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Abstract 

The obesity epidemic is a growing concern due to its various comorbidities and associated 

risk factors. Pannexins 1 and 3 (Panx1 and Panx3), are members of a family of channel-forming 

glycoproteins that have been reported to be important in paracrine signaling and development. 

Panx1 and Panx3 are homologous and are regulated in many different cell types, mediating cell 

proliferation and differentiation. We have shown that Panx1 and Panx3 are expressed in 

adipocytes and adipose-derived stromal cells (ASCs) throughout the process of differentiation. 

Mice globally lacking Panx1 (Panx1 KO) have significantly greater total fat mass compared to 

wildtype (WT) mice under a normal diet. Comparatively, mice globally lacking Panx3 (Panx3 

KO) have significantly less total fat mass compared to WT mice on the same diet. Multipotent 

ASCs isolated from both Panx1 KO and Panx3 KO mice proliferate less than WT cells. ASCs 

lacking Panx1 also have increased adipogenic differentiation and fat accumulation capacity 

compared to WTs. Despite the Panx1 KO mice having greater fat content, when placed on a high 

fat diet, they exhibit no differences in weight gain or metabolic parameters compared to WT 

mice. When placed in metabolic cages, Panx1 KO mice display significantly increased total 

activity, ambulatory activity, and sleep significantly less than WT mice. In contrast, Panx3 KO 

mice placed on a high fat diet exhibit a slight reduction in weight gain, however show no 

significant differences when placed in metabolic cages on regular diets. We conclude that both 

Panx1 and Panx3 are regulated throughout adipocyte proliferation and differentiation at early 

stages in the adipogenic lineage and can regulate fat accumulation in vivo, potentially playing 

contrasting roles.  

Keywords: Pannexins, Panx1, Panx3, obesity, adipocyte, adipose-derived stromal cells, fat 

accumulation, adipogenesis 
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Chapter 1 - Introduction 

1.1 Obesity 

The obesity epidemic is the leading cause of global deaths and according to the World 

Health Organization approximately 10% of the world’s population is obese (as of 2014)1. 

Obesity accounts for a multitude of comorbidities such as: cardiovascular disease, type II 

diabetes, and cancer2. Body mass composition (BMI) is the current standard for determining 

whether an individual falls under classes of: normal (less than 25), overweight (25.1-29.9), or 

obese (greater than 30) measured by weight over height squared (kg/m2)3. Currently, options to 

counteract obesity include caloric restriction, exercise and diet changes, pharmacological 

approaches, and in extreme cases, surgical intervention. At early onset, the comorbidities 

associated with obesity can be dramatically reduced by a 10% permanent weight reduction4 and 

cardiovascular function can be restored in addition to the reversion of type II diabetes5. Reversal 

of obesity is not a simple task, as it requires dramatic lifestyle changes which are difficult with 

today’s high fat and sugar fast food, and sedentary lifestyles. Maintaining weight loss is often 

difficult, thus pharmacological intervention may come into play using drugs that target 

adrenergic receptors aimed at suppressing appetite such as: phentermine, diethylpropion, 

phendimetrazine, benzphetamine6, or drugs that inhibit lipases causing malabsorption of 

triglyceride, such as orlistat6.  The problem with drug treatments is that most are designed for 

short-term usage (less than 12 weeks) in conjunction with healthy living. Slight weight loss in 

combination with drug usage tends to be maintained for approximately 1 year, followed by 

recurrent weight gain and the underlying comorbidities6.  Therefore, the usage of drugs in the 

prevention of obesity is not a viable treatment long-term, but has potential for further 

development. When pharmacological usage becomes insufficient, surgical intervention normally 
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follows. Bariatric surgery is the most common type of intervention and results in a greater long-

term reduction in weight compared to non-surgical options7. It also helps to reduce some of the 

associated comorbidities and reduces mortality7. However, being a surgical intervention, in 

patients with poor health it is not always a viable alternative. As such, there is a need to better 

understand the mechanisms and manifestation of obesity to generate better therapeutic 

alternatives.  

1.2 Leptin Resistance 

Leptin resistance is one of many challenges faced in obesity. Leptin is a 16 kDa adipokine 

which is released from white adipose tissue8. It regulates food intake, energy expenditure, and 

immune response9–11. Leptin signaling is mediated via the leptin receptor (OB-R) in the serum, 

which is linked to the gp130 subunit found in the IL-6 receptor-complex, a pro-inflammatory 

cytokine12. There have not been many reports of mutations in the leptin gene, however of those 

that are known, non-functional mutants lead to morbid obesity13. At the onset of obesity, leptin 

resistance is characterized by the reduction of leptin effects on food intake and energy 

expenditure. Consequently, the amount of leptin produced is increased in order to 

compensate14,15. In vivo studies show that mice lacking leptin become obese and exhibit 

hyperphagia, exhibited by irregular food consumption and hyperlipidemia which is the irregular 

increase in circulating free fatty acids and low-density lipoproteins9. In obese individuals, the 

number of OB-R is significantly reduced which could indicate reduced leptin sensitivity. 

Contrastingly, severely underweight individuals show significantly increased OB-R 

concentration. This would suggest that the OB-R are dynamically regulated dependent on energy 

balance and leptin serum concentration14,16,17. Blood serum leptin and adiponectin (another 

hormone regulating lipid metabolism) are some of the markers commonly tested in diet-induced 

obesity studies.  
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1.3 Insulin Resistance 

Insulin is a polypeptide secreted from islet cells in the pancreas in response to glucose18. 

