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Abstract

We give a definition of a root stack and describe its most basic properties. Then we recall

the necessary background (Abhyankar’s lemma, Chevalley-Shephard-Todd theorem, Luna’s

étale slice theorem) and prove that under some conditions a quotient stack is a root stack. Then

we compute G-theory and K-theory of a root stack. These results are used to formulate the

theorem on equivariant algebraic K-theory of schemes.

Keywords: Algebraic stacks, root stacks, quotient stacks, algebraic K-theory, equivariant

K-theory.
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Chapter 1

Introduction

Let X be an algebraic variety equipped with an action of a finite group G. In algebraic geometry

one frequently needs to consider equivariant objects on X with respect to the action of G.

These objects correspond to objects over the quotient stack [X/G]. However, it can happen that

[X/H] � [X′/H′] for seemingly unrelated X and X′. In such situation, it is useful to have a

canonical description of the quotient stack [X/H], perhaps in terms of its coarse moduli space

Y . This may not always be possible but sometimes it is. In this paper we will describe a

situation in which this occurs, see (6.2.8). When our hypotheses are satisfied the quotient stack

becomes a root stack over its coarse moduli space Y .

Using the description of quasi-coherent sheaves on a root stack (see Theorem 3.2.1 and

[BV]), we give a description of the algebraic G-theory of a root stack (see section 7.4). The

main tool is the localisation sequence associated to a quotient category (see Theorem 7.1.3).

These results have immediate applications to equivariant K-theory (see Theorem 8.1.1).

We obtain a generalization of the main result of ([EL]). This paper studies the equivariant

Grothendieck group of a smooth curve. Combining (7.4.3) and (6.2.8) yields a generalization

of this theorem by noting that the hypothesis of (6.2.1) will always be satisfied for tame actions

of groups on smooth projective curves. It should be noted that other approaches to equivariant

K-theory using a top down description of the stack [X/G] exist in the literature, see [Vi].

This thesis is structured as follows:

Chapter 2. Here we give the important definitions and constructions we are going to use.

1



2 Chapter 1. Introduction

First we define symmetric monoidal functors (see Definition 2.1.1). These are functors from

monoids to monoidal categories which preserve tensor structures (we consider a monoid as a

category with only identity arrows). Then we prove a classical lemma (see Lemma 2.1.10)

which is a generalization of a simple fact that there is an equivalence between Gm-torsors over

Spec R and Z-graded R-algebras. This result helps us identify a monoid of special symmetric

monoidal functors and a monoid of points of a quotient stack (see Corollary 2.1.12).

After the preparation work is done we define a root stack (Definition 2.2.4 ). The precise

definition is quite involved, but the rough idea is the following. Assume we have a scheme X

and a Cartier divisor D. Then a root stack is the same as giving this scheme an orbifold structure

along the divisor. Proposition 2.2.6 allows us to formulate an equivalent definition of a root

stack as a fiber product. If X is a scheme and D is an irreducible Cartier divisor, then D provides

us with a map: X → [A1/Gm], where Gm acts on A1 by multiplication. Choosing a natural

number r, we can form a fiber product X ×[A1/Gm],θr [A1/Gm], where θr : [A1/Gm] → [A1/Gm]

is raising to r-th power. This fiber product is a stack, and we call it a root stack XD,r. (Notation

in section 2.2 is a bit different).

Then we give two descriptions of a root stack which are important for the rest of the mono-

graph. Proposition 2.2.7 states that a root stack is globally a Gm-quotient stack. This obser-

vation helps us see that a root stack XD,r is Deligne-Mumford, if the number r is invertible in

X (see Proposition 2.2.9). Proposition 2.2.12 shows that a root stack is globally a µr-quotient

stack. Example 2.2.13 is a local description of a root stack.

None of these results is original and could be found in many papers on the subject, for

example [BV] or [C].

Chapter 3. First we define a parabolic sheaf (see Definition 3.1.1). If we have a scheme X

and an irreducible Cartier divisor D, then a parabolic sheaf on (X,D) with a denominator r is

a symmetric monoidal functor E : Z → Qcoh X, such that Er � E0(D) with some additional

properties.

Theorem 3.2.1 shows the equivalence of two abelian categories: the category of parabolic

sheaves on (X,D) with a denominator r and a category of quasi-coherent sheaves on a root stack

XD,r. The main tool in the proof is a description of a root stack as a Gm-quotient stack. Locally
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a sheaf on a Gm-quotient can be identified with Z-graded OX-algebra with some additional

properties, and it turns out that this is the same as a parabolic sheaf. Corollary 3.2.2 states

that we can impose the finiteness condition and formulate the analogue of Theorem 3.2.1 about

coherent sheaves.

This is a result of [BV].

Chapter 4. Firstly we recall the main facts from SGA I on ramification theory. We con-

sider a situation where a finite group G acts on a scheme X admissibly (see Definition 4.1.1).

Basically this means that the quotient X/G exists. We give a definition of decomposition and

inertia groups (Definition 4.1.4) in this situation.

Then we give a definition of an unramified morphism of schemes (Definition 4.1.5). In the

situation of discrete valuation rings (see Lemma 4.1.6 for a precise formulation), an unramified

extension o ⊂ O implies that all inertia groups are trivial. It allows us to define a tamely

ramified extension of DVRs, when inertia groups are tame, i.e. their orders are invertible in the

residue field o/m (Definition 4.1.7).

We define a normal crossing divisor (Definition 4.2.2). It is an effective divisor, such that

locally its irreducible components form a part of a regular system. If D is a normal crossing

divisor in a scheme Y , we define a morphism V → Y to be tamely ramified along D if for all

maximal points of supp D we have a tamely ramified extension of DVRs (see Definition 4.2.3).

The important result of the chapter is Abhyankar’s Lemma (Proposition 4.2.4). It lets us

“turn” a tamely ramified cover into an unramified cover. Assume that we have a tamely rami-

fied cover V → Y along a divisor D. Then there is a base change Y ′ → Y of a special type, such

that the morphism V ×Y Y ′ → (Y − D) ×Y Y ′ extends uniquely to an étale cover V ×Y Y → Y ′.

Using descent theory and purity theorem we reduce the proof to the situation of DVRs (see

4.1.9) and now it is easy.

Chapter 5. First we explain what it means for the inertia group to be generated in codi-

mension one (see Definition 5.1.1). Basically it is the situation in which the inertia group of

each point x ∈ X is finite abelian and each factor (a cyclic group) comes from the inertia group

of a general point of an irreducible component of a ramification divisor which contains x.
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Then we recall the notion of pseudo-reflections (Definition 5.2.1) and prove an important

Lemma 5.2.6 which states that in the tame situation a group G generated by pseudo-reflections

is abelian, if the divisor of fixed points of each pseudo-reflection in G is a strict normal crossing.

Then we formulate Chevalley-Sheppard-Todd Theorem (5.2.7). If we have a finite dimensional

vector space V and a finite group G ⊂ GL(V), then in the tame situation the invariant algebra

k[V]G is regular if and only if G is generated by pseudo-reflections.

Then we give a formulation of Luna’s étale slice Theorem (5.3.4). Basically it says that in

the tame situation a quotient X/G is étale locally around a closed point x ∈ X isomorphic to a

linear quotient Nx/Gx.

The last section of the chapter is the proof of Theorem 5.1.2 which states that if we have

a “good” action of a finite group G on a regular variety X, such that X → X/G ramifies

along a normal crossing divisor, then inertia groups of all points are abelian. We proceed by

a series of reductions. First using some geometric invariant theory we reduce everything to

an affine situation over a separably closed field. Then we apply Luna’s étale slice Theorem

and reduce the problem to a question about a linear action on a vector space. Then using

the Chevalley-Sheppard-Todd Theorem (5.2.7) we can see that the inertia group of each point

must be generated by pseudo-reflections. Finally, using Lemma 5.2.6 we can see that the inertia

groups must be abelian.

This result is not in the literature, but probably well-known to experts.

Chapter 6. We address the issue of when a quotient stack is a root stack. First we consider

an action of a finite group G on a scheme X, such that the Assumption 6.2.1 satisfies. In Lemma

6.2.5 we describe the branch locus in this situation. This description naturally gives us a map

from X to a root stack YD,r, where Y := X/G, D is a ramification divisor and r is the order of the

inertia group. Proposition 6.2.6 shows that if D is a normal crossing divisor, then this map is

étale. The main tool in the proof is the description of a root stack as a µr-quotient (Proposition

2.2.12) and Abhyankar’s Lemma (Proposition 4.2.4)

Because the morphism X → YD,r is equivariant, it induces a map from a quotient stack to a

root stack: [X/G] → YD,r. In the remainder of the chapter we are proving that this morphism

is an isomorphism (see the final result in Theorem 6.2.8). It is enough to show that X × G →
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X ×YD,r X is an isomorphism. By Proposition 2.2.12 this map is étale. So it is enough to see that

it is a bijection on points (see 6.1.1 for the explanation). The bijectivity now follows from the

easy Proposition 6.2.7.

Theorem 6.2.8 is the first main result of our monograph. It is original, but we should men-

tion that it follows from the paper [GS], though we used different methods to prove it.

Chapter 7. In a short preliminary section (§7.1) we mention an important Theorem 7.1.3.

It says that if we have an exact functor between abelian categories F : A → B under some

condition which resembles surjectivity, there is an equivalence of categories A/ker(F) ' B. It

is called a localization of abelian categories. This result is used throughout the whole chapter.

We define an extendable pair (Definition 7.2.1), which is basically a “cut” of a parabolic

sheaf. It turns out that there is an equivalence of abelian categories between extendable pairs

and parabolic sheaves (Corollary 7.2.5).

Next we do a first localization. We construct a functor π∗ from the category of extendable

pairs EP on X to Coh X which satisfies the conditions of 7.1.3, so there is an equivalence

EP/ker(π∗) ' Coh X (see Corollary 7.3.3). Then we describe the abelian category ker(π∗) (see

Lemma 7.3.4).

In the rest of the chapter we are localizing the category ker(π∗). For that we introduce the

series of functors Facek (Definition 7.3.6) and describe their kernels (Lemma 7.3.8). Theorem

7.3.11 states that these functors satisfy the conditions of 7.1.3, hence we can localize.

In the final section we study the G-theory of a root stack. By G-theory of a root stack we

mean the K-theory of the abelian category of coherent sheaves on the stack. We have a series

of localizations from the previous section, so applying the localization property of K-theory,

we obtain the second main result of our thesis (see Lemmas 7.4.1 and 7.4.3). Then we notice

that if the root stack is regular then its K-theory is the same as G-theory.

The result is new.

Chapter 8. We combine the results of Chapters 6 and 7 to study equivariant K-theory of a

scheme (see Theorem 8.1.1).
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This thesis is an extended version of our paper [DK].



Chapter 2

Root stacks: Definition and Local

description

In this chapter we will carefully repeat the main constructions and theorems from the papers

[BV] and [C].

2.1 Symmetric monoidal functors

Let X be a scheme. Denote by DivX the groupoid of line bundles over X with sections. It has

the structure of a symmetric monoidal category with tensor product given by

(L, s) ⊗ (L′, s′) = (L ⊗ L′, s ⊗ s′).

Definition 2.1.1. Let A be a monoid,M a symmetric monoidal category. A symmetric monoidal

functor L : A→M consists of the data:

(a) A function L : A→ ObjM.

(b) An isomorphism εL : 1 � L(0)

(c) For each a and b ∈ A, an isomorphism µL
a,b : L(a) ⊗ L(b) � L(a + b) inM.

For any a, b, c ∈ A the diagrams

7



8 Chapter 2. Root stacks: Definition and Local description

L(a) ⊗ (L(b) ⊗ L(c)) L(a) ⊗ L(b + c)

L(a + b + c),

(L(a) ⊗ L(b)) ⊗ L(c) L(a + b) ⊗ L(c)

id ⊗ µL

α

µL ⊗ id

µL

µL

L(a) ⊗ L(b) L(a + b)

L(b) ⊗ L(a) L(b + a)

µL

σ
µL

=

and

1 ⊗ L(a) L(a)

L(0) ⊗ L(a) L(0 + a)

λ

εL ⊗ id
µL

=

are required to be commutative.

Definition 2.1.2. If L1 : A → M and L2 : A → M are symmetric monoidal functors, a

morphism φ : L1 → L2 is a collection of arrows φa : L1(a) → L2(a) inM for each a ∈ A, such

that the diagram:

L1(a) ⊗ L1(b) L1(a + b)

L2(a) ⊗ L2(b) L2(a + b)

µL1

φa ⊗ φb
µL2

φa+b

commutes for each a, b ∈ A.

Remark 2.1.3. Obviously, if M is a groupoid, a category of symmetric monoidal functors

A→M is a groupoid.

Let us fix the target categoryM to be DivX. We will be most interested in the following

example.



2.1. Symmetric monoidal functors 9

Example 2.1.4. Choose n objects (L1, s1), ...(Ln, sn) ofDivX. Then define a symmetric monoidal

functor by:

L : Nn −→ DivX

(k1, ..., kn) 7−→ (L1, s1)⊗k1 ⊗ ... ⊗ (Ln, sn)⊗kn .

Lemma 2.1.5. Every functor M : Nn −→ DivX is isomorphic to one given by the rule in

Example 2.1.4.

Proof. Indeed take the basis {ei}
n
i=1 of the monoid Nn and consider its image (Li, si) := M(ei) ∈

DivX. Then we can define new symmetric monoidal functor L associated to (Li, si) by the rule

2.1.4.

