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Abstract

The increase in renewable energy penetration into Ontario’s electricity market has
altered the overall behaviour of the energy market, with negative electricity prices even
starting to appear. Negative prices represent a greater supply than the market demands,
mostly appearing at night and during off-peak periods. Energy storage can be deployed
in Ontario for peak shaving and energy shifting from off-peak to peak periods to address
the above-mentioned issues. This is also the concern of many other system operators
across the world.

This thesis is mainly focused on developing optimization-based models for scheduling
of energy storage units. At first, a real-time optimal scheduling algorithm is developed
seeking to maximize the storage revenue by exploiting arbitrage opportunities available
due to the inter-temporal variation of electricity prices. The electricity price modulation
is proposed as an approach to competitively offer incentive by the utility regulator to
storage to fill the gap between current and a stable rate of return.

Subsequently, the application of large-scale storage for congestion relief in transmis-
sion systems as an ancillary service to the grid is investigated. An algorithm is proposed
for the following objectives: (i) to generate revenue primarily by exploiting electricity
price arbitrage opportunities and (ii) to optimally prepare the storage to maximize its
contribution to transmission congestion relief.

In addition, an algorithm is proposed to enable independently operated, locally con-
trolled storage to accept dispatch instructions issued by Independent System Operators
(ISOs). Storage in this case is referred to as dispatchable storage. While the operation of
locally controlled storage is optimally scheduled at the owner’s end, using the proposed
algorithm, storage is fully dispatchable at the ISO’s end.

Finally, a model is proposed and analyzed to aggregate storage benefits for a large-
scale load. The complete model for optimal operation of storage-based electrical loads
considering both the capital and operating expenditures of storage is developed.

The applications of the proposed algorithms and models are examined using real-world
market data adopted from Ontario’s electricity market and actual load information from
a large-scale institutional electricity consumer in Ontario.

Keywords: Bidding, congestion relief, distributed storage, electricity mar-
ket, energy reserves, energy shifting, energy storage, incentive, large-scale
load, load forecast, optimization, optimal scheduling, peak-shaving, price fore-
cast, real-time, time-of-use electricity rates, wholesale electricity prices.
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Chapter 1

Introduction

1.1 Statement of Problem

In Ontario’s power system, all coal power plants have been recently phased out. The
major power generation in Ontario, Canada is provided by Nuclear Power Plants (NPPs)
which cannot quickly ramp down or up to track demand changes; thus, they are operated
for base-load generation. Additionally, the increase in renewable energy penetration into
Ontario’s market has altered the behaviour of the energy market, with negative electricity
prices even starting to appear. Negative energy prices represent a greater supply than the
market demands [1]. The trend of integrating more non-dispatchable renewable sources
into the electric grid and phasing out more dispatchable fossil-fueled power plants in
the near future reduces the operational flexibility, increases the chance of transmission
congestion, and endangers the stability of electric systems. This is also a common concern
of many other system operators across the world.

Grid-scale storage units can be deployed to address the above-mentioned issues by
energy shifting from off-peak to peak periods and profit through arbitrage. However, a
grid-scale storage unit relies on certain geographic conditions and an accessible transmis-
sion line that has sufficient capacity. Another approach is to deploy small/medium-scale
storage at the consumer end. Several market operators around the world have already
started setting regulatory policies to facilitate energy storage deployment in the mar-
ket [2]. Besides, in today’s competitive markets, utility regulators and policy makers
are encouraging private investors to build, own, and operate their own storage units, re-
ferred to as locally controlled storage. In such a case, appropriate methods and models are
needed to aggregate various benefits of locally controlled storage for the private owner.
Optimization-based models can be developed to achieve this goal. This thesis is mainly
focused on developing optimization-based models for scheduling of energy storage.

1
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1.2 Energy Storage

Energy storage is used to store energy at the present moment, so that the energy can
be used for some more useful operations at the later time. For example, a battery
converts electric energy to chemical energy and then converts it back to the electric
energy when needed. The electric energy can be stored when there is excess generation
while it is released when there is a need of electricity. The two types of energy storage
units considered in this thesis are as follows:

• Compressed-air Energy Storage (CAES) is a storage option for large-scale energy
shifting. A compressed-air plant stores electricity in the form of compressed air,
then recovers it when needed to generate power. Off-peak or inexpensive electricity
is used for pre-compressing the air, which is then stored typically in an underground
cavern. When the storage plant works to regenerate power, the compressed air is
released and heated; then, it is mixed with fuel and expanded to make a turbine
turn to generate electricity. The electricity is injected to the power grid during
peak periods or when it is needed.

• Cryogenic Energy Storage (CES) is a newly emerging storage technology which is
suitable for massive energy shifting. A cryogenic storage unit comprises three ma-
jor components: Liquefaction plant, Liquefied and Cold air reservoirs, and Power
recovery plant. In this technology, cryogen (liquid air) is produced using electric
energy (during off-peak) in the liquefaction plant. The resultant cryogen is stored
at low pressure in the liquefied air reservoir which is vacuum insulated. During
power recovery, auxiliary heat is added to the cryogen converting it into the super-
heated vapor at a high pressure. The high-pressure gas then expands in a series
of expansion turbines driving synchronous generator(s) to generate electric energy.
The generated electric energy is injected to the power grid during peak periods or
when it is needed.

1.3 Optimal Scheduling of Storage

In order to find the optimal charging/discharging power set-points of the energy storage,
an optimization-based algorithm is needed. Either deterministic or stochastic techniques
could be employed to formulate the optimization problem. The deterministic model uses
the point forecast of market prices for storage scheduling. However, it suffers from price
forecast inaccuracy. The stochastic programming approach is employed to deal with price
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forecast inaccuracy to some extent. The stochastic model does not require the point fore-
cast of market prices, rather statistical behaviour of the energy price is used. Stochastic
models are computationally challenging due to the large number of scenarios that have to
be considered. The model also requires knowledge of the probability distribution of un-
certain variables, which may not be available. In this thesis, deterministic optimization
approaches have been used.

1.4 Literature Review and Research Potential

Literature review has been organized for the main topics of the thesis and presented in
Sections 1.4.1–1.4.4. The research potential in each topic is also presented.

1.4.1 Scheduling of Storage for Exploiting Arbitrage

1.4.1.1 Literature Review

The base-load power generation in Ontario is currently provided by NPPs which cannot
turn down their generation quickly when the demand is low, mostly during nighttime.
Additionally, the costs of energy generation from such a capital-intensive power plant (i.e.,
NPP) can be sizable if facilities are operated at less than full capacity [3]. Moreover, in
many locations, wind generation is maximum at night, a time period when the demand is
minimum [4]. This raises the idea of deployment of large-scale storage in Ontario to shift
the surplus energy from nighttime to peak hours during the day. This is also a common
concern of many other utilities across the world [2].

While the amount of surplus power available during off-peak periods and the amount
of load demand during peak periods are not still significant for generating an attrac-
tive energy price arbitrage benefit to make storage investments economical today, it is
expected that more arbitrage opportunities will become available in the market in the
near future. This is because as the wind power penetration into the grid increases, and
more push is applied to minimize the use of hydrocarbons for electric energy generation,
there would be more surplus power available during off-peak periods and more demand
during peak periods. In addition, as the technology grows, more efficient storage with
lower capital costs are expected to emerge in the near future. Although price arbitrage
benefits in current electricity markets do not offer an attractive Rate of Return (ROR)
to make storage investments economical, storage diffusion for large-scale energy shifting
can be still justified due to several technical and environmental benefits of storage.

On the other hand, in today’s competitive electricity markets, utility regulators and
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policy makers are encouraging private investors to build, own, and operate large-scale
storage as merchant operators [5]. In such a case, the main objective of the storage
from the private owner’s perspective would be to generate profit by exploiting arbitrage
opportunities. This is achieved mainly by optimally storing inexpensive electric energy
during off-peak periods and releasing it back to the grid when the electricity is expensive
during peak periods [5].

The optimal scheduling algorithms proposed in some prior studies have been devel-
oped for storage where the storage operation is governed to benefit operation of renewable
generation sources as part of a grid/microgrid or to achieve some technical objectives for
the grid, e.g., in [6]– [18]. A branch of research aims to optimally operate a storage
unit in the electricity market to generate revenue while it is combined with a wind or
solar farm, e.g., in [4], [19]– [32]. In these studies, storage is considered as part of the
wind farm, and therefore, the wind farm owner must invest in storage. In such a case,
storage cannot be operated as a single entity in the market. Another stream of research
seeks to develop deterministic or stochastic optimization tools for storage operated as a
single entity in the market. The main objective of these optimization tools is to generate
different financial benefits for storage in a competitive market, e.g., in [5], [33]– [35].
Another branch of research aims to investigate the economic viability and profitability of
two types of storage technologies (i.e., pumped-hydroelectric and compressed-air storage)
operated in an electricity market to generate revenue, e.g., in [36]– [46].

A newly emerging storage technology suitable for massive energy shifting referred
to as CES is about to be commercialized. It offers a smaller footprint with a higher
density of stored energy. The concept of storing energy in the form of liquefied air (i.e.,
CES) was first investigated in 1977 [47]. Later on, numerous theoretical and experimental
studies were conducted on the subject by both industries, such as [48]– [51] and academic
institutes, such as [3], [52]– [57]. Finally, all of these efforts led to a completely operational
grid-tied pilot plant in UK in 2011 [58]. There are few studies in the literature about
CES applications as peak-shaving solutions, such as follows: In [54], off-peak electricity
is used to produce liquid nitrogen and oxygen in air separation and liquefaction units,
respectively. During peak periods, natural gas is burned by the oxygen from the air
separation unit to generate electricity. In [55], the energy use of the air separation unit of
a 530 MW coal-fired power plant has been shifted from peak to off-peak periods to obtain
some financial benefits. A model is proposed in [3] by integrating a NPP with a large-
scale CES unit to achieve time shifting of the electric power output. The combination
of the nuclear power generation and the CES technology provides an efficient way to use
significant thermal energy of the NPP during the power extraction process.
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In the prior optimization algorithms, either deterministic or stochastic techniques are
employed to formulate the optimization problem. The deterministic model uses the point
forecasts of market prices in the optimization problem to find the storage schedule. How-
ever, it suffers from price forecast inaccuracy [5]. The stochastic programming approach
is employed to deal with price forecast inaccuracy to some extent. However, stochastic
models are computationally challenging due to the large number of scenarios that have
to be considered [27]. The model also requires knowledge of the probability distribution
of uncertain variables, which may not be available [27].

Among those studies which aim to investigate the economic profitability of storage in
real-world markets, some studies have estimated the storage revenue of single or multiple
applications, using simplified scheduling assumptions and actual historical market prices,
e.g., in [36]– [40]. In [36], three strategies are proposed which aim to optimally schedule
the storage in the day-ahead electricity market based on historical actual prices. The
first strategy, called back-casting approach, duplicates the actual prices of the day-behind
market for storage scheduling in the Day-ahead Market (DAM). The others take the
average of last actual and future prices in a user-specified period and find the storage
schedule correspondingly; such strategies require the presence of accurate price forecasts,
which may not be available. The back-casting approach has been used in some studies
as a practical strategy since it would not assume the optimal operation of the storage
with the perfect/accurate price forecast.

In [37]– [40], the revenue captured using back-casting approach in different markets
has been compared with the ideal revenue generated with the assumption of the avail-
ability of the perfect price forecast; authors have concluded that a considerable amount
of revenue can be captured using the back-casting method because off-peak and peak
periods of prices have fairly consistent daily and seasonal patterns. The lower bound of
revenue could be captured by storage using back-cast method. If the storage operation is
scheduled using the perfect price forecast, the higher bound of revenue can be generated.
Any other price forecast with an accuracy in between the perfect and back-cast methods
can generate a revenue level between the lower and higher bounds of revenue. Short-term
scheduling of storage or other market participants could be carried out using a price fore-
cast. Although various techniques have been reported in the literature to improve price
forecast accuracy, short-term scheduling in a liberalized electricity market is still a very
challenging task due to the uncertainty associated with future electricity prices [59].

The economic viability of large-scale storage deployment exploiting energy price arbi-
trage opportunities has not been adequately addressed in previous contributions. More-
over, prior studies have not proposed effective mechanisms for storage incentivization by
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grid operators. In addition, the value and benefit of a storage unit optimized to utilize
wholesale and contract-based electricity prices have not been compared in the literature.

1.4.1.2 Research Potential

Due to the high capital cost, relatively low round-trip efficiency, and small electricity
price arbitrage, large-scale storage may not be economical in current electricity markets.
Storage deployment will be becoming more economical in the near future due to the
growing storage technologies and higher arbitrage benefits in future electricity markets.
To fill the gap between current and a stable expected ROR in today’s electricity mar-
kets, storage could be incentivized by utility regulators and system operators due to
considerable environmental and technical benefits of storage diffusion [60]. Large-scale
storage deployment for energy shifting can also result in peak shaving. In such a case,
peak-shaving gas generators, which usually cause air pollution, can be shut/turned down,
thereby generating less CO2 emission. Moreover, large-scale energy-shifting storage can
allow a higher penetration of wind and solar energy to electric grids. This is because
the sporadic availability of renewable sources can be handled by introducing storage to
(partially) decouple energy generation from demand [61].

Comprehensive economic studies are required to investigate the economic viability of
large-scale storage deployment exploiting energy price arbitrage opportunities. Further
work is needed to study the economic aspects associated with large-scale storage units
such as CAES and CES systems. Possible mechanisms to appropriately incentivize stor-
age units by grid operators shall be examined. Comparative studies would be required
to compare the value and benefit of a storage unit optimized to utilize wholesale and
contract-based electricity prices.

1.4.2 Scheduling of Storage for Congestion Relief

1.4.2.1 Literature Review

Congestion in transmission systems is a situation where the demand for transmission ca-
pacity exceeds the grid capabilities; this condition might result in a violation of network
security limits, such as thermal, voltage stability, or angular stability [62]. Considerable
penetration of renewable sources, including solar and wind power, could adversely affect
the power flow in the system and may cause congestion in parts of transmission or distri-
bution systems. Thus, it is expected that congestion relief will become more important
in the near future with a higher expected penetration of renewable generation [63].
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In today’s power systems, coordination of the system operations and preserving the
system reliability are the responsibilities of an Independent System Operator (ISO). In
such a case, managing transmission congestion in a power system poses a challenge to
an ISO [64]. Increasing the transmission capacity by reinforcing the system with addi-
tional network elements, such as adding overhead lines or by thermal/voltage upgrades of
existing lines, could be considered as one approach to reduce congestion. Changing the
philosophy of operation from preventive to corrective mode is another way to increase the
transmission capacity [62]. Nowadays, generation re-dispatch, startup of a fast generation
unit, and load management are some effective ways for long-term congestion relief [62].

Energy storage units have great potential to enhance the flexibility of electric grids
and are key elements envisioned to enable smart grid realization. Accordingly, policy
makers and regulators have become increasingly interested in promoting different energy
storage technologies for various objectives [60]. Moreover, in today’s competitive electric-
ity markets, there have been policies set by regulators to reinforce private investments
in large-scale storage. The main objective of storage owners as private investors would
be to generate revenue by utilizing energy price arbitrage opportunities. This goal is
achieved by optimally purchasing and storing inexpensive electricity during off-peak pe-
riods and selling it back to the market when electricity is expensive during peak periods.
A large-scale storage is also able to contribute to congestion relief by injecting/absorbing
a certain amount of power to/from the grid.

As stated in Section 1.4.1.1, in most previous studies related to large-scale storage de-
ployment, the objective has been to utilize a storage unit to generate revenue by exploiting
arbitrage opportunities. The prior studies, however, do not consider the possibility for a
large-scale storage to provide ancillary services, such as congestion relief, to the grid as
part of the optimization problem.

1.4.2.2 Research Potential

Transmission congestion has become more important since the penetration of renewable
sources into the grid is increasing. Therefore, power system operators are encouraging
market participants to contribute to congestion relief as an alternative or complementary
solution for long-term congestion relief [65]. Thus, there is a potential for large-scale
storage to generate profit, in addition to the arbitrage profit, through contribution to
congestion relief. However, storage needs to be prepared in advance in order to effectively
contribute to congestion relief in real-time. Due to its contribution to congestion relief,
the storage owner is financially compensated by the ISO. Therefore, storage can generate
extra profit through contribution to transmission congestion relief, in addition to the
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energy price arbitrage benefit. It is emphasized that the goal of storage application
in this mechanism is completely different from that of prior studies, which is to utilize
a utility-procured small-capacity battery storage for short-term relief of transmission
congestion, such as [62], [66]– [71]. In these studies, a battery storage unit aims to relieve
congestion for certain corridors during a contingency event for several minutes until the
ISO can initiate a long-term solution such as generation re-dispatch or load management.

New optimization algorithms are required to optimally prepare the storage for both
the aforementioned purposes, i.e., energy shifting and contribution to congestion relief.

1.4.3 Scheduling of Storage as a Dispatchable Asset

1.4.3.1 Literature Review

As a single entity, a grid-scale storage unit can be operated in the energy and reserve
markets. The storage benefits the grid through handling the issues appearing due to the
sporadic availability of renewable sources. At the same time, storage profits by utilizing
energy price arbitrage opportunities, also known as load shifting or peak shaving, e.g.,
in [5], [33]– [46], [72], [73]. The storage in this category can also be employed to provide
ancillary services to the grid so that more financial benefits are generated for the private
owner of storage. In such a case, the following question needs to be answered: Should
storage freely purchase and sell energy at wholesale market prices without accepting
ISO’s dispatch instructions (a non-dispatchable asset); or should it submit its schedule
to the DAM and accept ISO’s dispatch instructions (a dispatchable asset)?

In Ontario’s electricity market, an offer refers to the amount of energy a supplier
plans to sell with a price suggested by that supplier. A bid, on the other hand, is defined
as the amount of energy a consumer plans to purchase with a price suggested by that
consumer [74]. For the sake of simplicity, only one terminology (i.e., the bid) can be used
for both the offer (submitted by generators) and the bid (submitted by loads). Different
categories of assets currently operated in Ontario’s market are defined as follows:

i) Dispatchable assets: Dispatchable assets submit their bids to the ISO several hours
ahead of real-time. Depending on schedules and prices offered by all market partic-
ipants and grid’s technical constraints, their bids may or may not be accepted for
each time interval. The ISO modifies their bids to meet both the demand and tech-
nical constraints of the grid. The final dispatch instructions are then sent to market
participants by the ISO. Market participants have to follow these instructions, or
they will be financially penalized by the ISO. Dispatchable assets have the greatest
certainty since they both bid in the DAM and accept dispatch instructions [74].
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ii) Non-dispatchable assets: Non-dispatchable assets do not accept any dispatch instruc-
tion. However, they accept Market Clearing Prices (MCPs) when they generate or
consume energy [74]. They are categorized as follows:

• Self-scheduling generators: Self-scheduling generators submit their schedules to
the ISO indicating the amount and time of energy production. Then, they
follow their schedules. The ISO does not send any dispatch instruction to these
assets. These are less certain than dispatchable assets since they do not accept
dispatch instructions, but more certain than intermittent assets [74].

• Intermittent generators: Intermittent generators are operated intermittently in
the market. These are the most uncertain assets since they are not even able
to determine their generation in advance of real-time [74].

• Non-dispatchable loads: Non-dispatchable loads absorb energy from the grid
as needed and pay for it based on wholesale market prices at the time they
consume energy [74].

Basically, independently operated, locally controlled storage can be categorized in
each of the aforementioned categories, i.e., intermittent, self-scheduling, or dispatchable.

In some prior studies, investigating the optimal operation of independently operated
storage, the storage does not bid in the market and does not accept ISO’s dispatch
instructions, e.g., in [36]– [46]. The storage in this case is referred to as non-dispatchable
storage. The operation of non-dispatchable storage can create uncertainties in the market
since the ISO does not have any control over the storage operation [74].

Other studies in this area have proposed bidding strategies to enable an independently
operated storage unit to bid in the DAM, e.g., in [5], [33], [35], [75].

In previous algorithms, storage is either locally controlled at the owner’s end and can-
not optimally accept ISO’s instructions; or it is centrally controlled by the grid operator
to achieve some technical objectives for the grid. The possibility for an independently
operated, locally controlled storage unit to follow dispatch instructions issued by the ISO
has not been adequately addressed in prior studies. It is emphasized that this goal is
completely different from that of some prior studies, which is to schedule the storage as
a centralized asset to achieve some technical objectives for the grid, e.g., in [76] – [78].

Dispatchability considerations of independently operated, locally controlled storage
has not been addressed in previous contributions in this area.
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1.4.3.2 Research Potential

From the ISO’s point of view, privately owned storage could be categorized as dispatch-
able or non-dispatchable assets. Since dispatchable assets play an essential role in pre-
serving the stability of the grid, utility-scale storage units are preferred to be operated
as dispatchable assets in the market. For an independently operated storage unit (i.e.,
not jointly operated with another source), the outflow energy from storage to the grid
is dependent only upon the inflow energy to storage from the grid. In this case, if the
storage charging bid is not accepted by the ISO in certain hours, the storage may not be
able to follow its discharging bid in all hours. On the other hand, if the storage discharg-
ing bid is not accepted by the ISO in certain hours, storage may not be able to follow
its charging bid in all hours. Final dispatch instructions for storage in the market are
determined by the ISO based on accepted bids of storage and the grid’s technical con-
straints; these instructions are usually different from the storage original bids [74]. Using
the conventional scheduling algorithm, storage is not able to follow all of the dispatch
instructions, and thus, it is not considered as a fully dispatchable asset in the market.

Appropriate algorithms are required to clear the aforementioned issue in order for
the storage to be operated in the market as a dispatchable asset. Studies are required to
compare the operation of dispatchable and non-dispatchable storage units.

1.4.4 Scheduling of Load-storage Systems

1.4.4.1 Literature Review

Grid-scale storage can be deployed to address the issues that have appeared as a result
of the intermittent operation of renewable sources; at the same time, storage can profit
through arbitrage by shifting surplus energy from off-peak to peak periods. However, a
grid-scale storage unit relies on certain geographic conditions and an accessible transmis-
sion line that has sufficient capacity. Another approach is to deploy small/medium-scale
storage at the consumer end.

Some studies in the literature show development of different optimization-based mod-
els for the operation of grid-scale storage, e.g., in [79]. Some technical reports in the
literature evaluate the economic viability of grid-scale storage deployment in real-world
electricity markets, e.g., in [80], [81]. Based on these studies, the intensive capital cost
of grid-scale storage is one of the most important obstacles for storage deployment. Ge-
ographic limitations and unavailability of transmission lines with sufficient capacity at
storage sites may add even more challenges for grid-scale storage deployment to succeed.

Distributed storage deployment is another way for energy shifting. In such a case,
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the aforementioned issues are less challenging since specific locations for storage and
availability of transmission lines with a large free capacity at storage sites are not needed.
Several studies in the literature consider the application of small/medium-scale storage at
the distribution level to achieve various objectives, e.g., energy shifting and load leveling.

One stream of research seeks to employ medium-scale storage in microgrids in which
renewable generation sources are also included, e.g., in [10], [82]– [86]. The microgrid, in
this case, can both absorb power from the grid and inject power into the grid. Another
stream of research aims to optimally operate small-scale storage units for household en-
ergy management in the presence of renewable energy sources at a residential location,
e.g., in [87]– [92]. However, from the consumers’ perspective, investments for local gener-
ation may not always be economically attractive due to the availability of surplus energy
during off-peak periods where inexpensive or even negative prices occur in several mar-
kets, such as Ontario’s electricity market. Inexpensive energy in the grid could then be
purchased and stored by consumers during off-peak periods and used later during peak
periods when energy is expensive.

Some studies in the literature seek to optimally operate small-scale storage for optimal
load shifting of residential sites, e.g., in [93], [94]. They assume residential sites are priced
according to wholesale market prices. However, this assumption does not hold in practice
since residences are priced based on Time-of-Use (TOU) rates. In [95]– [98], the aim is to
optimally operate small-scale storage units for residential use based on TOU rates. TOU
rates are fixed electricity prices with different levels depending on the time of the day.
There are no negative or spike values in TOU rates; thus, there are always less arbitrage
opportunities in TOU rates compared to wholesale prices. There are also several practical
limitations to deploying storage for residential places due to the huge numbers of storage
units needed and the complicated coordination of these storage units.

A load forecast is needed for optimal scheduling of residential storage. Since there
is no regular and predictable trend in the energy consumption of an average residence
(e.g., a house), a deterministic forecast of the load is not usually possible. Hence, the
load forecast in this case is considered as a random variable in a stochastic optimization
problem. However, for a large-scale consumer (e.g., a big company, university, or data
center), load forecasting with a reasonable forecast accuracy would be a viable task due
to the fairly consistent daily and seasonal trends of energy consumption.

The optimal operation of storage for load shifting or load leveling of large-scale elec-
tricity consumers has been previously investigated in the literature, e.g., in [99]; where
authors have developed self-scheduling optimization models for hourly scheduling of a dis-
tributed storage unit in the DAM. In the self-scheduling model, the load-storage system
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submits a schedule to the DAM, indicating the amount and time of energy consumption.
Then, the load-storage system has to follow that schedule in the operating day. The
forecasts of load and market prices are assumed as given inputs to the model in [99];
thus, the impact of forecast inaccuracies on the storage operation is not investigated.

In the self-scheduling model, the storage schedule cannot be updated in real-time,
and thus, the self-scheduling model performs less than optimally. For this reason, the
self-scheduling model suffers significantly from forecast error since storage is scheduled
based on an inaccurate market price forecast, and there is no opportunity to correct
optimal decisions in real-time. Therefore, in practice, the self-scheduling model limits
the opportunities to attract investments in building new storage units at the consumer’s
end. According to the regulations set in most electricity markets, large-scale loads are
not required to be self-scheduled in the market; thus, they can update their operational
schedules in real-time [74]. Additionally, in previous contributions in this area, storage
is assumed to be already available; therefore, the Capital Expenditure (CAPEX) and
Operating Expenditure (OPEX) of storage are not included in their economic analyses.

The economic viability of a load-storage system governed by a real-time optimization-
based model considering the storage CAPEX and OPEX has not been addressed in
previous contributions.

1.4.4.2 Research Potential

Storage units can be procured by large-scale electricity consumers and jointly operated
with their loads. Consumers benefit through shifting their loads from peak to off-peak
periods and availability of power in case of grid power outages. The grid benefits through
peak-shaving and less chance of congestion in both the transmission and distribution
lines. From the grid’s perspective, this type of storage utilization could be referred to
as distributed storage deployment. Regardless of distributed storage benefits for the grid,
private consumers only invest in storage if its profit outperforms its capital cost.

New mechanisms are needed to aggregate various benefits of storage for large-scale
electricity consumers and compare the costs of consumers with and without storage. This
has not been adequately addressed in the previous contributions in this area.

1.5 Objectives and Scope of the Thesis

The main objectives and scope of the thesis for the main topics are listed below.
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1.5.1 Scheduling of Storage for Exploiting Arbitrage

i) To develop a Real-time Optimal Scheduling (RTOS) algorithm by formulating a
Mixed Integer Linear Programming (MILP) optimization problem which aims to
generate revenue by utilizing arbitrage opportunities available due to the volatility
of electricity prices.

ii) To develop the electricity price modulation as part of the optimization problem to
competitively offer incentive by utility regulators to private investors in storage.

iii) To study the economic viability of the operation of large-scale energy storage tech-
nologies in electricity markets.

1.5.2 Scheduling of Storage for Congestion Relief

i) To develop a new optimal scheduling algorithm based on an adaptive penalizing
mechanism which optimally prepares the storage to follow external congestion relief
commands.

ii) To study the required amount of financial compensation for the storage owner due
to its contribution to congestion relief.