Insulin resistance is a hallmark of obesity and eventually leads to type II diabetes. Obesity is 

highly linked with adipokine release and inflammation. Leptin and adiponectin, seem to play a 

regulatory role in reducing triglyceride synthesis and stimulate fatty acid oxidation in the liver 

and skeletal muscle19. As mentioned previously, at the onset of obesity, leptin levels rise in order 

to compensate for increased lipids and glucose in the blood stream and thus loses the ability to 

modulate fatty acid oxidation. The result is a compensatory increase in insulin, in an attempt to 

maintain normal blood glucose levels, however long-term insulin increases results in insulin-

resistance20. To make matters worse, obesity dysregulates the conversion of fatty acids into 

carbohydrates for energy utilization21. Insulin-resistance associated with obesity that has a long-

term progression could result in type II diabetes by β-cell failure. Under normal conditions, 

pancreatic islet β-cells are activated by glucose, which results in an increase in ATP and the 

closing of ATP-sensitive K+ channels. This causes depolarization of the membrane which 

activates Ca2+-gate channels to exocytose insulin22. The basis of β-cell failure or overload, is that 

when chronically exposed to an excess of both nutrients and fatty acids, it can ultimately lead to 

β-cell impairment and trigger cell death23.  

In adipose tissue, glucose transport is mediated by the GLUT4 glucose transporter which is 

stimulated by insulin released by the pancreas24. In normal circumstances, insulin stimulates 

glucose uptake via the GLUT4 receptor and lipolysis occurs releasing free fatty acids into the 

bloodstream. During insulin resistance, increased circulating fatty acids promote the generation 

of very low density lipoprotein (VLDL) from hepatocytes25, and as such, lipoprotein lipase, an 

enzyme responsible for breaking down triglycerides in lipoproteins becomes inhibited. This 

causes an increase in circulating free fatty acids which feedbacks and worsen the effect of insulin 
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resistance26. As mentioned above, the obese adipose tissue becomes an endocrine organ secreting 

inflammatory hormones and factors. Il-6 and TNFα have been shown to dysregulate or block 

insulin signaling and lipolysis27. Finally, one study suggests that adipocytes from diabetic and 

insulin resistant individuals have impaired GLUT4 translocation and further dysregulation in 

intracellular insulin receptor signaling24. Insulin resistance is not only localized to the adipose 

tissue, but also found in skeletal muscle28, liver 27,24, brain29, kidney30, bone31, and many other 

tissues.  

As outlined above, obesity generates a complex collective of metabolically related 

pathologies which is now a growing problem worldwide. Therefore, there is an immediate need 

for research in the progression of the disease, but also on the basic mechanisms that regulate 

adipose tissue formation and fat accumulation.   

1.4 Adipose tissue 

In newborns, 16% of body weight is attributed to adipose tissue32. Fetal lipid metabolism 

and fat accumulation occurs within the first two-thirds of gestation, where the mother develops 

hyperphagia, increased appetite, causing an increase in overall fat accumulation33. During the 

last trimester of pregnancy, increased lipolysis occurs and glucose, amino acids, glycerol, and 

free fatty acids34,35cross the placenta and lipogenesis occurs in the fetus36. Fetal lipogenesis is 

fueled mainly by glucose uptake transferred from the placenta and converted into fat36. By week 

30 of pregnancy, the fetus accumulates large amounts of fat contributing to daily weight gain37.  

The main physiological functions of adipose tissue are insulation, shock absorption, and 

energy storage38. However, in obesity, excessive fat accumulation occurs impeding normal 

function of tissues and organs. Adipose tissue is composed of adipocytes, which are unique cells 

that have the capacity to store large amounts of energy in the form of fat. Adipocytes have long 

lifespans, and approximately 10% of the body’s adipocytes are regenerated annually39. Adipose 
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tissue is highly vascularized and adipocytes come in contact with at least one capillary, allowing 

them to very effectively uptake and release circulating fatty acids40.  In order to harness energy 

from adipocytes, the cell membrane is covered in proteins and metabolic enzymes which respond 

to hormonal stimulation triggering lipolysis, or the breakdown of triglycerides into free fatty acid 

for fuel41. Cyclic AMP (cAMP) stimulates protein kinase A (PKA) found in adipocytes, which 

plays a vital role in lipolysis42. On the other hand, lipogenesis occurs in the mitochondria of 

adipocytes. During adipocyte differentiation, adipocytes undergo increased mitochondrial 

expansion along with increased β-oxidation capacity43. In order for triglyceride synthesis to 

occur, fatty acids are activated and form fatty acyl-CoAs, which enter into the mitochondria via 

carnitine palmitoyl transferase-1 (CPT-1) and undergo β-oxidation40.  

The most common obesity associated adipose tissue, is white adipose tissue (WAT) found 

in many depots and areas of the body44. In obesity, adipocytes behave differently where they are 

either hyperplasic and increase in cell number, or hypertrophic where they increase in volume45. 