Let’s describe a morphism M → L. Take an element a ∈ Nn and write it in the basis as

a =
∑n

i=1 aiei. Then consider a composition of isomorphisms:

M(a)
(µM)−1

−−−−−→ M(
n−1∑
i=1

aiei) ⊗ M(en)⊗an
(µM)−1⊗id
−−−−−−−→ . . .

(µM)−1⊗id
−−−−−−−→ ⊗n

i=1M(ei)⊗ai = L(a)

which we call φa. The commutativity of the diagram in Definition 2.1.2 follows from the

commutativity of the first diagram in definition 2.1.1. �

Remark 2.1.6. Recall that if M is a commutative monoid then M̂ = Hom(M,Gm) is its dual.

Functors from Example 2.1.4 arise from morphisms X → [SpecZ[Nn]/N̂n]. Let us explain

how.

First we should recall some standard facts about torsors.

Proposition 2.1.7. GLn-torsors (and in particular Gm-torsors) are locally trivial in Zariski

topology.

Proof. The proof basically follows from descent theory. See [M, III, Lemma 4.10]. �

Remark 2.1.8. We will consider only Gn
m-torsors in the present work. However in the original

paper [BV] the fppf topology is needed. The setting in loc. cit., is more general and the
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monoids in question may have torsion so that the torsor P is a torsor over µn. Such a torsor

may not be trivial in the Zariski topology.

Example 2.1.9. Let’s take a commutative ring R and consider a trivial Gm-torsor T over X =

Spec R:

Spec R[x, x−1] � Gm × Spec R
p2
−→ Spec R.

It corresponds to the inclusion of rings i : R ↪→ R[x, x−1].

Consider a quasi-coherent sheaf F on T . It corresponds to a R[x, x−1]-module M. The

pushforward p2∗F corresponds to the module M considered as an R-module via the inclusion

i. In particular if we take the structure sheafOT , then p2∗OT corresponds to R[x, x−1] considered

as R-module which is the same as the Z-graded R-module R[x, x−1] � ⊕l∈ZRxl.

In other words p2∗OT � ⊕l∈ZOX xl. This is a weight grading induced by the characters

Gm → Gm.

Let us consider the more general situation.

Lemma 2.1.10. Let A be the groupoid whose objects are quasi-coherent OX-algebras A with

a Zn =
̂̂
Nn-gradingA = ⊕u∈ZnAu such that each summandAu is an invertible sheaf. The mor-

phisms are graded algebra isomorphisms. Then there is an equivalence of categories between

Aop and the groupoid of N̂n-torsors P→ X.

Proof. Consider a N̂n-torsor π : T → X. It gives us a sheaf of OX-algebras π∗(OT ). This sheaf

is a N̂n-equivariant sheaf (see [FKM, Ch. 1, §3]). That means that there exists an isomorphism

of sheaves φ : p∗2π∗(OT ) → p∗2π∗(OT ), where p2 : N̂n × X → X is a projection, and φ satisfies

the co-cycle condition. It follows that φ induces a N̂n-co-action on global sections:

Γ(X, π∗(OT ))
p∗2
−→ Γ(N̂n × X, p∗2π∗(OT ))

φ
−→ Γ(N̂n × X, p∗2π∗(OT )) � Z[Zn] ⊗ Γ(X, π∗(OT )).

Let’s say that the section s ∈ Γ(X, π∗(OT )) has weight u ∈ Zn, if under this action the image

of s is xu ⊗ s. So we can define a subsheafAu ⊂ π∗OT of sections of weight u.

Now we have a morphism of sheaves:
∑

u∈ZnAu → π∗OT . We claim that the sum in the

left hand side is a direct sum and the morphism is an isomorphism. To prove these claims it is

enough to prove them over any closed point of x ∈ X. But over a point, φ defines a N̂n-action
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on a vector space and (π∗OT )x � ⊕u∈Zn(Au)x is just a usual weight decomposition. Also we can

see that eachAu is locally isomorphic to OX xu and so is an invertible sheaf.

An isomorphism of X-torsors T1
π1
−→ X and T2

π2
−→ X corresponds to a morphism of sheaves

of OX-algebras π2∗OT2 → π1∗OT1 . The construction described above is natural, so we have

maps of OX-modules: A2u → A1u for each u ∈ Zn. Thus this is Zn-graded isomorphism

π2∗OT2 → π1∗OT1 and so we have defined a functor from N̂n-torsors P→ X to Aop.

Given an object A in A we can consider a relative spectrum Spec
X
(A) with a N̂n-action

defined by the grading. It will be locally trivial (and so a torsor), because each summand in

the grading is an invertible sheaf. A graded map of algebrasA → B in A gives a morphism of

torsors Spec
X
(B)→ Spec

X
(A) by the relative spectrum construction.

These functors are quasi-inverse. From the construction of the relative spectrum we have

an isomorphism of algebras A → π∗OSpec
X

(A) which is locally an isomorphism of Zn-graded

algebras. Also there is a canonical map P → Spec
X
(π∗OP) which is N̂n-equivariant (again by

local consideration) and so an isomorphism of torsors. �

Proposition 2.1.11. Let B be the groupoid whose objects are pairs (A, α) where A is a sheaf

of algebras satisfying the conditions in Lemma 2.1.10 and

α : OX[Nn]→ A

is a morphism respecting the grading. The morphisms in the category B are graded algebra

morphisms commuting with the structure maps. Then there is an equivalence of categories

between Bop and the groupoid of morphisms X → [SpecZ[Nn]/N̂n]

Proof. This proposition is a summary of the discussion in [BV, p. 1343-1344].

An object of the groupoid of X-points of a quotient stack [SpecZ[Nn]/N̂n] consists of:

• A N̂n-torsor π : E → X

• A N̂n-equivariant map E → SpecZ[Nn].

A morphism is an isomorphism of X-torsors: E1 → E2, such that the triangle
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E1 E2

SpecZ[Nn]

commutes.

By Lemma 2.1.10, an object gives us a sheaf of OX(Nn)-algebras π∗(OP) which is compat-

ible with the Zn-grading of Z[Nn]. And morphisms corresponds to morphisms in B under this

identification.

Now let’s take an object (A, α) ∈ B. Then by Lemma 2.1.10 we obtain a torsor Spec
X
(A).

Then α induces a N̂n-equivariant map Spec
X
(A) → SpecZ[Nn]. It is clear by the construction

of the relative spectrum that morphisms are sent to morphism.

It follows from Lemma 2.1.10 that these functors are quasi-inverse.

�

Corollary 2.1.12. There is an equivalence of categories between the groupoid of symmetric

monoidal functors Nn → DivX and the groupoid of X-points of [SpecZ[Nn]/N̂n].

Proof. This is [BV, Proposition 3.25].

Take the symmetric monoidal functor L : Nn → DivX. Then if {ei}
n
i=1 is a standard basis of

Nn, define (Li, si) := L(ei). Then we can produce the graded sheaf of OX-algebras:

AL =
⊕
~u∈Zn

Lu1
1 ⊗ . . . L

un
n .

The sections produce an algebra map

OX[Nn]→ A.

Take a morphism X → [SpecZ[Nn]/N̂n]. By Proposition 2.1.11 it gives a sheaf of Zn-

graded OX-algebras A = ⊕~u∈ZnA~u and a morphism α : OX[Nn] → A which respects the

grading. Then we can define a symmetric monoidal functor LA : Nn → DivX by the rule:

∀a ∈ Nn, L(a) := (Aι(a), xa),
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where ι : Nn ↪→ Zn is an inclusion of monoids and xa ∈ Z[Nn] is identified with its image in

A(X).

We should check that these functors are quasi-inverse to each other. The isomorphism of

symmetric monoidal functors L → LAL follows Lemma 2.1.5. The isomorphism of Zn-graded

OX-algebrasA → ALA follows from the isomorphism of OX-algebras: Aa ⊗Ox Ab � Aa+b.

�

2.2 Root stacks

Definition 2.2.1. Let ~r = (r1, r2, ..., rn) be a collection of positive natural numbers. We denote

by riN the monoid {vri|v ∈ N}. We denote by ~rNn the monoid

~rNn = r1N × r2N × . . . rnN.

We will view our symmetric monoidal functor above as a functor

L : ~rNn → DivX

in the following way :

(r1α1, r2α2, . . . , rnαn) 7−→ (L1, s1)⊗α1 ⊗ . . . (Ln, sn)⊗αn .

Consider the natural inclusion of monoids j~r : ~rNn ↪→ Nn. The category of ~rth roots of L

denoted by (L)~r, is defined as follows:

Its objects are pairs (M, α), where M : Nn → DivX is a symmetric monoidal functor, and

α : L→ M ◦ j is an isomorphism of symmetric monoidal functors.

An arrow from (M, α) to (M′, α′) is an isomorphism h: M → M′ of symmetric monoidal

functors Nn → DivX, such that the diagram
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L

M ◦ j M′ ◦ j

α α′

h ◦ j

commutes.

Remark 2.2.2. This category is in fact a groupoid as a morhpism φ in DivX whose tensor

power φ⊗k is an isomorphism must be an isomorphism to begin with.

Given a morphism of schemes t : T → X there is pullback functor

t∗ : DivX → DivT.

Hence we can form the category of roots (t∗ ◦ L)~r.

Assume that we have a morphism of X-schemes:

T ′ T

X

f

t′

t

Take an object (M, α) in the category of roots (t∗ ◦ L)~r. Then define

M′ := f ∗ ◦ M : Nn → DivT ′

a symmetric monoidal functor. We can also pull back the isomorphism α:

f ∗α : f ∗t∗L→ f ∗M

and applying the natural isomorphisms of the compositions of pullbacks we obtain a new iso-

morphism:

α′ : t′∗L→ M′ ◦ j.
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So (M′, α′) is an object in the category of roots (t′∗ ◦ L)~r.

Take a morphism h : (M1, α1) → (M2, α2) in (t∗ ◦ L)~r. Then there is a morphism of

symmetric monoidal functors: h′ := f ∗ ◦ h : M′
1 → M′

2. Consider the diagram:

t′∗L

f ∗t∗L

M′
1 ◦ j f ∗ ◦ M1 ◦ j f ∗ ◦ M2 ◦ j M′

2 ◦ j.

�

f ∗ ◦ α1

f ∗ ◦ α2

=
=

α′1

α′2

f ∗ ◦ h ◦ j

The commutativity of the left and right squares follows from the definition of α′, the inner

triangle commutes as a pullback of a commutative triangle. The commutativity of the outer

triangle proves that h′ : (M′
1, α

′
1)→ (M′

2, α
′
2) is a morphism in (t′∗ ◦ L)~r.

Corollary 2.2.3. The rule:

{t : T → X} 7→ (t∗ ◦ L)~r

described above is a pseudo-functor from Sch/X to the 2-category of categories.

Definition 2.2.4. In the above situation, the fibered category associated to this pseudo-functor

is called the stack of roots associated to L and ~r. It is denoted by XL,~r.

Remark 2.2.5. The pseudo-functor gives us a category fibered in groupoids and one needs to

check that it is a stack. For that it is enough to check that all descent data is effective. Consider

an fppf-cover U → T of a scheme T and a monoidal functor M : Nn → DivU, such that

M|U×T U ' M|U×T U . This functor is defined by the objects (Mi, si) ∈ DivU. Each of this divisors

can be glued to (Ni, ti) ∈ DivT , and they provide us with a monoidal functor N : Nn → DivT ,

such that N|T ' M. In a similar way we can glue an isomorphism α.

We will often denote the stack of roots by

XL,~r = X(L1,s1,r1),...,(Ln,sn,rn).
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There are also two equivalent definitions of the stack XL,~r and the equivalence is proved in

[BV, Proposition 4.13] and [BV, Remark 4.14]. Let’s give the description of this stack as a

fibered product.

According to (a slightly modified version of) Corollary 2.1.12 a symmetric monoidal func-

tor L : ~rNn → DivX corresponds to a morphism X → [SpecZ[~rNn]/~̂rNn].

Proposition 2.2.6. The stack XL,~r is isomorphic to the fibered product

X ×[SpecZ[~rNn]/~̂rNn] [SpecZ[Nn]/N̂n],

where the map X → [SpecZ[~rNn]/~̂rNn] is given by L and the map of quotient stacks

[SpecZ[Nn]/N̂n]→ [SpecZ[~rNn]/~rN̂n]

is induced by the inclusion of monoids: j : Z[~rNn] ↪→ Z[Nn].

Proof. Two stacks in groupoids are equivalent if and only if their fibers are equivalent groupoids.

So it is enough to prove that T -points of both stacks are equivalent groupoids, where T is a

scheme over X.

First consider XL,~r(T ). By construction it is equivalent to the category of roots (t∗ ◦ L)~r.

Its objects are pairs (M, α), where M : Nn → DivT is a symmetric monoidal functor, and

α : t∗L → M ◦ j is an isomorphism of symmetric monoidal functors. By Corollary 2.1.12 M

corresponds to a morphism T → [SpecZ[Nn]/N̂n] which we will also denote by M. Then the

pair (M, α) gives an object over T in the fiber product X ×[SpecZ[~rNn]/~̂rNn] [SpecZ[Nn]/N̂n].

In a similar way by Corollary 2.1.12 the object of a fiber product over T gives an object in

the groupoid XL,~r(T ). �

Let us slightly reformulate this description. L : ~rNn → DivX gives a morphism X →

[SpecZ[~rNn]/~̂rNn] which in turn corresponds to a ~̂rNn-torsor π : P→ X and a ~̂rNn-equivariant

morphism P→ SpecZ[~rNn]. This gives

Proposition 2.2.7. The stack XL,~r is isomorphic to the quotient stack

[P ×SpecZ[~rNn] SpecZ[Nn]/N̂n],
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where the action on the first factor is defined through the dual of the inclusion j~r : ~rNn ↪→ Nn.

