging from spherical to irregular (Leslie, 

2014). Fibres are produced from the production and natural wear of textiles including 

synthetic clothing and carpeting and other products such as rope and lines.  

2.4 Plastics in the environment 

Investigations of plastics contamination in many aquatic environments including beaches, 

ocean surface waters, deep-sea sediments, freshwater lakes, and tributaries, as well as 

throughout terrestrial environments are now published (e.g. Eriksen, Mason, et al., 2013; 

Vianello et al., 2013; Van Cauwenberghe et al., 2013; Cózar et al., 2014; Townsend & 

Barker, 2014; Turra et al., 2014; Eerkes-Medrano et al., 2015), however, studies 

pertaining to freshwater and benthic environments are less abundant in comparison to 

those of oceanic and surface water environments. 

2.4.1 Sources of microplastics debris 

Although the consumption of plastics has increased exponentially since the 1950s 

improvements in recovery and recycling technologies are lacking. Recent pressure has 

been placed on manufacturers to adopt ‘extended producer responsibilities’ policies, in 

which producers account for the entire life-cycle of a product, including recovery and 

recycling costs. This strategy was developed by Thomas Lindhqvist in 1990, who 

outlines the concept and implementation strategies in an open access doctoral dissertation 

published in 2000 (Lindhqvist, 2000).  

In addition to the persistence and “throw-away” design of plastic products, municipal 

recovery and recycling systems are absent in much of the world, and often have low 

participation rates where they do exist. Once entered into the environment, littered 

plastics have been shown to disperse through waterways, such as rivers, tributaries and 

storm drains and to accumulate in beach sediments (Liebezeit & Dubaish, 2012; Dekiff et 

al., 2014; Mathalon & Hill, 2014; Zbyszewski et al., 2014), lakes (Eriksen, Mason, et al., 

2013; Free et al., 2014), ocean surface waters (Morét-Ferguson et al., 2010; Eriksen, 
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Maximenko, et al., 2013; Cózar et al., 2014; Law et al., 2014;) and benthic sediments 

(Claessens et al. 2011; Van Cauwenberghe et al. 2013; Vianello et al. 2013).  

Data collected by volunteers for the Adopt-a-Beach and Great Canadian Shoreline 

Cleanup events in 2012 show that beach debris on Great Lakes shorelines were >90% 

recreational and smoking related items, and ~1-3% water-way activity related items 

(Driedger et al., 2015). Plastic household items and recreational items, such as food, take-

out and confection packaging, single use beverage and product bottles and cutlery, make 

up a large portion of aquatic debris (Driedger et al., 2015). Plastic waste material, even if 

properly disposed of by the consumer can still be released into the environment during 

waste management process, from collection, transport and sorting by municipal 

organizations, to long-distance transport of bales which are often shipped across seas for 

recycling. Industrial spillage of raw plastics (granules) during transportation and within 

factories is another potential source of plastic debris (SPI & ACC, 2015). Agriculture 

may be another significant source of plastics as pellets are used for mulching and feed 

and films are used for covering fields and packaging products (Cunnningham et al., 1972; 

Espí et al., 2006).  

Consumer cosmetic and personal care products (e.g. facewashes, toothpastes, lipsticks 

body washes, sunscreens) (Fendall & Sewell, 2009; Eriksen, Mason, et al., 2013; Leslie 

2014; Sundt et al., 2014) are also sources of microplastics. The microplastics in these 

products have been found in high concentrations in the surface waters of the Great Lakes 

(Eriksen, Mason, et al., 2013). Both observational and model-based studies indicate that 

local industry and waste management are significant factors controlling the abundance of 

microplastic pollution in freshwater and marine environments (Free et al., 2014; Turra et 

al., 2014; Jambeck et al., 2015). 

 

2.4.2 Microplastic debris in freshwater systems 

Studies pertaining to microplastic debris in freshwater systems show that microplastics 

can be transported from urban areas through rivers to lakes, bays and oceans (Moore et 
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al., 2011; Hoellein, Rojas, et al., 2014; Rech et al., 2014). A comprehensive overview of 

plastics contamination in freshwater systems (Eerkes-Medrano et al., 2015) discusses 

sampling techniques and factors affecting plastic abundance and dispersal in freshwater 

systems, sources of plastics, and ecological consequences of microplastics. A second 

review (Dris, Imhof, et al., 2015) focuses on methodologies for sampling and analyzing 

microplastics in freshwater environments, comparing existing methods and 

recommending ways in which future research methods could be conducted to provide the 

most replicable and comparable data. These reviews reveal the absence of studies 

investigating plastics contamination in submerged lake sediments.  

Rivers, particularly urban tributaries, are depositional sites as well as major transport 

pathways for microplastics and macroplastics (Moore et al., 2011; Gasperi et al., 2014; 

Lechner et al., 2014; Rech et al., 2014; Zhao et al., 2014; Corcoran et al., 2015). Plastics 

are transported on surface waters (Gasperi et al., 2014) and along the tributary bed 

(Moore et al., 2011; Morritt et al., 2014) depending on the buoyancy of the material. 

Microplastic debris types previously identified in tributaries comprise industrial (pellets) 

and urban waste (Moore et al., 2011; Lechner et al., 2014; McCormick et al., 2014).  

Debris can be introduced into tributaries via point sources (effluent pipes, drainage 

outlets, wastewater treatment plants) and non-point sources (dumping, spills and litter). 

Rech et al. (2014) and Hoellein et al. (2014) showed that macroplastic debris loads 

carried by rivers are also deposited along river banks, suggesting that rivers are both 

depositional and erosional zones for anthropogenic debris. Sampling techniques have 

involved both water and sediment sampling, but generally one or the other. Most water 

sampling studies have targeted surface waters, however, two studies (Moore et al., 2011; 

Morritt et al., 2014) included subsurface waters. Sediments have generally been sampled 

from exposed river banks and bars; however, a study by Hoellein et al. (2014) sampled 

the benthic sediments of the North Shore Channel of the Chicago River for debris > 1 cm 

in size.  

Studies of microplastics in tributary waters have included the Los Angeles River, San 

Gabriel River and Coyote Creek in Southern California (Moore et al., 2011), the Thames 

River in the UK (Hoellein et al., 2014), the Danube River in Austria (Lechner et al., 
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2014), the North Shore Channel of the Chicago River in the USA (McCormick et al., 

2014), the Seine River in France (Gasperi et al., 2014; Dris, Gasperi, et al., 2015), the 

rivers of Chesapeake Bay in the USA (Yonkos et al., 2014), and the Yangtze River in 

China (Zhang et al., 2015). In the Yangtze River, Zhang et al. (2015) investigated the 

abundance and composition of microplastics in the surface waters of the mainstream and 

four tributaries behind the Three Gorges Dam. They identified PE, PP and PS 

microplastic particles, in the size range 112 μm – 5 mm, at spatial densities of 0.19 x 106 

to14 x 106 km-2. 

Studies of microplastics in tributary sediments have been less common. On the banks of 

the Elqui, Maipo and Bio-bio Rivers in Chile, Rech et al. (2014) investigated debris >1.5 

cm in size. Wagner et al. (2014) published a review of microplastics contamination in 

freshwater environments and reported microplastics abundances of 34 - 64 particles kg-1 

dry sediment in the sediments of the Elbe, Mosel, Neckar and Rhine Rivers, however, 

they did not include information regarding sampling location or whether the sediments 

were riparian or benthic. In the St. Lawrence River, which drains the Laurentian Great 

Lakes from the eastern end of Lake Ontario, Casteñada et al. (2014) reported 

microplastics at maximum concentrations of 398,000 particles m-2 in the river sediments. 

The authors found the greatest concentrations in the effluent channel of the Gentilly-2 

Nuclear Power Plant. The collected particles, however, were not spectroscopically 

identified, and were only assumed to be polymers based on appearance, melting point 

(113.7°C) and differential scanning calorimetry.  

Lake surface waters have been investigated in at least three studies including Lake 

Geneva in Switzerland (Faure et al. 2012), Lakes Superior, Huron and Erie of the Great 

Lakes in North America (Eriksen, Mason, et al., 2013) and in Lake Hovsgol in Mongolia. 

Respective mean extrapolated microplastics spatial concentrations were 48,000 km-2, 

43,000 km-2 and 20,000 km-2. Subsurface waters were investigated in one study of Lake 

Märalen in Sweden (Landbecker, 2012), for which fibrous anthropogenic particles were 

reported at concentrations of 0-28 particles m-3. Fibrous particles were observed in water 

pumped from a depth of 0.5 m below the surface, however, successful spectroscopic 

identification was not achieved due to the small size of the particles (> 20 μm in 
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diameter, < 3000 μm in length) and the fibres were assumed to be natural fibres, such as 

wool and cotton, due to their slack texture. 

Studies of plastic debris in and on lake shore sediments include Lake Huron of the Great 

Lakes (Zbyszewski & Corcoran, 2011), Lake Geneva in Switzerland (Faure et al. 2012), 

Lake Garda in Italy (Imhof et al., 2013), Lakes Erie and St. Clair of the Great Lakes 

(Zbyszewski et al., 2014), Lake Michigan of the Great Lakes (Hoellein et al., 2014; 

Hoellein et al., 2015), and Lake Ontario of the Great Lakes (Corcoran et al., 2015). All 

but the first study in the list (See Section 2.3.4) are discussed in the review papers by 

Eerkes-Medrano et al. (2015) and Dris, Imhof, et al. (2015). 

2.4.3 Microplastic debris in sediments 

Microplastics studies targeting aquatic environments can be categorized by habitat (e.g. 

freshwater or marine), but also by compartment (e.g. neustonic, pelagic or benthic). The 

majority of studies focus on the neustonic compartment of tributaries, lakes and oceans, 

however, many types of plastic have densities greater than water. Plastics are therefore 

expected, and have been found, in sedimentary environments such as beaches (e.g. 

Zbyszewski et al., 2014), the abyssal ocean floor (e.g. Van Cauwenberghe et al., 2013), 

lake bottom sediments (Corcoran et al., 2015) and tributary sediments (Castañeda et al., 

2014; Hoellein et al., 2014; Rech et al., 2014; Wagner et al., 2014; Corcoran et al., 2015).  

The transport mechanism and pathways of plastic debris in the abyssal benthic zones of 

the ocean are generally unknown. One possible mechanism includes benthic layer 

transport from the source (coastal or offshore) via bedload transport, saltation and 

suspension (Ballent et al., 2013). This type of transport mechanism could explain the 

presence in the deep sea of plastic objects with a negative buoyancy in seawater. Tidal, 

offshore and turbidity currents may play a role in the transport of negatively buoyant 

plastics from coastal to abyssal and profundal zones of the oceans and large lakes as 

described by Zalasiewicz et al. (2016). Originally buoyant microplastics could be 

transported to depth by increases in the net particle density caused by assimilation of 

particles with more dense matter, for example with faecal express of ingested plastics 

(Cole et al., 2013; Setälä et al., 2014; Zalasiewicz et al., 2016), assimilation in marine 
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snow (Zalasiewicz et al., 2016; Lagarde et al., 2016), biofouling (e.g. Ye and Andrady, 

1991; Andrady, 2011; Zettler et al., 2013; McCormick et al., 2014), and adsorption of 

natural biological and mineral substances to the surface (Zalasiewicz et al., 2016; Frias et 

al., 2016). 

Several studies report relatively high abundances of microplastic in the bottom sediments 

of low energy environments such as harbours and lagoons, where fine particles supplied 

by fluvial and anthropogenic outputs can settle. For example, in the Belgian coastal zone, 

microplastic particles were found in significantly higher concentrations in harbours as 

compared to off-shore and beach sediments (Claessens et al., 2011). The authors also 

investigated the depositional history of microplastic on Belgian beaches, finding 

decreasing abundance with depth. In the Lagoon of Venice, Italy, bottom sediments 

sampled using a box corer, contained on average ~1500 microplastic particles per kg of 

dry sediment (Vianello et al., 2013). Vianello et al. also observed a correlation between 

the hydrodynamic characteristics of the sample site and microplastic abundance. A 

similar study published in 2014 by Mathalon & Hill reports microplastic fibre 

concentrations of ~20-80 fibres per 10 grams of sediment in the intertidal zone of Halifax 

Harbour in Canada. The Great Lakes also exhibit low-energy environments within 

harbours, coves and along shores where constructed barriers such as jetties and seawalls 

protect shores.  

In terms of microplastics in beach sediments, a study by Dekiff et al. (2014) reported 

homogenous distributions of microplastic <1 mm at concentrations of 1-3 particles per kg 

sediment over distances of 500 m in the North Sea East Frisian Islands, Germany. A 

unique study conducted in Sao Paulo, Brazil investigated the abundance of pellets in 

beach sediments on a 3-dimensional scale, quantifying microplastic at depths down to 2 

m with results suggesting that less than 10% of plastics are found within the top 5 cm of 

sediment, as would be expected under constant sedimentation rate conditions (Turra et 

al., 2014). Turra et al. also reported a correlation between the proximity of industrial 

plants and microplastics abundance. In another study, Free et al. (2014) investigated 

plastics abundance on the shores and surface waters of the remote Lake Hovsgol, in 

Mongolia, where neustonic microplastic abundances were reported to be similar to those 
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in the Great Lakes (Eriksen, Mason, et al., 2013). Examination of the types of 

microplastic revealed the complete absence of pellets and microspheres, a phenomenon 

attributed to the lack of industry in the area. These two studies indicate that local industry 

and waste management are significant factors in regulating microplastic pollution in 

freshwater and marine environments. 

Beach plastics in Hawaii were more abundant at the high-tide line than at the berm (storm 

wave extent), where on average 1.9 g plastic per l sediment, and 0.2 g plastic per l 

sediment were observed, respectively (McDermid & McMullen, 2004). In a similar study 

of beach plastics on the island of Fernando de Noronha, in the Equatorial Western 

Atlantic Ocean off the coast of Brazil, plastics debris was significantly more abundant on 

windward beaches compared to leeward beaches, suggesting that beach orientation with 

respect to the prevailing wind direction has an effect on the distribution of plastics 

washing ashore (do Sul et al., 2009). The authors noted that plastics manufacturing 

industry was absent on the island, suggesting that industrial pellets originated from distal 

sources.  

2.4.4 Microplastic debris studies in the Great Lakes 

Studies report microplastic pollution in the Great Lakes surface waters (Eriksen, Mason, 

et al., 2013), shorelines (Zbyszewski & Corcoran, 2011; Zbyszewski et al., 2014; 

Corcoran et al., 2015) and offshore bottom sediments (Corcoran et al., 2015) and 

nearshore bottom sediments (Ballent et al., 2016), but microplastics contamination in the 

subsurface sediments of the coastal regions of the Great Lakes is still largely unknown 

(Opfer 2012, p. 50; Opfer 2013, p. 24; Driedger et al. 2015). 

The first study of plastics in the Great Lakes was conducted by  Zbyszewski & Corcoran  

in 2011 who investigated microplastic abundance on the shorelines of Lake Huron. 

Sampling techniques involved quadrat and transect surveys of visible microplastics, 

including pellets, fragments and foam pieces. They reported greatest concentrations at the 

southern-most beach, Sarnia Beach, where abundances of 408 pieces/m2 were quantified, 

which they attributed to proximity to the plastics industry activity coupled with the 

dominant cyclonic surface circulation of the lake. Fourier Transform Infrared (FTIR) 
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spectroscopy of pellets and fragments revealed that the dominant polymers were PE and 

PP. One PET fragment was also identified. Surface textures on pellets and fragments, 

described as flaking, pits, grooves, gauges and fractures, were suggested to be oxidative 

and mechanical weathering artifacts.   

A single study investigating microplastic concentrations in the surface waters of Lake 

Superior, Lake Huron, and Lake Erie reported average spatial densities of ~43,000 

microplastic particles km-2. Maximum concentrations of almost 0.5 billion particles km-2 

were located in the eastern part of Lake Erie (Eriksen, Mason, et al., 2013). Fragments, 

foams, films, fibres and pellets < 1 mm made up 80% of all plastic particles collected; 

only 2% were > 4.75 mm. This suggests that floating plastics debris is primarily made up 

of microplastics, rather than large intact plastic objects. Eriksen, Mason, et al., (2013) 

also observed that many of the pellet-shaped particles < 1 mm in sizer were not polymers 

but aluminum silicates (coal fly ash), and that others were very similar to microplastic 

particles present in common brands of facewash. In a more recent investigation of 

microplastics in the surface waters of tributaries and the nearshore of Lake Ontario and 

Lake Erie, particle concentrations were found to be an order of magnitude higher than 

offshore concentrations reported by Eriksen, Mason, et al. (2013). The greatest 

abundances were 6.7 million particles per km2, as measured in urban regions near Detroit 

and Windsor in Lake Erie, and near Humber Bay and Toronto Harbour in Lake Ontario. 

Fragments and fibres were the most abundant morphologies, but notable contributions of 

foam particles and industrial cuttings were also reported (Helm et al., 2016). 

Another study published by Zbyszewski et al. (2014) compared microplastic debris on 

the shorelines of Lake St. Clair, Lake Erie and Lake Huron The authors observed plastic 

pellets, fragments and foam particles at average spatial densities of 4.25 particles m-2 and 

noted high spatial variability between sample sites at all three lakes. The highest spatial 

densities of 34 microplastics particles m-2 were observed at Sarnia Beach on the southern 

shore of Lake Huron. Of the sample sites on Lake Erie and Lake St. Clair shorelines, the 

highest spatial densities observed were 3.7 particles m-2 at Presque Isle and 8.4 particles 

m-2 at Grosse Pointe.  
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In the same year, Hoellein et al. (2014) investigated anthropogenic litter abundances 

along three 400 m long, 50 m wide transects on Lake Michigan beaches near Chicago, 

and along three 70-100m stretches of the riparian and benthic zones on the North Channel 

of the Chicago River. All types of anthropogenic litter, including metal, fabric, paper, 

plastic and glass items > 2 cm were collected; microplastics abundances were not 

investigated. Plastics were most common in riparian zones and least common in the 

benthic zone of the river, by percentage of total litter abundance. 

In another study of anthropogenic litter on the shores of Lake Michigan, Hoellein et al. 

(2015) used data published by the Adopt-a-Beach volunteer cleanup program to 

summarize debris characterization on five beaches. Debris (plastics and other materials) 

was collected by volunteers, and was primarily food and smoking-related. Debris 

abundance was positively and linearly correlated with volunteer hours, and also with 

county population density (Hoellein et al., 2015). Debris abundance was not related to 

other measured environmental factors of catchment area, percentage of built up area, 

tourism and recreation GDP, or beach popularity as measured by the Flikr score, 

suggesting that debris was mainly littered by beach-goers or washed onto the beach from 

distal sources. The authors concluded that determining sources of litter was not possible 

and that riverine sources were minor. This study, however, only investigated large intact 

recognizable debris, and did not focus purely on plastics. The authors also noted that 

several of the beaches in the study were regularly cleaned during the summer months. 

Microplastics pollution in Lake Ontario has received little attention despite the fact that it 

is furthest downstream within the Great Lakes system and that it is highly urbanized and 

industrialized. Corcoran et al. (2015) investigated shoreline, riparian and offshore 

sediments and was the first study to include data of microplastics in bottom lake 

sediments. A stretch of shoreline in Humber Bay Park West and a section of the Humber 

River riparian bank were analyzed triweekly for accumulation of microplastics. Particles 

in both locations comprised mainly industrial pellets, but also fragments, intact items and 

foam particles. At the Humber Bay shoreline site consecutive triweekly accumulation 

rates were 26.5 particles m-2 and 13.4 particles m-2, and pellets deposited on the Humber 

River bank indicate that the Humber River is a notable source of microplastic 
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contamination to the lake. Two core samples of sediment accumulation depths of 30 cm 

were analyzed for microplastics. The cores were taken from the Niagara Bar at a water 

depth of ~ 66 m and from the north-central part of the lake at a water depth of ~ 182 m. 

Microplastics were present to a depth of 8 cm below the sediment surface in both 

locations, and generally decreased with depth in the sediment. Microplastics were 

analyzed visually and with FTIR spectroscopy, revealing that the particles were of 

various color and morphology, including angular, rounded and wispy, and were mostly 

composed of PE (N=16). Some particles were PP (N=6) and nitrocellulose (N=3). 

Inorganic matter, including calcium carbonate, silica and mica were identified with 

several, though not all particles. The authors interpreted the association of these inorganic 

substances to be mineral fillers included in the plastics during manufacture, or to be 

minerals adsorbed or otherwise attached to the surface of the plastics. In 2016, Ballent et 

al. published a study of microplastics in the nearshore, tributary and beach sediments of 

Lake Ontario, which contains information presented in this thesis. 

A literature review of microplastics in the Great Lakes (Driedger et al. 2015) provided a 

general summary of the current situation of microplastics contamination research and 

monitoring as conducted by the volunteer based Adopt-a-Beach program and Great 

Canadian Shoreline Cleanup programs.  

2.4.5 Ecological implications of microplastics contamination 

Microplastics in benthic ecosystems pose an environmental threat primarily because 

benthic fauna and organisms that feed on the benthic community may potentially ingest 

microplastics. Littoral and profundal fish species in large temperate lakes have diets that 

consist primarily of benthic organisms, and in Lake Ontario ~92% of fish and ~96% of 

invertebrate species are found in littoral habitats (Vadeboncoeur et al., 2011). As such, 

the majority of aquatic species in Lake Ontario are closely connected to nearshore 

benthic habitats, and microplastics contamination of these sediments may be directly 

affecting the health of the lake ecosystem at many trophic levels. Aquatic fauna for which 

ingestion of microplastics has been shown to occur include demersal and pelagic fish 

(Neves et al., 2015; Phillips & Bonner, 2015; Rummel et al., 2015), deposit- and filter-

feeder benthic invertebrates (Setälä et al., 2015), farmed and wild bivalves (Mathalon & 
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Hill, 2014; Van Cauwenberghe & Janssen, 2014), lugworms (Browne et al., 2013; Van 

Cauwenberghe et al., 2015) and freshwater waterfowl (English et al., 2015). Biginagwa et 

al. (2015) studied plastics ingestion in predatory Nile Perch and omnivorous Nile Tilapia, 

common fish caught in Lake Victoria, Tanzania. The authors observed plastic debris 

contamination in drainage ditches near the lake and noted that the surrounding regions 

were densely populated. Of the fish examined, 20% (N=4) contained plastics (PE, PU, 

PET, PE/PP copolymer and silicone as confirmed by FTIR spectroscopy) in their gastro-

intestinal organs. 

 Ingestion of microplastics can be associated with detrimental physiological 

consequences, including inflammatory responses at the tissue level in mussels (von Moos 

et al. 2012), liver toxicity in fish (Rochman, Hoh, et al., 2013), increased mortality in 

lugworms (Browne et al., 2013) and reproductive repercussions in zooplankton 

(Besseling et al., 2014). Ingested microplastic particles can move through trophic 

systems, for example in planktonic food webs (Setälä et al., 2014) and from mussels to 

crabs (Farrell & Nelson, 2013).  

In Lake Ontario, several species of littoral and stream-dwelling benthic organisms and 

benthic feeders may be at risk of ingesting microplastics. Invertebrates such as the 

quagga and zebra mussels are recent invasive species in the Great Lakes and may be 

prone to ingestion of microplastics. Marine invertebrates such as the filter feeding blue 

mussel Mytilus edulis and the deposit feeding lug worm Arenicola marina have been 

shown to ingest microplastics during feeding in the natural environment and in 

microcosm experiments (Van Cauwenberghe et al., 2015). In an analysis of microplastic 

ingestion by M. edulis in the coastal waters of China, both fibres and fragments were 

found to be ingested (Li et al., 2016).  

In the tributary and coastal waters of Lake Ontario, examples of bottom feeding fish 

species that may be subjected to microplastics ingestion include various species of carp 

(Hypophthalmichthys nobilis, Mylopharyngodon piceus, Ctenopharyngodon idella and 

Hypophthalmichthys molitrix), Logperch (Percina caprodes), Round Goby (Neogobius 

melanostomus) and Tubenose Goby (Proterorhinus marmoratus), Channel Catfish 
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(Ictalurus punctatus), Flathead Catfish (Pylodictis olivaris) Northern Hog Sucker 

(Hypentelium nigricans), and Redhorses (Moxostoma sp.) (Eakins 2016). These species 

are warm-water benthic fish common in the riverine and lacustrine environments of the 

southern Great Lakes and include invertivores, detritivores, herbivores and carnivores. 

Studies regarding plastics ingestion by the above species have not yet been published, 

however, preliminary results from an experimental feeding study through the Ontario 

Ministry of the Environment and Climate Change reveal that plastics are ingested and 

beads and pellets are most likely consumed and retained (Munno et al., 2016). The 

authors report ongoing research investigations of field studies regarding ingestion by 

common fish species in Lake Ontario nearshore and tributary environments of Humber 

Bay, Hamilton Harbour and Toronto Harbour, but do not include preliminary results 

except for an apparent susceptibility to the retention of fibres (Munno et al., 2016). Lake 

trout and other benthic feeding pelagic fish could also be exposed to microplastic through 

ingestion of prey with microplastic retained in the gut. The diet of lake trout (Salvelinus 

namaycush) has shifted to include more round goby since the species was introduced to 

Lake Ontario in the 1990s (Dietrich et al., 2006), and a study of fish diet in Lake 

Michigan suggests that the energy pathways of pelagic and profundal fish species are 

transferring away from a pelagic diet and towards a nearshore benthic pathway, due to 

the expansion of the dreissnenid mussel (Turschak et al., 2014). The transfer of 

microplastics may not be limited to fish and invertebrates in the Great Lakes as there is 

evidence for benthic feeding Round Gobies becoming a dominant prey for double crested 

cormorants (Phalacrocorax auritus) colonies in the upper St. Lawrence River (Johnson et 

al., 2015), eastern Lake (Johnson et al., 2015), and in Hamilton Harbour (Somers et al., 

2003). Microplastics were ingested and some particles were retained for over 24 hours by 

fish in a feeding experiment using fish caught in the coastal waters of Lake Ontario 

(Munno et al., 2016), suggesting that there is the possibility that microplastics are moving 

to higher trophic levels in the Great Lakes. Preliminary results of in situ ingestion of 

microplastics in Lake Ontario nearshore fish species indicate that microplastic fibres 

were most prevalent compared to other morphologies in the GI tracts of sampled fish 

(Munno et al., 2016).  
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Plastics are not classified as hazardous waste in Canada, perhaps as a result of the 

intrinsically inert qualities of polymers such as PE and PP (Rochman, Browne, et al., 

2013). Certain plastic products, however, are manufactured from hazardous derivatives 

such as polycarbonate CD-ROM discs and polyurethane foams commonly used in 

furniture (Lithner et al., 2009). Additives such as polybrominated diphenyl ethers 

(PBDEs; e.g. flame retardants) (Lithner et al., 2011; Rochman, Lewison, et al., 2014) and 

plasticizers such as Bisphenol-A are also often included to change the physical properties 

of the plastics (Oehlmann et al., 2009). Plasticizers have been shown to have negative 

impacts on the hormonal systems of invertebrates, fish and amphibians (Oehlmann et al., 

2009). Lithner et al. (2009) tested the effect of plastic consumer item leachates, of which 

the polyvinyl chloride and polyurethane leachates were most toxic to the freshwater 

arthropod, Daphnia magna. Conclusive evidence for the transfer of associated hazardous 

compounds from plastics to organisms is lacking, but several studies have suggested 

correlations between plastics ingestion and compromised physiological function (e.g. 

Teuten et al., 2009; Wright et al., 2013; Syberg et al., 2015).  

Microplastic loads in the Danube River have been shown to be on the same order of 

magnitude by count as fauna of the same size (Lechner et al., 2014), suggesting that the 

scale of microplastics pollution may be sufficient to fundamentally alter trophic systems 

of tributaries and larger water bodies by imitating food sources of organisms in the lowest 

trophic levels. Microplastics may also be facilitating changes in microbial communities, 

acting as non-stationary colonization surface habitats for bacteria or other organisms 

adhering to the plastics (e.g. Ye & Andrady, 1991; Zettler et al., 2013; Harrison et al., 

2014; McCormick et al., 2014; Nauendorf et al., 2016). 