Hypertrophy occurs at the early onset of obesity progression in order for cells to accommodate 

excess volume, however once filled to capacity, hyperplasia occurs and is more characteristic of 

severe obesity46. Unfortunately, hyperplasia of the adipocytes contributes to the increasing 

difficulty in losing weight, as these cells cannot be destroyed and continue to be regenerated47. It 

should be noted however that adipose depots located throughout the body such as white adipose 

tissue (WAT) that can be subcutaneous (hypodermal, inguinal) or visceral (perigonadal, around 

organs); and brown adipose tissue (BAT) behave and respond differently under normal condition 

and during onset of obesity, showing differences in fat accumulation and adipocyte regulation44.  

The main function of BAT is heat generation and non-shivering thermogenesis48. BAT is most 

commonly found in newborns and typically disappears early on (about one year after birth)49. In 
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humans it is generally found in the dorsal regions, and in rodents it is found in the inter-scapular 

regions, thymus, thorax and abdomen50.  

Adipose tissue in obese individuals (mostly WAT) is known to act as an endocrine organ, 

creating localized and systemic inflammation51. There are many different cytokines and 

transcription factors upregulated or secreted by obese adipose tissue such as: leptin, resistin, 

adiponectin, IL-6, IL-1β, TNF-α, MCP-1, VEGF, and many others52. All of which contribute to 

cardiovascular disease, fatty liver disease, hypertension, type II diabetes and insulin resistance53, 

to name a few. Additionally, as the number of cells increase and cell volumes expand it causes a 

localized area of hypoxia resulting in adipocyte cell death and subsequent inflammation51.  This 

causes an upregulation of VEGF and angiogenesis to accommodate for increased lipid volume 

and adipocyte number54. Due to this localized inflammation, and the cross-talk between 

adipocytes and inflammatory cells, many different signaling pathways become activated in both 

adipocytes and macrophages. Hypoxia-inducible factor-1α (HIF-1α) and NF-κβ mediate the 

inflammatory response found within the adipocytes55,56. These factors recruit and activate other 

inflammatory molecules resulting in induced cell death and lipolysis52. Because of the hypoxic 

environment, adipose tissue releases chemokines or adipokines, which attract inflammatory 

macrophages57,58 . This entire process becomes a positive feedback loop where there is hypoxia 

induced macrophage infiltration, but also infiltration due to apoptosis, leading to chronic 

inflammation59. It has been reported that greater than 90% of infiltrating pro-inflammatory M1 

macrophages surround dead adipocytes60 in visceral adipose tissue in a crown-like fashion and it 

is hypothesized that these macrophages are responsible for the progression of insulin resistance 

and various other comorbidities61. Therefore, there is a need for a better understanding of the 
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mechanisms that regulate adipose tissue, and the potential cross talk between adipocytes and 

immune cells in obesity.  

1.5 Adipose-derived Stromal Cells 

Adipose-derived stromal cells (ASCs) are multipotent adipocyte precursor cells62. They are 

found in the stromal vascular fraction of adipose tissue, which is composed of a heterogeneous 

population of mature adipocytes, fibroblasts, immune cells, and ASCs63. ASCs can be isolated by 

various cellular digestion, separation and filtration steps. Human ASCs can be isolated from 

surgical reductions or lipo-aspirates making them accessible and an abundant resource64,65. ASC 

specific markers include CD90, CD29, CD73, CD44, CD13, and CD10566. Despite their 

heterogeneity in culture, it has been shown that with each subsequent passage (passage 2 or 3) 

the selected population becomes increasingly homogeneous expressing all multipotent ASC 

markers due to selective tissue culture plastic cell adherence and growth in fetal bovine 

serum67,68.  

ASCs are becoming widely used based on their abundance and ease of access, but also 

because of their multipotent ability to differentiate down many different lineages: adipocyte, 

chondrocyte, osteoblasts, myocytes, and peripheral neurons69,70. ASCs exhibit a fibroblast-like 

morphology in culture, and can grow in its undifferentiated state on tissue culture plastic71. It is 

well established in the literature that in order for ASCs to differentiate efficiently, they undergo 

cell cycle arrest between the G1 and G0 cell cycle phases, due to cell confluence72. At this point, 

these cells are considered pre-adipocytes as they are in a state of commitment towards the 

adipogenic lineage. This state causes them to be less proliferative and more readily equipped to 

convert carbohydrates into lipids.  Subsequently, clonal expansion occurs allowing for increased 

expression72 of various transcription factors and signaling molecules such as the key regulators: 
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Peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT-enhancer binding protein-α 

(C/EBP-α), maintain the differentiative state73 and growth arrest74.   

1.5.1 Adipocyte Development and Differentiation 

The process of adipocyte development is a tightly regulated and complex process involving 

many hormones and signal transduction pathways. During adipogenesis, adipocyte precursor 

cells undergo dramatic transformations.  Differentiating adipocytes go from fibroblast-like to a 

spherical morphology causing changes to cytoskeletal elements and the extracellular matrix 

(ECM)75. These changes are essential for the accommodation of large lipid volumes. Adipocyte 

precursor cells secrete many different factors to promote angiogenesis and the formation of 

blood vessels such as: vascular endothelial growth factor (VEGF), angiopoietin-like 4, fibroblast 

growth factor 2, and matrix metalloproteinases (MMPs)76. These changes occur in order for 

preparation of adipose tissue development and expansion77. In the early events of differentiation, 

both actin and tubulin expression are reduced78, followed by the conversion of collagen gene 

expression from type I and III to the secretion of type IV collagen in addition to increases in 

entactin and laminin79. Production of soluble and cell-associated chondroitin sulfate 

proteoglycan-1 is also increased, which causes cells to appear more viscous80. Pericellular 

fibronectin and synthesis of fibronectin are significantly reduced during differentiation81, 

followed by a massive reduction in pre-adipocyte factor-1 (pref-1) gene expression82. Once fat 

accumulation has occurred and the cells fill with lipids, organelles and the nuclei are pushed to 

the edge of the cell membrane making the adipocytes unique and characteristic. 