1.5.3 Scheduling of Storage as a Dispatchable Asset

i) To develop a new optimal scheduling algorithm which aims to enable an indepen-
dently operated, locally controlled storage unit to accept external dispatch instruc-
tions issued by the ISO.

ii) To propose a new index to measure the storage dispatchability in a competitive
electricity market.

iii) To investigate the efficacy and feasibility of the proposed algorithm using real-world
data adopted from Ontario’s electricity market.

1.5.4 Scheduling of Load-storage Systems

i) To develop a new real-time multi-step optimization-based model to optimally sched-
ule the joint operation of a large-scale load and a storage unit.
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ii) To incorporate a real-time load forecasting model, suitable for large-scale loads,
into the optimal scheduling algorithm using soft constraints, slack variables, and
penalizing mechanisms.

iii) To examine the operation of the proposed model and to compare the model operation
with the self-scheduling model using a real-world case study.

1.6 Thesis Outline

This thesis has been organized in six chapters and three appendices as follows:
Chapter 1 of the thesis includes an introduction to the research topic along with

its importance to the area of Power and Energy Systems. A comprehensive literature
review over the relevant area is presented. The research potential is also presented in
this chapter. Further, objectives and scope of the thesis are discussed.

Chapter 2 of the thesis mainly aims to investigate the economic viability of grid-scale
storage deployment for massive energy shifting. The behaviour of Ontario’s electricity
market in the past decade is analyzed, and the need for energy storage deployment is
justified to address some recent challenges in the market. Large-scale storage units are
modeled and employed for evaluations. An RTOS algorithm is developed by formulating
an MILP optimization problem which aims to generate revenue by exploiting arbitrage
opportunities available in electricity markets. The optimization algorithm is utilized to
employ a large-scale peak-shaving storage using (i) wholesale and (ii) TOU electricity
prices. The arbitrage profits resulting from the storage operation in both studies are
presented and compared. The price modulation is proposed and examined as a new
and effective approach to provide uniform and at the same time competitive incentive
to privately owned storage by utility regulators. The efficacy of the proposed method to
competitively incentivize storage operation is validated.

Chapter 3 of the thesis mainly seeks to investigate the idea of employing privately
owned large-scale storage for long-term transmission congestion relief. A new algorithm
based on an adaptive penalizing mechanism and soft constraints is proposed. The forecast
of external ISO’s commands for congestion relief is incorporated into the optimization
problem to best prepare the storage for such commands. The feasibility and efficacy of the
proposed algorithm, which aims to optimally employ large-scale storage for congestion
relief, are revealed through various simulation studies.

Chapter 4 of the thesis mainly aims to investigate strategies for storage operation as
a dispatchable asset in the market. A new optimal scheduling algorithm is proposed to
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enable independently operated, locally controlled storage to accept dispatch instructions
issued by ISOs. Storage in this case is referred to as dispatchable storage. The efficacy
and feasibility of the proposed algorithm are validated using real-world data. Revenue
values of dispatchable and non-dispatchable storage are computed and compared.

Chapter 5 of the thesis mainly seeks to investigate the application of medium-scale
storage units for energy shifting at the distribution level. Storage units are proposed to
be procured by large-scale electricity consumers and jointly operated with their loads. A
new model for optimal scheduling of storage-based electrical loads considering both the
CAPEX and OPEX of storage is proposed and formulated. A real-time load forecaster is
incorporated into the optimal scheduling algorithm using soft constraints, slack variables,
and penalizing mechanisms. The application of the proposed model to a real-world large-
scale institutional load in Ontario, Canada, is explained and compared with previous
models in the literature.

The thesis is concluded in Chapter 6. The main outcomes of the thesis are presented.
The contributions of the thesis are listed, and the significance of the thesis is presented.
In addition, the future areas of research are discussed.

Appendix A presents the proof of theorem for load forecasting. Analysis of the load
forecaster is presented in B. Practical aspects for implementation of the load forecaster
are discussed in Appendix C.



Chapter 2

Scheduling of Storage for Exploiting
Arbitrage

2.1 Introduction

In this chapter, the behaviour of Ontario’s electricity market in the past decade is an-
alyzed, and the need for energy storage deployment is justified to address some recent
challenges in the market. Comprehensive economic studies are conducted to investigate
the economic viability of large-scale storage deployment exploiting energy price arbitrage
opportunities. Comparative studies are conducted to investigate the value and bene-
fit of a storage unit optimized to utilize wholesale and contract-based electricity prices.
The electricity price modulation is proposed as part of the RTOS algorithm to virtually
increase energy price arbitrage to competitively offer incentive to storage owners. The
purpose of the proposed incentivisation method is to fill the gap between current and a
stable expected ROR. By implementing the proposed approach, the more the storage is
operated to support the power grid by means of energy shifting/peak shaving, the more
incentives it can receive from the utility regulator; this is because the amount of incentive
is dependent on the charging in off-peak periods and discharging in peak periods which
are appropriate for both the utility regulator/system operator and storage investor.

2.2 Investigation of Ontario’s Electricity Market

Over the past decade, there has been a significant change on how electricity is generated
in Ontario and across the world. The increase in renewable energy penetration into the
market has altered the overall behaviour of the energy market, with negative electricity

16
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Table 2.1: Annual Average of Ontario’s Market Data

Market Ontario’s Wind Imported Exported
Year HOEP Demand Demand Power Power Power

($ /MWh) (MW) (MW) (MW) (MW) (MW)
2003 54.05 18034 17320 — 1192 715
2004 49.95 18535 17456 — 1112 1080
2005 68.49 19081 17919 — 1250 1162
2006 46.38 18544 17244 59 707 1300
2007 47.81 18778 17375 119 822 1403
2008 48.83 19453 16926 162 1288 2527
2009 29.52 17614 15886 265 553 1724
2010 36.25 17963 16232 313 728 1731
2011 30.15 17616 16150 423 447 1467
2012 22.80 17749 16085 508 538 1665
2013 24.98 18099 16066 576 557 2090
2014 32.39 18068 15959 763 562 2177

prices even starting to appear [1]. Negative energy prices represent a greater supply than
the market demands. Most negative price hours appear at night, when the demand is at
its minimum level. At the supply end, issues have appeared as a result of intermittent
operation of sources such as wind, which generate maximum power at night when it is
not needed, and the inflexible generation of NPPs [1].

In this section, using the actual market data obtained from [65], studies are conducted
over Ontario’s market behaviour in the past decade to extract useful information about
sources that have altered the market behaviour. As a result, an argument is made
for deployment of large-scale storage to address the issues that have appeared due to
intermittent nature of renewable sources recently penetrated more in the market.

2.2.1 Annual Changes of Market Data

Actual data, including hourly Ontario energy prices (HOEPs), market and Ontario’s
demands, wind power, imports, and exports are obtained from the Ontario Independent
Electricity System Operator’s (IESO’s) Web site at [65] for 2003 to 2014. The yearly
average values of these data are reported in Table 2.1. For the sake of comparison, those
data that have changed significantly since 2003 are shown in Fig. 2.1. The wind power
data were publicly available since March 1, 2006 [65]; thus, wind data are not indicated
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Different Years in Ontario's Electricity Market
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Figure 2.1: Annual changes of data in Ontario’s electricity market.

in Table 2.1 and Fig. 2.1 from January 1, 2003 till March 1, 2006. Given the trend of
changes in these data, the following observations are presented:

• The annual average of HOEPs has decreased in recent years. As will be discussed
later in this chapter, this is partly because of negative prices appearing more often
in the market since 2008 due to higher supply than the demand in certain hours.

• The annual average values of market and Ontario’s demand have not changed con-
siderably over the years.

• As represented in Fig. 2.1, wind generation has an increasing trend since 2006. In
addition, the annual average value of imports and exports has an overall decrease
and increase, respectively.

2.2.2 Negative Prices in the Market

Fig. 2.2 shows the annual summation of negative electricity prices in Ontario’s market
from 2003 to 2014. As shown in Fig. 2.2, negative prices have appeared more frequently
after 2008 in the market.

In order to investigate the impact of energy suppliers on the appearance of negative
prices, the annual energy supplies by different sources in Ontario’s market, obtained
from [65], are reported in Table 2.2 in TWh and % of the total energy. As indicated in
Table 2.2, while nuclear generation has the maximum contribution, it has not changed
considerably over the years. The second biggest contributer in the market is hydro
generation which has not changed significantly either. However, contribution of coal
generation has substantially decreased over the years with less than 1% in 2014.
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Different Years in Ontario's Market

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

E
ne

rg
y 

P
ric

e 
($

10
00

/M
W

-Y
ea

r)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Figure 2.2: Annual summation of negative prices in Ontario’s electricity market.

Table 2.2: Energy Supply in Ontario by Different Sources (in TWh and % of Total Energy) [65]

Year Nuclear Hydro Coal Gas/Oil Wind Other
2008 84.4 38.3 23.2 11.0 1.4 1.0

53% 24.1% 14.5% 6.9% 0.9% 0.6%
2009 82.5 38.1 9.8 15.4 2.3 1.2

55.2% 25.5% 6.6% 10.3% 1.6% 0.8%
2010 82.9 30.7 12.6 20.5 2.8 1.3

55% 20.4% 8.3% 13.6% 1.9% 0.8%
2011 85.3 33.3 4.1 22.0 3.9 1.2

56.9% 22.2% 2.7% 14.7% 2.6% 0.8%
2012 85.6 33.8 4.3 22.2 4.6 1.3

56.4% 22.3% 2.8% 14.6% 3% 0.8%
2013 91.1 36.1 3.2 18.2 5.2 0.2

59% 23% 2% 12% 3% <1%
2014 94.9 37.1 0.1 14.8 6.8 0.3

62% 24% <1% 10% 4% <1%

Gas/oil generation has been variable with 10% in 2014. Wind generation has consid-
erably increased with 4% in 2014. Other sources (e.g., biofuel and solar) do not have a
significant contribution, and thus, a notable impact on the market behaviour. No accu-
rate correlation is observed between the energy supply and appearance of negative prices
since other factors could be involved in creation of negative prices; however, phasing
out dispatchable sources (i.e., coal-fired plants), inflexible generation of nuclear plants,
must-run hydroelectric units, and generation of non-dispatchable sources (i.e., wind) can
be important causes for appearance of negative prices in the market.
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Table 2.3: Analysis of Negative Prices in Ontario’s Electricity Market

Year Number of Hours HOEP Average ($/MWh) % of Nighttime Hours

2008 38 – 8.8 100
2009 351 – 8.42 78
2010 41 – 22.22 83
2011 166 – 54.92 86
2012 167 – 54.59 91
2013 366 – 5.17 87
2014 861 – 4.24 80

The main reason for phasing out all coal units and integration of more renewable gen-
eration into the grid has been to reduce CO2 emissions. However, most of the renewable
generation cannot be effectively utilized when needed, and thus, might be either taken
off the grid or partly exported to neighbouring markets with very low or negative prices.

Negative energy prices in Ontario’s electricity market have been analyzed and the
results have been reported in Table 2.3. As presented in this table, the number of
negative price hours has an increasing trend in general, i.e., up to 861 hours in 2014
although the average of negative prices has decreased in recent years. In addition, most
negative prices have incurred during nighttime when the demand is minimum, indicating
a higher energy supply than the demand as a reason for incurring negative prices. The
surplus energy has to be exported to neighbouring markets in order to make a balance
between the supply and the demand. Exporting energy to neighbouring markets at
negative prices can cause large financial losses for Ontario’s market. This is because not
only does Ontario’s market take no payment for the energy it exports, but also it has to
pay to eliminate the excess energy in the grid. As more push is applied to minimize the
use of hydrocarbons for electricity generation, the penetration of non-dispatchable and
intermittent energy sources (i.e., renewable sources) into the grid is expected to increase
even more in the future. Thus, more negative prices are expected to arise in the market,
and therefore, more financial losses can incur in the near future.

Grid-scale energy storage can be deployed to shift the surplus energy from off-peak
to peak periods and straightforwardly benefit via arbitrage. Storage generates arbitrage
revenue by purchasing inexpensive energy during off-peak periods and selling it back to
the market during peak-periods when energy is expensive. In such a case, the overall
demand increases during off-peak periods and decreases during peak periods which in
the end could resolve the negative price issues. The intensive CAPEX and relatively
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Figure 2.3: General framework of storage scheduling for utilizing arbitrage and energy shifting.

lower ROR of a storage unit are the most important obstacles for storage deployment in
an electricity market. However, storage deployment will be becoming more economical
in the near future due to the growth in storage technologies and availability of multiple
sources of revenue for storage operation.

2.3 Real-time Optimal Scheduling of Storage

The framework for exploiting arbitrage in the electricity market is represented in Fig.
2.3. As shown in this figure, there is an optimal scheduling algorithm which computes
the optimal charging and discharging powers for storage; these are commanded to the
storage unit. A forecast of market prices are needed by the controller which is provided
by a market price forecaster.

To develop an RTOS algorithm for a privately owned storage unit, an MILP opti-
mization problem is formulated as explained in this section. The optimization horizon
of 24 h with 1-h time steps is considered to determine optimal charging and discharging
power set-points. The time step of 1 h is selected since market prices are updated every
hour in the case-market of this thesis, i.e., Ontario’s electricity market. Since optimal
decisions are made for the present and future time steps (i.e., optimization horizon), the
optimal scheduling problem would be a multi-interval optimization problem. Decisions
are also updated by re-running the optimization calculations every hour to account for
the time-varying nature of electricity prices in the market. In this case, the optimal
scheduling problem includes T/∆T = 24 h /1 h = 24 time steps, each of which represents
a 1-h time interval. All of the optimization variables would be 1-D arrays with 24 ele-
ments decided by the end of each hour of the scheduling horizon. The aforementioned
method is referred to as real-time scheduling on an hourly basis in this thesis; it is also
referred to as rolling time horizon or model predictive control [100], [101].

The objective function of the optimization problem aiming to maximize storage rev-
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enue by exploiting arbitrage opportunities available due to the price volatility is as follows:

Maximize
P S,Chg

t , P S,Dhg
t

∑
t∈Ni

(
(P S,Dhg

t −P S,Chg
t ). EF Mrk

t −CS,DhgO. P S,Dhg
t −CS,ChgO. P S,Chg

t

)
.∆T.(2.1)

The objective function in (2.1) includes the following terms:

Energy price arbitrage benefit: (P S,Dhg
t − P S,Chg

t ) . EF Mrk
t .∆T (2.2)

Storage operating costs: (CS,DhgO . P S,Dhg
t + CS,ChgO . P S,Chg

t ) .∆T, (2.3)

subject to the following operational constraints of the storage:

bS,Chg
t . P S,Chg

min ≤ P S,Chg
t ≤ bS,Chg

t . P S,Chg
max ∀t ∈ Ni (2.4)

bS,Dhg
t . P S,Dhg

min ≤ P S,Dhg
t ≤ bS,Dhg

t . P S,Dhg
max ∀t ∈ Ni (2.5)

SOCS
min ≤ SOCS

t ≤ SOCS
max ∀t ∈ Ni (2.6)

SOCS
t − SOCS

t−1 +
(
P S,Dhg

t /ηS,Dhg − ηS,Chg . P S,Chg
t + ηS,Dsp . SOCS

t

)
.∆T = 0

∀t ∈ Ni, (2.7)

where Ni is the set of time steps defined as follows:

Ni = {i, . . . , i+N − 1}, (2.8)

where i refers to the present time step, defined in a T–hour time notation divided by the
time interval ∆T . For instance, at 5:00 am and for ∆T = 1, i= 5/1 = 5.

In (2.1)–(2.8), except EF Mrk
t , other parameters are non-negative (refer to the nomen-

clature for definitions of parameters).
The objective function, expressed in (2.1), includes the financial benefit of selling

electricity to the market, the cost of purchasing electricity from the market, and the
storage operating cost for charging and discharging within the optimization horizon, i.e.,
24 h. In (2.1), EF Mrk

t is the electricity price forecast at the time step t while it is equal
to the actual price at the present moment, i.e., t= 1. Equations (2.4)–(2.6) express
charging and discharging powers and State of Charge (SOC) constraints for the storage.
It is clarified that storage would not charge and discharge at the same time (i.e., at the
same price level) since this is against the objective of the optimization problem.

In order to generalize the problem, minimum charging/discharging powers of storage
are assumed to be non-zero if the charging/discharging plant has online status. In such
a case, charging and discharging variables are not continuous from zero to the minimum
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value; thus, the optimization problem becomes non-linear. As defined in the nomencla-
ture, binary variables bS,Chg

t and bS,Dhg
t are incorporated into (2.4) and (2.5) to keep the

model within the framework of a linear optimization problem. If a zero value is decided
for charging or discharging power of storage, the corresponding binary variable is set to
zero by the optimization problem; if a positive value is decided for charging or discharging
power, the corresponding binary variable will be set to one by the optimization problem.
Therefore, binary variables are indirectly included in the objective function. If charging
and discharging variables can continuously change from zero to the maximum value, the
binary variables will not affect the validity of the optimal decisions.

The storage energy balance is stated by (2.7), defining the relation of SOC at the
two consecutive time steps t and t − ∆T . Equation (2.7) accounts for power losses in
charging and discharging plants as well as losses resulting from self-discharge. In (2.7),
SOCS

0 (i.e., SOCS
t−1 at t= 1) represents the initial SOC and is assumed to be within the

acceptable range, i.e., 10% of the maximum SOC in this thesis.
The optimization problem including variables, parameters, constraints, and the ob-

jective function are defined in a file, which is called hereafter problem mod file, using
GNU MathProg modeling language in MATLAB. The values for the problem parameters
are generated at each time step by a MATLAB code in another file, hereafter called data
file. The data file includes storage parameters such as minimum and maximum charg-
ing/discharging powers, SOC at the present time step, etc. The real-time actual and
24-h-ahead forecast prices are also inputted to the data file as EF Mrk

t . If a more accurate
price forecast is available up to the first few hours, it could be substituted for the first
few hours of the 24-h-ahead forecast. For instance, in Ontario’s electricity market, the
next 3-h price forecast is published and updated every 1 h [65]. Both data and mod files
are inputted to the GNU Linear Programming Kit (GLPK) package [102]. Then, the op-
timization problem is solved by the GLPK package to find the optimal values of charging
and discharging power set-points. The charging and discharging power set-points at the
present time (i.e., P S,Chg

1 and P S,Dhg
1 ) provide the required commands to the storage. In

the next time step, the SOC is calculated based on the latest power set-point commands.
Then, the RTOS algorithm is executed to derive new power set-point commands. This
process continues until the end of the simulation period.

2.4 Sizing and Modeling of a Storage Unit

Due to its lower CAPEX and its capability to be positively influenced by the availability
of waste heat, a CAES unit is sized and used for evaluations. If other types of large-scale
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Table 2.4: Modeling and Operating Parameters of a Compressed-air Storage Unit

PS,Chg
min = 80%× PS,Chg

max ηS,Chg = ηS,Dhg = 84%

PS,Dhg
min = 3%× PS,Dhg

max CS,Main = 5%×Capital Cost /(Storage Age = 30× 365× 24)

SOCS
min = 10%× SOCS

max CS,ChgO = 60%× CS,Main/PS,Chg
max

ηS,Dsp = 0.0416%× SOCS
t CS,DhgO = 40%× CS,Main/PS,Dhg

max

Table 2.5: Storage Revenue for Perfect Price Forecast (in Million $) and Imperfect Price Forecast
(in Million $ and % of the Ideal Revenue) for a Typical Year in Ontario’s Electricity Market

Storage Reservoir Capacity Perfect Price Forecast Imperfect Price Forecast
(Ideal Revenue) (Real Revenue)

500 MWh $5.4434 M $2.9937 M (54.99%)
1000 MWh $6.9728 M $4.5470 M (65.21%)
1500 MWh $7.1985 M $4.7489 M (65.97%)

2000 MWh $7.2063 M $4.7586 M (66.03%)
2500 MWh $7.1979 M $4.7441 M (65.91%)
3000 MWh $7.1862 M $4.7377 M (65.93%)

storage units, e.g., Pumped-hydro Energy Storage (PHES) or CES units are used, the
main outcomes will not change. A CAES unit is basically composed of three main plants
as follows: Charging plant, compressed-air reservoir plant, and discharging plant. Based
on its application, a CAES unit can have different ratings for each of these three plants.
These ratings for the overall plant can be specified based on a feasibility study to meet
the power available during off-peak time periods versus the power needed during peak
time periods in the market [103]. In this thesis, a CAES unit is sized and modeled in
MATLAB based on the parameters reported in Table 2.4. The capital cost of the plant
is assumed to be $1 Million/MW of discharging power [103].

In order to find the appropriate capacity for the storage reservoir, different sizes have
been chosen, and accordingly, the storage revenue has been computed for a typical year
in Ontario’s electricity market (i.e., 2007) considering both the CAPEX and OPEX of
storage. The results have been reported in Table 2.5. In this table, the ideal revenue
(obtained using the perfect price forecast) and real revenue (obtained using back-casting
as an imperfect forecasting approach) under six different capacities (based on the litera-
ture, e.g., [28]) has been reported. The maximum charging and discharging powers and
the round-trip efficiency of storage have been considered 100 MW and 70%, respectively.
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Table 2.6: Ratings of a Compressed-air Storage Unit

Storage Capital Cost PS,Chg
max PS,Dhg

max SOCS
max

$100 Million 100 MW 100 MW 2000 MWh

According to the results indicated in Table 2.5, the higher the capacity is (from 500 to
2000 MWh), the higher the revenue capture would be. However, there would be no more
potential for increasing revenue capture by increasing the capacity larger than 2000 MWh.
In fact, the revenue could be slightly less at capacities larger than 2000 MWh due to a
higher energy dissipation rate for larger capacities. Both the ideal and real revenue
values are maximum at 2000 MWh capacity, i.e., $7.21 M and $4.76 M, respectively. For
this reason, the optimal capacity is selected as 2000 MWh for the rest of the study.
Considering that the cost of incremental capacity ($/MWh) is quite low for a CAES
unit, different capacities in the above-mentioned range would not considerably impact
the storage capital cost even though increasing the storage capacity may be limited in
practice due to geographical constrains. Nevertheless, a 2000-MWh reservoir capacity
for a CAES unit falls in the ranges proposed in prior studies, e.g., in [28], [104].

The compression and generation power ratings, reservoir capacity, and the capital
cost of the CAES unit are calculated and reported in Table 2.6.

The operating parameters, used for modeling and simulation of the CAES in this
study, are reported in Table 2.4. The values of these parameters are typical and can be
different for different types of CAES technologies. In large-scale storage including the
CAES technology, to maintain the rated efficiency, it is required to operate the compres-
sion plant close to its rated value. Therefore, P S,Chg

min is set to 80% of P S,Chg
max . However,

the generating turbine and its supplying pump can be efficiently operated at very low
power set-points. Energy storage dissipation is assumed to be 1% per day resulting in
1/24% = 0.0416% per hour. The charging efficiency (i.e., ηS,Chg) and discharging effi-
ciency (i.e., ηS,Dhg) have been assumed to be 0.84%, causing a round-trip efficiency of
70% [28], a typical value for a highly efficient unit. With a lower efficiency, the storage
would not be scheduled to exploit lower arbitrage benefits since it might not be able to
overcome the energy losses during the process. Hence, it generates less revenue. Ad-
ditionally, a higher portion of the energy would be lost during the process. Thus, the
absolute value of revenue capture (in terms of $) decreases with a lower efficiency.

Nevertheless, a reasonable variation of the parameters reported in Table 2.4 will not
affect the ultimate outcome of the present study. Using these parameters, the CAES is
modeled, and the optimization problem is solved to obtain optimization variables.



26 Chapter 2. Scheduling of Storage for Exploiting Arbitrage

Table 2.7: Analysis of Ontario’s Wholesale Electricity Market

Ideal Revenue Average Annual Average Annual Arbitrage Benefit
Year (Million $) Purchase Price ($/MWh) Sale Price ($/MWh) ($/MWh)
2006 6.03 24.98 63.26 38.28
2007 7.21 29.99 75.20 45.21
2008 8.86 27.40 82.29 54.89
2009 5.26 10.76 41.63 30.87
2011 4.62 16.72 42.96 26.24

Average 6.39 21.97 61.07 39.10

2.5 Storage to Utilize Wholesale Market Prices

In this section, Ontario’s wholesale market prices have been used for evaluations. The
Ontario IESO publishes two sets of Pre-dispatch Prices (PDPs) as follows: 24-h-ahead
and 3-h-ahead PDPs both with 1-h time resolutions (i.e., ∆T = 1) [65]. The first set is
the next day PDPs (starting from 1 am) published at 3:30 pm Eastern Time every day
while the second set is the next 3-h PDPs published every hour. The challenge of using
IESO-generated PDPs is that the complete next 24-h forecast is not available for every
time step between 1 am to 3 pm. For instance, at 10 am, only the next 15 h, i.e., from
10 am to midnight is available. To mitigate this issue, PDPs at the same hours of the
last day can be duplicated for the missing hours.

The real-time simulation is executed using Ontario’s market prices in different years
for the three cases as presented in Sections 2.5.1–2.5.3.

2.5.1 Optimal Scheduling Using a Perfect Price Forecast

The price forecasts are substituted with the actual prices. In this case, the resulting
revenue would be equal to the ideal revenue. The ideal revenue values (Million $) achieved
using the perfect price forecast, average purchase and sale prices ($/MWh), and the
average arbitrage benefit ($/MWh), i.e., the difference between sale and purchase prices,
are reported in Table 2.7. The differences in ideal revenue for different years, stemmed
from different arbitrage potentials in Ontario’s electricity market for different years. The
higher the arbitrage benefit is, the higher the storage revenue will be.
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Table 2.8: % of Ideal Revenue Capture Using Ontario’s Wholesale Market Prices

Year Conventional Method Back-Casting Method
2006 53.99 68.28
2007 51.11 66.03
2008 39.61 69.28
2009 51.36 73.22
2011 43.25 71.69

Average 47.37 69.35

2.5.2 Optimal Scheduling Using Pre-dispatch Prices

This approach is called conventional algorithm in this study. In this case, the PDPs
issued by Ontario’s IESO are used (imperfect forecast). Table 2.8 reports the revenue
capture for each year and the five-year average in percent of the ideal revenue. It is
observed that a significant portion of revenue is lost due to forecast error in each year.

2.5.3 Optimal Scheduling Using Back-casting Method

In this approach, the storage scheduling for the next 24 h is performed using the actual
prices in the last 24 h. Table 2.8 reports the annual revenue capture in percent of the
ideal revenue by this approach. It is observed that back-casting method has been more
effective than the conventional method in capturing higher revenue, yet a considerable
amount of revenue has been lost due to inconsistency of inter-day market prices.

2.5.4 Real-time versus Non-real-time Scheduling of Storage

In a real-time algorithm, a 24-h-length window is rolled over the prices; this is also known
as the Model Predictive Control (MPC). The storage scheduling could be then updated
using prices in 24 h ahead at each time step. For instance, when the present time is in
the middle of the day, the storage scheduling is performed not only based on the prices
available for the rest of the day, but also according to the prices of the next half day. In
such a case, a more precise schedule could be made for storage, and especially peak and
off-peak prices in the next half of the day could be kept into consideration. However,
in a non-real-time algorithm, the scheduling is performed for the next 24 h while the
storage schedule is not updated until the end of the day; this is also known as the self-
scheduling approach. In such a case, in each day, the prices of the next day are not taken
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Table 2.9: Storage Revenue (in Million $ and % of Ideal Revenue) for a Typical Year

Scheduling Algorithm Perfect Price Forecast Imperfect Price Forecast
(Ideal Revenue) (Real Revenue)

Non-real-time $6.6290 M $2.7202 M (41.03%)
Real-time $7.2063 M $4.7586 M (66.03%)

into consideration, and thus, the storage schedule is not corrected to take advantage of
new arbitrage opportunities in the next day. In addition, under a real-time algorithm,
a more accurate schedule could be created when the updated price forecast is used due
to availability of a more accurate forecast in the next few hours. Moreover, since the
price value in the present time is known under a real-time algorithm, it can substitute
for the first hour of the next 24-h price forecast; this way, a more accurate schedule can
be made, thereby higher arbitrage revenue could be generated.