Plastics may be classified as carcinogenic, hormone disrupting, or toxic, due to 

manufacture from hazardous derivatives and/or additives such as polybrominated 

diphenyl ethers (PBDEs) i.e., flame-retardants (Lithner et al., 2011; Rochman, Lewison, 

et al., 2014) or because of the adsorption of environmental pollutants such as persistent 

organic pollutants and trace metals such as Pb and Cd (Browne et al., 2013; Rochman, 

Hentschel, & Teh, 2014). However, there is no conclusive evidence that adsorbed toxins 

are transferred to an organism upon ingestion. Some studies suggest that ingestion of 
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plastic particles leads to the disruption of the physiological systems of organisms 

(Browne et al., 2013; Van Cauwenberghe et al., 2015). In the case that toxins are 

transferred to the tissues of organisms, there is the possibility that plastics facilitate 

bioaccumulation of associated pollutants in higher trophic level organisms. 

Overall, while research pertaining to the ecological implications of microplastics is still 

ongoing and there are many questions still to be answered, there is sufficient evidence 

that microplastics contamination of aquatic environments needs to be stemmed in order to 

protect the quality of these systems which are valued for the ecological, recreational and 

commercial services that they provide.  

2.5 Methodologies commonly used in studies of 
microplastics in sediments 

2.5.1 Collection methods 

Methods for the collection of submerged and exposed sediments for the investigation of 

microplastics contamination have varied across studies. Surveys of macrodebris lying on 

seafloor or river bed sediments are commonly conducted by bottom trawling and diving 

(in submersibles, scuba or snorkeling), video taken by autonomous underwater vehicles 

(Spengler & Costa, 2008; Mordecai et al., 2011) and by wading in shallow waters 

(Hoellein et al., 2014). Surveys of macrodebris in exposed beach and riparian sediments 

are traditionally conducted by transect or quadrat surveys (e.g. Hoellein et al., 2014; 

McCormick et al., 2014; Hoellein et al., 2015) although newer methods have 

incorporated webcam imagery (Kataoka et al., 2012). Collection of microplastics 

deposited in exposed sediments has involved transect (e.g. Liebezeit & Dubaish, 2012; 

Moreira et al., 2015), quadrat (e.g. Turra et al., 2014) and core sampling (Carson et al., 

2011; Claessens et al., 2011) or a combination of techniques (Zbyszewski and Corcoran, 

2011; Zbyszewski et al., 2014; Corcoran et al., 2015).  Investigation of microplastics in 

submerged sediments or of particles < 1 mm in size, however, requires retrieval of 

sediment for laboratory analysis. In the literature, submerged sediments have been 

collected with box cores (Corcoran et al., 2015), van Veen grabs (Browne et al., 2011; 

Claessens et al., 2011) and Peterson and Petite Ponar grabs (Castañeda et al., 2014). 
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2.5.2 Sample processing methods 

The separation of microplastics from sediments is often aided with a sort of density 

separation, particularly where targeted particles are < 1 mm and not identifiable with the 

naked eye. Density separation of low-density plastics was conducted using seawater as 

the separation fluid at a large scale in the field for large quantities of beach sediment in a 

study of the 3-dimensional distribution of pellets > 1mm on beaches in Brazil (Turra et 

al., 2014). For high-density plastics, separation mediums of higher densities generally > 

1.43 g cm-3 are needed (Imhof et al., 2012). Solutions of sodium chloride (Hidalgo-Ruz et 

al., 2012), zinc chloride (Imhof et al., 2012; Mathalon & Hill, 2014; Dris, Imhof et al., 

2015), sodium iodine (Claessens et al., 2013) and sodium polytungstate (Corcoran et al., 

2009; Corcoran et al., 2015) have been used. Methods used for removing the supernatant 

containing microplastics from the sample are consistently ill-described (Hidalgo-Ruz et 

al., 2012). Decanting and removal of floating particles by picking with forceps is likely 

less efficient as particles may be missed and stick to the containers walls (Hidalgo-Ruz et 

al., 2012). In order to overcome this issue, several devices have been invented to increase 

recovery rates in sediment density separation processes. An instrument, named the 

Munich Plastic Sediment Separator (MPSS) was developed by Imhof et al. (2012), 

achieved a recovery efficiency of 95.5% for microplastics < 1 mm of a range of densities 

of 0.8-1.43 g cm-3. The separation column was constructed of an aeration column with a 

motor-powered stirrer and overlying skimming chamber. Compared to the MPSS, a 

simple decanting method for plastic retrieval after stirring and aeration resulted in an 

average recovery rate of ~40% by weight for particles < 1 mm. A similar column 

elutriation technique developed by Claessens et al. (2013) was highly efficient with 

recoveries of 100% of microspherules and 98% of fibres.  

A review of identification and quantification methods written by Hidalgo-Ruz et al. 

(2012) describes methodologies used for marine microplastics. A recent report published 

by NOAA outlines sample processing methods for water, sediment bed and beach 

samples (Masura et al. 2015). As the study of microplastic pollution develops, many 

experiments and publications aim to refine and standardize research methods to address 

issues related to sampling and analysis of microplastic. Commonly recognized is the 
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necessity of minimizing contamination of samples during laboratory analyses, 

particularly by airborne plastic fibres (e.g. Dekiff et al. 2014; Mathalon & Hill 2014). 

Recommendations include reducing exposure of samples to air by keeping containers 

closed, keeping all tools, surfaces, and containers clean, wearing clothing of natural 

fibres, and reducing drafts and excessive exposure from corridors, and conducting 

controls for environmental contamination in the laboratory (Woodall et al., 2015).  

2.5.3 Quantification methods 

The quantification of microplastics separated from sediments is normally conducted 

manually using stereomicroscopes (Hidalgo-Ruz et al., 2012). Studies have shown, 

however, that visual analysis is not a reliable method for the identification of 

microplastics and that spectroscopic analysis is needed for reliable quantification of 

microplastics (e.g. Eriksen, Mason et al., 2013; Song et al., 2015). In a study of 

microplastics in the surface waters of the Great Lakes, surface electron scanning and 

energy dispersive x-ray spectroscopy revealed that on average 20% of the particles 

suspected to be plastic by visual identification were in actuality aluminum silicates and 

likely fly ash particles (Eriksen, Mason et al., 2013). Song et al. (2015) report that 

microplastic fragment quantification was underestimated and fibre quantification was 

overestimated using a stereo microscopic analysis compared to Fourier-transform 

infrared (FTIR) spectroscopic analysis, suggesting that visual identification of 

microplastic samples is not reliable. Synthetic and natural fibers were reported to have 

similar appearance, and fragments < 1 mm were often not identified by visual 

examination.  

2.5.4 Compositional analysis methods 

Spectroscopy is a common technique used to determine the types of polymers and 

materials present in sediment samples (e.g. Corcoran et al., 2009; Cooper and Corcoran, 

2010; Zbyszewski & Corcoran, 2011; Zbyszewski et al., 2014; Frias et al., 2016). 

Spectroscopy is the study of the interactions between matter and electromagnetic 

radiation. In theory, three types of interaction can be described when a photon encounters 

a molecule or other type of particle. The first, termed Rayleigh scattering, is an elastic 
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scattering by which the incoming photon is adsorbed and is emitted with the same 

energy. The second, termed Stokes shift, is an inelastic scattering by which the energy of 

the incoming photon is decreased because some of the energy is transferred to the 

molecule changing its vibrational state. The third type, termed Anti-stokes shift, is also an 

inelastic scattering, but where the incoming photon is adsorbed by a molecule which is 

already in increased energy vibrational state. The interaction causes the molecule to 

return to the normal vibrational state and the vibrational state energy is transferred to the 

emitted photon, which, as a result, has a greater energy relative to the incident photon. 

The shift in energy, Raman shift, of the incident light is dependent on the vibrational, 

rotational and other low frequency modes of the molecule. The second and third types of 

interaction are referred to as Raman scattering. Only about 0.001% of incident light 

interacting with a particle is scattered inelastically; the majority of the incident light is 

scattered elastically. 

Raman spectroscopy is an analytical technique in which the Raman, i.e. inelastic, 

scattering of light by interaction with a molecule is detected to reveal information about 

the structure and properties of the molecule. It can be employed for the identification a 

wide variety of organic and inorganic substances and is well-suited to identification of 

polymers and other components of plastics. Several studies have used Raman 

spectroscopy to aid in the identification of microplastic particles (e.g. Imhof et al., 2012; 

Cregut et al., 2014; Lenz et al., 2015).  

Modern Raman spectroscopic technique relies on the use of a monochromatic laser, 

generally in the near infrared (NIR), visible or near ultraviolet (NUV) range, a filter to 

remove the Rayleigh scattered light, and an instrument which detects the incoming 

Raman scattered light. The use of a monochromatic laser light source allows for all 

Rayleigh scattered light to be completely filtered out and the Raman shift to be accurately 

measured relative to the laser light. Several advanced types of analytical instruments 

involving Raman spectroscopy have been developed; here two common types which 

differ in the methods by which the Raman signal is detected, and which are used in this 

study, are further discussed.  
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Dispersive Raman is a technique which uses a grating, a device with finely etched 

grooves, to spread the Raman scattering spectrum of a sample across the range of 

wavelengths making up the spectrum, similar to the way in which a prism sorts incoming 

visible light across a larger area, organizing the light rays by wavelength. The Raman 

scattered light is detected by a silicon charge coupled detector (CCD) which converts the 

electromagnetic radiation into an electrical signal which can be read by a computer and 

displayed as a plot. Dispersive Raman spectroscopy is particularly useful for analyzing 

small particles, achieved by using in combination with a confocal aperture. Lasers which 

emit light in the visible range are used with dispersive Raman spectroscopy, with higher 

energies (i.e. shorter wavelengths, blues) giving a stronger signal and also higher 

probability of fluorescence (Thermo Fisher Scientific Inc., 2008).    

Fourier Transform Raman (FT-Raman) spectroscopy is an alternative technique which 

uses much lower laser energies, generally in the near infrared range, in order to overcome 

the effect of fluorescence at higher laser energies. In FT-Raman technique a device called 

an interferometer is used to convert Raman scattered light into an interferogram signal 

during analysis. An interferogram is a pattern formed by the interference of multiple 

waves, e.g. Raman scattered electromagnetic light waves. The interferogram is 

transferred to an infrared signal by a material which responds to infrared light, such as 

Geranium or the semiconductor, indium gallium arsenide (InGaAs). The resulting 

electrical signal of the interferogram is converted to the Raman spectrum using the 

Fourier Transform algorithm (Thermo Fisher Scientific Inc. 2008).  

The measured light intensities are plotted against the wavenumber, commonly in units of 

cm-1 which indicate the energy difference between the laser light and the Raman scattered 

light. The resulting substance specific spectrum is the cumulative energy intensity 

detected for each wavenumber, i.e. the energy distribution of inelastic light scattered by 

the sample upon illumination with a monochromatic laser. The energy intensity which is 

relative to the amount of material present (Thermo Fisher Scientific Inc. 2008), is 

arbitrary and is commonly unlabeled or labeled with ‘Raman intensity’.  
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Another type of spectroscopy commonly used to analyze synthetic polymers is Fourier 

transform infrared (FTIR) spectroscopy. It is an analytical procedure in which a 

substance can be identified from the unique absorbance or emission spectrum of infrared 

radiation across a large range of wavelengths that is transmitted through a sample. It is 

useful in the identification of polymers as it can provide information about the molecular 

structure of the material as well as about the level of oxidation of the material (Löder & 

Gerdts, 2015). Comparison of the fingerprint region of the infrared spectrum to spectra of 

known materials allows for the identification of the polymer, whereas higher frequencies 

of the infrared spectrum signal functional group vibrations through which the presence of 

certain types of photo-oxidation products can be identified (Cooper, 2012).  

Raman spectroscopy is useful for the analysis of microplastics, however, there are several 

limiting factors. Analysis can be completed without sample preparation or contact with 

the sample, allowing for preservation of the sample. Run times range from as little as 

several seconds to several minutes, with longer run times improving the resolution of the 

spectra. In addition, thick materials can be analyzed as the technique does not rely on the 

penetration of light through the sample, as in infrared spectroscopy (Lenz et al., 2015). 

Conversely, thin particles may give poor spectra due to lack of volume and low Raman 

scattering signal. Technological advancements have allowed for laser spot sizes of < 1 

μm allowing for very small particles of plastic and fibres to be analyzed; however, 

instruments with larger spot sizes limit the size of particles measured. Symmetric, non-

polar bonds produce stronger Raman scattering than polar bonds, which are better 

analyzed with FTIR spectroscopy.  

Limitations of Raman spectroscopy arise for fluorescent materials, as the intensity of 

fluorescent light emitted upon illumination with laser light is often much higher than the 

Raman scattered light, masking the spectrum of the other substances in the material 

(Fredericks, 2012).  (Lenz et al., 2015) reported the effect of pigment additives on the 

Raman spectra of variously colored particles of industrially supplied ABS plastic. 

Whereas blue, black and white colored particles had spectra similar to pure ABS, the 

spectra of red and yellow particles were strongly masked to a degree at which the spectra 

could not be positively identified. Other additives, such as black carbon in rubbers and 
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titanium dioxide as a mineral filler and UV-degradation inhibitor were encountered. In 

these examples, the fillers did not effect signal quality but ability to match materials to 

those with known spectra was negatively affected as additional peaks were present and 

could potential obscure peaks needed to confidently identify a polymer. Dark colored 

materials also pose challenges as such materials absorb much of the light energy of the 

laser, and often have the tendency to combust even at very low laser power (Lenz et al., 

2015).  

Song et al. (2015) reported negative effects on FT-IR spectrum quality of microplastics 

from weathering and surface contaminations, and Lenz et al. (2015) reported similar 

effects in Raman analysis. Biofouling and adherence of mineral particles to the surfaces 

of microplastic particles, particularly of those with textured surfaces, has been regularly 

mentioned in the literature (e.g. Artham et al., 2009; Reisser et al., 2014). Lenz et al. 

(2015) show that the presence of biological organic matter on the surface of a particle 

masked the Raman spectrum particularly in the fingerprinting region, hindering spectral 

analysis, matching and polymer identification, and suggesting the importance of taking 

measures to clean particles before analysis and to use uncoated spots on particles for 

compositional identification.  

Spectral libraries are generated from analysis of pure substances. The spectra of certain 

types of polymers have been shown to diverge from those of the unaltered material with 

progressive degradation and exposure to UV radiation (Lenz et al., 2015). In the study by 

Lenz et al. (2015), PE, PVC, PA and PET plastics were subjected to UV exposure under 

air, freshwater and saltwater conditions to investigate Raman spectral changes due to 

weathering. PE and PVC polymers were most strongly affected, with decreases in the 

intensity of characteristic peaks. In PVC plastics exposed to over 1600 simulated midday 

sun hours of UV exposure, the characteristic peaks in the fingerprinting range at 693 and 

637 cm-1 (C-Cl bonds) were no longer observable compared to particles exposed to ~700 

and fewer simulated midday sun hours, and two additional peaks at 1139 and 1540 cm-1 

(C=C bonds) appeared.  
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Spectroscopic analysis is a time-consuming procedure often requiring sample preparation 

of individual particles, scanning, and manual spectral analysis by an expert. In addition, 

studies have shown that correct visual identification of plastic particles decreases with 

smaller particles (Lenz et al. 2015; Song et al. 2015) Improvements in the automation of 

spectral analysis may allow for increased accuracy and greater amounts of particles to be 

analyzed in studies of microplastics. Some attempts at improving spectral analysis 

efficiency have already been made. FTIR spectrometers coupled with attenuated total 

reflectance (ATR) capabilities allows for larger surfaces to be scanned in a single run 

(Cooper, 2012). Some studies have used this technique to scan filter papers, on which 

microplastics were retained from samples, to determine the presence and types of plastic 

present (e.g. Vianello et al., 2013; Song et al., 2015). Another recent study, investigated 

the applicability of thermal decomposition to the determination of PE, and its degradation 

properties, in environmental solid samples (Dümichen et al., 2015).  

In this study, X-ray fluorescence (XRF) is used as an alternative compositional analysis 

tool to confirm the presence of chlorides in suspected polyvinyl chloride plastics, as well 

as to look for inorganic fillers. XRF is an application which detects the presence of 

elements (typically heavier than silicon) in a sample by measuring the fluorescence 

energy released when a sample is bombarded by X-rays. XRF has not been used in 

microplastics identification studies, as present in the literature however, it has been used 

in applications involving plastics, for example in industry for quality control and 

manufacturing purposes (Mans et al., 2007) and in forensics (Roux and Lennard 2006). 
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Chapter 3  

3 Regional setting 

The Laurentian Great Lakes are situated on the North American continent across the 

Canadian-USA border. The five lakes have a combined watershed of ~770,000 km2 and 

make up the largest freshwater system in the world (Larson & Schaetzl, 2001). The five 

lakes—Superior, Michigan, Huron, Erie, and Ontario—are connected by a series of 

rivers, and cover an elevation change of 109 m. As the terminal lake within the system, 

Lake Ontario outflows to the North Atlantic Ocean through the St. Lawrence River. Lake 

Ontario is the smallest lake by surface area, covering 19000 km2.  

The Great Lakes basins were formed by repeated glacial scouring during the late 

Cenozoic (Larson & Schaetzl, 2001). Geological and biological deposits evidence at least 

six glacial advances and retreats having occurred between ~10 and 78 ka, during the most 

recent, Wisconsonian, glaciation (Richmond & Fullerton, 1986). 

3.1 Lake Ontario and the St. Lawrence River 

This study focuses on the nearshore, tributary and beach zones of Lake Ontario and the 

upper St. Lawrence River along the Canadian shoreline which lies within the province of 

Ontario. The working definition for the nearshore zone in this study refers to the coastal 

region of the lake where the lake bottom is between 0-25 m below the water surface. 

Along the perimeter of Lake Ontario, the nearshore region generally extends < 7 km 

offshore, making up ~10% of the total area of the lake (Rukavina, 1976). Toronto 

Harbour, Humber Bay and Hamilton Harbour, which are focus points in this study, are 

within the nearshore zone. The tributary zone, as referred to in this study includes the 

benthic and riparian zones of input tributaries, from small coastal streams to large 

riverine systems. Tributary sediment investigation was constrained to the near-lake 

region (< 10 km from the tributary mouth on the lake) for input streams, however, the 

entire direct drainage area of the lake and upper river is included in geographical 

investigations of population and industry levels of the region. The upper St. Lawrence 

River, from Lake Ontario to the eastern extent of the province of Ontario is ~ 1 km wide 
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at the narrowest sections and up to 20 m deep along much of the central axis (Paturi et al., 

2012). The sediments sampled in the St. Lawrence are considered together with the 

nearshore samples because of the large scale of the river and the lack of a defined 

transition point between the lake and river. The beach environments considered in this 

study are constrained to the sandy shoreline on the northwestern shore of the lake. 

3.1.1 Geology of the Lake Ontario region 

The surficial sediments of the lake are described as mainly glacial deposits and soft 

sediments eroded from the surrounding regions (Rukavina, 1976).  Post glacial sediments 

are primarily sourced from eroding shorelines, as opposed to stream discharge and the 

erosion of glacial sediments, based on grain size distribution. Sediments at the west end 

of the lake near Hamilton City may be sourced from easterly cross-lake storm events, 

whereas sediments in Toronto and Wellington are more likely sourced from shoreline 

erosion (Rukavina, 1976). Although the bed-load transport component of stream 

discharge was shown to be a negligible factor in sediment supply and transport to the lake 

(Ongley, 1973), fine-grained fractions may be attributed to the suspended load of 

tributaries (Kemp & Harper, 1976). Silt and clay-sized sediments may also be sourced 

from the winnowing, transport and re-deposition of bottom sediments during storm 

events, as is suggested to occur in offshore zones (Halfman et al., 2006). 
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Sedimentation rates in near shore areas of the western basin of Lake Ontario are 

estimated to be ~ 1.7 mm yr-1 based on pollen dating of Ambrosia (Rukavina, 1976). 

Alternatively, sediment accumulation rates as calculated from sediment bed thickness and 

the age of the lake, are 0.3, 0.4, 0.5 and 0.7 mm yr-1 at Toronto, Niagara, Wellington and 

Hamilton, respectively. Offshore depositional basin sedimentation rates calculated from 

210Pb dating are between 0.9 - 4.3 mm yr-1 (0.03 – 0.08 g cm-2 yr-1) with mixing depths up 

to ~50 mm (1 g cm-2) (Wong et al., 1995). Similar palynological data for offshore 

sedimentation rates based on Ambrosia pollen dating ranged between 0.3 – 2.2 mm yr-1 

(0.009 - 0.1 g cm-2 yr -1) (Kemp & Harper, 1976). Both palynological and radiometric 

dating of offshore sediments indicate higher sedimentation rates in the offshore zones 

compared to the nearshore depositional zones. 

3.1.2 Hydrology of Lake Ontario and the St. Lawrence River 

Lake Ontario directly drains an area of approximately 64,000 km2, half of which is within 

the province of Ontario. The St. Lawrence River is the sole outflow point of Lake 

Ontario, and itself drains an area of ~4900 km2 within the province of Ontario. The 

primary inflow route to Lake Ontario is the Niagara River which drains Lake Erie and 

supplies roughly 50% of the suspended sediment load of Lake Ontario (Kemp & Harper, 

1976). The Welland Canal is a shipping corridor between Lakes Erie and Ontario through 

which microplastic contamination may spread. The watershed of Lake Ontario is 

bounded by the Adirondack Mountains to the east and the Allegheny Plateau to the south. 

The Oak Ridges Moraine, which runs parallel to the northern shore between the Niagara 

Escarpment to the west and Rice Lake to the east, defines the drainage catchment area of 

the north west end of the lake. The Trent River waterway extends ~175 km north of the 

central part of the lake. Along the St. Lawrence River, the direct drainage area is confined 

to within ~40 km to the north (Fig. 3.1).  

Flow influx into the lake constitutes approximately 273 km3 yr-1, on average as calculated 

from a retention time of 6 years and a lake volume of 1640 km3. Lake Ontario outflows 

are monitored at the Moses-Saunders Power Dam, regulated by the International St. 

Lawrence River Board of Control (ISLRBC). Flow rates ranged between ~5000-9000 m3 

s-1 between the years 2011 and 2015 (ISLRBC, 2016a). Seasonal weather variations in 
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water levels are dependent on evaporation rates, influxes from Lake Erie through the 

Niagara River and regional precipitation levels (ISLRBC, 2016b). Water level peaks are 

observed during the spring months due to snow melt and low evaporation rates, and 

minimum water levels are observed during the late fall and early winter when 

evaporation rates are highest (ISLRBC, 2016b). Watershed influx levels are related to 

drainage area; the Niagara River is the largest drainage flux into Lake Ontario at ~5,800 

m3 s-1 (Hornlein et al., 2004, p. 97). In comparison, some of the larger watersheds in the 

Toronto region have much smaller discharge rates; the Humber River average total flow 

is 6 m3 s-1 (TRCA, 2008, p. 16) and the Don River average total flow is 4 m3 s-1 (TRCA, 

2009, p. 10). The Trent River, which is the largest watershed in the study region has an 

average flow of 140 m3 s-1 measured at the Glen Miller Generating Station (IESO, 2016).   

Annual water level fluctuations in Lake Ontario are < 2 m (Gronewold et al., 2013). 

Localized increases and decreases in water levels can be driven by lake scale storm-

induced standing waves called seiches (ISLRBC, 2016b). Storm events in Lake Ontario 

are primarily easterly, generally parallel to the major axis of the lake, with the long fetch 

allowing for severe storm waves to build up in the west (Rukavina, 1976). Surface water 

circulation within the lake is predominantly cyclonic in the summer and winter months, 

with an anticyclonic system along the north-west shore between Toronto and Prince 

Edward County (Beletsky et al., 1999). A more recent investigation of Lake Ontario 

water circulation patterns reveals that depth averaged summer circulation is characterized 

by greater flow velocities in the nearshore zones compared to offshore (Hall, 2008). 

Westward along-shore currents were simulated in both the north and south coastal 

regions in the west half of the lake in 2006, and were consistent with the circulation 

models suggested by Beletsky et al. (1999). Rao & Murthy (2001) report stronger along 

shore current velocites (max 30-40 cm s-1) than cross shore current velocities (max 10-20 

cm s-1) as measured using an array of moored current meters and Lagrangian drifter 

experiments. The strong coastal currents described for Lake Ontario explain the patchy 

and relatively thin postglacial sediment layer in the nearshore zone described by 

Rukavina (1976). Offshore and onshore wind patterns causing upwelling and down-

welling vertical water structures, respectively, have been observed in Lake Ontario, 
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however, whether and how sediment transport is affected by such coastal regimes is not 

clear (Rao & Murthy, 2001). 

3.2 Human geography of Southern Ontario 

The Canadian shoreline, from the Niagara River outflow on the western end of the 

southern shore along the northern shore to the outflow of the St. Lawrence River, is 

characterized by heavy industrialization and several urban regions and the Toronto 

megacity. Due to high population densities in the Greater Toronto Area, we expect 

greater accumulations of microplastics in the near shore, tributary and beach sediments of 

this region.  

3.2.1 Human population 

The western end and the northwestern shore of Lake Ontario are characterized by several 

urban and industrial regions, including the cities of Hamilton and Toronto, with 

populations of 0.52 and 2.62 million, respectively. In addition, the Regional Municipality 

of Peel is located adjacent to western Toronto, and comprises the cities of Mississauga, 

Brampton and Caledon. Mississauga and Brampton are the second and third largest cities 

in the Golden Horseshoe region (3rd and 4th largest in Ontario, after Toronto and Ottawa). 

The combined population of the Region of Peel as of 2011, was 1.3 million.  

3.2.2 Industrial activity 

Plastics manufacturing in Canada is concentrated in Southern Ontario (Statistics Canada, 

2012). According to a 2014 statistical report of the Canadian Chemical Industry (CIAC), 

production of synthetic resins, fibres and rubbers included PE, ethylene vinyl acetate, PS, 

PVC, polyacrylamides, PET, nylons, latex emulsions, polyesters, silicones and butyl and 

halobutly rubbers (CIAC, 2014, p. 34). High-density resins comprised 16% and PE 

comprised 80% of Canadian synthetic resin/rubber exports by weight in 2013 (CIAC, 

2014, p. 35). In total, ~3,500 kt of PE were produced in 2013 (CIAC, 2014, p. 34). 

Plastics-related industrial activity is often confidential and not shared publicly, 

complicating investigation into annual production volumes.  
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3.2.3 Recent policy developments concerning plastics 

In response to increased public awareness of the proven and potential harmful effects of 

plastics, organizations and governments have been acting to reduce the flux of plastics 

contamination into the Great Lakes environment. In the USA the manufacture, sale and 

import of cosmetic and personal care products containing plastic beads < 5 mm in size 

was recently banned through the Microbead-Free Waters Act of 2015. In Canada, the 

governmental association Environment Canada is in the process of considering a similar 

ban, but for plastic particles < 2 mm in size, through the addition of such plastics beads 

on the Toxic Substances List of the Environmental Protection Act of 1980. As per current 

discussion, medical products would be exempted from the ban, as well as products and 

applications not included in the personal care and cosmetics industry, for example, 

industrial abrasives and printing media (Pettipas et al. 2016). Microbeads, however, only 

comprise a fraction of the microplastics load entering the environment: 58% of 

microplastics <1 mm in surface waters of Great Lakes as reported by Eriksen et al. 

(2013). Pettipas et al. (2016) provides a review of current regulations on macroplastics 

and microplastics and discusses potential future options for Canadian policy 

developments aimed at reducing plastic waste.  

Organizations such as Stewardship Ontario and Recycling Council of Ontario are 

working together with providers to improve recycling rates and waste diversion from 

landfill. For example, 5 grocery companies have transferred to using only labeled PET 

polymer type rigid, clear packing clamshells in store packaging of food items in effort to 

increase the PET recycling stream and provide a marketable supply to recycling 

companies.  