Adipocyte fat accumulation has been highly studied at the transcriptional level. As 

mentioned above, PPAR-γ and C/EBP-α are two of the most frequently studied transcription 

factors involved in adipogenesis, and are considered essential. PPAR-γ has been termed the 

master regulator of adipogenesis and is necessary for differentiation38. In vitro, addition of 
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PPAR-γ can successfully differentiate fibroblasts into adipocytes73. There are two PPAR-γ 

isoforms: PPAR-γ1 and PPAR-γ2, which are both induced during adipogenesis but can also be 

found in tissue types other than adipocytes (colonic epithelium and macrophages)83. In vitro, 

when PPAR-γ is inhibited, addition of PPAR-γ2 has the ability to rescue adipogenesis whereas 

PPAR-γ1 cannot83. The absence of PPAR-γ2 in mice results in reduced adipose tissue mass and 

impaired adipogenesis84. PPAR-γ is not only essential for the induction of adipogenesis, it also 

plays a role in maintaining the differentiated state85. Finally, PPAR-γ promote the activation of 

several other transcription factors which trigger further adipogenic signaling cascades.  

 One family of the transcription factors activated by PPAR-γ are the CCAAT-enhancer 

binding proteins, or C/EBPs which include: C/EBP-α, C/EBP-β, C/EBP- γ, C/EBP- δ, and CHOP 

(which is homologous to the C/EBPs). The activation of C/EBP-β is initiated by PPAR-γ which 

then leads to the induction of both C/EBP-α and C/EBP- δ. In pre-adipocyte cell lines, C/EBP- β 

is essential for adipogenesis, however its presence is less highlighted in vivo86. Mice lacking 

C/EBP-α show severe hypoglycemia and lack all depots of adipose tissue with the exception of 

mammary adipose tissue, they also show delayed BAT development87. Even though this family 

of transcription factors have profound effects on adipogenesis, they cannot function in the 

absence of PPAR-γ88.  

 PPAR-γ also activates the Krȕppel-like factors (KLF) which have many functions 

specifically regulating apoptosis, proliferation, and differentiation of adipocytes89,90 Most reports 

emphasize the role of PPAR-γ, C/EBPs and KLFs in adipocyte development, as they have been 

heavily documented. However, there are now over 100 other transcription factors that are known 

to be expressed in adipocytes and the list continues to grow. 
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Adipogenesis is highly regulated as mentioned above at the transcriptional level, but also at 

the enzymatic level. The enzyme Glycerol-3-Phosphate Dehydrogenase (GPDH) is increased by 

approximately two orders of magnitude from the early stages of adipogenesis until full adipocyte 

maturity, as early as 24 hours after induction in 3T3-L1 pre-adipocyte cells91. GPDH is an 

enzyme essential in the catalysis of dihydroxyacetone phosphate (DHAP) to glycerol 3-

phosphate, and causes the oxidation of NADH to NAD+. After oxidation of NADH,  glycerol 3-

phosphate is de-phosphorylated into glycerol, the starting material of all lipids72,91. An assay was 

developed which quantitatively measures GPDH activity by assessing the oxidation of NADH by 

absorption at 340nm92,93. This assay is beneficial in assessing lipid biosynthesis and is used for 

further understanding of adipocyte differentiation capacity described in this thesis. GPDH is 

essential for the differentiation of cells, however does not contribute to fat accumulation. GPDH 

overexpression in mice containing additional 25 copies of the GPDH transgene showed 

dysregulated mass of both brown and white fat depots in young mice, where brown fat was much 

larger and white adipose depots were significantly reduced, suggesting a developmental role for 

GPDH94.  

At the hormonal level, leptin, adiponectin and many others are released in mature 

adipocytes95. It is primarily insulin however, that is a key factor influencing glucose uptake96. 

Insulin binds to the insulin receptor at the cell surface of the adipocyte, which activates tyrosine 

kinase activity causing a signaling cascade of phosphorylation95,96. Growth hormone has also 

been shown to have an opposite mode of action and actually reduces glucose uptake in adipose 

tissue by interfering with insulin signaling, thus decreasing insulin sensitivity97. Another 

hormone of note is acylation stimulating protein (ASP), which mediates triglyceride synthesis. It 

is produced by adipose tissue and helps to stimulate fat or lipid accumulation in adipocytes98.  
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One of the most commonly used in vitro models for assessing adipogenesis and 

differentiation is the 3T3-L1 pre-adipocyte cell line, an immortal cell line committed to the 

adipocyte lineage99
  that can be induced to differentiate into mature adipocytes. These 3T3-L1 

cells as well as mouse primary adipocytes, have recently been reported to express Pannexin 1 

(Panx1), a member of the pannexin family of channel forming proteins, which subsequently has 

been shown to affect glucose uptake and insulin sensitivity100. In the current study, we propose 

that members of this family of channel proteins may be novel regulators of adipogenic regulation 

in normal development and at the onset of obesity. 