For numerical evaluation, the optimization problem has been executed using Ontario’s
wholesale market prices in 2007, and the resultant storage revenue has been reported in
Table 2.9. According to the results in Table 2.9, using the perfect price forecast, the
storage revenue is $7.21 M and $6.63 M for real-time and non-real-time algorithms, re-
spectively; these values go down to $4.76 M and $2.72 M, respectively, when an imperfect
price forecast is employed using the back-casting method. Thus, the storage operation
is significantly more profitable when it is scheduled using a real-time algorithm as com-
pared to a non-real-time scheduling approach. These results also indicate that using the
imperfect price forecast, only 66% and 41% of the ideal revenue could be captured un-
der real-time and non-real-time optimal scheduling algorithms. Hence, storage revenue
considerably decreases due to price forecast error under both algorithms.

2.5.5 Profitability of Investment in Storage

In order to analyze the profitability of the investment, the expected ROR needs to be
determined, which could be different for each project depending on its risk profile. In the
following, the ability of storage operated under different algorithms to capture an annual
net revenue equal to 8.34% of the storage capital cost per year is investigated. The annual
net revenue of 8.34% is composed of 5% expected return plus the exhausted capital cost
over the storage life (i.e., 100%/30 = 3.34%). For a $100 M capital investment, this
corresponds to $8.34 M per year. The higher the capital cost is, the higher amount of
net revenue would be required to achieve any given ROR, and thus, the chance of being



2.6. Storage to Utilize Time-of-Use Prices 29

Table 2.10: Profitability Levels of Investment (in %) and Break-even Time (in Year)

Perfect Forecast Conventional Method Back-Casting Method
Profitability Level 77% 36% 53%
Break-even Time 15.65 Yr 33 Yr 22.57 Yr

profitable for the plant would be less. To fill the gap between current and a stable ROR,
incentivisation policies may be applied by the utility regulator to financially support the
storage owner. Storage incentivisation is investigated in Section 2.7 of this thesis.

Given that the profitability level of 100% is required for the plant to generate $8.34 M
per year, the profitability levels for different methods based on the five-year average rev-
enue in Ontario’s electricity market are calculated and compared in Table 2.10. In this
table, the break-even time is also reported which is the amount of time needed for gen-
erated revenue to equal the initial capital cost. As indicated in Table 2.10, although the
plant is not profitable under different algorithms, the back-casting method outperforms
the conventional method due to the higher profitability level and lower break-even time.
This reveals that the use of PDPs issued by the IESO is not appropriate for storage
scheduling due to the significant forecast uncertainty. As a result, storage scheduling
using back-casting method is preferred over the publicly available PDPs.

From another perspective, the internal rate of return (IRR) can be used to examine
and compare the profitability of investment. The IRR values would be 5%, −1%, and 2%
for perfect forecast, conventional method, and back-casting method, respectively. Since
these values are less than the expected value of 8.34%, the plant is not profitable under
different algorithms. However, the back-casting method outperforms the conventional
method due to the higher IRR.

2.6 Storage to Utilize Time-of-Use Prices

In this section, the RTOS algorithm aims to utilize the same CAES technology to utilize
contract-based electricity prices. The TOU electricity prices, as an example of contract-
based electricity prices, are used to optimally schedule the storage where the storage seeks
to generate revenue by exploiting arbitrage opportunities available in TOU rates. The
economic benefits of storage utilizing TOU rates are presented and compared with storage
benefits utilizing wholesale market prices. The simulation results reveal that while both
TOU and wholesale electricity rates do not make any storage investments economically
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Table 2.11: Five-year Average of Storage Revenue (in Million $ and % of Ideal Revenue)

Expected Revenue For Wholesale Market Prices For TOU Rates
Perfect Forecast Conventional Back-casting

$8.34 M $6.39 M $3.03 M $4.43 M $1.92 M

viable, the profitability of the investment in storage operated in the wholesale market is
considerably higher as compared to the TOU rates.

Ontario’s TOU electricity prices are used to optimally schedule the storage. TOU
pricing is a rate structure that reflects the costs associated with electricity production
throughout the day. Prices rise and fall over the course of the day and tend to drop
overnight and on weekends, depending on the demand and the availability of supply.
Currently in Ontario, TOU rates and periods are defined as follows [65], [105]:

• Off-peak is when demand is low and less expensive sources of electricity are used
($75/MWh from 7pm to 7am in summer and winter as well as the entire weekends
and holidays).

• Mid-peak is when the cost of energy and demand are moderate ($112/MWh from
7am to 11am and from 5pm to 7pm in summer as well as from 11am to 5pm in
winter).

• Peak is when demand is highest and more expensive forms of electricity generation
are required ($135/MWh from 11am to 5pm in summer as well as from 7am to
11am and from 5pm to 7pm in winter).

Based on the above-mentioned TOU rates in specific time periods, the optimal schedul-
ing has been executed for one year, and the storage revenue has been calculated. As
discussed in Section 2.5.5, the expected annual revenue should equal 8.34% of the capital
cost in order for the plant to become profitable. For the purpose of comparison, the
five-year average revenue of storage using Ontario’s wholesale market prices for three
different methods as well as the storage annual revenue using summer and winter TOU
prices in Ontario have been calculated and reported in Table 2.11. As reported in Table
2.11, the profitability of the investment in storage, operated in the wholesale electricity
market using different optimization methods, is significantly higher as compared to the
TOU electricity prices.

As an illustration, actual HOEPs and PDPs publicly available in Ontario’s wholesale
electricity market (in April, 2011) has been shown in Fig. 2.4. One can observe in
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Figure 2.4: Hourly Ontario energy and pre-dispatch prices in Ontario’s market (in April 2011).

Table 2.12: Storage Daily Data Utilizing Time-of-Use and Ontario’s Wholesale Prices in 2011

Wholesale Prices Time-of-Use Rates
Average Cost for Daily Energy Purchase $8.7 k $74 k

Average Cost for Daily Energy Sale $17.2 k $78 k
Average Revenue for Daily Energy Trade $8.5 k $4 k

this figure that there are considerably higher peak prices (up to $560/MWh) as well as
significantly lower and even negative off-peak prices (down to –$140/MWh) in wholesale
prices which can be utilized by the storage. Specifically, in the wholesale electricity
market, when the energy price is very low or even negative, storage charging would be a
great advantage since in this way, the average cost for the energy purchase significantly
decreases. For the TOU prices, however, this opportunity does not exist since there is
a constant value for off-peak prices. For instance, the average cost for the daily energy
purchase and the average benefit generated by the daily energy sale are calculated for
TOU rates as well as for Ontario’s wholesale market prices in 2011 as a sample year and
reported in Table 2.12. It can be observed from Table 2.12 that although the energy
being sold by the storage is more expensive for TOU rates compared to wholesale prices,
it is being purchased quite inexpensively for wholesale prices as compared to TOU rates.
As reported in Table 2.12, the average revenue value generated for daily energy trading
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Figure 2.5: General framework of the proposed model for incentivisation of storage.

in wholesale market is $8.5 k, which is more than two times higher than the revenue
generated using TOU rates.

Consequently, although TOU prices have been recently increased, and thus, the stor-
age scheduling models based on contracted electricity prices have been more promising,
the models based on wholesale market prices are still more appropriate due to a higher
profitability level of the storage investment. Nevertheless, for both TOU and wholesale
electricity prices, the price arbitrage is not enough to convince investors to invest in
peak-shaving storage since the current revenue is significantly below the expected one,
i.e., 8.34% of the capital cost per year equal to $8.34 M in this study. As reported in
Table 2.11, while $8.34 M would be required to reach to 100% profitability level, the
ideal profitability level obtained using perfect price forecast, which is not practically pos-
sible, would be 77%. In this case, the profitability level obtained by utilizing wholesale
prices (using back-casting method) and TOU prices are 53% and 23%, respectively. The
revenue shortfall in the back-casting method compared to the ideal revenue is due to
inconsistency of inter-day wholesale prices. Additionally, the significant revenue shortfall
in the convention algorithm is due to sizable forecast error of public-domain PDPs.

To fill the gap between current and a stable expected ROR, utility regulators could
provide incentives to storage owners. The incentive provision to storage technologies
can be justified due to several potential environmental and technical benefits of storage
diffusion. In the following section, an approach for storage incentivisation is proposed
and analyzed.

2.7 Storage Incentivisation

In this section, the electricity price modulation is proposed as a new approach to com-
petitively offer incentive by the utility regulator to storage owners to fill the gap between
current and a stable expected ROR. Using the generic price profile and then real-world
price data from Ontario’s wholesale electricity market, the method is validated. The effi-
cacy and feasibility of the proposed approach to incentivize storage owners are validated
through simulation studies.
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In this section, the RTOS algorithm modulates the electricity prices using the mod-
ulation factor offered by the utility regulator to incentivize the storage owner. The
framework of the proposed model in this chapter of the thesis is depicted briefly in Fig.
2.5. This model is described in detail throughout this chapter of the thesis.

2.7.1 Proposed Method for Storage Incentivisation

As presented in Section 2.5.5, storage has not proven to be attractive for private investors.
As pointed out in Section 2.1, due to the high capital cost, relatively low round-trip effi-
ciency, and smaller electricity price arbitrage, large-scale storage may not be economical
in current electricity markets; however, storage deployment will be becoming more eco-
nomical in the near future due to the growing storage technologies and higher arbitrage
benefits in future electricity markets.

Large-scale storage diffusion for energy shifting can also result in peak shaving. In
this way, peak-shaving generators, which usually cause air pollution, can be shut/turned
down, thereby generating less CO2 emission. Moreover, large-scale energy-shifting storage
can allow a higher penetration of wind and solar energy into electric grids since sporadic
availability of renewable sources can be addressed by introducing storage to (partially)
decouple energy generation from demand, thereby increasing system security [61]. Due
to their considerable environmental and technical benefits, privately owned storage could
be financially supported by utility regulators [60].

One approach to encourage potential investors to invest in storage is that utility
regulators incentivize storage owners in contract setting for storage capital cost. This
could be realized through constant monthly/annual payments to storage owners. In this
approach, however, storage owners are not directly encouraged to operate effectively
in the market to obtain their incentives; therefore, this approach is not appropriate in
competitive electricity markets.

In this chapter of the thesis, price modulation is proposed as part of the RTOS
algorithm to virtually increase energy price arbitrage to competitively offer incentive to
storage owners to fill the gap between current and a stable expected ROR. The use of
modulation factor also demonstrates how much the energy price arbitrage shall increase
until the storage plant becomes economical. By implementing the proposed approach,
the more the storage is operated to support the grid by energy shifting/peak shaving,
the more incentives it can receive from the utility regulator since the amount of incentive
is dependent on charging in off-peak periods and discharging in peak periods which are
appropriate for both the utility regulator/system operator and storage investor.
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One of the advantages of this method is that the level of the price modulation can
be adjusted by utility regulators to incentivize all eligible market players, including stor-
age, according to their technical and environmental benefits. By including the proposed
approach to incentivize the storage as part of the optimization problem, the objective
function would be expressed as follows:

Maximize
P S,Chg

t , P S,Dhg
t

∑
t∈Ni

(
(P S,Dhg

t −P S,Chg
t ).(I)EF Mrk

t −CS,DhgO. P S,Dhg
t −CS,ChgO. P S,Chg

t

)
.∆T.(2.9)

As expressed in (2.9), the electricity price (i.e., EF Mrk
t ) is multiplied by a constant

“I”, called modulation factor where I > 1. Since I > 1, the price arbitrage, the difference
between high and low levels of the price, increases. This causes to increase revenue for
storage owners by purchasing and selling electricity. The extra profit is provided for
storage owners indirectly by the utility regulator. The value of modulation factor “I”
included in (2.9) should be so that the total revenue at least covers the expected revenue
due to investment. In such a case, the extra revenue at least reaches to zero; the zero
extra revenue is the border between economic and uneconomic operations of the storage.
The storage extra revenue is defined in (2.10), as follows:

Extra Revenue:
∑
t∈Ni

(
(P S,Dhg

t − P S,Chg
t ) . (I)EF Mrk

t − CS,DhgO . P S,Dhg
t

−CS,ChgO . P S,Chg
t

)
.∆T −N × (CS,EInc + CS,Cap), (2.10)

where the total revenue and expected revenue over the optimization horizon are expressed
by (2.11) and (2.12), respectively, as follows:

Total Revenue:
∑
t∈Ni

(
(P S,Dhg

t − P S,Chg
t ) . (I)EF Mrk

t

−CS,DhgO . P S,Dhg
t − CS,ChgO . P S,Chg

t

)
.∆T (2.11)

Expected Revenue: N × (CS,EInc + CS,Cap), (2.12)

where CS,Cap is the hourly capital cost, defined by wasting the capital cost over the life of
the plant, and CS,EInc is the hourly expected income due to investment As expressed in
(2.10), the summation of these constant parameters has been subtracted from the total
revenue to express the storage revenue excluding the capital cost and expected income
over the optimization horizon, named extra revenue in this study.
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Figure 2.6: Generic electricity price profile.

Table 2.13: Different Levels of the Generic Price Profile Shown in Fig. 2.6

Price Levels ($/MWh)
Price Profiles For Weekdays For Weekends

A B C A B C
Profile 1 60 90 120
Profile 2 60 120 180 50 60 70
Profile 3 60 150 240

Theoretically, Imin can be calculated as stated in the following where the extra revenue
(see (2.10)) equals zero:

Imin =
∑

t∈Ni
(CS,DhgO . P S,Dhg

t + CS,ChgO . P S,Chg
t )∑

t∈Ni
(P S,Dhg

t − P S,Chg
t ) . EF Mrk

t

+ N × (CS,EInc + CS,Cap)∑
t∈Ni

(P S,Dhg
t − P S,Chg

t ) . EF Mrk
t

. (2.13)

Imin in (2.13) is the minimum required modulation factor to meet the expected revenue
in each optimization horizon. However, in practice, Imin cannot be calculated simply by
using (2.13) since electricity prices do not follow a constant pattern in each optimization
horizon. In this case, the objective is not to make the storage work economically in every
single optimization horizon; instead, it is expected that the monthly or annual extra
revenue of storage at least reaches to zero. This is investigated in Section 2.7.2.1.

2.7.2 Numerical Evaluation

2.7.2.1 Using the Generic Price Profile

The RTOS algorithm formulated in Section 2.3 (considering the price modulation mech-
anism as stated by (2.9)) has been executed in a simulation environment. Three different
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price profiles each with different modulation factors are used for evaluations. The generic
price profile is shown in Fig. 2.6 while price levels (A, B, and C) are defined in Table 2.13
for three cases (typical price levels in Ontario’s market [65]). Different values of round-
trip efficiency for storage between 30% and 70% are considered. The extra revenue of
the CAES sized in Section 2.4, is calculated and compared for different cases.

The RTOS algorithm is simulated for a one-year time period considering three dif-
ferent modulation factors and different round-trip efficiencies of storage. Annual extra
revenue is calculated for the three predefined price profiles and shown in Fig. 2.7 in terms
of million dollars. As represented in Fig. 2.7, as storage efficiency increases, the revenue
increases almost linearly since by increasing the efficiency, the energy loss in storage
system decreases. As novel technology materializes, the storage efficiency increases, and
thus, storage utilization will become more economical.

Moreover, as represented in Fig. 2.7 (the left-hand and middle columns), the curves
at the left side of breakpoints are approximately flat. In this area, storage is not operated
since it cannot overcome the OPEX. As expressed in the following, at the left side of the
breakpoint efficiency, the arbitrage benefit is less than the OPEX:

∑
t∈Ni

(P S,Dhg
t − P S,Chg

t ) . EF Mrk
t .∆T <

∑
t∈Ni

(CS,DhgO . P S,Dhg
t + CS,ChgO. P S,Chg

t ) .∆T. (2.14)

As represented in Fig. 2.7, there are different breakpoints for Profile 1 (left-hand
column) and Profile 2 (middle column), and there is no such a point for Profile 3 (right-
hand column) considering storage efficiencies from 30% to 70%. As reported in Table
2.13, each profile has a different High to Low Price Ratio (HLPR) (i.e., C/A ratio) in
weekdays. The larger the HLPR is, the smaller the efficiency breakpoint will be. Since the
efficiency at the breakpoint depends on the value of HLPR, and HLPR does not change
by price modulation, the breakpoint efficiency does not change at different modulations.

The minimum SOC constraint (see (2.6)) forces the storage once a day for compensa-
tion of energy dissipation to maintain the SOC above or equal to the SOCS

min. Since any
operation at efficiencies smaller than the breakpoint causes financial loss, as shown in
Fig. 2.7 (left-hand column), higher operations of storage results in lower extra revenue.

As the curves of Fig. 2.7(a, d, and, g) represent, in the case of un-modulated prices
(i.e., at I = 1), the annual extra revenue is negative for most of the operating points;
negative extra revenue in one operating point means that using the storage is no longer
economical. However, by modulating the price profiles, the obtained annual extra revenue
increases for the operating points with efficiencies larger than the breakpoint efficiency. If
the storage operating point is smaller than the breakpoint efficiency, the price modulation
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Figure 2.7: Annual extra revenue of storage operation vs. round-trip efficiency for three price
profiles (see Table 2.13) each with three different price modulation factors. (a), (b), and (c):
For price Profile 1; (d), (e), and (f): For price Profile 2; (g), (h), and (i): For price Profile 3.

does not have considerable effect on storage benefit since storage is not operated.
Moreover, comparing the HLPR value of price profiles, it can be observed that the

larger the HLPR is, the more extra revenue is obtained (compare Fig. 2.7 (left-hand,
middle, and right-hand columns). By increasing the HLPR in Profile 2 compared to
Profile 1 and Profile 3 compared to Profile 2, the extra revenue increases.

2.7.2.2 Using Real-world Data

In this section, wholesale electricity prices publicly available in Ontario’s market are used
for evaluations. The RTOS algorithm formulated in Section 2.3 (considering the price
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Figure 2.8: Five-year average of storage extra revenue vs. modulation factor I; (a): for the
perfect price forecast and (b): for an imperfect price forecast in Ontario’s electricity market.

Table 2.14: Five-year Average of the Extra Revenue in Ontario’s Market (Based on Fig. 2.8)

Perfect Forecast (Fig. 2.8 (a)) Imperfect Forecast (Fig. 2.8 (b))
I = 1 I = 1.3 I = 1 I = 1.87

Storage Extra Revenue −$1.94 M $0.00 M −$3.9 M $0.00 M

modulation mechanism as stated by (2.9)) has been executed in a simulation environment
for Ontario’s market from 2006 to 2009 and 2011. Two studies have been conducted as
follows: In one study, the price forecast is assumed to be perfect; this means that the
price forecast is substituted with the actual prices. The second study is conduced using
an imperfect forecast of market prices using the back-casting method.

The annual extra revenue of storage operation in Ontario’s market from 2006 to 2009
and 2011 has been calculated and shown in Fig. 2.8 (a) and Fig. 2.8 (b) for perfect and
imperfect price forecasts, respectively, at different price modulation factors. Different
modulation factors are employed to evaluate the impact of electricity price modulation
on storage revenue in case of a real-world market. The five-year average of extra revenue
has been reported in Table 2.14 for two important values of modulation factors: I = 1
(pertaining no incentive) and Imin, where Imin is considered as the modulation factor in
which the annual extra revenue of storage operation reaches to zero.

As represented in Fig. 2.8 and Table 2.14, at I = 1, the annual extra revenue is
negative revealing that the storage is not able to return the expected revenue plus OPEX.
Moreover, the annual extra revenue increases linearly by increasing the price modulation
factor revealing the efficacy and feasibility of the proposed method to incentivize storage
owners. As reported in Table 2.14 for the perfect forecast, I = 1.3 is required in order
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for the storage to become economical. For the imperfect price forecast, since the forecast
error reduces the storage revenue, larger modulation factors are required (i.e., I = 1.87)
to fill the gap between current and a stable expected ROR.

As demonstrated in this study, historical price data of an electricity market can be
used to investigate the impact of price modulation on the storage operation; then, the
level of the price modulation can be offered by the utility regulator.

According to the simulation studies, if storage is being scheduled using contract-based
electricity prices with the same periods as the TOU prices, the desired off-peak rates need
to be 76% of the current off-peak rates (i.e., 0.76 × 75 = $57/MWh) in order for the
plant to return the expected revenue. From another point of view, the desired peak rates
need to be 130% of the current peak rates (i.e., 1.3 × 135 = $176/MWh) in order for the
plant to return the expected revenue.

2.8 Conclusion

A numerical analysis is conducted over Ontario’s electricity market data. It is indicated
that the overall behaviour of the energy market has been altered, with negative electric-
ity prices even starting to appear. The application of large-scale energy storage units
independently operated in the market is considered for substantial energy shifting. A
Real-time Optimal Scheduling (RTOS) algorithm is developed by formulating a Mixed
Integer Linear Programming (MILP) optimization problem which aims to generate rev-
enue by exploiting arbitrage opportunities available in electricity markets. The price
modulation is proposed and examined as an effective approach to provide uniform and
at the same time competitive incentive to privately owned storage by utility regulators.

It is demonstrated that using the back-casting method, the five-year average revenue
of storage for Ontario’s wholesale market prices equals $4.43 M, whereas the annual rev-
enue of storage for the Time-of-Use (TOU) rates equals $1.92 M. It is presented that the
ideal profitability level obtained using the perfect price forecast is 77%. The profitability
level obtained by utilizing a forecast of wholesale market prices and TOU rates are 53%
and 23%, respectively. The storage revenue capture could increase and become closer to
the ideal revenue if the error of the price forecast decreases.

It is indicated that for the perfect price forecast in Ontario’s market, it is required to
modulate electricity prices by 1.3 to meet the expected revenue for storage owners. It is
demonstrated that the price forecast inaccuracy reduces the storage revenue, and thus,
a higher price modulation factor (i.e., 1.87) would be required to fill the gap between
current and a stable expected Rate of Return (ROR).



Chapter 3

Scheduling of Storage for Congestion
Relief

3.1 Introduction

The trend of integrating more non-dispatchable renewable sources into the electric grid
and phasing out dispatchable fossil-fueled power plants in the near future reduces the
operational flexibility, increases the chance of transmission congestion and endangers the
stability of electric system. Utilities are investigating the application of large-scale stor-
age to address some of these imminent challenges to their power systems. In this chapter
of the thesis, the application of privately owned large-scale storage for the purpose of con-
gestion relief in transmission systems as an ancillary service is investigated. It is noted
that currently some electricity markets do not recognize congestion relief as an ancillary
service since avoiding congestion is a part of the scheduling; however, this may change
in the future with integration of energy storage units in the market. It is demonstrated
that in conventional optimal scheduling algorithms for storage, the storage cannot effec-
tively contribute to congestion relief since the scheduling algorithm has not prepared the
storage in advance. Hence, a new RTOS algorithm is proposed that aims to generate
revenue primarily by exploiting electricity price arbitrage opportunities in the electricity
market while optimally preparing the storage to maximize its contribution to congestion
relief as an ancillary service. The efficacy and feasibility of the proposed algorithm are
validated using the generic price profile and real-world price data from Ontario’s whole-
sale electricity market. An analysis is presented regarding the appropriate amount of
financial compensation for the storage owner due to its contribution to congestion relief
in the studied electricity market.

40
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Figure 3.1: General framework of the proposed model for arbitrage and congestion relief.

3.2 Problem Description and Hypotheses

This chapter of the thesis investigates the idea of developing a new RTOS algorithm
that would enable a large-scale storage to contribute to long-term congestion relief by
injecting/absorbing a certain amount of power to/from the grid. The amount of power
required for congestion relief is determined based on system analysis at the ISO’s end, and
then commanded to the storage controller by the ISO, while it is forecast and incorporated
into the RTOS algorithm to optimally prepare the storage for such commands.

It is emphasized that in this study, the storage does not aim to relieve congestion
problems which might occur due to system contingencies, such as transformer blow up
or a line tripping; these types of events are not predictable. Instead, storage is employed
to address congestion problems that can also occur due to the following reasons which
could be predictable to some extent: unconstrained dispatch of generators and loads in
a competitive electricity market and load or renewable generation growth which might
cause overloads of transmission systems. It is also worth mentioning that congestion in
the line is location specific, and therefore, storage may not be able to relieve congestion
if the congestion location is far from the storage location. Nevertheless, in this study,
the aim is to enable the storage to optimally accept congestion relief commands from the
ISO whenever storage is technically able to relieve congestion.

For congestion relief using a privately owned storage unit that follows external com-
mands, the following two approaches are possible: One approach is that the external
commands are not incorporated into the optimization problem. In this case, (i) the opti-
mization process is stopped when the command is issued in real-time; (ii) the storage will
follow the command; (iii) and after that, the RTOS algorithm will resume. However, in
this approach, the storage cannot be prepared for such commands prior to the command
issuing moment, and thus, the storage contribution to congestion relief would be mini-
mal. The alternative approach, adopted in this chapter of the thesis, is to incorporate
the external congestion relief commands into the RTOS algorithm.
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Fig. 3.1 represents the framework of the proposed model, which aims to optimally
schedule a privately owned storage unit in the competitive electricity market while the
storage can contribute to congestion relief by following the external ISO’s commands.
The proposed model in Fig. 3.1 will be described in detail in the thesis. In the proposed
model, the following assumptions have been made:

i) The storage unit is able to freely purchase/sell electricity from/to the electricity
market.

ii) Since the storage in the proposed algorithm is a privately owned asset, it is scheduled
at the owner’s end (locally controlled) to exploit energy price arbitrage opportuni-
ties in the DAM. The storage controller also accepts ISO’s signal to contribute to
transmission congestion relief. The signal can be communicated through internet,
telephone, etc.

iii) Due to its contribution to congestion relief in specific time periods, the storage owner
is financially compensated by the ISO. This financial benefit is assumed to be equal
to or larger than the arbitrage benefit the storage would have obtained from its
regular operation in those time periods.

iv) The setpoint for the power level, requested from the storage controller by the ISO, is
assumed to be the ISO’s need to relieve the congestion which may be fully/partially
followed by the storage controller in this analysis. This approach is adopted to
better compare different scheduling algorithms in terms of the percentage of their
contribution to congestion relief. In reality, the ISO’s official command is determined
based on storage capacity; in real-time, the commands are always followed by storage.