Proof. As above we just need to prove the equivalence of groupoids of points over any X-

scheme T . By the previous proposition an object XL,~r(T ) is given by the pair (M, α), where

M : T → [SpecZ[Nn]/N̂n] and α is an isomorphism coming from the definition of a fiber

product. But M provides us a N̂n-torsor E over T and a N̂n-equivariant map E → SpecZ[Nn].

The isomorphism α induces a Z[Nn]-equivariant map E → P ×SpecZ[~rNn] SpecZ[Nn], so we get

a T -point of a quotient stack. This functor is clearly an equivalence. �

Corollary 2.2.8. The root stack XL,~r is an algebraic stack.

Proposition 2.2.9. If each ri is invertible in X then the root stack XL,~r is a Deligne-Mumford

stack.

Proof. This is a combination of proofs from [C, Theorem 2.3.3] and [BV, Proposition 4.19].

Let’s consider a surjective étale map p : U → X, such that p∗Li is a trivial bundle for each

i = 1, . . . , n. Then from Proposition 2.2.6 it is clear that U ×X XL,~r � Up∗L,~r.

Because of the triviality of p∗Li the composition U → X → [SpecZ[~rNn]/~̂rNn] must factor

through SpecZ[~rNn].

There is a cartesian diagram:

[SpecZ[Nn]/µr1 × · · · × µrn] [SpecZ[Nn]/N̂n]

SpecZ[~rNn] [SpecZ[~rNn]/~̂rNn]

so using the property of a fiber product we have that

U ×X XL,~r � U ×Spec(Z[~rNn]) [SpecZ[Nn]/µr1 × · · · × µrn].

A stack [SpecZ[Nn]/µr1 × · · · × µrn] is a Deligne-Mumford stack if each ri is invertible in

X (see, for example, [LMB]). Also the 2-category of Deligne-Mumford stacks is closed under

fiber products. Finally using étale descent one gets the result. �
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We want to give one more description of a root stack which is a rephrasing of a construction

from [C].

Remark 2.2.10. A µr-bundle P on a scheme Z is equivalent to the data of an invertible sheaf

K and an isomorphism φ : K r → OZ. To construct P explicitly consider the sheaf of algebras

Sym•K−1. There is a distinguished global section T ∈ K−r given by (φ ⊗ 1K−r )(1). Then

P = Spec
(
Sym•K−1/(T − 1)

)
.

Notation 2.2.11. If X is a scheme, L is an invertible sheaf and s ∈ H0(X,L) is a section, let’s

denote by XL,s,r a root stack associated to a symmetric monoidal functor induced by (L, s) ∈

DivX.

Proposition 2.2.12. Suppose that there is an invertible sheaf N on X and an isomorphism

N r → L. Then XL,s,r is a global quotient stack.

Proof. This is a summary of [C, 2.3.1 and 2.4.1] and [B, 3.4].

The coherent sheaf

A = OX ⊕ N
−1 ⊕ . . . ⊕ N−(r−1)

can be given the structure of an OX-algebra via the composition

N−r ∼
−→ L−1 s

−→ OX.

There is an action of µr on this sheaf via the action of µr onN−1 given by scalar multiplication.

Then there is an isomorphism of stacks:

XL,s,r → [Spec(A)/µr].

Let’s describe it. Consider a morphism a : T → X. A morphism Y → XL,s,r, lifting

a, is a triple (M, t, φ), where M is an invertible sheaf on Y , t is a section of M and φ is an

isomorphism of sheavesM⊗r � a∗L, such that φ(t) = a∗s. As per the previous remark the sheaf
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M−1 ⊗ a∗N gives a µr-torsor on Y . The torsor comes from the algebra

B = Sym•(M⊗ a∗N−1)/(T − 1).

To produce an Y-point of [Spec(A)/µr] we need to describe a µr-equivariant map

a∗A → B.

This map comes from the section t via :

t ∈ Hom(O,M) = Hom(a∗N−1,M⊗ a∗N−1).

This construction generalizes in the obvious way to a finite list of invertible sheaves with sec-

tion. �

Example 2.2.13. Let us consider an example where X = Spec(R). Let f1, f2, . . . fn be elements

of R. Consider Cartier divisors Li = (OX, fi) and an n-tuple of natural numbers ~r. By the

construction in Proposition 2.2.12, we get that the root stack is a quotient stack:

XL,~r = [Spec(A)/µr1 × · · · × µrn],

where A = R[t1, . . . , tn]/(tr1
1 − f1, . . . , t

rn
n − fn).

Let us state an easy lemma from commutative algebra.

Lemma 2.2.14. Let R be a local ring, fi a part of a regular sequence of R. Let A be a R-algebra

defined in the example above, such that each ri is invertible in R. Then A is regular.

Proof. The proof will be given in Step 1 of Abhyankar’s lemma (Proposition 4.2.4). �

Proposition 2.2.15. Let X be a regular scheme over a field k. Let D =
∑n

i=1 Di be a normal

crossing divisor (see Definition 4.2.2). Assume that ~r is an n-tuple of natural numbers, such

that each ri is coprime to the characteristic of k. Then a root stack XD,~r is regular.

Proof. By definition a stack is regular if its presentation is a regular scheme. The question is

local, so we can assume that X = Spec(R) and a divisor D is a strict normal crossing divisor.
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If we localize further, we can assume that R is a local ring, Di = ( fi) and fi form a part of a

regular sequence.

By Example 2.2.13, the presentation of a root stack XD,~r is an affine scheme A = R[t1, . . . , tn]/(tr1
1 −

f1, . . . , t
rn
n − fn). By the previous lemma this scheme is regular.

�



Chapter 3

Root stacks: (Quasi)-coherent sheaves

In this chapter we will repeat the proof of the main result in [BV] about the characterization of

sheaves on a root stack in terms of parabolic sheaves.

3.1 Parabolic sheaves

First we give the definition of a parabolic sheaf from [BV, Definition 5.6].

Definition 3.1.1. Consider a scheme X, an inclusion ~rZn ⊆ Zn, divisors (Li, si) ∈ DivX for

1 ≤ i ≤ n and the symmetric monoidal functor L : ~rZn → DivX which is defined by

Lu = L(u) = Lα1
1 ⊗ . . . L

αn
n ,

where u = (r1α1, . . . , rnαn) and αi ∈ Z. A parabolic sheaf (E, ρ) on (X, L) with denominators ~r

consists of the following data :

(a) A functor E : Zn → QCohX, denoted by v 7→ Ev on objects and b 7→ Eb on arrows.

(b) For any u ∈ ~rZn and v ∈ Zn, an isomorphism of OX-modules:

ρE
u,v : Eu+v ' Lu ⊗OX Ev.

This map is called the pseudo-period isomorphism.

21
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This data are required to satisfy the following conditions. Let u, u′ ∈ ~rZn, a = (r1α1, . . . , rnαn) ∈

~rNn, b ∈ Nn, v ∈ Zn. Then the following diagrams commute.

(i)

Ev

OX ⊗ Ev

Ea+v

La ⊗ Ev

Ea

'

σL
a ⊗ idEv

ρE
a,v

where σa = σα1
1 ⊗ . . . σ

αn
n and each σi is a multiplication by a section si ∈ H0(X, La)

(ii)

Eu+v

Eu+b+v

Lu ⊗ Ev

Lu ⊗ Eb+v

ρE
u,v

Eb

ρE
u,b+v

id ⊗ Eb

(iii)

Eu+u′+v

Lu ⊗ Eu′+v

Lu+u′ ⊗ Ev

Lu ⊗ Lu′ ⊗ Ev

ρE
u+u′,v

ρE
u,u′+v

id ⊗ ρE
u′,v

µ ⊗ id

(iv) The map

Ev = E0+v OX ⊗ Ev

ρE
0,v

is the natural isomorphism.

Definition 3.1.2. A parabolic sheaf (E, ρ) is said to be coherent if for each v ∈ Zn the sheaf Ev

is a coherent sheaf on X.
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3.2 Coherent sheaves on a root stack

Theorem 3.2.1 (Borne, Vistoli ). Let X be a scheme and L is a monoidal functor defined as

in Example 2.1.4. Then there is a canonical tensor equivalence of abelian categories between

the category QCohXL,~r and the category of parabolic sheaves on X, associated with L with

denominators ~r.

Proof. This is a proof from [BV, Proposition 5.10, Theorem 6.1].

The proof relies on the description of the stack as a quotient, (2.2.7). From this description,

sheaves on the stack are equivariant sheaves on

P ×SpecZ[~rNn] SpecZ[Nn].

As remarked in the proof of (2.1.11), the torsor P is obtained from a sheaf of algebras on X.

The sheaf of algebrasA is constructed from the functor L by taking a direct sum construction,

it has a natural grading. There is an isomorphism of schemes:

P ×SpecZ[~rNn] SpecZ[Nn] � Spec(A⊗Z[~rNn] Z[Nn]).

The algebra on the right has a natural Zn-grading. So we obtained the first identification (equiv-

alence of categories):

QCohXL,~r ' Z
n − graded A⊗Z[~rNn] Z[Nn] −modules.

Let’s now prove the equivalence of the latter category and the category of parabolic sheaves.

The question is local on X, so we may assume that X is an affine scheme Spec(R). By

further restrictions we can assume that all the line bundles Li are in fact trivial, and we iden-

tify them with R. In this situation the symmetric monoidal functor corresponds to a graded

homomorphism

Z[X1, X2, . . . , Xn]→ R[t±1
1 , t±1

2 , . . . , t±1
n ]
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sending Xi to xiti with xi ∈ R. Further the morphism

Spec(Z[Nn])→ SpecZ[~rNn]

comes from an integral extension of algebras

Z[X1, X2, . . . , Xn][Y1, . . . ,Yn]/(Yr1
1 − X1, . . .Yrn

n − Xn)

Then taking tensor products yields a Zn-graded algebra

B := R[t±1
1 , t±1

2 , . . . , t±1
n ][s1, . . . , sn]/(sr1

1 − x1t1, . . . , srn
n − xntn)

where si has degree (0, . . . , 0, 1, 0 . . . , 0) = ei.

We claim that the category of Zn-graded B-modules is equivalent to the category of parabolic

sheaves on X.

Let M be a graded B-module, then we should define a parabolic sheaf Φ(M). First of all it

is a functor Zn → QCohX. For a ∈ Zn define Φ(M)(a) := Ma. For a′ = a + ei the morphism

Ma → Ma′ is a multiplication by si. Because ti is invertible in B the multiplication by ti induces

isomorphisms Mv � Mv+riei . This induces a pseudo-period isomorphism. Because sri
i = xiti in

B the condition (i) of parabolic sheaf is satisfied. Other conditions are obvious in this context.

A map of two graded modules M → N is given by maps Mu → Nu for u ∈ Zn so it induces

a natural transformation of functors Zn → QCohX. It is clear that this map is a morphism of

parabolic sheaves Φ(M)→ Φ(M).

Now let us take a parabolic sheaf E and construct a R-module as M := ⊕u∈Zn Eu. It will be

in fact a B-module where si acts as a structure morphism Eu → Eu+ei and multiplication by ti

is given by Li ⊗ Eu
ρ−1

−−→ Eu+riei .

These two functors are quasi-inverse. This is more or less clear, but the rigorous proof will

be given in chapter 6, where we introduce the notion of extendable pairs.

�

Actually we can add the finiteness condition to the previous theorem and get the following
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Corollary 3.2.2. There is a canonical tensor equivalence of abelian categories between the

category CohXL,~r and the category of coherent parabolic sheaves on X, associated with L.

Proof. We will use the construction from the proof above.

Consider now M a finitely generated Zn-graded B-module. We can assume that the gener-

ators of M are in fact homogeneous and hence there is an epimorphism

⊕
p
i=1A(ni)→ M.

The graded pieces of the module on the left are free of rank p and hence the graded pieces of

M are finitely generated. It follows that a finitely generated A-module gives rise to a parabolic

sheaf with values in the category of finitely generated R-modules, in other words coherent

sheaves on X.

Conversely suppose that each we have a graded A-module M with each graded piece a

finitely generated R-module. We can find finitely many elements of M, lets say {α1, α2, . . . , αp}

of degrees

deg(αi) = (λi1, λi2, . . . , λin) ∈ Zn

with 0 ≤ λi j ≤ r j such that the associated morphism

φ : ⊕p
i=1A(deg(αi))→ M

is an epimorphism in degrees

(µ1, µ2, . . . , µn) ∈ Zn

whenever 0 ≤ µi ≤ ri. It follows that φ is an epimorphism as multiplication by ti induces an

isomorphism Mv
∼
→ Mv+ei . �



Chapter 4

Abhyankar’s lemma

In this chapter we want to talk about a very important construction from [SGA1] which can be

used to “replace” (tamely) ramified cover by a very special étale cover.

4.1 Unramified and tamely ramified morphisms

Let us recall some definitions first.

Definition 4.1.1. Let X be a scheme with an action of a finite group G. This action is called

admissible if there exists an affine morphism p : X → Y , such that OY � p∗(OX)G.

Remark 4.1.2. Basically, admissibility of an action means that X/G exists and is isomorphic

to Y . Also notice that the map p is surjective.

Proposition 4.1.3. G acts admissibly on X if and only if X is a union of affine open subschemes

invariant under the G-action.

Proof. ⇒) Follows from the condition that p is affine. We just find an affine open cover of Y

and then take its preimage. It will be an affine open cover of X. Each element of this cover is

invariant under the G-action.

⇐) Let X =
⋃

i Xi, where Xi are affine open and invariant under G-action. We can construct

affine schemes Yi = Xi/G. Finally, because Yi
⋂

Y j = (Xi
⋂

X j)/G, we can glue the schemes Yi

together and get Y .