1.6 Pannexins 

Pannexins (Panx) are a family of large pore channel forming glycoproteins discovered in 

2000101. There are three members of the Panx family: Panx1, Panx2, and Panx3. Pannexin 

channels are glycosylated, have four transmembrane domains and both N and C-termini are 

cytoplasmic102. Synthesis of pannexins start in the endoplasmic reticulum, and in most cases will 

be N-glycosylated to either a high mannose form (Gly 1) in the ER or further processed into its 

complex form (Gly2) in the Golgi apparatus and trafficked to the cell membrane102. Pannexins 

can also exist in their unglycosylated species (Gly0), usually found intracellularly such as in 

dermal fibroblasts103 and in the retina104. Panx subunits form channels by oligomerizing into 

hexamers105 allowing for the passage of small molecules and ions (<1kDa) including ATP or 

glutamate106.  It is possible for heteromeric Panx channels to form, composed of Panx1 and 

Panx2, also Panx1 and Panx3, but there is no evidence of Panx2 and 3 forming heteromeric 

channels107. Panx1 is the most well characterized protein of this family, and is ubiquitously 

found in mammalian tissues. Panx2 is the largest channel (~74 kDa) and the least characterized. 

It was originally thought to exist primarily in the central nervous system, however there has been 

recent reports of Panx2 expression in many different tissue types across the body108. Panx3 is 
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found mostly in bone109, cartilage110, skin102, the inner ear111 and testes112. In humans, Panx1 and 

Panx3 share sequence homology (41%)113, with similar molecular weights (~48 kDa and ~45 

kDa)102. The large pore pannexin channels participate in cellular communication through the 

extracellular environment via paracrine and autocrine signaling114.  

1.6.1 Pannexin1 

Panx1 channels have been primarily characterized as ATP conduits106,115, but their large 

pore size can allow passage of different ions and metabolites. Panx1 channels are typically 

closed, however there are multiple mechanisms and instances where Panx channels, specifically 

Panx1, can be stimulated to open. The first being, mechanical stimulation such as shear cell 

stress or stretching of the cells102 or increased fluid shear force116. Increased extracellular 

potassium causes the hyperpolarization of the cell, which in turn opens Panx1 channels117. Panx1 

channels are voltage gated, and under normal conditions have a negative resting potential, 

however at high voltage they can become opened118. Typically associated with apoptosis, 

cleavage of the C-terminal tail of Panx1 by caspase 3 or 7 can cause constitutive opening of the 

Panx1 channel119,115. It has also been shown that Panx1 can open via increased intracellular 

calcium120. Recently there is evidence that insulin is also an activator of Panx1 channels in pre-

adipocytes100.  

Panx1 has been linked to pathological functions in disease121,122. In most cases with a few 

exceptions, the current body of knowledge shows that increased Panx1 expression is linked to 

disease states in melanoma, ischemia, hypertension, colitis, and diabetes121.  Evidence for this 

has been shown in several cancers such as mouse melanoma cells123, multiple myeloma cells124, 

and human glioma cell line U87-MG125 where Panx1 expression is higher than in normal cells. In 

ischemia, Panx1 trafficking and glycosylation is upregulated in response to cellular stress which 

causes ATP to be released from the channel and thereby causes fibroblast activation potentially 
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leading to early fibrosis126. Panx1 has been shown to be involved in blood pressure control, 

where Panx1 is expressed in vascular smooth muscle cells and can be stimulated by 

phenylephrine to release ATP and contribute to vascular constriction through purinergic 

signaling127. Panx1 has been shown to mediate enteric neuron cell death during colitis by 

activation of neuronal P2X7 receptors via ATP release, recruiting caspases, resulting in cell 

death128. It has been proposed that diabetes and its associated inflammation can lead to 

neurodegeneration in post-ischemic models. Panx1 is activated by glutamate and ATP released 

by Aβ-treated microglia, resulting in the activation of NMDA/P2X receptors causing neuronal 

death129.  

1.6.2 Pannexin 1 Expression in Mammalian Tissues 

As mentioned above, Panx1 is the most well-characterized member of the family, and has 

been shown to be expressed in many tissues and organs102. Panx1 is expressed in the brain, heart, 

skin, thymus, skeletal muscle, testis, ovary, placenta, prostate, liver, lung, small intestine, 

pancreas, spleen, colon, prostate, and in blood cells113. Focusing on metabolically related tissues 

involved in metabolic disease such as adipose tissue100, liver 113 small intestine130, and heart 113, it 

has been reported that Panx1 can also play an inflammatory role in these organs. Under normal 

physiological conditions, Panx1 is expressed in hepatocytes131 and Kupffer cells132. They seem to 

have a pathophysiological role in the liver during lipoapoptosis (apoptosis caused by excess fatty 

acid exposure), where ATP is released in liver cells in large quantity, potentially mediated by 

Panx1 channel opening linking it to hepatic inflammation133. Additionally, it has been postulated 

that Panx1 is involved in liver steatosis resulting from non-alcoholic fatty liver disease (NAFLD) 

where fat accumulation exceeds 5% of hepatocytes134 relying in part on the recruitment of the 

inflammasome complex shown to be recruited by Panx1135.  
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Another area of metabolic relevance is the small intestine, the main site of lipid absorption. 

