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Abstract 

Infertile couples worldwide use assisted reproductive technologies (ARTs) to help conceive 

their own biological child. Due to the rising use of ARTs, there is continual emergence of 

new techniques implemented in human fertility clinics. When treatment is successful, there is 

an increased risk even within singletons for perinatal complications including preterm birth, 

intrauterine growth restriction, low and high birth weight and genomic imprinting disorders 

Beckwith Wiedemann Syndrome, Angelman Syndrome, and Silver-Russel Syndrome.  

Consequently, there is a need to investigate the effects of these treatments on the manipulated 

oocyte and preimplantation embryo.  To address this, I first analyzed the combined effects of 

multiple ARTs on imprinted DNA methylation in human day 3 (6 to 8 cells) and blastocyst-

stage embryos.  As imprinted DNA methylation is acquired during gametogenesis and 

maintained throughout preimplantation development, I hypothesized that ARTs disrupt this 

regulation in donated, good quality, human preimplantation embryos.  I observed that 

seventy-six percent of day 3 embryos and fifty percent of blastocysts exhibited perturbed 

imprinted methylation at the SNRPN, KCNQ1OT1 and/or H19 domains.  This frequency was 

similar to that previously observed in the mouse, and importantly demonstrated that extended 

culture did not pose a greater risk for imprinting errors.  Overall, human preimplantation 

embryos generated with ARTs possessed a high frequency of imprinted methylation errors.  

Next, I hypothesized that a single, indispensible ART treatment, ovarian stimulation, disrupts 

mitochondria in mouse oocytes and preimplantation embryos.  Ovarian stimulation led to a 

decreased total and active mitochondrial pool in high hormone-treated oocytes, and an 

increase in the percentage of oocytes displaying mislocalization of active mitochondria.  

Although the total mitochondrial pool was unchanged in hormone-treated preimplantation 

embryos compared to controls, the active mitochondrial pool was decreased in hormone-

treated 1-cell, 2-cell, morula and blastocysts.  Ultimately, the lower active mitochondrial pool 

in treated embryos was associated with a decreased percentage of outer blastomeres 

containing high amounts of active mitochondria in morula and blastocysts.  In blastocysts, 

this was associated with increased superoxide levels.  Overall, my results provide novel 

insight onto ARTs-induced disruption of imprinted DNA methylation and mitochondria in 

human and mouse preimplantation embryos, respectively.  
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Chapter 1  

1 Introduction 

1.1 Epigenetics 

1.1.1 General Introduction 

The term epigenotype was originally proposed by CH Waddington (1905-1975) to 

represent the whole complex of developmental processes that form the connection between 

genotype and phenotype (Waddington, 2012).  Waddington also suggested that the name 

‘epigenetics’ be used for the studies aimed at discovering the mechanisms behind the 

epigenotype. In this context, epigenetics governs numerous developmental processes, 

including cellular differentiation, where cells with identical genotypes exhibit distinct 

patterns of gene expression and consequently, cellular function (Goldberg et al., 2007). 

The modern definition of epigenetics is a heritable mechanism of transcriptional control 

that does not involve a change to the DNA sequence (Rodenhiser and Mann, 2006).  

Epigenetic changes that influence gene expression act by modifying overall chromatin 

structure.  This is accomplished by the addition of covalent and/or non-covalent 

modifications to the histone proteins (1.1.2) and DNA sequence (1.1.3) contained within the 

nucleosome.  Such modifications act to change the local microenvironment by modifying 

charge or affecting binding of regulatory proteins. Additionally, long non-coding RNAs have 

also been identified to play an epigenetic role in mediating gene expression (1.1.4). 

Epigenetic changes to the chromatin that lead to condensation will render a gene as silent or 

inactivated, whereas activating modifications generating open (decondensed) chromatin will 

lead to gene activation or render a gene poised for expression (Goldberg et al., 2007; 

Rodenhiser and Mann, 2006).  Overall, it is only fitting that the study of these modifications 

be referred to as epi- (translating to “above”) genetics. 

1.1.2 Histone Modification 

Chromatin is composed of DNA (147 base pairs) wrapped around a core octamer of 

histone proteins to generate a nucleosome structure.  The histone protein octamer is 

comprised of 2 molecules each of histone 2A (H2A), histone 2B (H2B), histone 3 (H3) and 
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histone 4 (H4).  Linker DNA connects nucleosomes together to form chromatin, which can 

be further compacted by incorporation into polynucleosome fibers that are stabilized by 

histone 1 (H1) binding (Quina et al., 2006). 

Chromatin can be modified to form heterochromatin, which is highly condensed and 

contains transcriptionally inactive genes, or euchromatin, which is decondensed and contains 

actively transcribed genes (Quina et al., 2006; Rodenhiser and Mann, 2006).  Chromatin 

compaction and decompaction is controlled through post-translational modification to 

histone tails.  Specifically amino (N)-terminal tails protrude from the nucleosome and are 

modified to affect inter-nucleosomal interactions in addition to recruiting chromatin-

remodeling enzymes that are involved in nucleosome repositioning (Bannister and 

Kouzarides, 2011). Different classes of modifications identified on histone tails include but 

are not limited to acetylation, phosphorylation, lysine and arginine methylation, 

ubiquitylation, sumoylation and deimination (Kouzarides, 2007).  Among these 

modifications, acetylation, phosphorylation and methylation are the most commonly studied.  

Histone acetylation neutralizes positive charges, disrupting the stabilizing interactions 

between DNA and histone proteins, which leads to open chromatin conformation (Bannister 

and Kouzarides, 2011; Campos and Reinberg, 2009). This functions similarly to serine, 

threonine and tyrosine phosphorylation, which adds negative charge to the histone structure 

and leads to gene activation (Bannister and Kouzarides, 2011).  In contrast, the covalent 

addition of methyl groups to amino acids does not alter histone charge, and lysine residues 

subjected to methylation can be mono-, di-, or tri-methylated while arginine residues can be 

mono- or di-methylated (Bannister and Kouzarides, 2011). Histone methylation can be 

activating or repressive depending on the residue onto which it is deposited on the histone 

tail.  

In general, active modifications to histone tails include histone acetylation (Bernstein et 

al., 2005; Kim et al., 2005; Roh et al., 2005), H3K4 di- and tri-methylation (H3K4me2 and 

H3K4me3) (Barski et al., 2007; Bernstein et al., 2002; Lauberth et al., 2013; Ruthenburg et 

al., 2007), H3K36me3 (Bannister et al., 2005; Barski et al., 2007), H2BK120 ubiquitylation 

(Thorne et al., 1987; Zhu et al., 2005) and H3S10 phosphorylation (Anest et al., 2003; 

Sassone-Corsi, 1999).  In contrast, transcriptional repression is generally accompanied by 

lack of histone acetylation (Bannister and Kouzarides, 2011), H3K9me2 and H3K9me3 
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(Bannister et al., 2001; Barski et al., 2007), H3K27me3 (Barski et al., 2007; Boyer et al., 

2006; Lee et al., 2006; Roh et al., 2006), H4K20me3 (Kalakonda et al., 2008; Kourmouli et 

al., 2004), H2AK119 ubiquitylation (Wang et al., 2004a), deimination of H3 and H4 arginine 

to citrulline (Cuthbert et al., 2004; Wang et al., 2004b), and sumoylation (Nathan et al., 2006; 

Shiio and Eisenman, 2003).  Overall, the combined effects of multiple active or repressive 

histone modifications will partition the genome into areas of euchromatin and 

heterochromatin, respectively (Figure 1-1). 
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Figure 1-1: Activating and repressive histone modifications 

Each nucleosome is composed of 147 bp of DNA (blue lines) wrapped around a protein 

octamer containing 2 molecules of histone 2A (H2A), H2B, H3 and H4 (grey circles).  

Linker DNA is shown as a blue line.  Active chromatin modifications (A) to N-terminal 

histone tails (wavy black lines) include H3K4 methylation (H3K4me2, H3K4me3), 

H3K36me3 (red circles), H3 and H4 acetylation (H3Ac, green squares), H3S10 

phosphorylation (orange triangles), ubiquitinated H2BK120 (purple octagons) and 

unmethylated CpGs (small white dots).  Repressive modifications (B) include H3K9me2/3, 

H3K27me3, H4K20me3 (red circles), ubiquitinated H2AK119 (purple octagons) and 

methylated CpGs (black dots).  Each nucleosome in repressive chromatin is linked by histone 

H1 (grey oval) and linker DNA (blue line). 
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1.1.3 DNA Methylation 

DNA methylation is the most widely studied epigenetic modification that controls gene 

expression.  DNA methylation occurs at cytosine residues primarily within CpG 

dinucleotides.  DNA methyltransferase (DNMT) enzymes regulate the acquisition and 

maintenance of 5-methylcytosine (5mC).  Specifically, the de novo DNMTs, DNMT3A and 

DNMT3B (Okano et al., 1999), catalyze the establishment of 5mC at unmethylated cytosines 

along with cofactor DNMT3L (Hata et al., 2002), whereas DNMT1 is the maintenance 

methyltransferases that binds to hemi-methylated DNA during replication to maintain 5mC 

on daughter strands (Figure 1-2).  The cofactor UHRF1 (ubiquitin-like with PHD and ring 

finger domain 1; NP95) recognizes hemi-methylated DNA at the replication fork and recruits 

DNMT1 to these sites (Arita et al., 2008; Rottach et al., 2010; Sharif and Koseki, 2011; 

Sharif et al., 2007).  Mutations in DNMTs lead to early embryonic lethality (Li et al., 1992; 

Okano et al., 1999).  CpG methylation controls gene expression by altering association with 

chromatin binding proteins and transcriptional regulatory factors. 

In general, CpG dinucleotides are infrequent within the genome (roughly 28 million 

CpGs exist within the human genome), and less than 10% occur in dense regions identified 

as CpG islands (Smith and Meissner, 2013).  CpG islands generally occur at transcriptional 

start sites of housekeeping and developmental regulatory genes and are largely unmethylated.  

However, CpG island methylation is essential for processes including chromosome 

alignment, stabilization and integrity, silencing of repetitive elements, X-chromosome 

inactivation and acquisition and maintenance of genomic imprinting (Smith and Meissner, 

2013).  It is important to note that the number of CpG islands per haploid genome and their 

genomic positions (intergenic, intragenic, transcriptional start sites) are conserved between 

mouse and human, indicating functional significance (Deaton and Bird, 2011; Illingworth et 

al., 2010). 
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Figure 1-2: DNA methylation 

Unmethylated CpG dinucleotides (white circles) within active euchromatic regions can be de 

novo methylated by DNMT3A/DNMT3B and cofactor DNMT3L to generate a repressive 

chromatin structure composed of methylated CpGs (black circles).  DNA methylation is 

maintained during replication by DNMT1 and UHRF1.   The difference between cytosine 

and methylated cytosine, circled in red, is the addition of a methyl (CH3) group to the 5th 

carbon in the pyrimidine ring. 
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While DNMTs establish DNA methylation at CpG dinucleotides, counteracting 

mechanisms of DNA demethylation exist to remove methylation marks.  DNA demethylation 

can occur passively in a replication-dependent manner via loss of DNMT1 maintenance, or 

through active DNA demethylation catalyzed by the ten eleven translocation (TET) family of 

dioxygenases.  TET proteins specifically catalyze oxidation of 5mC to 5-

hydroxymethylcysosine (5hmC) and subsequently generate 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (Gu et al., 2011; Inoue and Zhang, 2011; Inoue et al., 2011).  This is 

then followed by replication-dependent loss to unmethylated cytosine (Inoue and Zhang, 

2011), although it has also been shown that 5caC can be excised via the thymine-DNA 

glycosylase (TDG)-mediated base excision repair (BER) pathway (He et al., 2011). 

1.1.4 Non-coding RNA 

Approximately 70-90% of the genome is transcribed into non-coding RNA (ncRNA) 

molecules greater than 100 nucleotides in length (Lee, 2012). These ncRNAs have recently 

been shown to play a role in epigenetic regulation.   RNA-mediated epigenetic control has 

primarily been observed during X-inactivation (mediated by X-inactive specific transcript 

(XIST) ncRNA), genomic imprinting (imprinted ncRNAs) and gene silencing by RNA 

interference (RNAi) (Bernstein, 2005; Goldberg et al., 2007).  Evidence suggests that 

ncRNAs function by providing a scaffold to recruit protein complexes that catalyze the 

addition of DNA and histone modifications to a specific genomic location (Khalil et al., 

2009; Koziol and Rinn, 2010; Mercer and Mattick, 2013).  This recruitment can occur in 

trans, whereby chromatin proteins are guided to multiple sites spread across the genome 

(Rinn et al., 2007), or in cis, such as at imprinted domains (Mohammad et al., 2009; Nagano 

et al., 2008; Zhang et al., 2014) and the inactive X-chromosome (Pinter et al., 2012; Wutz, 

2011), where chromatin-modifying enzymes are thought to be recruited to modify their 

surrounding epigenetic neighborhood. In addition to protein recruitment, ncRNAs can 

regulate expression by mediating intrachromosomal loop formation (Zhang et al., 2014).  

Finally, studies at imprinted domains suggest that transcription of long ncRNAs (lncRNA) 

though antisense promoters, rather than the lncRNA itself, mediates gene expression through 

transcriptional interference mechanisms (Golding et al., 2011; Latos et al., 2012; Pauler et 

al., 2007; Santoro and Pauler, 2013).  Overall, the ability for ncRNAs to mediate gene 

expression provides an additional layer of targeting specificity to epigenetic gene regulation. 
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1.2 Genomic Imprinting 

1.2.1 General Introduction 

Genomic imprinting is a consequence of epigenetic gene regulation whereby 

expression of a gene is restricted to one parental allele (Bartolomei and Ferguson-Smith, 

2011).  Imprinting was originally discovered through experimental work aimed at 

understanding failed mammalian parthenogenesis (Kaufman et al., 1977).  Elegant 

pronuclear transplantation studies demonstrated that gynogenetic diploid embryos derived 

from two maternal pronuclei can develop up to 10 days post coitus (dpc). However, these 

embryos exhibit extremely poor development of extraembryonic lineages with relatively 

normal embryonic development (Barton et al., 1984; McGrath and Solter, 1983; 1984; Surani 

et al., 1984).  In contrast, androgenetic embryos with two paternal genomes have well-

developed extraembryonic tissues but exhibit poor embryonic development, dying shortly 

after implantation (Barton et al., 1984; McGrath and Solter, 1983; 1984; Surani et al., 1984).  

Both genetic conditions are lethal.  Consequently, it was established that maternal and 

paternal contributions to embryo development are functionally non-equivalent, as both 

parental genomes are required for complete embryogenesis.  This developmental failure has 

been attributed to the absence or overexpression of imprinted genes.   

To identify and map the specific chromosomal regions that are subjected to parental-

specific regulation, reciprocal translocation experimentation was used to produce mice with 

uniparental disomies (UPDs) (Cattanach, 1986; Cattanach and Kirk, 1985; Searle and 

Beechey, 1978; 1990).  For example, mice with maternal UPD for the central region of 

chromosome 7 (7qB5) exhibit hypotonia, poor suckling response and postnatal lethality 

between days 3-8, while paternal UPD for the same region produces postnatal growth 

restriction, hyperactivity and brain pathologies (Gabriel et al., 1999; Leff et al., 1992; Tsai et 

al., 1999).  In humans, regions syntenic to those in mouse produce pathological disorders 

known as imprinting syndromes. Maternal and paternal deletions and UPD for 15q11-13 

result in Prader-Willi Syndrome and Angelman Syndrome, respectively, producing similar 

pathologies to that seen for mouse 7qB5 (Knoll et al., 1989; Nicholls et al., 1989). These and 

other UPDs further demonstrate the non-equivalence of parental contributions.  
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1.2.2 Imprinted domains 

The discovery of the first imprinted genes in 1990-1991 (Bartolomei et al., 1991; 

DeChiara et al., 1990) paved the way for subsequent identification of numerous imprinted 

genes in both mouse and human. Imprinted genes often reside in clusters that are regulated 

by a germline CpG island differentially methylated region (gDMR) [reviewed in (Macdonald 

and Mann, 2014)].  A subset of gDMRs have been identified as imprinting control regions 

(ICRs), since experimental or congenital gDMR deletions cause loss of imprinted gene 

expression (Spahn and Barlow, 2003).  Differential chromatin modifications at the gDMR, 

including CpG methylation, modulate allelic expression (Macdonald and Mann, 2014) 

(Figure 1-3).  In the mouse, there are 24 known imprinted gDMRs: 21 are maternal-in-origin, 

where DNA methylation is established on the maternal alleles during oogenesis; while 3 are 

paternal-in-origin, where DNA methylation is acquired on paternal alleles during 

spermatogenesis (Macdonald and Mann, 2014). These differential methylation marks are 

subsequently maintained throughout preimplantation development (discussed in detail in 

section 1.3). Of the 24 mouse gDMRs, 17 exhibit differential methylation in human gametes 

and/or tissues, 1 has no human orthologue and 6 have not been fully ascertained.  Examples 

of conservation include mouse chromosome 7 and human chromosome 11p15.5, which 

harbor the H19 and KCNQ1OT1 (KCNQ1 overlapping transcript 1) imprinted domains 

(Mancini-DiNardo et al., 2003; Pandey et al., 2008; Srivastava et al., 2000), and mouse 

chromosome 7 and human chromosome 15q11-13 that contain the Small nuclear 

ribonucleoprotein N (SNRPN) domain (Bourc'his et al., 2001; El-Maarri et al., 2001; Geuns 

et al., 2003; Horsthemke, 1997; Shemer et al., 1997; Yang et al., 1998). These domains will 

be discussed below.  Importantly, abnormal CpG methylation levels at the ICRs of these 

domains leads to genomic imprinting disorders. 
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Figure 1-3: Genomic imprinting 

Expression of most genes occurs biallelically (red box; maternal expression, blue box; 

paternal expression).  Imprinted genes can be maternally-expressed and paternally-silent 

(grey box; silenced allele), or paternally-expressed and maternally-silent.  Generally, 

methylated CpGs (filled black circles) mark the silent allele, whereas unmethylated CpGs 

(unfilled white circles) occur on the expressed allele.   
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1.2.2.1 H19 imprinted domain 

The H19 imprinted domain was one of the first imprinted regions identified 

(Bartolomei et al., 1991) and is currently one of the best characterized.  It resides on distal 

chromosome 7 in the mouse and chromosome 11p15.5 in human.  In both mouse and human, 

the H19 gDMR acquires methylation on the paternal allele during spermatogenesis while the 

maternal allele is unmethylated in oocytes (Bartolomei et al., 1991; Borghol et al., 2006; 

Ibala-Romdhane et al., 2011; Jinno et al., 1996).  Genes in this domain include H19, Insulin-

like growth factor 2 (Igf2), and Insulin II (Ins2). Insulin-like growth factor 2 (Igf2) is protein-

coding gene that promotes fetal and placental growth (Constância et al., 2002; DeChiara et 

al., 1990), H19 is a non-coding RNA that also modulates growth (Gabory et al., 2009; Keniry 

et al., 2012) and tumor suppression (Yoshimizu et al., 2008), while Ins2 is involved in blood 

glucose regulation (Deltour et al., 1995; Duvillié et al., 1998; Giddings et al., 1994). The 

paternally-expressed Igf2 and Ins2 genes are located 90 kb upstream of the maternally-

expressed H19 gene (Bartolomei et al., 1991; DeChiara et al., 1991) and share common 

enhancer sequences located downstream H19 (Tremblay et al., 1997). Imprinted expression 

of Igf2, Ins2 and H19 is regulated by an enhancer-insulator mechanism (Figure 1-4).   

The H19 ICR is located 2 to 4 kb upstream from the H19 transcriptional start site and 

contains binding sites for the insulator protein CTCF [CCCTC-binding factor (zinc finger 

protein)] (Hark et al., 2000; Li et al., 2008a).  CTCF controls higher-order chromatin 

conformation by directing intrachromosomal loop formation through blocking, or insulating, 

interactions between promoter and enhancer elements.  Binding of CTCF is dependent on 

allelic ICR methylation.  CTCF binding to the unmethylated maternal H19 ICR blocks 

(“insulates”) interactions between the enhancer regulatory element and Igf2 and Ins2, 

consequently permitting interaction with the maternal H19 promoter (Hark et al., 2000; 

Kurukuti et al., 2006; Li et al., 2008a). In contrast, H19 ICR methylation on the paternal 

allele prevents CTCF binding, enabling intrachromosomal enhancer looping to the Igf2/Ins2 

control elements (Hark et al., 2000; Li et al., 2008a).  In addition to ICR-mediated regulation, 

Igf2 and Ins2 expression is also controlled by two additional somatic paternally methylated 

DMRs, DMR1 and DMR2.  DMR1 is located proximal to Igf2 and functions as a silencer of 

Igf2 expression in mesodermal tissues on the maternal allele, potentially through a tight loop 

structure generated by H19 ICR and matrix attachment region 3 (MAR3) interactions 



12 

 

(Constância et al., 2000; Kurukuti et al., 2006) (Figure 1-4).  Matrix attachment regions are 

DNA loci that localize to the nuclear matrix and are associated with repressed and active 

chromatin (Macdonald et al., 2015). In contrast, DMR2 is located within the sixth Igf2 exon 

where it functions as an methylated enhancer on the paternal allele to enable paternal Igf2 

transcription (Murrell et al., 2001). The H19 ICR is required for monoallelic expression of 

H19 and Igf2.  A maternally inherited deletion of the ICR that prevents CTCF binding leads 

to biallelic Igf2 expression while paternal deletion results in biallelic H19 expression (Engel 

et al., 2006; Thorvaldsen et al., 1998; Tremblay et al., 1997).  Furthermore, mutating CpG 

dinucleotides within the ICR prevents paternal imprinted methylation and enables CTCF 

binding that results in insulator activity and biallelic H19 expression (Engel et al., 2004).  

 Genetic and epigenetic errors at the H19 domain cause the imprinting disorder 

Beckwith-Wiedemann Syndrome (BWS) (OMIM #130650). BWS is an overgrowth disorder 

with clinical features that include macrosomia, macroglossia, abdominal wall defects, 

hemihyperplasia, visceromegaly and predisposition to malignancies (Choufani et al., 2010; 

2013; Weksberg et al., 2010).  In the general population, BWS incidence is estimated to be 1 

in 13, 700 (Weksberg et al., 2010). Microdeletions/microduplications, cytogenetic alterations 

and point mutations at chromosome 11p15 account for ~15% of BWS cases (Choufani et al., 

2010; 2013). An imprinting defect at the H19 ICR can also lead to BWS.  Five percent of 

BWS cases are due to an abnormal gain of methylation (hypermethylation) of the maternal 

H19 ICR (Choufani et al., 2010; Weksberg et al., 2010).   

In addition to BWS, abnormal loss of methylation (hypomethylation) at the H19 ICR 

leads to a growth restricted imprinting disorder, Silver Russell Syndrome (SRS)  (OMIM 

#180860).  SRS is a severe intrauterine growth restriction disorder associated with poor 

postnatal growth, craniofacial features that include pronounced forehead and triangular 

shaped face, and other minor malformations (Begemann et al., 2011; Eggermann et al., 2006; 

2010).  Hypomethylation of the paternal H19 ICR leads to SRS in >38% of patients 

(Begemann et al., 2011; Eggermann et al., 2006; Hannula et al., 2001). Maternal UPD of 

chromosome 11p15 has also been documented.  In contrast, 10% of SRS cases demonstrate 

uniparental disomy at another imprinted domain, Peg1 (paternally expressed gene 1), located 

on human chromosome 7q32 (mouse chromosome 6) (Begemann et al., 2011).  
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Figure 1-4: Structure and regulation of the H19 domain 

On the maternal allele (A, B), H19 ICR is unmethylated, allowing for CTCF binding and 

intrachromosomal loop formation. The ICR, DMR1 and MAR regions interact in a tight loop 

formation, excluding Igf2/Ins2 and bringing the enhancer elements to the H19 promoter.  In 

contrast on the paternally methylated allele (C, D), CTCF is unable to bind, generating a loop 

formation that brings the enhancer elements to the Igf2/Ins2 region, and preventing H19 

expression.  Somatic DMRs, DMR1 and DMR2, function in maternal Igf2 silencing and 

paternal Igf2 expression, respectively. 
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1.2.2.2 Kcnq1ot1 imprinted domain 

The Kcnq1ot1/KCNQ1OT1 imprinted domain is also located on the distal portion of 

mouse chromosome 7 and human chromosome 11p15.5.  This domain includes the paternally 

expressed Kcnq1ot1 lncRNA, 9 maternally expressed protein-coding genes, and 6 biallelic 

genes that escape imprinted regulation (Figure 1-5).  Of the 9 maternally expressed genes, 5 

exhibit placental-specific imprinted expression (oxysterol binding protein-like 5, Osbpl5; 

tumor-suppressing subchromosomal transferable fragment 4, Tssc4; CD81 antigen, Cd81; 

achaete-scute complex homolog 2, Ascl2; and tyrosine-hydroxylase, Th) while the remaining 

4 are imprinted in both placental and embryonic lineages (pleckstrin homology-like domain, 

family A, member 2, Phlda2; solute carrier family 22, member 18, Slc22a18; cyclin-

dependent kinase inhibitor 1C, Cdkn1c; and potassium voltage-gated channel, subfamily Q, 

member 1, Kcnq1) (Golding et al., 2011; Lewis et al., 2004; Mohammad et al., 2012; Umlauf 

et al., 2004).  

 The Kcnq1ot1 domain contains an ICR, within which the Kcnq1ot1 promoter is 

embedded.  In the mouse and human, this ICR is methylated during oogenesis, unmethylated 

in sperm, and maintains maternal methylation during embryogenesis (Beatty et al., 2006; 

Khoueiry et al., 2008; 2012). On the maternal allele, methylation at the Kcnq1ot1 ICR 

prevents Kcnq1ot1 transcription, thereby allowing expression of the 9 maternally transcribed 

genes. On the paternal allele, the Kcnq1ot1 ICR is unmethylated and Kcnq1ot1 is expressed, 

producing a 471 kb transcript that is involved in paternal repression of surrounding genes 

(Golding et al., 2011).  The complete mechanisms responsible for imprinting at the Kcnq1ot1 

cluster are not fully elucidated. However, it has been demonstrated that both the Kcnq1ot1 

ICR and Kcnq1ot1 long ncRNA (lncRNA)-mediated repression are important.  Loss of 

maternal methylation at the Kcnq1ot1 ICR results in biallelic Kcnq1ot1 expression and 

silencing of the normally expressed maternal alleles of the imprinted genes (Fitzpatrick et al., 

2002; Lewis et al., 2004; Smilinich et al., 1999). In contrast, deletion of the maternal 

Kcnq1ot1 ICR recapitulates the wildtype situation where a maternally methylated Kcnq1ot1 

ICR or a deleted Kcnq1ot1 ICR (and Kcnq1ot1 promoter) prevent production of the 

Kcnq1ot1 lncRNA, thereby permitting expression of maternally transcribed genes 

(Fitzpatrick et al., 2002).  Paternal inheritance of a deleted Kcnq1ot1 ICR also results in loss 

of Kcnq1ot1 expression, consequently re-activating the normally silent paternal alleles of 
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imprinted genes in the domain (Fitzpatrick et al., 2002; 2007; Mancini-DiNardo et al., 2003; 

Shin et al., 2008).  These data suggest that the Kcnq1ot1 ICR mediates imprinting at this 

domain by regulating expression of the Kcnq1ot1 lncRNA, although the exact role of the 

Kcnq1ot1 lncRNA in mediating the regulation of imprinting at this domain is still under 

debate.  Some studies suggest the Kcnq1ot1 lncRNA acts by coating the domain and 

preventing transcription by recruiting repressive complexes to the promoter regions of silent 

paternal alleles of imprinted genes within the domain (Mager et al., 2003; Pandey et al., 

2008; Terranova et al., 2008; Umlauf et al., 2004; Wagschal et al., 2008).  Furthermore, 

activation of paternally silent imprinted genes occurs when Kcnq1ot1 stability is decreased, 

paternal Kcnq1ot1 is truncated and repressive epigenetic marks are lost (Fitzpatrick et al., 

2002; Lewis et al., 2004; Mancini-DiNardo et al., 2006; Pandey et al., 2008; Shin et al., 

2008; Thakur et al., 2003; 2004).  Finally, a study conducted in our lab suggests that the act 

of transcription rather than the transcript itself is involved in domain regulation in embryo-

derived stem cells (Golding et al., 2011).    

 Genetic and epigenetic errors at the KCNQ1OT1 domain also cause the imprinting 

disorder Beckwith-Wiedemann Syndrome (BWS) (OMIM #130650). Here, 50% of BWS 

cases result from hypomethylation of the maternal KCNQ1OT1 ICR (Choufani et al., 2010; 

2013; Horike et al., 2000).  An additional 5-10% of BWS patients have mutations within 

CDKN1C, a maternally expressed gene in the KCNQ1OT1 cluster. Finally, 20% of cases 

consist of paternal uniparental disomy (UPD) involving chromosome 11p15, involving both 

the KCNQ1OT1 and H19 domains (Choufani et al., 2010; 2013). 
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Figure 1-5: Structure and regulation of the Kcnq1ot1 domain 

Imprinting at the Kcnq1ot1 domain is controlled by differential methylation at the maternal 

(upper strand) and paternal (bottom strand) ICRs. Maternal methylation of the ICR represses 

Kcnq1ot1 transcription, permitting maternal expression of surrounding genes. On the paternal 

allele, the ICR is unmethylated, the Kcnq1ot1 lncRNA is expressed and surrounding genes 

are repressed. 
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1.2.2.3 Snrpn imprinted domain 

The small nuclear ribonucleoprotein N (Snrpn/SNRPN) imprinted domain is located 

on the central region of mouse chromosome 7 and human chromosome 15q11-q13.  The 

Snrpn/SNRPN ICR within the promoter and exon 1 is methylated during oogenesis, 

unmethylated in sperm, and maintains maternal-specific methylation throughout 

preimplantation (El-Maarri et al., 2003; Geuns et al., 2003; Shemer et al., 1997). This 

imprinted cluster contains numerous genes expressed exclusively from the paternal 

chromosome, including Snurf-Snrpn (Snrpn upstream reading frame-Snrpn), Frat3 

(frequently rearranged in advanced T-cell lymphomas 3), Mkrn3 (makorin ring finger protein 

3), Magel2 (melanoma antigen-like 2), Ndn (Necdin), Ipw (imprinted in Prader-Willi 

Syndrome), over 70 snoRNA genes and a Snrpn lncRNA transcript (Snrpnlt) (Figure 1-6). 

This lncRNA, which is over 470 kb in human and 1,000 kb in mouse, includes Snrpn and 

extends through Ipw, the snoRNAs and Ube3a (ubiquitin protein ligase E3A), also known as 

the Ube3a antisense transcript, Ube3a-as (Horsthemke and Wagstaff, 2008; Landers et al., 

2005; Runte et al., 2001) (Figure 1-6).  Maternal-specific expression of the Ube3a/UBE3A 

gene is restricted to the brain in both human and mouse, maternal expression of ATP10C 

(ATPase, class V, type 10C) is imprinted in human brain and fibroblasts (Herzing et al., 

2001; Meguro et al., 2001), although there are conflicting reports as to whether Atp10c is 

imprinted in the mouse (Kashiwagi et al., 2003; Kayashima et al., 2003). 