3.3 Proposed Optimization-based Algorithm

The proposed RTOS algorithm is realized by formulating an MILP optimization prob-
lem. The optimization horizon of 24 h (T = 24 h) with a 1-h time step (∆T = 1 h) is
considered. The objective function, which aims (i) to maximize storage revenue by ex-
ploiting arbitrage opportunities available due to price volatility in the DAM and (ii) to
optimally prepare the storage to maximize the storage contribution to congestion relief,
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is formulated as follows:

Maximize
P S,Chg

t , P S,Dhg
t , P Slk,CR′

t , P Slk,CR′′
t

∑
t∈Ni

(
(P S,Dhg

t − P S,Chg
t ) . EF Mrk

t − CS,DhgO . P S,Dhg
t

−CS,ChgO . P S,Chg
t − ρP nl,CR

t . (P Slk,CR′

t + P Slk,CR′′

t )
)
.∆T. (3.1)

This includes the following terms:

(i) Electricity price arbitrage benefit: (P S,Dhg
t − P S,Chg

t ) . EF Mrk
t .∆T

(ii) Storage operating costs: (CS,DhgO . P S,Dhg
t + CS,ChgO . P S,Chg

t ) .∆T

(iii) Penalty terms: ρP nl,CR
t . (P Slk,CR′

t + P Slk,CR′′

t ) .∆T ,

subject to the following operational constraints of the storage:

bS,Chg
t . P S,Chg

min ≤ P S,Chg
t ≤ bS,Chg

t . P S,Chg
max ∀t ∈ Ni (3.2)

bS,Dhg
t . P S,Dhg

min ≤ P S,Dhg
t ≤ bS,Dhg

t . P S,Dhg
max ∀t ∈ Ni (3.3)

SOCS
min ≤ SOCS

t ≤ SOCS
max ∀t ∈ Ni (3.4)

SOCS
t − SOCS

t−1 +
(
P S,Dhg

t /ηS,Dhg − ηS,Chg . P S,Chg
t + ηS,Dsp . SOCS

t

)
.∆T = 0

∀t ∈ Ni, (3.5)

and subject to the following constraint set to fulfill the ISO’s command for contribution
to congestion relief:

P S,Chg
t − P S,Dhg

t = PMCR
t ∀t ∈ Ni ∧MCR

t = 1 (3.6)
PMCR

t = PCR
t + P Slk,CR

t ∀t ∈ Ni ∧MCR
t = 1 (3.7)

P Slk,CR
t = P Slk,CR′

t − P Slk,CR′′

t ∀t ∈ Ni ∧MCR
t = 1 (3.8)

0 ≤ P Slk,CR′

t ≤ (P S,Chg
max + P S,Dhg

max ) ∀t ∈ Ni ∧MCR
t = 1 (3.9)

0 ≤ P Slk,CR′′

t ≤ (P S,Chg
max + P S,Dhg

max ) ∀t ∈ Ni ∧MCR
t = 1, (3.10)

whereNi is the set of time steps, rolling over the T–hour time notation, defined as follows:

Ni = {i, . . . , i+N − 1}, (3.11)

where i refers to the present time step, defined in a T–hour time notation divided by the
time interval ∆T . For instance, at 5:00 am and for ∆T = 1, i= 5/1 = 5.

To meet storage maximum ratings, the commanded power for congestion relief shall
be in the following range in case of the charging commanded power (absorbing power
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from the grid):

P S,Chg
min ≤ PCR

t ≤ P S,Chg
max ∀t ∈ Ni, (3.12)

or in the following range in case of the discharging commanded power (injecting power
to the grid):

−P S,Dhg
max ≤ PCR

t ≤ −P S,Dhg
min ∀t ∈ Ni, (3.13)

or equal to zero in case of the zero commanded power. ISO’s command mode for con-
gestion relief shall be as follows:

MCR
t =

0 storage contribution to congestion relief is not required

1 storage contribution to congestion relief is required.
(3.14)

In (3.1)–(3.14), except EF Mrk
t and PCR

t , other parameters are non-negative (refer to
nomenclature section for definitions of parameters).

The objective function, stated in (3.1), includes the financial benefit of selling elec-
tricity to the market, the cost of purchasing electricity from the market, and the storage
OPEX for charging and discharging within the optimization horizon. It also includes
penalty terms which will be explained in the following sections. In (3.1), EF Mrk

t is the
electricity price forecast at the time step t while it is equal to the actual price at the
present moment, i.e., t= 1.

Equations (3.2)–(3.4) express charging and discharging powers and SOC constraints
for the storage. The energy balance of the storage is expressed in (3.5), which defines
the relation of SOC at the two consecutive time steps t and t−∆T .

In order for the RTOS algorithm to follow congestion relief commands by the proposed
approach in Section 3.2, a constraint set must be added to the optimization problem to
modify storage charging/discharging power set points to the commanded ones. The
forecast of congestion relief commands with a 24-h optimization horizon and the 1-h
time step must be incorporated into the RTOS algorithm to prepare the storage for
such commands. However, due to command forecast error, the storage might not have
been completely prepared to follow the commands in real-time. In such a case, hard
constraints may not be suitable since they force the storage to become prepared based
on an imperfectly forecast command up to 24 h before real-time. Moreover, infeasibility
of the optimization problem might be inherent when hard constraints are considered.
Thus, it is proposed to formulate a soft constraint set for congestion relief, expressed
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Figure 3.2: Operation of the algorithm considering system operator’s command forecast.

in (3.6)–(3.10). In (3.6)–(3.10), MCR
t and PCR

t are two parts of the congestion relief
command defined as follows:

MCR
t =

Forecast command mode ∀t ∈ Ni ∧ t , 1

Actual command mode ∀t ∈ Ni ∧ t = 1
(3.15)

PCR
t =

Forecast command power ∀t ∈ Ni ∧ t , 1

Actual command power ∀t ∈ Ni ∧ t = 1.
(3.16)

As stated in (3.15) and (3.16), in real-time (i.e., t= 1), the actual command (i.e., mode
and power) substitutes for the forecast.

Fig. 3.2 represents how the proposed RTOS algorithm, formulated in (3.1)–(3.10), op-
erates to issue the required charging/discharging commands (i.e., P S,Chg

t and P S,Dhg
t ) to

the storage by following ISO’s commands. When MCR
t equals one, the RTOS algorithm

forces the storage to follow PMCR
t , which is the modified version of PCR

t by means of a
slack variable (see (3.7)). As represented in Fig. 3.2, P S,Chg

t and P S,Dhg
t are not simulta-

neously assigned non-zero values by the RTOS algorithm since charging and discharging
of the storage at the same price level is not economical.

When MCR
t equals zero, the constraint set stated in (3.6)–(3.10) is relaxed, and thus,

P S,Chg
t and P S,Dhg

t are assigned optimal values to generate revenue by exploiting arbitrage
benefits. Real-time charging and discharging commands decided by the RTOS algorithm
and the real-time actual market price are used to calculate the financial benefit from
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selling electricity minus the cost for purchasing electricity and minus operating costs,
which results in revenue for a certain period (daily or annually).

P Slk,CR
t is a slack variable optimally decided within a pre-defined range to adjust

the commanded power (i.e., PCR
t ) so that the optimization problem can converge in

case the storage cannot strictly follow the ISO’s command due to its internal opera-
tional constraints. As noted in (3.8), P Slk,CR

t has been split into two positive auxiliary
slack variables: P Slk,CR′

t and P Slk,CR′′

t ; they can provide positive and negative values for
P Slk,CR

t , respectively. Since P Slk,CR
t can take both positive and negative values, it cannot

be directly penalized in the objective function. Thus, it has been split into two positive
variables; thereby, the variables are penalized with a penalty factor i.e. ρP nl,CR

t (see (3.1))
to preferably prevent non-zero values. If P Slk,CR′

t or P Slk,CR′′

t takes any non-zero value,
the storage revenue is reduced. Hence, these variables are set to zero by the optimization
problem unless there is a need of non-zero values in order for the optimization problem
to converge. Zero values for these slack variables are preferred since every non-zero value
means the storage is not/partially following the ISO’s commands (or need), and therefore,
is not/partially contributing to congestion relief.

In (3.9) and (3.10), the upper bounds for slack variables are considered as P S,Chg
max +P S,Dhg

max

to enable the storage controller to fully bypass the commanded power (i.e., PCR
t ), if re-

quired; at the same time, it would provide the possibility of charging/discharging for the
storage with full ratings, contrary to PCR

t .

3.4 Numerical Analysis of the Proposed Algorithm

The same CAES unit sized in Section 2.4 is used for numerical analysis of the pro-
posed algorithm in this chapter. The ratings of the CAES are as follows: P S,Chg

max =
P S,Dhg

max = 100 MW, SOCS
max = 2000 MWh, capital cost = $100 Million. The reservoir

with 2000 MWh capacity is basically larger than what is needed for regular charging and
discharging in a typical day. However, as will be discussed later in Section 3.4.3.2, a
storage unit with a larger reservoir could have a higher contribution to congestion relief
when the storage absorbs power from the grid. Moreover, when the storage is built with
a larger reservoir, it can deal with the uncertainties associated with DAM price forecast
to some extent.

The charging efficiency (i.e., ηS,Chg) and discharging efficiency (i.e., ηS,Dhg) have been
assumed to be 0.84%, causing a round-trip efficiency of 70%, a typical value for a highly
efficient unit.
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Figure 3.3: (a1)–(a6): Price profile, (b1)–(b6): Actual (bold line) & forecast (dotted line)
Congestion Relief (CR) mode (MCR

t ) and power (PCR
t ), (c1)–(c6): Power exchange (positive:

charging and negative: discharging), and (d1)–(d6): Slack variable (PSlk,CR
t ).

3.4.1 Numerical Analysis Using the Generic Price Profile

The generic electricity price profile (see Figs. 3.3 (a1)–(a6)), based on Fig. 2.6, is em-
ployed for the analysis of the proposed RTOS algorithm in this section. In order to
penalize the slack variables P Slk,CR′

t and P Slk,CR′′

t in the objective function of (3.1), a
very large time-independent value has been considered for the penalty factor ρP nl,CR

t in
this section.

The RTOS algorithm has been executed for 24 h by using the generic price profile for
six types of congestion relief command forecasts, as mentioned on top of each column of
Fig. 3.3. These six cases are listed as follows:

• Case 1: Perfect forecast of command

• Case 2: No forecast of command
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Table 3.1: Storage Operation at Six Cases of Command Forecasting as Represented in Fig. 3.3

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Revenue (k$) 9.53 11.04 7.28 10.29 9.53 9.54

Contribution to Congestion Relief (MWh) 50 0 50 25 50 20

• Case 3: 50% over-forecast of command

• Case 4: 50% under-forecast of command

• Case 5: 1 h lagging-forecast of command

• Case 6: 1 h leading-forecast of command

The simulation results are presented in Fig. 3.3 and Table 3.1. In all cases, the actual
commanded power is assumed to be −50 MW (i.e., 50 MW discharging) issued by the ISO
in the 19th hour of the day while it is scaled and shifted differently to generate different
types of command forecast errors.

In Fig. 3.3, the price profiles are represented in (a1)–(a6). The actual (bold line)
and forecast (dotted line) of congestion relief commands are represented in (b1)–(b6) in
which the actual and forecast congestion relief modes (i.e., MCR

t ) are represented, and
the actual and forecast congestion relief powers (i.e., PCR

t ) are stated in each figure.
The power exchanges are represented in (c1)–(c6) where the positive and negative power
exchanges indicate charging and discharging, respectively. The values of slack variable
of congestion relief power, i.e., P Slk,CR

t are represented in (d1)–(d6).
The storage generates revenue by purchasing and charging inexpensive energy at low

prices, and then discharging and selling it back to the market at high prices; it can also
make additional profit if and when it has made any contribution to congestion relief. The
storage operation under six types of congestion relief command forecasting are described
in the following cases:

3.4.1.1 Perfect Forecast of Congestion Relief Command

In this case, the congestion relief command is perfectly forecast and incorporated into the
RTOS algorithm. Fig. 3.3 (first column) represents the results for this case. As repre-
sented in Fig. 3.3 (c1), the storage completely follows the ISO’s command by discharging
as commanded by the ISO since it has been fully prepared for it prior to real-time, caus-
ing full financial benefits for contribution to congestion relief. The storage daily revenue
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and its contribution to congestion relief for this case are reported in Table 3.1 (second
column). On top of this revenue, storage receives financial benefits from the ISO for its
contribution to congestion relief.

3.4.1.2 No Forecast of Congestion Relief Command

In this case, the forecast of the congestion relief command is not incorporated into the
optimization problem, thereby the RTOS algorithm only considers the actual command
issued by the ISO at the present time step. Fig. 3.3 (second column) represents the
results for this case. As represented in Fig. 3.3 (c2), the storage is not able to follow
the ISO’s command since no discharging occurs when the actual command is issued,
causing no financial benefits from contribution to congestion relief. As represented in
Fig. 3.3 (d2), the slack variable power (i.e., P Slk,CR

t ) is equal to the negative value of
the commanded power (i.e., −PCR

t ); thus, the modified commanded power (i.e., PMCR
t )

results in zero (see (3.7)). The command has been fully bypassed by the RTOS algorithm
since storage has not been prepared for it prior to real-time; thus, storage has no stored
energy to discharge when the actual command is issued. The storage daily revenue and
its contribution to congestion relief for this case are reported in Table 3.1 (third column).
Storage will not receive extra financial benefit on top of this revenue since it is not
contributing to congestion relief.

The higher revenue of the second case compared to that of the first case is because
more energy has been sold to the market in peak hours of the price resulting in more
revenue (compare Figs. 3.3 (c1) and (c2)).

3.4.1.3 Over-forecast of Congestion Relief Command

To investigate the impact of error in the forecast of commanded power set-point, a case
has been studied in this section including over-forecasting of congestion relief command.
As represented in Fig. 3.3 (third column), the actual commanded power for congestion
relief is 50% over-forecast (equal to −75 MW). As represented in Fig. 3.3 (c3), the
storage completely follows the ISO’s command by discharging as commanded, causing
full financial benefits for contribution to congestion relief. The storage daily revenue
and its contribution to congestion relief for this case are reported in Table 3.1 (fourth
column). The revenue of this case is less than that of the case with perfect (ideal)
command forecast ($9.53 k) since the storage sells less energy in the peak hours of the
price to keep enough energy for 75 MW discharging in the next hours. However, since
the actual commanded power will be for 50 MW discharging, a portion of the charged
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energy will be left in the storage reservoir resulting in less financial benefit. On top of
the regular revenue, storage receives financial benefits from the ISO for contribution to
congestion relief.

3.4.1.4 Under-forecast of Congestion Relief Command

As represented in Fig. 3.3 (fourth column), the actual commanded power for congestion
relief is 50% under-forecast (equal to −25 MW). Due to the command under-forecasting,
the storage does not have enough energy to discharge when the actual command is
issued (Fig. 3.3 (c4)). The command is partially bypassed (Fig. 3.3 (d4)), causing
partial financial benefits from contribution to congestion relief. The storage daily revenue
and its contribution to congestion relief for this case are reported in Table 3.1 (fifth
column). On top of this revenue, storage receives financial benefits from the ISO due
to its contribution to congestion relief. However, storage will not fully benefit from
contribution to congestion relief due to partially (not fully) following the ISO’s command.

3.4.1.5 Lagging Forecast of Congestion Relief Command

As represented in Fig. 3.3 (fifth column), the command is forecast with one hour delay.
As shown in Fig. 3.3 (c5), the storage completely follows the ISO’s command through
discharging as commanded by the ISO. In such a case, storage receives full financial ben-
efits for contribution to congestion relief. The storage daily revenue and its contribution
to congestion relief for this case are reported in Table 3.1 (sixth column). On top of
this revenue, storage receives financial benefits from the ISO due to its contribution to
congestion relief.

3.4.1.6 Leading Forecast of Congestion Relief Command

As represented in Fig. 3.3 (sixth column), the command is forecast one hour ahead of
the actual command. Due to the leading-forecast of the command, storage does not have
enough energy to discharge (see Fig. 3.3 (c6)). The command is partially bypassed in this
case (see Fig. 3.3 (d6)), causing partial financial benefit from contribution to congestion
relief. The command is partially bypassed since considerable amount of energy has been
released one hour before the actual command is issued, and thus, storage does not have
enough energy to follow the actual command. This occurs because when the present time
step reaches to one hour prior to the actual command, the RTOS algorithm incorrectly
assumes that there is no congestion relief command in the hours ahead, thereby releasing
energy to generate revenue (see Fig. 3.3 (c6)). The storage daily revenue and its contribu-
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tion to congestion relief for this case are reported in Table 3.1 (seventh column). On top
of this revenue, storage receives financial benefits from the ISO due to its contribution to
congestion relief. However, storage will not fully benefit from contribution to congestion
relief due to partially (not fully) following the ISO’s command.

3.4.1.7 Outcomes

The main outcomes of the analysis presented in Section 3.4.1 are summarized as follows:

• As reported in Table 3.1, when the storage is not/partially contributing to conges-
tion relief, the storage revenue might be higher compared to the case with perfect
contribution to congestion relief, since the storage can release the energy at higher
prices. However, in these cases, the storage will make no/partial extra financial
benefits from contributing to congestion relief.

• If the command forecast (mode: MCR
t and power: PCR

t ) is not incorporated into the
optimization problem, the storage controller might fully bypass the actual command
issued in real-time since the storage has not been at all prepared for it.

• If the command forecast has sizable error but incorporated into the optimization
problem, it may be modified by the slack variable to comply with storage con-
straints; however, it is not fully bypassed since the storage has been partially pre-
pared for it.

3.4.2 Proposed Adaptive Penalizing Mechanism

One approach to penalize violation of congestion relief command is to consider a constant
positive value for the penalty factor ρP nl,CR

t for the entire optimization horizon. In such
a case, if ρP nl,CR

t is considered too small in the present study, the RTOS algorithm will
inappropriately compromise the congestion relief constraint set (see (3.6)–(3.10)) in real-
time; hence, the constraint set is more likely to be bypassed. On the other hand, if ρP nl,CR

t

is considered too large, the RTOS algorithm will inappropriately compromise the optimal
charging/discharging power set-points of the storage within the optimization horizon to
prepare the storage based on an imperfectly forecast congestion relief command.

In this chapter of the thesis, it is proposed to take an adaptive approach by defining
the penalty factor ρP nl,CR

t as follows:

ρP nl,CR
t =

X ∀t ∈ Ni ∧ t , 1

α .X (where α� 1) ∀t ∈ Ni ∧ t = 1.
(3.17)
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Consequently, ρP nl,CR
1 (in real-time, i.e., t= 1) is significantly larger than ρP nl,CR

t in other
time steps. The proposed approach in (3.17) for penalizing the auxiliary slack variables
(i.e., P Slk,CR′

t and P Slk,CR′′

t ) ensures that the RTOS algorithm will not compromise the
congestion relief constraint set in real-time (when the actual command for congestion
relief is issued); whereas the RTOS algorithm is not completely restricted for future time
steps, when the imperfectly forecast command is applied.

As an illustration, using the sized CAES and Ontario’s wholesale market prices, sev-
eral values for the penalty factor were considered. Then, the storage revenue and its
contribution to congestion relief were studied under different types of command forecast
errors. Finally, two approximate ranges were determined for the penalty factor as follows:

Low range: $100 /MWh <ρP nl,CR
t ≤ $1 k/MWh ∀t ∈ Ni (3.18)

High range: $1k /MWh <ρP nl,CR
t ≤ $10 k/MWh ∀t ∈ Ni. (3.19)

The values smaller than $100 /MWh cause actual congestion relief commands to be sig-
nificantly bypassed; this happens due to substantial compromising of the RTOS algo-
rithm towards the congestion relief constraint set in real-time. The values larger than
$10 k/MWh cause sizable revenue loss due to significant compromising of the RTOS al-
gorithm towards optimal charging/discharging powers of the storage. The middle of the
ranges ((3.18) and (3.19)) are chosen as the small and large penalty factors, as follows:

Small penalty: ρP nl,CR
t = $550 /MWh ∀t ∈ Ni (3.20)

Large penalty: ρP nl,CR
t = $5.5 k/MWh ∀t ∈ Ni. (3.21)

To achieve the highest possible contribution to congestion relief by less command bypass-
ing, using (3.20) and (3.21), the following adaptive penalty factor is proposed:

ρP nl,CR
t =

$550 /MWh (Small penalty) ∀t ∈ Ni ∧ t , 1

$5.5k /MWh (Large penalty) ∀t ∈ Ni ∧ t = 1.
(3.22)

3.4.3 Numerical Analysis Using Real-world Data

In this section, Ontario’s wholesale electricity prices are used to evaluate the performance
of the proposed RTOS algorithm for two different cases, including congestion relief by
(i) injecting (=discharging) and (ii) absorbing (=charging) power to/from the grid. If
the storage power exchange (i.e., P S,Chg

t −P S,Dhg
t ) is considered in the operating range

(i.e., from −100 MW to +100 MW in this study), two general cases could be considered
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as follows: (i) the ISO’s command to the storage is equal to or higher than the storage
optimal power set-points; (ii) the ISO’s command to the storage is equal to or lower than
the storage optimal power set-points. In the next sections, two studies are conducted
considering two above-mentioned cases. In these studies, the ISO’s signal for congestion
relief is assumed to be issued in certain time periods with certain values. However,
these assumptions will not violate the generality of the proposed algorithm because the
operation of the proposed optimization algorithm as presented in Section 3.3 of the thesis
is not dependent upon the values and issuing time of the commanded power by the ISO.
As expressed by (3.12) and (3.13), as long as the commanded power by the ISO does
not violate the storage physical ratings, it can be considered as a valid command for the
storage controller in any time period.

3.4.3.1 Congestion Relief by Injecting Power into the Grid

Let us assume that a large-scale storage is connected to the end of the transmission line
where a certain amount of power, e.g., 100 MW needs to be injected into the grid by
storage to relieve transmission congestion. Based on the above-mentioned assumption,
the case study for Ontario’s electricity market is planned as follows: the ISO’s command
for injecting 70–100 MW power into the grid for two hours to relieve the congestion
is assumed to be issued at 5 pm and 6 pm; these commands are assumed to be issued
for six months of the year and sent to the storage controller. The RTOS algorithm as
formulated in Section 3.3 aims (i) to maximize the storage revenue by exploiting arbitrage
benefits available due to price volatility in Ontario’s DAM and (ii) to optimally prepare
the storage for possible congestion relief commands.

For congestion relief command forecasting, different types of forecast errors are pos-
sible as follows: over, under, lagging, and leading forecasts. Erroneous forecasts are also
possible, namely, when the congestion relief mode in real-time (i.e., MCR

1 ) is valued as
one, but its forecast has been assumed to be zero; and when it is zero while its forecast
has been assumed to be one. Perfect command forecast is also possible in some cases.

Based on different types of command forecasting as well as random combinations
thereof, three different command forecast signals are created for an entire year each of
which includes a different combination of eleven types of forecasts. The over/under-
forecast is assumed to be 40% while the lagging/leading-forecast is assumed to be 1 h.
More information about transmission congestion forecasting can be obtained from the
literature, such as [106], [107].

The RTOS algorithm, formulated in Section 3.3, is executed in a real-time simulation
using the HOEPs in 2013 for three different command forecasts. In one study, the price
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Figure 3.4: (a): Ontario’s electricity market prices in one week, (b): Actual (bold line) and
forecast (dotted line) Congestion Relief (CR) mode (i.e., MCR

t ) and power (i.e., PCR
t ), (c):

Power exchange (i.e., PS,Chg
t −PS,Dhg

t ), and (e): Slack variable (i.e., PSlk,CR
t ).

forecast is assumed to be perfect; this means the price forecast is substituted for actual
prices. In the second study, an imperfect price forecast is provided using simple back-
casting method in which the actual market prices of the day-behind is duplicated for
storage scheduling [36]. Thus, the performance of the RTOS algorithm is investigated
using cases of both perfect and imperfect market price forecasts to reveal the impact of
price forecast uncertainty on the overall results.

Fig. 3.4 represents the simulation results for one complete week using the perfect
price forecast and the generated command forecast signal for congestion relief. Fig.
3.4 (a) shows Ontario’s wholesale market prices. Fig. 3.4 (b) shows the actual and
forecast congestion relief command. In Fig. 3.4 (c), the positive and negative power
exchanges indicate charging and discharging, respectively. The storage generates revenue
by purchasing and storing inexpensive energy at low prices, and then discharging and
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Figure 3.5: (a): Storage revenue in % of base annual revenue, (b): Storage contribution to
Congestion Relief (CR) in % of actual commanded discharging power: for perfect price forecast.

selling it back to the market at high prices; it can also make additional profit if and when
it has made contribution to congestion relief. The values of slack variable of congestion
relief power, i.e., P Slk,CR

t are represented in Fig. 3.4 (d). As represented in Fig. 3.4 (c),
in Saturday, Sunday, Tuesday, Wednesday, and Friday, the storage completely follows the
ISO’s command by discharging as ordered since it has been fully/partially prepared for
it prior to real-time. On Monday, however, the storage is only able to follow the ISO’s
command in the first hour of command issuing time (i.e., 5 pm). Due to the 1 h leading
forecast of the congestion relief command, the storage does not have enough energy to
discharge in the second hour of command issuing time (i.e., 6 pm). No discharging occurs
when the actual command is issued at 6 pm causing no financial benefits from contribution
to congestion relief in this hour. As represented in Fig. 3.4 (d) for Monday at 6 pm, the
slack variable power (i.e., P Slk,CR

t ) is equal to the negative value of the commanded
power (i.e., −PCR

t ); thus, the modified commanded power (i.e., PMCR
t ) results in zero

(see (3.7)). The command has been fully bypassed by the RTOS algorithm since storage
has not been fully prepared in advance. On Thursday, due to the 1 h lagging forecast of
congestion relief command, storage does not have enough energy to discharge when the
actual command is issued at 6 pm (see Fig. 3.4 (c)). The command is partially bypassed
in this hour (see Fig. 3.4 (d)) causing partial financial benefit from contribution to
congestion relief.
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Figure 3.6: (a): Storage revenue in % of base annual revenue, (b): Storage contribution to
Congestion Relief (CR) in % of commanded discharging power: for imperfect price forecast.

To quantitatively evaluate the storage contribution to congestion relief, first, the
storage base revenue, assuming MCR

t = 0, is calculated for Ontario’s wholesale market
prices in 2013, which is $4.5756 M and $3.0693 M for perfect and imperfect price forecasts,
respectively. When MCR

t = 0, the constraint set expressed in (3.6)–(3.10) is relaxed;
hence, the storage makes no contribution to congestion relief. Then, the storage revenue
in percentage of the base revenue along with the storage contribution to congestion relief
in percentage of the actual commanded power by the ISO are calculated and depicted
in Figs. 3.5 and 3.6 for perfect and imperfect price forecasts, respectively. As shown in
Figs. 3.5 and 3.6, each figure includes three cases (i.e., Cases 1 to 3) plus the average
of all three, where each case represents the annual results obtained by a different annual
congestion relief command signal. In each case, five studies are included as follows: (i)
the forecast of congestion relief command is not considered; (ii) its perfect forecast is
considered; (iii) its imperfect forecast is considered using the small penalty factor defined
by (3.20); (iv) using the large penalty factor defined by (3.21); (v) using the adaptive
penalty factor defined by (3.22). The following outcomes are obtained by analyzing Fig.
3.5 for the perfect electricity price forecast:

• When the command forecast is not incorporated into the RTOS algorithm, the
storage contribution to congestion relief would be at the lowest level (i.e., 77.5% on
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average) since the storage has not at all been prepared for such commands prior to
real-time. A significant portion of commanded powers (i.e., 22.5% on average) is
bypassed by the RTOS algorithm (see (3.7)).

• The obtained revenue in all studies (no forecast, perfect forecast, imperfect forecast
with small, large, and adaptive penalties as expressed in (3.20)–(3.22)) is very close
in each case of command forecasting (i.e., Cases 1 to 3).

• When the command is perfectly forecast, the storage fully (100%) contributes to
congestion relief since it has been fully prepared for the command prior to real-
time. However, the perfect forecast is not practically possible; thus, an imperfect
command forecast along with three types of penalty factors is used as the practical
study for the remainder of this thesis.

In the study of imperfect command forecasting with three types of penalty factors,
the storage contribution to congestion relief is less than ideal since the storage has been
partially (not fully) prepared for the command. The amount of contribution, however, is
significantly higher compared to the study with no command forecast (i.e., up to 15.9%
higher on average). Additionally, comparing the results of three penalty factors, one can
clearly observe that the storage contribution to congestion relief has the highest value
for the adaptive penalty (i.e., on average, 0.9% higher compared to large penalty and
1.6% higher compared to small penalty), revealing the efficacy of the proposed adaptive
penalizing mechanism.