Panx1 is expressed in the small intestine113,130, and its function in normal physiology is not well-

understood. However there have been a few reports of Panx1 in Crohn’s and colitis, and similar 

to the liver seems to be associated with inflammation. It was shown that in ulcerative colitis and 

Crohn’s disease, Panx1 mRNA expression was significantly reduced compared to normal human 

colon, suggesting a role for Panx1 regulation throughout disease progression130. 

Panx1 has been observed in the heart113, although Panx1 expression in cardiac myocytes is 

low and is mostly found in its Gly0 or unglycosylated state136,126. Similar to the other cases 

mentioned above, Panx1 expression is upregulated upon ischemic injury and stress126. This could 

suggest that Panx1 may be an early signal molecule leading to fibrosis or arrhythmias in 

ischemia.  

In an ischemia-induced neurodegeneration model, by occluding the middle cerebral artery 

of Panx1/2 double knockout mice, there was a reduction in  infarct size as these mice seemed to 

be neuroprotected137. Thus, indicating that both Panx1 and Panx2 have a function in ischemic 

brain damage. Additionally, Panx1 KO mice possess mechanisms of neuroprotection against 

seizures, as it has been shown that Panx1 is activated during epileptiform activity138. Based on 

behavioral analysis, after induction of seizures, Panx1 KO mice have significantly better 

behavioral outcome compared to WT mice138. In a different global (on an alternate Cre-

promoter) Panx1 KO model139, it has been established that the mice exhibit different behaviors 

compared to WT mice including greater anxiety140 and greater motility141 

Therefore in different tissues, Panx1 is clearly regulated and is commonly associated with 

inflammation or cell stress leading to the progression of disease. 
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1.6.3 Panx1 in Cell Development 

Panx1 is not only linked to disease but is also involved in normal physiology, particularly 

in cellular regulation, as it is expressed early on in development in many tissues regulating 

proliferation and differentiation of many cell types142. For instance, overexpression of Panx1 in 

keratinocytes dysregulated keratinocyte differentiation116. In vivo, Panx1 expression is regulated 

in murine skin, where Panx1 is mostly found in the vital layers of embryonic and neonatal skin 

but expression is gradually reduced in aged or adult skin116.  

Panx1 is also regulated in skeletal myoblast proliferation and differentiation, with low 

Panx1 expression in undifferentiated cells which increases during proliferation and 

differentiation143. Overexpression of Panx1 significantly increases differentiation capacity of 

skeletal muscle myoblasts, while blocking Panx1 channels inhibits differentiation143.The 

development of mammary glands in lactation are also in part regulated by Panx1. During 

lactation, mice lacking Panx1 have impaired alveolar development with reduced lumen area and 

significantly reduced cell proliferation144. 

Over the past decade there has been growing interest in the study of Panx1 in the brain and 

CNS. Panx1 is present in many areas of the brain113 and is regulated throughout development145. 

The dynamically regulated expression pattern of Panx1 is consistent with other tissues where it is 

very highly expressed embryonically and declines towards maturity and adulthood145. One group 

reported that Panx1 is expressed in postnatal neural stem and progenitor cells, and by either 

inhibiting or overexpressing Panx1, they observe reductions or increases in cell proliferation146. 

Taken altogether, this collectively gives a strong argument for the role of Panx1 in 

proliferation and differentiation of many different cell types, which could feasibly include 

adipocytes and their progenitor cells.  
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1.6.4 Panx1 in Adipocytes 

Currently there is only one report in the literature suggesting that Panx1 is expressed in 

adipocytes.  Adamson et al., 2015 proposed a mechanism where insulin activates Panx1 channels 

causing the release of ATP which in turn results in a signaling cascade indirectly allowing the 

transport of glucose into the adipocytes. By using the pre-adipocyte 3T3-L1 cell line, it was 

shown that ATP is released from Panx1 channels after insulin or phenylephrine treatment, 

however not in carbenoxolone treated cells, which pharmacologically blocks Panx1 channels147. 

A key finding was the use of insulin to activate Panx1 channel opening, to release ATP, which 

indirectly facilitated the uptake of glucose into the adipocytes, possibly by an interaction with P2 

receptors and GLUT-4, as proposed by the authors100. This group also explored the effects of 

knocking out Panx1 in mature adipocytes. A Panx1 adipose-specific knockout mouse was 

generated on an adiponectin doxycycline inducible promoter. Adiponectin is expressed only in 

terminally differentiated adipocytes, thus the knockout of Panx1 in this model occurred only in 

mature adipocytes and not precursor cells148. Body mass composition, body weight, metabolic 

activity, overall activity and both glucose and insulin tolerance were measured in the knockout 

mice fed on a 12 week high fat diet. No significant differences were observed, however there 

were some trends towards increased circulating blood glucose and increased insulin resistance in 

the mice, associated with reduced glucose uptake in adipocytes isolated from the knockout 

mice100. Finally, they assessed via gene array the mRNA expression of Panx1 in the adipose 

tissue of both lean and obese humans, and observed strong correlations of Panx1 expression with 

morbidly obese patients, along with those with increased fasting blood glucose levels and insulin 

resistance100.  
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1.7 Pannexin 3 

Panx3 shares similar sequence homology to Panx1 (41%)113. It is also expressed in a 

variety of different tissues such as: cartilage110, bone149, muscle102, the inner ear111, and testes112.  