 The Snrpn ICR is located in the Snrpn promoter and extends into exon 1.  Regulation 

of the Snrpn imprinted domain is not fully understood; however, both the Snrpn ICR and 

Snrpnlt are likely required.  A PWS family with paternal SNRPN ICR deletions exhibited 

loss of MKRN3, MAGEL2, NDN and SNRPN expression (Bielinska et al., 2000).  This effect 

was recapitulated in a mouse model harboring a similar deletion (Bielinska et al., 2000) as 

well as in mice inheriting a paternal 42 kb deletion covering Snrpn exons 1-6 and 23 kb 

upstream (Yang et al., 1998).  In contrast, a smaller 0.9 kb microdeletion including the 

majority of the mouse Snrpn promoter and exon 1 did not affect Mkrn3, Ndn, Magel2 and 

Ube3a expression, while a small deletion (4.8 kb) produced mosaic effects. With respect to 

the Snrpnlt lncRNA, it is thought that imprinted expression of Ube3a/UBE3A is the result of 

transcriptional interference of the Snrpnlt, but this still remains to be validated (Chamberlain 

and Brannan, 2001; Chamberlain et al., 2014; Rougeulle et al., 1998; Runte et al., 2001).  
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Figure 1-6: Structure and regulation of the Snrpn domain 

The Snrpn domain consists of a bipartite ICR (AS-IC and PWS-IC).  On the paternal allele, 

the unmethylated PWS-IC region of the ICR permits Snrpnlt expression and enables paternal 

transcription of surrounding genes Frat3, Mkrn3, Magel2, Ndn, Snrpn, Ipw, and snoRNA 

genes, and represses Ube3a and Atp10c.  In contrast, on the maternal allele, Snrpn ICR 

methylation at PWS-IC prevents Snrpnlt transcription and enables Ube3a and Atp10c 

expression in a brain-specific manner. 
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On the paternal allele, the Snrpn ICR is unmethylated, the Snrpn lncRNA is 

transcribed, directing expression of other paternally expressed genes, while interfering with 

transcription of Ube3a and Atp10c (Horsthemke and Wagstaff, 2008).  In contrast, on the 

maternal allele, the Snrpn ICR is methylated, the Snrpn lncRNA is not transcribed and Ube3a 

and Atp10c are expressed in a brain-specific manner (El-Maarri et al., 2001; Horsthemke and 

Wagstaff, 2008).  For this domain, ICR regulation is more complicated since the 

Snrpn/SNRPN ICR has a bipartite structure, containing two specific regions termed the 

Angelman Syndrome imprinting centre (AS-IC) and Prader-Willi Syndrome IC (PWS-IC) 

(Horsthemke, 1997).  The PWS-IC is a 4.3 kb sequence located around the SNRPN 

promoter/exon1 (Ohta et al., 1999), while the AS-IC is 880 bp and is located approximately 

35 kb upstream of the SNRPN transcriptional start site (Buiting et al., 1999).  On the maternal 

allele, exons within the unmethylated AS-IC are transcribed, which leads to methylation at 

the PWS-IC (Horsthemke and Wagstaff, 2008; Kantor et al., 2004; Shemer et al., 2000). This 

in turn silences the Snrpnlt lncRNA and permits expression of Ube3a and Atp10c 

(Horsthemke and Wagstaff, 2008). On the paternal allele, AS-IC is methylated, blocking 

transcription of exons within the AS-IC (Horsthemke and Wagstaff, 2008; Kantor et al., 

2004; Shemer et al., 2000). Thus, PWS-IC is unmethylated, enabling Frat3, Mkrn3, Magel2, 

Ndn, Snrpn, Snrpnlt, Ipw, snoRNAs and transcription, and silencing Ube3a and Atp10c (El-

Maarri et al., 2001).   

Genetic and epigenetic errors at the SNRPN domain cause the imprinting disorders 

Angelman Syndrome (AS) (OMIM #105830) and Prader-Willi Syndrome (PWS) (OMIM 

#176279). Angelman Syndrome is a neurological syndrome characterized by severe 

intellectual and motor retardation, limited speech, ataxia, hypotonia and unusual facies such 

as open-mouthed expression (Van Buggenhout and Fryns, 2009). Its incidence is 

approximately 1 in 15, 000 newborns  (Horsthemke, 1997; Van Buggenhout and Fryns, 

2009).  Maternal deletions of the 15q11.2-q13 region (including AS-IC microdeletions, 60-

75%), paternal UPD (2-5%) and mutations in the UBE3A gene (10%) cause AS (Van 

Buggenhout and Fryns, 2009).  Less than 5% of cases result from loss of maternal 

methylation at the SNRPN ICR (Horsthemke, 1997; Van Buggenhout and Fryns, 2009).  In 

contrast to AS, Prader-Willi Syndrome is characterized by intellectual disability, decreased 

fetal activity, obesity, small hands and feet, muscular hypotonia, short stature and 



20 

 

hypogonadotropic hypogonadism.  The incidence of PWS is about 1 in 20, 000 and results 

from a lack of paternal-specific gene expression from the domain due to paternal 15q11.2-

q13 deletions (including PWS-IC microdeletions, 65-75%), maternal UPD (20-30%) and 

gain of methylation at the paternal SNRPN ICR (1-3%) (Cassidy et al., 2012).  

1.2.3 Evolution of genomic imprinting and the placenta 

The importance of imprinted genes in fetal and placental growth and development 

was originally identified by nuclear transplantation experiments as well as uniparental 

disomies of specific chromosomal regions containing imprinted genes (Cattanach, 1986; 

Cattanach and Kirk, 1985; Searle and Beechey, 1990) (see 1.2.1).  Failed embryo 

development in androgenetic and gynogenetic embryos, in part due to defects in the 

trophoblast, indicated that imprinted genes likely play a role in placental development and 

function.  Furthermore, there is an evolutionary link between imprinted genes and the 

placenta, as existence of imprinting seemingly evolved at the same time Therian mammals 

(marsupial and placental mammals) separated from egg-laying monotremes (Ager et al., 

2007; Killian et al., 2000; Renfree and Pask, 2011; Smits et al., 2008; Suzuki et al., 2011; 

Weidman et al., 2004). Consequently numerous theories have arisen regarding the emergence 

genomic of imprinting.  The parental conflict theory states that imprinting arose to balance 

the opposing interests between maternal and paternal genomes with respect to maternal-fetal 

nutrient transfer (Moore and Haig, 1991).  In contrast, another theory suggests that 

imprinting evolved to protect the female from trophoblast invasion, or ectopic trophoblast 

(Hall, 1990; Varmuza and Mann, 1994).  The latter theory relates to the fact that the 

trophoblast must invade the uterine epithelium for successful pregnancy.  This theory states 

that genomic imprinting protects females from excessive trophoblast invasion in the ovary 

when oocytes spontaneously activate by suppressing maternal genes involved in placental 

development (Hall, 1990; Varmuza and Mann, 1994).  Irrespective of their differences, the 

above theories suggest that a subset of genes must be appropriately regulated by imprinting 

to balance proper embryonic and placental development, and maternal survival. 

The specific functions of a numerous imprinted genes in the placenta have been 

determined (Figure 1-7) (Tunster et al., 2013).  For example, both the H19 and Kcnq1ot1 

imprinted domains play an important role in placental function and resulting growth (Tunster 



21 

 

et al., 2013).  With respect to the H19 domain, loss of paternal Igf2 expression results in 

reduced placental weight and growth restriction while elevated Igf2/loss of expression of H19 

results in fetal overgrowth (Angiolini et al., 2011; Lefebvre, 2012; Sandovici et al., 2012).  

The role of the H19 domain in placental function and growth is conserved in the human and 

also causes growth deficiencies or overgrowth abnormalities in human babies (Bouwland-

Both et al., 2013; Demetriou et al., 2014; Gonzalez-Rodriguez et al., 2016; Kappil et al., 

2015; McMinn et al., 2006) including Beckwith-Wiedemann Syndrome (Aoki et al., 2011) 

and Silver Russell Syndrome (Yamazawa et al., 2008).  Furthermore, numerous genes within 

the Kcnq1ot1 cluster have been implicated in placental function.  Specifically, 5 out of the 9 

maternally expressed genes in this domain exhibit placental-specific imprinted expression 

(Osbpl5, Tssc4, Cd81, Ascl2 and Th) while the remaining 4 genes are imprinted in both the 

placenta and embryo (Phlda2, Slc22a18, Cdkn1c, Kcnq1) (Golding et al., 2011; Lewis et al., 

2004; Mohammad et al., 2012; Umlauf et al., 2004).  The roles of Ascl2, Cdkn1c and Phlda2 

in placental function have been analyzed (Fitzpatrick et al., 2002; Mancini-DiNardo et al., 

2006).  Briefly, decreased Ascl2 impairs placental and in turn embryonic growth (Tunster et 

al., 2010), loss of Cdkn1c results in placental and fetal overgrowth (Takahashi et al., 2000) 

while Phlda2 overexpression impairs fetal growth during late gestation (Tunster et al., 2010). 

Similar to the H19 domain, the role of the Kcnq1ot1 region in controlling placental growth 

and function has been identified in the human (Kanber et al., 2009; López-Abad et al., 2016; 

Mandò et al., 2014; McMinn et al., 2006), including its role in Beckwith-Wiedemann 

Syndrome (Bourque et al., 2011).   
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Figure 1-7: Imprinted genes with demonstrated placental function in the mouse 

Mouse imprinted genes with known placental functions are shown beside identified gametic 

DMRs.  Imprinted genes with an asterisk indicate suspected placental function.  Blue 

rectangles, paternal allele; red rectangles, maternal allele; black triangles, centromere; white 

circles, unmethylated CpGs; black circles, methylated CpGs. Chromosome number is 

indicated below each chromosome set. 
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1.3 DNA methylation reprogramming in mouse and human 
As mentioned above, imprinted gDMRs acquire allele-specific methylation during 

gametogenesis, which is then maintained throughout preimplantation development.  In 

general, global and imprinted DNA methylation marks are dynamically regulated during 

early mammalian development (Bartolomei and Ferguson-Smith, 2011). There are three 

major waves of DNA methylation reprogramming that occur during gamete and 

preimplantation development (Figure 1-8).  First, global and imprinted DNA methylation 

marks from previous generations are erased in primordial germ cells (PGCs).  Subsequently, 

maternal and paternal-specific DNA methylation and imprints are acquired differentially 

during oocyte and sperm development.  Finally, imprints are maintained during 

preimplantation development when the remainder of the genome undergoes an erasure stage 

to establish totipotency of the early embryo.   This section describes the three phases of DNA 

methylation reprogramming in mouse, and concludes with a description of the conservation 

of these phases in the human [reviewed in (White et al., 2016)]. 

1.3.1 DNA methylation erasure during mouse primordial germ cell 
development 

The first phase of epigenetic programming is DNA methylation erasure. Here, 

previous parental DNA methylation marks are removed in sexually uncommitted primordial 

germ cells (PGCs). In the mouse, global DNA methylation loss occurs in two distinct waves.  

In stage I, DNA methylation erasure is initiated at embryonic day 8.0 (E8.0) (Hajkova et al., 

2002a; Saitou et al., 2012; Seki et al., 2005). Global 5mC levels progressively decline in a 

passive, replication-dependent manner to E9.0, reducing global methylation levels to ~30% 

(Guibert et al., 2012; Seisenberger et al., 2012; Seki et al., 2005). Although the maintenance 

methyltransferase Dnmt1 remains highly expressed at these stages, its recruitment cofactor 

Uhrf1/Np95 is not, likely accounting for methylation loss (Kurimoto et al., 2008).  Stage II 

methylation erasure produces a further decline in 5mC levels between E10.5-13.5. Here, 

erasure occurs via active demethylation, resulting from ten-eleven translocation 1 and 2 

(TET1, TET2) oxidation of 5mC to the intermediate 5-hydroxymethylcytosine (5hmC) 

(Hajkova et al., 2008; 2010; Piccolo et al., 2013; Yamaguchi et al., 2013) (Figure 1-9). The 

base excision repair pathway may also have a role in active demethylation, involving 

activation-induced cytidine deaminase and thymine-DNA glycosylase (TDG) (Cortellino et 
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al., 2011; Hajkova et al., 2010; Morgan et al., 2004; Popp et al., 2010). At E13.5, 5mC 

declines to its lowest levels (Guibert et al., 2012; Popp et al., 2010; Saitou et al., 2012; 

Seisenberger et al., 2012; Yamaguchi et al., 2013), representing the epigenetic ground state 

of the germline genome (Hajkova, 2011).   

In comparison to the whole genome, DNA methylation erasure at imprinted gDMRs 

is delayed. Onset of erasure begins after E9.5 and is complete at or after E13.5 (Guibert et al., 

2012; Hackett et al., 2013; Hajkova et al., 2002a; Kagiwada et al., 2013; Kobayashi et al., 

2013).  More specifically, of the 18 maternal gDMRs and 3 paternal gDMRs analyzed, only 7 

still retain some level of methylation (~20% methylation or less) at E13.5, while 

demethylation is completed at the remaining 14 gDMRs (Kobayashi et al., 2013). Current 

studies investigating imprinted gDMR methylation loss in PGCs indicate roles for both 

passive and active demethylation. Passive replication-dependent demethylation, beginning at 

E9.5 (Kagiwada et al., 2013), is supported by repression of Uhrf1 (Kurimoto et al., 2008). By 

comparison, active demethylation occurs through TET1 conversion of 5mC to 5hmC 

commencing at E10.5 (Hackett et al., 2013; Piccolo et al., 2013; Vincent et al., 2013) (Figure 

1-9). There is little evidence for demethylation through the base excision repair pathway at 

imprinted gDMRs (Hackett et al., 2013; Kagiwada et al., 2013; Popp et al., 2010). 

 

 



25 

 

 

Figure 1-8: DNA methylation dynamics during gametogenesis and preimplantation 

development 

Global DNA methylation (orange line) and imprinted DNA methylation (purple line) is first 

erased in primordial germ cells.  Then, sex-specific DNA methylation is acquired both 

globally and at imprinted gDMRs during gametogenesis.  Specifically global (dark blue) and 

imprinted (light blue) methylation is established early during spermatogenesis, with 

methylation mostly completed at birth.  In contrast, DNA methylation acquisition globally 

(red) and at imprinted domains (pink) is delayed in oogenesis, occurring after birth and 

beginning in growing oocytes up to MII ovulated oocytes.  Despite global DNA 

demethylation of the paternal (blue) and maternal (red) genomes after fertilization during 

preimplantation development, imprinted DNA methylation is maintained at imprinted genes 

(light blue, pink).  Assisted reproductive technologies occur during imprint acquisition and 

imprint maintenance phases, with examples shown in grey italicized text. E, embryonic day; 

P, postnatal day; MI, meiosis I; MII, meiosis II; Prospg, prospermatogonia; Spg, 

spermatogonia; Scy, spermatocyte; RS, round spermatid; ES, elongating spermatid; IVF, in 

vitro fertilization; ICSI, intracytoplasmic sperm injection. 
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1.3.2 DNA methylation acquisition during mouse gametogenesis 

Following erasure, the next phase of DNA methylation programming is DNA 

methylation acquisition.  In males, global DNA methylation acquisition commences in 

E14.5-E16.5 mitotically-arrested fetal prospermatogonia, reaching 50% methylation levels 

by E16.5, and continues to rise through to the spermatogonia stage (Kobayashi et al., 2013), 

where the highest global methylation levels are present during spermatogenesis (Kobayashi 

et al., 2013; Niles et al., 2011; Seisenberger et al., 2012; Vlachogiannis et al., 2015). In 

mature sperm, ~80% of cytosines are methylated (Kobayashi et al., 2012).  This pattern was 

recently confirmed in a genome-wide DNA methylation study, where overall 5mC levels 

increased from 30% in E16.5 prospermatogonia to 76%, ~77% and 79% in postnatal day 0.5 

(P0.5) prospermatogonia, P7.5 spermatogonia and adult spermatozoa, respectively (Kubo et 

al., 2015).  In mature sperm, ~78-90% of cytosines are methylated (Kobayashi et al., 2012; 

Kubo et al., 2015; Smith et al., 2012; Wang et al., 2014).  Mechanistically, DNA methylation 

acquisition occurs through the de novo DNA methyltransferases, DNMT3A and DNMT3B, 

and accessory protein DNMT3L (Kato et al., 2007) (Figure 1-9). 

In contrast to male germ cells, E16.5 diplotene stage female germ cells (Ewen and 

Koopman, 2010) remain globally hypomethylated (Kobayashi et al., 2012). Instead, 

acquisition of global de novo methylation is delayed until oocytes enter the growth phase 

(Smallwood et al., 2011). By the time oocytes are at the germinal-vesicle and mature MII 

stages, acquisition of DNA methylation is complete (Kobayashi et al., 2012; Shirane et al., 

2013; Smallwood et al., 2011; Smith et al., 2012; Tomizawa et al., 2011). Globally, ~40-55% 

of cytosines are methylated in oocytes (Kobayashi et al., 2012; Smallwood et al., 2011; 

Smith et al., 2012; Wang et al., 2014).  Mechanistically, DNMT3A and DNMT3L are 

indispensable for DNA methylation acquisition in female germ cells (Kobayashi et al., 2012; 

Smallwood et al., 2011) (Figure 1-9).  

Recently, CpG island DNA methylation acquisition in oocytes has also been linked to 

transcription (Veselovska et al., 2015).  Transcription initiating from alternative 

transcriptional start sites throughout oogenesis is highly correlated with hypermethylated 

CpG domains in fully grown GV oocytes (Veselovska et al., 2015).  This occurs in part 

during transcription elongation where disposition of histone 3 lysine 36 trimethylation 
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(H3K36me3) enhances DNMT3A activity (Dhayalan et al., 2010; Veselovska et al., 2015; 

Zhang et al., 2010).  

For imprinted DNA methylation, acquisition occurs with similar timing to that of the 

whole genome. In the male germline, imprinted methylation acquisition at H19, Gtl2 and 

Rasgrf1 has begun by E14.5, increasing progressively through to E18.5 in fetal 

prospermatogonia until being completed in P0 mitotically arrested spermatogonia (Davis et 

al., 2000; Kaneda et al., 2004; Kato et al., 2007; Kobayashi et al., 2013; Lee et al., 2010; 

Lucifero et al., 2002; Ueda et al., 2000). The two parental alleles undergo differential 

methylation acquisition, with de novo methylation initiating earlier (E14.5) on the previous 

paternally-methylated H19, Gtl2 and Rasgrf1 alleles than on the previous maternally-

unmethylated alleles (E16.5) (Davis et al., 2000; 1999; Kato et al., 2007; Ueda et al., 2000).  

This differential acquisition indicates that some previous parental identity is retained in the 

absence of DNA methylation.  H19 and Gtl2 imprinted methylation acquisition during 

spermatogenesis is dependent on DNMT3A and DNMT3L, while Rasgrf1 additionally 

requires DNMT3B (Bourc'his and Bestor, 2004; Hirasawa et al., 2008; Kaneda et al., 2004; 

Kato et al., 2007; Vlachogiannis et al., 2015; Webster et al., 2005) (Figure 1-9).   

In E16.5 female germ cells, imprinted gDMRs have low methylation levels 

(Kobayashi et al., 2013). DNA methylation acquisition at the Snrpn, Igf2r, Peg1, Peg3, 

Kcnq1ot1, Zac1, Meg1 and Impact gDMRs is delayed compared to male imprint acquisition, 

which occurs prenatally. Instead, DNA methylation is acquired during oocyte growth in a 

size-dependent manner from the primary to antral follicle stage, and is completed by the 

ovulated metaphase II (MII) stage (Denomme et al., 2012; Hiura et al., 2006; Lucifero, 2004; 

Lucifero et al., 2002; Obata and Kono, 2002).  In oocytes, as in sperm, allelic identity also 

influences DNA methylation acquisition. Specifically, de novo methylation is initiated earlier 

(P10) on the previous maternally-methylated Snrpn, Zac1 and Peg1 alleles than on the 

previous paternally-unmethylated alleles (P15) (Davis et al., 2000; Hiura et al., 2006; Kato et 

al., 2007; Lee et al., 2010; Lucifero, 2004). This again indicates that epigenetic memory of 

parental identity is DNA methylation-independent. Expression of de novo 

methyltransferases, Dnmt3A, Dnmt3B and Dnmt3L, occurs during 10-25 days post partum 

(dpp), increasing co-ordinately with oocyte diameter (Lucifero et al., 2007) and DNA 

methylation acquisition (Lucifero, 2004). However, imprinted DNA methylation 
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establishment is dependent on DNMT3A and DNMT3L (Bourc'his et al., 2001; Hata et al., 

2002; Kaneda et al., 2010; Lucifero, 2004; Lucifero et al., 2002; Obata and Kono, 2002) but 

not DNMT3B  (Kaneda et al., 2010) (Figure 1-9). Similar to global DNA methylation 

acquisition, imprinted DNA methylation acquisition at gDMRs within the oocyte is 

dependent on transcription through gDMRs, as shown for Snrpn (Smith et al., 2011), Gnas 

(Chotalia et al., 2009), and Zac1/Plagl1 (Veselovska et al., 2015).  

1.3.3 DNA methylation dynamics during mouse preimplantation 
development 

Preimplantation development represents the third epigenetic reprogramming phase 

where DNA methylation loss occurs globally through the zygote to blastocyst stages, albeit 

not to the epigenomic ground state level seen in PGCs.  Following fertilization, there is 

active loss of DNA methylation globally in zygotes (Okamoto et al., 2016; Smith et al., 

2012) and 2-cell embryos (Wang et al., 2014).  As the latter study did not analyze zygotes 

(Wang et al., 2014), active DNA methylation loss was hypothesized to occur at the 1-cell 

stage, consistent with loss of global 5mC staining in the paternal pronucleus 4-6 hours 

following in vitro fertilization  (Santos et al., 2002; 2013).  Based on 5hmC staining and 

DNA methylation analyses of Tet3-deficient zygotes, active demethylation of the paternal 

pronucleus occurs via TET3-mediated 5mC conversion to 5hmC (Gu et al., 2011; Guo et al., 

2014a; Inoue and Zhang, 2011; Inoue et al., 2011; Iqbal et al., 2011; Wossidlo et al., 2011) 

(Figure 1-9). Consistent with this, Tet3 mRNA is more abundant than Tet1 and Tet2 

transcripts in oocytes and zygotes (Okae et al., 2014; Wossidlo et al., 2011), and TET3 

protein along with 5hmC levels are restricted to/overabundant in the paternal compared to 

maternal pronucleus (Gu et al., 2011; Inoue and Zhang, 2011; Inoue et al., 2011; Shen et al., 

2014; Wang et al., 2014).  Having said this, TET3 hydroxylation and the spike in 5hmC 

levels may be restricted to S-phase (pronuclear stage 3, PN3) (Santos et al., 2013), which 

occurs subsequent to initiation of DNA demethylation (Amouroux et al., 2016; Okamoto et 

al., 2016), indicating a role for additional mechanisms in this initial demethylation event. In 

fact, abrogated 5hmC formation via small molecule TET inhibitors or oocyte Tet3 deletion 

had no effect on paternal 5mC loss in early PN3 zygotes (Amouroux et al., 2016). Thus, 

additional mechanisms are likely involved in pre-replicative active DNA demethylation of 

the paternal pronucleus (Amouroux et al., 2016). In post-replicative PN3 to PN4 zygotes, 
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genome-wide CpG sites exhibited methylation loss both actively (TET3-dependent) and/or 

passively (replication-dependent) (Guo et al., 2014a). The latter includes repetitive elements, 

where DNA demethylation in the paternal pronucleus possessed hemimethylated CpG 

dinucleotides due to replication-dependent dilution, with minor replication-independent 

active demethylation (Amouroux et al., 2016; Arand et al., 2015). Interestingly, production of 

5hmC by TET3 is linked to DNMT1 and DNMT3A in late P4 zygotes, suggesting that de 

novo methylated cytosines may be targets of hydroxylation (Amouroux et al., 2016). Overall, 

such evidence supports both active and passive pathways in paternal pronuclear 

demethylation.  

In comparison to the paternal pronucleus, the maternal pronucleus is protected from 

5mC demethylation. Protection from DNA demethylation is accomplished via maternal 

effect proteins, which are synthesized by the oocyte and required in the preimplantation 

embryo. In zygotes, the maternal effect protein developmental pluripotency associated factor 

3 (DPPA3/Stella/PGC7) binds to maternal chromatin containing histone 3 lysine 9 

dimethylation (H3K9me2), thereby inhibiting TET3 activity (Nakamura et al., 2007; 2012; 

Nakatani et al., 2015) (Figure 1-9). DPPA3 binding to chromatin may be dependent on the 

H3K9me2 methyltransferase protein euchromatic histone lysine methyltransferase 2 

(EHMT2/G9a) as well as on its heterodimeric partner, EHMT1/GLP, since their deletion in 

embryonic stem cells results in reduced DNA methylation at promoter regions (Nakamura et 

al., 2012; Zhang et al., 2016).  Despite this protection, active demethylation may lead to 

partial DNA methylation loss on the maternal genome, since low 5hmC levels are present in 

maternal pronuclei of zygotes (Salvaing et al., 2012; Wossidlo et al., 2011). In support of 

this, haploid parthenogenetic embryos (only maternal genome) display pre-S-phase 5mC 

depletion 6 hours post-activation (Amouroux et al., 2016; Okamoto et al., 2016); and Tet3-

deficient zygotes show impaired DNA demethylation on both paternal and maternal 

pronuclei (Guo et al., 2014a).   

After the first cleavage division, demethylation of the majority of the maternal 

genome is initiated in a passive, replication-coupled manner. Thus, DNA methylation loss of 

~50% at each cell cycle leads to the lowest levels by the early blastocyst stage (Mayer et al., 

2000; Oswald et al., 2000; Santos et al., 2002).  The absence of highly concentrated oocyte-

specific DNMT1o in nuclei, except for at the 8-cell stage, and the presence of small amounts 
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of the somatic DNMT (DNMT1s) in nuclei during preimplantation development, are the 

contributing factors to passive DNA demethylation (Cirio et al., 2008a; 2008b; Hirasawa et 

al., 2008). However, DNA methylation loss may not occur solely through replication 

dilution. A recent genome-wide, allele-specific study has documented 5mC, 5hmC, and 

subsequent oxidized derivatives 5fC and 5caC in 2-cell to 4-cell embryos, identifying a role 

for active demethylation of the paternal and maternal genome at these stages (Wang et al., 

2014).  Thus, passive replicative dilution of maternal DNA methylation may be delayed until 

the 4-cell stage. However, the loss of paternal genomic 5hmC is controversial as evidence 

has been presented for active BER pathways (Guo et al., 2014a; He et al., 2011; Santos et al., 

2013) as well as passive replication-dependent dilution (Arand et al., 2015; Guo et al., 2014a; 

Inoue and Zhang, 2011; Inoue et al., 2011; Shen et al., 2014). For the latter, there is a 

progressive decline in asymmetric 5hmC, 5fC and 5caC staining on the presumptive paternal 

metaphase chromatids from the 2-cell to 8-cell stage, pointing to passive replication-

dependent dilution of these oxidized derivatives (Inoue and Zhang, 2011; Inoue et al., 2011; 

Shen et al., 2014). Future studies are needed to uncover the mechanisms and dynamics of 

demethylation during preimplantation development. 

Genome-wide data have reported higher than expected DNA methylation levels in the 

blastocyst if subjected to passive demethylation (Kobayashi et al., 2012). This is attributed to 

maintenance methylation at oocyte gDMRs, imprinted gDMRs and repetitive elements, 

which retain DNA methylation though preimplantation development.  For imprinted gDMRs, 

several proteins have been identified that maintain/protect imprinted methylation during 

preimplantation development. In zygotes, maternally (Peg1, Peg3 and Peg10) and paternally 

[H19 and Rasgrf1 (Ras protein-specific guanine nucleotide-releasing factor 1)] imprinted 

gDMRs are protected from TET3 demethylation of 5mC to 5hmC by maternally-derived 

DPPA3 binding to H3K9me2 (Nakamura et al., 2007; 2012) (Figure 1-9). After the 1-cell 

stage, maternal and embryonic zinc finger protein 57 (ZFP57) likely protects imprinted 

gDMRs from passive demethylation by binding to CpG methylation (Li et al., 2008b; 

Quenneville et al., 2011; Zuo et al., 2012) and recruiting repressive complex machinery, that 

includes tripartite motif 28 protein (TRIM28), the H3K9me3 histone methyltransferase SET 

domain bifurcated 1 (SETDB1), and DNMT1s/1o (Alexander et al., 2015; Bilodeau et al., 

2009; Cirio et al., 2008a; 2008b; Howell et al., 2001; Kurihara et al., 2008; Li et al., 2008b; 
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Lorthongpanich et al., 2013; Messerschmidt et al., 2012; Quenneville et al., 2011; Ratnam et 

al., 2002; Schultz et al., 2002; Zuo et al., 2012) (Figure 1-9). As studies involving ZFP57 

have been performed in later stage embryos (E11.5) and ES cells, future studies are required 

to validate this mechanism in preimplantation embryos. Overall, current evidence indicates 

that imprinted gDMRs are protected from both active and passive forms of demethylation 

during preimplantation development by maternal effect DNA methylation protector proteins. 

Further investigations are also required to elucidate the mechanisms and dynamics of 

methylation maintenance at non-imprinted oocyte gDMRs and repetitive elements. 
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Figure 1-9: Maternal effect products 

Upon erasure of methylation marks from the previous generation by TET1/TET2 (light 

purple circle), imprints are established differentially by DNMT3A/DNMT3L/DNMT3B 

(light green circle) in spermatocytes and DNMT3A (green circle)/DNMT3L (maroon circle) 

in oocytes.  During this period of imprint establishment during oogenesis, mitochondria 

numbers rapidly increase from a small progenitor pool in PGCs (maroon dotted line).  After 

fertilization DPPA3 (dark purple circle) protects the maternal genome and paternally 

methylated ICRs from TET3 (bright green circle)-catalyzed active demethylation of the 

paternal genome.  DNMT1 (DNMT1o/s, grey circle) maintains imprinted methylation during 

the S-phase of cleavage divisions while ZFP57 (dark blue circle) and additional complex 

members regulate methylation maintenance beginning at the 8-cell stage. Mitochondrial 

DNA is not replicated during preimplantation development, suggesting that total 

mitochondrial numbers remain relatively constant though preimplantation. Consequently, 

mitochondrial numbers per blastomere would be halved after each cell division. 
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1.3.4 Conservation of DNA methylation dynamics between mouse 
and human 

While a greater body of data exists on DNA methylation dynamics during gamete and 

preimplantation development for the mouse compared to the human, available data in the 

human highlight striking similarities between these species.   

1.3.4.1 Conservation of DNA methylation erasure in human PGCs 

Prior to comparing DNA methylation erasure in mouse and human, it is important to 

correlate developmental time points.  PGC development takes place between E6.25-E13.5 in 

the mouse, with PGC development occurring during weeks 2-9 of gestation in humans (De 

Felici, 2013; Ewen and Koopman, 2010; Leitch et al., 2013; Tang et al., 2015). More 

specifically, PGC migration and colonization of the developing genital ridge occurs between 

E8-E10.5 in mouse, which corresponds to ~3-5 weeks gestation in humans (Park et al., 2009; 

Tang et al., 2015).  Mouse PGCs at E11.5-12.5 were most similar to week 7-9 human PGCs 

(Tang et al., 2015).  At E13.5 in mouse and after week 9 in human, germ cell sexual 

differentiation has produced oogonia and prospermatogonia in female and male gonads, 

respectively (Ewen and Koopman, 2010; Kocer et al., 2009; Tang et al., 2015). To study 

earlier stages of PGC development, human PGC-like cells have been generated from 

embryonic stem cells and are representative of E6.5-E7.5 premigratory mouse PGCs (Tang et 

al., 2015). 

Overall, studies on PGC methylation erasure dynamics in human have yielded 

comparable results to mouse.   Stage I of methylation erasure in mouse occurring prior to 

E10.5 (Guibert et al., 2012; Hajkova et al., 2002b; Saitou et al., 2012; Seisenberger et al., 

2012; Seki et al., 2005)  likely initiates prior to week 5.5 gestation in human (Tang et al., 

2015).  Similar stage II methylation erasure events have been reported globally in human 5-

19 week PGCs  (Driscoll and Migeon, 1990; Gkountela et al., 2015; Guo et al., 2015; Tang et 

al., 2015; Wermann et al., 2010), corresponding to stage II of methylation erasure in mouse 

E10.5-13.5 PGCs  (Hajkova et al., 2008; 2010; Piccolo et al., 2013; Yamaguchi et al., 2013).  

Globally for both mouse and human, this erasure produces the greatest loss of DNA 

methylation throughout development (Gkountela et al., 2015; Guo et al., 2015; Hajkova, 

2011; Tang et al., 2015). Mechanistically, active demethylation may contribute to erasure of 
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stage I and/or II global methylation in human since TET1 protein, 5hmC, and BER pathway 

members are present (Gkountela et al., 2015; 2013; Guo et al., 2015; Tang et al., 2015).  This 

indicates a potential conserved role to mouse for TET1, 5hmC (Hajkova et al., 2008; 2010; 

Piccolo et al., 2013; Yamaguchi et al., 2013) and BER (Cortellino et al., 2011; Hajkova et al., 

2010; Morgan et al., 2004; Popp et al., 2010) in PGC methylation erasure.  For DNA 

methylation erasure dynamics at imprinted domains in humans, one group showed similar 

delayed DNA methylation erasure (Gkountela et al., 2013; 2015) as in mouse (Kobayashi et 

al., 2013), while other studies reported DNA methylation erasure initiating coincident with 

global erasure (Guo et al., 2015; Tang et al., 2015). In both cases, imprinted methylation 

erasure was more protracted than global erasure. Like mouse (Hackett et al., 2013; Piccolo et 

al., 2013; Vincent et al., 2013), imprinted gDMR methylation loss in PGCs may occur by 

active DNA demethylation, since oxidation of 5mC to 5hmC was evident at  H19 and GNAS 

ICRs (Tang et al., 2015), and at the PEG3 DMR (Gkountela et al., 2013).  The role of passive 

demethylation has not been investigated. 