3.3 Municipal solid waste management in Ontario, Canada 

Although many objects can be repurposed or reused, plastics made up 11% of the waste 

stream on average across all coastal countries, with an estimated 275 million metric 

tonnes for the year 2010 (Jambeck et al., 2015). Canada had an urban population of ~21 

million in 2012 as calculated by the World Bank, and generated ~2.3 kg of municipal 

solid waste per capita per day, an estimated 4% of which was plastic (Hoornweg & 
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Bhada-Tata, 2012, p. 80). The human population in the Golden Horseshoe region was 

~8.7 million in 2011 (Statistics Canada, 2013). Assuming similar waste generation levels 

as calculated by the World Bank and that 2% of the waste generated becomes littered, 

~5,800 tonnes of plastics may have been littered in the Golden Horseshoe region in 2011. 

Littered plastic waste, due to its buoyancy and light weight characteristics, can be washed 

or wind-blown into tributary systems leading downstream or directly into nearby 

waterbodies. It can be expected that a significant amount of plastic waste enters Lake 

Ontario, each year due to this process. The municipal solid waste management systems 

for three of the largest municipalities in the Golden Horseshoe region are discussed in 

further detail.  

In Toronto, solid residential waste management is organized to include several waste 

diversion streams for materials that can be reused or recycled. Apart from the Blue Bin 

recycling program, diversion streams account for compostable wastes (the Green Bin 

program), electronics, large appliances, hazardous wastes, tires. The Blue Bin recycling 

program accepts most metal containers and plastic items including foamed polystyrene 

and films such as bags and overwrap, except black plastics, laminated materials such as 

chip bags and squeeze tubes, multi-material items such as toys, compact-discs, 

electronics, and fibrous items such as clothing. Residential waste produced in Toronto 

decreased from 2007-2014 from ~500,000 tonnes to ~380,000 tonnes at the same time as 

diverted materials increased from ~370,000 to 420,000 tonnes. Total waste tonnage 

during this period decreased by ~65,000, while the percentage of the total tonnage that 

was diverted increased from 42 to 53% (City of Toronto, 2016). 

Solid waste collection and management for the Cities of Mississauga, Brampton and the 

Town of Caledon are organized collectively by the Region of Peel municipality. Solid 

waste collection in the Region of Peel is similar to that of Toronto; organics, yard waste, 

and recyclables are collected in separate waste streams. The Blue Bin recycling waste 

stream includes most plastics as well as paper, glass and metal packaging items. 

Accepted plastics include most food and household product containers as well as films, 

bags and foamed polystyrene. The most recent data regarding waste generation and 

diversion rates are statistics for 2010, when ~20% of the total waste stream was diverted 
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through the Blue Bin recycling program (Regional Municipality of Peel, 2012). Specific 

percentages or tonnages for plastic waste were not found. 

In the City of Hamilton, the solid waste collection and management system comprises 

organics, yard waste, and recycling waste diversion streams that operate alongside the 

non-diverted landfill stream. Acceptable plastic items include most food packaging items 

including bags, films and foamed polystyrene. According to a report published by the 

City of Hamilton in 2013, plastics made up 8.6% (~18,700 tonnes) of the total 216,000 

tonnes of generated residential waste in 2010 (City of Hamilton, 2012). An estimated 

average diversion rate for plastics was 30%, suggesting the potential for improvements in 

the amount of plastic items that could be recycled. Between 2002-2010, total annual 

waste generated was approximately halved, from 226,000 tonnes to 111,000, and 

percentage of diverted waste doubled from 21% to 49%.  
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Chapter 4  

4 Methodology 

A total of 50 sediment samples were collected from the nearshore, tributaries and beaches 

along the Canadian shoreline of Lake Ontario. Samples were processed using a density 

separation technique to isolate organic material from inorganic sediments. Additional 

beach quadrat and transect surveys of visible plastic debris were conducted on five 

beaches and four tributary banks along the Canadian shoreline of Lake Ontario. Visual 

and spectroscopic analyses were employed to identify microplastic abundance and 

composition. Geospatial analysis was conducted with GIS software to explore 

relationships between microplastics data and geographic data of the lake and the 

surrounding region. 

4.1 Sample collection 

Nearshore, tributary and beach sediments were sampled using sediment trap, core and 

grab sampling techniques (Appendix A). In addition, beach surveys including transect 

and quadrat type geometries were conducted to investigate visible (> 1 mm) microplastic 

and macroplastic contamination of sandy beaches (Appendix C-G). 

4.1.1 Nearshore sediments 

A total of 25 nearshore lake-bottom sediment samples were collected from 21 stations 

(Nearshore Index and Reference sites, Great Lakes Nearshore Monitoring Program, 

Ontario Ministry of the Environment and Climate Change) along the length of the 

Canadian shoreline of Lake Ontario in the summer months of 2012 and 2014 (Fig. 4.1). 

Samples were collected using a Shipek sediment grab with a 400 cm2 square opening and 

a half cylindrical cup of radius 10 cm (Wildco, Yulee, FL). Three replicate grabs were 

collected at each station, homogenized in a metal tray and transferred into 0.5 L PET 

collection bottles. Sediments were sampled from the nearshore regions of Six Mile Creek, 

Port Dalhousie, Stoney Creek, Hamilton Harbour (N=3), Sixteen Mile Creek in the town 

of Oakville, Humber Bay (N=3), Toronto Harbour (N=3), Pickering, Chub Point, 
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Trenton, Prince Edward County, the North Channel, McDonnell Bay, Prescott, Lake St. 

Francis (clockwise along the lake perimeter starting from the southern shore, Fig. 4.1). 

 

Figure 4.1 Sediment sampling locations in the nearshore, tributary and beach depositional zones of Lake 

Ontario and the upper St. Lawrence River. 

Sediment traps (N=3), each an array of four PVC cylinders, were deployed in Humber 

Bay, Toronto Harbour and Hamilton Harbour in May 2014 and retrieved November 2014 

(Fig 4.1). Traps were secured at approximately 2 m above the lake bottom sediment. 

Three cylinders were analyzed for microplastics and the fourth for sediment grain size 

distribution. 

Five additional nearshore sediment samples were collected using a Glew gravity corer. 

Two were collected in Toronto Harbour, one in the walled mooring harbor adjacent to 

Coronation Park and one in the Toronto Inner Harbour next to Muggs Island. Three cores 

were collected in Humber Bay along the shoreline of Humber Bay Shores Park. The PVC 

corer measured 6.5 cm in diameter, and sediment cores ranged between 6 and 15 cm in 
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depth. Core depth variation is attributed to sampling difficulties including high wave 

action during sampling as well as sediment consistency. Cores were capped, stored 

upright, immediately extruded into 1 cm intervals and stored in sealed polyethylene bags.  

All samples were kept cool until return to the laboratory where they were stored at -25 °C 

until analysis. The glass transition temperature is the temperature at which plastics harden 

and stiffen, below which, no further transitions are expected 

The glass transition temperatures for common polymer types range between 100 and -100 

°C. Freezing at -25 °C should not have a detrimental effect of the preservation of 

microplastics (Zeus Industrial Products, Inc., 2005) 

4.1.2 Tributary sediments 

Tributary sediment from Red Hill Creek, Etobicoke Creek, Humber River and Don River 

(Fig. 4.1) were sampled with a hand-held stainless steel Petite Ponar sediment grab, 16 x 

14.5 cm in dimension (Wildco, Yulee, FL) in summer 2015 by wading or lowering the 

instrument from a bridge. Caution was taken to avoid sediment disturbance during 

wading, by approaching sample sites from the downstream direction. Sample location 

was constrained foremost by accessibility and second by the presence of a sediment 

depositional environment. At each of seven sample locations, two grab replicates were 

homogenized in a metal tray and spooned into 0.5 L PET collection bottles.  

The Don River sediment sample (DR-1) was taken on a straight section of the river along 

the wooded Lower Don River Trail in the Toronto Region. This section of the river was 

directly downstream from a rocky section and water flow was rapid. The sample was 

collected from the subsurface sediments adjacent to a sandy bar along the riverbank 

where the flow was slow and pooling. The Humber River was sampled in two locations; 

sample HR-1 just upstream from the Old Mill Bridge, and sample HR-2 near Kings Mill 

Park, about one kilometer downstream from the Old Mill Bridge. Sample HR-1 was 

taken from along the outer bank on a wide curve in the river course where boulders 

surrounded an accumulation of sandy sediment. Along this stretch of the Humber River, 

flat cobbles dominated the sediment of the river bed, which were exposed in many 

regions in the low flow conditions. In the region immediately adjacent to the sample, a 
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coffee cup lid, a large plastic sheet, an aluminum can and a plastic bag were observed. A 

heavy 30-minute rain storm occurred between sampling of HR-1 and HR-2. Sample HR-

2 was taken along a straight section of the river which was also noticeably narrower and 

deeper than where sample HR-2 was taken. Sediments were collected adjacent to the 

riverbank, where thick sediment deposition had accumulated. Etobicoke Creek was 

sampled along a straight section of the river inside of Marie Curtis Park. Sample EC-1 

was taken from a thin sediment bar exposed slightly at the crest located within about 500 

m of the creek mouth on Lake Ontario. The river bed was rocky with predominantly flat 

angular cobbles. Sample EC-2 was collected from the concrete jetty extending the river 

mouth into the lake. The sample comprised a large cobble covered in algal growth. The 

Red Hill Creek samples were collected along a gently curved section of the tributary 

adjacent to Globe Park and about 3 km from the creek mouth at Hamilton Harbour. Flow 

was low enough to allow for wading across the creek. Sample RC-1 was collected from 

the inner bank along a bar of coarse grained sand and pebbles. Sample RC-2 was taken 

50 meters downstream from the outer bank where sediment had accumulated over the 

hard substrate. All samples were kept cool until return to the laboratory where they were 

stored at -25°C until analysis.  

Quadrat surveys were conducted at each tributary (Fig. 4.2 and 4.3 f-j) in summer 2015, 

for which plastics debris visible with the naked eye, including microplastics < 5 mm and 

macroplastics > 5 mm were collected by hand from the top 3 cm of sediment. Two 

quadrats of dimension 2 x 2 m were staked out at random on each tributary bank in the 

vicinity of the sediment grab sites and sampled once. All samples were kept cool until 

return to the laboratory where they were stored at -25°C until analysis. 

4.1.3 Beach sediments 

Beach sediments were collected from five beaches located on the northwestern shore of 

Lake Ontario between Burlington and the eastern extent of Toronto; Beachway Park, 

Bronte Beach, Marie Curtis Park, Sunnyside Beach and Woodbine Beach (Fig. 4.2) in 

summer 2015. Much of the Canadian shoreline of Lake Ontario is built-up with large 

boulders or is inaccessible due to privatization of lands, which limited sampling to public 

sandy beaches.  
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Using a stainless-steel split-spoon corer with a maximum depth of 30 cm, cores were 

collected from each beach (Fig. 4.1) along a transect perpendicular from the shoreline. 

Two cores were taken on each transect at approximately 2 m and 6 m from the water’s 

edge to represent the proximal and distal foreshore. The foreshore sediments were 

observed to be periodically submerged with changes in water level due to storm surges. 

The core was equipped with an inner segmented PVC core, each segment measuring 10 

cm thick and having a ~ 5 cm inner diameter. Upon opening the core, each segment was 

capped with a PE cap. All proximal foreshore sites, except at Marie Curtis Beach, were 

limited to a sampling depth of 20 cm due to the high water content below that depth. 

Beach transect and quadrat surveys were conducted at each beach (Fig. 4.2) in summer 

2014, for which plastics debris visible with the naked eye, including microplastics < 5 

mm and macroplastics > 5 mm were collected by hand from the top 3 cm of sediment.  

Along a 50 m transect parallel to the water’s edge, six 1 m wide swaths were marked at 0, 

10, 20, 30, 40 and 50 m. The sediment was searched for visible plastic debris from the 

water’s edge to the upper extent of the beach as constrained by the presence of vegetation 

or a structure, such as a boardwalk. Transects were positioned such that the midpoint of 

the transect line (25 m) coincided with the axis of the core samples.  Two quadrats of 

dimension 2 x 2 m were staked out at random on each beach, except at Beachway Park 

where four quadrats were staked out. Quadrats were either proximal (at or below the 

strandline) or distal (above the strandline) from the summer fair-weather waterline. Each 

quadrat was sampled for visible plastics debris daily over a period of 8 days. All samples 

were kept cool until return to the laboratory where they were stored at -25°C until 

analysis. 
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Figure 4.2 Locations of beach transect and quadrat surveys and tributary quadrat surveys for visible 

plastic debris on the northwestern shore of Lake Ontario. 

Beachway Park is a 2 km long sandy beach located at the western extent of the north 

shore of Lake Ontario adjacent to Hamilton Harbour. It is located within the city of 

Burlington and is highly attended during summer weekends and holidays. Bronte Beach 

is located in Oakville at the mouth of Bronte Creek where a boating harbor is located. 

The bayed, 100 m long beach faces mainly to the east, with the northern extent facing 

south and bordered by a seawall. The sand was notably shelly. Marie Curtis Beach is 

located in Mississauga between the mouth of Etobicoke Creek to the northeast and the 

mouth of a smaller coastal runoff creek to the southwest. The beach is about 400 m long 

and the sediment is medium grained sand with dispersed pebbles and small cobbles. 

There was visible debris accumulation along the northeast concrete jetty wall. Sunnyside 

Beach is located in Toronto along the midsection of Humber Bay, just east of the Humber 

River mouth. The beach is sandy and protected by a sectioned seawall ~ 100 m offshore. 

The beach is heavily attended in the summer months. Woodbine Beach, located on the 
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eastern extent of Toronto is a popular spot for beach-goers in the city. The beach is south-

east facing and embayed. Samples were taken along the narrow north-eastern section of 

the beach. Sediment was medium grained to cobble-sized. Woodbine Beach, located on 

the eastern extent of Toronto is a popular spot for beach-goers in the city. The beach is 

south-east facing and embayed. Samples were taken along the narrow north-eastern 

section of the beach. Sediment was medium grained to cobble-sized.  
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Figure 4.3 Locations of beach transect midpoints (yellow), beach quadrat (red), and tributary quadrat 

(blue) surveys for visible plastic debris on the northwestern shore of Lake Ontario: (a) Beachway Beach, 

(b) Bronte Beach, (c) Marie Curtis Beach, (d) Sunnyside Beach, (e) Woodbine Beach, (f) Don River, (g) 

Humber River, (h) Etobicoke Creek and (j) Red Hill Creek. 
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4.2 Microplastics quantification 

Two procedures were used to separate microplastics from the sediment. The original 

method, used on the nearshore gravity core samples, was modified to increase sample 

preservation, efficiency, and reduce potential contamination. Remaining samples, 

including nearshore grab and core sediments, tributary grab sediments and beach core 

sediments, were processed following the modified methods. Beach transect and quadrat 

survey samples, in which plastics were already separated from sediment, were processed 

separately from the sediment samples. 

4.2.1 Nearshore gravity core and select grab samples 

Nearshore sediments sampled using the gravity corer, and three grab samples, S3031-3 

were analyzed following the original procedure outlined in this section. The samples 

were thawed then transferred to aluminum pie trays and dried at 70 °C. The sediment was 

transferred to a glass beaker containing 250 mL deionized water and magnetically stirred 

for 2 minutes. Once settled for a minimum of 5 minutes (longer for samples with a high 

clay content), the supernatant was decanted and filtered through VWR® Grade 114 

qualitative fast flow 25 μm filter paper and washed into a clean beaker to dry at 70 °C. 

Dried contents were then transferred to a glass beaker containing a 1.5 g cm-3 solution of 

sodium polytungstate (SPT), and the stirring and decanting procedure was repeated. 

Samples were covered tightly with aluminum foil until visual processing. Following 

density separation, sediments were wet sieved through a 0.063 mm mesh then dried and 

weighed to determine the silt and clay content of the samples.  

4.2.2 Nearshore grab and trap samples, tributary grab samples 
and beach core samples 

The remaining sediment samples were processed using the following revised method. 

Samples were thawed, transferred to aluminum pie trays, dried at 70°C, and weighed. 

Each sediment sample was then analyzed for grain size using a Taylor sieve shaking 

apparatus with sieve mesh sizes of 5.6 mm, 2.0 mm, 0.063 mm for 5 minutes at 60 Hz. 

Consolidated sediment samples with high clay fractions were first wet sieved through a 

0.063 stainless steel sieve, then dried and weighed again to calculate the clay fraction. 
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Following shaking, each fraction was weighed, the >2 mm and >5 mm fractions were 

visually examined for microplastic, and the >0.063 mm fraction was transferred through a 

sample splitter. Half of the >0.063 fraction was then transferred to a beaker containing a 

250 mL of 1.5 g cm-3 solution of SPT in order to separate microplastics and other 

organics from inorganic sediments. The sample was stirred for 2 minutes then transferred 

to a glass separation funnel, using more SPT solution to rinse entire contents of beaker 

into the funnel. Once sediment had settled, non-buoyant material was allowed to pass 

through the funnel spout. Buoyant material was subsequently drained through a 

polycarbonate/polyester 0.053 μm sieve, rinsed thoroughly then transferred to a second 

separation funnel containing 500 mL of filtered deionized water in order to separate 

microplastics with a density of > 1 g cm-3 from those with a density < 1 g cm-3. After 

samples had settled, the non-buoyant and buoyant fractions were consecutively drained 

through a polycarbonate/polyester 0.053 μm sieve and transferred to glass vials. Samples 

were dried at 70°C, then covered until visual processing.  

4.2.3 Visual Identification of microplastics isolated from sediments 

Potential microplastics were visually identified using a Nikon SMZ1500 stereo 

microscope at a magnification of between 15× and 225×. Material that was buoyant in the 

SPT solution, but not in the filtered deionized water, was marked as high-density (HD) 

and was visually processed separately from the low-density (LD) material (expected to be 

low density plastics that were deposited though increases in density) that was buoyant in 

water.  Particles which were visually identified as microplastics were counted and sorted 

by type into three categories: fibres, fragments, and spherical beads. All counted particles 

were photographed using a Nikon digital camera DXM1200F connected to the 

microscope, then stored in vials.  

4.2.4 Beach quadrat and transect samples 

Plastics debris collected through the quadrat and transect surveys were dried at 70°C, 

then transferred to a sieve shaker with mesh sizes 1 mm and 5.6 mm to separate 

macroplastics from microplastics. Particles smaller than 1 mm were not included in 

analysis. Plastics were visually categorized as pellets, fragments, foams (any intact or 
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fragmented pieces of expanded or porous plastic) and intact objects, then quantified and 

weighed using a mass balance.  

4.3 Polymer identification 

Randomly chosen microplastics found in the sediment samples and a subgroup of 

microplastics > 5.6 mm collected during the transect surveys were identified using 

Raman spectroscopy, and in select cases X-ray fluorescence spectroscopy (XRF). 

Analysis was conducted at the Museum Conservation Institute at the Smithsonian 

Institution. 

4.3.1 Spectroscopic analysis of microplastics in nearshore gravity 
core and tributary grab samples 

Spectroscopic analysis of 90 particles identified in the sediment samples was conducted 

with a NXR Fourier-transform Raman module coupled to a 6700 Fourier transform 

infrared spectrometer (Thermo Electron Corporation, Madison, WI, USA). Using a 

random number generator, up to twelve particles were selected from three tributary 

samples and two 1 cm intervals from each of the five nearshore gravity core samples. The 

FT-Raman module was equipped with a continuous wave near infrared ND : YVO4 

excitation laser (1064 nm), a CaF2 beam splitter, and a germanium detector cooled with 

liquid nitrogen. Laser power was chosen empirically to maximize signal-to-noise ratio 

(SNR) without damaging the sample, and ranged from 0.01-0.07 W across a 50 micron 

round laser spot.  Spectra comprised a co-addition of 64-2048 scans collected at 8 cm-1 

resolution across 98-3994 cm-1 Raman shift. The performance of the spectrometer was 

checked against a reference scan of polystyrene and recalibrated as necessary each day of 

analysis. Raman spectra were plotted with OMNIC™ software (Thermo Scientific, 

Madison, WI, USA) and compared to commercial spectral libraries1 and custom libraries 

                                                 

1 HR FT-Raman Polymer Library (copyright 1997-2001, 2004 Thermo Electron Corporation for Nicolet 

Raman). HR Pharmaceutical Excipients FT-Raman Library (copyright 1999, 2004 Thermo Electron 

Corporation for Marcel Dekker, Inc.). FDM Retail Adhesives & Sealants (Fiveash Data Management, Inc., 

Madison, Wisconsin, USA) 
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prepared by the Smithsonian’s Museum Conservation Institute. All spectra were analyzed 

using the automated search function of the software and also visually before 

identification was finalized. Particles selected by the random number generator that could 

not be successfully analyzed (i.e. the material was too dark or thin) were replaced by 

those associated with the next randomly generated number. Fibres were excluded due to 

their insufficient diameter and volume. 

Microplastics analyzed with Raman spectroscopy were from the gravity cores taken in 

Humber Bay and in Toronto Harbour. A small subset of microplastics from the Humber 

River, Don River and Etobicoke Creek sediments were also analyzed. 

4.3.2 Spectroscopic analysis of microplastics in beach transect 
samples 

Spectroscopic analysis of 45 microplastic pellets, fragments and foams < 5.6 mm 

collected at Bronte Beach was conducted using a Nicolet Almega XR dispersive Raman 

spectrometer (Thermo Electron Corporation, Madison, WI, USA). The spectrometer was 

equipped with a 780 nm, 100 mW diode excitation laser focused through a 10× M-plan 

apochromatic objective lens of a BX51 confocal microscope (Olympus, Melville, NY, 

USA). The spectrometer was fitted with a low resolution diffraction grating (360 

lines/mm), a 100-micron pinhole aperture, and an electronically cooled CCD detector. 

Laser power was chosen empirically to maximize the SNR without damaging the sample, 

and ranged from 0.025-0.1 W across a 100 micron round laser spot. Spectra were a co-

addition of 16 scans collected at a spectral resolution of ~3.9 cm-1 across 94-3469 cm-1 

Raman shift. The performance of the spectrometer was checked against a reference scan 

of polystyrene and recalibrated as necessary each day of analysis. Raman spectra were 

plotted with OMNIC™ software (Thermo Scientific, Madison, WI, USA) and compared 

to commercial spectral libraries (see footnote 1) and custom libraries prepared by the 

Smithsonian’s Museum Conservation Institute. All spectra were analyzed using the 

automated search function of the software and also visually before identification was 

finalized. 
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4.3.3 Spectroscopic analysis of microplastics using X-ray 
fluorescence spectroscopy 

Three samples were also analyzed by X-ray fluorescence spectroscopy (XRF) to confirm 

the presence of chlorides in suspected polyvinyl chloride plastics as well as to look for 

inorganic fillers in pellets. The instrument used was a Bruker Artax 400 μXRF 

spectrometer equipped with a Rhodium tube, a poly-capillary lens with a ~100 μm focal 

spot and a Peltier cooled silicon drift detector. The excitation voltage ranged between 25-

50 kV and the current ranged between 490 and 492 μA.   

4.4 Contamination controls 

Precautions were taken throughout the sampling and laboratory analysis procedure to 

minimize contamination of the samples from airborne microplastics. Containers were 

kept covered with aluminum foil throughout the process except during periods when the 

samples were drying in the closed oven. The laboratory surfaces were routinely wiped 

down and all beakers, trays, containers, funnels, tools and sieves were thoroughly washed 

and rinsed with filtered deionized water before and after each use and were stored with 

openings covered in aluminum foil. Metal and glass containers and tools were used in all 

analyses, except for a polycarbonate/polyester mesh sieve. Sampling containers used in 

the field were plastic; however, precautions were taken that all materials were either 

cleaned prior to use or were new and unopened containers. Clothing worn by researchers 

were of natural fibres and in the laboratory, white cotton laboratory coats were worn. 

During analysis, doors to the corridors were kept closed whenever possible.  

To test for airborne microplastic contamination levels during sample processing in the 

laboratory, petri dishes (cleaned and microscope inspected) were set in the working space 

of each laboratory room and the drying oven for 2 hours, immediately followed by visual 

inspection with the same stereo microscope used for sediment sample analysis. Two 

replicate tests were conducted for each space.  
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4.5 Spatial trends analysis 

Esri® geographic information software ArcGIS version 10.3.1 was used to explore trends 

and relationships between observed microplastic abundance in nearshore sediments and 

geographic variables including human population and the plastic industry. Population and 

industry facilities are used as proxies for consumer and supplier activity, respectively. 

Human population and plastics-related industry facilities were mapped on a watershed 

basis to gain insight into the relative levels of urban and industrial waste that may be 

expected to enter the lake through tributaries along the shoreline of Lake Ontario. 

4.5.1 Data model 

Datasets were projected within ArcGIS from their original geographic coordinate system 

(e.g. North American Datum 1983) to a common projected coordinate system used for 

this project: North American Datum 1983, Universal Transverse Mercator, Zone 18 

North (NAD83/UTM-18N). Secondary-level and quaternary-level watershed polygon 

shapefile datasets were retrieved from the Government of Ontario Open Source Data 

Catalogue and Land Information Ontario and the watersheds draining directly to Lake 

Ontario and the St. Lawrence River were extracted to define the study area. Quaternary-

level watersheds are defined as small scale tributary and coastal stream systems. 

Watersheds which drained to a common output point on the lake/river boundary were 

combined. Multiple drainage points to the lake/river per watershed were permitted where 

small coastal creeks exist and for which separate quaternary watersheds were not 

delineated.   

The 2011 Census data for southern Ontario was sourced from Statistics Canada at the 

dissemination block level (highest resolution) and was used to generate population 

density within each watershed using raster analysis.  Wastewater treatment plants 

proximal to the Ontario shoreline of Lake Ontario and the St. Lawrence River were 

plotted using facility addresses. Storm drain outlets and combined sewer overflow 

outfalls along the tributaries and lake shore are densely located, particularly in urban 

regions. The abundance of outfalls would be expected to correlate well with population 

levels on the scale of the study, as indicated by a map showing storm drain outfalls along 
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Taylor Creek, tributary to the Don River (City of Toronto, 2006). Storm drain outlets are 

therefore not individually mapped in this study.  

Plastic-related industry contact addresses were collected from ThomasNet, a free online 

supplier discovery and product sourcing directory. Through the search engine, businesses 

with descriptions or names containing the words ‘plastic’ or ‘polymer’ were selected and 

verified to be in the plastics industry by qualitative analysis of the description. The search 

was conducted for the top 30 categorical returns associated with the searches for ‘plastic’ 

and ‘polymer’. Results were constrained to suppliers located in Ontario, Canada and 

categorized according to type: manufacturer, distributor and service. All businesses were 

considered equally in counting the number of businesses located in each watershed. For 

businesses with multiple locations, all locations located in Ontario were included.  

Microplastic sample locations (N = 50, excluding quadrat and transect samples) were 

recorded using a handheld Geographic Positioning Device (GPS) using the World 

Geodetic System 1984 (WGS84) spatial reference system at the time of sample 

collection. Spatial analysis of watershed area, population and industry count was 

conducted according to the model outlined in Appendix B.  

4.5.2 Regression analysis of microplastics and watershed 
parameters 

Bivariate correlations were used to test for correlations between the factors watershed 

area (Fa), population (Fpop) and industrial levels (Find).  

In an effort to investigate the presence of any relationships between the watershed factors 

and microplastic abundance in proximal sediments, sediment samples were paired with 

watersheds by distance from the closest tributary mouth associated with watersheds in the 

study area. A coordinate was assigned to the mouth of the main tributary of each 

watershed in the study area, using the junction of the watercourse (shapefile provided by 

Ontario Open Data) and the lake boundary of the watershed. Each tributary mouth 

coordinate was assigned the properties of the associated watershed, Fa, Fpop, and Find. 