�

26



4.1. Unramified and tamely ramified morphisms 27

Definition 4.1.4. If x ∈ X is a point (not necessarily closed) the subgroup of G stabilising x is

called the decomposition group and we denote it by D(x,G).

This group acts on the residue field k(x) in a canonical way. The subgroup of the decompo-

sition group acting trivially on k(x) is called the inertia group of x and we denote it by I(x,G).

Definition 4.1.5. Let f : X → Y be a morphism of schemes of finite type, x ∈ X is a point and

y = f (x) ∈ Y . It is called unramified at x, if one of the two equivalent conditions holds:

1. Ox/myOx is a finite separable extension of k(y).

2. (ΩX/Y)x = 0.

If f is unramified at every point x ∈ X, it is called unramified.

Proof. Let’s recall the proof of the equivalence of (i) and (ii).

(i)⇒(ii) By Nakayama Lemma, it is enough to prove that (ΩX/Y)x ⊗Ox k(x) = 0. The sheaf

of differentials behaves well under base change, so we just need to prove that Ωk(x)/k(y) = 0. But

it is clear, because the extension k(y) ⊂ k(x) is finite separable.

(ii)⇒(i) Using base change we can reduce the theorem to the case where y = Spec(k(y)) is

a point and X = Spec(Ox). Let’s consider the sequence of morphisms k(y) → Ox → Ox/mx.

There is an exact sequence: mx/m
2
x → ΩOx/k(y) ⊗Ox k(x) → Ωk(x)/k(y) → 0. The term in the

middle is given to be zero. Hence we obtain that Ωk(x)/k(y) = 0, and this proves that the extension

k(y) ⊂ k(x) is separable.

Now we need to prove that Ox is a field. Because the morphism k(y) → Ox is of finite

type, Ox is finitely generated k(y)-algebra. We can assume without loss of generality that k(y)

is algebraically closed. Then k(x) = k(y). In this situation the map mx/m
2
x → ΩOx/k(x) ⊗Ox k(x)

is an isomorphism. Surjectivity is clear. To see the injectivity we need to prove the surjectivity

of the dual map: Homk(x)(ΩOx/k(x) ⊗Ox k(x), k(x)) → Homk(x)(mx/m
2
x, k(x)). By the universal

property the latter map is the same as the map: Derk(x)(Ox, k(x)) → Homk(x)(mx/m
2
x, k(x)).

Let’s take a k(x)-linear morphism µ : mx/m
2
x → k(x). Any element a ∈ Ox we can write as a

sum a = a0 + a1, where a0 ∈ k(x) and a1 ∈ mx. Then define a derivation δ(a) = µ(a1). It is well

defined.

Because ΩOx/k(y) = 0, the previous isomorphism gives us mx/m
2
x = 0. So by Nakayama,

Ox � k(x).
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�

Let o be a DVR with a maximal ideal m and a field of fractions K. K ⊂ L is a Galois

extension with a group G. Let O be a normalization of o in L. It is well known that O is a finite

o-module of rank [L : K]. Denote by M its maximal ideal. As in definition 4.1.4 we have a

decomposition group Gd which is a subgroup of G stabilizingM. Also there is an inertia group

Gi which is a subgroup of Gd, such that it acts trivially on O/M.

Lemma 4.1.6. In the situation above if o → O is unramified then the order of inertia group is

equal to one.

Proof. Indeed, if the map o → O is unramified, the extension of residue fields o/m ⊂ O/M is

separable. Hence by Proposition 9.6 of [N, I§9] the order of inertia group |Gi| = e, where e is

a ramification index. But because mO = M, we have that e = 1. �

We want to slightly relax this condition and give a definition of tamely ramified map fol-

lowing [SGA1].

Definition 4.1.7. One says that the extension K ⊂ L is tamely ramified over o, if the order of

the inertia group |Gi| is not divisible by the characteristic of the residue field o/m.

Proposition 4.1.8. If the extension K ⊂ L is tamely ramified over o, then the inertia group Gi

is cyclic.

Proof. Let us denote by O the ring of integers of L and by M its maximal ideal. Choose an

uniformizing parameter t. Then one can consider a map:

Gi → (O/M)∗,

σ 7→
σt
t

modM.

This map turns a homomorphism of group which does not depend on the choice of t. Moreover

it is an injection. See [CF, Ch.1, §8, Th. 1] for the proofs. Hence Gi is a subgroup of a cyclic

group, so it is cyclic. �
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Lemma 4.1.9. (Abhyankar’s lemma I) Let o be DVR with a field of fractions K. Consider L

and K′ be two Galois extension of K tamely ramified with respect to o. Let n, m be the orders

of their inertia groups. Denote by L′ a composite of L and K′ over K. If m is a multiple of n,

then L′ is unramified over localizations of the normal closure o′ of o in K′.

Proof. From [SGA1, X, Lemma 3.6]. Denote by G, H and M Galois groups of extensions

K ⊂ L, K ⊂ K′ and K ⊂ L′ respectively. Consider a maximal ideal m of o′ lying over the

maximal ideal p ⊂ o. Let’s denote by o′′ a normal closure of o′ in L′ and consider any maximal

ideal m′ lying over m. Also take a normal closure of o in L and consider its maximal ideal n

over p.

Let’s denote the inertia groups corresponding to ideals n, m and m′ by Gi, Hi and Mi. It is

clear that we must have a diagram:

Gi

Mi Gi × Hi

Hi

Because Hi and Gi are cyclic groups of orders prime to p, the order of Mi must be also prime

to p (as it is a subgroup of Gi × Hi). Because m is a multiple of n any element of Gi × Hi (and

thus Mi) has order which divides m. But because the map Mi � Hi is surjective, the order of

Mi is exactly m. So the morphism Mi → Hi is in fact an isomorphism.

Clearly, inertia group associated to m′ over m is isomorphic to the kernel of Mi → Hi.

Different choice of ideals will give the same answer, because the extension is Galois. So

lemma is proved.

�
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4.2 Abhyankar’s lemma

Let’s present two generalizations of tame ramification. First consider the case where L is not

just a field, but an étale K-algebra.

Definition 4.2.1. Let o be a DVR with a maximal ideal m and a field of fractions K. L is an

étale K-algebra, so it is a finite product of fields Ln each of which is a separable extension of K.

Let’s denote by L′n a Galois extension of K generated by Ln in an algebraic closure Ln. Then L

is tamely ramified over o, if each extension K ⊂ L′n is tamely ramified in the sense of Definition

4.1.7.

Now let’s give a definition of tame ramification for schemes. First let’s recall a notion of

normal crossing divisors.

Definition 4.2.2. (from [SGA5, I.3]).

Let Y be a regular scheme and D is an effective divisor. A divisor D is called a strict normal

crossing if there is a finite family of sections { fi}
n
1, where fi ∈ Γ(Y,OY), such that:

1. D =
∑n

i=1 div( fi)

2. For each y ∈ supp(D) the elements ( fi)y that satisfy ( fi)y ∈ my form a part of a regular

system of parameters for the local ring OY,y.

D is called a divisor with normal crossings if it is strict normal crossing locally in étale

topology.

Definition 4.2.3. Let Y = Spec(A) be a regular scheme and D a divisor with normal crossing.

Y0 = supp(D), U = Y \ Y0. Consider an étale morphism f : V → U. Let y ∈ Y0 be a maximal

point (i.e. a generic point of an irreducible component), denote by K the fraction field of OY,y.

One says that the morphism f is tamely ramified along D if for all maximal points y of Y0 we

have that V |K is a spectrum of K-algebra tamely ramified over OY,y.

Proposition 4.2.4. (Abhyankar’s lemma II) Let Y = Spec(A) be a regular local scheme and

D =
∑

1≤i≤r div( fi) a divisor with normal crossings. Set Y0 = supp(D) and let U = Y \ Y0.

Consider V → U, a cover tamely ramified along D. If yi are the generic points of supp(div( fi))
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then OY,yi is a discrete valulation ring. If we let Ki be its field of fractions then as V ramifies

tamely we have that

V |Ki = Spec(
∏
j∈Ji

L ji)

where the L ji are finite separable extensions of Ki. We let n ji be the order of the inertia group

of the Galois extension generated by L ji and let

ni = lcm j∈Ji n ji,

and set

A′ = A[T1, . . . ,Tr]/(T
n1
1 − f1, . . . ,T nr

r − fr) Y ′ = Spec(A′).

Then the étale cover V ′ = V ×Y Y ′ of U′ = U ×Y Y ′ extends uniquely up to isomorphism to an

étale cover of Y ′.

Proof. This is [SGA1, Expose XIII, proposition 5.2]. Let’s prove it in several steps.

Step 1. First we prove that the ring A′ is regular. We can assume that the dimension of A

is exactly r. It is clear that A is a local ring with a maximal ideal generated by T1,T2, . . . ,Tn.

Because the map A → A′ is finite and flat, dim(A′) = dim(A) = r. Hence by definition, A′ is

regular.

Step 2. Let’s denote D′ =
∑

1≤i≤r div(Ti), then U′ = Y ′ \ supp(D′). From the local de-

scription of étale maps (see, for example, [M, Ch. I, Corollary 3.16]) it follows that the map

U′ → U is étale (because ni are not divisible by the characteristic of the residue field). We

claim that the map U′ → Y is tamely ramified over D. Indeed, choose y to be a generic point

of supp(div( fi)). Denote R = OY,y and by R its strict localization. K is a field of fractions of R.

Then K-algebra U′|K is isomorphic to a field K[T ]/(T ri − fi) and the extension is clearly tamely

ramified over R.

Step 3. From step 1 we know that Y ′ is regular. So we can use the result [SGA1, I, Corollary

10.2] that if X′ is an étale cover of Y ′, it must be a normalization of Y ′ in the ring of rational

functions of X′. But if X′ is a cover which extends V ′, the ring of rational functions of X′ is

isomorphic to the fiber of V ′ at the generic point of Y ′. So if there exists an étale cover X′, it

must be unique.
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Step 4. For any geometric point ȳ ∈ Y ′0 let’s denote by Y
′

the strict localization of Y ′ at ȳ.

By U
′
and V

′
we denote the base change to Y

′
. We claim that it is enough to show that V

′
→ U

′

can be extended to the étale cover X′ → Y
′
. Indeed let’s consider a map Y

′
→ Y ′. It is open and

Y ′ = Spec(A′) is quasi-compact, so it is enough to choose a finite number of geometric points,

such that the union of Y
′

will give a fppf cover of Y
′
. If we construct morphisms X′ → Y

′
for

each element in the cover, we can glue them together as far as they agree on the intersections.

But they will agree because of the uniqueness proved in step 3.

Step 5. We will need the homotopy purity theorem. Let us state the result here.

Theorem 4.2.5. From [SGA2, X, Theorem 3.4]. Let R be local Noetherian regular ring of

dimension > 2. Then for any open subset U ⊂ Spec(R) there is an equivalence of categories of

étale covers: Ét(X)→ Ét(U).

So for any geometric points ȳ ∈ Y ′0, such that dim(OY,y) > 2, we can extend the étale cover.

Step 6. We just need to prove our result for Y ′ = Spec(OY′,ȳi), where ȳi lies over a maximal

point of div(Ti). But this is exactly the situation of Lemma 4.1.9. Indeed if K′i is a field of

fractions of Y ′, we have a tamely ramified extension Ki ⊂ K′i with the order of inertia group

ni (this follows from step 2). At the same time Ki ⊂ L ji is a tamely ramified extension with

the order of inertia group n ji. Also by definition, ni is a multiple of n ji. Hence we can apply

Lemma 4.1.9.

�

Remark 4.2.6. The proof given shows how to construct the extension of V ′, we will need this

in Chapter 5. The extension can be constructed as the normalization of Y ′ in the generic point

of V ×Y Y ′.



Chapter 5

The structure of inertia groups and

Chevalley-Shephard-Todd theorem

In this chapter we want to describe the inertia groups of a quotient morphism under some

assumptions.

5.1 Inertia groups. Generation in codimension one

Consider a scheme X and an admissible action of a finite group G on it. For any point x ∈ X we

defined a decomposition group D(x,G) and inertia group I(x,G) in 4.1.4. There is an induced

action of D(x,G) on the closure of the point x, and I(x,G) acts trivially on this closure. Hence

if y ∈ x̄ then there is an inclusion I(x,G) ↪→ I(y,G).

Definition 5.1.1. In the situation above we will say that the inertia groups are generated in

codimension one if for each point y ∈ X we have that

I(y,G) =
∏
y∈x̄

I(x,G)

where the product is over all points of codimension one containing y and the identification is

via the inclusions above.

For a group acting generically free on a smooth curve all inertia groups will be generated

33



34 Chapter 5. The structure of inertia groups and Chevalley-Shephard-Todd theorem

in codimension one. We are going to prove that under special assumption this will be also true

in higher dimensions.

Theorem 5.1.2. Let X be a regular, separated, noetherian scheme over a field k. Assume that

G is a finite group with cardinality coprime to the characteristic of k and that G acts admissibly

and generically freely on X with quotient φ : X → Y and Y is regular. Assume that the map

φ is ramified along a normal crossing divisor. For any point x ∈ X the inertia group I(x,G) is

generated in codimension one.

We will give a proof at the end of the chapter.

5.2 Pseudo-reflections

Let us repeat some important facts from invariant theory.

Definition 5.2.1. Let k be a field, V - a finite dimensional vector space over k. An element

g ∈ GL(V) is called a pseudo-reflection, if the image Im(1 − g) is of dimension one.

Notation 5.2.2. If g is a pseudo-reflection on V , denote by Vg the hyperplane of stable vectors:

{v ∈ V | gv = v}.