1.3.4.2 Conservation of DNA methylation acquisition in human 
gametes 

Regarding methylation acquisition in gametes, available data point to spatial, 

temporal and mechanistic conservation of global and imprinted methylation acquisition in 

sperm and oocytes between mouse and human (Guo et al., 2014b; Kobayashi et al., 2012; 

Okae et al., 2014; Smallwood et al., 2011; Smith et al., 2012; 2014; Wang et al., 2014).  Both 

species establish global DNA methylation profiles prenatally during spermatogenesis 

(Kobayashi et al., 2013; Wermann et al., 2010) and postnatally during oocyte growth 

(Kobayashi et al., 2012; Shirane et al., 2013; Smallwood et al., 2011; Smith et al., 2012; 

Tomizawa et al., 2011; Wermann et al., 2010).  Similarly, imprinted DNA methylation 

acquisition is already fully acquired in human adult spermatogonia, spermatocytes, round and 

elongating spermatids and mature ejaculated spermatozoa (Boissonnas et al., 2010; Kerjean 

et al., 2000; Kobayashi et al., 2007; Marques et al., 2008; 2011; Sato et al., 2011), and 

therefore likely occurs prior to birth as in mouse (Davis et al., 2000; Kaneda et al., 2004; 

Kato et al., 2007; Kobayashi et al., 2013; Lee et al., 2010; Lucifero et al., 2002; Ueda et al., 

2000). Maternal imprint acquisition in human occurs in an oocyte size-dependent manner 

(Arima and Wake, 2006; Sato et al., 2007), similar to the mouse (Arima and Wake, 2006; 
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Denomme et al., 2012; Lucifero, 2004; Sato et al., 2007).  With respect to mechanistic 

conservation, mouse and human gametes possess DNMT3A and DNMT3B transcripts at 

similar levels in comparative oocyte analysis (Okae et al., 2014) and corresponding 

DNMT3A and DNMT3B protein products have been detected in human (Petrussa et al., 

2014). However, unlike the mouse (Kato et al., 2007; La Salle et al., 2007; Niles et al., 2013), 

DNMT3L transcripts/protein have not been detected in human spermatogenic cells or oocytes 

(Huntriss et al., 2004; Okae et al., 2014; Petrussa et al., 2014), suggesting divergence in its 

role in global and imprinted methylation acquisition.  Further investigations should also be 

aimed at the specific roles of DNMT3A, DNMT3B and DNMT3L in human sperm and pre-

GV methylation acquisition in oocytes.   

1.3.4.3 Conservation of DNA methylation programming during 
preimplantation development 

In the preimplantation embryo, DNA methylation dynamics are more complex than 

expected. Globally in zygotes, active DNA demethylation of the paternal genome by the TET 

family likely occurs in both species, with potential for roles at maternal genomes (Beaujean 

et al., 2004; Fulka et al., 2008; 2004; Gu et al., 2011; Guo et al., 2014b; Inoue and Zhang, 

2011; Inoue et al., 2011; Iqbal et al., 2011; Pendina et al., 2011; Wossidlo et al., 2011).  Both 

mouse and human oocytes express elevated Tet3/TET3 compared to Tet1/TET1 and 

Tet2/TET2, in addition to expressing the protective Dppa3/DPPA3 factor (Kobayashi et al., 

2012; Okae et al., 2014; Wossidlo et al., 2011; Yan et al., 2013). A confirmed role for these 

proteins in human zygotes remains to be elucidated.  However, since the human maternal 

pronucleus harbors greater 5mC and lower 5hmC than the paternal pronucleus, it is likely 

that at least a portion of the maternal genome must be protected from active demethylation 

(Fulka et al., 2004; 2008; Pendina et al., 2011).  During cleavage divisions, DNA methylation 

and hydroxymethylation marks display an asymmetric chromatid localization, which are 

passively diluted though replication in both species (Efimova et al., 2015; Inoue and Zhang, 

2011; Inoue et al., 2011; Shen et al., 2014; Wang et al., 2014).  However, a role for active 

demethylation also exists for both mouse (Smith et al., 2012) and human (Efimova et al., 

2015), possibly in a stage-specific and sequence-specific manner. Mechanistically in mouse, 

passive loss of DNA methylation during preimplantation development was attributed to 

DNMT1o exclusion from nuclei (except at the 8-cell stage) and low nuclear DNMT1s levels 
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at all preimplantation stages (Cirio et al., 2008a; 2008b; Hirasawa et al., 2008; Howell et al., 

2001; Kurihara et al., 2008; Ratnam et al., 2002).  In humans, DNMT1o nuclear localization 

occurs throughout preimplantation, while nuclear localization of DNMT1s is restricted to 

nuclei of 6-cell to morula stage embryos (Petrussa et al., 2014). Not withstanding this 

difference, it appears that DNMT1o and DNMT1s are present at sufficient levels to maintain 

imprinted methylation during mouse and human preimplantation development.  Further 

research is required to delineate the functions of these DNMT1 isoforms.  

With regards to imprinted DNA methylation, genome-wide methylation studies of 

human gametes and preimplantation embryos indicate preservation of maintenance of DNA 

methylation at imprinted gDMRs (Guo et al., 2014b; Kobayashi et al., 2012; Okae et al., 

2014).  As in mouse (Nakamura et al., 2007; 2012),  high abundance of DPPA3 in human 

oocytes (Goto et al., 2002; Kobayashi et al., 2012; Yan et al., 2013) suggests a conserved role 

for this protein in protecting imprinted gDMRs from active DNA methylation loss in zygotes. 

During cleavage division, the presence of DNMT1o/DNMT1o and DNMT1s/DNMT1s and 

nuclear localization of DNMT1o/DNMT1s during human preimplantation development 

(Huntriss et al., 2004; Petrussa et al., 2014) suggests conservation to mouse (Cirio et al., 

2008a; 2008b) in maintaining DNA methylation at imprinted gDMRs.  With regard to the 

DNMT1 interacting partner ZFP57, limited data exists for its role in human embryos.  

However, to assess its function, mouse embryonic stem cells were transfected with human 

ZFP57. The mouse and human ZFP57 proteins are interchangeable in maintaining imprinted 

DNA methylation as well as binding to TRIM28 (Takikawa et al., 2013).  In line with this, in 

human embryonic stem cells, TRIM28 is recruited to the majority of human imprinted DMRs 

by KRAB-containing zinc finger proteins (KRAB-ZFPs)(Jacobs et al., 2014; Turelli et al., 

2014) (Table 1). Since ZFP57 and TRIM28 are maternal effect proteins in mouse, their 

expression has also been examined in human oocytes. Although TRIM28 mRNA abundance 

was similar between human and mouse oocytes (Okae et al., 2014), human oocytes were 

reported to lack ZFP57 transcripts (Okae et al., 2014; Yan et al., 2013), with embryonic 

ZFP57 expression commencing at the morula stage (Yan et al., 2013). This requires further 

validation since ZFP57 protein levels were not assessed. Overall, current evidence indicates 

that imprinted gDMRs are maintained during human preimplantation development, with 
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potential conservation of DNA methylation protector proteins that bar active and passive 

demethylation. 

In conclusion, regulation of DNA methylation dynamics during gamete and 

preimplantation development is complex.  While a greater body of data exists for the mouse 

compared to the human, available data highlight striking similarities between these species.  

Regardless of differences that may exist, in both species it is evident that proper regulation of 

imprinted DNA methylation dynamics is necessary for successful preimplantation embryo 

development.  Consequently, any disruption of imprinted DNA methylation dynamics during 

this period could lead to aberrant or failed development or genomic imprinting disorders. 

1.4 Mitochondria 
Mitochondrial dysfunction has confirmed roles in mitochondrial disease, failed 

reproductive success and age-related infertility.  Many studies have confirmed the vital role 

mitochondria play as important determinants of developmental competence throughout 

oocyte and preimplantation embryo growth.  As mitochondria are dynamically regulated and 

critically required during this early period of development, defects in mitochondrial 

distribution, quantity, and/or activity have negative developmental consequences in multiple 

species, including mouse and human (Ge et al., 2012; Thouas et al., 2004; Van Blerkom et 

al., 1995; 2000; Van Blerkom, 2004; 2008; 2009; 2011; Wakefield et al., 2011).    

1.4.1 Mitochondrial dynamics during oogenesis and preimplantation 
development 

At fertilization in the fully grown mature oocyte, the mitochondrial complement has 

been derived from approximately 10-20 mitochondria in PGCs that increases rapidly via 

mitochondrial biogenesis and mitochondrial DNA replication during mouse and human 

oocyte growth up to the MII stage (Cummins, 2002; Jansen, 2000; St John et al., 2010; Van 

Blerkom, 2011). In the human, mitochondrial numbers reach about 100,000 to 400,000 in the 

mature MII oocyte (Cummins, 2002; Jansen, 2000; Jansen and de Boer, 1998; Jansen and 

Burton, 2004), similar to the 92,500 ± 7000 identified in the mouse egg (Pikó and 

Matsumoto, 1976).  This oocyte mitochondrial pool represents the sole source of 

mitochondria present during oogenesis, preimplantation development and throughout life.  
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After fertilization in both human and mouse, mitochondrial DNA molecules are not 

replicated until the blastocyst stage of preimplantation development (Larsson et al., 1998; 

Pikó and Chase, 1973; Pikó and Taylor, 1987; Thundathil et al., 2005).  Thus, mitochondrial 

numbers are anticipated to remain relatively constant within the preimplantation embryo. 

This would mean that mitochondrial numbers decrease by half per blastomere with each 

successive cleavage division (Motta et al., 2000; Sathananthan and Trounson, 2000; St John 

et al., 2010; Thundathil et al., 2005; Van Blerkom, 2011; Zamboni, 1971) (Figure 1-9).  After 

implantation, the molecular machinery for mitochondrial DNA replication becomes active, 

with mitochondrial DNA copy number and mitochondrial biogenesis increasing first 

primarily in trophectodermal cells then subsequently in the epiblast (Assou et al., 2006; 

Larsson et al., 1998; St John et al., 2010; Thundathil et al., 2005).   

Although mitochondria are in a state of replicative senescence during preimplantation 

development, the organelles undergo dynamic changes in morphology.  In oocytes and early 

embryos, mitochondria are small, spherical and structurally underdeveloped but still 

functional and active in generating ATP (Motta et al., 2000; Pikó and Chase, 1973).  As 

preimplantation development continues, mitochondria elongate, increase cristae numbers, 

and by the expanded blastocyst stage they begin to resemble forms present in differentiated 

somatic cells, again predominantly in trophectoderm (Motta et al., 2000; Pikó and Chase, 

1973; Van Blerkom et al., 1973).  These structural changes occur in parallel to increased 

respiration to meet the energy demands for blastocyst formation and the development of the 

fluid filled cavity by trophectoderm cells (Houghton, 2006).  Most of the energy produced in 

blastocyst trophectoderm is hypothesized to drive and support activity of the ATP-dependent 

Na+/K+-ATPase (sodium-potassium adenosine triphosphatase) (Houghton, 2006; Van 

Blerkom, 2008), which is known to be vital for blastocyst formation/cavitation (Madan et al., 

2007; Watson et al., 2004).   

In addition to dynamic morphological changes, mitochondria also actively translocate 

to specific regions of the cytoplasm during oogenesis and preimplantation development.  

Perinuclear translocation of active mitochondria occurs during meiosis, with nuclear 

localization coinciding with bursts of ATP production specifically during nuclear maturation 

(germinal vesicle break down (GVBD), metaphase I (MI) spindle migration, MI to MII 

transition, and polar body (PB) extrusion) (Van Blerkom, 1991; Yu et al., 2010).  At the 
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ovulated MII stage, both perinuclear mitochondrial localization (Kan et al., 2011; Nagai et 

al., 2006) and a homogenous distribution throughout the cytoplasm (Tokura et al., 1993; Van 

Blerkom, 2004; Yu et al., 2010) has been documented.  In addition to this distribution of 

active mitochondria during oogenesis, a persistent subcortical high potential mitochondrial 

ring in the oocyte exists and is required for sperm penetration, fertilization and meiotic 

maturation (Van Blerkom and Davis, 2007).  The localization of mitochondria during 

preimplantation development is less characterized. However, perinuclear localization at the 

2-cell stage (Van Blerkom et al., 2000; Van Blerkom, 2009), symmetrical distribution of 

mitochondria between pronuclei/blastomeres from the pronuclear 1-cell to 8-cell stage (Van 

Blerkom et al., 2000), and higher mitochondrial activity in trophectoderm cells (TE) versus 

inner cell mass (ICM) cells in blastocysts (Houghton, 2006) have all been reported. 

1.4.2 The role of mitochondria in developmental competence 

Recently, many studies performed in mouse and human have concentrated on 

analyzing mitochondrial parameters with respect to reproductive success of the oocyte and 

preimplantation embryo.  With regards to oocyte competence, nuclear and meiotic 

maturation (and consequently fertilization) are dependent on ATP generation (Dumollard et 

al., 2004; St John et al., 2010; Yu et al., 2010). Those oocytes with sufficient ATP and 

mitochondria numbers generate higher-quality blastocyst embryos (Takeuchi et al., 2005) 

and exhibit an increased potential for continued embryogenesis, implantation  (Van Blerkom 

et al., 1995), and postimplantation development (Wai et al., 2010). Perinuclear accumulation 

of active mitochondria is also necessary for oocyte competence (Van Blerkom, 1991; Van 

Blerkom and Runner, 1984; Yu et al., 2010). 

As during oogenesis, mitochondrial function and the ability to generate sufficient 

ATP is required for successful cleavage throughout preimplantation development (Liu et al., 

2000; May-Panloup et al., 2005; Thouas et al., 2004).  Upon successful fertilization, failure 

to accumulate mitochondria to the perinuclear region in zygotes is associated with decreased 

blastocyst developmental rates (Zhao et al., 2009).  Furthermore, decreased ATP content 

occurs in mouse embryos undergoing a 2-cell block in development (Wang et al., 2009). 

With regard to mitochondrial distribution, 1-cell zygote to 8-cell stage preimplantation 

embryos exhibiting an asymmetrical segregation of mitochondria surrounding pronuclei and 
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between blastomeres undergo increased developmental arrest, with lysis of blastomeres 

inheriting lower amounts of mitochondria (Van Blerkom et al., 2000).  Finally, mitochondrial 

inhibition during preimplantation development leads to impaired ATP production, 

incrementally reduced blastocyst development, decreased blastocyst ICM and TE cell 

numbers, and reduced fetal and placental growth, thus highlighting the importance of 

mitochondria both during preimplantation and postimplantation development (Wakefield et 

al., 2011). 

In conclusion, appropriate regulation of mitochondrial dynamics is critical for 

successful development of human and mouse oocytes and preimplantation embryos.  

Consequently, perturbations in mitochondrial dynamics during this critical period have the 

potential to negatively impact developmental outcomes. 

1.5 Assisted Reproductive Technologies (ARTs) 

1.5.1 Infertility and ART 

Infertility is generally defined as the inability to conceive naturally after 1 year of 

unprotected sex.  Recent figures alarmingly estimate that approximately 48.6 million couples 

worldwide are unable to conceive after 5 years of unprotected sex (Mascarenhas et al., 2012).  

In Canada and the United States, infertility affects 16% and 10-15% of couples, respectively, 

tripling Canadian rates since 1984 (5.4%) (Bushnik et al., 2012; Chandra et al., 2013).  

Medically assisted reproductive technologies (ARTs) represent infertility treatment methods 

that give infertile/subfertile couples the best chance to conceive.  These techniques include 

ovarian stimulation, in vitro oocyte maturation, in vitro fertilization (IVF), intracytoplasmic 

sperm injection (ICSI), in vitro embryo culture, blastocyst hatching, preimplantation genetic 

diagnosis (PGD), embryo transfer, oocyte and embryo cryopreservation, and recently 

mitochondrial replacement therapy and AUGMENT (discussed in section 1.5.3). 

Due to the rising prevalence of infertility, since the birth of Louise Brown, the first 

human infant conceived through ARTs in July of 1978 (Steptoe and Edwards, 1978), the use 

of ARTs has drastically increased.  Now, the proportion of infants born following ARTs is 

approximately 1.6% of all births in the United States (Sunderam et al., 2015), reaching as 

high as 4.5% of births in developed countries (Ferraretti et al., 2013). In Canada, 32 of 33 
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clinics reported completion of approximately 16, 062 ART cycles in 2013, with an overall 

live birth rate of 25% (Human Assisted Reproduction 2014).  However, when treatment is 

successful (< 40%), it carries an increased risk of perinatal complications even within 

singleton pregnancies, including; (1) preterm birth; (2) intrauterine growth restriction; (3) 

low birth weight (Helmerhorst et al., 2004; Jackson et al., 2004; McGovern et al., 2004; 

Okun and Sierra, 2014; Reddy et al., 2007; Savage et al., 2011; Schieve et al., 2002; 

Sunderam et al., 2014; Wisborg et al., 2010); (4) large for gestational age (Hansen and 

Bower, 2014; Ishihara et al., 2014; Korosec et al., 2014; 2016; Li et al., 2014; Pinborg et al., 

2014; Sazonova et al., 2012; Wennerholm et al., 2013); and (5) higher incidences of the 

genomic imprinting disorders, (a) Beckwith-Wiedemann Syndrome (DeBaun et al., 2003; 

Doornbos et al., 2007; Gicquel et al., 2003; Maher et al., 2003a; Sutcliffe et al., 2006; 

Vermeiden and Bernardus, 2013), (b) Angelman Syndrome (Cox et al., 2002; Doornbos et 

al., 2007; Ludwig et al., 2005; Maher et al., 2003a; Ørstavik et al., 2003), and (c) Silver-

Russell Syndrome (SRS) (Bliek et al., 2006; Chiba et al., 2013; Chopra et al., 2010; Cocchi 

et al., 2013; Hiura et al., 2012; Kagami et al., 2007; Lammers et al., 2012; Vermeiden and 

Bernardus, 2013).  

1.5.2 ART and imprinting disorders 

The overall risk for an imprinting disorder such as BWS, AS or SRS after ART is 

approximately 1 in 5,000 children (Okun and Sierra, 2014).  This is compared to the low risk 

in the general population for BWS (1 in 13,700), AS (1 in 15,000) and SRS (unknown 

prevalence).   Specifically, the risk of BWS is 3-16 times greater in ART-conceived children 

compared to the general population (DeBaun et al., 2003; Gicquel et al., 2003; Gosden et al., 

2003; Halliday et al., 2004; Hiura et al., 2012; Lim et al., 2009; Lucifero et al., 2004; Maher 

et al., 2003a; 2003b; Rossignol et al., 2006; Sutcliffe et al., 2006; van Montfoort et al., 2012; 

Vermeiden and Bernardus, 2013).  Within BWS patients conceived by ART, imprinted 

methylation errors occur at a greater frequency, with over 90% of ART cases showing 

KCNQ1OT1 hypomethylation compared to 50% in the general population (DeBaun et al., 

2003; Gicquel et al., 2003; Gosden et al., 2003; Halliday et al., 2004; Hiura et al., 2012; Lim 

et al., 2009; Maher et al., 2003a; 2003b; Rossignol et al., 2006; Sutcliffe et al., 2006), and 

conversely, 17% of ART cases showing H19 hypermethylation compared to 5% in general 

(DeBaun et al., 2003; Lennerz et al., 2010; Rossignol et al., 2006).  Likewise for AS, 46% of 
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patients conceived by ARTs possessed imprinting defects at the SNRPN ICR (Cox et al., 

2002; Ludwig et al., 2005; Ørstavik et al., 2003) compared to 5% in general (Horsthemke 

and Wagstaff, 2008; Van Buggenhout and Fryns, 2009) while for SRS, 11 out of 12 (92%) 

ART patients harboured H19 hypomethylation (Bliek et al., 2009; Chopra et al., 2010; 

Cocchi et al., 2013; Hiura et al., 2012; Kagami et al., 2007; Lammers et al., 2012; Vermeiden 

and Bernardus, 2013) compared to 40% in the general population (Chiba et al., 2013).  

Overall, studies suggest that ARTs increase imprinting disorders, likely through alterations in 

epigenetic regulation of imprinted gene expression.  Specifically, one explanation for this 

risk is that gamete and embryo manipulations disrupt acquisition and/or maintenance of 

genomic imprints during gametogenesis and preimplantation development.  It is therefore 

essential to determine where imprinted methylation errors are occurring and which aspect(s) 

of ARTs lead to these adverse epigenetic effects. 

1.5.2.1 Mouse model system 

Much of what we know regarding imprinting disorders and ARTs has been 

discovered using the mouse model system.  This system has specifically been instrumental in 

the investigation of the effects of individual ARTs on genomic imprint acquisition during 

gametogenesis and maintenance throughout preimplantation development. Additionally, the 

mouse model allows for controlled studies without issues of confounding infertility that are 

unavoidable when studying human assisted conception.  Major findings from mouse studies 

indicate that imprinted methylation acquisition is not perturbed by superovulation (Denomme 

et al., 2011) or in vitro oocyte maturation in oocytes (Anckaert et al., 2009; 2010; Geuns et 

al., 2003; 2007), but instead imprint maintenance in preimplantation embryos is disrupted by 

superovulation (Hajj et al., 2011; Market-Velker et al., 2010b), in vitro fertilization (IVF) 

(Fauque et al., 2010), in vitro embryo culture (Li et al., 2005; Mann et al., 2004; Market-

Velker et al., 2010a; 2012) and oocyte vitrification (Cheng et al., 2014).  Within these 

studies, imprinted methylation errors in preimplantation embryos occurred at a relatively 

high frequency, with errors present in 10-90% of embryos analyzed.  Studies in our lab have 

specifically analyzed the effect of ovarian stimulation, or superovulation, on imprinted 

methylation at both low (6.25 IU) and high (10 IU) hormone doses.  Superovulation using 

high and low hormone-doses did not perturb imprinted methylation acquisition in individual 

oocytes at Snrpn, Peg3, Kcnq1ot1 or H19  (Denomme et al., 2011).  In contrast, individual 
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blastocyst-stage embryos derived from superovulated females exhibited a dose-dependent 

loss of methylation at imprinted domains, specifically Snrpn, Peg3, Kcnq1ot1 and H19  

(Market-Velker et al., 2010b).  Consequently, we demonstrated that superovulation alone 

perturbs imprinted methylation in blastocyst embryos at a high frequency.  This finding is 

additionally supported by two studies in human that discovered patients receiving ovarian 

stimulation alone as an ART gave birth to BWS and AS children (Chang et al., 2005; Ludwig 

et al., 2005).   

1.5.2.2 Discrepancy between human and mouse 

Disparity has arisen concerning the frequency of imprinting errors produced by ARTs 

in humans compared to mice. When comparing the overall risk for an imprinting disorder, 

10-90% of treated preimplantation mouse embryos show abnormal imprint maintenance 

(Fauque et al., 2010; Hajj et al., 2011; Market-Velker et al., 2010b; 2012), while only 1 in 

5, 000 ART children are at risk for BWS, AS or SRS (Okun and Sierra, 2014).  Overtly, it 

would therefore appear that the mouse is more sensitive than the human with respect to the 

incidence of ART-induced imprinting errors. This has lead to questioning whether the effects 

of ARTs on imprint regulation in the mouse recapitulate those processes involved in humans.  

However, one key difference in studies between these species is the time of analysis. The 

majority of mouse studies have focused on preimplantation or mid-gestation development, 

while human studies are primarily retrospective studies of ART children with imprinting 

disorders. Although few studies on human preimplantation embryos exist (Chen et al., 2010; 

Geuns et al., 2003; 2007; Ibala-Romdhane et al., 2011; Khoueiry et al., 2012; Shi et al., 

2014), most embryos that have been analyzed were poor quality embryos unsuitable for 

transfer.  Therefore it becomes essential to identify the risk for imprinting errors in high 

quality human preimplantation embryos. 

1.5.3 Mitochondria in Assisted Reproductive Technologies 

The importance of mitochondria during gametogenesis and preimplantation has 

recently been acknowledged in human Assisted Reproductive Technologies (ARTs; 

discussed in detail section 1.5).  Fertility clinics around the world are now actively 

addressing the role mitochondria play during preimplantation development by utilizing novel 

techniques to overcome perturbed mitochondrial function.  For example, dietary coenzyme 
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Q10, or CoQ10, an essential component of the electron transport chain, is used in human 

clinics to increase mitochondrial activity with the intention of improving oocyte quality 

(Ben-Meir et al., 2015; Bentov et al., 2010; 2014; Chappel, 2013; Meldrum et al., 2016).  

Additionally, more invasive procedures are also being implemented.  Specifically, 

mitochondrial replacement therapy (MRT) is currently being used in the United Kingdom 

(UK) to circumvent the inheritance of mitochondrial DNA mutations and mitochondrial 

disease to offspring of affected mothers (Reinhardt et al., 2013).  In this technology, 

pronuclear DNA of the intended parents is injected into an enucleated donor oocyte 

containing “mutation-free” mitochondria.  This technique was originally performed in mice 

(Sato et al., 2005), and before implementation in human was also used to produce macaque 

babies (Tachibana et al., 2009).  Currently, juvenile macaque offspring born through 

mitochondrial replacement therapy are seemingly healthy with normal metabolic profiles 

(Tachibana et al., 2013).  However as of now, concern from the United States Food and Drug 

Agency (FDA) has prevented the use of this technology until more data are available to 

support its safety (Couzin-Frankel, 2015).  Consistent with this, results in the mouse suggest 

that MRT could potentially alter respiration, growth, and exercise and learning ability in 

adults (Nagao et al., 1998; Roubertoux et al., 2003).  This could be due to disrupted cross-

talk between genes encoded in the nucleus and the mitochondria, as coordinated interactions 

between mitochondria and nuclear alleles are favored, and these are disrupted by MRT (Muir 

et al., 2016; Reinhardt et al., 2013; Woodson and Chory, 2008).  Nonetheless, although 

controversial, MRT is currently being used in the UK to avoid inherited mitochondrial 

disease. 

 Another mitochondrial treatment has recently been made available to assist 

conception in women of advanced reproductive age or in couples with repetitive failed in 

vitro fertilization (IVF) cycles.  The US-based company OvaScience developed a new 

fertility treatment, termed Autologous Germline Mitochondrial Energy Transfer 

(AUGMENT), and it is based on improving oocyte quality through supplying the egg with a 

supposedly germline-derived source of mitochondria from the ovarian cortex (Woods and 

Tilly, 2015).  Again, the FDA has prohibited its current use in the US. However, it is offered 

at the Toronto Centre for Advanced Reproductive Technology (TCART) clinic in Canada, as 

well in London UK, Istanbul, Japan, Panama, Spain, Turkey and Dubai (Motluk, 2015).  This 
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technique is different from the MRT technique that is used for disease prevention, since 

AUGMENT does not require donor mitochondria but depends on the existence of 

controversial (Zhang et al., 2012), patient-matched cells that are extracted from the ovary 

(Bukovsky et al., 2004; Johnson et al., 2004; Pacchiarotti et al., 2010; Virant-Klun et al., 

2013; White et al., 2012; Zou et al., 2009).  These putative cells are in the ovarian cortex and 

studies in mouse have shown that when reintroduced into adult ovaries they can produce 

mature oocytes and viable preimplantation embryos, including blastocysts (White et al., 

2012).  Additionally, a separate group that transfected these ovarian cells with a GFP virus 

reported production of live offspring that inherited the GFP transgene, birthed from 

transplanted infertile females (Zou et al., 2009).  Importantly, the role of these cells in normal 

folliculogenesis is unknown (Begum et al., 2008).  The AUGMENT technique isolates 

mitochondria from a patient’s own cells extracted from the ovary and injects them into the 

oocyte at the time of intracytoplasmic sperm injection (ICSI) (Tilly and Sinclair, 2013; 

Woods and Tilly, 2015).  Although controversial, the world’s first AUGMENT baby was 

born in Toronto over 1 year ago, on April 13th, 2015. 

1.5.3.1 Effects of ARTs on mitochondria 

Many studies have focused on mitochondrial dynamics during gametogenesis and the 

preimplantation period.  However, much of what we know is based on samples obtained by 

assisted reproductive technologies (ARTs).  ART treatments coincide with critical time 

points where mitochondria are drastically increased during oogenesis, translocated to provide 

stage-specific spatial ATP requirements, and sustained in a non-replicative state during 

preimplantation development while still functioning as the primary ATP source. Few studies 

in mouse and human have addressed the effect of ARTs on mitochondrial dynamics and 

function, with the majority of these focusing on oocyte freezing.  Albeit, a few studies have 

analyzed the effect of ovarian stimulation on mitochondria in mouse (Combelles and 

Albertini, 2003; Ge et al., 2012; Shu et al., 2015) and macaque (Gibson et al., 2005).  These 

studies have shown that ovarian stimulation decreases mitochondrial DNA copy number, 

ATP levels and mitochondrial membrane potential in resulting mouse oocytes (Combelles 

and Albertini, 2003; Ge et al., 2012; Shu et al., 2015) and increases mitochondrial DNA 

deletions in macaque oocytes (Gibson et al., 2005). 
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1.6 Rationale 

With the use of ARTs rising worldwide (Dyer et al., 2016), there is a continual 

emergence of new techniques being implemented in human IVF, including mitochondrial 

replacement therapy (Reinhardt et al., 2013; Wolf et al., 2015) and AUGMENT (Woods and 

Tilly, 2015).  Furthermore, due to the announcement of ART funding in Ontario, which was 

implemented December 2015 (Motluk, 2016), and the absence of strict regulation of ARTs in 

Canada (Assisted Human Reproduction Act), it is becoming increasingly important for 

researchers to investigate the effects of these treatments on the manipulated oocyte and 

preimplantation embryo.   This is especially important as ART techniques coincide with 

critical time points where imprinted DNA methylation marks are being maintained and 

mitochondria are very dynamic (Figure 1-9). As discrepancy in the field exists between risk 

for imprinting disorders in preimplantation mouse embryos and human infants born through 

ARTs, it is essential to identify the risk for imprinting abnormalities in early human embryos.  

Furthermore, with the advent of novel treatments targeting mitochondria, the effects of 

widely used ARTs on mitochondria, such as the indispensible procedure of ovarian 

stimulation, must be determined.   

1.7 Hypothesis 
My overall hypothesis is that imprinted DNA methylation maintenance and 

mitochondrial dynamics are disrupted by ARTs during preimplantation development. 

Specifically, I hypothesize that imprinted methylation errors occur at similar frequencies in 

donated, good quality, human preimplantation embryos compared to those identified in 

mouse. Furthermore, I hypothesize that ovarian stimulation disrupts maternally derived 

mitochondria in oocytes and preimplantation embryos derived from hormone-treated 

females.  

1.8 Objectives 
1. To determine the effect of ARTs on imprinted DNA methylation in human 

preimplantation embryos.  Specifically, this objective will address whether donated 

human ART-produced preimplantation embryos harbour aberrant imprinted 

methylation at similar incidences to that observed in the mouse. 
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a. Determine baseline imprinted DNA methylation levels at SNRPN, KCNQ1OT1 

and H19 in untreated human buccal cell samples. 

b. Determine whether imprinted methylation errors occur in human day 3 (~6-8 

cells) and blastocyst-stage embryos, and whether short or extended culture 

produces a greater frequency of imprinted methylation errors. 

c. Determine whether aberrant imprinted methylation in human day 3 and blastocyst 

embryos correlates with parental biometrics or clinical treatment. 

2. My second objective further extends analyses on the effects of ART treatments on 

resulting embryos by analyzing the effects of ovarian simulation on mitochondria in 

the oocyte and throughout preimplantation development. 

a. Determine whether superovulation disrupts the pool of total mitochondria, active 

mitochondria, and mitochondrial distribution in oocytes and during 

preimplantation development 

b. Determine whether resulting blastocyst embryos exhibit perturbed mitochondrial 

function. 
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Chapter 2  
The work in this chapter originates from the following peer-reviewed article: 

White, C.R., Denomme, M.M., Tekpetey, F.R., Feyles, V., Power, S.G.A., and Mann, 

M.R.W. (2015). High Frequency of Imprinted Methylation Errors in Human Preimplantation 

Embryos. Sci Rep 5, 17311. 

 

2 High frequency of imprinted methylation errors in human 
preimplantation embryos 

Assisted reproductive technologies (ARTs) represent the best chance for infertile 

couples to conceive, although increased risks for morbidities exist, including imprinting 

disorders.  This increased risk could arise from ARTs disrupting genomic imprints during 

gametogenesis or preimplantation.  The few studies examining ART effects on genomic 

imprinting primarily assessed poor quality human embryos. Here, we examined day 3 and 

blastocyst stage, good to high quality, donated human embryos for imprinted SNRPN, 

KCNQ1OT1 and H19 methylation.  Seventy-six percent of day 3 embryos and 50% of 

blastocysts exhibited perturbed imprinted methylation, demonstrating that extended culture 

did not pose greater risk for imprinting errors than short culture. Comparison of embryos 

with normal and abnormal methylation didn’t reveal any confounding factors. Notably, two 

embryos from male factor infertility patients using donor sperm harboured aberrant 

methylation, suggesting errors in these embryos cannot be explained by infertility alone.  