Using an inverse distance weighted (IDW) function, up to four watersheds within a 

distance of 10 km, were assigned to each sediment sample location. For each sediment 
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sample the inverse distance weighted function was calculated independently for the three 

watershed factors using Eq. 4.2: 

Eq. 4.2     𝑋 = ∑
𝐹𝑖

𝑑2
4
𝑖=1  

Where X is the sum IDW value for a given sediment sample, calculated for factor, F, 

using the geographic distance, d, of the sediment sample from nearby tributary mouths, i. 

4.6 Statistical analysis 

Components of the plastics abundance and geospatial data were explored using statistical 

analyses conducted with GNU PSPP 0.10.1 software. In cases where statistically 

significant differences between means were examined, either an independent samples t-

test or an Analysis of variance (ANOVA) test was used, depending on the number of 

groups being compared; a t-test was used to compare two groups and an ANOVA was 

used for comparisons between more than two groups. For ANOVA tests, a post hoc test 

was employed to determine which groups had statistically different means. In cases 

where three groups were compared, a Fisher’s least significant difference (LSD) post hoc 

test was used. For comparisons of more than three groups, a stricter post hoc test is 

required. In these cases, a Scheffé’s post hoc test was used. A significance level of P ≤ 

0.05 was used for all comparisons. Correlation and regression analyses were used to 

explore relationships between watershed properties (F), IDW calculated factors (X) and 

microplastic abundance (N kg-1). 

Transformations were made to the data to meet the basic assumptions of the t-test, 

ANOVA, correlation and regression analyses that values are normally distributed around 

a mean and that variances are homogenous. For measures (e.g. microplastic abundance 

normalized to sediment volume or area sampled) a natural log transformation was used, 

specifically: x = ln (xi + 1), where x is the transformed value and xi is the initial value. 

Where proportional values were being compared an arcsin square root transformation of x 

= arcsin (√𝑥𝑖) was used. Most comparisons required data transformations to meet the 

assumptions of a normal distribution as data distributions were generally heavily skewed 

to low values.  
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To test for equal variances between groups the Levene’s test of homogeneity was applied 

before each analysis. Variances were assumed not equal among groups when the 

Levene’s test revealed a significant p-value, p < 0.05. When this occurred for groups 

being compared by a t-test, the t-test results assuming unequal variances were used. 

When the Levene’s test resulted in a significant p-value for groups compared with an 

ANOVA, the test results were not reported as significant unless sample group sizes were 

equal or if variance and sample size were positively correlated. 
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Chapter 5  

5 Results 

This section is divided into three parts: 1) results pertaining to microplastics < 5.6 mm in 

size found in nearshore, tributary and beach sediment samples, 2) results pertaining to 

visible plastics debris (particles 1-5.6 mm and items >5.6 mm) collected through the 

transect and quadrat surveys of beach and riparian sediments, and 3) results pertaining to 

the geographic analysis of population and industry in watersheds in the study area.   

5.1 Microplastics in Lake Ontario and St. Lawrence River 
sediments 

A total of 6,331 particles were visually identified as microplastics in nearshore, tributary 

and beach sediment samples. Microplastics abundance for each sample site was 

normalized to particles per kg of dry sediment (N kg-1, dw) using the initial mass of the 

dried sediment sample. Microplastics were identified in every sediment sample, and 

abundances varied between 20 and 27,830 kg-1 (Fig. 5.1, Appendix A).  
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Figure 5.1 Microplastics abundance normalized to particles N kg-1 sediment (dry weight, dw) for 50 

nearshore (circle), tributary (triangle) and beach (square) sites in Lake Ontario. The inset shows the Greater 

Toronto Area in detail. 

Maximum microplastics abundance was found at site P-EC2, at the mouth of Etobicoke 

Creek. The sample was primarily composed of algae detached from a rocky substrate. 

Figure 5.2 Average abundance of microplastic 

particles, < 2 mm, in nearshore, tributary and beach 

depositional environments. Error bars show the 

standard deviation from the mean. 

 



61 

This sample contained the greatest number of microplastics (N=800) compared to all 

other grabs of similar volume. The extrapolated total is exceptionally high due to the low 

mass of the dried algae. Additional results and analyses presented here exclude this data 

point unless specifically noted. On average (not including P-EC2), microplastics 

abundance was 760 kg-1. Nearshore sediments contained on average the greatest 

abundance of microplastics with 980 kg-1, followed by tributary sediments with 610 kg-1 

and beach sediments with 140 kg-1 (Fig. 5.2).   

5.1.1 Airborne contamination levels 

In the sample processing laboratory, the drying oven and microscopy laboratory airborne 

contamination levels were 2, 3 and 1.5 fibres h-1 of exposure, respectively, on the scale of 

a standard 9 cm diameter glass Petri dish (area: A = 64 cm2). Only during oven drying 

were samples exposed for prolonged periods, up to 24 h with vial openings of A ~ 2 cm2. 

Samples exposed in larger rimmed containers (A ≤ 315 cm2) inside the oven were 

exposed for a maximum of 12 h. Thus, contamination of the sediment samples with fibres 

may have occurred primarily during the drying stages of sample preparation.  

 

5.1.2 Particle abundance in nearshore environments  

Microplastics in nearshore sediments were most concentrated in Humber Bay and 

Toronto Harbour. Microplastic loads of > 1,000 kg-1 were found only at sites in the 

Greater Toronto Area (GTA) and offshore of Oakville (sample S-7541), west of Toronto.  

Nearshore gravity core sediments contained relatively high microplastic concentrations 

compared to the trap and grab samples; average lake-wide microplastic abundance for 

gravity core, trap and grab samples were 2,130 kg-1, 1,070 kg-1 and 730 kg-1, respectively.  

Microplastics abundance, as recorded in the sediments sampled with the gravity corer, is 

plotted against cumulative sediment mass, which is the mass of sediment accumulated 

above a certain depth within the core (Fig. 5.3). Cumulative sediment mass (CSM) is a 

function of the core radius (r), sediment mass of the core interval (m), and depth of 

interval in cm (d): CMS = ∑ (
𝒎𝒅

𝝅𝒓𝟐
)𝒅

𝒊=𝟏 . Intervals were each 1 cm; d is given the value of 

the deeper end of each interval. For example for an interval spanning depths of 2-3 cm 
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below the sediment surface, d is assigned a value of 3.  Microplastics abundance 

generally decreased within the top 2 g cm-2 of sediment accumulation, but microplastics 

were found at all sampled depths up to 15 cm (equivalent to 11.2 g cm-2 accumulated 

sediment mass) below the sediment surface (Fig. 5.3, Fig. 5.4a). As shown in Fig. 5.4b, 

there was no significant difference between the average microplastic abundance (N kg-1) 

in the Humber Bay cores (M=1,898, SD=1,363) and the Toronto Harbour cores 

(M=2,472, SD=2,545) as tested with an independent samples t-test (t (3)=0.34, p=0.75). 

Approximately 65-95% of the total number of particles found in each core were separated 

in the second separation phase, with SPT (Fig. 5.4c). These particles are assumed to have 

a density > 1.5 g cm-3.  

 

Figure 5.3 Microplastics (< 2 mm) abundance, N g-1 sediment (dw), plotted against cumulative sediment 

mass (g cm-2), dw, for nearshore sediments of Humber Bay and Toronto Harbour as sampled by gravity 

core.  
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Figure 5.4 (a) Microplastics abundance, N kg-1 sediment (dw), integrated over depth for each gravity 

core nearshore sediment sample and (b) averaged across sites in Humber Bay (HB) and Toronto Harbour 

(TH); error bars show standard deviation from the mean. (c) The percentage of microplastic particles 

isolated from sediments using density separation technique with solution of sodium polytungstate (SPT), 

density = 1.5 g cm-3, versus deionized water, density = 1.0 g cm-3.  

Among trap samples, microplastics abundance was averaged across the three replicate 

samples at each site (mean + SD, shown in Fig. 5.5).  Highest abundances were found in 

the traps placed in Humber Bay (T-2047) and lowest abundances were found in the traps 

placed in Hamilton Harbour (T-258, Fig. 5.5). In Toronto Harbour (T-1364) 

microplastics abundance was ~750 kg-1. A one-way ANOVA revealed significantly 

different means (F (2, 6) = 19.71, p = 0.002). Using an LSD post hoc test, it was 

determined that microplastic abundance was significantly higher at T-2047 than at T-258 

(p=0.001) and T-1364 (p=0.017), and abundance at T-1364 was significantly greater than 

at T-258 (p=0.024).  

The nearshore grab samples were collected during the summer months of 2012 and 2014 

(Appendix A). Abundances (N kg-1) averaged across all sediments from each year 

showed no significant difference between collection years (independent samples t-test, t 

(26) = 1.28, p = 0.2), although 2014 samples had on average 200 kg-1 more than 2012 

samples, with similar standard deviation (Fig. 5.6a). Comparison between years may be 
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confounded due to inconsistent sampling between years, with a larger number of samples 

collected in 2014 than in 2012 and samples representing each year from different 

locations.  

 

Figure 5.5 Microplastics abundance, N kg-1 sediment (dw), among nearshore trap sediment samples, 

averaged across replicates (N = 3). Error bars show standard deviation from the mean. 

There was no significant correlation between microplastics abundance and the depth 

below the water surface (Pearson’s correlation: r (28) = 0.24, p = 0.2). Low microplastic 

particle abundances of < 1000 kg-1 were quantified across the range of depths sampled, 

and half of the nearshore samples where abundances > 1000 kg-1 were quantified had 

depths in a narrow range of between 5 and 10 m. Maximum microplastics abundance 

decreases with depth; deeper sediments had consistently lower maximum microplastics 

abundance.  
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Figure 5.6 (a) Mean microplastics abundance, N kg-1 sediment (dw), for samples collected in 2012 and 

2014. Error bars show standard deviation. (b) Microplastics abundance, N kg-1 sediment (dw), in nearshore 

samples plotted against water depth. 

5.1.3 Particle abundance in riverine environments 

Statistically significant differences in the abundance of microplastics could not be 

determined due to the absence of a replicate sample for the Don River. Microplastic 

abundance, however, varied over three orders of magnitude (2 orders of magnitude not 

including sample P-EC2) with lowest levels (~30 kg-1) in Red Hill Creek and highest 

levels (~28,000 kg-1) in Etobicoke Creek (Fig. 5.7). Sediments collected from the Don 

and Humber rivers had average microplastics concentrations of ~500 kg-1 and ~900 kg-1. 
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Figure 5.7 Microplastics (< 2 mm) abundance, N kg-1 sediment (dw), averaged (error bars indicate 

standard deviation) for tributaries draining into Lake Ontario including Don River (DR), Humber River 

(HR), Etobicoke Creek (EC) and Red Hill Creek (RC). In each tributary (except DR), two proximal sites 

were sampled. 

Microplastics abundance in tributary sediments displayed variability on short spatial 

scales (Fig. 5.1). For example, in Humber River and Etobicoke Creek, downstream sites 

(P-HR1 and P-EC2) contained microplastic counts one to two orders of magnitude 

greater than sites within 1 km upstream (P-HR2 and P-EC1).  
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5.1.4 Particle abundance in beach environments 

Among beach sediments, microplastics were most abundant (500 and 700 kg-1) in the top 

10 cm at both locations at Sunnyside Beach. On a regional scale, fewer microplastics 

were found at beaches at greater distance from Toronto (Fig. 5.8a).  

 

Figure 5.8 (a) Microplastics (< 2 mm) abundance, N kg-1 sediment (dw), integrated over core depth for 

beach sediments, proximal foreshore vs. distal foreshore and (b) averaged between proximal and distal 

foreshore (error bars indicate standard deviation) at Beachway (BW), Bronte (BB), Marie Curtis Park 

(MC), Sunnyside (SS) and Woodbine (WB) beaches. Error bars show standard deviation. 

Mean microplastic particle abundance (N kg-1) was calculated for each beach site by 

averaging the proximal and distal foreshore samples, each calculated as total microplastic 

abundance over total sediment weight of all intervals (Fig. 5.8b). A one-way ANOVA 

revealed significantly different means between Bronte Beach and Sunnyside beach sites 

(F (4, 21) = 3.74, p = 0.019, Scheffé’s post hoc: p = 0.027). Microplastics abundance was 

not significantly different between proximal and distal foreshore sites when averaged 

across all beaches (Fig. 5.9a) as tested with an independent samples t-test (t (24) = 0.29, p 

= 0.5).  

Microplastics abundance was averaged across all samples for each depth interval 

separately analyzed: 0-10 cm, 10-20 cm and 20-30 cm below the sediment surface (Fig. 

5.9b). A negative trend between microplastics abundance and depth below the sediment 
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is apparent, however, no significant difference between means was detected with one-

way ANOVA (F (2, 23) = 0.1, p = ns). Assumption of equal variances among groups, 

was not met (Levene’s test: p = 0.02), however, because the smaller sample group (depth 

20-30 cm) had smaller variance, the F-value is likely a conservative estimate, and the 

ANOVA may still hold.  

 

Figure 5.9 (a) Mean microplastics (< 2 mm) abundance, N kg-1 sediment (dw), for proximal and distal 

foreshore beach sediments, and (b) averaged across sites for each depth interval (0-10 cm, 10-20 cm and 

20-30 cm). Error bars show standard deviation.  

5.1.5 Particle morphology  

Microplastics in nearshore depositional zones were almost exclusively < 2 mm in size. 

Microplastics 2 – 5.6 mm in size were found only in one nearshore sediment sample in 

Toronto Harbour (site S-3030) and accounted for ~ 0.02% of the particles across all 

nearshore sites. Plastic particles 2 – 5.6 mm were slightly more common in tributary 

sediments with 84 particles at site P-EC2 and one particle at site P-RC2; overall 4% of 

the microplastics found in tributaries were in this size range. Approximately 8% of 

plastics in beach sediments were 2 – 5.6 mm, the majority of which were found at Marie 

Curtis and Sunnyside (example particles shown in Fig. 5.10a) beach sites and at the 

mouth of Etobicoke Creek, sample P-EC2. For microplastics 2 – 5.6 mm, fragments 

(including films and foams) and beads (industrial pellets) were most common. These 
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results are similar to those reported by Alomar et al. (2016) who found a more 

homogenous distribution of < 2 mm microplastics as compared to those > 2 mm. 

 

 

Figure 5.10 Examples of microplastics identified in sediment samples from tributaries, beaches and the 

nearshore lake bottom of Lake Ontario. All scale bars are 1 mm. (a) Macro- and microplastic fragments, 

fibres, foams and pellet isolated from the upper 10 cm of proximal foreshore sediments at Sunnyside 
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Beach. (b) Microplastic fragments and fibres isolated from nearshore sediment in Toronto Harbour as 

collected in a sediment trap. (c) Microplastics found in grab sediments (sample S-3027) in Humber Bay. 

Fragments include hexagonal glitter (pink, first row, N=1) and whole and fragmented PSS beads (bottom 

row, N=11) among other fragments of unidentified source. (d) Microplastics from Etobicoke Creek. Long 

helical fragments may be derived from deflashing processes used for finishing injection moulded plastic 

products. (e) Examples of black, opaque fragments with rubber-like consistency found in Humber Bay. (f) 

Microplastic fragment exhibiting bulbous to wispy form and isolated from Toronto Harbour (sample G-

TH1) at a depth of 1-2 cm below the sediment surface. 

Fragments and fibres were the dominant morphologies for microplastics < 2 mm in all 

depositional zones. Fibres were most abundant in nearshore (trap) sediments and least 

abundant in tributary sediments (Fig. 5.11a). Statistically different mean abundances of 

each morphology as compared using one-way ANOVA (F (2, 12) = 30.94, p < 0.001) are 

shown in Fig. 5.11b. The underlying assumption of homoscedasticity was not met 

(Levene’s test: p = 0.04) however, sample sizes were equal across groups alleviating the 

negative effect of unequal variances on the validity of the ANOVA.  As determined with 

an LSD post hoc test, beads were significantly less abundant than fragments (p < 0.001) 

and fibres (p < 0.001), and fibres were less abundant than fragments (p = 0.011). Beads 

were found in all depositional environments, but were not found in the sediment traps 

(Fig. 5.11a).  

 

Figure 5.11 Microplastics (< 2 mm) abundance, N kg-1 sediment (dw), by particle morphology for (a) 

each sediment sample type and (b) averaged across all samples (error bars show standard deviation from 

the mean).  
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The relative abundances of fragments, fibres and beads in the nearshore cores are shown 

in Fig. 5.12. Fragments and fibres were most abundant and beads were a minor 

component, but were more abundant in the Toronto Harbour cores than in the Humber 

Bay cores. 

 

Figure 5.12 Proportion of fragments, fibres and beads in nearshore sediment core samples.  

In general, microplastics were of variable colour, texture, grade of degradation, size and 

shape; however, specific types of microplastics were common across depositional zones. 

Fibres were highly regular in diameter along their entire length, varied in colour and 

ranged in length from tens of microns to several millimeters (Fig. 5.10b). Irregularly 

shaped, bulbous to wispy fragments with smooth surfaces and translucent diaphaneity 

were common (e.g. Fig. 5.10c, f). Beads were most commonly perfectly spherical, 

translucent, amber or black coloured material appearing in a variety of sizes and 

sometimes cracked or fragmented (Fig. 5.10c, far right column). Oblong, helical forms 

composed of rigid, opaque material were common in the tributary and nearshore 

sediments, particularly at Etobicoke Creek (Fig. 5.10d). These particles had smooth clean 

surfaces and did not appear fragmented. In a conservative classification, it is estimated 

that at least 4% of all microplastics were of this form. At Etobicoke Creek, however, 

these particles made up ~30% of all fragments < 2 mm in size. Non-rigid, black, opaque 
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particles appearing as amorphous chunks or long thin helical twists accounted for ~7% of 

microplastics collected in the study (Fig. 5.10e).  

5.1.6 Particle composition  

Of the 4,364 suspected plastic particles identified within the nearshore gravity core and 

tributary sediments, 90 fragments and beads (2.1% of fragments and beads) were 

analyzed using Raman spectroscopy. Of the analyzed particles, 60 (67%) were positively 

identified as synthetic polymers (Fig. 5.13). An additional five particles could not be 

identified as containing a specific synthetic polymer but were found to contain plastic-

associated compounds, including phthalates, i.e. plasticizers, and toluidine red, a 

colourant. Three (3.3%) samples were identified as non-plastic. These particles, mistaken 

for microbeads, were identified as quartz and calcium carbonate and were likely well-

rounded sand grains which may have been transferred to the buoyant fraction during the 

decanting procedure.  

 

Figure 5.13 Synthetic polymers and compounds identified in the FT-Raman spectroscopic analysis of 

particles isolated from Lake Ontario nearshore and tributary sediments. Of ninety particles analyzed, 60 

were plastic in composition, 3 were non-plastics (e.g. quartz, calcium carbonate), 5 were plastic-associated 

compounds (e.g. phthalates, toluidine colourant), and 22 could not be identified. 
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Thirty-one percent of the analyzed particles were identified as PE, 10% as PS and 4% as 

polyurethane (PU). Polypropylene, PVC, and polystyrene sulfonate (PSS) each made up 

3% of the analyzed particles. Other polymers including PET, PMMA, polyvinyl/vinyl 

acetate copolymer, PMMA-PS copolymer or mixture, ABS, nylon, phenoxy/epoxy resin, 

and polymethylsiloxane (silicone) were identified in smaller percentages. The Raman 

spectra of select microplastic particles of various composition are shown in Fig. 5.14. 

Twenty-two (24%) samples remain unidentified. Microplastic counts were not adjusted to 

reflect the plastic to non-plastic ratio of the Raman analysis results due to the low 

percentage (1.4% of all particles including fragments, fibres and beads) of particles 

analyzed. A more thorough analysis of polymer composition is required to determine the 

appropriate count adjustment for the particles collected in this study. 
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Figure 5.14 a – c Raman spectra of select microplastic particles found in the Toronto Harbour and Humber Bay 

sediments sampled by gravity core. 
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Figure 5.14 d – f Raman spectra of select microplastic particles found in the Toronto Harbour and 

Humber Bay sediments sampled by gravity core. 
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Figure 5.14 g - j Raman spectra of select microplastic particles found in the Toronto Harbour and 

Humber Bay sediments sampled by gravity core. 
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Six of the microplastic particles analyzed with Raman spectroscopy were pellets and 

fragments 2 - 5.6 mm in size from sample P-EC2, Etobicoke Creek. Of four fragments, 3 

were identified as PS and one as PP. Of two pellets, one was identified as ABS and one 

as PS.  

One fragment from C-HB2, in depth interval 2-3 cm, which was suspected to be PVC 

based on the characteristic peaks in the Raman spectra, was analyzed using μXRF 

confirming the presence of chlorine.  Other elements detected in the sample were silicon, 

potassium, calcium, iron and tungstate.  

Several patterns relating plastic morphology and composition were recognised. 

Fragments identified as PE were consistently characterised by translucent diaphaneity 

and irregular wispy and bulbous forms, also noted by Corcoran et al. (2015). The black 

opaque rubbery particles could not be identified using Raman spectroscopy due to their 

tendency to combust even at very lower laser power. This problem was also noted by 

Lenz et al. (2015); however, their analyses provided identification of similarly described 

particles as black tire rubber. Yellow, translucent, rigid fragments were commonly 

identified as PU (Fig. 5.14c). Several of the smooth, spherical, transparent, amber-red 

beads (Fig. 5.10c, Fig. 5.14f) were identified as polystyrene sulfonate (PSS). Most fibres, 

having a diameter of < 50 μm, did not return spectra of sufficient quality and were 

therefore not compositionally identified.  

Particles that were positively identified as plastic were categorized based on the relative 

density of the polymer. Low-density plastics included PE and PP polymers. High-density 

plastics included all other plastics identified, excluding plastics-associated compounds: 

toluidine and phthalates. In Fig. 5.15a, the ratio of LD to HD plastics found in each 

analyzed nearshore core interval and tributary sample is plotted against water depth 

where sample was taken, revealing a positive trend (R2 = 0.76) with increasing depth. A 

significant correlation was found (Pearson’s correlation: r (10) = 0.87, p < 0.001).  

Among nearshore core samples, there was no correlation between the ratio of LD to HD 

plastics and the depth within the sediment (Pearson’s correlation: r (10) = 0.01, p = 0.97) 

as shown in Fig. 5.15b. 



78 

 

Figure 5.15 (a) The ratio of low-density (LD) plastics to high-density (HD) plastics among particles 

identified with Raman spectroscopy in nearshore gravity core and tributary sediments (a) plotted against 

water depth of sample, and (b) plotted against cumulative sediment mass (i.e. depth below the sediment 

surface) for nearshore gravity core sediments only. 

5.1.7 Sediment grain size analysis 

Sediments were characterized by grain size variation, with fractions defining the fine 

component (clay and silt grains < 0.063 mm), sand grains (0.063 – 2 mm), pebbles (2-

5.6) and large pebbles and cobbles (> 5.6 mm). Beach sediments were predominantly 

sandy and pebbly, with a very minor fine fraction. Tributary sediments were 

predominantly sandy, with on average 18% of the sediment comprising silt and clay sized 

particles. Nearshore sediments exhibited a large range of sediment grain sizes, from 

predominantly sand to predominantly clay and silt. Figure 5.16 shows the mean 

proportion of grains < 0.063 mm in sediments collected from each depositional 

environment. 
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Figure 5.16 Fine fraction (clay and silt, < 0.063 mm) in sediments averaged across depositional 

environment. Error bars show standard deviation from the mean.  

Microplastic abundance was plotted against the percentage of silt and clay sized grains to 

test for a correlation between microplastic abundance and sediment grain size, as has 

been done in the literature (Lenz et al., 2015). No correlation was found between 

microplastics abundance and proportion of clay and silt in the sediment (Fig. 5.17, 

Pearson correlation: r (47) = 0.02, p = 0.90).  
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Figure 5.17 Microplastics (< 2 mm) abundance, N kg-1 sediment (dw), against the percent of sediment < 

0.063 mm.  

Sediment grain size variation for the nearshore core samples is plotted in Fig. 5.18 with 

respect to CSM (g cm-2). The sediment in TH-1 is noticeably coarser-grained than the 

other four cores, and exhibits highest microplastics abundance. Browne et al. (2010); 

Mathalon & Hill (2014) and Alomar et al. (2016) also report the absence of a correlation 

between sediment grain size and microplastic abundance in estuary, beach intertidal and 

nearshore sediments, respectively. Vianello et al. (2013), however, do report a positive 

relationship between the mud fraction and abundance of microplastics in the Venice 

Harbour sediments.   
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Figure 5.18 Percent fine fraction (silt and clay, < 0.063 mm) plotted against cumulative sediment mass 

(g cm-2), dw, for nearshore sediments of Humber Bay and Toronto Harbour as sampled by gravity core.  

One factor that may have affected microplastics abundance analysis was the 

inconsistency in sample preparation. Samples that caked when dried were first wet sieved 

through a 0.063 mm mesh sieve then dried again, whereas samples that were not caked 

were dry sieved immediately. Figure 5.19 shows the mean microplastics abundance and 

the mean proportion of the fine fraction for each sieving condition: dry sieved only, wet 

then dry sieved, and not sieved (nearshore cores).  
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Figure 5.19 Mean microplastics (< 2 mm) abundance, N kg-1 sediment (dw), and mean proportion of the 

fine fraction (silt and clay, < 0.063 mm) for each sample processing condition. Error bars show the standard 

deviation from the mean for microplastics abundance. 

A comparison of means between groups is not valid because variation between the 

groups could be a function of either processing condition or sediment type (sand or clay), 

and these two explanatory variables cannot be isolated due to the sampling and 

methodology design.  

5.2 Spatial survey of visible macroplastics and 
microplastics in Lake Ontario beach and tributary sediments 

Visible microplastics (1-5.6 mm) and macroplastics (> 5.6 mm) were collected from 5 

beaches and from the banks of 4 tributaries at the western end of Lake Ontario. Samples 

were collected using quadrat surveys and transect surveys; the latter were conducted at 

beaches only. Plastic debris abundance, morphology and composition are discussed.    

5.2.1 Transect surveys of mean plastic debris abundance on the 
western Lake Ontario shoreline 

The transect survey plastic debris abundance results are reported as plastic items per m2 

(N m-2) and are referred to as ‘cross-shore’ because microplastics abundance is averaged 
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across the width of the beach (Appendix C,D). Average plastic debris abundance was 

calculated by averaging across the six transect lines. Transect lengths were measured 

from the waterline to the vegetation line and averaged across the six transect lines.  

Average microplastic debris (1-5.6 mm) abundance at each beach ranged from 4 – 16 m-2 

Fig. 5.20, with highest abundances at Marie Curtis Beach and lowest abundances at 

Bronte Beach, however, means were not significantly different between sites as tested 

with one-way ANOVA (F (4, 25) = 2.21, p = 0.097). When grouped by beach oriention 

based on where each transect was conducted, beaches that were generally east-facing 

(Beachway, Bronte; ME = 1.83, SD = 0.75) did not have significantly lower plastic 

debris abundance than beaches that were generally south-facing (Marie Curtis, Sunnyside 

and Woodbine; ME = 2.12, SD = 0.85) as tested with an independent samples t-test (t 

(28) = 0.94, p = 0.36).  

 

 

 

Figure 5.20 Microplastics (1 – 5.6 mm) abundance, N m-2, on beaches of the northwestern shore of Lake 

Ontario as determined through a transect survey, by (a) site: Beachway (BW), Bronte (BB), Marie Curtis 

Park (MC), Sunnyside (SS) and Woodbine (WB) and (b) general beach orientation as measured at the mid-

point of each transect.  
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5.2.2 Quadrat surveys of summer daily accumulation rate of 
plastic debris on the western Lake Ontario shoreline 

Whereas transect surveys were used to assess the background plastic debris 

contamination levels on the northwestern beaches of Lake Ontario, the quadrat surveys, 

which were conducted over 8 consecutive days, were used to asses the daily 

accumulation rates of plastic debris (Appendix C, E). Quadrats were grouped into 

proximal and distal foreshore categories based on whether or not they were affected by 

daily changes in water level due to wind forcing. Accumulation rates were calculated 

separately for proximal foreshore quadrats and distal foreshore quadrats.  