Definition 5.2.3. Let k be a field, V - a vector space. Let g and h be pseudo-reflections. Suppose

that the group G := 〈g, h〉 generated by them is of finite order coprime to the characteristic of

k. Let us call this group of tame order.

We will need the following lemmas.

Lemma 5.2.4. Let g and h be pseudo-reflections and let G = 〈g, h〉 be of tame order. Also

suppose that Vg = Vh. Then g and h commute.

Proof. Because Vg = Vh is fixed by G, we can find a G-invariant complement W. As dim(W) =

1 it is a subspace of common eigenvectors for G. �

Lemma 5.2.5. Let g and h be pseudo-reflections and G = 〈g, h〉 is of the tame order. If

Vg = Vhgh−1 , then g and h commute.
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Proof. Note that g and hgh−1 are pseudoreflections with the same characteristic polynomial.

The previous lemma tells us they are simultaneously diagonalizable. As their eigenvalues are

the same, g = hgh−1.

�

Lemma 5.2.6. Let g and h be pseudo-reflections and G = 〈g, h〉 is of the tame order. Denote

by Λ the set of all pseudo-reflections in G. If
⋃

τ∈Λ Vτ is a support of a strict normal crossing

divisor, then the group G is abelian. Moreover G � Cord(g) ×Cord(h), where Cn is a cyclic group

of order n.

Proof. It is enough to show that g and h commute. We have three pseudo-reflections g, h, hgh−1

and three hyperplanes Vg, Vh, Vhgh−1 . Firstly, observe that Vg ∩ Vh = Vg ∩ Vh ∩ Vhgh−1 , because

Vhgh−1 = hVg.

The normal crossing condition forces Vhgh−1 = Vg or Vhgh−1 = Vh.

If Vhgh−1 = Vg, then the result follows from Lemma 5.2.5.

The condition Vhgh−1 = Vh is equivalent to hVg = Vh. Let’s apply h to both sides (ord(h)−1)

times, then we get Vh = Vg. The result follows from Lemma 5.2.4.

The isomorophism G � Cord(g) ×Cord(h) is clear.

�

Let us state an important theorem we want to use.

Theorem 5.2.7 (Chevalley-Sheppard-Todd). Let k be a field, V a finite dimensional vector

space over k, and G ⊂ GL(V) a finite group of order coprime to the characteristic of k. Denote

by S = Symm(V) the symmetric algebra and R = S G the algebra of invariants. Then the

following three conditions are equivalent:

(i) G is generated by pseudo-reflections.

(ii) R is a graded polynomial k-algebra.

(iii) R is a regular ring.

Proof. (i)⇔ (ii) is in [Bou, Ch.V, §5, 5].
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(ii)⇒ (iii) obvious

(iii) ⇒ (i) Let H / G be a normal subgroup generated by pseudo-reflections. Then X :=

Spec(S )/H is an affine space and G/H acts on it, such that X/(G/H) = Spec(R). Because G/H

doesn’t contain pseudo-reflections, its action on X is free in codimension one. Hence the map

X → Spec(R) is étale in codimension one and so, by purity of the branch locus (see Theorem

6.2.3 in the next chapter), is étale. So G/H must act freely on X, but at the same time it is a

linear action, where the origin is fixed. That means that G/H must be a trivial group, hence

G = H is generated by pseudo-reflections.

�

5.3 Luna’s étale slice theorem

Definition 5.3.1. Assume that G is an algebraic group acting on affine varieties X and Y . Let

φ : X → Y be G-morphism. One says that φ is strongly étale, if

1. φ/G : X/G → Y/G is étale.

2. The diagram

X

X/G

Y

Y/G

φ

φ/G

is cartesian.

Notation 5.3.2. Let G be a finite group and k a field, such that its characteristic is coprime to

|G|. Let H ⊂ G be a subgroup. Then we can define an H-action on G by the rule:

G × H → G

(g, h) 7→ gh−1.

Suppose that H acts on an affine variety Y . Then this action and the described action of H on

G provides the H-action on G × Y in such a way that G × Y is a principal H-bundle. The action
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is: h · (g, y) = (gh−1, hy). Denote:

G ×H Y = (G × Y)/H.

The G-action on G ×H Y is induced by the left action on the first components.

If (g, y) ∈ G × Y , then denote by (g, y) its image in G ×H Y .

We will need the following easy Lemma.

Lemma 5.3.3. If y ∈ Y, g ∈ G, n = (g, y) ∈ G ×H Y, then Gn = gHyg−1. Here Gn is a

decomposition group D(n,G) (or an isotropy group) and Hy is a decomposition group D(y,H).

Proof. Take s ∈ Hy, then by definition sy = y. Then

gsg−1(g, y) = (gs, y) ∼H (g, sy) = (g, y).

Hence gsg−1 ∈ Gn.

Conversely, take t ∈ Gn. Then t(g, y) ∼H (g, y). So there is h ∈ H, such that (tg, y) =

(gh, h−1y). This implies that tg = gh, or t = ghg−1. Also we have that h−1y = y, or h ∈ Hy. �

Let us formulate the important theorem which will be heavily used in the last part of the

chapter.

Theorem 5.3.4 (Luna’s étale slice). Let k be a field, X an affine regular variety, and G a finite

group acting on X, such that its order is coprime to the characteristic of k. Consider a closed

point x ∈ X. Then there exists a locally closed subscheme V of X, such that:

1. V is affine and contains x.

2. V is Gx-invariant.

3. The image of the G-morphism ψ : G ×Gx V → X is a saturated open subset U of X.

4. The restriction of ψ : G ×Gx V → U is strongly étale.

Also there exists an étale Gx-invariant morphism φ : V → TxV, such that φ(x) = 0, Tφx = Id,

and the following properties are satisfied:
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5. TxX = Tx(Gx) ⊕ TxV. We will denote Nx := TxV - the normal space to Gx at x.

6. The image of φ is a saturated open subset W of TxV.

7. The restriction of φ : V → W is a strongly étale Gx-morphism.

Proof. It is a slightly modified version of [D, Th. 5.3 and Th. 5.4]. �

5.4 Proof of Theorem 5.1.2

Let us recall the following fundamental result by Mumford.

Proposition 5.4.1. Let X be an affine scheme over a field k. Assume that G is a finite group

with cardinality coprime to the characteristic of k and that G acts generically freely on X. Then

the quotient φ : X → Y is a universal geometric quotient.

Proof. Can be proved similarly to [FKM, Theorem 1.1]. �

We will use the fact that the inertia group is preserved under arbitrary base change.

Proposition 5.4.2. Consider a scheme X and an admissable action of a finite group G on it.

Denote Y = X/G. Take a surjective map f : Y ′ → Y and form a pull-back diagram:

X′

Y ′

X

Y

h

f

φ

.

Take a point x ∈ X and a point lying over it: x′ ∈ X′. Then I(x,G) = I(x′,G).

Proof. The inclusion I(x,G) ⊂ I(x′,G) is clear. Indeed, if we consider a geometric closure x̄

of x and take g ∈ I(x,G), then g acts as identity on x̄. Hence it acts as identity on h−1(x̄), and

so on x̄′.

Let’s prove the other inclusion. Firstly, we can assume that X is affine, because the action

of G is admissible. Take y := φ(x). Because φ is finite, Xy is a disjoint union of fields. We have

a cartesian diagram:
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Xy

Spec(k(y))

X

Y

φ̂ φ

,

By universality of the quotient (Proposition 5.4.1), the morphism on the left is also a G-

quotient. If we replace G with a decomposition group D(x,G) and Y with Spec(k(y)), we reduce

the problem to finding the inertia group of D(x,G)-action on Spec(k(x)). The quotient by this

action is φ̂ : Spec(k(x))→ Spec(k(y)), where the extension k(y) ⊂ k(x) is Galois.

Consider the base change diagram:

Spec(Ox′)

Spec(Oy′)

Spec(k(x))

Spec(k(y))
,

We can now replace G with G/I(x,G). Then Gal(k(x)/k(y)) = G. So the morphism on the

right is a G-torsor. But the base change of a torsor is a torsor again. So the action of G on

Spec(Ox′) has no inertia.

�

We will also need few basic facts about étale maps.

Proposition 5.4.3. Let φ : Y ′ → Y be étale. Then Y ′ is regular if Y is regular.

Proof. See [M, I, 3.17]. �

Proposition 5.4.4. If φ : Y ′ → Y is unramified, and D is a normal crossing divisor in Y, then

D′ = φ−1(D) is a normal crossing divisor in Y ′.

Proof. By definition of a normal crossing divisor it is enough to prove everything in a local

case. The problem will become the following. Let Oy ⊂ Oy′ be an unramified extension. If

my = ( f1, f2, . . . , fn), then my′ = ( f1, f2, . . . , fn). This is true by definition. �

Before proving Theorem 5.1.2 let’s make a series of reductions.
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Reduction 1: Take a point x ∈ X not necessary closed. If we localize at x using the univer-

sality of the quotient (Proposition 5.4.1), we can reduce the theorem to the situation where X

and Y are affine schemes and x is a closed point.

Reduction 2: We can assume that the field k is separably closed. Indeed, consider a base

change k ⊂ ksep. Denote X = X × Spec(ksep), Y = Y × Spec(ksep). Then the map φ : X → Y

will satisfy the assumptions of Theorem 5.1.2. Indeed, φ ramifies at simple normal crossing

divisor, because the map Y → Y is unramified (by Proposition 5.4.4).

The map Y → Y is surjective. If x ∈ X is a closed point and x ∈ X is a point over x, then

I(x,G) = I(x,G) by Proposition 5.4.2. So if we prove that I(x,G) is generated in codimension

one, the same thing will be true for I(x,G).

This reduction is useful, because for X the inertia group is the same as the decomposition

group, which is easier to analyze.

Reduction 3: Here we will apply Luna’s slice theorem. First we can replace X with an

open subset U from part (3) of Theorem 5.3.4. Then we can make an étale base change and

replace U with G ×Gx V from part (4). We will get a cartesian diagram:

G ×Gx V

V/Gx

U ⊂ X

U/G ,

where the horizontal maps are étale. The inertia group will remain unchanged.

Finally, using part (7) we obtain a cartesian diagram:

G ×Gx V

V/Gx

G ×Gx Nx

Nx/Gx ,

where the horizontal maps are étale and Nx is a vector space. Because the inertia group is again

unchanged, we just need to compute the inertia on the right.
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Proof. We reduced the Theorem 5.1.2 to the statement that the decomposition subgroups of

G-action on G ×Gx Nx are generated in codimension one, where Nx is a vector space.

First notice that (G ×Gx Nx)/G � Nx/Gx. Also Nx/Gx is regular as étale cover of a regular

scheme. For any element u := (g, n) ∈ G×Gx Nx the decomposition group Gu is equal to gHng−1

- the conjugate of the decomposition group of n under Gx-action on Nx (by Lemma 5.3.3).

So finally, we have a linear action of Gx on a vector space Nx , the quotient Nx/Gx is regular

and it ramifies along a simple normal crossing divisor. Applying Theorem 5.2.7, we get that

Gx is generated by pseudo-reflections. Using Lemma 5.2.6 we get that Gx is an abelian group.

Moreover it is a product of cyclic groups Ci1 × . . . × Cin , where n is a number of irreducible

components in the normal crossing divisor and i j is the order of stabilizing group of each

component. By definition, this means that the decomposition group of each point of Nx is

generated in codimension one.

�
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Quotient stacks as root stacks

In this chapter we will provide sufficient conditions for a quotient stack to be a root stack.

6.1 Quotient stack in case of discrete valuation rings

To illustrate the procedure we will use in the general situation, let us start with an example.

Example 6.1.1. Let k be an algebraically closed field, such that gcd(r, char(k)) = 1. Let O be

a discrete valuation ring containing k with an action of µr.

The ring of invariants Oµr is also a discrete valuation ring. Because we assumed that O

contains a field, its completion Ô is a power series ring in one variable over residue field. Note

that µr must preserve the maximal ideal of O. If we further assume that the action is generically

free and inertial, i.e µr acts trivially on the residue field then if s is a local parameter for O we

can conclude that t = sr is a local parameter for R = Oµr .

We set Y = Spec(R) and consider the root stack

Y = YR,t,r → Y.

The parameter s induces a µr-equivariant morphism

X → Y

42
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corresponding to the triple (O, s,m) where m is the canonical isomorphism Or → O. We will

show later (6.2.6) that this morphism is in fact étale. Using the 2 out of 3 property (see [M, I,

Cor.3.6]) for étale maps we get that the natural morphism

X × µr → X ×Y X

is étale. To show that [X/µr] � Y is equivalent to show that the morphism above is an iso-

morphism (because X is a presentation of a quotient stack [X/µr] - see [stacks, Tag 04T5]). To

understand that it is indeed an isomorphism let us recall some basic facts from SGA.

Definition 6.1.2. A morphism f : X → Y of schemes over a field k is called radicial (or

universally injective), if for all fields K ⊃ k we have that the morphism f (K) : X(K) → Y(K)

is injective.

Theorem 6.1.3. Let f : X → Y be a morphism of finite type. Then f is an open immersion if

and only if f is étale and radicial.

Proof. See [SGA1, I, Theorem 5.1] �

Also we want to use the following easy Lemma.

Lemma 6.1.4. If a morphism of scheme is an open immersion and surjective then it is an

isomorphism.

To prove that the morphism X × µr → X ×Y X it suffices to show that this morphism is

radicial and surjective. In other words we need to show that it is a bijection on K-points for

each field K.

Given a pair of K-points a and b of X that give a K-point of X ×Y X, the fiber of

X ×Y X → X ×Y X

over this point consists of the space of isomorphisms between a∗(O, s,m) and b∗(O, s,m) in Y.