Overall, these results indicate that ART human preimplantation embryos possess a high 

frequency of imprinted methylation errors. 

2.1 Introduction 
Alarming figures indicate that an estimated 48.5 million couples worldwide are unable 

to conceive after 5 years of unprotected sex (Mascarenhas et al., 2012). For these couples, 

medically assisted reproductive technologies (ARTs) represent the best chance to conceive. 

However, when treatment is successful (< 40%), there is an increased risk of perinatal 
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complications even within singletons, including preterm birth, intrauterine growth restriction, 

low birth weight (Mascarenhas et al., 2012; Okun and Sierra, 2014; Savage et al., 2011) and 

the genomic imprinting disorders; (1) Beckwith-Wiedemann Syndrome (BWS) (DeBaun et 

al., 2003; Doornbos et al., 2007; Gicquel et al., 2003; Maher et al., 2003a; Sutcliffe et al., 

2006), (2) Angelman Syndrome (AS) (Cox et al., 2002; Doornbos et al., 2007; Ludwig et al., 

2005; Maher et al., 2003a; Ørstavik et al., 2003), and (3) Silver-Russell Syndrome (SRS) 

(Bliek et al., 2006; Chiba et al., 2013; Chopra et al., 2010; Cocchi et al., 2013; Hiura et al., 

2012; Kagami et al., 2007; Lammers et al., 2012).  

 Genomic imprinting is an epigenetic phenomenon that restricts expression to one 

parental allele while the other allele is in an inactivated state.  Imprinted genes are regulated 

by a master control switch known as a gametic differentially methylated region (gDMR) or 

imprinting control region (ICR). Importantly, abnormal cytosine methylation levels at the 

ICR can lead to imprinting disorders such as BWS, AS and SRS.  

Risk association studies have found increased risks of imprinting disorders in ART 

children. The risk of BWS is 3-16 times greater in children in the ART population compared 

to those in the general population (DeBaun et al., 2003; Gicquel et al., 2003; Halliday et al., 

2004; Hiura et al., 2012; Lim et al., 2009; Maher et al., 2003b; Maher, 2005; Rossignol et al., 

2006; Sutcliffe et al., 2006; van Montfoort et al., 2012). Epigenetic errors at KCNQ1OT1, 

namely maternal hypomethylation, are observed in more than 90% of ART BWS cases 

compared to 50% in the general population (DeBaun et al., 2003; Gicquel et al., 2003; 

Halliday et al., 2004; Hiura et al., 2012; Horike et al., 2000; Lim et al., 2009; Maher et al., 

2003b; Maher, 2005; Rossignol et al., 2006; Sutcliffe et al., 2006; Weksberg et al., 2010), 

while H19 maternal hypermethylation occurs in 17% of ART BWS cases compared to 5% in 

the general population (DeBaun et al., 2003; Lennerz et al., 2010; Rossignol et al., 2006; 

Weksberg et al., 2010).  Of the small number of patients analyzed, 46% of AS patients 

conceived by ARTs possessed imprinting defects at the SNRPN ICR compared to 5% in the 

general population (Cox et al., 2002; Ludwig et al., 2005; Van Buggenhout and Fryns, 2009; 

Ørstavik et al., 2003), while 92% of SRS patients conceived by ARTs harboured H19 

hypomethylation compared to 40% in the general population (Bliek et al., 2006; Chiba et al., 

2013; Chopra et al., 2010; Cocchi et al., 2013; Hiura et al., 2012; Kagami et al., 2007; 

Lammers et al., 2012),. The overall risk for an imprinting disorder such as BWS, AS or SRS 
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in ART children is estimated to be around 1 in 5,000 (Okun and Sierra, 2014).  Thus, 

disparity has arisen concerning the frequency of imprinting errors produced by ARTs in 

humans compared to mice, as mouse studies have identified between 10% to 90% of treated 

preimplantation embryos showing abnormal imprint maintenance (Fauque et al., 2007; Hajj 

et al., 2011; Mann et al., 2004; Market-Velker et al., 2012; 2010).  However, one key 

difference in studies between these species is the time of analysis. The majority of mouse 

studies have focused on preimplantation or mid-gestation development, while human studies 

are primarily retrospective studies of ART children with imprinting disorders. Consequently, 

we sought to determine whether donated human ART-produced preimplantation embryos 

harbour aberrant imprinted methylation at similar incidences to that observed in the mouse 

(Fauque et al., 2007; Hajj et al., 2011; Mann et al., 2004; Market-Velker et al., 2010; 2012). 

Additionally, we analyzed whether short or extended culture produces a greater frequency of 

imprinted methylation errors, and whether aberrant imprinted methylation correlates with 

parental biometrics or clinical treatment. We analyzed methylation levels at SNRPN, 

KCNQ1OT1 and H19 ICRs in individual good to high quality day 3 cleavage and blastocyst 

stage ART-produced human embryos.  

2.2 Materials and Methods 

2.2.1 Donated human embryos 

Twenty-three patients who had completed their fertility treatment at The Fertility 

Clinic at London Health Sciences Centre donated for research 24 day 3 cleavage and 29 

blastocyst-stage human embryos that were no longer needed for their treatment.  Buccal cells 

(B1-B4) were obtained from 4 healthy, non-patient adults (<30 years old). Research ethics 

approval was obtained through the Western University’s Health Science Research Ethics 

Board (102659) and the methods were carried out in accordance with the approved 

guidelines.  Informed consent was obtained from patients donating embryos and non-patient 

adults providing buccal cell samples.  All embryos were cultured in the glucose/phosphate-

free preimplantation stage 1 (P1) culture medium  (Irvine Scientific, California) to day 3, 

then in Blastocyst Medium (BM) in a sequential media protocol (Irvine Scientific, 

California) to the blastocyst stage.  Embryos were slow frozen between the years 2000-2007 

and thawed between October 2013-August 2014.  Slow freezing was performed according to 
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the Testart's (propanediol) freezing method (Testart et al., 1986) using Sydney IVF 

Cryopreservation Kits. 

Day 3 human embryos were graded by blastomere number, and morphological 

fragmentation levels by either the former A through F grading system or the currently used 

G1 through G6 system: A, even, regular, no fragments; B, uneven, irregular, no fragments; 

slight C (slC), slight fragmentation; C, minor (<25%) fragmentation; D, major (between 25-

50%) fragmentation; E, extensive (>50%) fragmentation; F, degenerate; or by fragmentation 

levels: G1, <5% fragmentation; G2, 5-10% fragmentation; G3, 11-25% fragmentation; G4, 

26-50% fragmentation; G5, >50% fragmentation; and G6, degenerate (Hardy et al., 2003; 

Rijnders and Jansen, 1998; Sjöblom et al., 2006).  Following thawing, the majority of 

embryos were G1-G3 grade and had an average of 4 cells (data not shown). 

Blastocyst grading was according to blastocyst cavity size/hatching, inner cell mass 

characteristics and trophoblast cell number giving a numeric-alpha-alpha score based on the 

Gardner and Schoolcraft scoring system (Gardner and Schoolcraft, 1999). Cavity size or 

hatching score was graded as 1, early blastocyst with cavity less than half the embryo 

volume; 2, blastocyst with cavity greater than half the embryo volume; 3, full blastocyst, 

cavity full; 4, expanded blastocyst, cavity expanded beyond earlier embryo size with thinning 

zona; 5, hatching blastocyst; 6, hatched blastocyst.  Inner cell mass (ICM) grading was A, 

tightly packed ICM, many cells; B, loosely grouped ICM, several cells; and C, very few 

cells, and trophectoderm was graded as A, many cells with cohesive epithelium; B, few cells 

with loose epithelium; and C, very few large cells.  All embryos were immediately processed 

for methylation analysis following thawing. 

2.2.2 Isolation of Control Cells 

 Buccal cells were collected using the end of a sterile 20 μL pipet tip and diluted into 

approximately 1000, 100, 50 and 5-10 cells in 20 μL of 1 X PBS (Phosphate-Buffered 

Saline). Buccal cells were then embedded into a 2:1 3% LMP agarose and lysis solution, and 

then subjected to imprinted DNA methylation analysis. One confluent well of a 6-well dish 

(~1x106 cells) of HES2 human ESCs (WiCell Research Institute Inc.) was washed once with 

1X PBS (Sigma) and incubated in TrypLE Express (GIBCO) in Dulbecco’s PBS (DPBS).  

Trypsin was inactivated by addition of DMEM and 10% Fetal Bovine Serum (FBS) medium. 
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Detached hESCs were collected, pelleted gently, washed with 1X PBS and re-suspended in 

1000 μL of 1X DPBS. Approximately 1 μL of cells (~1000 cells) was embedded into a 2:1 

3% LMP agarose and lysis solution, then subjected to bisulfite mutagenesis. 

2.2.3 Imprinted DNA Methylation Analysis 

 Immediately following thawing individual embryos were embedded under mineral oil 

(Sigma) into 10 μL of a 2:1 mixture of 3% LMP agarose (Sigma) and lysis solution [100 mM 

Tris–HCl, pH 7.5 (Bioshop), 500 mM LiCl (Sigma), 10 mM EDTA, pH 8.0 (Sigma), 1% 

LiDS (Bioshop), and 5 mM DTT (Sigma), 1 μl 2mg/ml proteinase K (Sigma), and1 μl 10% 

Igepal (Sigma)]. DNA methylation analysis was performed using the bisulfite mutagenesis 

and clonal sequencing method as previously described (Denomme et al., 2011).  Samples 

were placed on ice for 10 minutes to generate an agarose/lysis bead and subsequently 

incubated overnight in SDS lysis buffer for 20 hours in a 50°C water bath.  Lysis buffer was 

removed and replaced with 300 μL of mineral oil and embryos were either frozen at -20°C 

for a maximum of 3 days or immediately processed for bisulfite mutagenesis.  Briefly, for 

bisulfite treatment, samples were incubated at 90°C to inactivate proteinase K (Sigma) for 

2.5 minutes and transferred to ice for 10 minutes. DNA denaturation was performed in 1 mL 

of 0.1 M NaOH at 37°C for 15 minutes.  Samples were covered with 300 μL of mineral oil 

and 500 μL of 2.5 M bisulfite solution for a 3.5-hour bisulfite conversion at 50°C.  After 

conversion, desulfonation was performed in 1 mL of 0.3 M NaOH at 37°C for 15 minutes.  

Negative controls (beads containing no embryo or buccal cell sample) were processed with 

each bisulfite reaction.  For first round PCR amplification, agarose bead with bisulfite 

converted DNA (10 μL) was added directly to 15 μL of Hot Start Ready-To-Go (RTG) (GE 

Healthcare) PCR bead that contained 0.5 μL of each 10 μM gene-specific external primer, 

1 μL of 240 ng/mL transfer RNA and water with a 25 μL mineral oil overlay. Multiplexing 

of H19 and KCNQ1OT1 was performed during the first round of PCR. SNRPN amplification 

was performed individually.  Five microliters of first round PCR product was added to 20 μL 

of RTG beads mixed with 19 μL 0.5 μL of each 10 μM internal primer and water for nested 

PCR.  Separate second round PCR reactions were performed for H19 and KCNQ1OT1.   

The KCNQ1OT1 PCR bisulfite primers were described previously (Ibala-Romdhane 

et al., 2011; Khoueiry et al., 2012).  The KCNQ1OT1 region analyzed contained a G 
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(94.7%)/A (6.3%) SNP (rs56134303).  For the H19 region (GenBank Af087017, 6161-6409), 

external primers used were as described previously (Khoueiry et al., 2012).  Due to SNPs 

residing in the previously described inner primers (Khoueiry et al., 2012), newly designed 

forward inner primer 5’-TTGGTTGTAGTTGTGGAAT-3’ and H19 reverse inner primer 5’-

AACCATAACACTAAAACCCT-3’ were used for nested PCR, amplifying a 249 base pair 

sequence encompassing 20 CpGs and rs2071094 A (33.6%)/C (66.4%) and rs2107425 G 

(55.5%)/A (44.5%) common SNPs. For SNRPN, nested primers (UCSC, chr15:25, 200, 009-

25, 200, 379) were designed to amplify a 360 base pair region encompassing 24 CpGs and a 

G (84.8%)/A (15.2%) SNP (rs220029) within the ICR as follows, SNRPN outer forward, 5’-

TAGTGTTGTGGGGTTTTAGGG-3’; SNRPN outer reverse, 5’-

TACCCACCTCCACCCATATC-3’; SNRPN inner forward, 5’-

AGGGAGGGAGTTGGGATTT-3’; SNRPN inner reverse, 5’-

CACAACAACAAACCTCTAAACATTC-3’.  All PCR reactions were performed as 

previously described (Al-Khtib et al., 2011), 94°C for 10 minutes followed by 55 cycles of 

94°C for 15 seconds, 56°C for 20 seconds and 72°C for 20 seconds, with a final 72°C for 10 

minute extension.  

PCR products were ligated into the pGEM-T EASY vector system (Promega), 

transformed into Z-competent DH5α Escherichia coli cells (Zymo Research) and following 

blue/white selection and colony PCR, samples were sent for sequencing at Bio Basic Inc. 

(Markham, ON, Canada) (Market-Velker et al., 2010). For both day 3 and blastocyst-stage 

embryos, 30-65 clones were sequenced per embryo per gene.  Methylation patterns were 

determined using online software (BISMA). Identical clones (identical location and number 

of unconverted CpG-associated cytosines and identical location and number of unconverted 

non-CpG-associated cytosines) were included only once and represented one individual DNA 

strand. Only clones with ≥85% conversion rates were included.  Total DNA methylation for 

each gene, or for each allele of a gene, if parental identity was assigned, was calculated as a 

percentage of the total number of methylated CpG/the total number of CpG dinucleotides. 

2.2.4 Statistical Analysis 

Student’s t-test was used to examine significance between embryos with normal methylation 

and those with abnormal methylation for maternal age, hormone dose, and stimulation 
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response (E2 levels).  Statistical analyses for patient diagnosis, hormone induction method, 

fertilization method, and embryo grade was determined using the nonparametric 

Kolmogorov-Smirnov (KS) test to analyze differences between groups.  A p-value of <0.05 

was considered to be significantly different. 

2.3 Results 

2.3.1 Imprinted methylation in control samples 

 As with previous studies, non-ART-treated, human preimplantation embryos cannot 

be obtained for experimental purposes. I therefore determined the imprinted methylation 

levels in readily obtainable cells from adults as a control. Imprinted DNA methylation at the 

SNRPN, KCNQ1OT1 and H19 ICR was first assessed in untreated human buccal cell (Bu) 

samples from 4 young, non-patient adults. Bisulfite clonal sequencing was used to analyze 

20-24 CpGs per gene. For all controls, a total of 30-65 clones were sequenced to obtain 

representative DNA strands.  Sequences with identical CpG methylation profiles and 

unconverted cytosines were considered to be identical and were included once to eliminate 

clonal bias. Each region of analysis included a single nucleotide polymorphism (s) (SNP) that 

when present in heterozygous samples could distinguish between parental alleles (Table 2-1). 

Since we did not have access to patient samples, we consider the methylated strands as the 

presumptive paternal H19, maternal SNRPN and maternal KCNQ1OT1 alleles, and the 

unmethylated strands as the maternal H19, paternal SNRPN and paternal KCNQ1OT1 alleles, 

as was done in previous studies (Ibala-Romdhane et al., 2011; Khoueiry et al., 2012). 

For the SNRPN ICR, a 360 bp-region was analyzed comprising 24 CpGs and a G/A 

SNP (rs220029) that occurs at a general population frequency of 84.8% and 15.2%, 

respectively (Figure 2-1A). All control samples were homozygous at this SNP (Table 2-1), 

and thus no allelic assignment could be made. Total SNRPN methylation levels in buccal cell 

controls (~1000 cells) were Bu1-1000 46%, Bu2-1000 45%, Bu3-1000 43% and Bu4-1000 

40% (Figure 2-1B).  Since buccal samples exhibited a mean SNRPN methylation level less 

than anticipated (43%), we analyzed SNRPN methylation in human embryonic stem cells 

(hESCs), an undifferentiated cell type that more closely matched preimplantation embryos.  

In hESCs, SNRPN methylation levels were 41% (Figure 2-1B), consistent with those in 

buccal cells. To assess cell numbers similar to blastocyst and day 3 embryos, methylation 
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levels were analyzed in ~50 or ~100 cells (Figure 2-1C) and 5-10 cells (denoted hereafter as 

10 cells) (Figure 2-1D) for Bu1 and Bu3 samples.  Total SNRPN methylation levels were 

Bu1-100 39%, Bu1-50 41% (Figure 2-1C), Bu1-10 44% and 41% (Figure 2-1D), and Bu3-

100 49%, Bu3-50 44% (Figure 2-1C), Bu3-10 38% and 42% (Figure 2-1D).  Thus within 

sample, methylation level mean and standard deviation were 42.2±2.8 for Bu1 and 43.2±4.0 

for Bu3.  

For the KCNQ1OT1 ICR, a 265 bp-region was analyzed encompassing 22 CpGs 

(Khoueiry et al., 2012) and a G (94.7%)/A (6.3%) SNP (rs56134303), that eliminated the 

first CpG (Figure 2-2A).  All controls were homozygous at the KCNQ1OT1 SNP (Table 2-1). 

Total KCNQ1OT1 methylation levels in control samples were Bu1-1000 63%, Bu2-1000 

57%, Bu3-1000 58% and Bu4-1000 65%  (Figure 2-2B). Since the mean KCNQ1OT1 

methylation level was greater than anticipated (60%), KCNQ1OT1 methylation was assessed 

in hESCs. KCNQ1OT1 methylation levels were hESC-1000 65% (Figure 2-2B), consistent 

with those in buccal cells.  At cell numbers similar to blastocyst and day 3 embryos, 

KCNQ1OT1 methylation levels were Bu1-100 57%, Bu1-50 65%, (Figure 2-2C), Bu1-10 

64% and 64% (Figure 2-2D), and Bu3-100 54%, Bu3-50 57% (Figure 2-2C), Bu3-10 54% 

and 57% (Figure 2-2D).  Thus within sample, methylation level mean and standard deviation 

were 62.6±3.2 for Bu1 and 56.0±1.8 for Bu3.   
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Figure 2-1: SNRPN imprinted methylation in buccal cell and human embryonic stem 

cell (hESC) control samples.  

 (A) Map of the SNRPN region analyzed. Accession numbers are located below genes, primer 

locations are marked with arrows, and SNPs are indicated by arrowheads. Methylation 

analyses in (B) four buccal cell (Bu1-4) and human embryonic stem cell (hESC) control 

samples with ~1000 cells, (C) in buccal cell samples with ~50 or ~100 cells, as indicated, 

representing blastocysts, and (D) with buccal cell samples ~10 cells, representing day 3 

cleavage embryos. Each group of circles represents an individual human sample. Each line is 

an individual DNA strand. Methylated CpGs are filled black circles and unmethylated CpGs 

are open circles.  Percent methylation is indicated above each set of DNA strands for a gene 

or parental allele and was calculated as the number of methylated CpGs divided by the total 

number of CpG dinucleotides.  
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Figure 2-2: KCNQ1OT1 imprinted methylation in buccal cell and hESC control samples 

 (A) Map of the KCNQ1OT1 region analyzed.  Methylation analyses in (B) buccal cell (Bu) 

and human embryonic stem cell (hESC) control samples with ~1000 cells, (C) in buccal cell 

samples with ~50 or ~100 cells (as indicated), representing blastocysts, and (D) with buccal 

cell samples ~10 cells, representing day 3 cleavage embryos. See Figure legend 2-1 for 

details. 

  



91 

 

Samples assessed for KCNQ1OT1 methylation levels were also analyzed for DNA 

methylation at the H19 ICR.  We initially began our analysis for a 234 bp-region within the 

H19 imprinting control region that included 18 CpGs (Khoueiry et al., 2012) and a common 

A (33.6%)/C (66.4%) SNP (rs2071094) (Figure 2-3A).  However, we observed biased allelic 

recovery and subsequently found two additional SNPs present in the forward and reverse 

inner nested primers. Thus, we designed new internal primers for a larger 249 bp-region 

within the H19 ICR containing 20 CpGs, the rs2071094 (A, 33.6%; C, 66.4%) SNP and 

rs2107425 (G, 55.5%; A, 44.5%) SNPs (Figure 2-3A). For buccal cell samples, Bu3 was 

heterozygous at both H19 SNPs, Bu4 was heterozygous at one SNP, while Bu1 and Bu2 

were homozygous for both H19 SNPs (Table 2-1). Samples Bu1-1000 and Bu2-1000 had 

total H19 methylation levels of 57% and 61%, respectively. Sample Bu3-1000 had 96% 

methylation on the presumptive paternal H19 allele and 11% methylation on the presumptive 

maternal H19 allele (56% total methylation), while Bu4-1000 had 94% and 11% methylation 

on the presumptive paternal and maternal H19 alleles, respectively (52% total methylation) 

(Figure 2-3B).  Thus, total methylation levels fell with a mean (56%) expected for paternally 

methylated and maternally unmethylated alleles. For smaller cell numbers, total H19 

methylation levels were Bu1-100 55%, Bu1-50 60% (Figure 2-3C), Bu1-10 63% and 53% 

(Figure 2-3D), and Bu3-100 59%, Bu3-50 50% (Figure 2-3C), Bu3-10 52% and 54% (Figure 

2-3D), with 94-98% and 3-12% methylation on the presumptive paternal and maternal H19 

alleles, respectively. Thus within samples, methylation level mean and standard deviation 

were 57.6±4.0 for Bu1 and 54.2±3.5 (Pat 95.6±1.5; Mat 8.8±3.6) for Bu3.    

Given the SNRPN, KCNQ1OT1 and H19 methylation levels in all control samples, 

conservatively, we considered a methylation range of 4 times the standard deviations 

above/below the mean as a normal methylation level. For SNRPN, the mean methylation 

level was 42.2%±3.0, generating a 30%-54% normal methylation range. For KCNQ1OT1, the 

mean methylation level was 60.0%±4.4, giving a normal methylation range of 42%-78%.  

The mean methylation level for H19 was 56.0%±4.1, generating a 40%-72% normal 

methylation range.   For embryos with heterozygous SNPs, conservatively ≥70% methylation 

on the presumptive maternal SNRPN, maternal KCNQ1OT1 and paternal H19 alleles and 

≤20% methylation on the presumptive paternal SNRPN, paternal KCNQ1OT1 and maternal 

H19 alleles were considered as normal methylation levels. 
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Figure 2-3: H19 imprinted methylation in buccal cell control samples 

 (A) Map of the H19 region analyzed.  Methylation analyses in (B) buccal cell (Bu) and 

human embryonic stem cell (hESC) control samples with ~1000 cells, (C) in buccal cell 

samples with ~50 or ~100 cells (as indicated), representing blastocysts, and (D) with buccal 

cell samples ~10 cells, representing day 3 cleavage embryos.  Grey circles are not included in 

methylation analyses as they represent a C/T SNP that cannot be distinguished following 

bisulfite conversion. Alleles are separated into presumptive maternal (Mat) and paternal (Pat) 

strands in samples with heterozygous SNPs. See Figure legend 2-1 for details.  
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2.3.2 Aberrant imprinted methylation in day 3 embryos 

During fertility treatment, embryos were cultured to day 3, after which embryos were 

either transferred to the mother, or cryopreserved and stored for future cycles, or cultured to 

the blastocyst stage then cryopreserved and stored for future cycles. For identification 

purposes, embryos were given an alphanumeric ID that included patient number (1-23), 

freeze stage [day 3 cleavage (C) or blastocyst (B)], and embryo number (1-6), for example 

“9C2” represents patient 9, day 3 cleavage embryo 2. Individual, cryopreserved day 3 

cleavage embryos were analyzed for maintenance of imprinted methylation. For all day 3 and 

blastocyst-stage embryos, a total of 30-65 clones were sequenced to obtain representative 

DNA strands and to sequence all possible unique DNA strands following thawing and 

bisulfite treatment.  Data were obtained for 9 of 12 day 3 embryos for SNRPN; 7 of 12 day 3 

embryos for KCNQ1OT1; and 7 of 12 day 3 embryos for H19.  

SNRPN is normally methylated on the silent maternal allele, while the paternal allele 

is unmethylated. All day 3 embryos were homozygous at the rs220029 SNP (Table 2-1) and 

thus were examined for total methylation levels. Of the 9 day 3 cleavage embryos analyzed, 

normal methylation levels were observed for 4 embryos (Figure 2-4A). By comparison, 5 

embryos had abnormal SNRPN methylation levels, with 4 embryos exhibiting aberrant 

hypermethylation (1C1, 62%; 1C5, 67%; 1C6, 59%; 18C1, 62%) while 1 embryo (21C1) 

displaying aberrant hypomethylation of 18%. Overall, 56% of day 3 cleavage embryos had 

abnormal SNRPN imprinted methylation.  

KCNQ1OT1 is also normally methylated on the silent maternal allele, while the 

paternally inherited allele is unmethylated. All 7 day 3 embryos were homozygous at the 

rs56134303 SNP (Table 2-1), and thus, total methylation levels were analyzed.  One embryo 

had methylation levels within the normal range (Figure 2-4B).  Of the remaining 6 embryos, 

1 embryo had abnormal hypermethylation (9C1, 80%) while 5 embryos exhibited aberrant 

KCNQ1OT1 hypomethylation (12C1, 19%; 7C1, 33%; 7C2, 35%; 6C1, 22%; 4C1, 19%).  In 

total, 86% of day 3 cleavage embryos had aberrant KCNQ1OT1 imprinted methylation. 
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Figure 2-4: Methylation of the (A) SNRPN, (B) KCNQ1OT1 and (C) H19 ICRs in day 3 

human cleavage-stage embryos	

Each group of DNA strands is an individual day 3 embryo with embryo ID (top left), and 

percent methylation and presumptive maternal/paternal allele designation (top right) 

indicated.  Normal (N) and abnormal (A) embryos are designated next to percent methylation 

values (top right).  The pre-freeze and post-thaw cell numbers, respectively, are indicated in 

brackets beside each embryo name. Grey circles are not included in methylation analyses as 

they represent a C/T SNP that cannot be distinguished following bisulfite conversion.  See 

Figure legend 2-1 for details.  
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H19 is normally methylated on the paternal allele, while the maternally inherited 

allele is unmethylated. Three day 3 cleavage embryos (4C1, 7C1, 7C2) were heterozygous at 

both rs2071094 and rs2107425, 1 embryo (6C2) was heterozygous at rs2071094 and 2 

embryos (6C1, 9C1) were heterozygous at rs2107425 (Table 2-1), allowing for allelic 

assignment. Only one embryo (3C1) was homozygous at the rs2071094 and rs2107425 SNPs 

and was examined for total methylation levels. Out of 7 day 3 embryos, 2 had a normal 

methylation pattern with methylation ≥70% on the presumptive paternal allele and ≤20% 

hypomethylation on the presumptive maternal allele (Figure 2-4C). Of the remaining 5 

embryos, 3 showed loss of methylation on the presumptive paternal H19 allele (6C1, 35%; 

6C2, 61%) and 2 displayed a gain of methylation on the presumptive maternal allele (7C1, 

85%; 7C2, 71%).  Finally, for the homozygous embryo (3C1), there was a loss of total H19 

methylation (38%). Overall, 71% of day 3 cleavage embryos were abnormally hypo- and/or 

hypermethylated at H19. Furthermore, of the 6 embryos successfully assessed for both 

KCNQ1OT1 and H19 methylation, 3 embryos (50%) displayed aberrant methylation levels at 

both genes (7C1; 7C2; 6C1). 

2.3.3 Abnormal imprinted methylation in blastocyst stage embryos 

Individual, cryopreserved blastocysts were also analyzed for maintenance of 

imprinted methylation. Data were obtained for 12 of 15 blastocysts for SNRPN; 13 of 14 

blastocysts for KCNQ1OT1; and 14 of 14 blastocysts for H19. For SNRPN, 3 blastocyst-stage 

embryos (22B1, 9B2, 17B1) were heterozygous at rs220029, while the remaining 9 embryos 

were homozygous at the rs220029 SNP (Table 2-1).  Four embryos had total methylation 

levels within the normal range (30%-54%) (Figure 2-5).  Of the 8 remaining embryos, 3 

homozygous embryos showed a gain of total SNRPN methylation (10B3, 63%; 14B3, 57%; 

and 14B4, 62%), and 2 homozygous blastocysts exhibited SNRPN hypomethylation (16B2, 

28%; and 23B1, 15%), while 1 heterozygous blastocyst (9B2) exhibited a gain of paternal 

SNRPN methylation (24% Pat) and 2 heterozygous blastocysts possessed both a loss of 

maternal SNRPN methylation and a gain of paternal SNRPN methylation (17B1, 65% Mat, 

26% Pat; and 22B1, 48% Mat, 26% Pat) (Figure 2-5).  In total, 67% of blastocyst embryos 

exhibited abnormal SNRPN imprinted methylation. 

 



97 

 

 

For KCNQ1OT1, all embryos were homozygous at the rs56134303 SNP (Table 2-1), 

allowing total methylation levels to be determined. Normal KCNQ1OT1 methylation levels 

(42%-78%) were observed in 9 blastocysts (Figure 2-6).  For the remaining 4 blastocysts, a 

loss of KCNQ1OT1 methylation was observed (14B2, 16%; 11B1, 19%; 19B1, 37%; and 

2B2, 39%).  Overall, 4 of 13 (31%) blastocysts had abnormal KCNQ1OT1 methylation 

levels.  

The same 14 embryos analyzed for KCNQ1OT1 imprinted methylation were assessed 

for H19 imprinted methylation.  Three blastocysts (4B1, 8B1, 14B2) were heterozygous at 

rs2071094 and rs2107425, 3 blastocysts (9B1, 19B1, 2B1) were heterozygous at rs2071094, 

and 2 blastocysts (2B2 and 13B1) were heterozygous for rs2107425 (Table 2-1). The 

remaining 6 blastocysts (14B1, 11B1, 15B1, 21B1, 4B2 and 20B1) were homozygous for 

both H19 SNPs (Table 2-1). All blastocysts, except 2, fell within the normal H19 methylation 

range (40%-72%) (Figure 2-7).  One blastocyst displayed a loss of total H19 methylation 

(20B1, 29%) and one displayed abnormal gain of maternal H19 methylation (14B2, 87% Pat, 

36% Mat).  Overall, 14% of blastocysts had an abnormal H19 methylation profile.  

Blastocyst 20B1, with aberrant H19 methylation, had normal KCNQ1OT1 methylation, while 

blastocyst 14B2 had abnormal methylation at both H19 and KCNQ1OT1. In total for all three 

genes, 76% day 3 embryos and 50% blastocysts exhibited abnormal imprinted methylation 

(Figure 2-8). 
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Figure 2-5: Methylation of the SNRPN ICR in human blastocyst-stage embryos 

Each group of DNA strands is an individual blastocyst with embryo ID (top left), and percent 

methylation and presumptive maternal/paternal allele designation (top right) indicated. 
Normal (N) and abnormal (A) embryos are designated next to percent methylation values 

(top right).  See Figure legend 2-1 for details. 
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Figure 2-6: Methylation of the KCNQ1OT1 ICR in human blastocyst-stage embryos 

Each group of DNA strands is an individual blastocyst with embryo ID (top left), and percent 

methylation and presumptive maternal/paternal allele designation (top right) indicated.  

Normal (N) and abnormal (A) embryos are designated next to percent methylation values 

(top right).  See Figure legend 2-1 for details. 
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Figure 2-7: Methylation of the H19 ICR in human blastocyst-stage embryos 

Each group of DNA strands is an individual blastocyst with embryo ID (top left), and percent 

methylation and presumptive maternal/paternal allele designation (top right) indicated.  

Normal (N) and abnormal (A) embryos are designated next to percent methylation values 

(top right).  Grey circles are not included in methylation analyses as they represent a C/T 

SNP that cannot be distinguished following bisulfite conversion.  See Figure legend 2-1 for 

details. 
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Figure 2-8: Graphical representation for (A) SNRPN, (B) KCNQ1OT1 and (C) H19 

methylation levels in control buccal and ESC samples, and day 3 cleavage and 

blastocyst-stage embryos 

Black diamonds, control sample methylation levels with grey shaded area indicating normal 

methylation range. Green diamonds, total methylation levels in day 3 embryos and blastocyst 

embryos. Red diamonds indicate presumptive SNRPN, KCNQ1OT1 and H19 maternal alleles 

and blue diamonds indicate presumptive SNRPN, KCNQ1OT1 and H19 paternal alleles, with 

grey dashed lines representing ≥70% methylation and ≤20% methylation allelic cutoffs. 