Plastic debris abundance (all plastics > 1 mm) averaged across all beach quadrats was 20 

m-2 d-1, over a period of 8 days. Weekly accumulation rates of plastic debris (micro- and 

macro-plastics), calculated by summing accumulation of plastic debris over seven days 

(excluding Day 1), were ~90 m-2 at the proximal foreshore and ~150 m-2 at the distal 

foreshore, as averaged across all beaches. Accumulation at the distal foreshore quadrats 

at Bronte was not observed to be affected by storm high-water levels during the sampling 

period; however, large amounts of pellets were collected at the quadrat over the period of 

8 days, suggesting sampling error due to not finding all plastics in the quadrat on the first 

day. The Woodbine distal foreshore quadrat was, in contrast, occasionally affected by 

high-water events during the sampling period, making the high accumulation rates at this 

site acceptable. Low accumulation rates were recorded at BW distal foreshore quadrat. 

High abundances of microplastics at the distal foreshore quadrats may be attributed to 

wind and high water wave action before the sampling period commenced. Distal 

foreshore quadrats were not sampled at Marie Curtis and Sunnyside. 

Average daily accumulation rates of microplastics (1 – 5.6 mm) ranged from 20 – 80 m-2 

across all quadrats (Fig. 5.21a), and from ~5 – 80 m-2 across proximal foreshore quadrats 

(Fig. 5.21b). There were significant differences in average microplastics accumulation 

rates between beach locations for all quadrats as tested with one-way ANOVA (F (4, 89) 

= 3.45, p = 0.01), however, a Scheffé’s post hoc test revealed that the null hypothesis of 

equal means could not be rejected. When comparing only proximal foreshore 

accumulation rates, significant differences among mean accumulation rates of 
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microplastics was again suggested with one-way ANOVA (F (4, 65) = 5.30, p = 0.01). 

Lower mean accumulation rates of microplastics at Bronte compared to Marie Curtis 

were confirmed with a Scheffé’s post hoc test (p = 0.002). For both comparisons, the 

underlying assumption of homoscedasticity was not met (Levene’s test: p < 0.001); 

however, variance and sample size were positively correlated, suggesting that the F-value 

is likely a conservative estimate and that the ANOVA may still hold. 

 

Figure 5.21 Microplastics (1 – 5.6 mm) accumulation rates, N m-2 d-1, averaged for (a) all quadrats and 

(b) proximal foreshore quadrats at Beachway (BW), Bronte (BB), Marie Curtis Park (MC), Sunnyside (SS) 

and Woodbine (WB) beaches on the northwestern shore of Lake Ontario. 

Across all quadrats, those sampled when the sediment was wet (either from rain, dew, or 

wave action) had significantly lower microplastic (1 - 5.6 mm) daily accumulation rates 

than quadrats sampled when the sediment was dry (independent samples t-test, t (92) = 

3.43, p = 0.001) as shown in Fig. 5.22a.  
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Figure 5.22 Microplastics (1 – 5.6 mm) accumulation rates, N m-2 d-1, averaged for (a) wet vs. dry 

sampling conditions, (b) groomed vs. not groomed sampling conditions and (c) cross-wind, offshore wind 

and onshore wind sampling conditions for all proximal quadrats on beaches on the northwestern shore of 

Lake Ontario. 

Beachway and Sunnyside beaches were observed to have been groomed periodically 

during the 8-day study period by a combing tractor. Quadrats in which the sediment had 

been groomed in the 24-hour period before the daily sample was taken had significantly 

lower microplastic daily accumulation rates than quadrats where sediment had not been 

groomed (Fig. 5.22b, independent samples t-test: t (86) = 3.72, p < 0.001).  

At the start of each quadrat sampling process, wind direction and speed was measured. 

Comparing wind direction to the shoreline orientation, proximal foreshore quadrats could 

be categorized into three groups – cross-shore wind, offshore wind and onshore wind – 

each for which mean plastic debris abundance could be calculated (Fig. 5.22c). There was 

no significant difference between measured wind direction on proximal foreshore daily 

total (macro and microplastics) accumulation as tested with one-way ANOVA (F (4, 25) 

= 2.21, p = 0.097).  

In order to assess whether there was a difference in mean daily plastic debris 

accumulation in the proximal foreshore quadrats (N m-2) and background levels of plastic 

debris (N m-2), as investigated through the transect survey, an independent samples t-test 
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was applied to across site means (Fig. 5.23). Means were not significantly different (t 

(71.5) = 0.24, p = 0.81). 

 

Figure 5.23 Box-plot showing the distribution of microplastics (1 – 5.6 mm) abundance comparing the 

cross-shore (transect survey) and proximal foreshore (quadrat survey). 

5.2.3 Quadrat surveys of summer daily accumulation rate of 
plastic debris in the riparian zone of western Lake Ontario 
tributaries 

Visible plastic debris was sampled using a quadrat survey at four tributaries draining into 

western Lake Ontario (Appendix F, G). Abundance of plastic debris was normalized to 

pieces per square meter (N m-2) by dividing debris counts by the quadrat area and 

averaging both quadrats. Mean plastics abundance varied from 14 – 60 m-2 (Fig. 5.24) 

There was no significant difference in mean plastic debris abundance across sites as 

tested with one-way ANOVA (F (3, 12) = 1.74, p = 0.21). Plastic debris abundances per 

square meter were greatest at Etobicoke Creek, for both macro and microplastics 

combined and for microplastics alone. The abundance of macroplastics was similar 

across all sites. 



88 

 

Figure 5.24 Plastic debris abundance, N m-2, by size category for four riparian sites: Don River (DR), 

Humber River (HR), Etobicoke Creek (EC) and Red Hill Creek (RC) along the northwestern shore of Lake 

Ontario. 

5.2.4 Particle morphology 

Between beach transects, the fraction of plastic items collected that were 1 - 5.6 mm in 

size was about 20% lower at beaches in the GTA, compared to eastern sites Bronte and 

Beachway (Fig. 5.25a). A one-way ANOVA revealed statistically different means 

between the proportions of microplastics across sites (F (4, 25) = 5.32, p = 0.003); 

however, only the mean levels at Marie Curtis and Beachway were significantly different 

(Scheffé’s post hoc test, p = 0.015).  
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Figure 5.25 (a) Relative proportions of microplastics (particles 1 – 5.6 mm) compared to macroplastics 

(particles > 5.6 mm) for cross-shore plastics debris transect survey. (b) Relative proportions of industrial 

type items (pellets) for cross-shore plastics debris transect survey. 

Between transects, the fraction of plastic items collected that were certainly industrially 

sourced (pellets) was ~40% lower at beaches in the GTA, compared to Bronte and 

Beachway beaches on the eastern extent of the northern shore (Fig. 5.25b). Using a one-

way ANOVA, mean proportions of pellets to other types of debris were different across 

beaches (F (4,25) = 5.97, p = 0.002). The levels at Woodbine were significantly lower 

than at Beachway (Scheffé’s post hoc test: p = 0.008) and at Bronte beaches (Scheffé’s 

post hoc test: p = 0.013).  

The morphological characteristics of the plastic debris were compared between the 

proximal foreshore (daily accumulation) and the cross-shore for each beach site. The 

ratio of microplastic to macroplastic was about 0.58 and 0.63 at proximal foreshore and 

cross-shore, respectively, and was notably consistent across sites with standard deviations 

of 0.08 and 0.13 respectively. Mean proportions of industrial- to consumer-type plastics 

were 0.22 and 0.44 for the proximal foreshore and cross-shore, respectively.  

A more detailed representation of the proportion of each morphology (fragments, beads, 

foam, intact object) is given for the proximal foreshore (Fig. 5.26a) and cross-shore (Fig. 
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5.26b) for each of the five surveyed beaches. Plastic debris deposited on the banks of four 

streams entering western Lake Ontario was collected from two quadrats at each tributary, 

and were sorted using the same size categories as the beach quadrats: 1-5.6 mm and > 5.6 

mm. When averaged across all riparian quadrats (Fig. 5.26c), microplastics were more 

abundant, however, no significant difference between mean abundance (N m-2) of 

macroplastic and microplastic debris was found using an independent samples t-test (t 

(14) = 0.66, p = 0.52). 

 

Figure 5.26 Relative proportions of fragments (frag), pellets (bead), foam plastics (foam) and intact 

objects (item) averaged for (a) the proximal foreshore quadrats and (b) the cross-shore transects. (c) The 

average plastic debris abundance, for macroplastics (> 5.6 mm) and microplastics (1 – 5.6 mm), across the 

four riparian sites. Error bars show standard deviation from the mean. 

5.2.5 Particle composition 

Of the 45 beads, fragments and foam particles (1 - 5.6 mm) sampled at Bronte (BB-T6), 

all were positively identified as synthetic polymers. Three particles of white foam were 

identified as PS. Two fragments of similar appearance were identified as PP and PS (non-

expanded), separately. Of the remaining 40 pellets, 36 (90%) were identified as PE, and 4 

(10%) were identified as PP. Spectra produced by clear pellets had easily identifiable 

peaks, however, the spectra of many colored pellets were distorted. Blue (N=9), gray 

(N=10), opaque white (N=9) and black (N=1) pellets were all identified as PE, except for 
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4 white pellets, which were identified as PP. In Fig. 5.27, spectra of clear, white, black, 

gray and blue PE pellets are stacked for peak comparison. Variations may be attributed to 

the presence of additives, dyes, or fillers. For example, spectra of blue pellets and several 

gray pellets (Fig. 5.28) show characteristic peaks for PE, but also additional peaks 

suggesting the presence of additives and/or fillers, potentially phthalate blue and talc. In 

Fig. 5.29, the spectra for two white pellets identified as PP are displayed together with the 

spectra for a PP fragment found in Etobicoke Creek. Pellet_white_5 likely contains rutile 

and pellet_white_6 has a peak at 1085 which is characteristic of calcium carbonate. This 

may suggest a calcite filler, as is commonly used in pellet manufacturing (Byrdson, 1999; 

Lenz, 2015). The spectra of the four items identified as PS are shown in Fig. 5.30, 3 

corresponding to expanded PS foam pieces and 1 to an unexpanded PS fragment.  

Two pellets were also analyzed with μXRF to test for suspected fillers. One light blue 

pellet (PEBl3) which was identified as PE with Raman spectroscopy, was analyzed at 40 

kV (60 seconds live time). The elements titanium, calcium, iron, copper, zinc, potassium 

and silicon were detected, with the largest peaks being titanium, calcium and iron.  The 

second pellet (PEG6), which was gray, was analyzed at 25 kV (60 seconds live time) and 

50 kV (240 seconds live time). The spectra revealed the presence of calcium, titanium, 

iron, copper and zinc as well as smaller amounts of silicon, aluminum, sulfur, 

phosphorous, potassium, chromium, lead and zirconium. 
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Figure 5.27 Raman spectra of select polyethylene pellets of various colour. Dashed lines indicate 

characteristics peaks for pure polyethylene  
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Figure 5.28 Raman spectra of blue and gray polyethylene pellets with reference to a transparent (clear) 

polyethylene pellet. Blue and gray pellets display extra peak at ~1528 cm-1 and blue pellet displays extra 

peak at ~744 cm-1 and ~682 cm-1.  



94 

 

Figure 5.29 Raman spectra of polypropylene fragment and opaque white coloured pellets.  
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Figure 5.30 Raman spectra of select polystyrene plastics including a rigid transparent (clear) fragment 

and expanded foam fragments.  



96 

 

5.3 Watershed analysis of Lake Ontario 

A total of 66 watersheds were analyzed for their population and abundance of plastics-

related industries. Watershed area ranged from 34 to 14,300 km2, with the Trent River 

watershed being the largest. Watershed population ranged from 441 to 1,580,000 people.  

The Don River watershed had the greatest population, whereas the Toronto Urban 

Catchment watershed had the highest population density with ~7,380 people km-2 (Fig. 

5.31). Both of these watersheds empty into the Toronto Harbour.  

 

Figure 5.31 Human population map for watersheds draining into Lake Ontario and the St. Lawrence 

River. Locations of wastewater treatment plants on the shoreline of the study are included.  

With regards to industry intensity, Etobicoke Creek contains the largest number of plastic 

product manufacturers, distributors and service businesses combined, at 62 business 

facilities (0.3 facilities km-2). There is a clear clustering of the plastic industry in the 

Greater Toronto Area extending towards the Hamilton Region (Fig. 5.32). Several 
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watersheds did not include any plastic industry facilities, as identified through the 

ThomasNet directory. Figure 5.33 shows a detailed view of population levels, wastewater 

treatment plant facilities, plastics-industry facilities and microplastic abundance in the 

GTA.  

The calculated area, population and industry count for each watershed are given in 

Appendix J and were used to generate the IDW calculated values (Xa, Xpop, and Xind) for 

each sediment sample. Of the 50 sediment samples, 47 were within 10 km of at least one 

major tributary mouth and were included in the IDW correlation analyses.  

 

Figure 5.32 Locations of plastics-related manufacturing, distributing and service facilities within the 

watersheds draining into Lake Ontario and the St. Lawrence River.  
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Figure 5.33 Microplastics abundance, N kg-1, in nearshore, tributary and beach sediments of the Greater 

Toronto Area. Plastics-related industry facilities and wastewater treatment plants show potential point 

sources of microplastics. Human population of watersheds draining into the Toronto Harbour and Humber 

Bay is indicated by the gray shading and represents an estimate of the relative intensity of non-point 

sources of microplastics to this urban coastal region of Lake Ontario. 

In order to test for correlations between the watershed properties, a bivariate (Pearson) 

correlation test was used to compare area (Fa), population (Fpop) and industrial levels 

(Find) across the 66 watersheds in the study area. Data were first transformed using a log10 

function to meet underlying normality and equal variance assumptions. All three 

variables were significantly correlated; area and population (r (73) = 0.46, p < 0.001, Fig. 

5.34a), area and industry (r (73) = 0.26, p = 0.029, Fig. 5.34b) and population and 

industry (r (73) = 0.78, p < 0.001, Fig. 5.34c).  
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Figure 5.34 Correlation of watershed characteristics pertaining to potential microplastics sources: area 

(Fa), population (Fpop) and abundance of plastics-related industry (Find) across 66 watersheds draining 

directly into Lake Ontario. 

Due to significant correlation between the watershed properties and the likelihood of not 

including important variables (such as hydrologic effects), a multivariate regression 

analysis regarding the relative contribution of each factor to microplastic contamination 

levels could not be conducted. However, the IDW values (Xa, Xpop, and Xind) were plotted 

against microplastics abundance, after being log10 transformed data, to meet underlying 

normality and equal variance assumptions, and correlated to investigate which factor best 

explained variation in microplastics abundance (Fig. 5.35).  
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Figure 5.35 Microplastics abundance, N kg-1 and inverse distance weighted factors of watershed area 

(Xa), population (Xpop), and plastics-related industry intensity (Xind) for watersheds draining to points within 

10 km of the sediment sample. 

A bivariate (Pearson) correlation test was performed on the log10 transformed data (N kg-1 

and Xa, Xpop, and Xind), to meet underlying normality assumptions. It revealed statistically 

significant correlations between microplastics abundance and each of the three factors. 

Approximately 10% of the variation in microplastics abundance was explained by 

watershed area (r (47) = 0.32, p = 0.031), ~16% by population (r (47) = 0.39, p = 0.007) 

and ~12% by the number of plastics-related industries (r (47) = 0.35, p = 0.016). The 

watershed population factor had the highest Pearson correlation factor as well as the most 

significant linear correlation. 
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Chapter 6  

6 Discussion 

The distributions and compositions of plastic debris in the coastal sediments of Lake 

Ontario and the St. Lawrence River are examined in reference to the possible factors 

determining microplastics transport, sources of plastics to the lake and the human 

geography of the region. The discussion is subdivided into: 1) microplastics collected via 

instrumental sampling and processed with density separation techniques, 2) plastic debris 

sampled by visual survey, 3) proposed sources of plastic debris, drawing from the 

literature as well as from provincial, municipal and industrial data sources, and 4) the 

scope of the methods and research design with suggestions for future studies.  

6.1 Microplastics in Lake Ontario and St. Lawrence River 
sediments 

Microplastics, ~0.25 - 2 mm in size, are ubiquitous in nearshore, tributary and beach 

sediments along the Canadian shoreline of Lake Ontario and the St. Lawrence River. The 

distribution of microplastics, as described in Sections 5.1 and 5.2, is not spatially 

homogenous, either laterally across the study area or vertically within the sediment core 

samples. This may be a function of geomorphology, external environmental processes 

and intrinsic characteristics of the microplastic particles affecting transport behavior. The 

origins and sources of the microplastic debris can be suggested based on category and 

composition of the particles.  

6.1.1 Lateral trends in microplastics abundance 

The markedly intense microplastics contamination in the coastal sediments of the Greater 

Toronto Region may be attributed to the high population density and industrial activity in 

the watersheds draining into this region. The Etobicoke Creek, Mimico Creek, Humber 

River, Toronto Urban Catchment, and Don River watersheds have a combined population 

of 3.4 million, which accounts for 40% of the total population of all watersheds draining 

into Lake Ontario, in Canada. The concentration of the plastics industry is also high in 

these 5 watersheds, which encompass approximately half of the plastics production 
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facilities that were identified in the study region. Determining how many microplastics 

are derived from consumer activities versus industrial activities, however, is complicated 

by the apparent spatial autocorrelation of watersheds with large populations and abundant 

plastics-related industry facilities (watersheds with large populations also have an 

abundance of plastics-related industry facilities). The statistically highly significant 

correlation between population and industry facility count among the watersheds in this 

study, suggest that a higher resolution study (for example on a sub-watershed scale) 

would be necessary in order to disentangle the relationship between population, industry 

and microplastics abundance. The low correlation R2 values in Fig. 5.35 reveal that there 

are other variables affecting microplastics abundance besides watershed area, population 

and industry. Examples include the distance of industrial sites from the lake, local 

variations in hydrologic conditions, and spatial variability of unidentified sources and 

outfalls.  

The watershed with the greatest population density in the study area is the Toronto Urban 

Catchment Basin, with a mean of 7,380 people km-2. This watershed is coastal, extending 

at most 10 km inland. The drainage systems in this watershed comprise a network of 

storm-water and sewage drains, rather than natural tributaries. Although wastewater 

treatment plants are used to treat sewage and sometimes storm water, in combined sewer 

systems, heavy precipitation events often result in flows that are greater than the 

maximum capacity of the system. Bypasses and combined sewer overflow (CSO) events 

have been investigated by the environmental law company, Ecojustice, who report that in 

Lake Ontario, at least 11.5 billion L of untreated sewage was released into Lake Ontario 

during bypass events in 2006-2007 alone, not including CSO events (MacDonald and 

Podolsky, 2009). These events may be an important source of microplastics to the lake 

and river, as wastewater treatment plants have been shown to remove microplastics from 

sewage (Carr et al., 2016). In addition to wastewater treatment plants, storm-water 

outfalls draining urban areas may be notable sources of microplastics. Storm-water is 

generally not treated, and may contain plastic street litter, especially where nets or grates 

are not installed. Even where grates are installed, microplastics are able to pass through 

the grate openings. 
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The correlation analysis in Section 5.3, Watershed Analysis of Lake Ontario, suggests 

that the watershed factors of population, industry and drainage area account for only 10 - 

16% of the variation in microplastics abundance. The high concentrations of 

microplastics in Toronto Harbour and Humber Bay may also be influenced by the 

morphology of the shoreline. The sample with the second greatest abundance of 

microplastics (4,270 kg-1) was the nearshore core, G-TH1, taken from a small mooring 

harbour on the Outer Toronto Harbour.  It has been shown that subsurface deposition of 

microplastics in bottom sediments occurs in low energy environments, such as harbours 

and lagoons, where fine particles supplied by fluvial and anthropogenic outputs can settle 

(Claessens et al., 2011; Vianello et al., 2013). Average circulation patterns in Lake 

Ontario as modeled by Beletsky et al. (1999) and Hall (2008) show that in both summer 

and winter, currents in the vicinity of Toronto Harbour move along the shore from 

southwest to northeast. The peninsula located just west of Humber Bay may protect the 

southeast shore of Humber Bay and the Inner Toronto Harbour from severe waves and 

winds during the dominant anticyclonic surface water circulation during summer and 

winter seasons in the northwestern basin of Lake Ontario (Beletsky et al., 1999).  

Similarly, the Toronto Islands may reduce water flow velocity, and associated 

resuspension and transport events, in the Inner Toronto Harbour and Humber Bay during 

easterly long-fetch storm events (Rukavina, 1976), increasing the relative abundance of 

microplastics in this region, compared to exposed coastline regions. Although the 

“harbouring effect” may allow greater accumulation of microplastics contamination, it is 

only one of many variables affecting the spatial variability of plastic debris. For example, 

Hamilton Harbour is completely enclosed with only one major outflow into the lake, but 

contains relatively low microplastic contamination levels in comparison to what would be 

expected given the coastal morphology of the harbour. This indicates that the distribution 

of microplastics in sediments is foremost dependent on source loads. 

The decrease of maximum microplastics abundance with depth in nearshore sediments 

agrees with modelling and field studies of nearshore debris in marine environments 

(Ballent et al., 2013; Claessens et al., 2011). A decrease in abundance with depth is 

consistent with a decrease in abundance away from the shore, suggesting that 
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microplastics are sourced mainly from the shoreline (at tributary mouths or other point 

sources). 

Spatial variability, on scales of meters to hundreds of meters, was exhibited in the near 

shore sediments of Toronto Harbour and Humber Bay where sample sites were proximal 

and where multiple samples were collected from the same site. The four separate grab 

and trap samples collected from the Humber Bay Index station (S-7546 and S-HB14, S-

3025, T-2047) along the Toronto waterfront had microplastic counts between 4 and 221 

hg-1, highlighting the temporal variability and meter-scale spatial variability of samples 

collected from the same station. The observed variability is possibly reflective of the 

turbulent and random nature of fluid flows and surface characteristics, such as substrate 

type, topography, roughness and presence of vegetation (e.g. Vianello et al., 2013; 

Corcoran et al., 2015). The variability observed on small spatial scales in Toronto 

Harbour and Humber Bay implies that the microplastics abundances observed along the 

remainder of the lake coastline, where sampling was conducted sparsely, may be 

underestimating the amount of microplastics in those regions. Quantifying the various 

environmental factors such as near-bottom flow velocity, turbulence and degree of 

harbouring in similar future investigations may allow for further clarification of how 

these factors affect microplastics distribution in near shore environments.  

Extreme variability of microplastics abundance was also exhibited in tributaries (Fig. 5.1) 

on small spatial scales of tens to several hundreds of meters, and reflects the variable 

hydrodynamic environments in tributaries. Tributary site P-EC2, for example, had two 

orders of magnitude more microplastic particles than beach sediments within 100 m at 

Marie Curtis Park, and one order of magnitude more microplastics than sediments 350 m 

upstream. Variations may also be affected by the regularity and spacing of storm-water 

and/or industrial outfalls, the presence of obstructing structures and the areal extent of the 

watershed. Densely spaced outfalls, as well as reduced flow rates due to obstructing 

structures may be associated with increased microplastic emplacement.  

The dense concentration of microplastics at the tributary mouth of Etobicoke Creek 

compared to upstream sediments is consistent with reduced bottom boundary shear 
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stresses, the driving force of particle motion in a transport fluid, as tributaries widen and 

flatten into the lake. In a marine model study, unidirectional flows associated with 

internal waves and storm events were needed to transport non-buoyant plastic particles 

down-slope in a submerged environment (Ballent et al., 2013). As theoretically applied to 

Lake Ontario, microplastics should be transported by rapid flow in tributaries and during 

storm events and deposited as turbulence and bottom currents subside, for example, at the 

mouths and banks of tributaries. Our results show, however, that microplastics are also 

found in tributary sediments where higher flow regimes dominate, and in nearshore, open 

environments where sediments are exposed to erosion and large-scale transport (Halfman 

et al., 2006). In terms of ecological implications, the apparent accumulation of 

microplastics at tributary mouths suggests that bottom-feeding fish dwelling in these 

regions may be most prone to microplastics ingestion. Fish species found near the mouths 

of tributaries in the Toronto region are various species of carp, the Northern Hog Sucker, 

Redhorses, and catfish (pers. comm., L. Erdle of Ontario Streams). The sample with 

greatest microplastics abundance was one comprising mainly algae, taken from the mouth 

of Etobicoke Creek. This finding suggests that plastics are trapped in the algal growth on 

the stream bed. As discussed by Gutow et al. (2015) seaweeds may be an important factor 

in the transfer of microplastics to benthic herbivores, particularly in the case of 

microplastics that are in the submillimeter size range.  

Microplastics abundance on beaches did not vary significantly between the proximal and 

distal foreshore, however, this could be attributed to the low sample size. The greatest 

abundances were found in samples from the beaches closest to Toronto, with abundances 

decreasing with distance from Sunnyside Beach, in both directions. In comparison with 

nearshore and tributary samples, the beach samples had the lowest abundance of 

microplastics, which may be attributed to periodic high wave action. Buoyant plastics are 

expected to accumulate along the high water line. Non-buoyant plastics, which are still 

less dense than sand grains, are thus expected to be winnowed out of the sediment during 

wave action and either carried to the high water line or washed back out to the lake, 

leaving the sediments relatively free of microplastics contamination.  
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Microplastic contamination loads in Lake Ontario sediments are comparable to those 

reported in similar studies from around the world, as summarized in Table 6.1. In 

comparison with a similar investigation of microplastics in the sediments of Lake Erie 

(Dean, 2016), microplastic abundance was overall greater in Lake Ontario. In the 

nearshore lake bottom sediments of Lake Erie average microplastics abundance was 89 

kg-1, compared to 980 kg-1 in Lake Ontario bottom sediments. In tributaries of Lake Erie, 

microplastics abundance was on average 140 kg-1, compared to 610 kg-1 for tributaries of 

Lake Ontario. Average microplastics abundance on Lake Erie beaches, as sampled with a 

corer, was ~112 kg-1, compared to 140 kg-1 on Lake Ontario beaches. The greater 

abundance of microplastics in Lake Ontario may be attributed to greater population and 

industrial activity in the regions surrounding the lake associated with a larger source of 

plastics to the lake, or to different hydrological conditions.   

Table 6.1 A summary of average microplastics contamination in various marine and freshwater 

sediments. Microplastics contamination is reported as average particle abundance per kg dry sediment, N 

kg-1 (dw).  

Study Study Area 
Depositional 

Environment 

Avg. N kg-1 

(dw) 

Turra et al., 2014 Sao Paulo, Brazil Marine Beach  0.1a  

Dekiff et al., 2014 Germany Marine Beach 2b  

VanCauwenberghe et al., 2015 Belgium Marine Beach 6 

Browne et al., 2010 UK Marine Beach ~60a,b  

Claessens et al., 2011 Belgium Marine Beach 95b 

This study Ontario, Canada Lacustrine Beach 140 

Costa et al., 2010 Brazil Marine Beach 310a,b 

Mathalon and Hill, 2014 Halifax, Canada Marine Beach 5000  

Claessens et al., 2011 Belgium Marine Harbour 165b 

Naidoo et al., 2015 Durban, S. Africa Marine Harbour 1165a,c 

Vianello et al., 2013 Venice, Italy Marine Lagoon 1500b  

Frias et al., 2016 Portugal Marine Nearshore 55 

Claessens et al., 2011 Belgium Marine Nearshore 90b 

This study Ontario, Canada Lacustrine Nearshore 980 

Corcoran et al., 2015 Ontario, Canada Lacustrine Offshore 352 

This study Ontario, Canada Tributary  760d 

a Using an average sediment density of 1600 kg m-3 (Fettweis et al., 2007) 
b Modified from Van Cauwenberghe et al. (2015) Table 1 
c Using a 1.25 average wet/dry ratio (Van Cauwenberghe et al., 2015) 
d Not including site P-EC2. 
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6.1.2 Vertical trends in microplastics abundance 

The nearshore gravity core samples provide insight into the vertical variability of 

microplastics in sediments in a region of the lake where plastic concentrations are 

possibly the highest in Lake Ontario (Fig. 5.1). In four of the five nearshore cores, the 

abundance of microplastics decreased from the first interval to the second, across ~1 g 

cm-2 of accumulated sediment (Fig. 5.3).  Microplastics abundance was normalized to 

sediment weight, meaning that this decrease may be attributed to the greater content of 

water and natural organics (i.e. plant and animal detritus) in the upper unconsolidated 

layer. The relative buoyancy of microplastics compared to the lithic sediments may also 

affect the increase in abundance in the upper centimeters of the nearshore gravity cores. 