Similar to Panx1, Panx3 regulates cell proliferation and differentiation in many cell types 

such as: osteoblasts149, chondrocytes110, keratinocytes116, skeletal muscle myoblasts143, and 

odontoblast150. In osteoblasts, Panx3 is a target for runt-related transcription factor (Runx2), key 

to bone formation. This group also identified Panx3 in intramembranous bones in mouse 

embryos, and in chondrocytes149. Additionally, Panx3 is regulated throughout chondrocyte 

differentiation via the regulation ATP and cAMP content110. Panx3 has been shown to play an 

essential role in cartilage and bone development of rodents, as lack of Panx3 dysregulated 

chondrocyte and osteoblast development151.  

In conjunction with Panx1, Panx3 has been found in keratinocytes, and also in mature 

skin116. Based on its expression throughout maturity, it has been suggested that Panx3 is also 

involved in keratinocyte differentiation116. Finally, Panx3 has been reported to be involved in the 

differentiation and proliferation of skeletal muscle myoblasts143. Panx3 is expressed in adult 

differentiated muscle tissue, and overexpression causes reduced proliferation, but induces cell 

differentiation143.  

Despite the fact that Panx3 has not been reported in adipocytes, it is normally co-expressed 

with Panx1 in many cell types, and is involved in the differentiation of many mesenchymal cells. 

Therefore Panx3 may also be involved in the proliferation and differentiation of adipocytes 

similarly and potentially in concert with Panx1.    
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 Panx1     Panx3 

 

Figure 1.1 Adipocyte lineage with corresponding cell type examples, where Panx1 and Panx3 

may play a regulating function in adipogenic development.  Proposed tetra-spanning topology of 

Panx1 and Panx3 with intracellular amino (NH2) and carboxyl (COOH) termini. ASC: adipose-

derived stromal cell. Red amino acid residues: N-glycosylation sites 
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1.8 Pannexin Knockout Mice and Diet-Induced Obesity Models 

In order to study how Panx1 affects development in vivo, a variety of different Panx1 

global knockout (Panx1 KO) mice have been generated119,139,137. The Panx1 KO mouse used in 

our studies was originally characterized by Genentech, Inc. and published by Qu et al (2011), 

demonstrating that Panx1 is required for ATP release from apoptotic thymocytes to recruit 

macrophages119. Our group previously characterized and used that KO model to show that Panx1 

is important in early skin development specifically at the level of keratinocytes and dermal 

fibroblasts, and in wound healing103. When dorsal skin was wounded, Panx1 was shown to be 

upregulated at the wound edge and Panx1 KO mice had impaired wound healing103. Primary 

basal keratinocytes from Panx1 KO skin had increased migration capacity, while KO primary 

dermal fibroblasts showed increased proliferation103. Interestingly, Panx1 KO mice showed 

reduced thickness in dermal and epidermal area but increased hypodermal fat103, indicating a 

potential effect of Panx1 in subcutaneous adipose tissue.  

Our group generated the first ever Panx3 global KO mouse in addition to a conditional 

cartilage specific Panx3 KO mouse152 in order to understand the role of Panx3 in osteoarthritis 

(OA). Based on this study, mice surgically-induced to develop osteoarthritis showed strong 

Panx3 expression in OA lesioned knee cartilage152, and those lacking Panx3 globally or 

specifically in the cartilage had reduced proteoglycan loss and overall, seemed protected against 

the development of osteoarthritis152. Using this same mouse model, Panx3 has been shown to 

play an essential role in skeletal long bone development in rodents, as lack of Panx3 results in 

significantly shorter, and more robust humeri and femora than wild-type controls153. 

Mouse models have been developed to study diet-induced obesity (DIO) in vivo, an 

example being the C57/BL6J mouse, used by The Jackson Laboratory (jax.org) as a model of 

pre-diabetes (type II) and obesity with high blood glucose and impaired glucose tolerance. The 



20 

C57-BL6J mouse strain has been well-characterized to respond effectively to high fat diets by 

gaining significant amounts of weight compared to mice fed on regular chow diets154. They also 

develop pathologies similar to the human condition: hyperinsulinemia, hyperglycemia, increased 

fat mass, and hypertension155. However, there are many other mouse strains that do not respond 

equally to a high fat diet156, so careful consideration to the genetic background of the mice is 

critical in the experimental design. Commonly used methods of quantifying body mass 

composition (lean and fat mass) includes echo-MRI157,158, used here in this study in addition to 

metabolic cage analysis159 for parameters of metabolism and activity such as volume of O2 and 

CO2, mobility, sleep, etc. We have chosen the C57/BL6J mouse model for the present study, in a 

breeding scheme that included the two global pannexin knockout mouse models globally lacking 

either Panx1 or Panx3 from germline.   

 

1.9 Rationale and Hypothesis 

Based on the literature presented, Panx1 is present in adipocytes, but its role in cellular 

development and obesity is unclear. The development of adipocytes and fat accumulation is 

highly regulated involving many different transcription factors, hormones, signaling cascades 

and enzymes. The current body of knowledge strongly supports Pannexins as channel proteins 

that interact with many signaling networks in both disease and in normal development.  It is clear 

however, that Panx1 and Panx3 play a variety of roles in cellular development spanning many 

different organs and tissues, and may also function in the adipocyte cell fate and development.  