One can observe in Fig. 3.6 that the above-mentioned evaluations for the perfect price
forecast are completely valid for the case with an imperfect price forecast, obtained using
back-casting method. However, while the storage base revenue significantly decreases due
to price forecast error (32.92%), this error can also slightly reduce the storage contribution
to congestion relief in all studies (i.e., approximately 1% reduction on average). If other
price forecasts are used rather than the one generated using back-casting method, none
of the above observations are expected to change even though the storage revenue and
its contribution to congestion relief would change depending on the price forecast error.

As mentioned in Section 3.2, due to its contribution to congestion relief, the storage
owner must be financially compensated by the ISO. Currently in Ontario, Canada, there
are financial compensation policies, such as Congestion Management Settlement Credits
(CMSCs), which are payments made by the IESO to all dispatchable resources, such
as generators or large consumers, who responded to instructions from the IESO to take
specific actions. These directives are given to avoid possible overloads of the transmission
system or to maintain the balance between supply and demand [65]. In the present study,
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Table 3.2: Revenue Shortfall ($/MWh) due to Contribution to Congestion Relief by Discharging

Case 1 Case 2 Case 3 Average
Perfect Price Forecast 5.5574 5.3818 5.3915 5.4416

Imperfect Price Forecast 3.9045 3.0502 2.3470 3.1032

Table 3.3: The Required Discharging Indices to Compensate Storage Revenue Shortfall

Case 1 Case 2 Case 3 Average
Perfect Price Forecast 1.1630 1.1583 1.1604 1.1606

Imperfect Price Forecast 1.1170 1.0924 1.0708 1.0934

the following question needs to be answered: How much credit and with which approach
is the storage owner to be paid by the ISO for its contribution to congestion relief ?
An extensive and descriptive answer to this question that would cover every electricity
market is beyond the scope of this study. However, for Ontario’s electricity market, some
analyses are conducted as follows:

The imperfect congestion relief command forecasting using the proposed adaptive
penalizing mechanism is proved to be the most effective approach due to higher contri-
bution to congestion relief. In this case, the average revenue for the Cases 1 to 3 equals
96.755% (=3.245% shortfall) and 97.263% (=2.737% shortfall) of the base revenue for
perfect and imperfect price forecasts, respectively. The revenue shortfall arises because
the storage is deviated from optimal operation based on price arbitrage when it makes
any contribution to congestion relief; this must be compensated by the ISO since the
storage has made benefit for the grid by congestion relief. Moreover, the average of the
storage contribution to congestion relief for the Cases 1 to 3 is 93.353% and 92.702% of
the actual commanded power for perfect and imperfect price forecasts, respectively. The
profit that the storage is losing per 1 MWh contribution to congestion relief is equal to
revenue shortfall (in $) divided by the amount of contribution to congestion relief (in
MWh). Accordingly, revenue shortfall has been calculated using Ontario’s market prices
in 2013 for Cases 1 to 3 as well as the average of these cases and reported in Table 3.2. As
presented in Table 3.2, on average, the storage owner loses $5.44 and $3.10 per 1 MWh
contribution to congestion relief for perfect and imperfect price forecasts, respectively.

Although proposing a proper policy for the compensation of the storage owner is not
within the scope of this study, in order to find indices representing how energy price can
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Figure 3.7: (a): Storage revenue in % of base annual revenue, (b): Storage contribution to
Congestion Relief (CR) in % of actual commanded charging power: for perfect price forecast.

be used as a compensation tool, let us assume the following: The ISO purchases power
virtually more expensive when the storage is discharging to respond to ISO’s command;
and the ISO sells power virtually less expensive to the storage when the storage is charging
to respond to ISO’s command. The storage could be charged/paid based on two charging
and discharging compensation indices multiplied by the market price during time periods
when the storage has responded to ISO’s commands. The charging and discharging
indices will be, therefore, smaller and larger than 1, respectively. For the case study
presented in this chapter of the thesis, minimum discharging compensation indices for
each case and for the average of three cases are calculated and reported in Table 3.3. As
reported in Table 3.3, on average, the storage could be paid 16% and 9% more for perfect
and imperfect price forecasts, respectively, when it is discharging to respond to ISO’s
command in order to achieve its base revenue. If the discharging index is larger than the
minimum value, more profit is provided for the storage owner when it is responding to
ISO’s command for congestion relief.

3.4.3.2 Congestion Relief by Absorbing Power from the Grid

In the first case study presented in Section 3.4.3.1, the storage contributes to congestion
relief by following ISO’s discharging commands. In order to investigate the efficacy of the
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Figure 3.8: (a): Storage revenue in % of base annual revenue, (b): Storage contribution to
Congestion Relief (CR) in % of actual commanded charging power: for imperfect price forecast.

proposed RTOS algorithm when the storage absorbs power from the grid, the same study
is performed in this section where the storage is following the ISO’s charging commands.
The ISO’s commands for absorbing 80–100 MW power from the grid for two hours to
relieve the congestion is assumed to be issued at 10 am and 11 am.

According to the simulation results, when a storage unit with a 2000 MWh reservoir,
is employed for evaluations, the storage contribution to congestion relief would be 100%
in all cases. The storage reservoir with 2000 MWh capacity will have empty space and is
able to follow charging commands in most time periods even if it has not been prepared
for such commands prior to real-time. However, if a smaller reservoir is used, the same
outcomes as the first case study will be achieved. Thus, in this section, the same CAES
unit as rated in Section 3.4 has been used but with half of the reservoir capacity (i.e.,
1000 MWh). In such a case, the storage base revenue would be slightly less than what is
generated with a 2000 MWh reservoir. Nevertheless, the storage revenue in percentage
of the base revenue has been calculated regardless of the absolute value of revenue.

The resulting revenue along with the storage contribution to congestion relief in per-
centage of the actual commanded power are calculated and depicted in Figs. 3.7 and
3.8 for perfect and imperfect price forecasts, respectively. Similar to the first case study
carried out in Section 3.4.3.1, the results depicted in Figs. 3.7 and 3.8 reveal the im-
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Table 3.4: Revenue Shortfall ($/MWh) due to Contribution to Congestion Relief by Charging

Case 1 Case 2 Case 3 Average
Perfect Price Forecast 16.6608 16.6608 16.4398 16.5863

Imperfect Price Forecast 17.4522 17.4522 18.2927 17.7367

Table 3.5: The Required Charging Indices to Compensate Storage Revenue Shortfall

Case 1 Case 2 Case 3 Average
Perfect Price Forecast 0.4012 0.4012 0.4135 0.4053

Imperfect Price Forecast 0.3760 0.3760 0.3496 0.3672

portance of congestion relief command forecasting and its incorporation as part of the
RTOS algorithm as well as the efficacy of the proposed adaptive penalizing mechanism in
providing a higher percentage of the storage contribution to congestion relief. The stor-
age contribution to congestion relief would be up to 8.6% more compared to the case in
which the command forecast is not considered. Moreover, using the adaptive penalizing
mechanism, the storage contribution to congestion relief would be 1% and 0.7% higher
than the methods using small and large penalty factors, respectively.

The storage revenue shortfall for the three studied cases (i.e., Cases 1 to 3) plus
the average of all three are calculated and reported in Table 3.4. As reported in Table
3.4, on average, the storage owner loses $16.59 and $17.74 per 1 MWh contribution to
congestion relief for perfect and imperfect price forecasts, respectively. Additionally, the
minimum charging compensation indices for each case and for the average of the three
cases are calculated and reported in Table 3.5. As reported in Table 3.5, on average, the
storage could be charged 41% and 37% of the actual market price (=59% and 63% less)
for perfect and imperfect price forecasts, respectively, when it is charging to respond to
ISO’s command in order to achieve its base revenue. If the charging index is smaller than
the minimum value, more profit is provided for the storage owner when it is responding
to ISO’s command for congestion relief.

Finally, it is worth mentioning that the revenue shortfall and the required amount of
financial compensation depends on how much and when the storage is required to ab-
sorb/inject power since there are different price levels during different time periods. Thus,
the historical price and congestion data of each market must be studied to determine the
revenue shortfall and the appropriate amount of compensation for that market.
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3.5 Conclusion

In this chapter of the thesis, the concept of employing privately owned large-scale storage
for long-term transmission congestion relief is investigated. It is demonstrated that in
the conventional scheduling algorithms, the storage is not able to effectively contribute to
congestion relief. A new Real-time Optimal Scheduling (RTOS) algorithm based on an
adaptive penalizing mechanism and soft constraints is proposed. The forecast of external
Independent System Operator’s (ISO’s) commands for congestion relief is incorporated
into the optimization problem to best prepare the storage for such commands. Real data
from Ontario’s market are used for evaluations. It is indicated that when storage con-
tributes to congestion relief by injecting power into the grid, using the proposed adaptive
penalizing mechanism, a considerable amount of contribution to congestion relief is ob-
tained (i.e., 93.35% and 92.7% for perfect and imperfect prices forecasts, respectively);
in such a case, only a small portion of the storage base revenue (i.e., 3.25% and 2.74% for
perfect and imperfect prices forecasts, respectively) is lost. This reveals the feasibility
and efficacy of the proposed RTOS algorithm, which aims to optimally employ large-
scale storage for congestion relief. The same conclusions are drawn when the storage
contributes to congestion relief by absorbing power from the grid.



Chapter 4

Scheduling of Storage as a
Dispatchable Asset

4.1 Introduction

Independently operated energy storage can exploit arbitrage opportunities available due
to inter-temporal variation of electricity prices. Storage can be utilized as a dispatchable
or non-dispatchable asset. In this chapter of the thesis, a new optimal scheduling algo-
rithm is proposed to enable independently operated, locally controlled storage to accept
dispatch instructions issued by ISOs. Storage in this case is referred to as dispatchable
storage. Additionally, a new index is proposed to measure the storage dispatchability.
While the operation of locally controlled storage is optimally scheduled at the owner’s
end, using the proposed algorithm, storage is fully dispatchable at the ISO’s end. Dis-
patchable storage units have great potential to enhance the flexibility of electric grids
and are key elements envisioned to enable smart grid realization. The proposed algo-
rithm outperforms previous algorithms in which storage is either locally controlled at
the owner’s end and cannot optimally accept ISO’s instructions; or storage is centrally
controlled by the grid operator to achieve some technical objectives for the grid. The
efficacy and feasibility of the proposed algorithm are validated using real-world data. It
is demonstrated that the proposed scheduling algorithm can enable the storage to ac-
cept almost all ISO’s instructions. Revenue values of dispatchable and non-dispatchable
storage are also computed and compared.

63
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Figure 4.1: Market timeline for schedule submission of self-scheduling storage or bidding of
dispatchable storage.

4.2 Non-dispatchable Storage

4.2.1 Intermittent Storage

Intermittent storage freely purchases/sells electricity from/to the market. Since the stor-
age controller does not submit the charging/discharging schedule of storage to the DAM,
the ISO does not have any direct information about the storage schedule in advance
of real-time. The optimal schedule of intermittent storage is updated by rerunning the
optimization calculations at every time step to account for the time-varying nature of
market prices. The optimal scheduling algorithm would be, therefore, a real-time algo-
rithm, also known as rolling time horizon or MPC method. Optimization-based models
for intermittent storage units have been developed in Chapter 2 of this thesis.

4.2.2 Self-scheduling Storage

Fig. 4.1 shows the market timeline for schedule submission/bidding and operation of
storage. As shown in Fig. 4.1, storage submits/bids its schedule during the day D for
the DAM (i.e., D + 1). For instance, in Ontario’s market, the window for entering daily
bids opens at 6 a.m. the day before the energy will flow [74]. The charging/discharging
schedule of self-scheduling storage is submitted to the DAM and simultaneously com-
manded to the storage unit by the storage controller. Since the storage schedule cannot
be updated in real-time, the optimal scheduling algorithm would be a non-real-time al-
gorithm. Optimization-based models for self-scheduling storage are similar to those for
intermittent storage except that the storage schedule cannot be updated in real-time for
intermittent storage.
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Figure 4.2: The proposed framework for operation of storage as a dispatchable asset.

4.3 Proposed Algorithm for Dispatchable Storage

In this section, based on the market policies for bidding and operation of dispatchable
assets as explained in Section 1.4.3.1, a new model is proposed which enables an inde-
pendently operated, locally controlled storage to accept ISO’s dispatch instructions. Fig.
4.2 represents the framework of the proposed model for operation of a storage unit as a
dispatchable asset in the DAM.

Optimal charging/discharging schedule of storage is initially decided by Stage 1 of
the optimization problem. As shown in Fig. 4.2, this schedule along with the offered
price is bid to the DAM by the storage controller. Considering the bids of all market
participants including generators, loads, and storage units, the MCP is determined by
the ISO [74]. In each time step, if the storage charging price (i.e., purchase price) is
offered higher than or equal to the MCP, the storage charging bid is accepted by the ISO
for that time step and vice versa. Additionally, if the storage discharging price (i.e., sale
price) is offered lower than or equal to the MCP, the storage discharging bid is accepted
by the ISO for the time step and vice versa. Based on these criteria as well as grid
constraints, the dispatch schedule is determined by the ISO, and dispatch instructions
(i.e., PDsp

t ) are sent to the storage controller (see Fig. 4.2). Positive and negative values
of PDsp

t represent charging and discharging, respectively.
In Stage 2 of the optimization problem, the charging/discharging schedule of storage

is decided considering the ISO’s dispatch instructions and commanded to the storage
unit by the storage controller, also sent to the DAM as the final schedule. The proposed
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algorithm aims to enable the storage to accept ISO’s dispatch instructions regardless of
how these instructions are determined. Thus, the ISO’s dispatch algorithm does not affect
the concepts proposed in this thesis. It is emphasized that although the final schedule of
storage is decided in Stage 2, scheduling in Stage 1 is still necessary since the storage bid
for the DAM is determined in Stage 1. ISO’s dispatch instructions depend on the bids
submitted by all market participants including energy storage units. Being dispatchable
is essential for storage to be properly operated in a competitive market. Moreover,
dispatchable storage helps the ISO to provide a balance between the consumption and
generation of energy in the grid [74].

The proposed model is based on the following assumptions:

i) As opposed to centrally controlled storage, the storage in the proposed model is lo-
cally controlled, owned, and managed by the private investor. The storage controller
aims to exploit energy price arbitrage opportunities in the DAM. It also accepts ISO’s
dispatch instructions, making the storage a dispatchable asset in the market.

ii) Storage may choose to submit single-block or multi-block bids to the DAM. However,
this will not affect the concepts proposed in this thesis to create a dispatchable
storage.

iii) Considering the bids submitted by all market participants and technical constraints
of the grid, the ISO determines the dispatch instructions. However, the ISO’s dis-
patch algorithm does not affect the concepts proposed in this thesis.

The optimization problem for optimal scheduling of dispatchable storage in two stages
is presented in the following:

4.3.1 Stage 1 of the Optimization Problem

The optimization in this stage is performed without considering ISO’s dispatch instruc-
tions. It aims (i) to maximize the revenue by exploiting energy price arbitrage in the
DAM and (ii) to optimally adapt the storage charging/discharging capacity in order to
prepare the storage to follow ISO’s dispatch instructions in Stage 2. An MILP optimiza-
tion problem is formulated. The objective function of the optimization problem in this
stage is as follows:

Maximize :
P S,Chg

t , P S,Dhg
t , SOCSlk,LB

t , SOCSlk,UB
t

∑
t∈T

(
(P S,Dhg

t − P S,Chg
t ) . EF Mrk

t

−CS,DhgO . P S,Dhg
t − CS,ChgO . P S,Chg

t − ρP nl,SOC . (SOCSlk,LB
t + SOCSlk,UB

t )
)
.∆T. (4.1)
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This includes the following terms:

(i) Energy price arbitrage profit: (P S,Dhg
t − P S,Chg

t ) . EF Mrk
t .∆T

(ii) Storage OPEX: (CS,DhgO . P S,Dhg
t + CS,ChgO . P S,Chg

t ) .∆T

(iii) Penalty terms: ρP nl,SOC . (SOCSlk,LB
t + SOCSlk,UB

t ) .∆T ,
subject to the following operational constraints as expressed by (4.2)–(4.4):

bS,Chg
t . P S,Chg

min ≤ P S,Chg
t ≤ bS,Chg

t . P S,Chg
max ∀t ∈ T (4.2)

bS,Dhg
t . P S,Dhg

min ≤P S,Dhg
t ≤ bS,Dhg

t . P S,Dhg
max ∀t ∈ T (4.3)

SOCS
t − SOCS

t−1 +
(
P S,Dhg

t /ηS,Dhg − ηS,Chg . P S,Chg
t + ηS,Dsp . SOCS

t

)
. ∆T = 0

∀t ∈ T , (4.4)

subject to the following constraint to adapt the lower bound of SOC:

SOCS
t ≥ βLB,SOC . SOCS

min−SOC
Slk,LB
t ∀t ∈ T , (4.5)

subject to the following constraint to adapt the upper bound of SOC:

SOCS
t ≤ βUB,SOC . SOCS

max+SOCSlk,UB
t ∀t ∈ T , (4.6)

and subject to constraints (4.7) and (4.8) to ensure that slack variables do not violate
physical limitations of storage SOC, i.e., to keep SOCS

t between SOCS
min and SOCS

max:

βLB,SOC . SOCS
min − SOC

Slk,LB
t ≥ SOCS

min ∀t ∈ T

∴ SOCSlk,LB
t ≤ (βLB,SOC − 1) . SOCS

min ∀t ∈ T (4.7)
βUB,SOC. SOCS

max + SOCSlk,UB
t ≤ SOCS

max ∀t ∈ T

∴ SOCSlk,UB
t ≤ (1− βUB,SOC) . SOCS

max ∀t ∈ T , (4.8)

where

SOCSlk,LB
t and SOCSlk,UB

t ≥ 0 ∀t ∈ T , (4.9)

and T is the set of time steps for storage scheduling in the DAM, defined as follows:

T = {1, 1 + ∆T, 1 + 2∆T, . . . , N −∆T, N}. (4.10)

In (4.1)–(4.10), except EF Mrk
t , other parameters are non-negative (refer to nomenclature

section for definitions of parameters). In (4.1), EF Mrk
t is a forecast for DAM prices.
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The objective function, stated in (4.1), includes the financial benefit of selling elec-
tricity to the market, the cost of purchasing electricity from the market, and the storage
OPEX for charging and discharging within the optimization horizon. It also includes
penalty terms which will be explained in the following sections.

Equations (4.2) and (4.3) express charging and discharging constraints of storage,
respectively. The energy balance of storage is expressed by (4.4), defining the relation of
SOC at the two consecutive time steps t and t−∆T .

If βLB,SOC > 1, the lower bound of SOC is considered higher than the physically
limited lower bound (i.e., SOCS

min) for energy reservation in the storage reservoir (see
(4.5)). If βLB,SOC = 1, there would be no reserved energy. If βUB,SOC < 1, the upper
bound of SOC is considered lower than the physically limited upper bound (i.e., SOCS

max)
for reservation of an empty space in the reservoir (see (4.6)). If βUB,SOC = 1, there would
be no reserved empty space.

Two slack variables SOCSlk,LB
t and SOCSlk,UB

t have been included in (4.5) and (4.6)
to present soft constraints. In such a case, the optimization problem is not strictly forced
to increase the lower bound or decrease the upper bound of SOC. Slack variables adapt
the lower and upper bounds of SOC to decide the optimal value of reserve margin and
to ensure that the optimization problem converges. As stated by (4.1), slack variables
SOCSlk,LB

t and SOCSlk,UB
t are penalized using the penalty factor ρP nl,SOC to preferably

prevent non-zero values. In such a case, if SOCSlk,LB
t or SOCSlk,UB

t takes any non-zero
value, the value of the objective function (4.1) decreases.The optimization problem aims
to maximize the value of the objective function. Thus, Slack variables are set to zero
by the optimization problem unless there is a need of non-zero values for the optimal
operation or convergence of the optimization problem.

4.3.2 Stage 2 of the Optimization Problem

As shown in Fig. 4.2, the ISO’s dispatch instructions (i.e., PDsp
t ) are inputted to Stage 2

of the optimization problem. The storage charging/discharging schedule is decided based
on these instructions. As shown in Fig. 4.2, the final charging/discharging schedule which
meets all of the storage constraints is commanded to the storage unit and also sent to
the DAM. Later in this section, the reason for the second stage optimization is described.
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The objective function of the optimization problem in this stage is formulated as follows:

Maximize:
P S,Chg

t , P S,Dhg
t , P Slk,DI′

t , P Slk,DI′′
t

∑
t∈T

(
(P S,Dhg

t − P S,Chg
t ) . EF Mrk

t

−CS,DhgO . P S,Dhg
t − CS,ChgO . P S,Chg

t − ρP nl,DI
t . (P Slk,DI′

t + P Slk,DI′′

t )
)
.∆T, (4.11)

including the arbitrage profit, the storage OPEX, and penalty terms: ρP nl,DI
t . (P Slk,DI′

t +
P Slk,DI′′

t ) .∆T , subject to the storage operational constraints expressed by (4.2)–(4.4),
and (4.12) as follows:

SOCS
min ≤ SOCS

t ≤ SOCS
max ∀t ∈ T , (4.12)

and subject to the following constraint to fulfill ISO’s dispatch instructions:

P S,Chg
t − P S,Dhg

t = PDsp
t + P Slk,DI′

t − P Slk,DI′′

t ∀t ∈ T , (4.13)

where

P Slk,DI′

t and P Slk,DI′′

t ≥ 0 ∀t ∈ T . (4.14)

In (4.11)–(4.13), except EF Mrk
t and PDsp

t , other parameters are non-negative (refer to
the nomenclature section for definitions of parameters).

In order for the optimal scheduling algorithm to follow ISO’s instructions in Stage
2, a constraint set must be added to the optimization problem. In such a case, hard
constraints are not suitable since the storage controller could choose to partially deviate
from these instructions in a competitive market. Additionally, infeasibility of the opti-
mization problem might be inherent when hard constraints are considered. Thus, using
slack variables P Slk,DI′

t and P Slk,DI′′

t , a soft constraint is formulated, stated by (4.13).
In (4.13), the charging schedule minus the discharging schedule is set equal to PDsp

t .
The zero value of PDsp

t means no operation to storage. A positive value of PDsp
t means

zero discharging and non-zero charging power equal to PDsp
t + P Slk,DI′

t − P Slk,DI′′

t . A
negative value of PDsp

t translates into zero charging and non-zero discharging equal to
−(PDsp

t +P Slk,DI′

t −P Slk,DI′′

t ). Slack variables P Slk,DI′

t and P Slk,DI′′

t adapt ISO’s dispatch
instructions. As stated by (4.11), slack variables P Slk,DI′

t and P Slk,DI′′

t are penalized using
the adaptive penalty factor ρP nl,DI

t to preferably prevent non-zero values. Zero values
for these slack variables might be preferred since every non-zero value means that stor-
age is not/partially following ISO’s dispatch instructions. This could result in financial
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penalties imposed by the ISO for the storage owner. However, in some cases, storage
might generate more revenue by partially/fully deviating from ISO’s instructions even
after paying the penalty cost to the ISO. Thus, the higher the ISO’s penalty cost is, the
higher the ρP nl,DI

t must be at each time step t. The adaptive penalty factor is an array
with the following N elements:

ρP nl,Slk
1 , ρP nl,Slk

2 , . . . , ρP nl,Slk
N−1 , ρP nl,Slk

N .

Therefore, different values can be assigned to ρP nl,DI
t at different time steps for each

optimization horizon. These values can be estimated based on historical penalty cost
values. In other words, ρP nl,DI

t can be adapted at each time step differently, and thus,
affect the optimization problem at each time step in a different fashion. In such a case,
there are two different cases as follows:

i) ISO’s instructions are not in violation of storage operational constraints at all time
steps. Thus, these instructions may or may not be rescheduled depending on the
penalty cost imposed by the ISO and storage revenue.

ii) ISO’s instructions are in violation of storage constraints at one or some time steps,
and thus, the optimization problem will not converge. In such a case, these instruc-
tions are optimally rescheduled to meet storage constraints at all time steps, thereby
ensuring the convergence of the optimization problem.

4.3.3 Proposed Index to Measure Storage Dispatchability

In this section, using slack variables, a new index is proposed to measure the storage
dispatchability, i.e., the percent of ISO’s dispatch instructions accepted and followed by
storage. The summation of the slack variables P Slk,DI′

t and P Slk,DI′′

t when PDsp
t is non-

zero, represents the total amount of dispatch instructions in MW which has not been
accepted (i.e., has been canceled) by storage. The Cancellation of Dispatch Instructions
(CODI) can be expressed in percent of the total dispatch instructions as defined in the
following for each optimization horizon:

Daily CODI % =
∑

t∈T ∗(P Slk,DI′

t + P Slk,DI′′

t )∑
t∈T ∗ |PDsp

t |
× 100, (4.15)
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where T ∗ is defined as the set of time steps for storage scheduling in the DAM excluding
those time steps in which PDsp

t is zero. This ensures that the right value is measured
by (4.15), and that the equation would not result in a division by zero. Daily CODI is
summed over the year for 365 days to express the annual CODI as follows:

CODI % =

∑365
d=1

(∑
t∈T ∗(P Slk,DI′

d,t + P Slk,DI′′

d,t )
)

∑365
d=1

(∑
t∈T ∗ |PDsp

d,t |
) × 100. (4.16)

Thus, the percent of the annual dispatch instructions accepted and followed by the stor-
age, referred to as the storage dispatchability index, is stated as follows:

Storage Dispatchability Index % = 100 %− CODI %. (4.17)

4.4 Numerical Evaluation of Storage Operation

The proposed optimal scheduling algorithm is modeled and executed in MATLAB using
real-world wholesale electricity prices adopted from Ontario’s market [65]. The optimiza-
tion horizon of 24 h (i.e., T = 24) with 1 h time intervals (i.e., ∆T = 1) is considered
to optimally decide the charging and discharging schedules of storage. Using the perfect
price forecast, the higher bound of revenue is generated. However, the perfect forecast
cannot be practically realized. Using back-casting method, the lower bound of revenue
is generated [40]. Any price forecast with an accuracy between the perfect forecast and
imperfect forecast (using back-casting) generates a revenue level in between the two afore-
mentioned bounds. For simulation purposes, the actual prices of the DAM are taken as
MCPs, and the price forecast used for storage scheduling is taken as the price offered by
storage to the DAM.

Very large finite numbers have been considered for ρP nl,SOC and ρP nl,DI
t to severely

penalize any non-zero value of slack variables in the optimization problem. As explained
in Section 4.3.2, in general, ρP nl,DI

t can be determined based on penalty costs that might
be imposed by the ISO at each time step. In this study, however, in order to numerically
examine the maximum dispatchability of storage, the storage controller is set to follow
as much as ISO’s instructions as possible.

As a large-scale storage option, the CAES as sized in Section 2.4 is used for eval-
uations. If other types of large-scale storage units are used for numerical evaluation,
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Table 4.1: Annual Revenue and Dispatchability of Dispatchable Storage in Ontario’s Market

Year βLB,SOC βLB,SOC × SOCS
min (MWh) Revenue (M$) Dispatchability Index (%)

1 200 0.8911 78.60
2012 3 600 1.0181 96.94

5 1000 1.0147 99.84
7 1400 0.9340 99.97
1 200 0.9421 77.59

2013 3 600 1.1336 92.25
5 1000 1.2217 98.15
7 1400 0.9696 99.60
1 200 1.8414 79.25

2014 3 600 2.3192 90.92
5 1000 2.3042 97.64
7 1400 1.8334 98.97

the ultimate outcomes will not change since the validity of the proposed algorithm
does not depend on the storage type. Maximum ratings of storage are as follows:
P S,Chg

max = P S,Dhg
max = 100 MW, and SOCS

max = 2000 MWh. The storage is modeled in MAT-
LAB and the optimization problem is solved using GLPK package [102]. The final charg-
ing and discharging schedule of storage and actual market prices over the year are used
to calculate the annual profit from electricity sale minus the annual cost for electricity
purchase, and minus the annual OPEX. This results in the annual revenue.