Below the first core interval, microplastic abundance is fairly constant with depth, 

suggesting constant levels of input and hydrologic conditions, except at site G-HB3 

where microplastics abundance increases gradually with increasing depth over the full 

sediment profile.  

Considering the calculated sediment accumulation rate of ~1.7 mm yr-1 for the nearshore 

environment of the western basin of Lake Ontario (Rukavina, 1976), the deepest gravity 

core, which penetrated to a depth of 15 cm (11.2 g cm-2), may represent the last ~90 

years. Sediment accumulation rates calculated using the sediment trap samples, give 

accumulation rates of 0.22 g cm-2 yr-1 in Toronto Harbour, 0.28 g cm-2 yr-1 in Hamilton 

Harbour, and 0.55 g cm-2 yr-1 in Humber Bay. Using these nearshore sediment 

accumulation rates, the deepest gravity core may represent between 20 and 50 years of 

accumulated sediment. Considering the increase in water content in the unconsolidated 

sediment of the upper layer, however, a much shorter time period may actually be 

represented. Frequent resuspension of surface sediments in the nearshore zone by storm 

events (Klump et al., 2000) can equal annual deposit volumes, as has been shown for 

Lake Michigan (Eadie et al., 1996; Schwab et al., 2000). Following large-scale 

resuspension events, particles with higher settling velocities would be expected to settle 

first, with more buoyant particles, such as plastics and plant detritus, settling more 

slowly.  
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Plastics resuspended by storm events may be confined to the nearshore in the presence of 

a coastal plume in the summer months (Mortimer, 1988; Hall, 2008) but during winter, 

when lake stratification breaks down, offshore transport of plastics would be expected to 

increase in intensity. Microplastics in offshore basin sediments of Lake Ontario were 

reported to extend to a maximum of 8 cm below the sediment surface (Corcoran et al., 

2015), which is consistent with a lower sediment accumulation rate compared with that of 

the nearshore locations studied here.  

Beach microplastics were identified throughout the upper 20-30 cm of sediment in all 

proximal and distal foreshore beach locations. Average abundances decreased from the 

top 10 cm interval to the bottom 10 cm interval, with the greatest decrease, of about 100 

kg-1, between 0-10 and 10-20 cm (Fig. 5.9b). This trend, however, is not statistically 

significant and was possibly skewed by low sample size. Although this study only 

investigated to a maximum depth of 30 cm, a 3-dimensional study of beach plastics 

showed that < 10% of plastics were found within the top 5 cm of sediment on a marine 

beach and that microplastics could be distributed throughout the sediment profile to at 

least 2 m below the sediment surface (Turra et al., 2014).  

6.1.3 Physical characteristics and transport behavior of 
microplastics 

The transport behaviors of microplastics, which are in part governed by their physical 

properties, such as density (polymer composition) and shape, may impact the distribution 

patterns of microplastics in Lake Ontario and the St. Lawrence River. A small percentage 

of the microplastic particles visually identified were analyzed with Raman spectroscopy, 

however, the results suggest that visual identification had a ~60% success rate, and a 3% 

rate of false identification, with the remaining percentage being particles that could not be 

identified.  

Thirty-four percent of the spectroscopically analyzed particles were low-density 

polymers, PE and PP (Fig. 5.13). Such a high percentage of low-density plastics was not 

expected in the sediments because such particles should float. Plausible mechanisms for 

the deposition of low-density polymers in submerged sedimentary environments include 
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net density increase of microplastic particles by biofouling (e.g. Ye & Andrady, 1991; 

Andrady, 2011; Zettler et al., 2013; McCormick et al., 2014), adsorption of natural 

substances to the surfaces of particles (Corcoran et al., 2015; Frias et al., 2016), inclusion 

of inorganic fillers during manufacturing (Corcoran et al., 2015) and faecal express (Cole 

et al., 2013; Setälä et al., 2014; Zalasiewicz et al., 2016). Many microplastics in the 

present study, particularly those with irregularly shaped, textured or degraded surfaces, 

appeared to have clay-like particles adhered to their surfaces. Inorganic fillers were not 

identified in any of the Raman spectra of the particles identified as PE and PP, however, 

in two pellets analyzed with μXRF, the elements titanium and calcium were detected in 

relative abundance, suggesting the presence of titanium oxide and calcite fillers.  

The positive trend between the fraction of low-density (PE and PP) to high-density 

plastics and water depth (Fig. 5.15a) suggests that buoyancy plays a role in determining 

how plastics are transported; i.e. how far away from shore or from their source they are 

transported. Low-density plastics are expected to have lower critical shear stress values 

(required flow energy needed to resuspend a particle) and lower settling velocities than 

particles made of higher density. This could translate to lower density particles traveling 

further from their source. This trend also suggests that more dense plastics are 

constrained to nearshore areas. Our results are consistent with the identification of 

primarily low-density polymers, PE and PP, in the offshore sediments of Lake Ontario 

(Corcoran et al., 2015). In tributaries, which are generally characterized by increased 

shear stresses and consistent unidirectional flows, low-density plastics would be expected 

to be transported through the system.  

In comparing morphology of microplastics found among depositional environments, 

fragments were more abundant than fibres, and beads were less abundant than fibres. The 

lower quantity of fibres compared to fragments may be explained by the difference in 

morphology. Fibres generally have a large surface area to volume ratio, and may 

therefore have lower settling velocities and likewise be more susceptible to turbulence 

and shear stress than fragments. This would suggest that fibres are transported further in 

suspension than fragments. This is further supported by the observation of a greater 

proportion of fibres to fragments in the nearshore trap samples compared to the grab and 
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core samples. Fibres may stay in suspension for long enough periods to be transported 

through the lake system without being deposited in the sediment compartment. An 

alternative explanation could be that the abundance of fibres being introduced to 

tributaries and the lake is less than that of fragments. Similarly, the spherical, smooth 

PSS beads were found in nearshore grabs and gravity cores, and in tributary and beach 

sediments, but were absent in the trap sediments, which suggests that these beads remain 

in the benthic zone and are transported exclusively by bedload modes. Beads were overall 

least abundant, which could possibly be attributed to low source levels.  

6.2 Visible plastics debris in Lake Ontario beach and 
riparian sediments 

The distribution of visible plastics on the beaches and on the riverbanks of western Lake 

Ontario provides complementary information to that of the distribution of microplastics. 

The lateral trends in overall abundance observed for visible plastic debris on the five 

beaches were similar to the lateral trends observed for microplastics. Visible debris was 

most abundant at Marie Curtis Beach (Fig. 5.20a), whereas microplastics in beach cores 

were greatest at Sunnyside Beach in downtown Toronto (Fig. 5.8b). The average (± SD) 

abundances of microplastics in the beach cores versus beach transects are compared in 

Fig. 6.1; visible plastics abundance underestimates small (< 2 mm) microplastics 

abundance by three orders of magnitude.  
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Figure 6.1 Comparison of microplastics abundance on five beaches of the northwestern shore of Lake 

Ontario as quantified through a transect survey (particles 1 – 5.6 mm) and through sediment coring 

(particles ~ 0.25 – 2 mm). Error bars show standard deviation from the mean.  

The transect surveys were conducted to determine a background level for plastic debris 

abundance. When comparing only microplastic debris (1-5.6 mm), abundance did not 

vary significantly between beaches, nor between generally south- and east-facing 

beaches. Prevailing wind patterns in the Toronto region from November to February are 

mainly NW to WSW, and gradually shift to ENE-dominated from March to October. As 

modelled by Hall (2008), depth averaged summer circulation runs along the northwest 

coastline from west to east, suggesting that the summer nearshore currents would push 

stranded debris to the north-east extent of the beaches. The transect at Marie Curtis was 

conducted on the north-east end of the beach against a jetty wall (Fig. 4.3c), which may 

explain the relatively high areal density of plastics. However, the transect at Woodbine 

Beach was also conducted on the north-east end but did not contain much plastic debris.  

Wind direction also does not explain variability in proximal foreshore microplastics 

accumulation rates (Fig. 5.23c). Proximal foreshore quadrats sampled during cross-shore 

winds had slightly higher microplastics accumulation rates compared to onshore wind 

quadrats, whereas quadrats sampled during offshore winds had lower accumulation rates. 

This may be attributed to sampling procedure; wind data was collected at the time of 

sampling, and not averaged over the 24-hour period leading up to the sampling time.  
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Other factors that may have affected plastics abundance and calculated accumulation 

rates are sediment wetness and beach grooming. Quadrats sampled when wet had 

significantly lower abundances of microplastics compared to quadrats sampled when 

sediment was dry. This difference may be attributed to the compaction and clumping 

nature of wet sand, which may have reduced microplastic visibility during manual 

collection. Beach grooming was also correlated with reduced levels of microplastics, 

suggesting that beach grooming is effective at reducing plastic debris on beaches, 

including microplastics, however plastics may simply be moved to a different part of the 

beach during the process.  

The percentage of debris items 1-5.6 mm in size was less (~55%) at beaches in the GTA 

– Marie Curtis, Sunnyside and Woodbine – compared to beaches on the western extent of 

the northern shore (~80%). This observation may be attributed to a relatively greater 

input from beach-goer waste and proximity to the urban center of Toronto. Micro- to 

macro-plastics ratios for foreshore and cross-shore were similar (58 and 63% 

microplastics), suggesting continuity in the proportions of microplastics and 

macroplastics washing ashore over time.  

A smaller proportion of industrial pellets was observed at the GTA beaches compared to 

at Beachway and Bronte when considering cross-shore levels. This may be attributed to a 

relatively greater input from beach-goer waste and proximity to the urban center of 

Toronto, or it could be attributed to a relatively smaller input from industrial sources. 

From the analysis of plastics-related industry in the study area, it seems that the former 

scenario is more likely, as the plastics industry is prevalent along the entire region where 

beaches where sampled, and may be even more prevalent in the GTA compared to further 

west along the coast. Alternatively, this trend, and that of lower microplastics abundance 

at the same beaches, could be attributed to other variables, such as beach combing 

(observed at Beachway and Sunnyside) and beach attendance. Beach combing would 

increase the relative abundance of microplastics, and beach attendance and associated 

littering would decrease the relative abundance. The relative proportions of fragments, 

pellets, foams and intact objects were similar at the proximal foreshore compared to the 

cross-shore, except at Bronte. Pellets were the primary type of plastic debris cross-shore, 
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and only made up 5% of the particles washing up on the foreshore. This could reflect 

variability in source over time, with fewer pellets being deposited over the study period 

compared to previously, or could just be that pellets are accumulating slowly on the distal 

foreshore. 

Visible debris abundance on the beaches of Lake Ontario are consistent with the 

abundances reported for the shorelines of the other Great Lakes, and with previous 

studies of Lake Ontario. Maximum spatial densities of plastics debris were 34 m-2, 8.4 m-

2 and 3.7 m-2, for shorelines of Lakes Huron, St. Clair, and Erie, respectively (Zbyszewski 

et al., 2014). At Humber Bay West in Lake Ontario, an average triweekly accumulation 

rate of 19 m-2 was recorded (Corcoran et al., 2015). In this study, maximum plastic debris 

accumulation was 32 m-2 and averaged at ~16 m-2, cross-shore.  

Pellet accumulation on the shoreline of the Humber River was 5.25 m-2 averaged across 

two sampling days (Corcoran et al., 2015). Accumulations of microplastics on the banks 

of Red Hill Creek were on a similar level compared those measured for the Humber 

River, however, all plastics were included in this study, whereas only pellets were 

included in the Humber River study. Accumulations on the banks of the Humber River as 

measured in this study were within the same order of magnitude, but were approximately 

33 m-2. At the Don River, similar average accumulations were observed, but at Etobicoke 

Creek, accumulations were an order of magnitude larger.  

Subsurface (tributary) microplastics abundances plotted against river bank (riparian) 

abundances for all four tributaries show a linear correlation on a log scale (Fig. 6.2). This 

relationship suggests that small microplastics < 2 mm may be exponentially more 

abundant than visible macro debris. Assuming this is true, visible surveys may greatly 

underestimate microplastics contamination levels.  
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Figure 6.2 Comparison of microplastics abundance in four tributaries draining to the northwestern shore 

of Lake Ontario as quantified through a riparian quadrat survey (particles 1 – 5.6 mm) and through 

sediment grab sampling of submerged tributary sediments (particles ~ 0.25 – 2 mm), log scale. Error bars 

show standard deviation from the mean.  

 

Plastics manufacturing reports for Canada reveal that PE is the resin type produced at the 

greatest volume (CIAC, 2014; CIAC, 2015) which agrees with the predominantly PE 

composition of pellets collected on Bronte Beach. The presence of Pb in one of the 

pellets analyzed with μXRF, could be explained by adsorption from the lake water or 

sediment, which has been shown to have elevated concentrations of Pb in parts of Lake 

Ontario (Forsythe & Marvin, 2005), or by trace contamination during manufacturing 

(Rochman, Hentschel, et al., 2014). This finding has ecological implications because the 

ingestion of pellets by organisms may occur.  

6.3 Potential sources of plastics debris along the Canadian 
coastline of Lake Ontario and the St. Lawrence River 

The results indicate that microplastics in coastal sediments of Lake Ontario likely 

originate in proximal watersheds and are transported to the site of deposition through 

tributaries. Microplastics may also be transported to the lake through storm drains, but we 

did not study this aspect in detail. Assigning particular origins to the microplastics 
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isolated from the nearshore, tributary and beach sediments is, however, extremely 

challenging due to the small size and fragmented nature of microplastics and the 

unknown range of possible sources.  

6.3.1 Possible sources of microplastics 

Polyurethanes are commonly used in the production of foams for furniture, as well as in 

adhesives such as construction glue products, surface coatings and sealing applications. 

The black, opaque fragments with rubber-like consistency (Fig. 5.10e) may originate 

from vehicle tires as suggested by Lenz et al. (2015). The natural wear down process of 

tires over driving time may contribute small particles to the environment. These particles 

could easily be washed from roads to storm drains during rain events. Similarly, the 

shredding of used tires for recycling purposes referred to as crumb rubber, as defined by 

Regulation 347: General Waste Management under the Environmental Protection Act, 

Revised Statute of Ontario, 1990, may also contribute particles < 2 mm in size. Fibrous 

microplastics are thought to originate from the production, washing and natural aging of 

textiles, such as synthetic clothing and carpets (e.g. Browne et al., 2011). 

The amber-colored beads (Fig. 5.10c, bottom row) identified to contain PSS may be 

compared to beads composed of a crosslinked polystyrene resin that are commonly used 

as an ion exchange medium for water purification and softening, as well as in various 

medical and industrial applications (Dardel 2016). The beads represent a source of 

microplastics not yet discussed in the literature. It is possible, however, that many of the 

irregularly shaped particles that were categorized as fragments originate from cosmetic 

products. Leslie (2014) reports that microplastics used in personal care products range in 

shape from spherical to amorphous, suggesting that ‘microbeads’ are not limited to bead 

morphologies. 

Seven of the 12 plastic types that are manufactured in Canada, according to the CIAC, 

are present in the sampled sediment. High-density (>1 g cm-3) plastics comprised 48% 

and PE comprised 46% of the particles identified as plastics with Raman spectroscopy. In 

comparison, high-density resins comprise 16% and PE comprised 80% of Canadian 
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synthetic resin/rubber exports by weight in 2013 (CIAC, 2014, p. 35). In addition to the 

chemical clues, the distinct morphology of many plastics hints to industrial source. 

The oblong, helical fragments (Fig. 5.10d) abundant in the Etobicoke Creek samples 

originate from finishing processes during the manufacture of injection-moulded plastics. 

A common finishing process, termed deflashing, involves the removal of extraneous 

material, flash, from the seams and edges of solidified products where resin may have 

leaked into voids between the mould halves (SME, 2016). Common deflashing 

techniques include manual or automated cutting and trimming, abrasion by media 

blasting, tumbling, and cryogenics (SME, 2016). The shaving-like particles identified in 

the samples could potentially be the waste flash particles resulting from this process. 

These particles would be difficult to contain in a factory environment because of their 

small size. This speculation is consistent with Etobicoke Creek being the tributary 

draining a relatively small watershed with the greatest abundance of plastics-related 

industry facilities in the study area.  

Turra et al. (2014) also reported a correlation between the proximity of industrial plants 

and microplastic pellet abundance on a beach in San Paulo, Brazil. Free et al. 2014 made 

a similar conclusion, attributing the absence of pellets and microspheres in the water 

samples of Lake Hovsgol, Mongolia to the lack of industry in the area. These two studies 

indicate that local industry and waste management are significant factors in regulating 

microplastics pollution in freshwater and marine environments. 

A study by Lechner and Ramler (2015) identified an industrial point source of 

microplastics along the Danube River in Austria. According to their investigation, the 

allowable plastic loads in wastewater of the manufacturing plant was 30 mg l-1, which 

translates to the equivalent of almost 95 tons of plastic waste per year, as calculated for 

flow rates of 100 l s-1. Considering that plastics are not a regulated constituent of waste 

water in Ontario under the Ontario Environmental Protection Act, R.S.O. 1990, it is 

possible that much greater loads are being released by the manufacturing and moulding 

facilities and draining directly into the lake. In the United States, EPA regulations of 

plastics in effluent are 18 mg l-1 for fibers, 24 mg l-1 for thermoplastic resins and 64 mg l-
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1 for thermosetting resins, however, industrial activity on the US side was not analyzed. 

In addition, non-buoyant plastics from the southern coastline of the lake are not expected 

to be transported to the northern coastline due to the strong easterly current running from 

the Niagara River mouth east along the southern shoreline.  

6.3.2 Possible solutions for reducing microplastic contamination 

Microplastics abundance in Lake Ontario sediments may be greatly reduced, and further 

degradation of the nearshore ecosystem quality could be prevented, with the 

implementation and improvement of basic management tools in the plastics industry. 

Operation Clean Sweep (OCS) is an international program with the goal of reducing the 

loss of plastic pellets, dust and powders during their transport and production, however, 

only four of the companies on their partners list are located in Ontario: Ropak Packaging, 

D-M-E Company, Gorski Bulk Transport, and PDI. OCS provides a thorough 

implementation kit including pledges, a best practices manual, and practical materials 

such as checklists and audit worksheets, free of cost, to participating companies. The 

abundance of pellets and other industrially sourced debris found along the northwestern 

shore of the lake warrants further investigation into the effectiveness of programs such as 

OCS and further development of such programs to include, and focus on, particles < 2 

mm.  

The adoption of best practice programs is likely the most cost efficient solution to address 

microplastic contamination originating from industry, but a sustainable and complete 

solution requires participation from all sectors of the community. The dominance of 

fragment and fibre morphologies in this study indicate a large proportion of microplastics 

come from consumer activity. Outside of the plastics industry, an accelerated transition to 

a circular plastics economy should be attempted. Businesses and product developers 

could develop closed loop life-cycle products, incorporate innovative packaging designs 

and decrease packaging in general. Extended producer responsibility, which requires 

companies to account for and cover costs of material recovery for their plastic products, 

should be adopted by manufacturers, distributers and service businesses in Ontario. On a 

broader scale, an immense economic opportunity for the plastics industry is a transition to 

a circular economy as discussed and outlined in The New Plastics Economy proposed by 
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the World Economic Forum (Neufeld et al., 2016). This transition would increase the 

end-of-life value of plastic products, thereby simultaneously improving recycling and 

recovery rates, reducing plastic waste entering landfills and the environment, and 

reducing the input of microplastics created through fragmentation of litter.   

Increasing awareness of the issue of plastics pollution among consumers of plastic 

products, and providing simple and economically rewarding means by which consumers 

can reduce the amount of plastic waste produced and littered is a third aspect needed to 

address microplastic contamination of the environment. Municipal programs that provide 

communities with a strengthened connection to and understanding of the natural 

environment is a first step in reducing waste. Programs could additionally provide 

information on the issue of plastic pollution and its environmental and economic 

consequences. On a second tier, municipalities could improve and continually monitor 

their waste collection programs, to reduce waste volumes and spillage during collection. 

Improvements to the recycling programs, particularly in large municipalities, to increase 

the range of accepted plastics, would likely reduce plastic waste going to landfill and 

would help in the transition to a circular plastics economy.  

Several examples of improvements in the waste collection systems in the study area have 

already shown promise in reducing waste volumes and spillage. For example, in Toronto, 

Hamilton and the Region of Peel, residents are required to pay for the collection of their 

garbage, providing residents with an economic incentive to reduce the amount of waste 

produced. In Ontario, several major retailers and the non-profit, Stewardship Ontario, 

have teamed together to demand consistency in the type of plastic (PET) used for clear 

rigid packaging of produce and fresh food products. This was done for the purpose of 

increasing the volume of PET in the recycling stream and reducing contamination in the 

feedstock of recycled materials sold to Ontario based recycling companies and companies 

buying recycled plastics.  

There are many ways to increase the effectiveness of recycling programs. Closed 

recycling carts, which are used in three largest municipalities, reduce wind-blown litter. 

Easily navigable and detailed lists of accepted and unaccepted recycled items are key in 
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ensuring maximal and correct participation of residents. In addition, the simpler and more 

all-inclusive the list of accepted items the more likely participation will increase. In 

Toronto and the Region of Peel, for example, films and polystyrene are accepted in the 

recycling program. In places where these items are not accepted, it is likely that they 

contaminate the recycling waste streams. Regular and frequent pick up times, may 

improve recycling rates by simplifying the schedule to which participants must adhere.  

Aspects that may be detrimental to the effectiveness of a recycling program are 

complicated, item specific lists, such as those with special instructions (e.g. remove the 

zippers on plastic sandwich bags, clean them, make sure all films are in a separate bag, 

tied off, no black plastics). Such instructions are difficult to follow and require 

participants to spend extra time to recycle properly, which reduces participation levels. In 

addition, variations between municipalities cause confusion and make it difficult for 

visitors and travellers to adhere to the recycling codes properly. Municipalities in Ontario 

could benefit from a standardized recycling program.  

Future monitoring of microplastics in coastal sediments may help determine whether and 

how changes in management of plastics in industry and by consumers are affecting 

abundance and distribution patterns of this widespread contaminant. Monitoring specific 

aspects of plastics debris may provide more valuable information regarding the 

effectiveness of policy changes. For example, trends in abundance of fibres could be 

monitored specifically during the widespread implementation of fibre filters in washing 

machines and waste water treatment plants, and trends in the abundance of various 

targeted polymers, such as PET, PVC or PS, could be monitored with respect to policy 

changes affecting the use of specific polymers.  

6.4 Discussion of methods, limitations and suggestions for 
future research 

In this section, difficulties encountered through the development of the study and the 

apparent limitations of the study are discussed. In light of these realizations, suggestions 

for future research are given.  
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6.4.1 Overall study design 

This study design establishes of a baseline of contamination levels of microplastics in this 

region. On a regional scale, the study provides a clear view of the distribution of 

microplastics in the coastal sediments of Lake Ontario, but on a local scale, variations in 

microplastics abundance are not well explained. A series of locally focused, high 

resolution sediment sampling schemes are suggested for certain regions where 

microplastics pollution is exceptionally high and for where important information is 

missing. For example, establishing a regular sampling pattern and increasing the sample 

resolution along tributaries would allow for a better understanding of the role that 

tributaries play in transporting microplastics to the lake. Similarly, a higher resolution of 

sampling along the northwest shore of Lake Ontario may reveal a clearer trend between 

microplastics abundance and watershed population and industry-density. It is 

recommended that future studies investigate the role of storm drain outfalls in the inflow 

of microplastics debris, for example by sampling consistently adjacent to storm water 

outfalls along the lake shore and along tributaries.  

The sampling design for visible beach and riparian plastics could be improved to better 

deal with small scale spatial and temporal variability. Moreira et al. (2015) start a 

discussion regarding beach microplastic sampling design and artefacts of sampling, such 

as overlapping strandlines and tidal effects. Although tide effects are not present in the 

Great Lakes (Rao & Murthy, 2001), changes in water level due to wind-forcing are 

observed. The beach quadrats, although randomly chosen, did not allow for a clear 

understanding of accumulation rates as they were located differently with respect to the 

waterline and were not consistently placed with reference to the ends and backs of the 

beach. An improvement in sampling design for determining accumulation rates of 

microplastics would be to sample a regular stretch of the strandline (high-water debris 

line) at regular periods of time.   

6.4.2 Sample processing: density separation 

An improvement in the density separation procedure was made after one set of samples 

had already been processed. This may reduce the comparability of samples, however, 

microplastics abundances were all standardized in the same way, using the initial 
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sediment sample dry weight. The change in methods, as outlined in Section 4.2, was 

made to decrease the potential loss of plastics and potential contamination from air-borne 

plastics during transfer between containers. It would therefore be expected that plastics 

abundance in the first set of samples (nearshore cores) would be lower than in the second 

set, assuming a decrease in sample loss during transfer. The inverse trend, however, was 

observed. The lower abundance of plastics in the second set of samples cannot be 

conclusively attributed to the change in methods as the methods were not compared using 

a control sample.  

The improved separation technique using separatory funnels, was not without flaws. 

First, insufficient solution volume or mixing within the separation funnels may have 

resulted in some pieces to be pulled against their individual natural tendency if caught in 

an aggregate of other material. Initially, microplastics separated from the sediment 

samples were categorized by the density separation stage at which they were attained, i.e. 

plastics that float in SPT and those float in water were analyzed as separate samples, 

under the assumption that low density plastics such as PE and PP would all be in the 

water fraction, and all high-density plastics such as PS and PMMA would be in the SPT 

fraction. This assumption was not met, and low-density plastics were frequently found in 

the SPT fraction. It is suggested that a single density separation stage of SPT be used to 

reduce processing time and improve processing efficiency. It is also suggested that 

sediments are first digested to remove biological detritus and non-plastic organics before 

density separation to reduce clumping effects. Processing efficiency would be improved 

by reducing the volume of material to visually sort and to increase the visibility of 

plastics. This would also negate buoyancy effects of adhered organic solids on 

microplastic particles.  

6.4.3 Sample processing: visual identification 

Fibre counts are least reliable due to potential contamination from the air during sampling 

and processing. The longest period of time the samples were exposed to air was during 

drying time in the oven. Samples needed to be uncovered to allow the evaporation of 

water. It could be beneficial to construct some sort of covering that would prevent fallout 
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of microplastics from air and still allow for evaporation. A water permeable membrane 

foil or a funneling system may be cost effective solutions. 

Fibres were most problematic during visual processing with the stereo microscope. White 

and translucent fibres could have been undercounted because they could not be easily 

distinguished from the white background. This could have been remedied by using both a 

black and white background, however this would have doubled sampling time, which was 

not feasible in the time allotted for the completion of this study. A more general issue of 

visual identification of microplastics is the effect of magnification. Visual processing 

time and accuracy are inversely related to the magnification at which samples are viewed. 

High magnification may allow for smaller particles to be identified however, it drastically 

decreases the rate at which samples can be processed. It may be important to define the 

magnification to a limited and optimal range to increase comparability between samples.  

Microplastic counts may have been lowered by loss during transfer of the dried sample to 

the glass Petri dish for visual analysis. Generally, a small portion of the adhered to the 

vial walls due to static electricity and the extremely small size of particles. In order to 

compensate, vial walls were scraped and the vial tapped over the dish to transfer as much 

of the sample as possible. Digesting samples before density separation would likely 

mitigate the problem of sticky organic material, however, it would not help with the static 

electricity problem. Digested samples would probably be best contained on a vacuum 

filter.  