If the support of the K-points is the generic point of O this is just a singleton and if the support

is the closed point then the space is a bitorsor (i.e. simultaneously left and right torsor such that
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the actions commute) over µr. At any rate the fiber of the map X ×Y X → X ×Y X over K is in

bijection with the fiber of the map X ×µr → X ×Y X over K, so the morphism X ×µr → X ×Y X

is an isomorphism. Hence in this case we have that

[X/µr] � Y.

6.2 General case

Assumption 6.2.1. We will assume that X and Y are regular, separated, noetherian schemes

over a field k. Let G be a finite group with cardinality coprime to the characteristic of k. We

will assume that G acts admissibly and generically freely on X with quotient φ : X → Y . Note

that by [GW, Theorem 14.126] our hypothesis imply that the quotient map X → Y is flat.

Definition 6.2.2. Consider the map φ : X → Y which is locally of finite type. The set of points

of X where φ is ramified is called the branch locus. It has a natural closed subscheme structure

defined by supp(ΩX/Y).

Theorem 6.2.3. If a map φ : X → Y is faithfully flat and finite, then the branch locus (if

nonempty) has pure codimension one in X.

Proof. This is called purity of branch locus, see [AK, VI, Thm 6.8]. �

Corollary 6.2.4. Under assumption 6.2.1 the conditions of the purity theorem are satisfied. So

the branch locus is in fact an effective Cartier divisor.

Lemma 6.2.5. We can write the branch divisor as

D =

n∑
i=1

(ri − 1)

∑
g∈G

g∗Di

 ,
where each Di is a prime divisor. We can view the Di as points of the scheme X. The multiplic-

ities ri are related to the inertia groups of Di via

ri = |I(Di,G)|.
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Proof. Let’s consider the image φ(B) =: E which is again an effective divisor. Let’s write E as

a sum of prime divisors: E =
∑n

i=1 Ei. As G acts generically freely, passing to generic points of

our regular variety produces a Galois extension with Galois group G. The branch locus behaves

well with respect to base change so we can localize everything at Ei. As the morphism φ is

affine, the question reduces to the question in commutative algebra.

Let o be DVR and o ⊂ O be a Galois extension of Dedekind domains. Then we have:

pO = (
∏

g∈G gP)e for some natural number e, which is called the ramification index. We also

know that |G| is a multiple of e and so e is coprime to char(k). See, for example, [N, Ch. I.9].

We want to compute supp(ΩO/o). For that let’s again localize at P. So we can assume that o

and O are DVRs. Also o and O are k-algebras and their residue fields contain k. Hence ΩO/o is

generated by d(xe) = exe−1dx and because e is invertible in k, supp(ΩO/o) = Pe−1.

We just need to prove that the ramification index is equal to the order of inertia group. But

this is Proposition (9.6) of [N, Ch. I.9].

�

We let Ei be the image of Di under φ. It is called the ramification divisor. We form the root

stack

Y = Y((E1,r1),...,(En,rn)).

Note that we have assumed that the characteristic of our ground field is coprime to G and hence

to each ri. It follows, via a local calculation along the ring extension OX,Di/OY,Ei that we have

φ∗(Ei) = ri(
∑

g∈G g∗Di). This allows us to lift φ to produce a diagram

X

Y Y.

φ
ψ

π

The morphism ψ is equivariant in the sense that precomposition with g ∈ G produces a two-

commuting diagram. This gives us a morphism

[X/G]→ Y
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that we would like to show is an isomorphism under our assumption (6.2.1).

In the proof below we will need to make use of Abhyankar’s lemma (Proposition 4.2.4).

Proposition 6.2.6. Suppose that φ : X → Y is ramified along a simple normal crossings

divisor. The morphism ψ : X → Y constructed above is étale.

Proof. Étale maps are local on the source so we can assume that Y = Spec(S ), and all Ei are

trivial line bundles so that si ∈ S . Further, by shrinking X we can assume that the morphism

X → Y is defined by trivial bundles on X. Because the map φ is finite we can write X =

Spec(T ). Here T and S are local regular Noetherian k-algebras, T is a finite S -module, si is

part of a regular system of parameters and there are elements ti ∈ T, such that tri
i = si .

We may check étaleness after a faithfully flat base extension of the base field and hence

may assume that the ground field k contains ri-th roots of unity for all 1 ≤ i ≤ n.

Using (2.2.12) the stack Y is isomorphic to the quotient stack

[Spec(S ′)/µr1 × · · · × µrn],

where S ′ = S [y1, . . . , yn]/(yr1
1 − s1, . . . , y

rn
n − sn).

We want to show that the map Spec(T )→ [Spec(S ′)/µr1 × · · · × µrn] is étale. Denote by T ′

the ring T [x1, . . . , xn]/(xr1 − 1, . . . , xrn − 1). Using (2.2.12) again we have see that we have a

Cartesian diagram :

Spec(T ′) Spec(S ′)

Spec(T )
[
Spec(S ′)/µr1 × · · · × µrn

]
Because Spec(S ′) is a presentation of a quotient stack it is enough to show that the map S ′ → T ′

given by yi 7→ tixi is étale.

The morphism S s1...sn → Tt1...tn is flat and unramified by assumption, hence it is étale. By

Abhyankar’s lemma, (4.2.4), this morphism extends after base change to an étale cover of S ′.

By the proof of Abhyankar’s lemma it suffices to show that T ′ is normal and the map S ′ → T ′

is integral. Both of these facts are easily checked and the result follows. �
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For a point p ∈ Y we define

I(p,Y) =
∏

p∈supp(Ei)

µri .

Proposition 6.2.7. Let K be a field and consider the morphism of K-points

πK : X ×Y X(K)→ X ×Y X(K).

The fiber π−1
K (x1, x2) over a K-point (x1, x2) is a bitorsor under the inertia group I(φ(x1),Y).

Proof. In what follows, we will use the shorthand G∗ when we mean
∑

g∈G g∗. Recall that the

morphism ψ is defined by (O(G∗Ei), sG∗Ei , αi) where αi are isomorphisms coming from the fact

that

riG∗Ei = riφ
∗(Di).

The fiber over (x1, x2) is exactly the set of isomorphisms from x∗1O(G∗Ei) to x∗2O(G∗Ei) as i

varies. As in (6.1.1) this depends on whether the section x∗1sG∗Ei vanishes or not. The vanishing

condition precisely depends on φ(x1) and the result follows. �

Theorem 6.2.8. If the assumption 6.2.1 is satisfied and if additionally the ramification divisor

D is a normal crossing divisor then we have the isomorphism of stacks [X/G] � Y.

Proof. To prove this all we need to show is that the map

χ : X ×G → X ×Y X

(x, g) 7→ (x, gx)

is an isomorphism.

Using (6.2.6), the map ψ : X → Y is étale, and so the map X ×Y X → X is étale as a

pullback. Clearly the two maps X ×G → X given by (x, g) 7→ x and (x, g) 7→ gx are étale and

so the map χ must be étale.

We are going to show that the map

χ(K) : X(K) ×G → X ×Y X(K)
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is bijective for any field extension of the ground field k ⊂ K. The points of the scheme on the

left is a pair (x, g), where g ∈ G and x : Spec(K)→ X a K-point.

Consider the morphism Ψ : X × G → X ×Y X. This morphism is surjective as we have a

geometric quotient, see [FKM, Definition 0.4]. Consider a K-point (x1, x2) ∈ X×Y X(K). Using

the properties of geometric quotients we have that x2 = gx1 for some g ∈ G. Using this we see

the fiber Ψ−1(x1, x2) is a torsor over the inertia group I(supp(x1),G). Under our assumptions

by Theorem 5.1.2 the inertia groups are generated in codimension one we see that we have an

identification

I(supp(x1),G) = µri1
× . . . × µril

as in the previous proposition. It follows that the morphism χ is étale and universally injective

(radicial). This implies that it is an open immersion. As it is also surjective it is an isomorphism

and the result follows. �



Chapter 7

The K-theory of a root stack

In this chapter we will describe G-theory and K-theory of a root stack.

7.1 Localization via Serre subcategories

Let A be an abelian category. Recall that a Serre subcategory S of A is a non-empty full

subcategory that is closed under extensions, subobjects and quotients. When A is well-powered

the quotient category A/S exists, see [S, pg. 44, Theorem 2.1]. Let’s recall that ”well-powered”

means that the subobjects of each object a ∈ A can be indexed by a small set.

We will need the following result to identify quotient categories.

Theorem 7.1.1. Let F : A → B be an exact functor between abelian categories. Denote by S

the full subcategory whose objects are x with F(x) � 0. Then S is a Serre subcategory and we

have a factorisation

A

B

A/S

F

Proof. See [S, page 114] �

Definition 7.1.2. The category S is called the kernel of the functor F and is denoted by ker(F).

49
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Theorem 7.1.3. In the situation of the previous theorem suppose that we have

1. for every object y ∈ B there is a x ∈ A such that F(x) is isomorphic to y and

2. for every morphism f : F(x) → F(x′) there is x′′ ∈ A with h : x′′ → x and g : x′′ → x′

such that F(h) is an isomorphism and the following diagram commutes

F(x′′)

F(x) F(x′).

F(h)
F(g)

f

Then there is an equivalence of categories A/S � B.

Proof. See [S, pg. 114, theorem 5.11]. �

Consider n-tuples of integers ~r = (r1, r2, . . . , rn) and ~s = (s1, s2, . . . , sn). We denote by [~r, ~s]

the poset of n-tuples (x1, . . . , xn) with

xi ∈ Z and ri ≤ xi ≤ si.

We will make use of the following shorthand notation :

rI = [0, r] and ~rIn = [0,~r].

These intervals are naturally posets with

(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn) if and only if xi ≤ yi for all i.

This poset structure allows us to view them as categories in the usual way.

Fix an abelian category A and consider the functor category

Func(~rIn,A).

This category is an abelian category with kernels, cokernels formed pointwise. We will be

interested in the K-theory of such categories. In this subsection we will try to understand some
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of their quotient categories. Given an object F in this category and an object u of~rIn we denote

by Fu ∈ A the value of the functor F on this object and if u ≤ v the arrow from Fu to Fv will

be denoted by

F+(v−u) : Fu → Fv.

In particular, we take ei = (0, 0, . . . , 1, 0, . . . , 0) to be a standard basis vector so that we have a

morphism

F+ei : F(u1,...,un) → Fu1,...,ui−1,ui+1,ui+1...,un .

Lemma 7.1.4. To give an object F of Func(~rIn,A) is the same as providing the following data

:

(D1) objects F(u1,u2,...,un) ∈ A

(D2) arrows

F+ei : Fu → Fu+ei ,

such that all diagrams of the form

Fu Fu+e j

Fu+ei
Fu+ei+e j

Proof. The hypothesis insure that if u ≤ v in ~rIn then there is a well defined map Fu → Fv

which produces our functor. �

Proposition 7.1.5. (i) Let trn−1(~r) = (r1, r2, . . . , rn−1). There is an exact functor

π : Func(~rIn,A)→ Func(trn−1(~r)In−1,A)

defined on objects by

π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0)

(ii) The functor π has a left adjoint denoted π∗. We have π ◦ π∗ ' 1.
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(iii) The functor π∗ is fully faithful.

Proof. (i) There is an inclusion functor trn−1(~r)In−1 ↪→ ~rIn defined by

(x1, x2, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, 0).

The functor π is just the restriction along this inclusion. The exactness follows from the

fact that in functor categories, limits and colimits are computed pointwise.

(ii) Given F ∈ Func(trn−1(~r)In−1,A), we need to construct an object π∗(F) ∈ Func(~rIn,A). We

set

π∗(F)(u1,u2,...,un) = F(u1,u2,...,un−1).

To produce a functor, we need maps

λi
(u1,...,un) : π∗(F )(u1,...,ui,...,un) → π∗(F)(u1,...,ui+1,...,un)

We define

λi
(u1,...,un) =


F(u1,...,ui,...,un−1) → F(u1,...,ui+1,...,un−1) if i < n

identity if i = n.

One checks that the hypothesis of (7.1.4) are satisfied. Observe that π ◦ π∗ = 1. This

produces a natural map

Hom(π∗(F),G)→ Hom(F, π(G)).

To see that this is a bijection, suppose that we are given a morphism β : F → π(G). There

is a diagram, where the dashed arrow is defined to be the composition,

π∗(F)(u1,...,un) G(u1,...,un)

F(u1,...,un−1) G(u1,...,un−1,0)
β
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This produces a natural morphism

Hom(π∗(F),G)← Hom(F, π(G))

and we check that it is inverse to the previous map.

(iii) We have

Hom(π∗(F), π∗(F′)) = Hom(F, ππ∗(F′)) = Hom(F, F′).

�

Theorem 7.1.6. 1. The functor

π : Func(~rIn,A)→ Func(trn−1(~r)In−1,A)

satisfies the hypothesis of (7.1.3).

2. Let ~s = (r1, r2, . . . , rn−1, rn − 1). If rn > 0 then the kernel of this functor is equivalent to

Func(~sIn,A).

3. If rn = 0 then there is an equivalence of categories

Func(~rIn,A) � Func(trn−1(~r)In−1,A).

Proof. (1) The functor π is exact so it remains to check the two conditions of the theorem. The

first condition follows from the fact that π ◦ π∗ is the identity. Now suppose that we have a

morphism π(F)→ π(F′). By adjointness we obtain a diagram

π∗π(F)

F F′

Applying π to this picture shows that the second condition holds.