Asterisk (*) represents a data point for which more than one embryo exists. 
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2.3.4 Intra-patient comparison of imprinted methylation in embryos at 
different preimplantation stages 

The design of this study allowed multiple embryos from the same patient to be 

compared for their imprinted methylation status. Out of 22 patients for whom data were 

obtained, 10 patients had more than one embryo analyzed (Table 2-2). For two patients, 6 

and 7, all in vitro-produced embryos experienced perturbations in imprinted methylation 

(KCNQ1OT1/H19 or H19). The remaining 8 patients had a portion of embryos with normal 

and a portion of embryos with abnormal methylation levels. For patient 1, 3/6 day 3 embryos 

had aberrant SNRPN imprinted methylation.  For patients 2, 10, 14 and 16, 1/2 (abnormal 

KCNQ1OT1), 1/3 (abnormal SNRPN), 3/5 (aberrant KCNQ1OT1/aberrant H19; aberrant 

SNRPN) and 1/2 (abnormal SNRPN) blastocysts had aberrant methylation levels, 

respectively. Finally, three patients had both day 3 cleavage and blastocyst-stage embryos. 

For patient 21 and 4, the day 3 embryos had aberrant methylation (abnormal SNRPN; 

abnormal KCNQ1OT1), while the blastocysts displayed normal methylation levels.  Finally, 

for patient 9, 1 day 3 embryo and 1 blastocyst possessed normal methylation levels, while 1 

day 3 embryo and 1 blastocyst had perturbed methylation (abnormal KCNQ1OT1; abnormal 

SNRPN). Overall, all 10 patients had at least one embryo with aberrant imprinted 

methylation.  Since there were embryos with and without imprinted methylation errors from 

the same patient, and there were genes with and without aberrant imprinted methylation in 

the same embryo, methylation errors were likely stochastic in nature.  Furthermore, the 

presence of methylation errors in both day 3 cleavage and blastocyst-stage embryos indicates 

that methylation errors arise as early as the 6-8 cell stage, and that extended culture does not 

pose a greater risk for imprinting errors than short culture. 

2.3.5 Correlation between parental biometrics, clinical treatment and 
aberrant imprinted methylation 

Medical records were examined for parental biometrics, clinical treatment and 

pregnancy outcomes. Clinical pregnancy rates for fresh embryo transfers as determined by 

gestational sac by ultrasound were 65% for the same cycle in which the surplus embryos 

were cryopreserved and donated. Live birth rate was 61% and live births/embryo transfer was 

36% (Table 2-3). Of all live births, 45% (9/20) of newborns (2 singletons, 3 sets of twins, 

and 1 of the triplets) were outside clinically normal birth weight, with 1 high birth weight 
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(>4000 g), 5 low birth weight (<2500), 1 very low birth weight (<1500 g) and 2 extremely 

low birth weight (<1000 g). Gestational age was not obtained.  To discern any confounding 

factors related to parental biometrics or clinical treatment, embryos with methylation levels 

in the normal range were compared to embryos with aberrant methylation for maternal age, 

patient diagnosis, induction method, hormone dose, stimulation response (E2 levels), 

fertilization method (IVF/ICSI), and embryo grade (Table 2-4).  Note that for all embryos, 

the same conditions and reagents were used for in vitro culture and slow-freezing 

cryopreservation, and thus no comparison could be made. For this analysis, the premise was 

that each embryo could have a different response to influences/exposures, although we 

acknowledge that embryos from the same mother may have similar exposures to maternal 

factor treatment. To make a comparison at the patient level for maternal age, hormone dose 

and estrogen response, separate analyses was also done for patients with only one embryo 

(12/22), since the remaining 10 patients with more than one embryo had a least one embryo 

with abnormal methylation. Data from both stages were combined for analyses, except for 

embryo grade.  

Maternal age range for patients in this study was 23-42 years. Mean maternal age for 

embryos with normal methylation levels was 34 years while that for embryos with aberrant 

methylation was 33 years (Figure 2-9A), which was not statistically different (p=0.21). 

Excluding patients with more than one embryo, maternal age for embryos with normal 

methylation levels was 33 years while that for embryos with abnormal methylation was 30 

years (results not shown) (p=0.38). Multiple etiologies contributing to infertility were 

diagnosed in patients. The four most common patient diagnoses were bilateral tubal 

obstruction/occlusion (BTO, 29.4% normal, 26.9% abnormal), male factor (MF, 17.6% 

normal, 15.4% abnormal), blocked tubes with endometriosis (BTO+ENDO, 11.8% normal, 

15.4% abnormal) and polycystic ovarian syndrome (PCOS, 11.8% normal, 11.5% abnormal) 

(Figure 2-9B). Thus, patient diagnoses were not statistically different between embryos with 

normal and abnormal methylation levels (p>0.99).  For induction method, Nafarelin 

(Synarel®) and Follitropin-alpha (Gonal-F®) was the most common hormone combination 

for patients with both normal (70.6%) and abnormal (69.2%) embryo groups, followed by 

Urofollitropin (Bravelle®) and Ganirelix Acetate (Orgalutran®) (11.8% normal and 7.7% 

abnormal) (Figure 2-9C). Thus, no significant difference was observed for hormone 
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induction method (p=0.80).  Mean hormone dose and estrogen response (E2) was calculated 

at 2894.1 IU and 15084.4 pM/L for the normal group and at 2361.5 IU and 12484.7 pM/L for 

the abnormal group (Figure 2-9D,E), which was not significantly different (p=0.18 and 0.20, 

respectively).  Excluding patients with more than one embryo, dose and estrogen response 

(E2) was 4150 IU and 15394.3 pM/L for the normal group and 2233.3 IU and 11546.6 pM/L 

(results not shown), which was not significantly different (p=0.06 and p=0.43, respectively). 

For fertilization method, percentage of embryos in the normal group was 62.5% IVF and 

47.5% ICSI, and in the abnormal group was 57.7% IVF and 42.3% ICSI (Figure 2-9F), 

which did not differ statistically (p=0.33). For day 3 embryo grade, embryos with normal 

methylation levels exhibited a grade of slight C/G2 (slC/G2) (3 embryos) and C/G3 (1 

embryo) while those with abnormal methylation levels had a grade of A/B/G1 (4 embryos), 

slC/G2 (8 embryos) and C (1 embryo) (Figure 2-9G).  Importantly, embryos transferred to 

patients (Table 2-3, 28A/B/G1, 15 slC/G2 and 12 C/G3) had similar grading information to 

those that were frozen. For blastocysts, 10 of the 13 embryos with normal methylation levels 

had grading information; 3 were AA, 1 AB, 1 BA, 2 BB, 1 BC, 1CA and 1 CB (Figure 2-

9H).  For embryos with abnormal methylation levels, 6 of the 13 had grading information: 5 

were AA and 1 BA. These grades were not statistically different (p=0.25). A comparison of 

these grading criteria separately showed that for stage (all 26 embryos included), embryos 

with normal methylation (5 stage 2, 2 stage 3, 6 stage 4) were not significantly different 

(p>0.99) from embryos with abnormal methylation (1 stage 1, 7 stage 2, 3 stage 3, 2 stage 4). 

For ICM grade, embryos with normal methylation (4 A, 4 B, and 2 C) were not statistically 

different (p=0.40) than embryos with abnormal methylation levels (5 A, 1 B). For TE grade, 

embryos with normal methylation (5 A, 4 B, 1 C) were not statistically different (p=0.60) 

from embryos with abnormal methylation levels (6 A).   Overall, no specific parameter was 

identified to have an association with abnormal imprinted methylation. Importantly, we 

found that embryos of the highest quality with day 3 A/B/G1 and blastocyst AA grading can 

have abnormal methylation.  
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Figure 2-9: Patient characteristics and embryo outcome for embryos with normal and 

abnormal imprinted methylation 

Day 3 cleavage and blastocyst-stage embryos exhibiting normal imprinted methylation 

(purple bars; n=17) were compared to those with abnormal methylation (orange bars; n=26) 

for (A) maternal age (t-test), (B) patient diagnosis (KS test), (C) induction method (KS test), 

(D) hormone dose (t-test), (E) estrogen levels (t-test), and (F) fertilization method (KS test).  

Means are indicated by black line for maternal age, hormone dose and estrogen levels.  (G) 

Grading of day 3 embryos with normal (n=4) and abnormal methylation (n=13) (no statistical 

analysis). (H) Blastocysts with normal [n=13 (stage), n=10 (grade)] and abnormal 

methylation [n=13 (stage), n=6 (grade)] were compared for embryo stage and grade (KS 

test). No significant difference was observed for any parameter between embryos with 

normal and abnormal methylation. BTO, bilateral tubal obstruction/occlusion; MF, male 

factor; ENDO, endometriosis; PCOS, polycystic ovarian syndrome; AMA, advanced 

maternal age; IDIO, idiopathic; ANOV, anovulatory; TD, tubal disease; (donor), donor 

sperm; FPES Fresh/frozen percutaneous epididymal/testicular sperm aspiration sample; Syn, 

Synarel® (Nafarelin); G-F, Gonal-F® (Follitropin-alpha); Brav, Bravelle® (Urofollitropin); 

Org, Orgalutran® (Ganirelix Acetate); Lup, Lupron® (Leuprolide Acetate); Rep, Repronex® 

(Menotropins); Men, Menopur® (Menotropins); Pur, Puregon® (Follitropin-beta); Fert, 

Fertinorm® (Urofollitrophin); IVF, in vitro fertilization; ICSI intracytoplasmic sperm 

injection. See methods for embryo grades.   
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2.4 Discussion 
Although mouse models have been instrumental in analyzing the effects of ARTs on 

genomic imprinting in oocytes and early embryos, it is important to assess the effects of these 

technologies in donated human counterparts.  This is especially important, as imprinting 

errors were perceived to be more common in mouse preimplantation embryos than in ART-

conceived children.  In this study, we observed that 76% day 3 embryos exhibited perturbed 

imprinted methylation, with 56%, 86% and 71% day 3 embryos possessing aberrant SNRPN, 

KCNQ1OT1 and H19 imprinted methylation, respectively. Furthermore, 50% blastocyst-

stage embryos exhibited abnormal methylation levels with 67%, 31% and 14% blastocysts 

having aberrant SNRPN, KCNQ1OT1 and H19 imprinted methylation, respectively.  Both 

losses and gains of imprinted methylation were observed, and in some cases, both within the 

same embryo (ex. 17C1, 22B1).  Additionally, 50% of day 3 and one blastocyst embryo 

exhibited both KCNQ1OT1 and H19 imprinted methylation perturbations (6C1, 7C1, 7C2, 

14B2).  This is similar to the multi-locus loss of imprinting we previously observed in the 

mouse (Market-Velker et al., 2010) and that others have reported in BWS and SRS children 

(Azzi et al., 2009; Bliek et al., 2009; Chang et al., 2005; DeBaun et al., 2003; Hiura et al., 

2012; Lennerz et al., 2010; Lim et al., 2009; Rossignol et al., 2006; Turner et al., 2010).  

 Very few studies have examined the effects of ARTs on genomic imprinting in 

donated human preimplantation embryos (Chen et al., 2010; Geuns et al., 2003; 2007; Ibala-

Romdhane et al., 2011; Khoueiry et al., 2012; Shi et al., 2014). Moreover, these studies were 

primarily performed on poor quality embryos that were unsuitable for transfer. Nevertheless, 

their results were similar to what is reported here.  For SNRPN, 8/9 day 3 embryos (89%) 

possessed a loss or gain of methylation (Geuns et al., 2003). For KCNQ1OT1, 7/67 day 3 

embryos (10%) (Shi et al., 2014) and 9/16 poor quality blastocysts (56%) harboured aberrant 

methylation (Khoueiry et al., 2012). Finally for H19, 3 studies reported aberrant imprinted 

methylation in 6/32 day 3 embryos (17%) (Chen et al., 2010), 9/21 poor quality morula-

blastocysts (43%) (Ibala-Romdhane et al., 2011), and 5/60 blastocysts (8%) (Shi et al., 2014), 

while the remaining study did not observe any alterations in H19 imprinted methylation in 8 

low quality blastocysts (0%) (Khoueiry et al., 2012). In addition to these genes, previous 

studies identified 11/65 day 3 embryos (17%) with abnormal PEG1 imprinted methylation 

(Shi et al., 2014) and 18/24 day 3 embryos (75%) with aberrant GTL2 imprinted methylation 
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(Geuns et al., 2007). All together, our study along with previous publications demonstrate 

that the frequency of imprinting errors in human donated preimplantation embryos (6-89%) 

occurs at a similar frequency to that produced in mouse preimplantation embryos (10-90%) 

(Fauque et al., 2007; Hajj et al., 2011; Market-Velker et al., 2010; 2012).  

Of the above studies, two examined imprinted methylation in good quality, in vitro 

produced embryos. For KCNQ1OT1, 2/5 high quality (40%) blastocysts harboured aberrant 

methylation (Khoueiry et al., 2012), which was similar to what we report here (4/13; 31%). 

For H19, 0/5 high quality (0%) morula-blastocysts (Ibala-Romdhane et al., 2011) and 0/5 

high quality blastocysts (0%) possessed aberrant methylation (Khoueiry et al., 2012). This 

contrasted with our study where we observed 2/14 blastocysts (14%) with aberrant H19 

methylation. This discrepancy may relate to the number of embryos analyzed in these 

studies. 

The design of our study allowed comparison of short culture to day 3 cleavage stages 

and extended culture to the blastocyst stage. Our data together with previous studies found 

imprinted methylation errors at both stages; SNRPN day 3 (56%, 89%) versus blastocysts 

(67%); KCNQ1OT1 day 3 (86%, 10%) versus blastocysts (31%, 40%, 56%); and H19 day 3 

(71%, 17%) versus blastocysts (14%, 8%, 0%) (Chen et al., 2010; Ibala-Romdhane et al., 

2011; Khoueiry et al., 2012; Shi et al., 2014).  Thus, the presence of methylation errors in 

embryos undergoing both short (55% embryos) and extended (31% embryos) culture 

indicates that methylation errors arise as early as the 6-8 cell stage. Furthermore, extending 

culture from day 3 to the blastocyst stage does not appear to pose any greater risk for 

imprinting errors. Consequently, our study offers additional support for extended culture to 

the blastocyst stage to select the most developmentally competent embryos.   

Although the frequency of imprinting errors was similar between mice and human 

preimplantation embryos, disparity still exists between frequencies of imprinting errors in 

human preimplantation embryos compared to frequencies of imprinting errors reported in 

ART children. One explanation for this discrepancy may be that imprinting errors in the early 

embryo lead to reduced levels of implantation or pregnancy failure. Alternatively, 

blastomeres with aberrant imprinted methylation may be preferentially relegated to the 

extraembryonic lineages. Previous studies in the mouse provide support for the latter 
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explanation, since we and others have observed a selective loss of imprinting in the placenta 

compared to the embryo in midgestation mouse embryos following preimplantation 

development in culture (de Waal et al., 2014; Mann et al., 2004; Rivera et al., 2008). 

Infertility rates have increased around the world (Chandra et al., 2013; Mascarenhas 

et al., 2012). Advanced maternal age (>35 years) is directly related to this rise, consequently 

leading to the question of whether delayed childbearing in ART women may contribute to 

increased imprinting errors in ART children. Additionally, current evidence indicates that the 

supra-physiological hormonal milieu of ovarian stimulation may produce adverse outcomes 

in ART pregnancies. For example, similar incidences of low birth weight and preterm low 

birth weight were present in ART children produced from donor oocytes from fertile women 

compared to oocytes from subfertile mothers (Kalra and Barnhart, 2011).  This birth weight 

variation in in vitro-conceived children may be explained by alterations in DNA methylation 

levels at growth-related genes, as detected in newborn cord blood and placenta (Turan et al., 

2012). With respect to imprinting disorders, ovarian stimulation has also been linked to BWS 

and AS in ART-conceived children (Chang et al., 2005; Ludwig et al., 2005; Sutcliffe et al., 

2006), and for some of these children, the only procedure used was ovarian stimulation 

(Chang et al., 2005; Ludwig et al., 2005).  Our comparison of maternal age, induction 

method, hormone dosage levels and stimulation response in embryos with and without 

aberrant methylation revealed no significant difference between these groups.  These results 

were not all that surprising, since embryos with and without methylation errors may have had 

similar exposures to maternal factor treatment and/or parental biometrics; and all embryos 

were generated using supra-physiological hormone dosages and the same conditions for in 

vitro culture and slow-freezing cryopreservation. Similarly, no significant difference in 

fertilization method (IVF/ICSI) or blastocyst grade was observed between embryos with 

normal or abnormal imprinted methylation. However, it should be noted that even the highest 

quality day 3 cleavage (A/B/G1) and blastocyst-stage (AA) embryos harbour abnormal 

methylation levels. This finding has significant bearing on future studies employing high 

quality embryos as their control group. One further observation of note was that two embryos 

(19B1, 20B1), produced via donor sperm for male factor infertility, possessed abnormal 

imprinted methylation. This suggests that imprinting errors in these embryos cannot be 

explained by inherent infertility, but instead may point to ART-induced errors. Further 
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studies are required to investigate imprinted methylation errors in in vitro-produced embryos 

using donor oocytes and sperm 

 There were several limitations of this study. Similar to other studies on ART human 

embryos, our investigation lacks naturally conceived controls, which is ethically 

unavoidable. Additionally, due to limited availability of donated embryos, this study and 

others employed small numbers in analyses. However, the statistical analyses used in this 

type of study remains valid within the embryo population analyzed, and may allow 

cumulative analysis of larger sample sizes in the future. Finally, although our study 

controlled for operating procedure in the clinic, donated embryos analyzed here were 

obtained from a single fertility clinic.  

Going forward, future research should focus on determining differences between 

human embryos with and without imprinting errors with respect to embryo properties, the 

timing and origin of these errors, as well as the molecular factors responsible for inducing 

imprinted methylation errors in ART embryos. Animal models will be instrumental in these 

studies prior to investigation in human embryos.  
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Table 2-1: Buccal cell sample, hESCs and embryo genotype 

  SNRPN KCNQ1OT1 H19 H19 
Study ID rs220029 rs56134303 rs2071094 rs2107425 
   (Mat/Pat)*  (Mat/Pat)*  (Mat/Pat)*  (Mat/Pat)* 
Controls     
Bu1 G/G G/G A/A G/G 
Bu2 G/G G/G T/T A/A 
Bu3 G/G G/G T/A A/G 
Bu4 G/G G/G A/T G/G 
hESCs G/G G/G   
Day 3     
1C1 G/G     
1C2 G/G    
1C3 G/G    
1C4 G/G    
1C5 G/G    
1C6 G/G    
9C2 G/G    
18C1 G/G    
21C1 G/G    
3C1  G/G A/A G/G 
3C2  IC IC IC 
4C1  G/G T/A A/G 
6C1  G/G T/T A/G 
6C2  IC T/A G/G 
7C1  G/G T/A A/G 
7C2  G/G T/A A/G 
9C1  G/G A/A A/G 
12C1  G/G IC  
Blastocyst     
9B2 A/G    
10B1 G/G    
10B2 G/G    
10B3 G/G    
14B3 G/G    
14B4 G/G    
14B5 G/G    
16B1 G/G    
16B2 G/G    
17B1 A/G    
22B1 G/A    
23B1 G/G    
2B1  G/G T/A G/G 



112 

 

2B2  G/G T/T G/A 
4B1  G/G T/A A/G 
4B2  G/G A/A G/G 
8B1  G/G T/A A/G 
9B1  G/G A/T G/G 
11B1  G/G A/A G/G 
13B1  G/G T/T A/G 
14B1  G/G A/A G/G 
14B2  G/G T/A A/G 
15B1  G/G A/A G/G 
19B1  G/G A/T G/G 
20B1  G/G A/A G/G 
21B1   IC A/A G/G 

* presumptive maternal and paternal alleles 

Bu, buccal cell samples; hESCs, human embryonic stem cells; Mat, maternal; Pat, paternal; 

C, day 3 cleavage stage embryo; B, blastocyst stage embryo; ND, not determined; IC, 

inconclusive. 
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Table 2-2: Comparison of imprinted methylation status of patients with single and 

multiple embryos 

Patients with a single embryo 
Emb 3 12 18 8 11 13 15 17 19 20 22 23 
 
C1 

K 
65 

 
K 
19 

 
S 
62 

         

H 
38 

         

 
 
B1 

   K 
62 

K 
19 

K 
70 

K 
74 

S 
65M 
26P 

K 
37 

K 
51 

 
S 

48M 
26P 

 
S 
15 

H 
88P 
9M 

H 
45 

H 
89P 4M 

H 
61 

 H 
89P 
14M 

H 
29 

Patients with multiple embryos 
Emb 6 7 1 2 10 14 15 21 4 9 

 
 

C1 

K 
22 

K 
33 S 

62     S 
18 

K 
19 

K 
80 

 
H 

35P 
5M 

H 
95P 
85M 

H 86P 
14M 

H 
70P 
5M 

 
 

C2 
H 

61P 
11M 

K 
35 S 

42       S 
52 H 

94P 
71M 

C3   S 46        

C4   S 42        
C5   S 67        
C6   S 59        

 
 

B1    

K 
57 S 

33 

K 
76 S 

42 
H 
66 

K 
48 

K 
48 

H 
90P 
10M 

H 
53 

H 
89P 
9M 

H 
88P 
9M 

B2 

   

K 
39 S 

36 

K 
16 S 

28  

K 
45 S 

77M 
24P 

H 
88P 
9M 

H 
87P 
36M 

H 
41 

B3     S 63 S 57     
B4      S 62     
B5      S 33     

Emb, embryo; S, SNRPN; K, KCNQ1OT1; H, H19; Numbers, % methylation; P, paternal; M, 

maternal; purple, normal methylation levels; orange, abnormal methylation levels. 
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Table 2-3: Pregnancy outcome for each patient 

Patient  # ET Embryo grade Pregnancy Live birth BW (g) Category 
1 2 8B,10slC No -   
2 3 8B,8B,7B No -   
3 2 9slC,8A Yes Y (twins) 925, 820 EL,EL 
4 2 8B, 9B No -   
5 3 8A,8A,8slC Yes Y (twins) 2240, 2466 L,L 
6 3 10slC,8A,8A Yes Y 1185 VL 
7 2 9slC,10slC Yes Y 3856 N 
8 2 10C,8B No -   
9 3 8B,8slC,8A Yes Y (twins) 2722, 2665 N,N 
10 2 8slC,9C Yes Y 3600 N 
11 2 8slC,6slC Yes Y 3260 N 
12 3 8A,7C,A* Yes Y 2920  
13 3 7C,4B,5C No -   
14 3 8A,8B,8B Yes Y (triplets) 2268, 2551, 2551 L, N, N 
15 2 7C,10C No -   
16 2 6slC,6C Yes N   
17 2 7B,7slC Yes Y 2948 N 
18 2 8B,10B Yes Y 4678 H 
19 2 8slC,10C No -   
20 3 8B,8slC,8A Yes Y 3912 N 
21 3 8C,8C,8C Yes Y (twins) 2325, 2041 L,L 
22 2 7A,9A Yes Y 3515 N 
23 2 10slC,8A No -     

ET, embryos transferred; BW, birth weight; N, normal BW; L, low BW; VL, very low BW; 

EL, extremely low BW. Asterisk indicates embryo was compacting. Gestational age was not 

obtained. 
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Table 2-4: Patient biometrics and clinical treatment 

Emb, embryo; Mat, maternal; C, day 3 cleavage stage embryo; B, blastocysts; E2, serum 

estrogen on day of hCG trigger; ICSI, intracytoplasmic sperm injection; IVF, in vitro 

fertilization; MF, male factor; ENDO, endometriosis; BTO, bilateral tubal 

obstruction/occlusion; IDIO, idiopathic; PCOS, polycystic ovarian syndrome; AMA, 

advanced maternal age; ANOV, anovulatory; TD, tubal disease; DONOR, donor sperm; 

FPES, Fresh/frozen percutaneous epididymal/testicular sperm aspiration sample; --, no grade 

available. 
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Chapter 3  

3 Superovulation disrupts mitochondria in mouse oocytes 
and preimplantation embryos 

3.1 Introduction 
Mitochondria are vital for oocyte and preimplantation embryo developmental 

competence.  This has been perpetually demonstrated over the years in multiple different 

species, including mouse and human [reviewed in (Chappel, 2013; Schatten et al., 2014; Van 

Blerkom, 2011)]. Consequently, in the assisted reproductive technology (ART) field, fertility 

clinics around the world have been exploring experimental techniques that target 

mitochondria to improve IVF success.  For example, three-parent mitochondrial replacement 

therapy (MRT) was approved for human clinical investigation in the United Kingdom on 

February 3rd, 2015. This technique has emerged to bypass inheritance of mitochondrial 

disease from affected mothers to offspring by injecting the pronuclei of intended parents into 

an enucleated donor oocyte (Reinhardt et al., 2013).  Furthermore, AUGMENT (for 

autologous germline mitochondrial energy transfer), a novel and controversial technique, is 

currently being offered in one city in North America, first originating at the Toronto Centre 

for Advanced Reproductive Technology (TCART) clinic, in addition to being offered in 

London, Japan, Panama, Spain, Turkey and Dubai (Motluk, 2015) 

(http://www.augmenttreatment.com/#find-a-clinic).  This technique injects patient-matched 

mitochondria obtained from a population of cells existing within the woman’s ovarian cortex 

into the oocyte at the time of intracytoplasmic sperm injection (ICSI) (Motluk, 2015; Tilly 

and Sinclair, 2013; Woods and Tilly, 2015).  The idea behind AUGMENT is to supplement 

the mitochondrial pool in oocytes from women of advanced reproductive age or in couples 

with multiple failed rounds of infertility treatments (Motluk, 2015; Woods and Tilly, 2015).  

The world’s first AUGMENT baby was born in Toronto in April of 2015. However, despite 

this success, there are still many unanswered questions regarding the risks these treatments 

pose to the resulting offspring. Furthermore, little research has been conducted to determine 

what effects common ART treatments, such as ovarian stimulation, have on the oocyte and 

preimplantation embryo during in vitro development. 
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The mature human MII oocyte contains about 100,000 to 400,000 mitochondria 

(Cummins, 2002; Jansen, 2000; Jansen and de Boer, 1998; Jansen and Burton, 2004), which 

is similar to the number originally identified in mouse eggs (92,500 ± 7000) (Pikó and 

Matsumoto, 1976). In somatic cells the number of mitochondria vary depending on ATP 

requirements but are orders of magnitude lower than the MII oocyte, ranging from 265 ± 40 

in mouse fibroblasts to 308 ± 47 in human lung fibroblasts (Robin and Wong, 1988).  The 

mitochondrial complement in the MII oocyte is derived from approximately 10-20 

mitochondria in primordial germ cells (PGCs), which increases during oocyte growth 

through mitochondrial DNA replication and biogenesis (Cummins, 2002; Jansen, 2000; St 

John et al., 2010; Van Blerkom, 2011). The resultant mitochondrial population in MII 

oocytes represents the only source of mitochondria in resulting offspring.   

Given the large size of the mature oocyte, adequate mitochondria numbers and proper 

mitochondrial distribution are necessary to fulfill spatial ATP requirements.  In the mouse, 

bursts of ATP production coincide with perinuclear mitochondrial translocation throughout 

meiotic maturation, specifically during germinal vesicle breakdown (GVBD), metaphase I 

(MI) spindle migration, MI to MII transition, and polar body (PB) extrusion (Van Blerkom, 

1991; Yu et al., 2010).  At the MII ovulated stage, some reports suggest mitochondria 

organize to the perinuclear region (Calarco, 1995; Kan et al., 2011; Nagai et al., 2006), while 

others indicate mitochondria are homogeneously distributed throughout the cytoplasm 

(Tokura et al., 1993; Van Blerkom, 2004; Yu et al., 2010).  In addition, a subcortical ring of 

high potential mitochondria is necessary for sperm penetration and consequently fertilization 

and meiotic maturation (Van Blerkom and Davis, 2007). 

Upon oocyte meiotic maturation, mitochondrial DNA replication ceases and does not 

resume until post-implantation (Larsson et al., 1998; Pikó and Chase, 1973; Pikó and Taylor, 

1987; Thundathil et al., 2005). This absence of mitochondrial DNA replication during 

cleavage stages of embryogenesis has been confirmed in mice (Ebert et al., 1988; Larsson et 

al., 1998; Pikó and Chase, 1973; Pikó and Taylor, 1987), rats (Meziane et al., 1989), pigs 

(Kameyama et al., 2007), and frogs (Shourbagy et al., 2006). Although mitochondrial 

numbers are anticipated to remain relatively constant within the preimplantation embryo, 

paradoxically after fertilization, this means that the mitochondrial complement per 

blastomere halves with each cell division in concert with an increased demand for ATP (Van 
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Blerkom, 2009; 2011).  Spatial distribution of mitochondria is also important throughout 

preimplantation development.  In mouse and human, mitochondria predominantly exhibit 

perinuclear localization in 1-cell (Tokura et al., 1993; Van Blerkom, 2000; Van Blerkom et 

al., 2000; Van Blerkom, 2009; Zhao et al., 2009) and 2-cell (Tokura et al., 1993; Van 

Blerkom et al., 2000; Van Blerkom, 2009; Wilding et al., 2001) embryos.  During cell 

cleavage, symmetrical segregation of mitochondria surrounding the pronuclei in 1-cell 

embryos and between blastomeres of 2-cell to 8-cell embryos is associated with enhanced 

developmental competence (Van Blerkom et al., 2000). By comparison, asymmetric 

distribution of mitochondria in early cleavage embryos can result in arrested division and 

lysis (Van Blerkom et al., 2000).  Beyond the 8-cell stage, mitochondria segregate 

differentially between outer and inner blastomeres (Van Blerkom et al., 2000) to ultimately 

establish a higher mitochondrial content in trophectoderm (TE) cells compared to inner mass 

cells (Assou et al., 2006; Houghton, 2006; St John et al., 2010; Thundathil et al., 2005).  This 

asymmetric distribution is likely required during cavitation to power the sodium-potassium 

adenosine triphosphatase (Na+/K+-ATPase) pump, which is present on the basolateral surface 

of TE cells, to enable blastocoel cavity formation (Houghton, 2006; Van Blerkom, 2008). 

Although numerous studies have analyzed mitochondrial dynamics during 

gametogenesis and preimplantation development, this knowledge is based on oocytes and 

embryos obtained through assisted reproductive technologies (ARTs).  However, ART 

treatments coincide with critical time points where mitochondria are highly replicative and 

drastically increase in numbers during oogenesis, distributed to provide stage-specific spatial 

ATP requirements, and sustained in a non-replicative state during preimplantation 

development. Few studies in mouse and human have described negative effects of ARTs on 

mitochondrial dynamics and function, with most focusing on oocyte freezing (Demant et al., 

2012; Jones et al., 2004; Lei et al., 2014; Manipalviratn et al., 2011; Martino et al., 2013; 

Wilding et al., 2001; Zander-Fox et al., 2013; Zhao et al., 2009).  These studies also have the 

confounding effects of superovulation/ovarian stimulation. Finally, there is an emerging 

interest in the role mitochondria play in epigenetic gene regulation (Martinez-Pastor et al., 

2013; Rathmell and Newgard, 2009; Wallace, 2010; Wallace and Fan, 2010; Wellen et al., 

2009).  More specifically, mitochondria provide the cell with its source of ATP, which 

powers chromatin-remodeling complexes and is needed for conversion of methionine to S-
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adenosylmethionine (SAM), the cells sole methyl donor required for histone and DNA 

methylation (Martinez-Pastor et al., 2013; Wallace, 2010). Additionally acetyl-coA required 

for histone acetylation is mainly derived from citrate, a byproduct derived solely from the 

mitochondria through the tricarboxylic acid (TCA) cycle (Wallace, 2010; Wallace and Fan, 

2010; Wellen et al., 2009).   Therefore, disruptions in mitochondrial numbers, dynamics 

and/or function could lead to perturbations in epigenetic gene regulation.   

Here, I investigated, for the first time, the effect of ovarian stimulation on 

mitochondrial levels, distribution, and function in mouse oocytes and preimplantation 

embryos under control and stimulated conditions.  As a detailed analysis of mitochondrial 

properties throughout all stages of preimplantation development has not been obtained, I 

analyzed mitochondrial dynamics in oocytes, and 1-cell, 2-cell, 4-cell, 8-cell, morula- and 

blastocyst-stage embryos. To assess if mitochondrial perturbation coincides with disrupted 

DNA methylation, I investigated levels of CHDH, an inner mitochondrial membrane enzyme 

required in the betaine pathway of methylation production, in control embryos and embryos 

obtained after hormone stimulation. Overall, the results of this novel study improves our 

knowledge of mitochondrial dynamics in control oocytes and preimplantation embryos, in 

addition to providing insight on the effect of hormone treatment on mitochondrial dynamics. 

3.2 Materials and Methods 

3.2.1 Ethics Statements, source of animals 

Experiments were performed in compliance with the guidelines set by the Canadian 

Council for Animal Care and the policies and procedures approved by the University of 

Western Ontario Council on Animal Care. 