4.4.1 Dispatchable Storage

4.4.1.1 Dispatchability and Revenue of Dispatchable Storage

For numerical studies, the factor βUB,SOC as included in (4.6) and (4.8) has been con-
sidered as 1. Based on the analyses, βUB,SOC = 1 is optimal for the storage employed in
this chapter of the thesis. For a smaller storage unit, however, it might be needed to use
a value smaller than 1 for βUB,SOC , which could be investigated.

The revenue of dispatchable storage as modeled in Section 4.3 along with the storage
dispatchability index as stated by (4.17) has been calculated and reported in Table 4.1
at different values of βLB,SOC for three years.

The three-year average of the results in Table 4.1 is represented in Fig. 4.3 for differ-
ent values of βLB,SOC . As shown in Fig. 4.3, at βLB,SOC = 1, the storage dispatchability
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Figure 4.3: The three-year average (2012–2014) of revenue of dispatchable storage and % of the
storage dispatchability index in Ontario’s electricity market.

index has the lowest value (i.e., 78.48%); this represents the dispatchability index of
storage when a conventional algorithm is employed since no reserved energy is available
in this case. As βLB,SOC increases, the percentage of the dispatchability index increases
because more reserved energy would be available for storage to accept ISO’s dispatch
instructions. However, the storage revenue decreases if βLB,SOC is supposed to be too
large. At βLB,SOC = 5, the highest level of revenue is generated, yet the storage dispatch-
ability index would be 98.54%; this means that the storage can follow around 100% of
ISO’s dispatch instructions. Thus, βLB,SOC = 5 is selected for the rest of the analyses.

4.4.1.2 Hourly Operation of Dispatchable Storage

Fig. 4.4 represents the simulation results of the hourly operation of the dispatchable
storage for 24 h in a typical day in Ontario’s electricity market.

In January 2, 2014, the optimal scheduling algorithm schedules the storage for the
DAM (i.e., market in January 3). Then, the charging/discharging schedule of storage
along with the offered price is bid for the DAM. Offered prices for the DAM and MCPs
are shown in Fig. 4.4 (a). The bid schedule of storage, ISO’s instructions, and the final
schedule of storage are shown in Fig. 4.4 (b). In Fig. 4.4 (b), positive and negative powers
represent charging and discharging, respectively. Fig. 4.4 (c) compares the storage SOC
in Stage 1 (i.e., bid SOC) and in Stage 2 of the optimization problem (i.e., final SOC).

As shown in Fig. 4.4, since the storage offered price for energy purchase (i.e., charging)
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Figure 4.4: Simulation results of the hourly operation of dispatchable storage in Ontario’s
market. (a): Electricity market prices for a typical day, (b): Charging/discharging schedule
(positive = charging, negative = discharging), and (c): State of charge.

has been less than the MCP, none of the charging bids has been accepted by the ISO on
this particular day (see hours 1, 5–11, 14, and 15). However, since the offered price for
energy sale (i.e., discharging) has been less than the MCP in most hours, the discharging
bids have been accepted for those hours except for hours 3 and 22 in which the storage
offered price has been higher than the MCP (compare bid schedule and ISO’s dispatch
instructions). Thus, storage has not been able to charge and store energy, but it has
to follow its discharging bids (i.e., ISO’s dispatch instructions) in all time steps. In a
conventional optimal scheduling algorithm, this issue can make the storage cancel ISO’s
dispatch instructions due to insufficient stored energy, resulting in financial penalties
for storage imposed by the ISO. However, as shown in Fig. 4.4 (b), ISO’s dispatch
instructions and the final schedule of storage are the same, meaning that storage has
followed all of the ISO’s dispatch instructions.
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Different Years and the Twelve-Year Average in Ontario's Electricity Market
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Figure 4.5: Annual revenue and Revenue Reduction due to Price Forecast Error (RRPFE) for
I: intermittent storage, S: self-scheduling storage, and D: dispatchable storage.

4.4.2 Revenue of Dispatchable and Non-dispatchable Storage

This section aims to calculate and compare the revenue values of dispatchable and non-
dispatchable storage using real-world market prices from 2003 to 2014. The impact of
market price forecast error on the storage revenue is also examined. The storage revenue
using the perfect price forecast (i.e., higher bound of revenue [40]) and an imperfect price
forecast using back-casting method (i.e., lower bound of revenue [40]) is computed. The
% of Revenue Reduction due to Price Forecast Error (RRPFE) is computed, as follows:

RRPFE% = (Higher – Lower) Bound of Revenue
Higher Bound of Revenue × 100.

The RRPFE states how much the storage revenue is sensitive to the market price forecast
error. Higher and lower values of RRPFE state higher and lower sensitivity values,
respectively. Simulation results have been shown in Fig. 4.5 for dispatchable and non-
dispatchable (i.e., intermittent and self-scheduling) storage in different years and for the
average of all years.

The following outcomes are obtained by evaluation of Fig. 4.5:
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• Both bounds of revenue for intermittent storage are higher than those for self-
scheduling and dispatchable storage. For instance, on average, the lower and higher
bounds of revenue are as follows: $4.29 M and $6.41 M for intermittent storage,
$1.25 M and $5.27 M for self-scheduling storage, and $1.66 M and $4.28 M for dis-
patchable storage. Moreover, the RRPFE is the lowest for intermittent storage,
meaning the storage revenue is less affected by the market price forecast error.
On average, RRPFE is 33.07% for intermittent storage, 76.28% for self-scheduling
storage, and 61.21% for dispatchable storage. As explained in Section 4.2.1, for
intermittent storage, the storage schedule is updated in each time step. As a re-
sult, a more precise schedule is decided by the RTOS algorithm, and especially
peak and off-peak prices appearing in real-time could be kept into consideration.
Thus, a higher level of revenue can be generated for intermittent storage. This
opportunity does not exist for self-scheduling and dispatchable storage since the
optimal schedule cannot be corrected in real-time. However, intermittent storage
neither submits its charging/discharging schedule to the DAM nor can accept ISO’s
dispatch instructions. In this case, the operation of large-scale storage can create
uncertainties in the market.

• The higher bound of revenue for dispatchable storage is smaller than that for self-
scheduling storage ($4.28 M versus $5.27 M on average). However, the lower bound
of revenue for dispatchable storage is larger than that for self-scheduling storage
($1.66 M versus $1.25 M on average). This means that the more inaccurate the
market price forecast is, the higher the revenue will be for dispatchable storage
as compared to the self-scheduling storage. Due to price forecast inaccuracy in
practice, dispatchable storage will generate higher revenue as compared to self-
scheduling storage. Dispatchable storage submits its charging/discharging schedule
along with the offered prices for each time step t (see Fig. 4.2). In case of charging,
the storage will not purchase energy if the market price is higher than the price
offered by the storage. Therefore, it will not overpay for purchase of energy when
market prices are high. In case of discharging, storage will not sell energy if the
market price is lower than the price offered by storage. Thus, it will not be un-
derpaid for energy sale when the market prices are low. Moreover, the RRPFE
is lower for dispatchable storage as compared to self-scheduling storage (61.21%
versus 76.28% on average), revealing the effectiveness of dispatchable storage.
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Figure 4.6: Annual summation of negative and peak (i.e., ≥ $100 / MWh) prices.

4.4.3 Annual Changes of Storage Revenue

As represented in Fig. 4.5, different levels of revenue have been generated in different
years of Ontario’s market. The storage revenue is generated by exploiting arbitrage
opportunities. The price arbitrage is mostly dependent upon very low or negative and
very high or peak prices. The annual summation of negative and peak prices (i.e., prices
≥ $100 /MWh) have been calculated and represented in Fig. 4.6 (in $1000/MW-Year)
for different years in Ontario’s market.

By observation of Figs. 4.5 and 4.6, one can realize that, in general, the higher the
peak prices are, the higher the generated revenue will be and vice versa. For instance,
the peak prices are the highest in 2005 in which the highest level of revenue has been
generated. The peak prices in 2003, 2008, and 2014 are moderate in which the moderate
level of revenue has been generated. The peak prices in 2004, 2006, and 2007 are lower in
which the lower level of revenue has been generated. Finally, the peak prices in 2009–2013
are the lowest in which the lowest level of revenue has been generated. Negative prices
can also increase the storage revenue; however, their impact is not clear in Fig. 4.5 since
their level is smaller than peak prices. These observations are approximate since the
storage revenue is dependent upon all price values over the year.
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4.5 Conclusion

In this chapter of the thesis, a new optimal scheduling algorithm for storage as a dis-
patchable asset in a competitive electricity market is proposed. While the operation of
an independently operated, locally controlled storage unit is optimally scheduled at the
owner’s end, using the proposed algorithm, the storage is fully dispatchable from the
Independent System Operator’s (ISO’s) end. In addition, a new index is proposed to
measure the storage dispatchability. The efficacy of the proposed algorithm is validated
using real-world data adopted from Ontario’s electricity market. According to numerical
studies, the storage dispatchability index equals 98.5% and 78.5% using the proposed
and conventional optimal scheduling algorithms, respectively. Hence, around 100% of
ISO’s dispatch instructions can be followed by the storage using the proposed algorithm.
Considering forecast uncertainties associated with Day-ahead Market (DAM) prices, the
storage revenue for dispatchable storage is larger than that for self-scheduling storage
($1.66 M versus $1.25 M on average); moreover, the Revenue Reduction due to Price
Forecast Error (RRPFE) is lower for dispatchable storage as compared to self-scheduling
storage (61.2% versus 76.3% on average). Since dispatchable storage cannot be operated
intermittently in the market, it generates lower revenue as compared to the intermit-
tent storage; however, dispatchable storage units can play an essential role in preserving
the reliability and security limits of the grid. For this reason, the proposed optimal
scheduling algorithm can potentially open up new opportunities for profit generation for
dispatchable storage.



Chapter 5

Scheduling of Load-storage Systems

5.1 Introduction

Inspired by operational practices and requisites of real-world storage applications, a new
RTOS model is presented and analyzed in this chapter of the thesis to aggregate storage
benefits for a large-scale load. The complete model for optimal scheduling of storage-
based electrical loads considering both the CAPEX and OPEX of storage is developed. A
real-time load forecaster is incorporated into the optimal scheduling algorithm using soft
constraints, slack variables, and penalizing mechanisms. The application of the proposed
model to a real-world large-scale institutional load in Ontario, Canada, is examined and
compared with previous models. It is demonstrated that the proposed real-time model
outperforms prior models by generating higher profitability of investment, lower storage
OPEX, and an extended life of the storage plant.

5.2 Proposed Model

In this section, the proposed model for optimal scheduling of a load-storage system is
developed and formulated. The general framework of the model is represented in Fig.
5.1. As shown in Fig. 5.1, storage is jointly operated with the large-scale load. The load
is fed by storage and the grid. The load-storage system is simply a consumer since it
does not inject any power to the grid. The storage controller is fed by the forecasts of
load and market prices. The charging/discharging schedule of storage is decided by the
RTOS model.

Optimal scheduling is performed for the next T hours with ∆T hour time steps. Fore-
cast data and optimal decisions are updated by re-running the forecasters and the op-
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Figure 5.1: Framework of the model for real-time optimal operation of a load-storage system.

timization problem at each time step. This procedure is performed to account for the
time-varying nature of load and market price data. More accurate schedules are made for
storage by using real-time updates of forecast data. A real-time multi-step optimization-
based model is then formulated, including variables with N elements. The real-time
storage controller and load forecaster are presented in Sections 5.2.1 and 5.2.2 as follows:

5.2.1 Real-time Storage Controller

A new RTOS model for storage is formulated as an MILP problem. Its chief aim is to
optimally coordinate the storage, grid, and load to minimize the electricity cost for the
consumer. It also seeks to reduce storage OPEX and to adapt the storage SOC to create
a reserve margin that partially feeds the load in case of grid power outages. All the
objectives are integrated into a single objective function as formulated in the following:

Minimize :
P S,Chg

t , P S,Dhg
t , P Slk,LCr

t , SOCSlk,Res
t

Cost Function =
∑
t∈Ni

(
(P F L

t + P S,Chg
t − P S,Dhg

t ) . EF Mrk
t

+CS,ChgO. P S,Chg
t +CS,DhgO. P S,Dhg

t +ρP nl,LCr. P Slk,LCr
t +ρP nl,Res. SOCSlk,Res

t

)
.∆T. (5.1)

This includes the following three terms:

(i) Electricity cost: (P F L
t + P S,Chg

t − P S,Dhg
t ) . EF Mrk

t .∆T

(ii) Total OPEX: (CS,ChgO . P S,Chg
t + CS,DhgO . P S,Dhg

t ) .∆T

(iii) Penalty terms: (ρP nl,LCr . P Slk,LCr
t + ρP nl,Res . SOCSlk,Res

t ) .∆T ,
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subject to the following physical constraints of storage:

bS,Chg
t . P S,Chg

min ≤ P S,Chg
t ≤ bS,Chg

t . P S,Chg
max ∀t ∈ Ni (5.2)

bS,Dhg
t . P S,Dhg

min ≤ P S,Dhg
t ≤ bS,Dhg

t . P S,Dhg
max ∀t ∈ Ni (5.3)

SOCS
t − SOCS

t−1 +
(
P S,Dhg

t /ηS,Dhg − ηS,Chg . P S,Chg
t + ηS,Dsp . SOCS

t

)
.∆T = 0

∀t ∈ Ni , (5.4)

subject to the following reserve-provision constraints:

SOCS,Res + SOCS
min − SOC

Slk,Res
t ≤ SOCS

t ≤ SOCS
max ∀t ∈ Ni (5.5)

0 ≤ SOCSlk,Res
t ≤ SOCS,Res ∀t ∈ Ni , (5.6)

subject to the following constraint to ensure no power is injected into the grid:

P S,Dhg
t ≤ P F L

t ∀t ∈ Ni , (5.7)

and subject to the following constraints to fulfill the load demand in case of grid power
outages:

P S,Dhg
t = P F L

t − P Slk,LCr
t ∀t ∈ Ni ∧ SGrd

t = 0 (5.8)
0 ≤ P Slk,LCr

t ∀t ∈ Ni , (5.9)

whereNi is the set of time steps, rolling over the T–hour time notation, defined as follows:

Ni = {i, . . . , i+N − 1}, (5.10)

where i refers to the present time step, defined in a T–hour time notation divided by the
time interval ∆T . For instance, at 5:00 am and for ∆T = 1, i= 5/1 = 5. In (5.1)–(5.10),
except EF Mrk

t , other parameters are non-negative (refer to the nomenclature for defini-
tions of parameters).

The objective function, stated in (5.1), includes the cost of purchasing electricity
from the market for the total load-storage system and storage OPEX for charging and
discharging within the optimization horizon. It also includes penalty terms which will
be explained in the following sections. In (5.1), EF Mrk

t is the electricity price forecast at
the time step t while it is equal to the actual price at the present moment, i.e., t= 1. In
addition, in (5.1), P F L

t represents the load power forecast in the next T hours. The load
power forecaster is presented in Section 5.2.2.
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Equations (5.2) and (5.3) express storage charging and discharging power constraints,
respectively. The storage energy balance is stated by (5.4), defining the relation of SOC
at the two consecutive time steps t and t−∆T .

Equation (5.5) expresses the SOC constraint. By adding SOCS,Res to (5.5), the
lower bound of SOC is considered higher than the physically limited SOC (i.e., SOCS

min)
to create reserved energy in the storage reservoir. The reserved energy SOCS,Res can
support the load in case of grid power outages. The slack variable SOCSlk,Res

t is included
in the constraint (5.5) to optimally decide when and how much reserved energy should be
released. This is performed by adapting the lower bound of SOC using the slack variable.
As stated by (5.1), this slack variable is penalized to preferably prevent non-zero values.
Any non-zero value for the slack variable tends to increase the value of the objective
function. The optimization problem always tends to minimize the objective function.
Thus, the slack variable is set to zero by the optimization problem solver unless a non-
zero value is required to feed the load in case of grid power outages. The zero value for the
slack variable is preferred to ensure that the reserved energy is used only in contingencies
not in the presence of the grid. Equation (5.6) ensures that the physically limited SOC
constraint is not violated by the slack variable. Equation (5.7) ensures that no power is
injected to the grid since the load-storage system is considered as an electricity consumer
at all times in this study.

As shown in Fig. 5.1, the load power is provided by the grid and storage discharging.
If the grid power is interrupted (i.e., SGrd

t = 0), the only source of power for the load
is storage. This is realized by the constraint (5.8), through which the load requirement
is fulfilled as part of the optimization problem. Using the slack variable P Slk,LCr

t , the
requested power by the load can be curtailed if storage cannot completely fulfill the load
requirement. P Slk,LCr

t is penalized in (5.1) to preferably prevent non-zero values that
would minimize the load curtailment.

In order for the proper operation of the optimization problem, the following constraint
should be met:

ρP nl,LCr . P Slk,LCr
t > ρP nl,Res . SOCSlk,Res

t

∀P Slk,LCr
t > 0 ∧ ∀SOCSlk,Res

t > 0 ∧ ∀ t ∈ Ni . (5.11)

The constraint (5.11) imposes a larger penalty for load curtailment than usage of reserved
energy. This forces the storage controller to use the reserved energy to meet the load
requirement. No load curtailment is performed unless the entire reserved energy is used
or if the load requirement is higher than the maximum discharging power of storage.
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Equation (5.11) can be met by (5.12), as follows:

ρP nl,LCr � ρP nl,Res. (5.12)

Finally, as shown in Fig. 5.1, the charging/discharging power set-point in the present
time step i is commanded to the storage unit by the storage controller.

5.2.2 Real-time Load Power Forecaster

The mathematical description of a real-time load-forecasting method, which is incorpo-
rated into the proposed scheduling model is presented here. The general load-forecasting
methodology is adopted from [108], but tailored and fitted to our application (i.e., large-
scale loads) in this section.

Since weather-independent and weather-dependent components of the load power are
intrinsically different, they are modeled separately. Inspired by the Short-term Load
Forecasting (STLF) method in [108], the load power is split into weather-independent
and weather-dependent components as expressed in the following:

PL
t = PW IL

t + PW DL
t ∀t ∈ N Li , (5.13)

where N Li is the set of time steps rolling over the TL–hour time notation, as follows:

N Li = {i, . . . , i+NL − 1}; (5.14)

the weather-independent component of the load depends on the frequently repeated fac-
tors of the system. Hence, it can be modeled using a time series-based function such as
the Fourier series-based function, expressed in the following [108]:

PW IL
t = A0 +

n∑
k=1

(
Ak Cos(ωL

k t) +Bk Sin(ωL
k t)
)

∀t ∈ N Li , (5.15)

ωL
k = 2πhkf

L ∀k ∈ {1, 2, 3, . . . n}. (5.16)

In total, 17 harmonics are selected for model fitting, as follows:

hk = {1, . . . , 14, 21, 28, 35} ∀k ∈ {1, 2, 3, . . . , n = 17}; (5.17)

based on simulation of various cases in this study, these harmonics are selected to create
an accurate model, and yet, to minimize the computation burden.
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The relationship between temperature and the weather-dependent component of the
load can be expressed using a third-order polynomial function as follows [108]:

PW DL
t =

3∑
k=1

(
C1k T

Avg,k
t + C2k T

Avg,k
(t−2) + C3k T

Avg,k
(t−4)

)
∀t ∈ N Li , (5.18)

where TAvg,k
t is defined as follows:

TAvg,k
t =

(
T k

t + T k
(t−1)

)/
2 ∀k ∈ {1, 2, 3} ∧ ∀t ∈ N Li . (5.19)

The total load power is stated in the matrix form, as follows:

PL
t = PW IL

t + PW DL
t = ~Yt

~M ∀t ∈ N Li , (5.20)

where ~Yt and ~M are defined as follows:

~Yt =[ 1 Cos(ωL
1 t) . . . Cos(ωL

n t), Sin(ωL
1 t) . . . Sin(ωL

n t), TAvg,1
(t) TAvg,2

(t) TAvg,3
(t)

TAvg,1
(t−2) TAvg,2

(t−2) TAvg,3
(t−2) TAvg,1

(t−4) TAvg,2
(t−4) TAvg,3

(t−4) ] ∀t ∈ N Li , (5.21)
~M = [A0 A1 . . . An, B1 . . . Bn, C11 C12 C13 C21 C22 C23 C31 C32 C33 ]tr. (5.22)

For every sample of historical load data (i.e., at every t), one equation is generated as
stated by (5.20). For NL samples of historical data, (5.20) is expressed as follows:

Y (NL, 2n+10) ~M(2n+10, 1) = ~PL
(NL, 1) + ~ε(NL, 1). (5.23)

The model parameters vector ~M is unknown which is to be estimated. In such a case,
using a Least Error Square (LES)-based method, the aim is to estimate an ~M which
minimizes the error vector ~ε; that ~M represents the optimal vector of model parameters,
as stated in the following:

~M = Y −1L ~PL, (5.24)

where Y −1L is the left pseudo-inverse of Y given as follows:

Y −1L ∆=
[
[Y tr Y ]−1 Y tr

]
. (5.25)

The proof of obtaining (5.24) from (5.23) is stated in Appendix A.

Function matrix Y is generated by (5.21) using historical load and temperature data.
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Then, ~M is computed by (5.26), as follows:

~M = Y −1L ~PHL, (5.26)

where historical load data ~PHL is assumed to be available.
Using the temperature forecast, Y F is generated by (5.21). Finally, forecast load ~P F L

is computed by (5.27), as follows:

~P F L = Y F ~M. (5.27)

As shown in Fig. 5.1, the load forecast is inputted to the optimization-based storage
controller where in real-time, the actual value of load substitutes for the forecast one.

5.3 Numerical Evaluation

As a real-world case study, a large-scale institutional electricity consumer in Ontario,
Canada is selected. In general, a large-scale consumer may purchase the electricity from
the local distribution company or wholesale electricity market. In this study, it is assumed
that the selected large-scale consumer purchases the electricity directly from the wholesale
market and experiences real-time pricing on an hourly basis. It is also emphasized that the
calculated electricity cost for different cases in this section only includes HOEP charges.
The consumer bill can include supplementary charges in addition to HOEP charges.
The main purpose of electricity cost analysis in this section would be, therefore, to
compare the HOEP charges for different cases. The electrical load information, ambient
temperature, and HOEPs - adopted from Ontario’s electricity market - in different years
(i.e., 2012, 2013, and 2014) are used for numerical evaluation.

5.3.1 Modeling and Validation

The model represented in Fig. 5.1 is developed in MATLAB. As an imperfect forecasting
method, back-casting has been used in this thesis to estimate DAM prices [38], [40]. In
real-time, the actual value of price substitutes for the forecast one. In the RTOS model,
EF Mrk

t is updated at every time step t. The joint execution of the GLPK package [102]
and MATLAB is used to solve the optimization problem. The storage with different
ratings can be used for simulation. In order to find the appropriate charge and discharge
ratings for storage, different ratings have been selected, and accordingly, the storage
profit against its capital cost has been examined for each set of charge/discharge rating.
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Table 5.1: Modeling and Simulation Parameters

T = 24 (h) TL = 336 (h)

∆T = 1 (h) N = 24

NL = 336 fL = 1/168 (h–1)

PS,Chg
max = 2.5 (MW) PS,Chg

min = 80%× PS,Chg
max

PS,Dhg
max = 2.5 (MW) PS,Dhg

min = 3%× PS,Dhg
max

SOCS
max = 25 (MWh) SOCS

min = 10%× SOCS
max

SOCS,Res = 10%× SOCS
max ηS,Chg = ηS,Dhg = 84%

ηS,Dsp = 0.0063%× SOCS
t Capital Cost (CC) = $2.5 Million

Storage Age = 40 (Yr) = 350400 (h) CS,Main =5%×CC/Storage Age

CS,ChgO=60%×CS,Main/PChg
max CS,DhgO = 40%× CS,Main/PDhg

max

ρP nl,Res = 106 ρP nl,LCr = 1012

Finally, a storage unit with charge and discharge ratings equal to 10% of the load daily
peak, i.e., 2.5 MW has been selected. Due to its smaller footprint, CES does not occupy a
large space as compared to CAES, and hence, it is more appropriate for urban locations.
Thus, CES has been selected for simulation studies in this chapter of the thesis. The
modeling parameters of CES along with simulation parameters are listed in Table 5.1.

To evaluate the accuracy of the load forecasting model, the mean value and standard
deviation of forecast error are computed for the selected real-world case-load. The Proba-
bility Density Function (PDF) and probability of forecast error are illustrated in Fig. 5.2.
According to Fig. 5.2, in most cases, the forecast error has a significantly low mean value
and standard deviation, i.e., less than 5% in more than 50% of the cases. This reveals
the feasibility and efficacy of the forecasting model. According to simulation results, this
level of load forecast inaccuracy will not considerably affect the optimal operation of the
model. Further analysis of the load forecasting algorithm is presented in Appendix B.

5.3.2 Impact of Storage on the Consumers’ Electricity Cost

The annual electricity cost is calculated for both the proposed real-time and the self-
scheduling models considering perfect and imperfect market price forecasts; these costs
are presented in Table 5.2 along with the costs incurred without storage. As obvious from
Table 5.2, in both the self-scheduling and proposed models, storage has been successful
in reducing the consumers’ electricity cost.
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Figure 5.2: Probability density function and probability of forecast error (a): mean value and
(b): standard deviation for the real-world load information from 2012 to 2014.

Table 5.2: Annual Electricity Cost (M$) for Consumer in Different Cases

No Perfect Price Forecast Imperfect Price Forecast
Year Storage Self-Scheduling Proposed Self-Scheduling Proposed
2012 2.94 2.87 2.85 2.92 2.88
2013 3.20 3.11 3.09 3.18 3.13
2014 3.85 3.69 3.65 3.82 3.74

Average 3.33 3.22 3.20 3.31 3.25

The annual reduction of the electricity cost through storage that uses the proposed
real-time model has been compared with that using the self-scheduling model; the results
are depicted in Fig. 5.3. Based on the three-year average results, for the perfect forecast of
market prices, the electricity cost is reduced by 3.9% using the proposed model; whereas,
the cost reduction is 3.3% using the self-scheduling model, previously proposed in the
literature. For the imperfect price forecast, the cost reduction is 2.4% versus 0.6% using
the proposed and self-scheduling models, respectively. Notably, the proposed model
becomes more effective when forecast error increases.

In the proposed model, the storage schedule is updated at each time step. As a result,
a more precise schedule is determined by the proposed model, where especially peak and
off-peak prices appearing in real-time are kept in consideration. Thus, the electricity cost
is reduced more compared to the self-scheduling model. This opportunity does not exist
for the self-scheduling model since the optimal schedule cannot be corrected in real-time.
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Figure 5.3: Annual reduction of electricity cost for the consumer using (a): perfect forecast,
(b): imperfect forecast of Ontario’s market prices in different years.

Moreover, it can be observed from Fig. 5.3 that in the most recent year (i.e., 2014),
the electricity cost reduction is higher than the one in 2012. This reveals that load-storage
systems will benefit more in the near future since the cost reduction has an increasing
trend from 2012 to 2014.

5.3.3 Impact of Storage on Absorbed Power from the Grid

Fig. 5.4 shows the total power absorbed by the load-storage system from the grid and
the scheduled charging (positive power) and discharging (negative power) of storage in a
typical day (i.e., April 21, 2014) for three cases as follows:

• Case 0: load without storage.

• Case 1: load with storage using the self-scheduling model.

• Case 2: load with storage using the proposed model.