(2) The functor π was defined on objects by the rule π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0). So it

is clear that if πG � 0 then (G)(u1,...,un−1,0) � 0 and to give an object G of ker π is the same (up
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to isomorphism) as giving the objects (G)(u1,...,un) ∈ A for all u ∈ ~rIn, un , 0. And according to

Lemma 7.1.4 it is the same as providing an object of the category Func(~sIn,A)

(3) If rn = 0 then we have an equivalence of categories trn−1(~r) � ~r.

�

7.2 Extension Lemma

We want to slightly simplify the formulation of a parabolic sheaf in the present context using

the pseudo-periodicity condition. We let

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn,

where the 1 is in the ith spot.

Definition 7.2.1. Recall that L is a symmetric monoidal functor

L : ~rZn → DivX,

determined by n divisors (Li, si). An extendable pair (F, ρ) on (X, L) with denominators ~r

consists of the following data:

(a) A functor F• : ~rIn → QCoh(X).

(b) For any α ∈ ~rIn such that αi = ri, an isomorphism of OX-modules

ρα,α−riei : Fα

∼
→ Li ⊗ Fα−riei .

We will frequently drop the subscripts from the notation involving ρ, when they are clear

from the context.

This data is required to satisfy the following three conditions :

(EX1) For all i ∈ {1, . . . , n} and α ∈ ~rIn the following diagram commutes
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Fα Fα+(ri−αi)ei

Li ⊗ Fα Li ⊗ Fα−αi~ei

F+(ri−αi)~ei

ρσi

Li ⊗ F+αi~ei

where σi is multiplication by the section si

(EX2) For all i , j and α with αi = ri the following diagram commutes

Fα Li ⊗ Fα−riei

Fα+e j Li ⊗ Fα+e j−riei

F ~e j F ~e j

ρ

ρ

(EX3) For all i and j and α ∈ ~rIn with αi = ri and α j = r j the following diagram commutes

Fα Li ⊗ Fα−riei

L j ⊗ Fα−r je j Li ⊗ L j ⊗ Fα−riei−r je j

ρ ρ

ρ

ρ

Definition 7.2.2. An extendable pair (F, ρ) is called coherent if for each v ∈ ~rIn the sheaf Fv is

a coherent sheaf on X.

Proposition 7.2.3. Let (E, ρ) be a parabolic sheaf on (X, L) with denominators ~r. Then the

restricted functor E|~rIn produces an extendable pair on (X, L).

Proof. Note that the restricted functor has all the required data for an extendable pair by re-

stricting the collection ρα,β. We need to check that the axioms of an extendable pair are satisfied.

(1) We have that the composition

Eα+(ri−αi)ei

ρ
→ Eα−αiei ⊗ Li → Eα ⊗ Li

ρ−1

→ Eα+riei



56 Chapter 7. The K-theory of a root stack

is just the morphism E+αiei using axiom (ii) of parabolic sheaf. Precomposing with the map

E+(ri−αi)ei : Eα → Eα+(ri−αi)ei

gives the morphism E+riei . The result now follows from axiom (i).

(2) This follows directly from axiom (ii).

(3) This follows directly from axiom (iii). �

Proposition 7.2.4. Given an extendable pair (F, ρ) we can extend it to a parabolic sheaf (F̂, ρ)

and the extension is unique up to a canonical isomorphism. A coherent extendable pair extends

to a coherent parabolic sheaf.

Proof. For v ∈ Zn we need to define its extension F̂v. We can write vi = riui +qi with 0 ≤ qi < ri

and ui ∈ Z. As before we denote Lu = ⊗n
i=1L⊗ui and q = (q1, . . . , qn). Set F̂v = Lu ⊗ Fq.

We need to construct maps F̂+ei : F̂v → F̂v+ei . If qi < ri − 1 then the map is obtained by

tensoring the map Fq → Fq+ei with Lu. If qi = ri − 1 then the map is defined by

F̂v = Lu ⊗ Fq F̂v+ei = Lu ⊗ Li ⊗ Fq′

Lu ⊗ Fq+ei

F̂ei

1 ⊗ Fei 1 ⊗ ρ

where q′j = q j for all j , i and q′i = 0.

In order to show that the construction above indeed produces a functor we need to show that

all diagrams of (7.1.4) commute. If both qi < ri − 1 and q j < r j − 1 then this is straightforward.

Suppose that qi = ri − 1 and q j < r j − 1 then this follows from (EX2). This leaves the case

qi = ri − 1 and q j = r j − 1. We have a diagram
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Lu ⊗ Fq Lu ⊗ Fq+ei Lu ⊗ Li ⊗ Fq−qiei

Lu ⊗ Fq+e j Lu ⊗ Fq+ei+e j Lu ⊗ Li ⊗ Fq−qiei+e j

Lu ⊗ L j ⊗ Fq−q je j Lu ⊗ L j ⊗ Fq−q je j+ei Lu ⊗ Li ⊗ L j ⊗ Fq−qiei−q je j

The top left square commutes using the fact that F is a functor. The top right and bottom left

squares commute using axiom (EX2). The bottom right square commutes using axiom (EX3).

So indeed F̂• is a functor.

Note that we have canonical isomorphisms Lu ⊗ Lv � Lu+v for u, v ∈ ~rZ. These isomor-

phisms induce our pseudo-period isomorphisms.

Finally we need to check the conditions (i) to (iv) of a parabolic sheaf.

Condition (i): For ~rα,~rα′ ∈ ~rNn the following diagram commutes

F̂v F̂v+~rα F̂v+~rα+~rα′

Lα ⊗ F̂v Lα ⊗ Lα′ ⊗ F̂v

F̂+~rα F̂+~rα′

This follows by the definition of the functor F̂• and the symmetric monoidal structure of L.

This allows us to make the following reduction: in order to check axiom (i) it suffices to

check that the following diagram commutes

F̂v F̂v+riei

Li ⊗ F̂v

ρ
σi

And this follows directly from (EX1).

Condition (ii): Once again we reduce to showing that



58 Chapter 7. The K-theory of a root stack

F̂v+riei Li ⊗ F̂v

F̂v+b+riei Li ⊗ F̂v+b

Li ⊗ F̂+bF̂+b

commutes. If we write v = ~ru + q then this diagram will become

Lu+ei ⊗ Fq Li ⊗ (Lu ⊗ Fq)

Lu+ei ⊗ F̂q+b Li ⊗ (Lu ⊗ F̂q+b)

Li ⊗ Lu ⊗ F̂+bLu+ei ⊗ F̂+b

We can use the symmetric monoidal structure of L to show that this diagram indeed com-

mutes.

Condition (iii): We reduce to showing the commutativity of the following diagram

F̂v+riei+r je j Li ⊗ F̂v+r je j

L j ⊗ F̂v+riei Li ⊗ L j ⊗ F̂v

which follows from the monoidal structure of L.

Condition (iv) is by definition.

Finally, let E• be another extension of F•. Again we can again write vi = riui + qi with

0 ≤ qi < ri and ui ∈ Z. By pseudo-periodicity, Ev ' L(u) ⊗ Eq, and Fq = Eq because E• is an

extension. So, Ev � F̂v for any v ∈ Zn.

It is clear from the construction that the finitely generated condition is preserved under

extension. �

Corollary 7.2.5. The category of parabolic sheaves (coherent parabolic sheaves) on (X, L)

with denominators ~r is equivalent to the category of extendable pairs (resp. coherent extend-

able pairs ) on (X, L) with denominators ~r.
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Proof. There is a pair of functors between these categories. The truncation functor sends a

parabolic sheaf (E, ρ) to an extendable pair by forgetting all Ev when v < ~rIn. The extension

functor from extendable pairs to parabolic sheaves was defined in the previous Proposition on

objects by the rule F• 7→ F̂•. It is easy to see that these functors are mutually inverse and

preserve the finitely-generation condition. �

Remark 7.2.6. We will denote the category of coherent extendable pairs by EP(X, L,~r).

7.3 The localization sequence

In this section we will localize the category of finitely-generated extendable pairs so that it will

be glued from simpler parts.

First let us consider the functor πL,~r
∗ : EP(X, L,~r) → CohX, given by F• 7→ F0 on objects.

It is an exact functor because exact sequences in diagram categories are defined point-wise.

Lemma 7.3.1. The functor πL,~r
∗ has a left adjoint denoted π∗L,~r and there is a natural isomor-

phism πL,~r
∗ ◦ π

∗

L,~r ' 1.

Proof. In what follows, we will omit, the superscripts (resp. subscripts) L and ~r in the notation

for the appropriate functors. For any 0 ≤ i ≤ n consider functions εi : ~rI → {0, 1}, defined by

εi(u) = 1 if ui = ri and zero otherwise. We define the functor π∗ on a sheaf F ∈ CohX by the

rule:

(π∗(F))u = (⊗n
i=1Lεi(u)

i ) ⊗ F.

This forms a functor via the maps

(π∗(F))u → (π∗(F))u+ei =


identity if ui ∈ [0, ri − 2]

σi if ui = ri − 1,

where σi is the multiplication by the section si.

Define ρ to be identity map. It is easy to see that all axioms of extendable pair are satisfied.

Now let’s take a coherent sheaf F and an extendable pair E• and consider a map

HomCohX(F, π∗E)→ HomEP(π∗F, E)
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given by sending φ ∈ HomCohX(F, π∗E) to precomposition of the structure maps of the extend-

able pair E with φ. It’s obviously an injection. Surjectivity will follow from commutativity of

the squares in HomEP(π∗F, E) and because all structure maps in π∗F are identity.

�

Proposition 7.3.2. The functor πL,~r
∗ : EP(X, L,~r)→ CohX satisfies the hypothesis of (7.1.3).

Proof. The only thing which is not completely obvious is the second condition. Consider two

extendable pairs E• and F•. Suppose that we have a morphism π∗(E•)→ π∗(F•). By adjointness

we obtain a diagram

π∗π∗(E•)

E• F•

Applying π to this picture shows that the second condition holds. �

Using the Theorem 7.1.3 we obtain the following

Corollary 7.3.3. There is an equivalence of abelian categories:

EP(X, L,~r)
/
ker(πL,~r

∗ )→ CohX,

In the rest of this subsection we would like to give a description of the category ker(πL,~r
∗ ).

Let us study the objects first. Let F• be an extendable pair. Then π∗(F•) = F0, and if F• ∈

ker(πL,~r
∗ ) then F0 � 0. The pseudo-period isomorphism imply in turn that Fu � 0 if all ui ∈

{0, ri}.

Let us consider the sheaves Fu such that, for any j , i, u j ∈ {0, r j} (we can imagine them

as sheaves on the edges of the cubical diagram F• ∈ Func(~rIn,A)). Using the axiom (EX 1)

we get that the multiplication by section map si : Fu → Li ⊗ Fu must factor through Fu+(ri−ui)ei

which is a zero sheaf if F• ∈ ker(πL,~r
∗ ). This implies the following:

Lemma 7.3.4. If F• ∈ ker(πL,~r
∗ ) and u ∈ ~rIn is such that ∀ j , i, u j ∈ {0, r j}, then supp(Fu) is

contained in the divisor of zeroes of the section si ∈ H0(Li).

If si = 0 for some i, we will say that div(si) = X.
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We will apply the localization method (7.1.3), to this partial description of the kernel.

Let’s fix some notation. Denote by

S (k) = {T ⊂ {1, . . . , n} | |T | = k}.

We will view each interval [0, ri] as a pointed set, pointed at 0. It follows that we have order

preserving inclusions

ιT :
∏
i∈T

[0, ri]→
n∏

i=1

[0, ri] := ~rIn.

Ignoring the pointed structure produces order preserving (≤) projection maps

πT : ~rIn →
∏
i∈T

[0, ri].

Definition 7.3.5. Assume that (L1, s1), . . . , (Ln, sn) are objects of DivX and L : Nn → DivX is

the corresponding symmetric monoidal functor as in section 3.1.

If 1 ≤ k ≤ n and T ∈ S (k) then we will define a symmetric monoidal functor LT : Nk →

DivX as a composition:

Nk Nn DivX
ιT L

We will say that LT is obtained from L by the restriction along ιT .

Now for T ∈ S (k) let’s consider the functor

ι∗T : EP(X, L,~r) −→ EP(X, LT , πT (~r))

which is the restriction of an extendable pair F• along the inclusion ιT . The pseudo-period

isomorphism is just obtained by restriction.

Definition 7.3.6. For any 1 ≤ k ≤ n we define functors

Facek :=
∏

T∈S (k)

ι∗T : EP(X, L,~r) −→
∏

T∈S (k)

EP(X, LT , πT (~r))
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Definition 7.3.7. For any 1 ≤ k ≤ n we denote by kerk = ker(Facek).

Also denote ker0 = ker(π∗).

Lemma 7.3.8. For any 1 ≤ k ≤ n, any F• ∈ kerk−1 and any T ∈ S (k) we can consider (ι∗T (F•))•

as an element of

Func(
∏
i∈T

[1, ri − 1], Coh(∩i∈T div(si))).

As in Lemma 7.3.4 we will say that if si = 0, then div(si) = X.

Proof. If k = 1 then the result is proved in the Lemma 7.3.4 and the observation before it.

Let’s take any 2 ≤ k ≤ n and an extendable pair F• ∈ kerk−1 .

If we consider an extendable pair (ι∗T (F•))• ∈ EP(X, LT , πT (~r)) then for any v ∈
∏

i∈T [0, ri]

we will have isomorphisms of sheaves: (ι∗T (F•))v � 0,whenever vi = 0 for some i ∈ T . Because

of the pseudo-periodicity isomorphism we also have that (ιT (F•))v � 0, whenever vi = ri for

some i ∈ T .