3.2.2 Oocyte and embryo collection 

Metaphase II (MII) oocytes were collected from C57BL6/CAST7p6 [B6(CAST7p6)] 

x C57BL/6 (Charles River) F1 females at 6-8 weeks of age. These females have a Mus 

musculus castaneous (CAST) chromosome 7 and partial regions of chromosome 6 on a 

C57BL/6 (B6) background.  To obtain spontaneously ovulated oocytes, untreated females 

were examined for estrus and at noon the following day, the oviduct/ampulla was dissected 

and flushed in warmed M2 media (Sigma) to retrieve cumulus-oocyte-complexes.  For 
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superovulated oocytes, females were injected intraperitoneally (ip) with 6.25 IU or 10 IU 

equine chorionic gonadotropin (eCG) (Intervet Canada), followed 44-48 hours later by 

6.25 IU or 10 IU human chorionic gonadotropin (hCG) (Intervet Canada), respectively.  

Hormone concentrations of 6.25 IU and 10 IU were considered low and high hormone 

dosages, respectively. At noon the following day, superovulated cumulus-oocyte-complexes 

were flushed into warmed M2 media.  Spontaneous and superovulated oocytes were washed 

in 2-3 drops of M2 media containing 0.3 mg/mL hyaluronidase (Sigma) under mineral oil 

(Sigma) to denude surrounding cumulus cells. Pronuclear to blastocyst-stage embryos were 

derived from control and hormone-treated B6(CAST7p6) females crossed to B6 males. 

Embryos were retrieved from oviducts/uteri at 0.5 days postcoitum (dpc) (1-cell), 1.5 dpc (2-

cell), 2 dpc (4-cell) and 2.5 dpc (8-cell), 3 dpc (morula) and 3.5 dpc (blastocyst). 

3.2.3 Total mitochondrial quantification 

To analyze total mitochondrial pools, at least 40 spontaneously ovulated, hormone-

treated oocytes and ~20 1-cell, 2-cell, morula and blastocyst-stage embryos from control and 

hormone-treated females were stained with 0.250 µM Mitotracker® Green FM (Molecular 

Probes, Invitrogen) in M2 media under mineral oil for 30 minutes at 37°C and 5% CO2 in air.  

Following this, DNA was stained in M2 drops containing Hoechst 33342 (1:200 dilution) for 

15 minutes at 37°C and 5% CO2 in air.  For imaging, individual oocytes and embryos were 

immediately transferred to 4 µL M2 drops under mineral oil in glass bottom dishes (MatTek 

Corporation). The Olympus FluoViewTM FV1000 coupled to the IX81 Motorized Inverted 

System Microscope (IX2 series) confocal scanning microscope was used to obtain live cell 

images compiled of Z stacks of 4 µm slices. During image acquisition the microscope was 

kept warm at 37oC. To maintain consistent fluorescence intensity values between samples 

imaged on different days, acquisition parameters were identical for all oocytes (filter, 490 

HV; Gain, 1; Offset, 2%), and embryos (filter, 445 HV; Gain, 2; Offset 2%).  Determination 

of total Mitotracker green signal intensity was done using Volocity 6.3 Image Analysis 

Software (Perkin Elmer). For quantification, each oocyte or embryo was outlined to create a 

region of interest (ROI). The ROI for MII oocytes included all cytoplasm contained within 

the cortex and excluded the polar body, while the ROI for embryos included the area encased 

in the zona pellucida to maintain consistency between embryos. Mean total Mitotracker 
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fluorescence was calculated from the fluorescence intensity of all samples within a group and 

is represented in relative fluorescence units (RFU).  A minimum of 3 females were used for 

both oocyte and embryo collections, for all control and hormone treatment groups.  

3.2.4 Active mitochondrial quantification 

To analyze the active mitochondrial pools and the localization of active mitochondria, 

at least 40 spontaneously ovulated and hormone-treated oocytes were stained with 

Mitotracker® Red CMXRos (Molecular Probes, Invitrogen) at a final concentration of 

0.250 µM in M2 media under mineral oil for 30 minutes at 37°C and 5% CO2 in air.  

Subsequently, DNA was stained in M2 drops containing Hoechst 33342 (1:200 dilution) for 

15 minutes at 37°C and 5% CO2 in air.  For preimplantation embryos, a minimum of 20 

control and hormone-treated 1-cell, 2-cell, 4-cell, 8-cell, morula and blastocyst-stage 

embryos were stained using the same parameters as oocytes.  Individual oocytes and embryos 

were immediately transferred to 4 µL M2 drops under mineral oil in glass bottom dishes for 

imaging.  Confocal images were obtained using identical acquisition parameters for all 

Mitotracker red MII oocytes, 1-cell and 2-cell embryos (filter, 400 HV; Gain, 1; Offset, 2%) 

and Mitotracker red 4-cell, 8-cell, morula- and blastocyst-stage embryos (filter, 370 HV; 

Gain, 1; Offset, 2%).  Mean total Mitotracker red fluorescence was calculated as described 

above for Mitotracker green using Volocity. At least 3 females were used for both 

spontaneous and superovulated oocyte and embryo collections.  

3.2.5 Quantification of blastocyst cell number and blastocyst volume 

Cell counting for blastocysts embryos was performed using Hoechst staining and was 

done from the top to the bottom of each embryo Z-stack using images from the Olympus 

FluoViewTM FV1000 system (Market-Velker et al., 2012).  Blastocyst cavity volume was 

calculated using two perpendicular measurements of blastocyst cavity length (μm) obtained 

with Volocity software.  Then lengths were then averaged and halved to determine an 

average radius, and cavity volume was calculated using the formula for a sphere. 

3.2.6 Quantification of superoxide levels 

Superoxide accumulation in control and 10 IU blastocysts was determined by live cell 

immunofluorescence staining with 5 µM MitoSOX Red (Molecular Probes, Invitrogen) for 
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30 minutes at 37°C and 5% CO2 in air, followed by DNA detection via Hoechst 33342 (1:200 

dilution) staining for 15 minutes at 37°C and 5% CO2 in air. Following imaging as described 

above, mean total MitoSOX Red fluorescence was calculated. At least 3 females were used 

for both control and hormone-treated oocyte and embryo collections. 

3.2.7 Immunohistochemistry 

For immunohistochemistry analyses, control and hormone-treated embryos were 

flushed into warmed M2 medium, washed in 1X PBS and fixed in 4% PFA for 30 minutes.  

Following fixation, embryos were permeabilized for 40 minutes in 0.5% Triton-X-100 

(Sigma) in 1X PBS, blocked for 1 hour in 5% normal goat serum (NGS) (Jackson 

ImmunoResearch), and incubated with 1:50 anti-Tom20 FL-145 (Santa Cruz Biotechnology), 

1:100 CHDH (Proteintech), or 1:200 histone 3 lysine 9 dimethylation (H3K9me2) (Abcam) 

overnight at 4°C.  The next day, embryos were washed three times in antibody dilution buffer 

(ADB, 0.005% Triton-X-100 and 1% NGS in 1X PBS), incubated with appropriate 

secondary antibody in ADB (1:200) for 1 hour followed by Hoechst 33342 (1:200 dilution) 

staining for 20 minutes.  Embryos were then washed 3 times before imaging in 4 µL M2 

drops under mineral oil in glass bottom dishes.  Negative controls without primary antibody 

incubation were processed with experimental groups. 

3.2.8 Statistical analyses 

Significant differences in total mitochondrial distribution for MII oocytes and active 

mitochondrial distribution in MII oocytes, 1-cell and 2-cell embryos were analyzed using 

one-way ANOVA followed by the nonparametric Kolmogorov-Smirnov (KS) test to analyze 

differences between pairs.  The nonparametric KS test was used to analyze distribution 

differences between the control and treatment groups for total mitochondria in 1-cell and 2-

cell embryos and active mitochondria in 4-cell, 8-cell, morula and blastocyst embryos.  

Statistics for fluorescence intensity analyses for total mitochondria in MII oocytes and active 

mitochondria in MII oocytes, 1-cell and 2-cell embryos were performed using one-way 

ANOVA followed by Student’s t-test, while Student’s t-test was used to identify significance 

between control and hormone-treated 1-cell, 2-cell (total mitochondria, CHDH intensity) 4-

cell, 8-cell (active mitochondria), morula and blastocyst embryos (total and active 

mitochondria, CHDH and H3K9me2 [blastocysts]). All mean fluorescence intensity bar 
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graph values are presented as mean ± standard error of the mean (SEM).  A p-value of 

p<0.01 was considered to be statistically significant.  

3.3 Results 

3.3.1 Superovulation disrupted total and active mitochondrial pool 
and active mitochondrial distribution in MII ovulated oocytes 

Adequate mitochondrial numbers and mitochondrial activity are required for 

successful meiotic maturation (Yu et al., 2010). To investigate the effects of superovulation 

on the total mitochondrial pool in MII ovulated oocytes, live-cell immunofluorescence data 

was first obtained for 50 spontaneous, 57 6.25 IU superovulated and 62 10 IU superovulated 

oocytes using Mitotracker green and Hoechst 33342 staining.  Mitotracker green stains all 

mitochondria membranes irrespective of respiratory status and thus is a measure of the total 

mitochondrial pool.  Compared to control and the 6.25 IU groups, the total mitochondrial 

pool was significantly decreased in the 10 IU high hormone treatment group (Figure 3-1A).   

Since the high hormone dose disrupted the total mitochondrial pool in oocytes, this 

may result in a concomitant decrease in the pool of active mitochondria. I therefore assessed 

the active mitochondria pool in oocytes using Mitotracker red imaging in 48 spontaneously 

ovulated, 68 6.25 IU superovulated and 67 10 IU superovulated oocytes.   Mitotracker red is 

a dye that specifically stains mitochondria that are actively respiring through oxidative 

phosphorylation, since its accumulation is dependent on oxidation.  Compared to 

spontaneous controls, a significant decrease in the respiring mitochondrial pool was present 

at both 6.25 IU and 10 IU hormone dosages (Figure 3-1B). 

As mitochondria are dynamic organelles and translocate to different regions of the 

cytoplasm in oocytes and early embryos, I assessed the distribution of total mitochondria in 

spontaneous and superovulated oocytes.  Three distinct distribution patterns were observed, 

perinuclear, homogenous, and clustered aggregates, with the latter either to one side of the 

chromosomes or as clumps dispersed throughout the cytoplasm (Figure 3-1C).  With respect 

to total mitochondria, the majority of spontaneous, 6.25 IU, and 10 IU superovulated oocytes 

had perinuclear mitochondrial localization (86%, 77%, and 77% oocytes, respectively), with 

low percentages of oocytes exhibiting homogenous (2%, 5% and 8%, respectively) and 
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clustered aggregate (12%, 18% and 15%, respectively) patterns (Figure 3-1C). These 

distributions were not significantly different.  Of note is that within the clustered distribution 

category, oocytes possessed mitochondria that were clustered proximal to the DNA (75% 

spontaneous; 36% 6.25 IU; 50% 10 IU), distal to the DNA (12.5% spontaneous; 43% 

6.25 IU; 40% 10 IU), or in aggregates throughout the cytoplasm (12.5% spontaneous; 21% 

6.25 IU; 10% 10 IU) (Figure 3-1D).  These distributions were not significantly different, 

although 6.25 IU and 10 IU oocytes trended toward decreased proximal clustering. 

 Perinuclear translocation of active mitochondria during oogenesis is essential for 

oocyte competence (Calarco, 1995; Nagai et al., 2006; Van Blerkom, 1991; Yu et al., 2010). 

Therefore, I analyzed whether actively respiring mitochondria were correctly localized to the 

perinuclear region in spontaneous oocytes, and whether superovulation disrupted this 

organization (Figure 3-1E).  Similar to total mitochondrial distribution, perinuclear, 

homogenous, and clustered aggregate patterns were observed for active mitochondria.  

However, unlike total mitochondria, distribution of active mitochondria was predominantly 

perinuclear (92% oocytes; 4% homogenous; 4% clustered) in spontaneous oocytes, while 

6.25 IU and 10 IU hormone-treated oocytes had significantly decreased perinuclear 

localization (50%, 60%) and increased homogenous (26%, 22%) and clustered aggregate 

(24%, 18%) distributions, respectively (Figure 3-1E).  Within the clustered distribution 

category, oocytes had mitochondrial clusters proximal to the DNA (100% spontaneous; 62% 

6.25 IU; 58% 10 IU), distal to DNA (0% spontaneous; 38% 6.25 IU; 30% 10 IU), and in 

clustered aggregates throughout the cytoplasm (0% spontaneous; 0% 6.25 IU; 8% 10 IU) 

(Figure 3-1F).   These patterns were not significantly different, although 6.25 IU, and 10 IU 

superovulated oocytes seemed to exhibit decreased proximal clustering compared to controls. 

Overall, oocytes obtained after high-hormone treatment exhibited a significant 

decrease in both the total mitochondrial and active mitochondrial pools.  In contrast, the low 

hormone dose group exhibited a decreased pool of active mitochondria only.  Total 

mitochondria were correctly localized to the perinuclear region in spontaneous, 6.25 IU and 

10 IU oocytes.  However, active mitochondria were mislocalized as a result of both low and 

high hormone treatment, displaying increased homogenous and clustered aggregate patterns 

and decreased perinuclear accumulation. 
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Figure 3-1: Superovulation disrupts mitochondria in MII ovulated oocytes 

(A) The total mitochondrial pool, calculated from average total Mitotracker green 

fluorescence intensity in oocytes, was significantly decreased in the 10 IU hormone treatment 

group.  (B) The active mitochondrial pool, calculated using total Mitotracker red 

fluorescence intensity in oocytes, was significantly decreased in both 6.25 IU and 10 IU 

hormone treated groups.  (C) Distribution of total mitochondria in spontaneously ovulated 

(Spon), 6.25 IU and 10 IU superovulated oocytes was predominantly perinuclear, with a 

small percentage of oocytes displaying homogenous and clustered aggregate patterns. 

Quantification of distributions is represented as percentage of total oocytes analyzed. (D) 

With respect to the clustered total mitochondrial distribution, spontaneously ovulated oocytes 

primarily displayed mitochondrial clustering proximal to the DNA, while the 6.25 IU and 

10 IU superovulated oocytes exhibited mitochondrial clustering proximal to the DNA, distal 

to the DNA, or in clustered aggregates throughout the cytoplasm. (E) Distribution of active 

mitochondria in spontaneously ovulated oocytes was a perinuclear ring.  6.25 IU and 10 IU 

superovulated oocytes displayed perinuclear localization in addition to aberrant homogenous 

and clustered aggregate patterns. Quantification of distributions is depicted as percentage of 

total oocytes. (F) For clustered active mitochondrial distribution, spontaneously ovulated 

oocytes displayed mitochondrial clustering proximal to the DNA, while the 6.25 IU and 

10 IU superovulated oocytes exhibited mitochondrial clustering proximal to the DNA as well 

as distal to the DNA and/or in clustered aggregates throughout the cytoplasm.  

Representative images are shown.  Quantification of mitochondrial fluorescence intensity 

was calculated as the mean relative fluorescence units (RFU) in millions ± SEM for each 

oocyte group. Numbers in parentheses indicate total number of oocytes analyzed per group.  

Asterisks (*) indicate significant differences where p<0.01 determined by one-way ANOVA 

followed by nonparametric Kolmogorov-Smirnov test. DAPI DNA staining, blue (A, B) or 

magenta (C-F); Mitotracker green staining of total mitochondria, green (A); Mitotracker red 

staining of active mitochondria, red (B); white scale bar, 20 µm.  Pseudocolour imaging was 

applied to analyze mitochondrial distribution (C-F).  Pseudocolour scale is shown in panel C. 
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3.3.2 Total mitochondrial pool was stable throughout preimplantation 
development 

To determine whether a decreased total mitochondrial pool persisted in early 

cleavage-stage embryos following superovulation, control and 10 IU 1-cell and 2-cell 

embryos were stained with Mitotracker green and subjected to live-cell immunofluorescence.  

The 6.25 IU low hormone group was not analyzed, as no significant decrease was observed 

in oocytes, and since mitochondria DNA does not replicate post-ovulation and mitochondrial 

numbers are anticipated to decrease by approximately half with successive cell division 

(Larsson et al., 1998; Pikó and Chase, 1973; Pikó and Taylor, 1987). At the 1-cell and 2-cell 

stage, no significant difference in the total mitochondrial pool was detected in the control and 

10 IU treatment groups (Figure 3-2A, B). I next analyzed the distribution of total 

mitochondria within individual blastomeres of 1-cell and 2-cell embryos.  Both the control 

and 10 IU superovulated groups exhibited a homogenous distribution at the 1-cell stage 

(Figure 3-2C) and perinuclear distribution at the 2-cell stage (Figure 3-2D).  Since there was 

no change in total mitochondrial numbers at the 1-cell and 2-cell stages, I proceeded to 

analyze the total mitochondrial pool at the morula and blastocyst stages using Mitotracker 

green. No significant difference in the total mitochondrial pool was observed between morula 

(Figure 3-3A) and blastocysts (Figure 3-3B) in the control and 10 IU hormone-treated 

groups. Overall, 10 IU hormone-treated 1-cell, 2-cell, morula and blastocyst-stage embryos 

displayed similar total mitochondrial pools to their control counterparts. These results 

indicate that the total mitochondrial pool during preimplantation development is relatively 

stable following superovulation. 

3.3.3 Total mitochondria distribution is unchanged throughout 
preimplantation development 

Symmetrical mitochondrial distribution between blastomeres in early preimplantation 

embryos is important for competence (Van Blerkom et al., 2000).  A previous study indicated 

that human 1-cell to 8-cell preimplantation embryos with an uneven distribution of 

mitochondria were developmentally compromised (Van Blerkom et al., 2000).  To analyze 

whether superovulation alters the symmetrical distribution of mitochondria surrounding 

pronuclei in 1-cell embryos and between blastomeres in 2-cell embryos, embryos from 

control and 10 IU hormone-treated females were classified as either having symmetrical 
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(even) or asymmetrical (uneven) mitochondrial segregation.  For 1-cell pronuclear embryos, 

this was analyzed as the distribution of mitochondria surrounding the pronuclei.  The 

majority of 1-cell and 2-cell embryos in the both control and hormone-treated groups 

exhibited a symmetrical distribution of mitochondria surrounding pronuclei in 1-cell embryos 

(Figure 3-E) or between blastomeres of 2-cell embryos (Figure 3-2F), respectively, with no 

significant differences between groups (Figure 3-2E, F). Overall, mitochondrial localization 

was predominantly symmetrical in both control and hormone-treated 1-cell and 2-cell 

embryos.   
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Figure 3-2: Total mitochondrial pool and distribution in 1-cell and 2-cell embryos 

(A, B) Total mitochondrial pool quantification, calculated using Mitotracker green relative 

fluorescence units (RFU) (millions ± SEM), in 1-cell (A) and 2-cell (B) stage control (Ctrl) 

and 10 IU hormone-treated embryos.  (C, D) Representative pseudocolour conversion slices 

and quantification of the percent of total embryos showing a homogenous distribution of total 

mitochondria at the 1-cell stage (C) and a perinuclear distribution of total mitochondria at the 

2-cell stage (D). (E, F) Representative pseudocolour images and percentage of total embryos 

with a symmetrical (even segregation) or asymmetrical (uneven segregation) distribution of 

total mitochondria surrounding pronuclei at the 1-cell stage (E) and between blastomeres at 

the 2-cell stage (F) are shown.  DAPI DNA staining, blue (A, B) or magenta (C-F); 

Mitotracker green staining of total mitochondria, green (A, B); Mitotracker green staining, 

pseudocolour (C-F).  Pseudocolour scale is shown in panel C; numbers in brackets indicates 

the total number of embryos analyzed per Spon and 10 IU treatment groups; white scale bar 

is 20 µm. 
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Figure 3-3: Total mitochondrial pool in morula- and blastocyst-stage embryos 

Total mitochondrial pool quantification was measured as Mitotracker green relative 

fluorescence units (RFU) (millions ± SEM) in control (Ctrl) and 10 IU hormone-treated 

morula (A) and blastocysts (B).  Representative Z-stack images are shown.  DAPI DNA 

staining, blue; Mitotracker green staining of total mitochondria, green. Numbers in 

parentheses indicate total number of embryos analyzed per group; scale bar is 20 µm. 
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3.3.4 Superovulation affected mitochondrial activity but not 
mitochondrial organization at early cleavage stages  

In addition to total mitochondria pools, I next investigated if the active mitochondrial 

pool is perturbed in superovulated early cleavage embryos.  Compared to controls, the 

decreased active mitochondrial pool in superovulated oocytes persisted in 1-cell (Figure 3-

4A) and 2-cell (Figure 3-4B) embryos in the hormone groups. This effect was dose-

dependent.  However, no significant difference was seen in the active mitochondrial pool 

between 4-cell (Figure 3-4C) or 8-cell (Figure 3-4D) embryos in control and 10 IU groups.   

Since perinuclear accumulation of active mitochondria was disrupted in 

superovulated oocytes, I evaluated distribution of active mitochondria in cleavage embryos.  

Similar to perinuclear active mitochondria in control oocytes (91.6%; Figure 1-1E), the 

majority of 1-cell (100%; Figure 3-5A) and 2-cell (93.3%; Figure 3-5B) embryos in the 

untreated group maintained perinuclear distribution. Beginning at the 4-cell stage, active 

mitochondria move to a cortical arrangement in 4-cell (100%; Figure 3-5C) and 8-cell 

(81.5%; Figure 3-5D) embryos. Embryos in superovulated groups displayed a statistically 

similar perinuclear distribution to the controls at 1-cell (96.4% 6.25 IU, 82.9% 10 IU; Figure 

3-5A) and 2-cell (93.3% 6.25 IU, 85.7% 10 IU; Figure 3-5B) stages, and a primarily cortical 

distribution at the 4-cell (95.2% 10 IU, Figure 3-5C) and 8-cell (81.6% 10 IU, Figure 3-5D) 

stages. Thus, active mitochondrial distribution defects in superovulated oocytes were no 

longer evident in blastomeres of superovulated 1-cell, 2-cell, 4-cell and 8-cell embryos. 

Symmetrical distribution of mitochondria exists in competent early cleavage embryos 

(Van Blerkom et al., 2000). To determine if superovulation resulted in asymmetric 

distribution of mitochondria surrounding pronuclei of the 1-cell embryo and between 

blastomeres of cleavage stage embryos, embryos were classified as having symmetric or 

asymmetric distribution. The majority of 1-cell (81.8% control, 100% 6.25 IU, 94.3% 10 IU; 

Figure 3-6A), 2-cell (90% control, 93.3% 6.25 IU, 82.1% 10 IU; Figure 3-6B), and 4-cell 

(95.2% control, 90.5% 10 IU; Figure 3-6C) embryos in the control and hormone groups 

displayed a statistically similar symmetrical distribution of active mitochondria.  Although 

not statistically significant, compared to controls (92.6%, Figure 3-6D), the symmetrical 

distribution in 10 IU 8-cell embryos (73.7%) was slightly decreased.  
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Figure 3-4: Active mitochondrial pool in early cleavage stage embryos 

Active mitochondrial pool quantification in 1-cell (A), 2-cell (B), 4-cell (C) and 8-cell (D) 

early cleavage stage embryos. Representative Z-stack images are shown.  Quantification of 

active mitochondrial pool was calculated as the mean total Mitotracker red fluorescence units 

(RFU in millions ± SEM).  Numbers in parentheses indicate the total number of embryos 

analyzed.  DAPI DNA staining, blue; Mitotracker red staining of active mitochondria, red; 

scale bar, 20 µm; Ctrl, control. 
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Figure 3-5: Active mitochondrial distribution in early preimplantation embryos 

Representative pseudocolour conversion slices of embryos showing active mitochondria 

moving from a perinuclear distribution at the 1-cell (A) and 2-cell (B) stage to a cortical 

distribution at the 4-cell (C) and 8-cell (D) stages. This occurred in both control (Ctrl) and 

10 IU embryos.  Quantification of perinuclear (A, B) and cortical (C, D) staining is 

represented as the percentage of total embryos analyzed.  DAPI DNA staining, magenta; 

Mitotracker red staining, pseudocolour (scale in panel A).  Numbers in brackets indicate the 

total number of embryos analyzed per group and the scale bar is 20 µm. 
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Figure 3-6: Mitochondrial segregation between pronuclei and blastomeres in early 

preimplantation embryos 

Embryos at the 1-cell (A), 2-cell (B), 4-cell (C), and 8-cell (D) stage were classified as 

having symmetrical (Sym, even segregation) or asymmetrical (Asym, uneven segregation) 

distribution of active mitochondria between blastomeres.  Representative pseudocolour 

image slices of symmetrical and asymmetrical distributions are shown above each graph.   

Graphs display the percentage of control (Ctrl), 6.25 IU and 10 IU embryos displaying either 

distribution.  The pseudocolour scale is shown in panel B.  DAPI DNA staining, magenta; 

Mitotracker red staining of active mitochondria, pseudocolour; white bar, 20 µm.  
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Overall, the active mitochondrial pool was significantly reduced in a dose-dependent 

manner in superovulated 1-cell and 2-cell embryos, but this effect was not observed at 4-cell 

and 8-cell stages.  Furthermore, active mitochondria were correctly localized in control and 

hormone-stimulated 1-cell to 8-cell embryos, specifically to the perinuclear region at 1-cell 

and 2-cell stages, to the cortical region at 4-cell and 8-cell stages, and symmetrically around 

pronuclei and between blastomeres from 1-cell to 8-cell stages.  Thus, ovarian stimulation 

led to reduced active mitochondrial pools up to the 2-cell stage, after which there were no 

significant differences between control and hormone-stimulated early cleavage embryos. 

3.3.5 Superovulation perturbs mitochondria in morula and blastocyst-
stage embryos 

A previous study on human preimplantation embryos demonstrated asymmetrical 

mitochondrial distribution in developmentally competent late (12-16 cell) cleavage embryos 

(Van Blerkom et al., 2000). To determine the effects of superovulation on mitochondrial 

distribution between blastomeres in morula- and blastocyst-stage embryos, pseudocolour 

imaging was applied to Mitotracker green and Mitotracker red staining to allow 

characterization of mitochondrial intensity in individual blastomeres of an embryo.  

Blastomeres were classified as having low (primarily blue pseudocolour), medium (mostly 

green/yellow pseudocolour) or high (primarily red/white pseudocolour) amounts of 

mitochondria (i.e. Mitotracker red, 10 IU morula #84; 12 low; 4 medium; 10 high; Figure 3-

7A-J). Since a previous study identified increased levels of total mitochondria in 

trophectoderm compared to inner cell mass cells at the blastocyst stage (Houghton, 2006), I 

assessed inner and outer cells separately for total mitochondrial levels and active 

mitochondria levels. For total mitochondria distribution, in both control and 10 IU groups, 

inner blastomeres possessed low total mitochondria compared to outer blastomeres. 

Furthermore, no significant difference was observed in the percent of inner blastomeres with 

low levels of total mitochondria between control and 10 IU embryos. However, for outer 

blastomeres, compared to controls, blastomeres of embryos in the 10 IU group exhibited an 

increased percentage of blastomeres with low total mitochondria in both morula (control 

18.3%; 10 IU 31.9%, Figure 3-7K) and blastocysts (control 33.7%; 10 IU 50.2%, Figure 3-

7L).  Additionally in blastocysts, outer cells in the 10 IU embryo group had significantly 

decreased high total mitochondria (24.9% control, 8.8% 10 IU; Figure 3-7L). 
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Figure 3-7: Total mitochondrial distribution in morula- and blastocyst-stage embryos 

In morula- and blastocyst-stage preimplantation embryos, blastomeres were classified as 

having low (L, primarily blue pseudocolour), medium (M, mostly green/yellow 

pseudocolour) or high (H, primarily red/white pseudocolour) amounts of total mitochondria.  

Individual slices (A-J, example Mitotracker red 10 IU morula #84) of each embryo were 

analyzed, and each blastomere was followed throughout a subset of slices (see arrows for 

examples) to determine its classification.  (K) Early morula- and (L) blastocyst-stage 

embryos were divided into inner and outer cells for analysis. Representative morula (K) and 

blastocyst (L) are shown, with percentage of total blastomeres showing each distribution 

depicted in each graph.  DAPI DNA staining, magenta; (A-J) Mitotracker red staining of 

active mitochondria, pseudocolour; (K, L) Mitotracker green staining of total mitochondria, 

pseudocolour; white bar, 20 µm; Ctrl, control. Pseudocolour scale bar is shown under panel J. 

Asterisks indicate significant differences determined by Student’s T-test.  
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My assessment of mitochondrial activity with Mitotracker Red revealed that morula 

(Figure 3-8A) and blastocysts (Figure 3-8B) in the 10 IU group had a significant decrease in 

the active mitochondria pool compared to controls.  At the blastomere level, morula and 

blastocysts in both control and 10 IU groups had an asymmetrical distribution of active 

mitochondria between outer and inner blastomeres, with inner blastomeres primarily 

displaying low mitochondrial activity.  

For outer blastomeres, compared to the control group, embryos in the 10 IU group 

displayed a significantly decreased percentage of blastomeres with high mitochondrial 

activity in morula (control 50.9%; 10 IU 26.8%, Figure 3-8C) and blastocysts (control 

53.3%; 10 IU 21.1%, Figure 3-8D).  This coincided with a decreased percentage of 

blastomeres with low (morula control 19.5%; 10 IU 35.2%, Figure 3-8C; blastocysts control 

14.5%; 10 IU 34.0% Figure 3-8D) and medium (morula control 29.6%; 10 IU 37.9%, Fig. 

8C; blastocysts control 32.2%; 10 IU 44.8%, Figure 3-8D) amounts of active mitochondria in 

embryos obtained after hormone treatment.   

By comparison, inner blastomeres were indistinguishable between control and 10 IU 

morula-stage embryos (Figure 3-8C).  However, inner cells of blastocysts from the 10 IU 

group displayed a decreased percentage of blastomeres with low amounts of active 

mitochondria (control 96.6%, 10 IU 89.0%) and an increased percentage of blastomeres with 

medium amounts of active mitochondria (control 3.4%, 10 IU 10.3%, Figure 3-8D).   

On an individual embryo basis, few control morula (7%, Figure 3-9A) and blastocysts 

(4% Figure 3-9B) had less than 15% of outer blastomeres with high mitochondrial activity. 

By comparison, in the 10 IU group, approximately half of the morula (44%, Figure 3-9A) 

and blastocysts (56% Figure 3-9B) had less than 15% of blastomeres with high amounts of 

active mitochondria.  
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Figure 3-8: Active mitochondria intensity and distribution in morula and blastocysts 

Active mitochondrial pool quantification, calculated from total Mitotracker red fluorescence 

intensity, in morula- (A) and blastocyst-stage (B) control (Ctrl) and 10 IU hormone-treated 

embryos.  Representative Z-stack images are shown along with mean relative fluorescence 

units (RFU) in millions ± SEM for each group.  Active mitochondrial distribution in inner 

and outer blastomeres of morula (C) and blastocysts (D) depicted as percentage of 

blastomeres with low (L, primarily blue pseudocolour), medium (M, mostly green/yellow 

pseudocolour) or high (H, primarily red/white pseudocolour) amounts of active 

mitochondria. Representative slices are shown. DAPI DNA staining, magenta; Mitotracker 

red staining of active mitochondria, red (A, B) and pseudocolour (C, D); white bar, 20 µm; 

Ctrl, control. Pseudocolour scale bar is shown in panel D. Asterisks indicate significant 

differences.
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Figure 3-9: Active mitochondrial distribution patterns in individual morula and 

blastocysts 

Distribution of active mitochondria in individual (A) control morula, (B) hormone-stimulated 

morula, (C) control blastocysts and (D) hormone-stimulated blastocysts.  Data is arranged 

(left to right) in decreasing percentage of blastomeres with high (purple bars), then medium 

(green bars), then low (orange bars) percentage amounts of active mitochondria. The dotted 

black line represents where 15% of blastomeres within an embryo have high amounts of 

active mitochondria.  
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Since ATP is utilized by the Na+/K+-ATPase pump in trophectoderm cells, and this is 

required for successful cavitation and blastocyst formation (Madan et al., 2007), I assessed 

cell number (total, inner and outer) (Figure 3-10A) and blastocyst cavity volume (Figure 3-

10B) in control and 10 IU blastocysts.  Compared to controls, total cell numbers (Figure 3-

10C), outer cell numbers and inner cell numbers  (Figure 3-10D) were significantly increased 

in the 10 IU blastocyst group compared to controls, while blastocyst cavity volume was not 

significantly different (Figure 3-10E). 