6.4.4 Sample processing: grain size distribution 

Analysis of grain size distribution was included in this study because it was hypothysized 

that microplastic distribution is governed by the same forces determining sediment 

deposition. A similar study (Vianello et al., 2013) had reported a relationship between the 

fine fraction (clays and silt) and microplastics abundance, but others had reported no 

relationship (i.e. Alomar et al., 2016). In this study no simple relationship was found, 

suggesting that plastic with lower densities and lower critical shear stresses, is more 

easily transported than sediment grains. The reason for this is not easily explained. It may 

be because microplastic abundance depends more strongly on another variable, or 
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because, only the upper limit of microplastic abundance can be correlated to the grain 

size distribution. Perhaps the comparison is flawed because the targeted plastic particles 

were larger than the fine fraction, and instead microplastic abundance should be 

compared to the fine-medium sand fraction.  

6.4.5 Sample processing overall 

Future research could investigate optimal separation techniques. Although several 

publications already address this topic (Claessens et al., 2013; Imhof et al., 2012; 

Woodall et al., 2015; Zhu, 2015), standardizing techniques across the globe is extremely 

challenging due to variations in available instrumentation and funding. Standardization in 

reporting concentrations seems to be a more straight-forward approach to increasing 

comparability between studies. 

Overall, a procedure as follows could overcome many of the issues encountered in this 

study: dry and weigh sediment, digest organics, wash in density separation solution, rinse 

floating fraction to remove residual SPT, transfer to vacuum filtration system, 

simultaneous visual and spectroscopic analysis. 

6.4.6 Spectroscopic analysis 

Spectroscopic analysis has been deemed essential for correct identification of 

microplastics, as visual identification is a less accurate method and is more vulnerable to 

false identification (e.g. Song et al., 2015). Plastics of different composition can often 

appear similar due to the presence of dyes and similar physical properties among types, 

and the range of mixtures and types of plastics is extensive. In this study, Raman 

spectroscopy was used to analyze suspected microplastics to confirm correct 

identification and investigate the range of polymers present. A major limitation to this 

analysis was the time available for running samples as constrained by cost and instrument 

availability.  

Raman spectroscopy is an analytical technique that describes the structure of organic 

molecules and minerals by measuring the energy distribution of inelastic light scattered 

by a sample. Raman analysis is well suited for the analysis of micron to millimeter sized 
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synthetic polymers due to it being a potentially non-destructive technique requiring no 

direct physical contact with the samples, no special sample preparation and a resolution 

of 50 μm. These qualities allowed for a quick analysis, of between 16 seconds and 5 

minutes per sample. Nonetheless, several obstacles were met during analysis. Particles 

that were dark in color, for example the black rubber, would combust even at the lowest 

laser power of 0.01 Watts. In other cases, fluorescence, often exhibited by dyes 

associated with plastics, masked the peaks of the Raman spectra of the polymer, 

preventing identification of the plastic (Lenz et al., 2015). Some particles exhibited 

identifiable peaks, but could not be matched to a particular plastic, potentially because 

the spectra were composites of a mixture of multiple resin types, additives, dyes, and 

foreign adhered substances, which could not be resolved due to lack of mixture analysis 

capabilities of the software (Lenz et al., 2015). 

6.4.7 Watershed modeling 

A major weakness in the model is related to the amalgamation of certain watersheds that 

drain to a common point in Lake Ontario/St. Lawrence River. Several of the watersheds 

in the study (e.g. Humber, Don, Credit, Trent) are amalgamated river systems, many of 

which have control structures such as dams, weirs, reservoirs and lakes. In comparison to 

the Humber River watershed, which was combined with four up-stream river and creek 

systems, the Trent River was combined with over 20 up-stream river systems that all 

eventually collect to the Trent River and throughout which are many large lakes. The 

presence of large lakes implies that plastics flowing into them may not be transported 

downstream. This suggests that any region draining through a lake before reaching the 

tributary flowing directly into Lake Ontario should not be included in the watershed 

system, in the case where non-buoyant plastics are being studied. The input locations of 

microplastics should be considered in geographic relation to the topographic and 

anthropogenic features of the tributary. Several questions to be addressed by future 

investigations of microplastics transport through tributaries are: What distances is 

pollution transported? What are the minimum flow velocities and shear stresses found in 

each tributary and how much do these values vary over the length of the tributary? Are 
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these values sufficient to support plastic bedload and suspended load transport? What 

percentage of the plastics found in the sediments are originally positively buoyant?  
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Chapter 7  

7 Summary and conclusions 

 

This study was conducted with the objective to reveal the current state of plastics 

contamination in the nearshore, tributary and beach sediments of Lake Ontario and St. 

Lawrence River, along the Canadian coastline. Microplastics, < 5.6 mm, were quantified 

in submerged and exposed nearshore, tributary and beach sediments and visible plastic 

debris comprising microplastics, 1 – 5.6 mm, and macroplastics > 5.6 mm were 

quantified in the beach and riparian zones of tributaries along the northwestern shore of 

Lake Ontario. Plastics were characterized by size and morphology using visual 

identification and a subset of the visually identified particles were compositionally 

analyzed with Raman spectroscopy. Two geographic parameters, population and plastics 

related industry facilities, were mapped on a watershed basis and analyzed with reference 

to the spatial distribution of microplastics using an inverse distance weighted function. 

This study reveals that microplastics, ~0.25 – 5.6 mm, were most concentrated in the 

nearshore sediments of Toronto Harbour and Humber Bay and in tributary sediments at 

the mouth of Etobicoke Creek. Abundances of > 100 kg-1 were found almost exclusively 

in the Greater Toronto Region, the most populated and industry intensive region in the 

study area, which strongly suggests that negatively buoyant microplastics are not 

transported to great distances. Overall, sinks for microplastics are the nearshore zone, 

tributary depositional zones and beach margins. 

Microplastics are ubiquitous in submerged sediments along the Canadian coastline of 

Lake Ontario and the upper St. Lawrence River, however, factors affecting their 

distribution remain difficult to determine. The density and morphology of plastic particles 

appears to influence how far they are transported from their source, with particles of 

lower density and irregular morphology being transported further. External factors, 

including natural forces such as water flow, and anthropogenic forces such as beach 

combing, strongly influence the abundance and distribution of microplastics.   
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Sources of microplastics are primarily urban litter, textile and potential industrial waste, 

as indicated by the abundance of fragments and fibres. Fragments are derived from both 

the breakdown of larger fragments, i.e. litter, and primary sources including newly 

suggested sources: ion-exchange PSS beads and deflashing waste. Compositionally, 

polyethylene was most abundant, reflecting the common usage and production of this 

type of polymer and its buoyancy compared to other polymers.   

Watershed area, human population and plastics-related industry counts individually 

account for approximately 10 – 20 % of the variation in microplastics abundance in the 

coastal sediments of Lake Ontario, based on an inverse distance weighted model. 

The ubiquitous presence of microplastics in the nearshore sediments makes them a 

potential hazard for the lake ecosystem on the whole, as they are available to benthic 

communities. Although the impacts of microplastics contamination on ecosystem health 

and functioning is uncertain, it is crucial to improve and continue efforts towards 

understanding, monitoring and preventing further microplastics contamination in Lake 

Ontario and the other Great Lakes for the conservation of an important ecosystem in the 

Great Lakes.  

This study addresses several of the knowledge gaps identified in the Great Lakes Land 

Based Marine Debris Workshops held by the National Oceanic and Atmospheric 

Administration in 2011 and 2013, including the spatial distribution and extent of 

contamination and the level of subsurface sediment contamination.  

This thesis provides a baseline for future monitoring of microplastics contamination in 

the coastal sediments of Lake Ontario and starts a discussion of the general trends 

relating microplastics contamination to potential sources. The observed distribution of 

microplastics in the coastal sediment gives a general understanding of the transport and 

fate of microplastic debris in aquatic environments but also brings up new questions. 

Some suggestions for future research follow. How does microplastics abundance vary 

over time in the nearshore zone? Are microplastics continually resuspended in the 

nearshore zone? Which sources contribute the most microplastics contamination? Which 

sources are most easily addressed with policy developments? What other factors 
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influence the distribution of negatively buoyant microplastics? The effect of future 

changes in policy regarding microplastics may be determined by future monitoring of 

microplastics contamination, particularly in the coastal sediments near Toronto where 

greatest microplastics contamination was found.  
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Appendices 

Appendix A. Summary of sediment samples by name, site location description, 

depositional environment, sampling instrument type, date, geographic coordinates 

and underwater depth. A depth of zero is assigned to beach samples taken above the 

lake water level. Microplastic abundance is reported as particles kg of dry sediment; 

N kg-1. The fine fraction (clay and silt sized particles) is reported as the percent of 

sediment < 63 μm (% S < 63 μm).  

Sample Site* Env. Type Year Month Lat. (°) Long. (°) 
Depth 

(m) 
N kg-1 

% S 

<63 

μm 

S-7481 Six Mile Cr N Grab 2012 Aug 43.320 -78.979 18 320 6.79 

S-7486 Port Dalhousie N Grab 2012 Aug 43.228 -79.283 19 290 92.0 

S-7491 Stoney Cr N Grab 2012 Aug 43.268 -79.671 22 70 24.4 

S-7541 Oakville N Grab 2012 Aug 43.426 -79.661 21 1360 78.9 

S-7546 Humber Bay, index N Grab 2012 Aug 43.623 -79.447 15 280 59.0 

S-7553 Toronto Hb, index N Grab 2012 Aug 43.632 -79.370 9 3210 96.7 

S-7501 Pickering N Grab 2012 Aug 43.794 -79.085 20 230 4.40 

S-7506 Chub Point N Grab 2012 Aug 43.953 -78.012 21 140 4.23 

S-7514 Trenton N Grab 2012 Aug 44.088 -77.544 3 800 31.4 

S-7509 Prince Edward N Grab 2012 Aug 43.958 -76.812 21 430 81.7 

S-7521 North Channel N Grab 2012 Aug 44.181 -76.735 24 780 97.4 

S-7526 McDonnell Bay N Grab 2012 Aug 44.234 -76.375 4 120 15.8 

S-7531 Prescott N Grab 2012 Aug 44.698 -75.532 3 40 1.41 

S-7536 Lake St. Francis N Grab 2012 Aug 45.137 -74.416 12 80 5.84 

S-3025 Humber Bay, index N Grab 2014 Jul 43.623 -79.447 15 230 46.6 

S-3026 Humber Rv, mouth N Grab 2014 Jul 43.633 -79.464 8 730 3.47 

S-3027 Humber Bay, STP  N Grab 2014 Jul 43.626 -79.466 8 2550 71.2 

S-3028 Toronto Hb, index N Grab 2014 Jul 43.632 -79.370 9 1590 91.6 

S-3029 Don Rv, mouth N Grab 2014 Jul 43.642 -79.361 9 1250 96.2 

S-3030 Toronto Hb, west N Grab 2014 Jul 43.633 -79.390 7 2790 82.0 

S-HB14 Humber Bay, index N Grab 2014 Jul 43.623 -79.447 15 50 66.4 

S-TH14 Toronto Hb, index N Grab 2014 Jul 43.632 -79.370 9 530 92.6 

S-3031 Hamilton Hb, index N Grab 2014 Jul 43.289 -79.836 24 130 N/A 

S-3032 Hamilton Hb, west N Grab 2014 Jul 43.281 -79.872 13 210 N/A 

S-3033 Hamilton Hb, SE N Grab 2014 Jul 43.285 -79.794 22 160 N/A  

T-258 Hamilton Hb, index N Trap 2014 Nov 43.289 -79.836 24 260 90.0 

T-2047 Humber Bay, index N Trap 2014 Nov 43.623 -79.447 15 2210 97.0 

T-1364 Toronto Hb, index N Trap 2014 Nov 43.632 -79.370 9 750 96.0 

G-HB1 Humber Bay N Core 2014 Aug 43.630 -79.466 6 1240 77.9 

G-HB2 Humber Bay N Core 2014 Aug 43.629 -79.469 4 990 88.4 

G-HB3 Humber Bay N Core 2014 Aug 43.626 -79.473 4.5 3470 91.7 

G-TH1 Toronto Harbour N Core 2014 Aug 43.631 -79.409 2.5 4270 36.7 

G-TH2 Toronto Harbour N Core 2014 Aug 43.627 -79.383 5 670 66.2 

P-DR1 Don Rv T Grab 2015 Jun 43.691 -79.360 0.18 480 23.3 

P-HR1 Humber Rv T Grab 2015 Jun 43.652 -79.493 0.23 100 0.28 

P-HR2 Humber Rv T Grab 2015 Jun 43.642 -79.491 0.26 1740 51.8 

P-EC1 Etobicoke Cr T Grab 2015 Jun 43.587 -79.545 0.09 1210 27.7 

P-EC2 Etobicoke Cr T Grab 2015 Jun 43.585 -79.542 2.5 27830 0.00 

P-RC1 Red Hill Cr T Grab 2015 Jun 43.240 -79.774 0.35 100 22.7 
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P-RC2 Red Hill Cr T Grab 2015 Jun 43.240 -79.774 0.11 40 1.01 

C-BW1 Beachway Park B Core 2015 Jun 43.312 -79.800 0 60 0.09 

C-BW2 Beachway Park B Core 2015 Jun 43.312 -79.800 0 60 0.09 

C-BB1 Bronte Beach B Core 2015 Jun 43.392 -79.710 0 20 0.04 

C-BB2 Bronte Beach B Core 2015 Jun 43.392 -79.710 0 70 0.03 

C-MC1 Marie Curtis Park B Core 2015 Jun 43.584 -79.542 0 50 0.06 

C-MC2 Marie Curtis Park B Core 2015 Jun 43.584 -79.542 0 190 0.09 

C-SS1 Sunnyside Beach B Core 2015 Jun 43.637 -79.450 0 470 0.05 

C-SS2 Sunnyside Beach B Core 2015 Jun 43.637 -79.450 0 250 0.09 

C-WB1 Woodbine Beach B Core 2015 Jun 43.666 -79.299 0 170 0.03 

C-WB2 Woodbine Beach B Core 2015 Jun 43.666 -79.299 0 50 0.05 

*Abbreviations: Hb: harbour; Rv: river; Cr: creek; STP: sewage treatment plant outfall; 

Env.: depositional environment; N: nearshore; T: tributary; B: beach.  
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Appendix B. Geographic model outline for mapping population, industry and 

microplastic abundance in the watersheds draining directly into Lake Ontario, 

using Esri® geographic information software ArcGIS version 10.3.1. 
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Appendix C.  Metadata for beach surveys of visible plastic debris (> 1 mm) 

Location 

Beach Way 

Park 

Bronte Beach 

Park 

Marie Curtis 

Park Sunnyside Park 

Woodbine Beach 

Park 

Site Reference BW (LO-1) BB (LO-2) MC (LO-3) SS (LO-6) WB (LO-5) 

Beach Texture Fine Sand 

Fine sand to 

cobbles, fine shell 

component 

Fine sand to 

cobbles, woody 

debris 

Medium sand to 

pebbles, inside 

breakwater 

medium sand (silt-

cobble) 
Beach Slope 8° 5° 20° 10° 16° 

Beach orientation 

(transect midpoint) ENE ESE SE S SSE 
Standline width (m) Not observed 0.5 2 0.9 1.5 

Transect width (m) 12.8 20 9 20 9 
Transect area (m2) 76.8 120 54 120 54 

Transect direction east to west south to north north to south west to east east to west 

Transect midpoint 
43.3123, -
79.8004 43.3920, -79.7101 43.5844, -79.5417  

43.6366, -
79.4497 43.6660, -79.2988 

Quadrat 1 coord. 43.307, -79.797 43.3917, -79.7099 43.5835, -79.5422 

43.6369, -

79.4529 43.6654, -79.3010 

Quadrat 2 coord. 43.307, -79.799 43.3924, -79.7099  43.5822, -79.5429 

43.6366, -

79.4519 43.6660, -79.2988 

Quadrat 3 coord. 43.314, -79.800     

Quadrat 4 coord. 

43.3123, -

79.8004     

Q1 foreshore 
location proximal proximal proximal proximal distal 

Q2 foreshore 

location distal distal proximal proximal proximal 
Q3 foreshore 

location proximal     

Q4 foreshore 
location proximal     
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Appendix D. Beach transect surveys of visible plastic debris (> 1 mm)  

Location Sample Date Time Wind  
Beach 

groomed 

Wet 

sand 

Total  

(N) 
N m2 

Total  

(g) 

N  

> 5.6 

mm 

N  

< 5.6 

mm 

N m2 

< 5.6 

mm 

BW T1 27-Aug 2014 12:00 NW y n 78 6.09 7.91 23 55 4.30 

BW T2 27-Aug 2014 12:00 NW y n 113 8.83 8.56 27 86 6.72 

BW T3 27-Aug 2014 12:00 NW y n 286 22.34 15.15 47 239 18.67 
BW T4 27-Aug 2014 12:00 NW y n 108 8.44 8.68 37 71 5.55 

BW T5 27-Aug 2014 12:00 NW y n 228 17.81 9.59 28 200 15.63 

BW T6 27-Aug 2014 12:00 NW y n 132 10.31 8.71 30 102 7.97 
BB T1 26-Aug 2014 16:00 SW n n 52 2.60 10.29 28 24 1.20 

BB T2 26-Aug 2014 16:00 SW n n 200 10.00 10.83 32 168 8.40 
BB T3 26-Aug 2014 16:00 SW n n 39 1.95 4.98 20 19 0.95 

BB T4 26-Aug 2014 16:00 SW n n 119 5.95 6.05 19 100 5.00 

BB T5 26-Aug 2014 16:00 SW n n 40 2.00 3.18 14 26 1.30 
BB T6 26-Aug 2014 16:00 SW n n 164 8.20 7.04 21 143 7.15 

MC T1 28-Aug 2014 12:00 NW n n 223 24.78 56.25 150 73 8.11 

MC T2 28-Aug 2014 12:00 NW n n 680 75.56 93.82 220 460 51.11 

MC T3 28-Aug 2014 12:00 NW n n 180 20.00 48.11 118 62 6.89 

MC T4 28-Aug 2014 12:00 NW n n 171 19.00 61.19 139 32 3.56 

MC T5 28-Aug 2014 12:00 NW n n 296 32.89 36.77 139 157 17.44 
MC T6 28-Aug 2014 12:00 NW n n 191 21.22 38.69 113 78 8.67 

SS T1 30-Aug 2014 10:15 SW y y 245 12.25 48.34 158 87 4.35 

SS T2 30-Aug 2014 10:15 SW y y 574 28.70 40.04 166 408 20.40 
SS T3 30-Aug 2014 10:15 SW y y 201 10.05 28.87 116 85 4.25 

SS T4 30-Aug 2014 10:15 SW y y 320 16.00 29.18 79 241 12.05 

SS T5 30-Aug 2014 10:15 SW y y 220 11.00 37.69 134 86 4.30 
SS T6 30-Aug 2014 10:15 SW y y 402 20.10 42.53 150 252 12.60 

WB T1 29-Aug 2014 11:30 E n n 29 3.22 11.91 21 8 0.89 

WB T2 29-Aug 2014 11:30 E n n 15 1.67 0.95 7 8 0.89 
WB T3 29-Aug 2014 11:30 E n n 93 10.33 29.31 58 35 3.89 

WB T4 29-Aug 2014 11:30 E n n 145 16.11 42.28 83 62 6.89 

WB T5 29-Aug 2014 11:30 E n n 283 31.44 33.47 77 206 22.89 
WB T6 29-Aug 2014 11:30 E n n 93 10.33 22.01 46 47 5.22 
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Appendix E. Beach quadrat surveys of visible plastic debris (> 1 mm) conducted in 

summer 2014. X = not determined. 

Location Sample 

Foreshore 

location Date Time Wind  

Wind 

orientation 

to 

strandline 

Beach 

groomed 

Wet 

sand 

Total 

(N) N m-2 

Total 

(g) 

 N 

>5.6 

mm 

 N  

<5.6 

mm 

BW Q1 Proximal 27-Aug 8:30 NW offshore y n 84 21 7.667 21 63 

BW Q1 Proximal 28-Aug 8:00 W offshore n n 75 18.75 9.036 25 50 
BW Q1 Proximal 29-Aug 8:00 NW offshore n n 120 30 6.264 25 95 

BW Q1 Proximal 30-Aug 8:15 SE onshore y n 92 23 6.776 35 57 

BW Q1 Proximal 31-Aug 14:00 W offshore y n 67 16.75 5.409 27 40 
BW Q1 Proximal 1-Sep 13:30 S cross y y 56 14 4.313 22 34 

BW Q1 Proximal 2-Sep 8:45 NW offshore n y 41 10.25 8.482 19 22 

BW Q1 Proximal 3-Sep 8:30 W offshore n y 38 9.5 6.852 24 14 
BW Q2 Distal 26-Aug 8:30 NW offshore y n 53 13.25 2.221 14 39 

BW Q2 Distal 28-Aug 8:00 W offshore y n 39 9.75 2.672 16 23 

BW Q2 Distal 29-Aug 8:00 NW offshore n n 49 12.25 4.011 18 31 

BW Q2 Distal 30-Aug 8:15 SE onshore y n 44 11 1.347 17 27 

BW Q2 Distal 31-Aug 14:00 W offshore y n 28 7 1.554 10 18 

BW Q2 Distal 1-Sep 13:30 S cross y n 37 9.25 3.677 15 22 
BW Q2 Distal 2-Sep 8:45 NW offshore y y 1 0.25 0.339 1 0 

BW Q2 Distal 3-Sep 8:30 W offshore n y 12 3 0.958 9 3 

BW Q3 Proximal 27-Aug 8:30 NW offshore y n 5 1.25 12.24 5 0 
BW Q3 Proximal 28-Aug 8:00 W offshore y n 2 0.5 0.056 2 0 

BW Q3 Proximal 29-Aug 8:00 NW offshore y n 8 2 1.119 8 0 

BW Q3 Proximal 30-Aug 8:15 SE onshore y y 4 1 1.527 2 2 
BW Q3 Proximal 31-Aug 14:00 W offshore y y 2 0.5 0.163 2 0 

BW Q3 Proximal 1-Sep 13:30 S cross y y 3 0.75 2.706 3 0 

BW Q3 Proximal 2-Sep 8:45 NW offshore y y 11 2.75 4.38 11 0 
BW Q3 Proximal 3-Sep 8:30 W offshore y y 6 1.5 1.329 6 0 

BW Q4 Proximal 27-Aug 8:30 NW offshore y n 165 41.25 23.241 56 109 
BW Q4 Proximal 28-Aug 8:00 W offshore n n 50 12.5 17.318 22 28 

BW Q4 Proximal 29-Aug 8:00 NW offshore n n 101 25.25 5.372 23 78 

BW Q4 Proximal 30-Aug 8:15 SE onshore y n 116 29 10.41 36 80 
BW Q4 Proximal 31-Aug 14:00 W offshore n y 118 29.5 5.929 20 98 

BW Q4 Proximal 1-Sep 13:30 S cross n y 107 26.75 7.268 31 76 

BW Q4 Proximal 2-Sep 8:45 NW offshore n y 47 11.75 5.041 12 35 
BW Q4 Proximal 3-Sep 8:30 W offshore n y 34 8.5 1.034 6 28 

BB Q1 Proximal 26-Aug 16:00 SW offshore n n 14 3.5 6.8148 12 2 

BB Q1 Proximal 28-Aug 10:00 W cross n n 19 4.75 10.3522 11 8 
BB Q1 Proximal 29-Aug 16:30 NE cross n n 8 2 0.1683 6 2 

BB Q1 Proximal 30-Aug 17:30 S onshore n y 7 1.75 2.2715 2 5 

BB Q1 Proximal 31-Aug 13:00 SE onshore n y 2 0.5 0.0098 1 1 
BB Q1 Proximal 1-Sep 12:00 S onshore n y 12 3 0.1412 1 11 

BB Q1 Proximal 2-Sep 14:15 S onshore n y 11 2.75 0.428 4 7 

BB Q1 Proximal 3-Sep 13:30 NW offshore n y 1 0.25 0.0188 0 1 
BB Q2 Distal 26-Aug 16:00 SW offshore n n 159 39.75 12.4679 19 140 

BB Q2 Distal 28-Aug 10:00 W cross n n 242 60.5 10.1151 17 225 

BB Q2 Distal 29-Aug 16:30 NE cross n n 182 45.5 9.0843 26 156 
BB Q2 Distal 30-Aug 17:30 S onshore n n 131 32.75 8.1037 13 118 

BB Q2 Distal 31-Aug 13:00 SE onshore n n 149 37.25 5.4766 10 139 

BB Q2 Distal 1-Sep 12:00 S onshore n n 110 27.5 7.5999 12 98 
BB Q2 Distal 2-Sep 14:15 S onshore n y 48 12 2.9136 11 37 

BB Q2 Distal 3-Sep 13:30 NW offshore n n 74 18.5 3.3405 9 65 

MC Q1 Proximal 27-Aug 15:30 NW offshore n n 139 34.75 12.1988 67 72 
MC Q1 Proximal 28-Aug 11:30 NW offshore n n 91 22.75 5.3584 40 51 

MC Q1 Proximal 29-Aug 15:15 E onshore n n 120 30 8.291 44 76 

MC Q1 Proximal 30-Aug 16:30 SE onshore n n 342 85.5 10.0025 57 285 
MC Q1 Proximal 31-Aug 11:15 SW cross n n 239 59.75 10.7762 28 211 

MC Q1 Proximal 1-Sep 11:00 S cross n n 230 57.5 10.5143 30 200 

MC Q1 Proximal 2-Sep 13:15 SW cross n y 160 40 3.8014 28 132 
MC Q1 Proximal 3-Sep 12:45 W offshore n n 67 16.75 4.0629 7 60 

MC Q2 Proximal 26-Aug 15:30 NW offshore n n 108 27 35.4801 96 12 

MC Q2 Proximal 28-Aug 11:30 NW offshore n n 85 21.25 37.3959 73 12 
MC Q2 Proximal 29-Aug 15:15 E onshore n n 87 21.75 34.9782 69 18 

MC Q2 Proximal 30-Aug 16:30 SE onshore n n 144 36 32.6257 98 46 

MC Q2 Proximal 31-Aug 11:15 SW cross n n 81 20.25 41.2502 55 26 
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MC Q2 Proximal 1-Sep 11:00 S cross n n 114 28.5 18.1544 78 36 

MC Q2 Proximal 2-Sep 13:15 SW cross n y 85 21.25 26.0202 65 20 
MC Q2 Proximal 3-Sep 12:45 W offshore n n 64 16 26.7693 55 9 

SS Q1 Proximal 27-Aug 19:30 NA NA X n 17 4.25 4.7234 13 4 

SS Q1 Proximal 28-Aug 18:00 NW offshore X n 56 14 2.7421 18 38 
SS Q1 Proximal 29-Aug 10:15 SE onshore y n 51 12.75 4.0283 23 28 

SS Q1 Proximal 30-Aug 10:15 SW onshore y y 63 15.75 2.3924 18 45 

SS Q1 Proximal 31-Aug 10:15 W cross X n 14 3.5 0.4164 3 11 
SS Q1 Proximal 1-Sep 10:00 SE onshore n y 62 15.5 1.9402 18 44 

SS Q1 Proximal 2-Sep 10:15 SW onshore n y 99 24.75 5.3093 22 77 

SS Q1 Proximal 3-Sep 10:00 W cross X y         
SS Q2 Proximal 27-Aug 19:30 NA NA X n 47 11.75 5.6488 28 19 

SS Q2 Proximal 28-Aug 18:00 NW offshore X n 19 4.75 3.7415 15 4 

SS Q2 Proximal 29-Aug 10:15 SE onshore y n 28 7 30.0051 21 7 
SS Q2 Proximal 30-Aug 10:15 SW onshore y y 25 6.25 2.9305 17 8 

SS Q2 Proximal 31-Aug 10:15 W cross X y 14 3.5 1.8086 9 5 

SS Q2 Proximal 1-Sep 10:00 SE onshore n y 17 4.25 0.8974 10 7 
SS Q2 Proximal 2-Sep 10:15 SW onshore n y 38 9.5 3.2779 25 13 

SS Q2 Proximal 3-Sep 10:00 W cross X y          

WB Q1 Distal 27-Aug 18:00 NE offshore n n 195 48.75 18.8071 117 78 
WB Q1 Distal 28-Aug 16:00 NW cross n n 84 21 10.5793 27 57 

WB Q1 Distal 29-Aug 11:30 E offshore n n 109 27.25 7.6225 40 69 

WB Q1 Distal 30-Aug 14:30 SE cross n n 166 41.5 9.2299 45 121 
WB Q1 Distal 31-Aug 9:00 SW onshore n n 85 21.25 1.7414 13 72 

WB Q1 Distal 1-Sep 9:00 SE cross n n 102 25.5 19.3139 19 83 

WB Q1 Distal 2-Sep 11:30 W onshore n y 100 25 2.8888 21 79 
WB Q1 Distal 3-Sep 11:15 SW onshore n n 236 59 8.3282 33 203 

WB Q2 Proximal 26-Aug 18:00 NE offshore n n 51 12.75 30.6799 45 6 
WB Q2 Proximal 28-Aug 16:00 NW cross n n 87 21.75 34.9857 66 21 

WB Q2 Proximal 29-Aug 11:30 E offshore n n 98 24.5 18.3794 60 38 

WB Q2 Proximal 30-Aug 14:30 SE cross n n 84 21 10.5899 50 34 
WB Q2 Proximal 31-Aug 9:00 SW onshore n n 76 19 13.4293 41 35 

WB Q2 Proximal 1-Sep 9:00 SE cross n n 56 14 7.1882 30 26 

WB Q2 Proximal 2-Sep 11:30 W onshore n y 78 19.5 17.9303 29 49 
WB Q2 Proximal 3-Sep 11:15 SW onshore n n 75 18.75 18.123 36 39 
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Appendix F. Metadata for riparian quadrat survey of visible plastic debris (> 1 mm). 