The last step is an application of the axiom EX1 to the extendable pair (ι∗T (F•))•. Because

(ι∗T (F•))v � 0 if vi = ri for some i ∈ T that implies that for any w ∈
∏

i∈T [1, ri − 1] the

multiplication of the sheaf (ι∗T (F•))w by the sections si ∈ H0(X, Li) for all i ∈ T must factor

through zero. So the support of the sheaf (ι∗T (F•))w is contained in ∩i∈T div(si).

�

Lemma 7.3.9. If we restrict the domain of the functor Facek to the full subcategory kerk−1 for

any 1 6 k 6 n, then we will obtain functors:

Facek
∣∣∣
kerk−1 : kerk−1 −→

∏
T∈S (k)

Func(
∏
i∈T

[1, ri − 1], Coh(∩i∈T div(si))).

There is an equivalence of categories kerk and ker(Facek
∣∣∣
kerk−1).

Proof. The first part follows directly from the Lemma before. The proof of the second part is

straightforward and follows from the fact that kerk is a full subcategory of kerk−1 . �

Remark 7.3.10. In order to apply localization procedure to the category kerk−1 we need to

show that the functor Facek
∣∣∣
kerk−1 has a left adjoint. The existence of a left adjoint follows

from special adjoint functor theorem. Indeed, the category of extendable pairs is equivalent to
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a locally-presentable subcategory of a category of sheaves on a root stack. Being a reflexive

subcategory, the category kerk−1 has small hom-sets and is well-powered. Because limits and

morphisms in EP(X, L,~r) are defined point-wise, it follows that the category kerk−1 has small

limits and a small cogenerating set, and also the restriction ι∗T preserves small limits.

But for the purpose of splitting of the corresponding short exact sequence of K-groups (see

section 7.4 for details) we need the unit of the adjunction to be the natural isomorphism. This

doesn’t follow from abstract nonsense, so we need an explicit construction of a left adjoint

functor. It is given in the following theorem.

Theorem 7.3.11. (i) For any 1 ≤ k ≤ n there is an exact functor

Facek
∣∣∣
kerk−1 : kerk−1 −→

∏
T∈S (k)

Func(
∏
i∈T

[1, ri − 1], Coh(∩i∈T div(si))),

where kerk is a kernel of the functor Facek and ker0 := ker(πL,~r
∗ )

(ii) The functors Facek
∣∣∣
kerk−1 have left adjoints Dk such that

Facek
∣∣∣
kerk−1 ◦ Dk ' 1

.

(iii) Facek
∣∣∣
kerk−1 satisfies the condition of 7.1.3

(iv) The functor

Facen
∣∣∣
kern−1 : kern−1 −→ Func(

n∏
i=1

[1, ri − 1], Coh(∩n
i=1 div(si)))

is an equivalence of categories.

Proof. (i) This follows from the fact that restriction or pullback functors are exact in general.

(ii) Given a functor GT
• ∈ Func(

∏
i∈T [1, ri − 1], Coh(∩i∈T div(si))) for each T ∈ S (k), we

will denote the corresponding object:
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(GT
• )T∈S (k) ∈

∏
T∈S (k)

Func(
∏
i∈T

[1, ri − 1], Coh(∩i∈T div(si))).

Further we will view GT
• as a functor

∏
i∈T [0, ri] → Coh(∩i∈T div(si)) by taking GT

u = 0 if

for some i ∈ T we have ui ∈ {0, ri}, where 0 is some fixed zero object in Coh(X). Also for

i ∈ {1, . . . , k} if ui ∈ {0, ri − 1} we define the morphisms GT
+ei

: GT
u → GT

u+ei
as the initial and

terminal map correspondingly.

Let’s recall the definition of ε from the Lemma 7.3.1. For any 0 ≤ i ≤ n we have functions

εi : ~rI → {0, 1}, such that for any u ∈ ~rIn: εi(u) = 1 if ui = ri and zero otherwise.

We define the functor Dk on objects as follows:

(Dk((GT
• )T∈S (k)))u = (⊗n

i=1Lεi(u)
i ) ⊗ (⊕T∈S (k)GT

πT (u))

Let’s denote (Dk((GT
• )T∈S (k)))• by Dk

• for simplicity of notation. First of all we want to view

it as a functor ~rIn → Coh(X). For that we have to define the morphisms:

Dk
+ei

: Dk
u → Dk

u+ei
.

If 0 6 ui < ri − 1, then this map is induced by ⊕T∈S (k)
s.t. i∈T

GT
+1. If ui = ri − 1, then it is induced by

the terminal maps ⊕T∈S (k)
s.t. i∈T

GT
+1. and also by multiplication by the section si.

The pseudo-period isomorphisms ρ are defined by the symmetric monoidal structure of the

functor L. The proof of the axioms EX2 and EX3 is automatic. And the proof of EX1 will

follow from the comutativity of the diagram:

Du Du+(ri−ui)ei

Li ⊗ Du Li ⊗ Du−uiei .

D+(ri−ui)ei

ρσi

Li ⊗ D+uiei

This diagram will commute because of the definition of D+(ri−αi)~ei and because supp(GT
u ) ⊆

∩i∈T div(si) for any u ∈
∏

i∈T [0, ri].
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So we have shown that Dk
• is an extendable pair. If k = 1 then it’s clear that D1

• is in ker0,

because D1
0 � 0.

If 2 6 k 6 n, we want to see that Dk
• is in kerk−1 . For that we have to see that for any

W ∈ S (k − 1) and any v ∈
∏

i∈W[0, ri] the sheaf (ι∗W(Dk
•))v is isomorphic to zero. But this is true

because for any T ∈ S (k) we have that GT
u = 0 if ui ∈ {0, ri} for some i ∈ T.

Clearly, Facek
∣∣∣
kerk−1 ◦ Dk = 1.

Next we would like to show that Dk is indeed a left adjoint. Suppose that we have a

morphism

(GT
• )T∈S (k) → Facek(F•).

Such a morphism consists of an
(

n
k

)
-tuple of morphisms

φT : GT
• → ι∗T (F•).

We wish to describe the adjoint map

φ̃ : Dk
• → F•.

Using the universal property of coproduct, this morphism is determined by maps

φ̃(u)T : ⊗n
i=1Lε(u)

i ⊗GT
πT (u) → Fu.

If u is such that εi(u) = 0 for all 1 ≤ i ≤ n, then these maps are just the compositions of

φT with the morphisms F+α. If there are l’s, such that ul = rl, then φ̃(u)T is induced by the

composition of φT with ρ−1
F and with F+α.

We want to check that the map φ̃ is indeed a natural transformation of functors. It’s enough

to check that the diagram commutes:
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Du Fu

Du+ei Fu+~ei

φ̃(u)

F+eiD+ei

φ̃(u + ei)

If εk(u) = 0 for all 1 ≤ k ≤ n and also ui < ri − 1, then it commutes directly from the

construction of the maps φ̃(u). Otherwise the commutativity will follow from EX1, EX2 and

EX3 for F•.

Finally we have obtained the map:

Hom((GT
• )T∈S (k),Facek(F•))→ Hom(Dk((GT

• )T∈S (k)), F•).

It’s easy to see that this map is bijective, because the right Hom is uniquely defined by the

restriction to k-faces.

(iii) Follows from (ii).

(iv) Because for S (n) there is only one element, the set {1, . . . , n} itself, we have that ι{1,...,n} =

id and π{1,...,n} = id. So Face
∣∣∣n
kern−1 and Dn are identity functors.

�

7.4 The G-theory and K-theory of a root stack

In this subsection we will finally describe the G-theory of a root stack XL,~r.

According to the Corollary 3.2.2 and the Corollary 7.2.5 there is an equivalence of cate-

gories:

CohXL,~r ' EP(X, L,~r)

so we reduced the problem to describing the K-theory of the (abelian) category of extend-

able pairs EP(X, L,~r):

G(XL,~r) � K(EP(X, L,~r)).

We are going to use different splittings of the category of extendable pairs to simplify the
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latter K-theory. The first step is this

Lemma 7.4.1.

Ki(EP(X, L,~r)) � Gi(X) ⊕ Ki(ker(πL,~r
∗ )) for any i ∈ Z+

Proof. Using the Corollary 7.3.3 and the localization property of K-theory (see for example

[Q]) we have the long exact sequence of groups:

· · · → Ki(ker(πL,~r
∗ ))→ Ki(EP(X, L,~r))→ Gi(X)→ . . .

But this sequence splits because of the property πL,~r
∗ ◦ π

∗

L,~r ' 1 proved in the Lemma 7.3.1.

�

Also we want to state the following

Lemma 7.4.2. If A is an abelian category then

Ki(Func(~rIn,A)) � Ki(A)⊕
∏n

j=1 r j .

Proof. The proof follows from the iterated application of the Theorem 7.1.6 and localization

property of the K-theory. �

Now we want to proceed with K•(ker(πL,~r
∗ )) as in the previous lemmas. By combining the

localization property of the K-theory, Theorem 7.3.11 and the previous lemma one can easily

obtain the proof of the final

Lemma 7.4.3. For any i ∈ Z+

Ki(ker(πL,~r
∗ )) � ⊕n

k=1 ⊕T∈S (k) Gi(∩l∈T div(sl))⊕
∏

l∈T (rl−1).

For the sake of completeness let us also give a description of K-theory of root stacks.

Proposition 7.4.4. If X is a regular scheme over a field k, D =
∑n

i=1 Di is a normal crossing

divisor, and~r is an n-tuple of natural numbers, such that each ri is coprime to the characteristic

of k. Then K•(XD,~r) = G•(XD,~r).

Proof. By Proposition 2.2.15, the stack XD,~r is regular. The result follows from [J, Cor.2.2]. �
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Application to equivariant K-theory

In this chapter we we will prove our main result.

8.1 Main result

As an application of the theorems proved in the chapter 6 and 7 we can formulate the main

result about equivariant K-theory.

Theorem 8.1.1. Let X be a regular, separated, noetherian scheme over the field k with a gener-

ically free admissible action of a finite group G, such that the order of G is coprime to the

characteristic of k. Let’s denote by Y the quotient X/G and assume all the conditions from

Assumption 6.2.1. Also assume that φ : X → Y is ramified along a normal crossing divisor.

We will use notation from Lemma 6.2.5: E =
∑n

i=1 Ei is a ramification divisor in Y, D is a

branch divisor in X, and ri = |I(Di,G)|.

Then there is an isomorphism of groups:

K•G(X) � K•(Y) ⊕ (⊕n
i=1Z•i ),

where Z•i comes from ramification data:

Z•i = ⊕T∈S (i)G•(∩l∈T El)⊕
∏

l∈T (rl−1),

68
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where S (i) = {T ⊂ {1, . . . , n} | |T | = i}.

Proof. By the assumptions X is a regular scheme and the group G is finite so for any G-

equivariant sheaf we can always construct an equivariant locally free resolution by averaging

the usual locally free resolution. This simple argument shows that equivariant K-theory of X

should be the same as equivariant G-theory.

The category of G-equivariant sheaves on X is equivalent to the category of sheaves on the

quotient stack [X/G] so we can see that

KG(X) � G([X/G]).

In Theorem 6.2.8 we proved that under our assumptions there is an isomorphism of stacks

[X/G] � Y, so we have an isomorphism of their G-theories:

G([X/G]) � G(Y).

Finally the application of Lemma 7.4.1 and Lemma 7.4.3 gives the formula we wanted to

prove.

�

Let us give some examples.

Example 8.1.2. Let’s consider A1 over a field k with an action of µ3 (it acts by multiplication).

Assume that char(k) , 3. Then A1/µ3 � A
1 and ramification divisor is div(0). The inertia

group is µ3. So by Theorem 8.1.1:

K•µ3
(A1) � K•(A1) ⊕ K•(k) ⊕ K•(k) � K•(k)⊕3.

Example 8.1.3. This example was inspired by the paper [AO]. Burniat surface X with K2
X = 6

is a Galois G := C2 × C2-cover of Bl3P
2 (del Pezzo surface of degree 6). Let’s assume that the

ground field k is algebraically closed and char(k) , 2. Ramification divisor is given in Figure

1 loc. cit: it is denoted by Al, Bl, Cl, where 0 ≤ l ≤ 4. Inertia group of each component is
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C2, inertia group of an intersection point of any two components is G. An intersection of three

components is empty. Also Al � Bl � Cl � P
1, for all l = 0, . . . , 3.

Applying Theorem 8.1.1 one gets:

K•G(X) � K•(Bl3P
2) ⊕ (⊕2

i=1Z•i ),

Z•1 = K•(P1)⊕12,

Z•2 = K•(k)⊕30.

Example 8.1.4. Consider the action of a symmetric group S 3 on P1, induced by the permutation

of coordinates (x, y, z), subject to a relation x + y + z = 0. The ground field k is chosen such

that char(k) , 2, 3 and it contains a primitive root of unity of order 3. Easy computation shows

that the branch locus consists of five points. Two of them have inertia group C3 and three of

them have inertia group C2. The quotient by this action is again P1 (this follows, for example,

from Chevalley-Shephard-Todd theorem (5.2.7) as S 3 is generated by reflections). So Theorem

8.1.1 gives us:

K•S 3
(P1) � K•(P1) ⊕ K•(k)⊕7



Chapter 9

Conclusions and Summary

This thesis contains two new results:

1. The G-theory and K-theory of root stacks were computed.

2. Sufficient conditions when a quotient stack is a root stack were provided.

As a corollary we get a description of equivariant K-theory of schemes under some as-

sumptions.

Further directions:

1. Give a description of the derived category of a root stack. Find its generator and compute

its A∞-algebra in some situations.

2. Formulate and prove an analogue of the theorems in Chapter 6 in the case of any reduc-

tive algebraic group (not necessary finite).

3. Compute other homological theories of root stacks (cyclic homology, Chow groups etc).
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