Overall, late preimplantation embryos exhibited an asymmetrical distribution of both 

total and active mitochondria.  In comparison to control embryos, morula and blastocysts 

from the 10 IU hormone group exhibited an increase in the proportion of outer cells 

exhibiting low amounts of mitochondria, both total and active.  In addition, high total 

mitochondria in blastocysts and high active mitochondria in morula and blastocysts were 

significantly decreased in outer cells of embryos in the 10 IU hormone group.  The decrease 

in active mitochondria in outer cells of blastocysts was not associated with decreased 

blastocyst cell number or cavity volume. 
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Figure 3-10: Cell number and blastocyst cavity volume 

Merge of bright field and DAPI staining for (A) cell counts and (B) blastocyst cavity volume.  

(C) Total cell number and (D) outer and inner cell numbers and (E) blastocyst cavity volume 

in control and 10 IU blastocysts.  Asterisks indicate significant differences determined by 

Student’s t-test and numbers in parentheses indicate the number of embryos analyzed.  DAPI 

DNA staining, blue; white bar, 20 µm.  Representative embryos are shown with embryo 

number indicated on the top left of bright field images and cell number (A) and cavity 

volume (B) indicated at the bottom right.  Red line (1), horizontal cavity length; green line 

(2), vertical cavity length. 
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3.3.6 Superovulation does not alter TOM20 levels but increases 
superoxide accumulation 

To determine if mitochondrial function was affected following ovarian stimulation, 

levels of the mitochondrial import protein translocase of outer membrane 20 (TOM20) and 

oxidative stress was assessed. Nuclear-mitochondrial cross talk is vital for proper control of 

gene expression and mitochondrial function (Woodson and Chory, 2008).  Nuclear-encoded 

proteins are imported into the mitochondria to control its function in response to cellular 

demand (Jiang and Wang, 2012; Mootha et al., 2003).  TOM20 specifically targets the outer 

mitochondrial membrane and is responsible together with TOM22 to recognize and import 

cytosolic N-terminal mitochondrial preproteins (Baker et al., 2007; Perry et al., 2008).  Since 

import of nuclear-encoded cytosolic proteins is crucial for mitochondrial function, TOM20 

protein expression was analyzed by immunofluorescence in blastocysts from control and 

10 IU superovulated females.  No significant difference in TOM20 levels was observed 

between blastocysts in the control and 10 IU hormone groups (Figure 3-11A).  Furthermore, 

there was no difference in the distribution of TOM20 between inner (control 80.0%, 10 IU 

79.1%) and outer (control 73.2%, 10 IU 76.7%) blastomeres of these embryos, where the 

majority displayed medium levels of TOM20 immunofluorescence (Figure 3-11B). 

Mitochondrial dysfunction in aged oocytes has been attributed to increased oxidative 

stress causing oxidative damage (Chappel, 2013; Venkatesh et al., 2010).  To assess whether 

superovulation leads to increased oxidative stress, I analyzed the accumulation of superoxide, 

a reactive oxygen species (ROS) produced as a byproduct of mitochondrial respiration, using 

MitoSOX live-cell immunofluorescence. Oxidation of MitoSOX by superoxide produces red 

fluorescence.  Compared to controls, blastocysts in the 10 IU group displayed significantly 

increased superoxide intensity levels (Figure 3-11C).  To identify if accumulation of 

superoxide is more prevalent in inner or outer cells, pseudocolour imaging was applied and 

cells were quantified as having low, medium or high superoxide levels.  Control blastocysts 

exhibited low superoxide in both inner (100%) and outer (89.3%) cells (Figure 3-11D).  In 

contrast, while no significant difference in superoxide accumulation was observed between 

inner cells of control blastocysts versus the 10 IU hormone group (97.5% low, Figure 3-

11D), outer cells of the hormone group exhibited a significant increase in blastomeres with 

medium superoxide levels (37.1%), and decrease in cells with low superoxide levels (58.1%). 
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Figure 3-11: TOM20 and superoxide in control and 10 IU blastocysts 

(A) TOM20 protein levels in control (Ctrl) and 10 IU blastocysts.  Data were analyzed as 

relative fluorescence units (RFUs) ± SEM. DAPI, blue; TOM20 protein, red.  (B) Percentage 

of outer and inner blastomeres with low (L), medium (M) or high (H) amounts of TOM20 

immunofluorescence. (C) MitoSOX staining of superoxide levels in control (Ctrl) and 10 IU 

blastocysts.  Data were analyzed as RFUs ± SEM. (D) Percentage of outer and inner 

blastomeres with low (L), medium (M) or high (H) superoxide levels. Representative Z-

stacks (A, C) and slices (B, D) are shown. Number in parentheses indicate the total number 

of embryos analyzed.  DAPI DNA staining, blue; MitoSOX staining, red; pseudocolour L, 

primarily blue, pseudocolour M, mostly green/yellow; pseudocolour H, primarily red/white. 

The pseudocolour scale bar is shown in panel B and the white bars measure 20 µm.  
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3.3.7 CHDH protein levels  

Another function of mitochondria is to produce a proportion of the metabolites 

required for epigenetic control of nuclear gene expression.  For example, methylation groups, 

provided by the methyl donor S-adenosylmethionine (SAM), in the blastocyst are derived 

through two 1-carbon metabolic pathways (Ikeda et al., 2012); the folate cycle and the 

betaine-homocysteine methyltransferase (BHMT) pathway (Zhang et al., 2015).  The BHMT 

pathway requires the enzyme choline dehydrogenase (CHDH).  Choline dehydrogenase 

localizes to the inner mitochondrial membrane where it catalyzes the 2-step conversion of 

choline to betaine.  This specific pathway is active in mouse blastocysts (Anas et al., 2008; 

Lee et al., 2012).  Furthermore, Chdh deletion in mouse (Johnson et al., 2010) and a single 

nucleotide polymorphism in the human CHDH that decreases CHDH protein levels (Johnson 

et al., 2012) perturbs mitochondrial function in sperm and results in decreased sperm 

motility, indicating a role for CHDH in mitochondrial function. Thus, CHDH dysregulation 

has the potential to disrupt both mitochondrial function and DNA methylation. Since CHDH 

is a maternal effect protein, levels were analyzed in fertilized 1-cell embryos by CHDH 

protein immunofluorescence. There was a significant decrease in CHDH protein 

immunofluorescence, as measured by total RFUs, in 1-cell embryos derived from 10 IU 

hormone-treated females compared to controls (Figure 3-12A).  I next assessed the levels of 

CHDH and global H3K9me2, a repressive histone methylation mark, in control and 10 IU 

blastocysts.  In contrast to 1-cell embryos generated after ovarian stimulation, there was no 

longer a significant difference in CHDH protein levels (Figure 3-12B).  Furthermore, global 

levels of the repressive histone 3 lysine 9 dimethylation (H3K9me2) mark (Figure 3-12C) 

were unchanged between control and 10 IU blastocysts.  Additionally, there was no 

difference in the distribution of CHDH between inner (control 28.0% high, 62.4% medium; 

10 IU 26.0% high, 65.2% medium) and outer (control 71.8% high, 20.9%; 10 IU 71.2% high, 

24.2% medium) blastomeres of these embryos, where the majority displayed high or medium 

levels of CHDH immunofluorescence (Figure 3-12D). Having said this, a greater number of 

blastocysts, and more stages of preimplantation development, need to assessed for CHDH 

and H3K9me2 levels in control and hormone treated groups before this analysis is 

completed. 
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Figure 3-12: CHDH protein in 1-cells and blastocysts in the control and 10 IU groups 

(A) CHDH protein levels in 1-cell embryos in the control (Ctrl) and 10 IU groups. (B) 

CHDH protein levels in blastocysts in Ctrl and 10 IU groups. Data were analyzed as relative 

fluorescence units (RFUs) ± SEM. DAPI, blue; CHDH protein, red. (C) Global H3K9me2 

levels normalized to DAPI RFUs (quantified as total H3K9me2 RFU divided by total DAPI 

RFU) in blastocysts in the Ctrl and 10 IU groups. DAPI, blue; H3K9me2, green. (D) 

Percentage of outer and inner blastomeres with low (L), medium (M) or high (H) amounts of 

CHDH immunofluorescence. Representative Z-stacks (A, C) and slices (B, D) are shown. 

Number in parentheses indicates the number of embryos analyzed.  The pseudocolour scale 

bar is shown in panel D and white bars measure 20 µm. 
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3.4 Discussion 
My study is the first to report a detailed analysis of total and active mitochondrial 

pools, location, and distribution in control and hormone-treated oocytes and embryos 

throughout preimplantation development, specifically from the MII oocyte to the blastocyst 

stage (Figure 3-13).   I showed that high-hormone treatment led to a decrease in the total and 

active mitochondria pool in oocytes and abnormal accumulation of active mitochondria away 

from the perinuclear region.  Subsequently, the total mitochondrial pool was no longer 

affected by hormone administration in 1-cell, 2-cell, morula and blastocysts, although the 

active mitochondria pool was significantly decreased in a dose-dependent manner in 1-cell 

and 2-cell embryos.  This decrease was no longer present in 4-cell and 8-cell embryos in the 

10 IU group.  With respect to mitochondrial distribution, 1-cell and 2-cell embryos from both 

control and stimulated females displayed homogenous and perinuclear distribution patterns 

of total mitochondria, respectively.  Furthermore, all embryos, regardless of exogenous 

hormone administration, displayed perinuclear accumulation of active mitochondria at 1-cell 

and 2-cell stages and cortical distribution of active mitochondria at 4-cell and 8-cell stages.  

Finally, late preimplantation embryos exhibit an asymmetrical distribution of both total and 

active mitochondria.   In comparison to control embryos, morula and blastocysts in the 

hormone-treated group exhibited an increase in the proportion of outer cells with low 

amounts of both total and active mitochondria.  In addition, high total mitochondria in 

blastocysts and high active mitochondria in morula and blastocysts were significantly 

decreased in outer cells of embryos in the hormone-treated group.  This was accompanied by 

decreased active mitochondria in morula and blastocysts in the 10 IU hormone group, and 

increased superoxide in outer cells of 10 IU embryos.  Overall, these results indicate that 

10 IU hormone stimulation ultimately leads to blastocysts exhibiting abnormal mitochondrial 

dynamics in outer/TE cells. 
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Figure 3-13: Summary of hormone-induced disruption of mitochondrial dynamics 

The effects of hormone administration (10 IU) on the total mitochondrial pool (Total Mito, 

Mitotracker green), the active mitochondrial pool (Active Mito, Mitotracker red), distribution 

of total mitochondria (Total distribution, Mitotracker green), distribution of active 

mitochondria (Active distribution, Mitotracker red), superoxide levels (MitoSOX staining), 

TOM20 immunofluorescence (TOM20) and CHDH levels (CHDH) are summarized. 

Upwards arrow, increased in 10 IU hormone embryos; downwards arrow, decreased in 10 IU 

hormone-stimulated embryos; equal sign, no change between hormone and control groups; 

NA, not analyzed; P, perinuclear; H, homogenous; Cl, clustered; Co, cortical; Outer, outer 

cells of morula- and blastocyst-stage embryos 
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It is well documented that oocytes with decreased mitochondria and/or mitochondrial 

DNA molecules (Murakoshi et al., 2013; Pikó and Taylor, 1987; Reynier et al., 2001; Santos 

et al., 2006) or a decreased ability to produce ATP (i.e. mitochondrial activity) (Assou et al., 

2006; Ge et al., 2012; May-Panloup et al., 2005; Selesniemi et al., 2011; St John et al., 2010; 

Thouas et al., 2004; Yu et al., 2010) have reduced developmental competence.  Furthermore, 

domains of concentrated respiratory activity in oocytes, as previously observed in 

differentiated cells (Collins et al., 2002; Diaz et al., 1999),  permit local ATP supply and 

demand for spatially localized processes during oogenesis (Van Blerkom et al., 2002; Yu et 

al., 2010). Consistent with this, perinuclear accumulation of active mitochondria in mouse, 

human and porcine is essential for the high-energy consuming processes that occur during 

oogenesis, namely nuclear and meiotic maturation and polar body extrusion (Nagai et al., 

2006; Sun et al., 2001; Tokura et al., 1993; Van Blerkom, 1991; Van Blerkom and Runner, 

1984; Van Blerkom et al., 2000; Yu et al., 2010). In this study, I observed a dose-dependent 

effect of ovarian stimulation on mitochondria in resulting oocytes. In comparison to 

spontaneously ovulated oocytes, oocytes ovulated after low hormone dose administration had 

a decrease in the active mitochondrial pool, although the total mitochondrial pool was 

unchanged.  By comparison, high hormone-treated oocytes displayed a decrease in the total 

mitochondrial pool and as well as a decrease in the active mitochondrial pool. This indicates 

that a decrease in the total mitochondrial pool could lead to the diminished active 

mitochondrial pool in the 10 IU hormone group.   

 Active mitochondrial accumulation at the perinuclear region is required for oocyte 

maturation (Nagai et al., 2006; Sun et al., 2001; Tokura et al., 1993; Van Blerkom, 1991; 

Van Blerkom and Runner, 1984; Van Blerkom et al., 2000; Yu et al., 2010).  Although total 

mitochondria in superovulated oocytes maintained a perinuclear organization, the active 

mitochondria were mislocalized. Superovulated oocytes exhibited increased homogenous and 

clustered distributions and decreased perinuclear organization in comparison to their 

spontaneously ovulated counterparts.  Effects on the active mitochondria pool and 

distribution also occurred at the lower hormone dose.  

Overall, my results in oocytes indicate that superovulation leads to increased 

production of oocytes with mitochondrial defects, namely a decreased total mitochondrial 

pool, active mitochondrial pool, and active mitochondrial localization. These specific defects 
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have previously been shown to impede successful completion of the second meiotic division 

of oogenesis and subsequent development.  Future studies should confirm this data by 

analyzing the effect of superovulation on total mitochondrial DNA numbers, total 

mitochondrial numbers using transmission electron microscopy (TEM), and resulting ATP 

production. As mitochondria in the mouse and human oocyte are translocated by microtubule 

structures (Kan et al., 2011; Van Blerkom, 1991; Van Blerkom et al., 2000), it is possible that 

superovulation disrupts the microtubule network required for successful perinuclear 

translocation of active mitochondria. In fact, decreased mitochondrial generation of ATP has 

been shown to cause disassembly of meiotic spindles (Zhang et al., 2006). Furthermore, in 

mouse and human somatic cells, mitochondrial function and ROS levels/oxidative stress have 

been implicated in regulating microtubule dynamics (Shi et al., 2010; Wilson and González-

Billault, 2015). Thus, it is possible that superovulation induced mitochondrial dysfunction 

leads to failure to establish microtubule-dependent perinuclear accumulation of 

mitochondria.  Future research should investigate the effect of superovulation on cytoskeletal 

structures, particularly the microtubule network. 

The ability of superovulated oocytes with insufficient numbers of mitochondria to 

complete meiosis and undergo successful fertilization is compromised in both human 

(Reynier et al., 2001; Santos et al., 2006) and pig (Shourbagy et al., 2006). By extension 

generation of ATP is important for oocyte maturation and fertilization (Dumollard et al., 

2004; Yu et al., 2010; Zhang et al., 2006).  However, completion of meiosis and subsequent 

fertilization can occur over a wide range of ATP contents, while it is continued 

embryogenesis and implantation that is compromised in embryos from oocytes with low ATP 

contents (Van Blerkom et al., 1995).  Consistent with these studies, I have shown that 

superovulation leads to the disruption of the total mitochondrial pool in oocytes, although 

this was no longer evident in 1-cell and 2-cell embryos, which displayed a similar total 

mitochondrial pool compared to spontaneous counterparts. However, 1-cell and 2-cell 

preimplantation embryos continued to exhibit a decrease in the active mitochondrial pool 

compared to spontaneous counterparts, and this was dose-dependent. This decrease in the 

hormone-treated group was no longer evident in 4-cell and 8-cell embryos, suggesting that 2-

cell embryos with decreased mitochondrial activity may undergo a 2-cell block in 

development; a phenomenon that was originally observed in cultured embryos and certain 
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strains of mice (Biggers, 1998).  The 2-cell block depends on maternally inherited 

cytoplasmic factors (Biggers, 1998; Goddard and Pratt, 1983; Muggleton-Harris and Brown, 

1988; Zanoni et al., 2009) and is associated with lower ATP and mitochondrial membrane 

potential (Komatsu et al., 2014; Wang et al., 2009).  Two-cell embryos are particularly 

vulnerable as the mouse embryonic genome is activated at this stage and this process requires 

ATP (Bianchi and Sette, 2011; Bultman et al., 2006). Therefore, 2-cell embryos generated 

after ovarian stimulation with reduced mitochondrial activity may be energetically incapable 

of cleaving to the 4-cell stage.  Future studies should be directed towards analyzing 

mitochondrial dynamics using time-lapse microscopy to determine whether oocytes with 

decreased total mitochondria do not undergo successful fertilization, and whether 2-cell 

embryos with decreased mitochondrial activity are unable to divide to the 4-cell stage. 

Mouse and human 1-cell and 2-cell embryos display perinuclear accumulation of 

mitochondria (Tokura et al., 1993; Van Blerkom, 2000; Van Blerkom et al., 2000; Van 

Blerkom, 2009; Wilding et al., 2001; Zhao et al., 2009).  Furthermore, developmentally 

competent embryos exhibit an even distribution of mitochondria between blastomeres while 

those that arrest and lyse have an uneven segregation of mitochondria.  With regards to 

mitochondrial distribution in early cleavage embryos, regardless of ovarian stimulation, total 

mitochondria was homogenous in 1-cell embryos and perinuclear in 2-cell embryos, active 

mitochondria accumulated at the perinuclear region in 1-cell and 2-cell embryos, while 4-cell 

and 8-cell embryos exhibited cortical accumulation of active mitochondria.   Thus, it is 

possible that superovulated oocytes that did not establish perinuclear translocation of active 

mitochondria at the MII stage were unable to complete meiosis and be fertilized to create 

perinuclear 1-cell embryos.  In my study, the distribution of mitochondria around pronuclei 

and between blastomeres was mostly symmetrical in both control and hormone stimulated 

zygote to 8-cell embryos, indicating exogenous hormone administration does not lead to an 

increased frequency of asymmetrically distributed mitochondria. Overall, by 4-cell and 8-cell 

stages of preimplantation development, embryos generated spontaneously or by ovarian 

stimulation were indistinguishable with respect to active mitochondrial intensity and 

distribution. 

Adequate amounts of mitochondrial activity throughout preimplantation are required 

for successful development through to the blastocyst stage (Wakefield et al., 2011; Wilding 
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et al., 2001). As embryos progress to the morula and blastocyst stages, blastomeres no longer 

exhibit comparable mitochondrial distributions, with total and active mitochondria 

preferentially localizing to the outer cells (Houghton, 2006; Van Blerkom et al., 2000).  This 

is further supported by ATP production, oxygen consumption, and amino acid turnover that 

are significantly increased in blastocyst trophectoderm compared to inner cell mass cells 

(Houghton, 2006). Additionally, activity of the Na+/K+-ATPase, located on the basolateral 

surface of the trophectoderm cells accounts for 60% of the ATP used in human blastocysts 

(Houghton et al., 2003). Ultimately, the blastocysts requires ATP-dependent Na+/K+-ATPase 

to drive cavitation and blastocyst formation (Madan et al., 2007). In my study, I also 

observed a similar unequal mitochondrial distribution in morula and blastocysts in both the 

control and 10 IU hormone groups.  Here, superovulation led to significant alteration in the 

allocation of mitochondria in the outer blastomeres, with an increased percentage of 

blastomeres displaying low amounts of total and active mitochondria, and a decreased 

percentage of cells with high amounts of active mitochondria.  This decrease did not coincide 

with decreased number of cells in blastocysts obtained after hormone treatment, nor did it 

result in decreased embryo cavity volume, which would be suggestive of defective blastocyst 

cavitation.  Instead, while blastocysts produced after hormone treatment had increased cell 

numbers, they had similar embryo cavity volumes compared to controls.  The increased cell 

number could be due to a compensatory mechanism accounting for a lower mitochondrial 

activity in 10 IU hormone-stimulated embryos.  Future studies are required to investigate the 

effect of low mitochondria in outer blastomeres of hormone-treated embryos on downstream 

measurements such as successful blastocyst hatching, implantation and resulting pregnancy.  

Hyperstimulation has previously been shown to result in increased superoxide 

production in the mouse oocyte (Chao et al., 2005), and increased superoxide increases 

mitochondrial DNA mutations, which can ultimately affect oxidative phosphorylation and 

ATP generation (Jacobs et al., 2007; Keefe et al., 1995; Shamsi et al., 2013; Venkatesh et al., 

2010).  In this study, superovulation led to a significant increase in superoxide accumulation 

in blastocyst embryos, specifically in the outer blastomeres. Increased mitochondrial 

superoxide accumulation could result in decreased mitochondrial activity in outer embryonic 

cells. However, future studies will be required to determine the downstream consequences of 

this superoxide accumulation. Having said this, superovulation did not seem to impact 
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nuclear control over mitochondrial function, as measured by both intensity and localization 

of the mitochondrial import protein TOM20, which was unchanged between control and 

hormone groups.  

In addition to providing the oocyte and preimplantation embryo with the energy 

required for development, mitochondria also provide the cell with metabolites needed for 

epigenetic control of gene expression (Martinez-Pastor et al., 2013; Wallace and Fan, 2010).  

For example, methyl groups for the preimplantation embryo (generated from SAM) are 

produced in part via the betaine pathway, where choline is catalyzed to betaine in a 2-step 

process that involves CHDH (Anas et al., 2008; Ikeda et al., 2012; Lee et al., 2012).  This 

reaction occurs in the mitochondria. Therefore, I analyzed the effect of ovarian stimulation 

on CHDH protein levels.  My results indicate that the maternal supply of CHDH protein in 

fertilized 1-cell embryos is significantly decreased after exogenous hormone treatment 

compared to controls.  Consequently, this could affect the methyl pool available during 

preimplantation development.  By the blastocyst stage, this decrease no longer appeared to be 

present in the hormone-stimulated group, which showed similar levels of CHDH and the 

repressive histone methylation mark, H3K9me2, in comparison to controls.  Overall, future 

studies are required to determine the effect of ovarian stimulation on CHDH protein levels 

throughout preimplantation development, in addition to determining the consequences of 

decreased CHDH methylation present in 1-cell embryos and subsequent cleavage stage 

embryos with respect to both DNA and histone methylation. 

Current practices to increase success in the ART clinic have begun to target the 

mitochondria.  These include the controversial techniques of mitochondrial replacement 

therapy and AUGMENT.  My study confirms the importance of mitochondria in 

preimplantation development.  Additionally, it points to the greater need to understand the 

effects that all ARTs treatment modalities have on the mitochondria, as well as the basic 

science behind new technologies targeting mitochondria in animal models and clinical trials.  
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Chapter 4  

4 Discussion 

4.1 General overview 

Infertility has risen to 16% of Canadian couples, tripling since 1984 (5.4%) (Bushnik 

et al., 2012). Similar numbers exist in the United States, with infertility affecting more than 

10% of adult women (6.1 million) and 9% (4.7 million) of adult males, representing 10 to 

15% of couples (Chandra et al., 2013).  Due to rising rates of infertility, many couples are 

seeking medically assisted reproductive technologies (ARTs).  Thus, it is becoming 

increasingly important for researchers to investigate the effects of these techniques on the 

manipulated oocyte and preimplantation embryo.  

The developmental competence and health of the preimplantation embryo is 

dependent on successful completion of coordinated molecular processes that occur during 

early gamete and embryo development.  Two of these pathways include DNA methylation 

reprogramming (Macdonald and Mann, 2014) and mitochondrial dynamics (Van Blerkom, 

2011).  Here, I investigated (a) the effects of ARTs on imprinted DNA methylation in human 

preimplantation embryos, and (b) the effect of ovarian stimulation on mitochondrial 

dynamics in mouse oocytes and preimplantation embryos.  Although these pathways are 

distinct, based on my data, I propose that ARTs predispose trophectoderm cells of 

preimplantation embryos to aberrant imprinted methylation and mitochondrial defects. 

4.1.1 Human ART embryos display a high frequency of imprinted 
methylation errors 

Genomic imprinting disorders occur at an increased prevalence in the population of 

children conceived by ARTs (Okun and Sierra, 2014).  Thus, numerous animal models have 

investigated the impact of ARTs on imprint establishment in oocytes and maintenance in 

preimplantation embryos [reviewed in (Denomme and Mann, 2012)].   One benefit of using 

the mouse as a model is that it allows for controlled studies of the effects of individual ART 

procedures without issues of confounding infertility.  Major findings from mouse studies 

indicate that imprinted methylation is disrupted by superovulation (Hajj et al., 2011; Market-

Velker et al., 2010b), in vitro fertilization (IVF) (Fauque et al., 2010), in vitro embryo culture 
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(Li et al., 2005; Mann et al., 2004; Market-Velker et al., 2010a; 2012) and cryopreservation 

(Cheng et al., 2014).  Abnormal imprinted methylation occurs in 10-90% of ART 

preimplantation embryos (Fauque et al., 2007; Hajj et al., 2011; Market-Velker et al., 2010b; 

2012).   

In contrast, due to the limited availability of and ethical issues associated with the use 

of human gametes and preimplantation embryos, very few studies have analyzed imprinted 

DNA methylation in the human, with the majority of studies utilizing human embryos not 

suitable for embryo transfer (Chen et al., 2010; Geuns et al., 2003; 2007; Ibala-Romdhane et 

al., 2011; Khoueiry et al., 2012; Shi et al., 2014).  To uncover the discrepancy between 

imprinted DNA methylation errors in mouse preimplantation embryos and human ART 

children, I evaluated individual, good to high quality, day 3 and blastocyst stage human 

preimplantation embryos for imprinted methylation at SNRPN, KCNQ1OT1 and H19.  I 

specifically analyzed these regions because they are associated with the three imprinting 

disorders showing increased prevalence (1 in 5,000 children) in the ART population (Okun 

and Sierra, 2014). The experimental design I used allowed for analysis of more than one gene 

per embryo in addition to comparing short and extended embryo culture. The human 

embryos used were subjected to the combined effect of multiple ARTs, namely ovarian 

stimulation, IVF/ICSI, in vitro embryo culture, and cryopreservation.  Importantly, these 

embryos were suitable for transfer but instead were donated for research after patients no 

longer needed embryos for their treatment. Overall, I observed a similar frequency of 

imprinted methylation errors in the donated human embryos to that observed in mouse 

(Fauque et al., 2007; Hajj et al., 2011; Market-Velker et al., 2010b; 2012) and other studies 

of poor quality human preimplantation embryos (Chen et al., 2010; Geuns et al., 2003; 2007; 

Ibala-Romdhane et al., 2011; Khoueiry et al., 2012; Shi et al., 2014). Imprinted methylation 

in similar good to high-quality human preimplantation embryos has only been analyzed in 

two previous studies with small embryo numbers (14 blastocysts (Khoueiry et al., 2012), 5 

blastocysts (Ibala-Romdhane et al., 2011) compared to the 24 day 3 embryos and 29 

blastocysts analyzed here).  Therefore, my results are of clinical relevance as the embryos 

analyzed are representative of cleavage-stage and blastocyst-stage embryos that could be 

transferred to patients with the potential of future pregnancy.  Overall, these results indicate 
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that good quality, transferrable human ART preimplantation embryos possess a frequency of 

imprinted methylation errors similar to that previously reported in the mouse. 

Studies in the mouse permit controlled analysis of the effects of individual ARTs on 

resulting imprinted DNA methylation, without the confounding effects of inherent infertility. 

The results of these studies generally indicate that increasing the number of ART procedures 

exacerbates imprinting errors (de Waal et al., 2015; Fauque et al., 2007; Market-Velker et al., 

2010a; Rivera et al., 2008). However, discrepancy in the field exists with regards to whether 

it is the infertility treatment or inherent infertility itself that results in abnormal imprinted 

methylation (Doornbos et al., 2007; Ludwig et al., 2005; Strawn et al., 2010).  Notably, I 

identified two embryos possessing abnormal imprinted methylation that were generated using 

donor sperm due to male factor infertility. In these cases, inherent infertility is bypassed as 

embryos were generated with oocytes and sperm from a fertile man and woman. Although 

this is small subset of embryos, it provides support for ART-induced errors, presumably in 

the absence of inherent infertility. 

Taken together, I have identified similar imprinted DNA methylation abnormalities at 

the SNRPN, KCNQ1OT1 and H19 ICRs in human embryos to that observed in the mouse.  

Importantly, extending analyses to both day 3 cleavage and blastocyst stage embryos allowed 

me to conclude that continued culture to the blastocyst stage does not seem to pose greater 

risks for imprinting perturbations, although analyses during subsequent development would 

be required to confirm this result. 

4.1.2 Ovarian stimulation disrupts mitochondria in mouse oocytes 
and preimplantation embryos 

The vital role mitochondria have in establishing developmental competence of the 

oocyte and preimplantation embryo, and consequently IVF success, has fueled the design of 

new techniques aimed at improving or reconstituting the mitochondrial pool in oocytes and 

embryos in IVF clinics worldwide (Meldrum et al., 2016; Reinhardt et al., 2013; Wolf et al., 

2015; Woods and Tilly, 2015).  These techniques are experimental, and very few studies 

have been performed to examine their safety.  Additionally, the effects of standard ART 

protocols on mitochondria have not been fully discerned.  Here, I specifically demonstrated 
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that the most commonly used, indispensable treatment modality, ovarian stimulation, led to 

mitochondrial disruption in oocytes and preimplantation embryos.   

To extend my analysis of the effects of ARTs on the oocyte and preimplantation 

embryo, I analyzed the effects of ovarian stimulation on mitochondria in mouse oocytes and 

throughout preimplantation development.  Ovarian stimulation is implemented to increase 

the number of follicles recruited for ovulation during assisted reproduction.  The doses of 

exogenous hormones that accompany ovarian stimulation are administered during oogenesis, 

and coincide with the crucial time-points of drastic mitochondrial replication, biogenesis, 

respiration, and mitochondrial localization changes.  Consequently, this ART procedure has 

the potential to disrupt mitochondria in the mature, ovulated MII oocyte. I specifically 

identified that ovarian stimulation with exogenous hormones leads to a decrease in both total 

and active mitochondrial pools, and an increase in the percentage of ovulated oocytes 

displaying abnormal active mitochondrial localization.   These results are consistent with 

previous studies, which showed that ovarian stimulation disrupted mitochondrial DNA copy 

numbers and mitochondrial membrane potential in ovulated oocytes (Combelles and 

Albertini, 2003; Ge et al., 2012; Gibson et al., 2005).  

Analysis of embryos obtained after exogenous hormone treatment at later stages of 

preimplantation development indicated that mitochondrial perturbations caused by ovarian 

stimulation preferentially occurred in the outer trophectoderm cells.  In both morula and 

blastocyst-stage embryos, I reported a decrease in high amounts of active mitochondria in 

outer cells and a concomitant increase in the percentage of outer blastomeres inheriting low 

amounts of active mitochondria.  I also saw increased superoxide in outer cells of hormone-

stimulated embryos compared to controls.  Increased oxidative damage could increase 

mitochondrial DNA damage, consequently affecting respiration and ATP generation (Jacobs 

et al., 2007; Keefe et al., 1995; Shamsi et al., 2013; Venkatesh et al., 2010). However, this 

remains to be determined.   

Finally, I investigated the effects of hormone treatment on choline dehydrogenase 

(CHDH) levels.  CHDH links mitochondria to epigenetic regulation as it catalyzes the 

conversion of choline into betaine aldehyde at the inner mitochondrial membrane.  This 

substrate is required for production of s-adenosylmethionine (SAM), the cells methyl donor, 
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through the betaine pathway (Anas et al., 2008; Ikeda et al., 2012; Lee et al., 2012). I 

identified a significant decrease in CHDH levels in hormone stimulated 1-cell embryos 

compared to controls. However, this decrease no longer appeared to be present in hormone-

stimulated blastocysts compared to controls.  Furthermore, there appeared to be no difference 

in global levels of the repressive histone mark, histone 3 lysine 9 dimethylation (H3K9me2), 

in blastocysts in the 10 IU group compared to controls.  Thus, my results suggest that ovarian 

stimulation may lead to the disruption of mitochondrial control of epigenetic regulation in 

cleavage stage embryos, but this requires further investigation.  

 Overall, I have shown that ovarian stimulation alone, as an existing and indispensable 

ART procedure, leads to the disruption of mitochondria in the outer/trophectoderm cells of 

resultant morula- and blastocyst-stage embryos.  As respiration in the outer/trophectoderm 

cells is critical for blastocyst formation and hatching (Larsson et al., 1998; Madan et al., 

2007; Watson et al., 2004), future studies are required to investigate the downstream effects 

of this disruption. 