Quadrat 

Number 

Location Don River Humber River  Etobicoke Creek Red Hill Creek 

1 Coordinates  43.6908056°, 
 -79.3602222° 

43.6524722°,  
-079.4947778° 

43.5880833°, 
 -079.5452222° 

43.2400833°,  
-079.7742222° 

 Slope 20 1 5 7 

 Distance from 
water (cm) 

70 0 80 0 

 sediment grain 

size and 
description 

fine-med sand/ 

woody debris 
strandline, half 

wet/half dry some 
vegetation 

grassy, med grain 

sand, concrete 

med grained sand, 

logs, sticks, grassy 
corner with woody 

debris  

silty to very coarse 

grained/pebbles/cobb
les 

      

2 Coordinates 43.6909167°, -

079.3600556° 

43.6511667°, -

079.4912778° 

43.6035278°, -

079.5578611° 

 43.2403333°, -

079.7736389° 
 Slope 10 2 8 8 

 Distance from 

water (cm) 

140 200 1000  20 

 Sediment grain 

size and 

description 

med-fine sand, 

woody strandline ~10 

cm wide 

flat cobbles, fine 

silt/clay layer, shells 

clay/ slaty pebbles to 

slaty/sandstone 

cobbles/boulders, 
vegetated sparsely, 

woody strandline 

through quadrat 

no sediment, 

reedy/woody debris 

in densely vegetated 
river bank 
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Appendix G. Riparian quadrat survey of visible plastic debris (> 1 mm). 

Sample Sample Date Size (mm) Fragments (N) Pellet (N) Foam (N) Intact Object (N) Total (N) Total (g) 

DR-Q1 June 6 2015 >5.00 14 0 49 5 68 6.5517 

≤5.00 16 6 148 0 170 0.6428 

DR-Q2 June 6 2015 >5.00 15 0 31 10 56 11.7835 
≤5.00 31 21 66 0 118 1.4116 

HR-Q1 June 5 2015 >5.00 17 0 60 3 80 7.3543 

≤5.00 13 118 132 0 263 3.8948 
HR-Q2 June 5 2015 >5.00 0 0 0 2 2 4.8194 

≤5.00 0 0 0 0 0 0 

EC-Q1 June 6 2015 >5.00 7 0 51 4 62 7.1303 
≤5.00 23 219 204 0 446 5.575 

EC-Q2 June 6 2015 >5.00 30 2 9 22 63 10.9397 

≤5.00 72 313 16 0 401 9.291 
RC-Q1 June 7 2015 >5.00 2 0 0 2 4 5.2467 

≤5.00 0 0 0 0 0 0 

RC-Q2 June 7 2015 >5.00 74 0 50 48 172 222.3946 

≤5.00 27 0 25 0 52 0.9756 

 

Appendix H. Raman spectroscopic analysis of select nearshore (core) and tributary 

microplastics (~0.25 – 2 mm). 

Sample/filename 

Identification by 

OMNIC Search 

Algorithm 

Identification based on visual 

examination of peaks, O. 

Madden, Smithsonian 

Institute 

Final Identification based on 

automated spectral matching, visual 

exam of spectrum & specimen, and 

other analysis to date 

P-DR1    

DR1(1)H-fr1_1064 8cm-1 512scan .05W! 90% Vinyl Chloride, 

10% Vinyl Acetate, 

41% match 

Vinyl chloride/vinyl acetate 

copolymer 

Vinyl chloride/vinyl acetate copolymer 

G-HB1       

G1H-2-3       

G1H-2-3fr5_1064 8cm-1 384scan .03W Polyethylene 53% 

match 

Polyethylene Polyethylene 

G1H-2-3fr7_1064 8cm-1 128scan .03W Polyethylene, 

Oxidized 89% match 

Polyethylene Polyethylene 

G1H-2-3fr8_1064 8cm-1 64scan .04W Polyethylene 72% 

match 

Polyethylene Polyethylene 

G1H-2-3-fr1_1064 8cm-1 192scan .03W Polyethylene, 

Oxidized 74% match 

Polyethylene Polyethylene 

G1H-2-3-fr4_1064 8cm-1 832scan .03W     Unidentified 

G1H-2-3-fr6_1064 8cm-1 128scan .03W Polyethylene 83% 

match 

Polyethylene Polyethylene 

G1H-5-6       

G1H-5-6-fr-11_1064 8cm-1 512scan .02W!     Unidentified 

G1H-5-6-fr14_1064 8cm-1 1664scan 

.04W! 

    Unidentified 

G1H-5-6-fr32_1064 8cm-1 384scan .03W Polyethylene 72% 

match 

Polyethylene Polyethylene 

G1H-5-6-fr33_1064 8cm-1 1152scan .03W DOW Great Stuff 

Window and Door 

Insulating foam (a 

spray polyurethane 

foam) 33% match 

Polyurethane Polyurethane 

G1H5-6-fr40_1064 8cm-1 384scan .03W!   Possibly polyolefin 

(polypropylene or 

polymethylpentene, but not 

polyethylene) 

Unidentified, polyolefin possible 

G1L-2-3       

G1L-2-3-fr4_1064 8cm-1 512scan .05W!     Unidentified 

G1L-2-3-fr5_1064 8cm-1 192scan .03W Polyethylene, oxidized 

81% match 

Polyethylene Polyethylene 

G1L-5-6       

G1L-5-6-fr2_1064 8cm-1 64scan .04W!   Maybe polyethylene Unidentified 

G1L-5-6-fr3_1064 8cm-1 320scan .035W Polyethylene, oxidized 

74% match 

Polyethylene Polyethylene 

G1L-5-6-fr4_1064 8cm-1 512scan .024W!   PET plus a red colorant? Unidentified 

G-HB2       

G2H-2-3       
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G2H-2-3-fr1_1064 8cm-1 320scan .03W!   Polyvinyl chloride Polyvinyl chloride 

G2H-2-3-fr2_1064 8cm-1 320scan .04W Polyethylene, oxidized 

54% match 

Polyethylene Polyethylene 

G2H-2-3-fr3_1064 8cm-1 488scan .05W!   PET plus a red colorant? Unidentified 

G2H-2-3-fr5_1064 8cm-1 192scan .03W Polyethylene, oxidized 

90%match 

Polyethylene Polyethylene 

G2H-2-3-fr8_1064 8cm-1 320scan .05W Polystyrene, 75% 

match 

Polystyrene Polystyrene 

G2H-4-5       

G2H-4-5-fr2_1064 8cm-1 512scan .04W! Polyurethane 48-54% 

match to various 

commercial 

polyurethane products 

Polyurethane Polyurethane 

G2H-4-5-fr3_1064 8cm-1 512scan .04W! DAP 3.0 Window, 

Door, Trim & Siding, 

crystal clear, cured, 

22% match 

Phthalate, polymer unknown.  

Possibly diisoheptyl phthalate.  

Not butyl benzyl phthalate. 

Phthalate, polymer unknown.  Possibly 

diisoheptyl phthalate.  Not butyl 

benzyl phthalate. 

G2H-4-5-fr4_1064 8cm-1 384scan .03W Polyethylene, oxidized 

84% match 

Polyethylene Polyethylene 

G2H-4-5-fr7_1064 8cm-1 512scan .04W! DAP 3.0 Window, 

Door, Trim & Siding, 

crystal clear, cured, 

29% match 

Phthalate, polymer unknown.  

Possibly diisoheptyl phthalate.  

Not butyl benzyl phthalate. 

Phthalate, polymer unknown.  Possibly 

diisoheptyl phthalate.  Not butyl 

benzyl phthalate. 

G2H-4-5-fr10_1064 8cm-1 256scan .04W! Polyurethane 81-76% 

match to various 

commercial 

polyurethane 

insulating foam 

products 

Polyurethane Polyurethane 

G2L-2-3       

G2L-2-3-fr1_1064 8cm-1 256scan .035W Polyethylene, oxidized 

64% match 

Polyethylene Polyethylene 

G2L-4-5       

G2L-4-5-f3_1064 8cm-1 256scan .05W!     Unidentified 

G-HB3       

G3H-4-5       

G3H-4-5 fr2_1064 8cm-1 512 scan .05W Polyethylene, oxidized 

90% match 

Polyethylene Polyethylene 

G3H 4-5 fr3_1064 8cm-1 64scan .045W Polyethylene, oxidized 

40% match 

Polyethylene Polyethylene 

G3H-4-5 fr4_1064 8cm-1 128 scan .034W Polyethylene, oxidized 

66% match 

Polyethylene Polyethylene 

G3H-4-5 fr8_1064 8cm-1 320 scan .05W Polyethylene, oxidized 

67% match 

Polyethylene Polyethylene 

G3H-4-5 fr9_1064 8cm-1 128 scan .048W Polyethylene, oxidized 

76% match 

Polyethylene Polyethylene 

G3H-4-5 fr11_1064 8cm-1 64 scan .023W Polyethylene 87% 

match 

Polyethylene Polyethylene 

G3H 4-5 fr6_1064 8cm-1 128 scan .038W Polyethylene, oxidized 

85% match 

Polyethylene Polyethylene 

G3H 4-5 fr10_1064 8cm-1 512 scan .048W Phenoxy resin or 

various commercial 

epoxy products 47-

44% match 

Phenoxy resin or epoxy Phenoxy resin or epoxy 

G3H 4-5 fr-7_1064 8cm-1 512 scan .029W   Polypropylene, isotactic, quite 

certain 

Polypropylene 

G3H-12-13       

G3H-12-13fr1_1064 8cm-1 512scan .038W Polyethylene, 42% 

match 

Polyethylene Polyethylene 

G3H-12-13-fr2_1064 8cm-1 512scan 

.029W! 

Vinyl chloride/vinyl 

acetate copolymer 

90/10, 14% match 

Vinyl chloride/vinyl acetate 

copolymer, possible match 

Vinyl chloride/vinyl acetate copolymer 

possible 

G3H-12-13fr3_1064 8cm-1 512scan .038W Vinyl chloride/vinyl 

acetate copolymer 

88/12, 17% match 

Vinyl chloride/vinyl acetate 

copolymer, possible match 

Vinyl chloride/vinyl acetate copolymer 

possible 

G3H-12-13fr4(2)_1064 8cm-1 2048scan 

.05W 

Polymethyl 

methacrylate 56% 

match 

Polymethyl methacrylate Polymethyl methacrylate 

G3H-12-13fr4_1064 8cm-1 512scan .04W Polymethyl 

methacrylate 38% 

match 

Polymethyl methacrylate Polymethyl methacrylate 

G3H-12-13fr5_1064 8cm-1 512scan .03W Polystyrene 64% 

match 

Polystyrene Polystyrene 

G3L-4-5       

G3L-4-5 fr1 FT 8cm-1 50um .069W Polyethylene, 

oxidized, 52% match 

Polyethylene Polyethylene 

G3L-4-5 fr2 FT 8cm-1 50um .37W Polyethylene, 69% 

match 

Polyethylene Polyethylene 
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G3L-4-5fr3_1064 8cm-1 320scan .037W Polyethylene, 

oxidized, 72% match 

Polyethylene Polyethylene 

G3L-12-13       

G3L-12-13f_1(2)_1064 8cm-1 512 scan 

.027W 

    Unidentified 

G3L-12-13fl_1(1)1064 8cm-1 256scan 

.079W 

    Unidentified 

G3L-12-13fr1_1064 8cm-1 128scan .05W Polyethylene, 80% 

match 

Polyethylene Polyethylene 

G3L-12-13fr2_1064 8cm-1 192scan .03W Polyethylene, 92% 

match 

Polyethylene Polyethylene 

G3L-12-13fr3_1064 8cm-1 512scan .039W Elmers Glue All Max 

and other commercial 

polyurethane adhesives 

and foam sealants 42-

38% match. 

Polyurethane Polyurethane 

G-TH1       

G4H-0-1       

G4H-0-1-fr1_1064 8cm-1 448scan .05W! Elmer's China + Glass 

Cement 32% match; 

DEVCON Home 

Plastic Welder 29% 

match 

Polymethyl methacrylate and 

polystyrene 

Polymethyl methacrylate polystyrene 

mixture or copolymer 

G4H-0-1-fr3_1064 8cm-1 320scan .04W! Benzyl butyl phthate 

64% match; other 

phthalates (dipropyl, 

dibutyl, diethyl) 68-

71% match 

Benzyl butyl phthalate Benzyl butyl phthalate 

G4H0-1-fr6_1064 8cm-1 384scan .04W Polypropylene, 

isotactic 76% match 

Polypropylene plus something 

else unidentified 

Polypropylene 

G4H-0-1-fr7_1064 8cm-1 384scan .02W!   Toluidine red (colorant) with 

unidentified polymer 

Toluidine red, unidentified polymer 

G4H-0-1-fr10_1064 8cm-1 512scan .03W! Nylon 6/6 40% match 

(Nylon 6, 6/9, 6/12, 

and 6/10 matches from 

32-33%) 

Nylon Nylon 

G4H-0-1-fr15_1064 8cm-1 320scan .08W Polyethylene 

terephthalate, 74% 

match 

Polyethylene terephthalate Polyethylene terephthalate 

G4H-0-1-fr17_1064 8cm-1 384scan .04W! Polyvinyl chloride, 

37% match 

  Polyvinyl chloride 

G4H-0-1-pe-5_1064 8cm-1 448scan .04W! Poly(sodium 4-

styrenesulfonate) 90% 

match 

Poly(sodium 4-

styrenesulfonate) 88% match 

Poly(sodium 4-styrenesulfonate) 

G4H-1-2       

G4H-1-2>2mm-fr1_1064 8cm-1 512scan 

.025W 

    Unidentified 

G4H-6-7       

G4H-6-7-fr6_1064 8cm-1 128scan .04W Polyethylene, 88% 

match 

Polyethylene Polyethylene 

G4H-6-7-fr13_1064 8cm-1 256scan .03W!     Unidentified 

G4H-6-7-fr28_1064 8cm-1 256scan .03W!   Polyvinyl chloride likely Polyvinyl chloride 

G4H-6-7-fr37_1064 8cm-1 256scan .03W Polystyrene, 49% 

match 

Polystyrene Polystyrene 

G4H-6-7-fr43_1064 8cm-1 320scan .04W     Unidentified 

G4L-0-1       

G4L-0-1-fr1_1064 8cm-1 256scan .02W! White Lightning 

Silicone Ultra Low 

Odor Gutter & 

Flashing clear, DAP 

Silicone products, and 

other commercial 

silicone sealants, 48-

50% match 

Polydimethylsiloxane Polydimethylsiloxane 

G4L-0-1-fr2_1064 8cm-1 320scan .024W White Lightning 

Silicone Ultra Low 

Odor Gutter & 

Flashing clear, DAP 

Silicone products, and 

other commercial 

silicone sealants, 48-

50% match 

Polydimethylsiloxane Polydimethylsiloxane 

G4L-0-1-fr4_1064 8cm-1 384scan .05W!     Unidentified 

G4L-0-1-fr6_1064 8cm-1 128scan .03W!     Unidentified 

G4L-6-7       

G4L-6-7-fr-1(2)_1064 8cm-1 2048scan 

.05W! 

DAP 3.0 Window, 

Door, Trim & Siding, 

Phthalate, polymer unknown.  

Possibly diisoheptyl phthalate.  

Not butyl benzyl phthalate. 

Phthalate, polymer unknown.  Possibly 

diisoheptyl phthalate.  Not butyl 

benzyl phthalate. 
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crystal clear, cured, 

22% match 

GTH-2       

G5H-1-2       

G5H-1-2-fr1_1064 8cm-1 192scan .02W Polyethylene, 

oxidized,  69% match 

Polyethylene Polyethylene 

G5H-1-2-fr2_1064 8cm-1 576scan 

.0247W! 

    Unidentified 

G5H-1-2-fr5!     Unidentified 

G5H-1-2-fr5_1064 8cm-1 1182scan .03W!     Unidentified 

G5H-6-7       

G5H-6-7-fr3_1064 8cm-1 576scan .05W!     Unidentified 

G5H-6-7-pe1_1064 8cm-1 512scan .05W!     Unidentified 

G5H-6-7-pe2_1064 8cm-1 640scan .05W!     Unidentified 

G5H-6-7-pe3_1064 8cm-1 512scan .05W Polystyrene, 92% 

match 

Polystyrene Polystyrene 

G5L-1-2       

G5L 1-2 fr1_1064 8cm-1 512scan .05W Polystyrene 81% 

match 

Polystyrene Polystyrene 

G5L-1-2-fr2_1064 8cm-1 512scan .04W! Calcium carbonate, 

49% match 

Calcium carbonate, but unclear 

if there is also a polymer 

Calcium carbonate, possibly from an 

organism, or present as filler in a 

polymer 

G5L-1-2-fr3_1064 8cm-1 512scan .04W-

quartz 

Quartz, 77 % match Quartz Quartz 

G5L-1-2-fr4_1064 8cm-1 512scan .05W! Quartz, 71% match Quartz Quarz 

G5L-6-7       

G5L-6-7-fr2_1064 8cm-1 192scan .03W Polyethylene, 

oxidized, 56% match 

Polyethylene Polyethylene 

P-HR1       

HR1(2)H-fr1_1064 8cm-1 512scan .05W! Poly(Methyl 

methacrylate, 35% 

match 

Poly(methyl methacrylate) Poly(methylmethacrylate) 

HR1(2)H-fr2_1064 8cm-1 256scan .02W!       

HR1(2)H-pe1_1064 8cm-1 512scan .03W       

HR1(2)H-pe2_1064 8cm-1 512scan .014W!       

P-EC2       

EC-PP2H-fr1_1064 8cm-1 64scan .03W Polypropylene, 

isotactic, 93% match 

Polypropylene Polypropylene 

EC-PP2H-fr2_1064 8cm-1 128scan .03W Polystyrene, 93% 

match 

Polystyrene Polystyrene 

EC-PP2H-fr3_1064 8cm-1 128scan .03W Polystyrene, 94% 

match 

Polystyrene Polystyrene 

EC-PP2H-fr4_1064 8cm-1 64scan .03W Polystyrene, 93% 

match 

Polystyrene Polystyrene 

EC-PP2H-pe1_1064 8cm-1 64scan .03W Styrene/Acrylonitrile 

Copolymer, 68/32, 

90% match 

Acrylonitrile/Butadiene/Styren

e resin (ABS) 

Acrylonitrile/Butadiene/Styrene resin 

(ABS) 

EC-PP2H-pe2_1064 8cm-1 192scan .03W Polystyrene, 94% 

match 

Polystyrene Polystyrene 
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Appendix I. Raman spectroscopic analysis of beach (transect survey) microplastics (1 – 5.6 

mm). 

   
TALLY OF COMPOUNDS 

FOUND 

Sample / filename 

Identification by 

OMNIC search 

algorithm and 

 O. Madden  

(Smithsonian 

Institute) 2nd component PE PP PS Rutile CaCO3 

LO-2 8-26 T6 1-5.6mm fow1 780 100% 10x 16scan Polystyrene foam       1     

LO-2 8-26 T6 1-5.6mm fow2 780 100% 10x 16scan Polystyrene foam       1     

LO-2 8-26 T6 1-5.6mm fow3 780 100% 10x 16scan Polystyrene foam       1     

LO-2 8-26 T6 1-5.6mm frc1 780 25% 10x 3sx16scan Polystyrene       1     

LO-2 8-26 T6 1-5.6mm frc2 780 25% 10x 3sx16scan Polypropylene     1       

LO-2 8-26 T6 1-5.6mm peb1 780 60% 10x 16scan Polyethylene, likely   1         

LO-2 8-26 T6 1-5.6mm pebl1 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl2 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl3 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl4 780 100% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pebl5 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl7 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl8 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl9 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pebl10 780 100% 10x 16scan Polyethylene likely   1         

LO-2 8-26 T6 1-5.6mm pec1 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec1 780 100% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec2 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec3 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec4 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec5 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec6 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec7 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec8 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec9 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pec10 780 65% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg1 780 30% 10x 16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg2 780 30% 10x 3sx16scan Polyethylene, likely   1         

LO-2 8-26 T6 1-5.6mm peg3 780 30% 10x 3sx16scan Polyethylene Rutile, likely; 
unidentified 

additive (also in 

peg5 and peg9, 
and most pebl 

(blue) nurdles) 

1     1   

LO-2 8-26 T6 1-5.6mm peg4 780 30% 10x 3sx16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg5 780 30% 10x 3sx16scan Polyethylene Unidentified 

additive (also in 

peg3 and peg9, 
and most pebl 

(blue) nurdles) 

1         

LO-2 8-26 T6 1-5.6mm peg6 780 25% 10x 3sx16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg7 780 30% 10x 3sx16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg8 780 30% 10x 3sx16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm peg9 780 30% 10x 3sx16scan Polyethylene Unidentified 

additive (also in 

peg3 and peg5, 
and most pebl 

(blue) nurdles) 

1         

LO-2 8-26 T6 1-5.6mm peg10 780 30% 10x 3sx16scan Polyethylene   1         

LO-2 8-26 T6 1-5.6mm pew1 780 65% 10x 16scan Polypropylene Rutile, likely   1   1   

LO-2 8-26 T6 1-5.6mm pew2 780 65% 10x 16scan Polyethylene Rutile, likely 1     1   

LO-2 8-26 T6 1-5.6mm pew3 780 100% 10x 16scan Polyethylene Rutile 1     1   

LO-2 8-26 T6 1-5.6mm pew5 780 100% 10x 16scan Polypropylene Rutile, likely   1   1   

LO-2 8-26 T6 1-5.6mm pew6 780 100% 10x 16scan Polypropylene Calcium 

carbonate 

  1     1 
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LO-2 8-26 T6 1-5.6mm pew7 780 100% 10x 16scan Polypropylene     1       

LO-2 8-26 T6 1-5.6mm pew8 780 100% 10x 16scan Polyethylene Rutile 1     1   

LO-2 8-26 T6 1-5.6mm pew9 780 100% 10x 16scan Polyethylene Rutile 1     1   

LO-2 8-26 T6 1-5.6mm pew10 780 100% 10x 16scan Polyethylene Rutile 1     1   

      36 5 4 8 1 
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Appendix J. Area (km2), population (N) and number of plastics-related industry 

facilities in the 66 watersheds draining directly to Lake Ontario and the upper St. 

Lawrence River, in the province of Ontario.  

Watershed Name Area (Fa) Population (Fpop)  Industry (Find) 

Amherst Island 75.2 441 0 

Bay of Quinte 428.3 7854 0 
Beaudette River 178.8 2992 0 

Blessington Creek 122.1 5891 1 

Bowmanville Wilmot Graham Creeks 227.7 45244 0 
Bronte Creek 426.4 159058 11 

Burlington Urban 53.7 89483 10 
Butlers Buells Creeks 97.1 28262 2 

Carruthers Creek 47.6 50966 4 

Cataraqui River 1069.8 56815 0 
Cobourg Brook 150.9 22573 1 

Collins Creek 200.9 30725 0 

Credit River 1052.5 911010 29 
Delisle River 267.3 7479 0 

Don River 437.8 1580067 33 

Duffins Creek 319.1 101355 5 
Etobicoke Creek 245.9 340869 62 

Fifteen Sixteen Mile Creeks 139.3 6307 0 

Forty Mile Beamsville Bartlett Prudhomme Creeks 243.7 104464 7 
Frenchman Black Usshers Creeks 204.0 20773 2 

Gage Creek 68.0 5434 0 

Gananoque River 1058.3 19210 0 
Ganaraska River 316.4 11681 0 

Graham Creek 334.3 19514 0 

Hamilton Harbour North 138.4 74223 4 
Hamilton Harbour South 112.8 262232 6 

Hamilton Harbour West 315.0 171518 0 

Highland Creek 129.7 480341 27 
Howe Island 42.0 669 0 

Humber River 1005.9 867202 37 

Jones Lyn Golden Creeks 263.7 5838 0 
Larue Mills Creek 69.7 1128 0 

Little Cataraqui Creek 82.6 65154 0 

Lynde Creek 187.7 118755 3 
Millhaven and Parrot Creeks 285.9 17863 0 

Mimico Creek 100.3 205298 19 

Moira River 3113.5 61518 2 
Napanee River 959.2 24388 0 

Napanee Urban 238.8 4521 0 

One Two Four Eight Mile Creeks 202.5 74759 0 
Oshawa Farewell Creeks 300.1 208496 4 

Potters Creek 115.5 21825 3 

Prince Edward County 1 106.0 468 0 
Prince Edward County 10 96.1 1302 0 

Prince Edward County 11 49.2 518 0 

Prince Edward County 2 122.4 2942 0 
Prince Edward County 3 133.3 4043 0 

Prince Edward County 4 116.7 2331 0 

Prince Edward County 5 259.6 4691 0 
Prince Edward County 6 115.2 2264 0 

Prince Edward County 7 34.2 3068 0 

Prince Edward County 8 124.1 1395 0 
Prince Edward County 9 61.2 6368 0 

Raisin River 641.4 24127 1 

Rouge River 434.8 484557 12 
Saint Laurence Direct 88.6 4737 0 

Salmon River 1037.1 8049 0 
Shelter Valley Creek 402.0 23930 3 

Sixteen Mile Creek 466.6 245199 5 

St Lawrence Direct 1 93.5 2909 0 
St Lawrence Direct 2 117.6 10167 0 

St Lawrence Direct 3 93.1 5669 1 
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St Lawrence Direct 4 210.8 3524 0 

St Lawrence Direct 5 143.0 45541 3 
St Lawrence Direct 6 298.3 7425 0 

Toronto Urban Catchment Basin 51.8 382225 3 

Trent River 14297.4 405142 11 
Twelve Mile Creek 145.6 96573 0 

Twenty Mile Creek 344.4 33705 1 

Welland Canal 95.9 91895 3 
Welland River 1220.3 112532 1 

Wolfe Island East 53.9 550 0 

Wolfe Island West 104.0 880 0 
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