Figs. 5.4 (a) and (c) represent the result for the perfect price forecast while Figs. 5.4
(b) and (d) represent the result for the imperfect price forecast.

As shown in Fig. 5.4 (a), due to the storage operation, in both Cases 1 and 2, the
load profile has flattened more compared to Case 0. However, there is a small difference
between Cases 1 and 2 in the sense that in Case 2, less power has been absorbed during
peak periods. It is observed from Fig. 5.4 (c) that the storage has discharged more
during peak hours in Case 2 as compared to Case 1. Therefore, in Case 2 the electricity
cost is reduced more as compared to Case 1 (see Fig. 5.3 (a)).
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Figure 5.4: (a) & (c): System and storage power for perfect price forecast. (b) & (d): System
and storage power for imperfect price forecast: in April 21, 2014.

As shown in Figs. 5.4 (b) and (d), the load profile and storage operation have been
affected by market price forecast error. Since in both Cases 1 and 2, more power has
been absorbed during the off-peak period, the electricity cost has been reduced when
compared to Case 0. However, during the peak period, the storage operation has not
been optimal due to price forecast error. In the proposed model, the adverse impact of
price forecast error is reduced since the storage schedule is updated at each time step.
Thus, a higher level of profit is obtained by using the proposed model (see Fig. 5.3 (b)).

It is worth mentioning that the forecast power of the adjusted load (i.e., power ab-
sorbed by the load-storage system) is submitted to the DAM. Although this forecast
may change in the real-time operation, it can be useful for the ISO to better manage
generation and consumption in the electricity market.

5.3.4 Served Energy by Storage and Storage Operation Hours

As reported in Table 5.2, the proposed real-time model outperforms the self-scheduling
model by providing a higher reduction in the consumer’s electricity cost. On a basic level,
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Table 5.3: Annual Discharged Energy by Storage to the Grid (GWh)

Perfect Price Forecast Imperfect Price Forecast
Year Self-Scheduling Proposed Self-Scheduling Proposed
2012 3.3474 2.9885 3.3493 2.9124
2013 4.2975 4.1999 4.2909 3.9111
2014 5.3387 5.4710 5.3304 4.6990

Average 4.3279 4.2198 4.3235 3.8408

Table 5.4: Annual Hours of Operation of the Storage Discharging Plant

Perfect Price Forecast Imperfect Price Forecast
Year Self-Scheduling Proposed Self-Scheduling Proposed
2012 1562 1352 1562 1379
2013 1954 1879 1951 1832
2014 2377 2420 2374 2190

Average 1964 1884 1962 1800

the better performance of storage could be due to serving more energy or equal/less
energy at more appropriate hours. As presented in Table 5.3, on average, the annual
discharged energy by storage in the self-scheduling and proposed models is 4.33 GWh
versus 4.22 GWh, respectively, for the perfect price forecast. The values are 4.32 GWh
versus 3.84 GWh for the imperfect price forecast. Moreover, as reported in Table 5.4, on
average, the annual hours of the storage operation for the self-scheduling and proposed
models are 1964 versus 1884, respectively, for the perfect price forecast. These values
are 1962 versus 1800 for the imperfect price forecast. Thus, the proposed model has
reduced the storage discharged energy by 2.5% and 11.2% for perfect and imperfect
price forecasts, respectively, as compared to the self-scheduling model (see Fig. 5.5 (a)).
Additionally, the proposed model has reduced the storage operation hours by 4.1% and
8.3% for perfect and imperfect price forecasts, respectively (see Fig. 5.5 (b)).

Therefore, in the proposed real-time model, less annual energy is served by storage,
and storage is operated for fewer hours as compared to the self-scheduling model; yet
the proposed model benefits the load more. The superior performance of storage in the
proposed model is not due to serving more energy; rather, it serves less energy at more
appropriate hours. Consequently, not only does the proposed real-time model benefit the
load by reducing the electricity cost more, but it also decreases the storage OPEX and
increases the life of storage by reducing the hours of operation.
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Figure 5.5: Reduction of (a): storage discharged energy and (b): storage operation hours, using
the proposed model compared to the self-scheduling model.

Table 5.5: Profitability of Investment (%) and Break-even Time (Year)

Perfect Price Forecast Imperfect Price Forecast
Self-Scheduling Proposed Self-Scheduling Proposed

Profitability 59 69 11 43
Break-even 22.73 19.23 125 31.25

5.3.5 Profitability of Investment and Break-even Time

In order to examine the profitability level of investment in storage, the expected ROR
needs to be determined, which could be different for each project depending on its risk
profile. In the following, the ability of storage operated under two studied optimization
models to generate an annual net profit equal to 7.5% of the storage capital cost is
investigated. This includes the storage CAPEX and the expected profit of investment
over the storage life. Given that the profitability level of 100% is required for the plant to
generate the expected profit, the profitability levels for self-scheduling and the proposed
real-time models based on the three-year average data are calculated and compared in
Table 5.5. In this table, the break-even time, which is the amount of time needed for
generated profit to equal the initial capital cost, is also reported.

As indicated in Table 5.5, the proposed real-time model outperforms the self-scheduling
one due to the higher profitability level (69% versus 59%) and lower break-even time
(19.23 versus 22.73 years) for the perfect price forecast. As reported in Table 5.5, the
proposed model is significantly more effective than the self-scheduling one when the price
forecast error increases.
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5.3.6 Further Benefits of Storage in the Proposed Model

As explained in Section 5.2.1, storage in the proposed model also provides reserved energy
for the load in case of grid outages. The reserved energy can be used to feed the vital
parts of the load similar to what emergency diesel generators do. In such a case, storage
may replace some back-up diesel generators, thereby creating more financial benefits for
the load. Moreover, through shifting the load from peak to off-peak periods, storage
benefits the grid by reducing the possibility of congestion in both the transmission and
distribution systems. This development could potentially open up opportunities for profit
generation for load-storage systems.

5.4 Conclusion

A new Real-time Optimal Scheduling (RTOS) model is proposed in this chapter of the
thesis to aggregate storage benefits for a large-scale electricity consumer. The application
of the proposed model to a real-world large-scale institutional load in Ontario, Canada,
is examined and compared with the self-scheduling model previously proposed in the
literature. The electricity cost for the load is reduced by 3.9% using the proposed real-
time model; whereas, the cost reduction is 3.3% based on the self-scheduling model,
thereby 0.6% increase in savings. Considering uncertainties associated with Day-ahead
Market (DAM) prices, the cost reduction is 2.4% versus 0.6% using the proposed and self-
scheduling models, respectively, thereby 1.8% increase in savings. The annual electricity
cost for a large-scale electricity consumer could be several millions of dollars. For this
reason, the percentage of the increased savings multiplied by the annual cost leads to
substantial savings in terms of dollars. The proposed model will, therefore, result in
higher profitability of investment and lower break-even time. Additionally, the proposed
model has reduced the storage operation hours by 4.1% and 8.3% for perfect and imperfect
price forecasts, respectively, compared to the self-scheduling model. Consequently, not
only does the proposed real-time model benefit the load by reducing the electricity cost
more, but it also decreases the storage Operating Expenditure (OPEX) and increases the
life of storage by reducing the hours of operation. It is indicated that the electricity cost
reduction by storage has an increasing trend from 2012 to 2014. As a result, it is expected
that the profitability of investment in storage will increase for large-scale consumers in
the near future.



Chapter 6

Conclusion

The increase in renewable energy penetration into Ontario’s electricity market has ad-
versely altered the overall behaviour of the energy market, with negative electricity prices
even starting to appear. Negative prices represent a greater supply than the market de-
mands, mostly appearing at night and during off-peak periods. Energy storage can be
deployed in Ontario for peak shaving and energy shifting from off-peak to peak periods
to address the above-mentioned issues. This is also the concern of many other system
operators across the world. Several market operators around the world have already
started setting regulatory policies to facilitate storage deployment in the market.

This thesis is mainly focused on developing optimization-based models for scheduling
of energy storage units. At first, a Real-time Optimal Scheduling (RTOS) algorithm is
developed seeking to maximize the storage revenue by exploiting arbitrage opportunities
available due to the inter-temporal variation of electricity prices. Comparative studies are
performed to investigate the value and benefit of storage optimized to utilize wholesale
and contract-based electricity prices The electricity price modulation is proposed as an
approach to competitively offer incentive by the utility regulator to storage to fill the gap
between current and a stable rate of return.

Subsequently, the application of large-scale storage for congestion relief in transmis-
sion systems as an ancillary service to the grid is investigated. An algorithm is proposed
for the following objectives: (i) to generate revenue primarily by exploiting electricity
price arbitrage opportunities and (ii) to optimally prepare the storage to maximize its
contribution to transmission congestion relief. An analysis is presented regarding the ap-
propriate amount of financial compensation for the storage owner due to its contribution
to congestion relief.

In addition, an algorithm is proposed to enable independently operated, locally con-
trolled storage to accept dispatch instructions issued by Independent System Operators
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(ISOs). Storage in this case is referred to as dispatchable storage. A new index is pro-
posed to measure the storage dispatchability. While the operation of locally controlled
storage is optimally scheduled at the owner’s end, using the proposed algorithm, storage
is fully dispatchable at the ISO’s end.

Finally, a model is proposed and analyzed to aggregate storage benefits for a large-
scale load. The complete model for optimal operation of storage-based electrical loads
considering both the capital and operating expenditures of storage is developed.

The applications of the proposed algorithms and models are examined using real-world
market data adopted from Ontario’s electricity market and actual load information from
a large-scale institutional electricity consumer in Ontario.

6.1 Outcomes

The main outcomes of this thesis are presented as follows:

• It is indicated that the overall behaviour of the energy market has been altered,
with negative electricity prices even starting to appear. The application of large-
scale energy storage units independently operated in the market is considered for
substantial energy shifting to deal with negative price issues.

• It is demonstrated that both Time of Use (TOU) and wholesale market prices can-
not offer an attractive Rate of Return (ROR) to make investments in large-scale
independently operated storage appealing for private investors; however, the prof-
itability of investment in storage operated in the wholesale market is significantly
higher compared to storage utilizing TOU rates. Using the back-casting method,
the five-year average revenue of storage for Ontario’s wholesale market prices equals
$4.43 M, whereas the annual revenue of storage for the TOU rates equals $1.92 M.

• It is presented that the ideal profitability level using the perfect price forecast is
77%. The profitability level obtained by utilizing a forecast of wholesale market
prices and TOU rates are 53% and 23%, respectively. The storage revenue increases
and becomes closer to the ideal revenue if the error of the price forecast decreases.

• It is indicated that for the perfect price forecast in Ontario’s market, it is required to
modulate electricity prices by 1.3 to meet the expected revenue for storage owners.
It is demonstrated that the price forecast inaccuracy reduces the storage revenue,
and thus, a higher price modulation factor (i.e., 1.87) would be required to fill the
gap between current and a stable expected ROR.
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• When storage injects power to the grid for congestion relief using the proposed
adaptive penalizing mechanism, a considerable contribution to congestion relief is
obtained (i.e., 93.35% and 92.7% for perfect and imperfect price forecasts, respec-
tively); in such a case, only a small portion of the storage base revenue (i.e., 3.25%
and 2.74% for perfect and imperfect prices forecasts, respectively) is lost. This
reveals the feasibility and efficacy of the proposed RTOS algorithm, which aims to
optimally employ large-scale storage for congestion relief. In addition, the efficacy
of the proposed algorithm is validated when storage contributes to congestion relief
by absorbing power from the grid.

• When storage is scheduled as a dispatchable asset in the market, the storage dis-
patchability index equals 98.5% and 78.5% using the proposed and conventional
optimal scheduling algorithms, respectively. Hence, around 100% of ISO’s dispatch
instructions can be followed by the storage using the proposed algorithm. Consid-
ering forecast uncertainties associated with Day-ahead Market (DAM) prices, the
storage revenue for dispatchable storage is larger than that for self-scheduling stor-
age ($1.66 M versus $1.25 M on average); moreover, the Revenue Reduction due to
Price Forecast Error (RRPFE) is lower for dispatchable storage as compared to self-
scheduling storage (61.2% versus 76.3% on average). It is observed that the largest
levels of revenue are associated with the operation of non-dispatchable intermittent
storage ($4.29 M and $6.41 M for lower and higher bounds, respectively).

• It is demonstrated that the proposed real-time model for scheduling of load-storage
systems outperforms the self-scheduling model by generating a higher level of profit
for the load-storage system. The electricity cost for the load is reduced by 3.9% us-
ing the proposed real-time model; whereas, the cost reduction is 3.3% based on the
self-scheduling model proposed in the literature, thereby 0.6% increase in savings.
Considering uncertainties associated with DAM prices, the cost reduction is 2.4%
versus 0.6% using the proposed and self-scheduling models, respectively, thereby
1.8% increase in savings. The annual electricity cost for a large-scale electricity
consumer could be several millions of dollars. For this reason, the percentage of
the increased savings multiplied by the annual cost leads to substantial savings in
terms of dollars. The proposed model will, therefore, result in higher profitabil-
ity of investment and lower break-even time. Additionally, the proposed model
reduces the storage operation hours by 4.1% and 8.3% for perfect and imperfect
price forecasts, respectively, compared to the self-scheduling model.
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6.2 Contributions and Significance of the Thesis

The contributions and significance of this thesis are presented below.

6.2.1 Scheduling of Storage for Exploiting Arbitrage

i) An RTOS algorithm has been developed by formulating a Mixed Integer Linear Pro-
gramming (MILP) optimization problem which aims to generate revenue by utilizing
arbitrage opportunities available due to the volatility of electricity prices.

ii) A new mechanism for storage incentivisation has been proposed. The electricity
price modulation has been incorporated as part of the optimization algorithm to
competitively offer incentive by utility regulators to storage owners.

iii) The economic viability of the operation of large-scale energy storage technologies in
electricity markets has been studied.

Adopting the proposed mechanism in this thesis for storage incentivisation will bring
value for both the utility regulator/system operator and storage investor. This is be-
cause the more the storage is operated to support the power grid by means of energy
shifting/peak shaving, the more incentives it can receive from the utility regulator. The
storage owner profits by receiving more incentive, and the utility regulator/system oper-
ator benefits by less demand during peak periods.

6.2.2 Scheduling of Storage for Congestion Relief

i) Based on a new adaptive penalizing mechanism, an algorithm has been proposed
which optimally prepares the storage to follow external congestion relief commands.

ii) The required amount of financial compensation for the storage owner due to its
contribution to congestion relief has been examined.

By implementing the proposed algorithm in this thesis, a considerable amount of
contribution to congestion relief is obtained, e.g., 93.35% and 92.7% for perfect and
imperfect prices forecasts, respectively. In such a case, storage contribution to congestion
relief would be 15.88% and 20.14% higher for perfect and imperfect prices forecasts,
respectively, when compared to a conventional algorithm. This reveals that the proposed
algorithm is superior to presently employed techniques.
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6.2.3 Scheduling of Storage as a Dispatchable Asset

i) A new optimal scheduling algorithm has been proposed aiming to enable an in-
dependently operated, locally controlled storage unit to accept external dispatch
instructions issued by the ISO.

ii) Using slack variables, a new index has been proposed to measure the storage dis-
patchability in a competitive electricity market.

iii) Using real-world market data, the efficacy and feasibility of the proposed algorithm
to enable a locally controlled storage unit to accept ISO’s dispatch instructions have
been validated.

According to numerical studies, the storage dispatchability index equals 98.5% and
78.5% using the proposed and conventional optimal scheduling algorithms, respectively.
Hence, around 100% of ISO’s dispatch instructions can be followed by the storage using
the proposed algorithm. Thus, the proposed algorithm outperforms previous algorithms
by increasing the storage dispatchability. Dispatchable storage units have great potential
to enhance the flexibility of electric grids and are key elements envisioned to enable smart
grid realization.

6.2.4 Scheduling of Load-storage Systems

i) A new real-time multi-step optimization-based model has been proposed and formu-
lated to optimally schedule the joint operation of a large-scale load and a storage
unit.

ii) A real-time load forecasting model, suitable for large-scale loads, has been incorpo-
rated into the optimal scheduling algorithm using soft constraints, slack variables,
and penalizing mechanisms.

iii) Using a real-world case study, the operation of the proposed model has been exam-
ined and compared with the self-scheduling model proposed in the literature.

The proposed real-time model outperforms prior models by generating higher prof-
itability of investment, lower storage Operating Expenditure (OPEX), and an extended
life of the storage plant. The electricity cost for the load is reduced by 3.9% using the
proposed real-time model; whereas, the cost reduction is 3.3% based on the previously
proposed models in the literature. The proposed model also reduces the storage operation
hours by 4.1% and 8.3% for perfect and imperfect price forecasts, respectively, compared
to prior models.
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6.4 Future Work

The following topics are suggested for future work:

• Based on the analyses conducted throughout this thesis, storage operation is ad-
versely affected by uncertainties associated with DAM prices. The stochastic pro-
gramming approach can be employed to deal with price forecast inaccuracy to
some extent. However, stochastic models are computationally challenging due to
the large number of scenarios that have to be considered. The model also requires
knowledge of the probability distribution of uncertain variables, which may not be
available. Developing scheduling algorithms for storage which are less sensitive to
market price forecast uncertainties is suggested for future work.

• Comprehensive mechanisms can be developed for storage compensation when it
provides ancillary services to the grid, such as congestion relief. These mechanisms
should comply with the rules and regulations of the electricity markets.

• In order to increase the profitability level of investment in storage, different sources
of revenue and profit generation should be provided for storage. In this thesis,
storage is utilized for exploiting arbitrage and for congestion relief at the same time.
One of the application of large-scale storage is for Transmission and Distribution (T
& D) upgrade deferral. Storage can also be operated in the reserve market in order
to generate more profit. While these applications of storage have been investigated
in the literature, incorporating all the applications into a single optimal scheduling
algorithm would be a useful topic for future research in this area.

• Dispatchable storage units play a crucial role in preserving the reliability and se-
curity limits of the grid; they are also key elements envisioned to enable smart grid
realization. Appropriate policies for financial support of locally controlled dispatch-
able storage units by utility regulators/ISOs can be investigated in the future; the
objectives of this financial support would be to encourage deployment of storage
units as dispatchable assets in electricity markets.

• Numerical evaluation of several benefits of storage both for the load and for the
grid, such as providing reserved energy for the load and decreasing the possibility
of congestion in the grid is suggested for future research in this area.



Appendix A

Proof of Theorem for Load
Forecasting

The proof of obtaining (5.24) from (5.23) is presented in this section. Based on (5.23),
the load power is stated as follows:

Y ~M = ~PL + ~ε. (A.1)

Equation (A.1) can be written as follows:

Y ~M − ~PL = ~ε (A.2)
(Y ~M − ~PL)tr(Y ~M − ~PL) = ~ε tr~ε (A.3)

( ~M tr Y tr − ~PL
tr

) (Y ~M − ~PL) = ~ε tr~ε (A.4)
~M trY trY ~M − ~M trY tr ~PL − ~PL

tr
Y ~M + ~PL

tr
~PL = ~ε tr~ε. (A.5)

Considering (A.6) in the following:

~M trY tr ~PL = ( ~PL
tr
Y ~M)tr & ( ~PL

tr
Y ~M)tr = ~PL

tr
Y ~M, (A.6)

equation (A.5) is simplified as expressed in the following:

~M tr Y tr Y ~M − 2 ~M tr Y tr ~PL + ~PL
tr
~PL = ~ε tr ~ε. (A.7)
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The optimal solution for ~M in (A.7) can be obtained when the values of elements in ~M

minimize the error vector ~ε. Thus,

d

d ~M

(
~M tr Y tr Y ~M − 2 ~M tr Y tr ~PL + ~PL

tr
~PL
)

= 0 (A.8)

2Y tr Y ~M − 2Y tr ~PL = 0. (A.9)

Finally, the model parameters vector ~M as expressed by (5.24) is given in the following:

~M = Y −1L ~PL, Y −1L ∆=
[
[Y tr Y ]−1 Y tr

]
. (A.10)



Appendix B

Analysis of the Load Forecaster

B.1 Real-time Load Forecasting Algorithm

In this appendix, the aim is to further analyze the STLF algorithm used in Chapter 5
for scheduling of load-storage systems. Fig. B.1 shows the block diagram of a Real-time
Short-term Forecasting (STF) algorithm. As shown in this figure, the historical data
including load, generation, price, weather data (mostly temperature data), seasonality,
and any other required data depending on the type of forecaster are first provided for
the calibrator to create the forecasting model. The model can be made by the calibrator
based on different methods such as time series or artificial intelligent-based methods. A
calibration report is required to evaluate the performance of the model in order to ensure
that it is accurate. After the model is made, the parameters of the forecasting model is
fed into the forecaster. The forecaster is also provided with other input data, such as
weather forecast data or any other required parameter to perform accurate forecasting.
The output forecast data in a STF algorithm can include electric load, electric power
generation, or energy price data for the next several hours, such as 24 hours. The forecast
data is inputted to the controller in real-time in order for the controller to be able to
run the RTOS algorithm every several minutes, thereby providing optimal set-points for
energy storage units.

B.2 Two Forecasting Methods

In case of load and electricity price forecasts, STF algorithms can fall into two general
categories. In the first category, weekdays, weekends, and holidays are forecast together
using the same algorithm and historical data, which is called Method 1 in this thesis.
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Figure B.1: General block diagram of a real-time short-term forecasting algorithm.

However, in the second category called Method 2 in this thesis, separate forecasters are
created for weekdays, weekends, and holidays. It is also possible to combine weekend and
holiday forecasting to minimize the number of forecasters since the pattern of electric
consumption in holidays is similar to the one in weekends. The second method is more
complicated and require more processing power as compared to the first method since
Method 2 uses multiple forecasters. In the following sections, the application of the model
represented in Fig. B.1 is specifically examined for load forecasting.

B.3 Analysis of the Load Forecasting Algorithm

This section aims to investigate the load forecasting of large-scale electricity consumers
in details. The aim is to come up with parameters needed for accurate modeling of
the load forecaster. Several cases are studied in order to investigate the details of the
forecasting problem. The main objectives of the studies in this section are as follows: (i)
to evaluate the effect of window length on historical load data and (ii) to examine the
effect of resolution (i.e., the sampling rate) of load data.

Different cases can be considered for STLF. In the following, each case is evaluated
through simulation. There are some figures for each case showing the load and tempera-
ture curves. For all the figures, figure x-a shows the historical and fitted load on the left
side of the vertical line; it shows actual and forecast load on the right side of the vertical
line. The historical and actual loads are represented in blue; the fitted and forecast loads
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Figure B.2: (a): Load power and (b): ambient temperature for a one-day window length.

are shown in red. Furthermore, figure x-b shows the historical ambient temperature on
the left side of the vertical line, and future ambient temperature on the right side of the
vertical line.

B.3.1 One-day Window Length, One-day Frequency

In this case, the forecasting window length (i.e., TL) and the fundamental frequency (i.e.,
fL) of historical data are selected as one day (i.e., 24 hours). Fig. B.2 shows the result
of forecasting as well as the ambient temperature for a forecast weekday. As shown in
Fig. B.2, the forecast error is significant since the forecast and actual data do not look
similar. This is mainly due to the fact that the weekly pattern cannot be taken into
considerations when the window length is only one day. The difference in patterns of
the load in different weekdays increases the forecast error. In the next case, the window
length will increase to two days.
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Figure B.3: (a): Load power and (b): ambient temperature for a two-day window length.

B.3.2 Two-day Window Length, One-day Frequency

In this case, the window length is considered as two days, and the fundamental frequency
is taken as one day. Fig. B.3 shows the simulation result for this case. As shown in Fig.
B.3, there is still considerable forecast error observed in load forecasting. For a two-
day window length, the forecasting model cannot follow the weekly pattern. The model
cannot detect if the load changes are due to temperature changes or due to the regular
pattern of that specific day. Therefore, in the next sections, the window length will be
considered longer than two days.



106 Chapter B. Analysis of the Load Forecaster

Figure B.4: (a): Load power and (b): ambient temperature for a two-week window length.

B.3.3 Two-week Window Length, One-week Frequency

In this case, the window length is considered as two weeks and the fundamental frequency
is taken as one week. Fig. B.4 shows the results. As shown in Fig. B.4, the forecast
error is relatively small since the forecast and actual data look similar. In this case, the
weekly pattern of weekdays and weekends can be considered. The window length is large
enough to account for the weekly pattern. In the next section, the window length will
increase to indicate if the forecast accuracy can be further improved.
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Figure B.5: (a): Load power and (b): ambient temperature for a four- week window length.

B.3.4 Four-week Window Length, One-week Frequency

In this case, the window length is considered as four weeks and the fundamental frequency
is taken as one week. Fig. B.5 shows the results.

By comparison of Figs. B.4 and B.5, it can be observed that increasing the window
length beyond two weeks cannot increase the forecast accuracy; this is because the model
does not consider any monthly and sub-monthly patterns. Thus, for the rest of analyses,
the window length will be limited to two weeks.
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Figure B.6: (a): Load power and (b): ambient temperature for a ten-day window length.

Figure B.7: (a): Load power and (b): ambient temperature for a four-day window length.

B.3.5 Ten/Four-day Window Length, Five/Two-day Frequency

In this case, the window length is considered as ten weekdays for weekday forecasting
and four weekends for weekend and holiday forecasting. The fundamental frequency is



B.3. Analysis of the Load Forecasting Algorithm 109

Figure B.8: (a): Load power and (b): ambient temperature for 12-minute sampling rate.

taken as half of the window length in each case. Figs. B.6 and B.7 show a weekday and
a weekend forecasting, respectively.

As shown in Figs. B.6 and B.7, the load forecast of both the weekday and weekend
are similar to the actual load. In this case, the weekly pattern of weekdays and weekends
can be considered. Weekdays are separated from weekends and holidays; thus, the model
can be well fitted for each case. Weekdays are forecast by weekday forecaster; weekends
and holidays are forecast by weekend forecaster.

B.3.6 Impact of Load Data Resolution

The above-mentioned analyses were conducted over the load data while the sampling
rate were taken as 1 hour. In this section, the sampling rate or the resolution of the load
data increases to investigate if the forecast accuracy can increase. Figs. B.8 and B.9
show two cases with 12-minute and 5-minute sampling rate, respectively, for a ten-day
window length.

By comparison of Figs. B.8 and B.9 with Fig. B.6, it can be observed that in-
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Figure B.9: (a): Load power and (b): ambient temperature for 5-minute sampling rate.

Table B.1: Matrix Dimension at Different Sampling Rates

Sampling Rate 1 Hour 12 Minutes 5 Minutes

Dimension of Matrix Y to be Pseudo Inversed 240 × 80 1200 × 80 2880 × 80

creasing the sampling rate to more than 1 sample per hour cannot considerably increase
the forecast accuracy. Instead, the size of Matrix Y , which is to be inversed, substan-
tially increases at higher than 1-hour sampling rate; this results in higher computation
requirements which is not appropriate.

Table B.1 reports the dimension of Matrix Y , which is to be pseudo inversed, at
different sampling rates. As reported in Table B.1, the matrix dimension for 12-minute
and 5-minute sampling rates are considerably larger as compared to the case of 1- hour
sampling rate.
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B.4 Forecast Error Analysis

B.4.1 Load Forecasting Using Method 1

As pointed out in Section B.2, Method 1 uses two complete weeks (i.e., 14 days) of
window length for weekday, weekend, and holiday load forecasting; Due to its pattern,
each holiday can be considered either as a Saturday or as a Sunday. According to the
literature, holiday loads are more similar to Sundays than Saturdays [108]. Thus, holidays
are forecast as Sundays.