4.1.3 Contributions to the field of reproductive biology 

Overall, my work presented in this thesis advances the field of reproductive biology 

with the following novel findings: (a) ARTs disrupt imprinted methylation at the SNRPN, 

KCNQ1OT1 and H19 imprinting control regions (ICRs) in day 3 and blastocyst-stage, good 

to high quality, human embryos; (b) this occurs at a similar frequency to that observed in the 

mouse; (c) extended culture from the day 3 to blastocyst stage did not pose a greater risk for 

imprinting errors compared to short culture; (d) mitochondria were also disrupted by ARTs, 

specifically ovarian stimulation, resulting in decreased active mitochondrial pools, and 

mitochondrial localization defects as well as increased superoxide levels in the 

outer/trophectoderm cells of morula- and blastocyst-stage embryos; and (e) ovarian 

stimulation also leads to decreased CHDH protein levels in 1-cell embryos produced after 

hormone treatment; however, this decrease no longer appeared to be present in blastocyst-

stage embryos in the 10 IU group.  This research is relevant to the human clinic and 

demonstrates the need to establish a mechanistic basis for the validation of optimal 

techniques and procedures that will ensure the generation of healthy, viable embryos for 

infertile couples. 
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4.2 ARTs and the trophectoderm 

The results of my thesis suggest that the trophectoderm is a selective target of ART-

induced defects.  Specifically, in the first aim of this thesis, I demonstrated that human 

embryos produced through the use of multiple ARTs in the human IVF clinic exhibit a high 

frequency of abnormal imprinted DNA methylation.  However, disparity still exists with 

regards to the frequency of imprinting errors in human preimplantation embryos (6-89% 

embryos) (Chen et al., 2010; Geuns et al., 2003; 2007; Ibala-Romdhane et al., 2011; 

Khoueiry et al., 2012; Shi et al., 2014; White et al., 2015) compared to the frequencies of 

imprinting errors reported in ART children (~1 in 5,000 children) (Okun and Sierra, 2014).  

In the second aim of my thesis, I demonstrated that ovarian stimulation alone disrupted 

mitochondrial dynamics in mouse oocytes and preimplantation embryos. This resulted in a 

decreased amount of active mitochondria and increased superoxide production in 

outer/trophectoderm cells of blastocysts obtained after hormone stimulation.  Thus, ARTs 

affected two important components of early embryogenesis: imprinted DNA methylation 

maintenance and mitochondrial function. Hence, I hypothesize that the connection between 

these results is that ARTs-induced disruptions selectively occur within the trophectoderm. 

One explanation for the discrepancy between imprinting errors in human embryos 

compared to resulting children could be that blastomeres with aberrant imprinted methylation 

are preferentially relegated to the trophectoderm lineage.  In support of this, many studies in 

mouse have reported a selective loss of imprinted methylation and/or imprinted expression in 

the placenta compared to the embryo in midgestation mouse embryos following 

superovulation (Fortier et al., 2008; 2014) or preimplantation development in culture (de 

Waal et al., 2014; Khosla et al., 2001; Mann et al., 2004; Rivera et al., 2008).  A recent study 

in mouse found that ART procedures reduced fetal and placental growth at midgestation, 

reduced DNA methylation at H19, Kcnq1ot1 and Snrpn ICRs in the placenta, suppressed 

placental expression of paternally expressed imprinted genes that enhance fetal growth, and 

upregulated placental expression of maternally expressed imprinted genes that repress fetal 

growth (Li et al., 2016).  In humans, placentas from a group of successful IVF/ICSI 

pregnancies displayed abnormal H19/IGF2 expression compared to placentas from natural 

conceptions (Sakian et al., 2015; Turan et al., 2010). If imprinted methylation errors in 

human ART preimplantation embryos preferentially arise in the trophectoderm rather than 
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embryonic cells, this would explain the reduced frequency of imprinting disorders in the 

resulting child.   

A greater frequency of imprinted methylation errors in trophectoderm and placenta 

could lead to failed implantation or aberrant placental and fetal growth. The essential role of 

imprinted genes in placental function and fetal growth has been established in the mouse 

[reviewed in (Tunster et al., 2013)].  A correlation between imprinted gene expression in the 

placenta and resulting fetal growth was recently demonstrated in human, where increased or 

decreased placental expression of specific imprinted genes was correlated with large or small 

for gestational age infants (Kappil et al., 2015).  Thus, relegation of imprint abnormalities to 

the trophectoderm could account for the increased frequencies of IUGR, low birth weight, 

small for gestational age (Okun and Sierra, 2014) or large for gestational age (Hansen and 

Bower, 2014; Ishihara et al., 2014; Korosec et al., 2014; 2016; Li et al., 2014; Pinborg et al., 

2014; Sazonova et al., 2012; Wennerholm et al., 2013) in ART children.  Consistent with 

this, abnormal imprinted gene methylation or expression has been detected in IUGR 

(Gonzalez-Rodriguez et al., 2016; López-Abad et al., 2016; Madeleneau et al., 2015; 

McMinn et al., 2006) and low birth weight/ small for gestational age (Bouwland-Both et al., 

2013; Kanber et al., 2009) placentas compared to controls.  In my study, patients who 

donated their frozen embryos had received a fresh embryo transfer from the same cycle of 

which the donated frozen embryos were obtained.  Resulting information was available 

regarding live birth rate and pregnancy outcomes.  Consistent with growth restriction and 

overgrowth being associated with aberrant methylation or expression of imprinted genes, 

45% of newborns from patients in my study were outside clinically normal birth weight, with 

1 high (>4000g), 5 low (<2500g), 1 very low (<1500g) and 1 extremely low (<1000g).  This 

may suggest that the high frequency of imprinted DNA methylation errors in remaining day 3 

cleavage and blastocyst embryos could lead to a range of effects regarding placental 

development and growth. While risk of multiples increases the risk of low birth weight, it 

should be noted that one of the very low birth weight infants and one of the high birth weight 

infants were singletons, resulting in 2 out of 9 (22%) singletons under/above clinically 

normal birth weight. This increased risk of low birth weight (Helmerhorst et al., 2004; 

Jackson et al., 2004; Okun and Sierra, 2014; Reddy et al., 2007; Savage et al., 2011; Schieve 

et al., 2002; Sunderam et al., 2014; 2015; Wisborg et al., 2010) and large for gestational age 
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(Hansen and Bower, 2014; Ishihara et al., 2014; Korosec et al., 2014; 2016; Li et al., 2014; 

Pinborg et al., 2014; Sazonova et al., 2012; Wennerholm et al., 2013) in singletons of ART 

pregnancies has been previously reported. 

In addition to imprinted genes playing a role in placental function, mitochondrial 

studies also indicate a specific role for mitochondria in the trophectoderm.  Trophectoderm 

cells of blastocysts exhibit increased mitochondrial content, ATP production, oxygen 

consumption, and amino acid turnover compared to cells in the inner cell mass (Assou et al., 

2006; Houghton, 2006; Houghton et al., 2003; Thundathil et al., 2005).  Increased 

mitochondrial activity in the trophectoderm lineage is required to activate the Na+/K+ 

ATPase, which accounts for 60% of the ATP used in human blastocysts (Houghton et al., 

2003) and is required for cavity formation (Madan et al., 2007). I also observed in untreated, 

control embryos preferential total and active mitochondrial localization to trophectoderm 

cells in morula and blastocysts, indicating that this is a consistent process that normally 

occurs during preimplantation development. Ovarian stimulation led to a disruption in the 

mitochondria content of outer/trophectoderm cells, specifically resulting in decreased active 

mitochondrial pools and increased superoxide levels in outer/trophectoderm cells of morula 

and blastocysts. This indicates that the disruption was initiated when blastomeres adopted 

inner and outer cell identity, as outer morula cells will be specified to the trophectoderm 

lineage (Artus and Chazaud, 2014).   

Consistent with these observations, ART-induced mitochondrial defects have been 

demonstrated preferentially in the placental cell lineage (Thouas et al., 2006; Wakefield et 

al., 2011).  Specifically, embryos cultured in media containing low concentrations of a 

mitochondrial inhibitor had reduced placental but not fetal growth (Wakefield et al., 2011), 

while mitochondrial dysfunction in mouse oocytes lead to a decrease in trophectoderm cell 

number (Thouas et al., 2006).  Although the consequences of perturbed mitochondrial 

function in trophectoderm cells is unknown, like imprinted DNA methylation errors, 

mitochondrial disruption in the placenta has been implicated in growth restriction of the 

developing fetus.  Data from human IUGR placentas demonstrate a significant decrease in 

the expression of genes involved in mitochondrial function and oxidative phosphorylation, 

specifically affecting 3 out of 5 complexes of the respiratory chain (Madeleneau et al., 2015).  

Lower mitochondrial DNA content and higher placental superoxide dismutase activity, likely 
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to counteract oxidative damage, has also been observed in small for gestational age 

pregnancies (Díaz et al., 2014).  Finally in the mouse, mutation of a subunit of complex II of 

the respiratory chain induced ROS production and resulted in excessive apoptosis leading to 

low birth weight and growth retardation (Ishii et al., 2011). Overall, ART induced disruption 

of imprinted DNA methylation and mitochondria could be preferentially occurring in the 

outer/trophectoderm cells of the blastocyst embryo, and I propose this would lead to failed 

implantation or aberrant placental function and consequently, abnormal fetal growth. 

4.2.1 Potential link between ART-induced disruption of mitochondria 
and imprinted DNA methylation 

The role of mitochondria in epigenetic regulation is a recently emerging area of 

interest.  The relationship between mitochondria and chromatin arises through the metabolic 

products of energy consumption, as numerous intermediate epigenetic metabolites are 

produced by mitochondrial utilization of carbon sources to generate ATP (Castegna et al., 

2015; Martinez-Pastor et al., 2013; Wallace, 2010; Wallace and Fan, 2010) (Figure 4-1).  

First, histone acetylation and corresponding active chromatin depends on the availability of 

the acetyl-coA substrate.  In mammals, the majority of acetyl-coA is derived from the 

precursor citrate, which is produced solely by the mitochondria as a byproduct of the 

tricarboxylic acid (TCA) cycle and converted into acetyl-coA by the nuclear-encoded 

enzyme ATP-citrate lyase (ACL) (Martinez-Pastor et al., 2013; Wellen et al., 2009) (Figure 

4-1A).  The ACL-catalyzed generation of acetyl-coA from citrate is required for histone 

acetylation (Wellen et al., 2009).  In contrast to histone acetylation, histone deacetylation and 

corresponding repressive chromatin exhibits a metabolic influence through histone 

deacetylase (HDAC) activity and nicotinamide adenine dinucleotide (NAD+), another 

product of mitochondrial metabolism (Carafa et al., 2016; Martinez-Pastor et al., 2013) 

(Figure 4-1B).  DNA and histone methylation are also regulated by mitochondrial-produced 

metabolites (Martinez-Pastor et al., 2013).  During preimplantation development, two 1-

carbon metabolic pathways, the betaine pathway (Figure 1-4C) and the folate cycle (Figure 

4-1D), are required to produce methionine and ultimately S-adenosylmethionine (SAM) 

(Ikeda et al., 2012).  S-adenosylmethionine (SAM), the universal methyl donor for histone 

and DNA methylation, is produced from methionine by S-adenosylmethionine transferase 

(MAT) (Lu, 2000).  This reaction requires ATP, the product of mitochondrial respiration (Lu, 
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2000; Martinez-Pastor et al., 2013; Teperino et al., 2010) (Figure 4-1E). The reverse reaction, 

or removal of methyl groups from histone proteins, is catalyzed by histone demethylases 

(HDMs), which require two metabolites [flavin adenine dinucleotide (FAD+) (Anand and 

Marmorstein, 2007) and α-ketoglutarate (Tsukada et al., 2006)], that are produced during the 

TCA cycle (Martinez-Pastor et al., 2013; Teperino et al., 2010) (Figure 4-1F).  Finally, the 

end product of cellular respiration, ATP, is required as a substrate for histone 

phosphorylation in addition to powering ATP-dependent chromatin remodeling complexes 

(Runge et al., 2016). Thus, it is likely that fluctuations in mitochondrial respiration impact 

epigenetic dynamics. As the oocyte provides the preimplantation embryo with its only source 

of mitochondria during preimplantation development, and mitochondria provide the 

preimplantation embryo with its source of epigenetic metabolites, it is possible epigenetic 

control of imprint maintenance during preimplantation development is dependent on 

mitochondrial respiration. Overall, I would anticipate that decreased mitochondrial 

respiration, and consequently decreased ATP, would force blastomeres to allocate their 

metabolites to processes vital for immediate survival (i.e. DNA replication, transcription, cell 

division, and cavitation in blastocyst-stage embryos). This would have the net effect of 

reducing the metabolite pool required for proper epigenetic control of gene expression, for 

example, imprinted DNA methylation.   
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Figure 4-1: Mitochondria and epigenetics 

The relationship between mitochondria and nuclear epigenetic regulation is mediated through 

intermediate metabolites produced during mitochondrial respiration.  (A, pink arrows) 

Citrate, produced through the tricarboxylic acid cycle (TCA), is converted to acetyl-coA by 

ATP citrate lyase (ACL).  Histone acetyltransferases (HATs) catalyze the addition of acetyl 

groups (green square) to histones for formation of active chromatin.  (B, red arrow) Histone 

deacetylation requires histone deacetylases (HDACs) and nicotinamide adenine dinucleotide 

(NAD+), a metabolite from the TCA cycle, to remove acetyl groups. In preimplantation 

embryos, two 1-carbon metabolism pathways are involved in generation of methionine and 

ultimately S-adenosylmethionine (SAM), the universal methyl donor.  (C, blue arrows) In the 

first pathway, choline is converted into betaine aldehyde by the inner mitochondrial 

membrane enzyme choline dehydrogenase (CHDH, green circle).  Betaine aldehyde is 

subsequently converted into betaine in the mitochondrial matrix by betaine aldehyde 

dehydrogenase (BADH).  Betaine-homocysteine S-methyltransferase (BHMT) then converts 

betaine and homocysteine to dimethylglycine (DMG) and methionine, respectively.  (D, 

orange arrows) In the folate pathway, folic acid is reduced to tetrahydrofolate (THF), which 

is converted to methylene tetrahydrofolate (methylene THF) by serine 

hydroxymethyltransferase (SHMT).  Methylene tetrahydrofolate reductase  (MTHFR) 

catalyzes methylene THF conversion to methyl THF, and methionine synthase converts 

methyl THF and homocysteine to THF and methionine, respectively.  (E, purple arrows) 

Finally, methionine from both pathways is converted into S-adenosylmethionine (SAM) by 

S-adenosylmethionine transferase (MAT) and ATP.  SAM is the methyl donor for DNA 

methylation (white circle; unmethylated CpGs; black circles, methylated CpGs) and histone 

(i.e. H3K9me2) methylation (red square).  (F, yellow arrow) Demethylation by histone 

demethylases (HDMs) involves substrates flavin adenine dinucleotide (FAD+, utilized in the 

TCA cycle) and α-ketoglutarate, an intermediate in the TCA cycle.  
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A few studies have directly analyzed the effect of mitochondrial disruption on 

epigenetic control of nuclear gene expression.  Depletion of mitochondrial DNA resulted in 

significant DNA methylation changes at a number of genes (Smiraglia et al., 2008), in 

addition to decreasing the presence of multiple acetylation marks of histone H3, H2B and H4 

(Martínez-Reyes et al., 2016). A further relationship between mitochondria and epigenetics 

was demonstrated in Dnmt1o-deficient placentas (Himes et al., 2015). These placentas were 

characterized by swollen mitochondria with abnormal cristae, and exhibited metabolomic 

profiles indicative of mitochondrial dysfunction (Himes et al., 2015).  I hypothesized that 

ovarian stimulation-induced disruption of mitochondria consequently leads to aberrant 

epigenetic regulation.  Specifically, I demonstrated that CHDH, a mitochondrial membrane 

protein involved in production of SAM during preimplantation development (Ikeda et al., 

2012; Zhang et al., 2015), was significantly decreased in the 1-cell 10 IU hormone stimulated 

group.  By the blastocyst stage, there was no apparent difference in CHDH levels or the 

repressive histone 3 lysine 9 dimethylation (H3K9me2) mark in 10 IU blastocysts compared 

to controls.   Future studies are needed to investigate downstream effects of CHDH 

disruption in 1-cell and subsequent cleavage stage embryos, in addition to determining the 

effects of ARTs on other mitochondrial metabolites involved in epigenetic regulation. 

4.3 Translating results to the human ART clinic 

The results that I obtained in this thesis are relevant to the human ART clinic. Of 

particular relevance are the findings I obtained regarding imprinted methylation after 

extended culture to the blastocyst stage.  Specifically, I was the first to analyze imprinted 

methylation at two different stages of preimplantation development: the day 3 cleavage and 

the blastocyst stage.  Recently, there has been movement towards elective single embryo 

transfer (eSET) in ART to decrease the rate of multiple births (Maheshwari et al., 2011; Styer 

et al., 2016).  Furthermore, the advent of one free cycle of ART funding specifically in 

Ontario requires that a single embryo be transferred in patients ≤35 years of age (Motluk, 

2016).  Consequently, many fertility clinics will culture embryos from good prognosis 

patients to the blastocyst stage to help identify the best embryo for transfer based on rate of 

development and morphological grading (Blake et al., 2007; Gardner et al., 2000; Gleicher et 

al., 2015; Glujovsky et al., 2012; Ubaldi et al., 2015).  The data I obtained in this study 

support additional culture to the blastocyst stage.  Specifically, the presence of methylation 
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errors in both day 3 (76%) and blastocyst (50%) stage embryos indicated that methylation 

errors already exist in ~6 to 8-cell cleavage embryos, and extending culture to the blastocyst 

stage of development does not appear to pose an increased risk for imprinted methylation 

errors. 

Human fertility clinics implement supraphysiological exogenous hormone doses in 

addition to using multiple ART procedures to generate preimplantation embryos for transfer 

to mothers.  The overall live birth rate after ART is 25% per egg retrieval and 29% per 

embryo transfer in Canada (Human Assisted Reproduction 2014) and 39.4% per embryo 

transfer in the United States (Sunderam et al., 2015)].  Furthermore, the incidence of low 

birth weight (29.1% ART, 8% non-ART) and preterm birth (33.6% ART, 11.4% non-ART) 

is higher in the ART population than among all infants in the total birth population of the 

United States (Sunderam et al., 2015).  As the embryos analyzed in this study were 

transferrable but frozen for future cycles, the results here are applicable to the human clinic.  

The high frequency of imprinted DNA methylation abnormalities that I reported might 

provide one explanation for the birth rates between 25%-39% and increased incidences of 

fetal growth abnormalities in the ART population.  Mild stimulation and minimizing the 

number of ARTs used in human IVF could be beneficial, as additional studies in the mouse 

have also demonstrated dose-dependent effects of hormone-stimulation on imprinted DNA 

methylation (Market-Velker et al., 2010b) as well as confounding effects of multiple ARTs 

on imprinted DNA methylation errors (de Waal et al., 2015; Fauque et al., 2007; Market-

Velker et al., 2010a; Rivera et al., 2008).  The same is true for mitochondrial dynamics 

throughout human IVF.  My research along with others demonstrates that ARTs disrupt 

mitochondrial numbers, activity, membrane potential and distribution in the oocyte and 

preimplantation embryo (Acton et al., 2004; Amoushahi et al., 2013; Combelles and 

Albertini, 2003; Ge et al., 2012; Gibson et al., 2005; Lee et al., 2006; Lei et al., 2014; 

Manipalviratn et al., 2011; Wilding et al., 2001; Zander-Fox et al., 2013; Zhao et al., 2011a; 

2011b; 2009).  Minimizing the hormone dose and number of ART techniques may minimize 

effects to mitochondria during IVF.  Furthermore, with the recent advent of novel procedures 

in human ART designed to alter mitochondrial sources by nuclear transfer into donor oocytes 

(Reinhardt et al., 2013; Wolf et al., 2015) or injecting mitochondria from ovarian cortex cells 
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into the oocyte during ICSI (Woods and Tilly, 2015), it is important to continue studies on 

mitochondria with regards to both pre-existing and novel ART methods. 

4.4 Future directions 

4.4.1 ARTs and imprinted DNA methylation in human preimplantation 
embryos 

During preimplantation development in the mouse, recruitment of protein complexes 

to ICRs is required to ensure maintenance of DNA methylation when the remainder of the 

genome undergoes genome-wide DNA demethylation (Denomme and Mann, 2013).  These 

maternal effect protector proteins include DPPA3 (Nakamura et al., 2007; 2012), DNMT1o 

and DNMT1s (Cirio et al., 2008a; 2008b; Hirasawa et al., 2008), and ZFP57 (Li et al., 2008; 

Quenneville et al., 2011; Zuo et al., 2012).  As I reported similar disruptions to imprinted 

DNA methylation in the human preimplantation embryo to those reported in mouse, the next 

steps would be to determine the mechanism behind this disruption.  Specifically, I would 

assess the maternal factors that regulate imprinted methylation maintenance in donated 

human preimplantation embryos.  First, I would analyze whether DPPA3/DPPA3 mRNA and 

protein are present in donated human zygotes.  As DPPA3 transcript has been detected in 

human oocytes (Goto et al., 2002; Kobayashi et al., 2012; Yan et al., 2013), I expect that the 

role of this protein in protecting imprinted domains from active DNA demethylation from the 

1-cell to 2-cell stage is conserved.  Co-localization of DPPA3 and H3K9me2 (Nakamura et 

al., 2007; 2012) in human zygotes would be conducted by immunofluorescence to identify 

whether DPPA3 and H3K9me2 preferentially localize to the maternal pronucleus to protect 

imprinted domains from active DNA demethylation, and whether a subset of human embryos 

display mislocalization.  Mislocalization of DPPA3 and H3K9me2 in human zygotes would 

suggest that the imprinted methylation errors I observed in day 3 human preimplantation 

embryos originates at the first cleavage division.  Next, I would assess the DNMT1o/s mRNA 

and DNMT1o/s protein levels at all stages of preimplantation development in donated human 

embryos.  The presence of these mRNAs and proteins has been confirmed in human oocytes 

and preimplantation embryos (Huntriss et al., 2004; Okae et al., 2014; Petrussa et al., 2014). 

Therefore, I would specifically analyze nuclear localization of DNMT1o/s in early cleavage-

stage embryos and separately, in inner/outer cell nuclei of later-stage preimplantation 

embryos.  Finally, I would analyze the ZFP57 expression and ZFP57 protein levels in 
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donated human preimplantation embryos.  Although ZFP57 mRNA was not present in 

human oocytes (Okae et al., 2014), levels were detected in human morula (Yan et al., 2013). 

Additionally, the fact that mouse and human ZFP57 proteins are interchangeable in 

maintaining imprinted DNA methylation in mouse indicates conservation of this protein 

(Takikawa et al., 2013).  In mouse, ZFP57 is required for imprint maintenance at the 8-cell 

stage of preimplantation development (Denomme and Mann, 2013; Li et al., 2008; 

Quenneville et al., 2011). Therefore I would concentrate analyses of ZFP57 to later stages of 

preimplantation development.  Again, I would assess nuclear localization of ZFP57 

beginning at the 8-cell stage and separately in inner and outer nuclei of morula and 

blastocysts.  Overall, I would anticipate a disruption in DPPA3 and/or DNMT1o/s 

localization during early cleavage development to account for the aberrant imprinted DNA 

methylation I identified in day 3 embryos.  Furthermore, I would also expect to see 

preferential loss of DNMT1o/s and/or ZFP57 in the outer nuclei of donated human morula 

and blastocysts. 

4.4.2 ARTs and mitochondria 

My second aim was to analyze the effect of an indispensable ART treatment, ovarian 

stimulation, on mitochondrial pools, localization, and function during preimplantation 

development. I identified that ovarian stimulation led to decreased active mitochondrial pools 

and increased superoxide levels in the outer cells of morula and blastocyst-stage embryos.  

Mitochondrial activity in control and hormone-stimulated embryos was assessed at all stages 

of preimplantation development. However, embryos were recovered at distinct stages and not 

followed throughout the course of cleavage development.  Consequently, this analysis would 

benefit from time-lapse imaging of embryos and mitochondria throughout the course of 

preimplantation development, for multiple reasons.  Using this technique, mitochondrial 

dynamics could be linked to specific embryo characteristics such as failed fertilization and 

embryonic cleavage.  From my results, I hypothesized that hormone-stimulated oocytes with 

decreased total mitochondria pool cannot be fertilized to generate zygotes.  This hypothesis 

could be tested using time-lapse imaging.  Specifically, MitoTracker green-stained oocytes 

would be subjected to live-cell imaging, after which sperm would be injected using ICSI and 

successful fertilization of individual oocytes could be examined with time-lapse imaging. 

Next, I hypothesized that hormone-treated 2-cell embryos with decreased active 
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mitochondrial pool undergo a 2-cell block in development.  Using time-lapse microscopy, I 

would test this hypothesis by assessing the ability of hormone-stimulated 2-cell embryos with 

decreased mitochondrial activity to cleave to the 4-cell stage.  This finding would indicate 

that sufficient energy is required for 2-cell embryos to activate the embryonic genome and 

bypass a 2-cell block in development. The use of time-lapse during subsequent cleavage 

development will help to identify the segregation patterns of mitochondria in later-stage 

preimplantation embryos.  Specifically as 8-cell and morula-stage embryos divide, 

orientation of the plane of cleavage will determine whether a blastomere will give rise to an 

inner (inner cell mass) and outer (trophectoderm) cell (asymmetric cleavage), or two outer 

(trophectoderm) cells (symmetric cleavage) (Artus and Chazaud, 2014).  I would therefore 

use time-lapse imaging to analyze the segregation of mitochondria with respect to the 

orientation of division. In the hormone-treated groups, which exhibit a decrease in the 

percentage of outer blastomeres inheriting high mitochondria, I would expect to see an 

abnormal segregation of mitochondria during symmetric cleavage generating two outer cells.  

Specifically, I anticipate that distribution of mitochondria in this scenario will be reminiscent 

of asymmetric cleavage, where one cell inherits less mitochondria than the other. 

Investigation of the downstream consequences of abnormal mitochondrial dynamics 

in trophectoderm cells of blastocysts should also be assessed.  Specifically, I would assess 

whether blastocysts with abnormal mitochondria in trophectoderm cells are able to undergo 

blastocyst hatching and implantation.  To analyze whether hormone-stimulated embryos with 

aberrant mitochondria in the trophectoderm exhibit decreased hatching rates, control and 

10 IU blastocysts would be subjected to live-cell Mitotracker red imaging and subsequently 

cultured until hatching is complete or embryos degenerate.  To analyze post-implantation 

development of blastocysts, control and hormone-stimulated embryos would be subjected to 

live-cell Mitotracker red imaging then transferred to pseudopregnant females.  Specifically, 

recipient females would randomly receive embryos with abnormal mitochondria in one 

uterine horn and control embryos in the other.  Implantation rates will be calculated as the 

number of implantation sites compared to the number of embryos transferred, and this will be 

compared for uterine horns containing embryos with abnormal mitochondria versus control 

embryos along with fetal and placental analysis.  
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Recent experimental infertility treatments have been aimed at replacing existing 

oocyte mitochondria in an attempt to bypass inheritance of mitochondrial disease or enhance 

IVF success (Chappel, 2013; Reinhardt et al., 2013; Wolf et al., 2015; Woods and Tilly, 

2015).  These techniques are already implemented in human IVF with little supporting 

research performed to assess their safety.  The need for investigation of these techniques has 

been acknowledged by few research groups, and a recent study examining replacement of 

mitochondria through nuclear transfer between a donor and recipient oocyte found that 

mitochondrial heteroplasmy leads to reversion to the disease phenotype (Yamada et al., 

2016). This further emphasizes the need to carefully analyze these treatments.  Since I have 

shown that ovarian stimulation alone leads to mitochondrial disruption, it is essential that 

these new techniques be scrutinized. To study the effects of mitochondrial replacement 

therapy, AUGMENT and CoQ10 administration on mitochondrial dynamics, I would first 

use time-lapse imaging to assess the activity and distribution of mitochondria throughout 

preimplantation development after each treatment.  This would be completed using a mouse 

model.  Specifically, oocytes generated using each treatment will be fertilized and cultured to 

the blastocyst stage while being subjected to time-lapse Mitotracker red imaging. Treatment 

groups would be compared to spontaneously obtained zygotes cultured to the blastocyst stage 

and subjected to Mitotracker time-lapse imaging.  Additionally with respect to AUGMENT, I 

would assess mitochondrial morphology in injected oocytes and throughout preimplantation 

development using transmission electron microscopy to assess whether mitochondria are 

structurally underdeveloped and elongate to mature forms first in trophectoderm cells of 

blastocysts (Motta et al., 2000; Pikó and Chase, 1973; Van Blerkom et al., 1973).  If I find 

that this is not the case, it will mean that mitochondria injected during AUGMENT are not 

morphologically equivalent to mitochondria in a mature oocyte. 

4.4.3 Establishing a connection between the effects ARTs on 
mitochondria and imprinted DNA methylation 

Together, the results presented in my thesis suggest that ARTs might affect processes 

specifically in the trophectoderm. This is supported by the discrepancy between the high 

frequency of imprinted methylation errors in human preimplantation embryos and low 

penetrance of imprinting disorders in resultant ART children; mitochondrial abnormalities in 

the trophectoderm of hormone-stimulated blastocysts; and the seeming role of imprinted 
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gene regulation and mitochondria respiration in placental insufficiency. Overall, I propose 

that decreased mitochondrial activity in trophectoderm cells of blastocysts derived from 

hormone-treated females causes abnormal imprinted DNA methylation.  I hypothesize that 

this would be due to decreased availability of metabolites/epigenetic molecules produced as 

products of mitochondrial respiration. In support of this, I identified decreased CHDH 

protein levels in 1-cell embryos in the hormone-stimulated group. This decrease no longer 

appeared to be present in blastocysts in the hormone-stimulated group and did not correspond 

with diminished global H3K9me2 levels in blastocysts. Therefore, to further test the effect of 

ovarian stimulation on mitochondrial control of epigenetic regulation, I would analyze 

CHDH protein levels throughout all stages of preimplantation development to determine 

whether embryonic genome activation at the 2-cell stage compensates for the decreased 

maternally-derived CHDH in 1-cell embryos.  Additionally, rather than analyzing the effect 

of ovarian stimulation on global methylation levels as I did using H3K9me2 

immunofluorescence analyses, I would analyze the effect of ovarian stimulation-induced 

mitochondrial disruption on gene-specific DNA methylation. Specifically, blastocysts in the 

control and 10 IU treated group would be subjected to live-cell Mitotracker red imaging and 

then trophectoderm and inner cell mass would be isolated separately to single 

trophectoderm/epiblast cells, which would be subjected to the bisulfite mutagenesis and 

sequencing assay.  Imprinted methylation would be tested at the Snrpn, Kcnq1ot1 and H19 

imprinted domains for both maternal and paternal alleles in hormone-stimulated embryos 

with normal mitochondria, hormone-stimulated embryos with abnormal mitochondria, and 

control untreated embryos.  Abnormal imprinted methylation in trophectoderm but not 

epiblast samples would indicate that imprinted methylation errors predominantly occur in the 

trophectoderm lineage. Furthermore, if this occurs in the group of embryos with abnormal 

mitochondria, a correlation between decreased mitochondrial activity and imprinted 

methylation errors in the trophectoderm can be made. 

If the above results indicate a linkage between mitochondria and imprinted DNA 

methylation in the trophectoderm, I would assess postimplantation development of normal 

and affected embryos.  Embryos with normal and aberrant mitochondria will be transferred to 

separate uterine horns of recipient females.   Downstream postimplantation development 

would be then be assessed separately for fetal and placental parameters as previously 
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described (Wakefield et al., 2011). Additionally, imprinted DNA methylation and expression 

would be assessed.  Overall, I would anticipate that embryos obtained after hormone 

stimulation with decreased mitochondrial activity in trophectoderm cells display decreased 

fetal and placental weights and abnormal imprinted regulation compared to controls.  This 

would mean that ART-induced effects occurring in the trophectoderm disrupt both 

mitochondria and imprinted DNA methylation, ultimately resulting in abnormal growth of 

the embryo through placental insufficiencies. 

4.5 Conclusions 

The use of assisted reproductive technologies has rapidly increased since the first 

human success story in 1978 (Steptoe and Edwards, 1978).  The treatment modalities used by 

infertile couples to conceive their own biological child are continually growing in number.  It 

is therefore imperative that research be conducted to assess any negative consequences of 

these techniques on the oocyte, preimplantation embryo, and resulting children. Work in this 

thesis has specifically provided insight on the effects of ARTs on two critical components of 

successful development: imprinted DNA methylation maintenance and mitochondrial 

dynamics.  Specifically, I have shown that imprinted DNA methylation is disrupted in human 

preimplantation embryos, and ovarian stimulation alone leads to perturbations in 

mitochondrial dynamics in mouse oocytes and embryos.  These two affected pathways may 

converge, and future studies are required to delineate whether these effects are (1) specific to 

the trophectoderm cell lineage, and (2) whether ART-induced mitochondrial dysfunction 

alters epigenetic signatures such as imprinted DNA methylation. 
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