The fundamental frequency is considered as one week. Then, the load in the next 24
hour is forecast using the forecasting model considering the forecast temperature. The
load of each forecast day is compared with the actual load of that day and their difference
is considered as the forecast error. The percent of the forecast error in comparison
with the actual load is then calculated. The simulation is rerun at each hour and the
forecast error is calculated for the entire data. Then, the mean value and standard
deviation of the error for each hour is calculated. To evaluate the performance of the
forecasting algorithm, the PDF and probability of the mean values of error and the
standard deviation of error are calculated.

A PDF is a function that indicates the relative likelihood for a random variable to
take on a given value. The PDF is non-negative, and its integral over the entire space
would be equal to one. For instance, if for the error value of 5%, the PDF is 0.01, it
means that the probability that the 5% error occurs is 1%. In addition, the probability
for the random variable to fall within a particular region is given by the integral of the
PDF over that region. For instance, if the probability of the 5% error is 0.35, it means
that the probability that the 5% error falls in the region of 0 to 5% is 35%. In other
words, with the probability of 35%, the error values are less than or equal to 5%.

B.4.2 Load Forecasting Using Method 2

The second method in this section uses ten-weekday window length for weekday fore-
casting and four-weekend window length for weekend and holiday forecasting. With the
same process as mentioned in section B.4.1 for Method 1, the PDF and probability for
the mean values and standard deviation of forecast error are calculated for this case.

B.4.3 Numerical Results Using Real-world Data

In this section, the historical load and ambient temperature information of a substation at
a large-scale institutional electricity consumer for the year of 2011 is used for simulation
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Figure B.10: (a): Probability density function and (b): probability of mean values of forecast
error for Methods 1 and 2.

studies of the load forecasting methods. The real-time simulation is used for analyses of
the two forecast methods (i.e., Methods 1 and 2) as defined earlier in this appendix.

Figs. B.10 and B.11 show the PDF and probability of the mean values and standard
deviation of the forecast error for the two methods, respectively. As shown in Fig. B.10
(a), the PDFs for the two methods are different for each mean value of error; however,
their overall trends are approximately the same. Moreover, as shown in Fig. B.10 (b),
at a specific value of probability, the mean value of error is larger for Method 2. This
reveals that the forecast accuracy of Method 1 is higher than that of Method 2 for the
given load and temperature pattern.

As shown in Fig. B.11 (a), the PDFs in two different methods are different for
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Figure B.11: (a): Probability density function and (b): probability of the standard deviation
of forecast error for Methods 1 and 2.

each mean value of error; however, their overall shapes are approximately the same. In
addition, as shown in Fig. B.11 (b), at a specific value of probability, the standard
deviation of error is larger in Method 2. Since the standard deviation in Method 1 is
smaller than that in Method 2, the values of errors are closer to the mean value in Method
1. Thus, Method 1 would be more effective than Method 2.

Table B.2 reports the mean value and standard deviation of forecast error in Methods
1 and 2 at probability of 0.8. As reported in Table B.2, both the mean value and standard
deviation of forecast error in Method 1 are smaller than those in Method 2. A large
standard deviation means that the value of forecast error in different hours is far below
or above the mean value which may not be acceptable. Based on the results in Table
B.2, Method 1 is more effective than Method 2.
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Table B.2: Mean Value and Standard Deviation of Forecast Error at the Probability of 0.8

Type of Forecaster Mean Value of Forecast Error Standard Deviation of Forecast Error

Method 1 10.45 7.25

Method 2 12 8.3

The outcomes of the studies in this appendix are summarized as follows:

• In forecasting with one-day or two-day window lengths, the weekly pattern of the
load cannot be considered; therefore, the forecast error would be significant. How-
ever, when the window length increases to two weeks, the weekly pattern of week-
days and weekends are taken into considerations. Thus, the forecast error signifi-
cantly decreases.

• By increasing the window length to more than two weeks, e.g., such as four weeks,
the forecast accuracy will not increase.

• Increasing the sampling rate to higher than 1 sample per hour does not have a
substantial impact on forecast accuracy, but rather increases the amount of com-
putation required for model fitting and forecasting.

• By examining and comparing Methods 1 and 2 using real-world load data, it is
indicated that Method 1 is more effective than Method 2 due to lower forecast
error.



Appendix C

Implementation of the Load
Forecaster

C.1 Introduction

In this thesis, real-time models are proposed and developed for controlling the operation
of storage as a single entity or joint operation of a large-scale load and a storage unit.
A large-scale load together with a storage unit can be considered as a microgrid. Micro-
grids are essential parts of smart grids which will be vital in the trend towards integrating
Distributed Energy Resources (DERs) [109]. A microgrid supervisory control system is
necessary to efficiently monitor and optimally operate a microgrid with DERs and/or
energy storage devices [8], [110]. This control system needs to measure different parame-
ters such as demands, generations, and the status of each microgrid asset in real-time at
various locations across the microgrid network. Since DERs, loads, and storage devices
are likely to be dispersed across the microgrid, a communication network is required to
carry data across the various resources [111].

An appropriate supervisory control system should be able to interact with possible op-
erators and remote clients, such as a distribution automation system to demonstrate and
archive the microgrid real-time data and receive required commands and information. In
order for a microgrid supervisory control system to have all the mentioned specifications,
each microgrid asset or a combination of them should be provided with a local controller.
Supervisory controllers are also required to run scheduling algorithms (e.g., those that
are developed in this thesis) every several minutes to provide optimal set-points for the
microgrid assets, e.g., storage units. This supervisory controller requires several inputs,
including forecasts of electrical load, power generations, and energy price to be able to re-
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liably and optimally supervise the entire microgrid and to determine the optimal power
set-points for the microgrid. Moreover, a reliable and robust communication network
should be set up to provide data communication from local controllers to the supervisory
controller and vice versa in order to provide all the required input information for the su-
pervisory controller [112]. The performance of such a microgrid controller depends highly
upon the accuracy of the forecast information. The more accurate the forecast data are,
the more optimal the microgrid supervisory controller can dispatch its DERs [112].

In practice, it is desired to have a single device as a microgrid supervisory controller,
which automatically monitors the microgrid asset’s information, buffers the information
for a short-time interval such as two weeks; performs various forecasting algorithms such
as load and generation; executes optimal scheduling algorithm; and commands local asset
controllers. This supervisory controller may be installed in a substation that should com-
ply with electric substation standards. This means that the controller’s central processing
unit should be a fan-less chip that tolerates harsh environmental conditions, such as high
and low temperatures. In such a controller, use of extrapolation and interpolation is not
an ideal solution to tackle data loss issue due to its complexity and the limitation in the
controller’s processing power and memory space. Several studies have proposed different
real-time STF algorithms; however, practical challenges such as loss of data for a period
of time with the above-mentioned limitations have not been adequately investigated. In
this appendix, a method for loss of data management is proposed.

The recorded data concerning holidays should be excluded from the historical buffer
of a regular day load and electricity price forecasting due to the considerable difference in
the profiles of a holiday and a regular weekday. As a result, 24-hour holiday data should
be replaced with appropriate data to ensure an accurate forecast for future hours and
days. This challenge is similar to the data loss issue; as a result, the proposed method in
this thesis is extended to address this challenge as well. The proposed method is simple
yet effective and can be applied to any real-time STF, such as electrical load, electric
power generation, and energy price forecasting with insignificant additional computation.

As described in Appendix A, all real-time STLF algorithms need to have a window
of historical data in order to forecast the future load. This data window is what is
monitored and recorded by the microgrid controller in real-time. Whenever the electric
load/generation data is not available, e.g., due to communication loss, during the normal
working of the microgrid controller, no data exist to be recorded into the buffer. If that
is the case, the real-time forecaster loses a time period of data in its buffer; therefore,
it does not have all the required historical data for model calibration and forecasting.
This problem should be solved through real-time implementations since the forecaster
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should provide real-time forecast data in order for the microgrid supervisory controller
to be able to work properly. As mentioned earlier, extrapolation and interpolation-based
methods can be used to create data for the outage period. However, these methods add
considerable computation and impose more complexity on the forecasting algorithm.

In addition to loss of data management, the following challenges are discussed: fore-
casting in the presence of a holiday, lack of historical data in first time utilization, man-
agement of limited memory and processing capability, and time shift for daylight savings.

C.2 Handling the Issue of Data Loss

In this section, a simple yet effective method is proposed to address the challenge of
data loss by adding an insignificant amount of additional computation. The real-time
STLF algorithm, used in Chapter 5 and analyzed in Appendix A, is selected to which
the proposed method for handing loss of data issue is applied to verify the efficacy and
feasibility of the proposed method. Using the same concept of the proposed method for
handling data loss issue, a technique is proposed for addressing the challenges of forecast-
ing during holidays. Although the performance of the proposed method is evaluated only
on a real-time STLF algorithm, the method can be used in any real-time STF algorithm.

The proposed method employs the recent historical forecast data to fill in the lost data
in case of a failure in data communication. As explained in Appendix A, in a real-time
STF algorithm, a window of historical data such as two-weeks is used to calibrate and
construct the forecasting model. This window of data contains the most recent historical
data. For instance, in the case of a two-week window length, in order to forecast the data
in the next 24 hours, data in the last two weeks (i.e., in the last 336 hours) is picked up
and used to create the model. Then, the model is recalibrated at the next time interval
using the last 336 hours. Therefore, the present data should be monitored and recorded
into the buffer for at least two weeks to calibrate the forecasting model.

If for any reason, such as communication loss, the actual input data are interrupted,
the above-mentioned window will not have enough historical data; hence, the forecaster
cannot perform accurately for two weeks. For example, in the case of real-time STLF,
if the actual load data are interrupted for 5 hours in each week, then the forecaster will
have only 336− 5× 2 = 326 hours; thus, the two-week window of data is not complete.
This causes load forecasting to be significantly inaccurate from the moment of data
interruption till 336 hours later when the window of data reaches to two full weeks.
Accordingly, in order to address this challenge, one could find a way to provide data in
the outage period in such a way that these data are equal or similar to the actual data.
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Figure C.1: The basic diagram showing how to handle the issue of data loss.

At each time interval, the forecaster estimates the forecast data from the present
time till 24 hours ahead; at the time of data interruption, the forecast data after the
last instance when the data monitoring was available are proposed to be used instead
of the actual data and saved into the historical buffer until the interruption problem
is cleared. Since the forecast data are supposed to be similar to the actual data, it is
appropriate to use the forecast data in place of the lost data. This process continues
until there are actual data available for the forecaster. Fig. C.1 shows the flowchart of
the proposed method for handling loss of data issue. As shown in Fig. C.1, there is a
feedback system that can transfer the forecast data from the output to the input. It is
continually checked to see if the actual input data fed to the buffer are interrupted or
not; if the input data are interrupted, the forecast data is substituted for the actual ones
until the data interruption problem is cleared. As illustrated in Fig. C.1, the proposed
method is very simple and can be implemented easily by only considering a buffer to store
the forecast data. This will not add significant cost and computation to the forecasting
algorithm since the forecast data are already available for the device and no additional
computation is required to obtain the data.

In Section C.4.1, simulation results will prove that this method is effective and can
perform load forecasting with relatively high accuracy during actual data interruption.
Moreover, after the outage period when the actual data monitoring is resumed, the
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Figure C.2: The basic diagram for management of holiday forecasting.

forecasting device automatically returns to normal operations and performs its regular
load forecasting. The same concept used for handling data loss issue, which uses the
forecast data instead of actual data, can be used to manage data forecasting when there
is a holiday in a week. This will be described in the following paragraph.

In case of load forecasting, the pattern of the data in a holiday is different from the
one in a regular weekday since the consumption behaviour during holidays and regular
weekdays are different. Therefore, there should be special considerations in forecasting
when the week contains a holiday. Accordingly, the holiday data should not be recorded
in the weekday or weekday-weekend buffer since this creates error in the model calibration
and forecasting of future data. On the other hand, exclusion of a specific day from the
historical buffer requires several adjustments in the forecasting algorithm that makes it
very difficult for real-time implementation. In this appendix, a simple method is proposed
to address this challenge using the same technique used to manage data loss issue. In
this technique, to prevent the creation of forecast error, it is proposed to use forecast
weekdays instead of holidays and record them into the buffer.

C.3 Load Forecasting in the Presence of a Holiday

Fig. C.2 shows the flowchart of the proposed method for managing holiday forecasting.
This technique can be applied to both load and energy price forecasting or any other cases
in which the pattern of data in holidays is different from the one in regular weekdays.
Based on this method, first, the holiday dates during the year should be acquired from
the user as settings. Then, when the holiday arrives, during the first hour of the holiday,
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two forecasts are performed as follows: one regular weekday forecast and one holiday
forecast. Then, the forecast holiday appears at the output of the forecaster, and the
forecast weekday is saved into the weekday buffer instead of the actual data of the holiday.
As shown in Fig. C.2, the proposed method for managing holiday data forecasting uses
the same concept as handling loss of data issue. This method is simple yet effective and
does not impose a heavy computation burden on the forecasting device.

C.4 Numerical Results

In this section, the two load forecasting methods studied in Appendix A are selected for
numerical evaluation of the proposed method in Section C.2 for handling the issue of data
loss. Although the case study in this thesis deals only with STLF, the proposed method
can be used in any real-time STF algorithm, such as electricity price and renewable
power generation forecasting, e.g., solar and wind. The real-time simulation is used for
implementing the two forecasting methods, by day-ahead load forecasting with one-hour
time intervals for data updating. The window length for historical data is selected as two
weeks. Thus, for the first method of STLF, the window length is two complete weeks for
weekday and weekend/holiday load forecasting; for the second method, it is ten weekdays
for weekday forecasting and four weekends for weekend/holiday load forecasting since the
weekdays and weekends are separated in the two-week-length window of data.

The simulations are run through the real-world electricity load and ambient temper-
ature data of a substation at a large-scale institutional electricity consumer for the year
of 2011 during wintertime. It is clarified that during wintertime, the electrical load is
not directly dependent upon the temperature since colling systems are not operated. In
such a case, the load follows a more predictable trend as opposed to the load during
summertime, and thus, the forecast error decreases. For this reason, the load forecast
error in this section is less than the forecast error of the case studies in Section B.4.3.
Nevertheless, the same load has been used to comparatively evaluate the forecast error
with and without data loss. In both of the implemented STLF methods, the proposed
strategy for addressing the challenge of data loss is verified by comparing the probability
values of forecast error in two operating conditions of the load forecaster as follows:

(i) When there is no data loss, and therefore, the forecaster is provided with the actual
input data all the time.

(ii) There is a 5-hour period of data loss in each week, and thus, the forecaster will have
to use the forecast data instead of the actual ones during these hours.
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Figure C.3: Probability of forecast error (a): mean value & (b): standard deviation for Method 1.

Based on the above-mentioned operating conditions, the forecast and actual load
data of each day in the year are compared, and their differences are considered as the
forecast error. The percent of this error in comparison with the actual load data is then
calculated. The simulation is rerun every hour, and the forecast error is calculated for
the entire load data at each hour. Then, the mean value and standard deviation of the
error at each hour are calculated. To evaluate the performance of the proposed method,
the probability values of mean and standard deviation of error is calculated for both
operating conditions, i.e., with and without occurring data loss. In the following, the
method for handling data loss issue is applied to Methods 1 and 2 of STLF.

C.4.1 Handling Data Loss Issue for Method 1

In this section, the proposed approach to solve the data loss problem is applied to the
first method of STLF, i.e., only one forecaster for weekday, weekend, and holiday load
forecasting with a two-week window of historical data. The probability values of the mean
and standard deviation of the forecast error for two operating conditions, i.e., with and



122 Chapter C. Implementation of the Load Forecaster

Mean Value of Forecast Error (%)

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1
(a)

Without Data Loss
With Data Loss

Standard Deviation of Forecast Error (%)

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

(b)

Without Data Loss
With Data Loss

Figure C.4: Probability of forecast error (a): mean value & (b): standard deviation for Method 2.

without occurring data loss, are calculated and represented in Fig. C.3. In this study, in
order to simulate loss of data monitoring, the actual input load data are interrupted in
a real-time simulation for a 5-hour period in each week, and therefore, substituted with
related forecast data based on the proposed technique. Fig. C.3 (a) shows the probability
of the mean value of forecast error. For instance, if the probability of the 5% forecast
error is 0.65, it means that the probability that this value of error falls less than or equal
to 5% is 65%. In other words, with the probability of 65%, the error values are less than
or equal to 5%. Therefore, if the large probability values occur for small error values,
the forecaster will be more accurate. In other words, the more the curve peak moves
towards the left, the more accurate the forecaster will be. The same concept is valid for
the curves shown for the standard deviations. If the curve peak moves towards the left,
the high probability values occur for small values of standard deviation. The smaller
the standard deviation is, the less the error values are scattered around the mean value,
indicating that the forecaster is more accurate; this is because it is not appropriate if the
values of forecast error are considerably lower or higher than the mean value.

As shown in Fig. C.3, the probability values of error and standard deviation for



C.4. Numerical Results 123

Table C.1: Mean Value (MV) & Standard Deviation (SD) of Forecast Error at Probability of 0.8

Method 1 of STLF Method 2 of STLF
Without Data Loss With Data Loss Without Data Loss With Data Loss

MV SD MV SD MV SD MV SD
6.4% 3.7% 7.2% 4.2% 7.7% 4.2% 8.7% 4.6%

the two operating conditions are similar; the small difference between the curves of two
operating conditions is due to the difference between the forecast and actual data in the
historical buffer since the actual data are substituted with the forecast ones when the
data is interrupted. Nevertheless, the forecast accuracy for both cases is almost identical-
showing the efficacy of the proposed method for managing data loss issue.

C.4.2 Handling Data Loss Issue for Method 2

In this section, the proposed technique is applied to the second method of STLF, i.e.,
one forecaster for weekday load forecasting with a ten-weekday window of historical load
data and another forecaster for combined weekend and holiday load forecasting with a
four-weekend window of historical load data. The probability values of the mean value
and standard deviation of forecast error for the two operating conditions, i.e., with and
without data loss, are calculated and illustrated in Fig. C.4. Similar to Fig. C.3, in Fig.
C.4, both the probability of error mean value and probability of error standard deviation
are similar for the two the operating conditions. The small difference between the results
in two operating conditions is due to the difference between the forecast and actual data
in the buffer. Nevertheless, the forecast accuracy for both cases is almost identical.

Table C.1 presents the error mean value and standard deviation at the probability
of 0.8. As reported in Table C.1, in both methods, the error mean value and standard
deviation are similar for both the operating conditions of with and without data loss.
This proves that when there is a small period of data loss in real-time implementation of
STF algorithms, the use of forecast data to fill in the outage period does not significantly
impact the forecast results. Thus, the method proposed in this thesis can be employed
to keep the forecaster from being stopped at the time of actual data interruption. If,
for any reason, such as communication loss, the actual data are not provided for the
forecaster, the microgrid supervisor controller can continue working with the acceptable
accuracy until the data loss problem is cleared and actual data monitoring for the device
is resumed. Moreover, based on the results indicated in Table C.1, Method 1 is more
effective than Method 2 due to lower mean value and standard deviation of forecast error.
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C.4.3 Managing Holidays in Forecasting Algorithms

For the purpose of simulation, the load of a typical weekday, i.e., Monday (March 7,
2011), is forecast using the two-week window of historical data. Since this window of
data contains two weeks of load data, it has two Mondays. In this case, the first Mon-
day is a holiday, i.e., February 21, 2011 (Family day in Canada). Therefore, it has a
load pattern significantly different from a regular Monday. The holiday load is normally
significantly smaller than the regular weekday load. Since the forecasting model is sig-
nificantly affected by the pattern of the holiday in two weeks ago, the load forecast for
Monday on March 7, 2011 is mostly like a holiday, not a regular weekday even though
it is not a holiday. Thus, the forecast data are significantly underestimated. This causes
tremendous amount of forecast error. In fact, the source of this error originated from the
holiday data recorded in the buffer two weeks ago appearing in the window of histori-
cal data. Thus, if these holiday data are kept from being recorded into the buffer, and
instead the data of a regular weekday are recorded, this source of error will be removed.

The regular weekday data which are to be recorded into the buffer instead of the hol-
iday data should be an estimation of the data at the time of holiday with the assumption
that the holiday is a regular weekday. Accordingly, in this study, when the holiday is
supposed to be forecast, an additional forecast is performed considering that this holiday
were a regular Monday, and recorded into the buffer instead of the holiday data. In such
a case, two sets of forecast data are performed as follows: one set is the holiday forecast
and the other set is the regular weekday forecast; the regular forecast data is recorded
into the buffer instead of the actual holiday data; this prevents creation of forecast errors
in the next two weeks (see Fig. C.2).

To evaluate the above-mentioned approach, the mentioned Monday is first forecast
without holiday management, and then it is forecast based on the method proposed. The
forecast and actual data as well as the forecast error for both cases are shown in Fig. C.5.
As shown in Fig. C.5, when the forecasting is performed without holiday management,
there is a significant amount of forecast error, up to 17.5%, while the forecast error is
very small, up to 6%, in the case of holiday management using the proposed method.

C.5 Lack of Historical Data in First Time Utilization

In this section, the case of first time utilization of the forecaster is investigated. When
the device is installed for the first time, there is no historical information recorded in the
buffer of the device, and therefore, the device is not able to follow the regular forecasting.
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Figure C.5: (a): (1) Forecast load with holiday management and (2) forecast load without
holiday management; (b): (1) forecast error with holiday management and (2) forecast error
without holiday management: all for Method 1.

According to the studies conduced in Appendix A, two weeks of historical load data
are required for the forecaster. If there are historical data from the microgrid before the
first time utilization of the device, two weeks of historical load and temperature data can
be imported to the device, and the device can perform its regular forecasting from the
moment it is installed in the system.

However, if no historical data are available to provide for the device, the device
cannot accurately perform any forecasting until it works in the system and records some
historical data into the buffer. If that is the case, the following options can be taken into
considerations at the first time utilization of the device:

i) The device works in the system for two weeks without performing any load forecast-
ing until it saves two weeks of historical load and temperature data; after that the
system will be able to perform its regular forecasting.

ii) The device saves the data of the first week without any forecasting until it has one
week of temperature and load data into the buffer. Then, the forecasting of the next
week will be considered as the duplication of the first week. When there are two
weeks of data in the buffer, the system will be able to perform its regular forecasting.
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Table C.2: Appropriate Harmonics Selected for Different Forecasters

Type of Forecaster Harmonics for Model Fitting
Mixed Weekdays and Weekends/Holidays (Method 1) 1-14, 21, 28, 35

Only Weekdays (Weekday Forecaster of Method 2) 1-10, 15, 20, 25
Only Weekends and Holidays 1-10

(Weekend/Holiday Forecaster of Method 2)

iii) The device works in the system for one day to save 24 hours of load and temperature
data; the next day forecasting will be duplication of the day before, until the end of
the first two weeks. When there are two weeks of data in the buffer, the system will
be able to perform its regular forecasting.

iv) The device works in the system for one day to save 24 hours of load and temperature
data; the next day forecasting will be duplication of the day before, until the end
of the first week. The next week is then considered as duplication of the first week.
When there are two weeks of data in the buffer, the system will be able to perform
its regular forecasting.

Among the available options mentioned above, the first one would be the best if there
are historical data available before the first time utilization of the device; this is because
by using this method the device can perform its regular forecasting from the first time of
installation. However, if no historical data are available before the first time utilization,
the fourth option is suggested since the device can start inaccurate forecasting from the
second day of installation and then follow the regular forecasting after the first two weeks.

C.6 Managing Limited Memory and Processing

Since the forecasting algorithm is implemented on a device with limited processing speed
and limited memory space, the amount of calculations and required memory should be
limited as possible. In order to do so, the number of harmonics which are selected for
model fitting using the LES-based algorithm modeled in Chapter 5 should be reduced
appropriately. Based on the analyses conducted on the historical load and ambient
temperature information of a large-scale institutional electricity consumer, the proper
harmonics for different forecasters are as indicated in Table C.2. These harmonics are
extracted by applying Fast Fourier Transform (FFT) on the historical load data. If these
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harmonics cannot be well fitted with the forecasting model, some king of settings can be
considered for the device to enter the appropriate harmonics manually for each specific
microgrid. Consequently, if the appropriate harmonics are determined by applying FFT
on the historical load of the microgrid and are entered manually to the device, the amount
of calculations and required memory is reduced by preventing extra and unnecessary
harmonics and at the same time, maintaining the accuracy of model fitting.

C.7 Time Shift for Daylight Saving

In addition to the above-mentioned practical challenges, daylight saving can also be
considered to increase the forecast accuracy. Daylight saving is the practice of advancing
clocks during the lighter months, so that evenings have more daylight and mornings have
less. Typically clocks are adjusted forward for 1-hour near the start of spring and are
adjusted backward in autumn.

When the time is shifted due to the daylight saving, the pattern of the load ap-
proximately follows the new time since electricity consumers are likely to consume the
electricity according to the new time. For instance, a peak in the load signal at 8am in
a university is due to the fact that the university employees and students start working
at 8am. Thus, no matter the time is shifted or not, at 8am in a weekday, the load has a
peak; this is because the people follow the official time, and thus, the load consumption
is mostly dependent on the time of the day. Therefore, in order to consider the effect of
time shift for daylight saving in time-dependent load forecasting, two cases are considered
as presented in Sections C.7.1 and C.7.2 in the following:

C.7.1 Daylight Saving in Spring

In a specific day of spring, the clocks are adjusted forward for 1-hour at 12am (00:00);
in this case, the time suddenly changes from 12am to 1am; thus, one hour from 12am
to 1am is lost; in order to consider this time shift in load forecast, when the next 24
hours contain the moment of time shifting (at 12am), the forecast load from 12am to
1am should not appear at the forecaster output, and the forecast load at this hour would
be null. Thus, only the forecast of 23-hour-ahead is available whereas the forecast of
24-hour-ahead is needed; in order to address this issue, two forecasters in the following
are required to forecast the two different parts of the load: one to forecast the load in
the period before the time shifting moment (till 11pm), and the other one to forecast the
load in the period after time shifting moment (from 1am) (forecast of the second part of
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Figure C.6: Flowchart to address the challenge of daylight savings in spring.

the load can be performed by shifting the historical window of data forward for 1-hour);
then the forecast load for the next 24-hour will be a combination of these two forecast
parts. When the actual time reaches to the moment of time shift at 12am, the forecast
data at 12am is saved into the buffer to complete the two-week historical data in order
for the forecaster to have all required data to forecast the load in the next days. The
forecast load at 12am should be used rather than the actual data because the period from
12am to 1am does not exist, and thus, there is no actual load consumption assigned for
this 1-hour period. When the present time passes from the time shifting moment, the
regular forecasting can be performed.

Fig. C.6 shows the flowchart of the proposed method to address the challenge of
daylight savings in spring. In 24 hours before the moment of time shift, there should be
two forecasting as follows: one to forecast the load before the moment of time shift and
the other one to forecast the load after that. When the present time passes the moment
of time shift (at 12:00am) the forecaster performs regular forecasting.

C.7.2 Daylight Saving in Autumn

In a specific day in autumn, the formal clock is adjusted backward for 1-hour at 12am;
in this case, the time suddenly changes from 12am to 11pm; thus, one hour from 11pm
to 12am is repeated; in order to consider this time shift in load forecast, when the next
24-hour contains the moment of time shifting (at 12am), two forecasters are needed to
forecast two different parts of the load: one to forecast the load in the period before the
time shifting moment (till 11pm), and the other one to forecast the load in the period



C.7. Time Shift for Daylight Saving 129

after time shifting moment (from 12am) (forecast of the second part of the load can
be performed by shifting the historical window of data backward for 1-hour); then the
forecast load for the next 24-hour will be a combination of these two forecast parts of
the load. When the present time passes from the time shifting moment, then the regular
forecasting can be performed. The flowchart for handling the issue of daylight savings in
autumn is similar to the one represented in Fig. C.6; however, there is no need to put
the forecast data at 12am in the buffer in this case.
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