Therefore it is hypothesized that Panx1 and Panx3 regulates proliferation and differentiation of 

adipocytes, resulting in changes in fat accumulation.  
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1.10 Objectives 

i. Assess the expression and localization of Panx1 during the adipogenesis process in WT 

ASCs and pre-adipocytes  

ii. Determine if the lack of Panx1 in ASCs affect cell growth and differentiation by isolating 

ASC from Panx1 KO mice  

iii. Determine the effect of a high fat diet on WT and Panx1 KO mice by testing markers of 

obesity and assessing metabolism, activity and mobility.  

iv. Assess the function of Panx3 in adipocyte development and in the context of a high fat 

diet using the Panx3 KO mouse 
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2.1 Abstract 

Obesity is a growing worldwide epidemic with various comorbidities and associated risk 

factors. Pannexin 1 (Panx1) is a channel-forming glycoprotein important in paracrine signaling 

and cellular development. It is expressed in the cells responsible for fat accumulation, namely 

adipocytes, as well as adipogenic progenitors throughout the process of adipogenic 

differentiation. In vivo, male mice globally lacking Panx1 (Panx1 KO) have significantly greater 

total fat mass as compared to wild type (WT) mice under a normal diet. At the cellular level, 

ASCs isolated from Panx1 KO mice proliferate more slowly, but demonstrate enhanced 

adipogenic differentiation in terms of intracellular lipid accumulation, glycerol-3-phosphate 

dehydrogenase (GPDH) enzyme activity, and adipokine secretion, as compared to WT ASCs. In 

spite of their higher fat content in normal conditions, Panx1 KO mice on a high fat diet exhibited 

no differences in weight gain and blood markers of obesity as compared to controls. However, 

metabolic cage data revealed that these global Panx1 KO mice display significantly increased 

activity levels, higher ambulatory activity, and reduced sleep duration relative to their WT 

littermates. We conclude that Panx1 plays a key role in adipogenic cell proliferation and 

differentiation and can regulate fat accumulation in vivo.  
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2.2 Introduction 

The obesity epidemic is the leading cause of global deaths and according to the World 

Health Organization approximately 10% of the world’s population is obese (as of 2014)1. 

Obesity accounts for a multitude of comorbidities including cardiovascular disease, type II 

diabetes, and cancer2. Adipocytes are the main cell type responsible for fat accumulation and 

play a key role in the metabolic complications associated with obesity. 

Adipocytes are unique cells that have the capacity to store large amounts of energy and 

have a long lifespan, where approximately 10% of adipocytes are regenerated annually3. 

Adipocytes are problematic in the context of obesity in that their innate ability to accumulate 

lipids causes excess adipose tissue, that behaves as an endocrine organ participating in cytokine 

release and associated inflammatory problems4.  At the onset of obesity, adipose tissue can 

release many different transcription factors, inflammatory cytokines, and hormones including: 

leptin, resistin, adiponectin, IL-6, IL-1β, TNF-α, MCP-1, to name a few4. As a collective, many 

of these factors contribute to the development of chronic inflammation and subsequently cell 

death and lipolysis4. As a result of chronic inflammation and adipocyte cell death, macrophage 

infiltration occurs and pro-inflammatory M1 macrophages surround dead adipocytes in a crown-

like fashion, further exacerbating the inflammatory response5 and comorbidities6.  

Mature adipocytes originate from the expansion and differentiation of a heterogeneous 

population of multipotent precursor cells and more committed pre-adipocytes, collectively 

referred to as adipose-derived stromal cells (ASCs)7. Adipogenesis is a highly complex process 

involving dynamic variations in the expression of numerous intracellular and secreted proteins, 

as well as dramatic changes in cell morphology8. Previous research using both the immortalized 

3T3-L1 pre-adipocyte cell line 9 and primary ASC populations10 has helped to elucidate the 

mechanisms of adipogenic differentiation. These cell populations can be induced in culture to 
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differentiate using adipogenic media containing a cocktail of hormones and other factors that 

stimulate the pathways involved in adipogenesis11. Following the induction of differentiation, the 

cells undergo cell cycle arrest8,11, which then triggers a signaling cascade that upregulates the 

transcription factors necessary for adipogenesis, including peroxisome proliferator-activated 

receptor-γ (PPAR-γ) and CCAAT-enhancer binding protein-α (C/EBP-α)12.  PPAR-γ and 

C/EBP-α function in concert to help maintain growth arrest13 and the differentiative state14, and 

through downstream signaling pathways upregulate the expression of adipogenic genes required 

for intracellular lipid accumulation and differentiation into mature adipocytes12.  

Pannexins (Panx) are a family of three channel-forming glycoproteins (Panx1, Panx2 and 

Panx3) that form large pore channels at the cell surface and intracellular compartments15. Panx1 

has been shown to be ubiquitously expressed in most mammalian organs, while Panx2 (central 

nervous system16 and other organs17), and Panx3 (skin18, cartilage19 and bone20) are more 

restricted in their expression. Pannexin subunits oligomerize into hexameric non-selective 

functional channels21 that allow for the passage of ions and small molecules (<1kDa) such as 

ATP or glutamate22. The large pore pannexin channels participate in cellular communication in 

an autocrine fashion, or through the extracellular environment via paracrine signaling23.  

Panx1 is present in metabolically relevant tissues24 such as liver16, white adipose tissue25, 

and large intestine 26, and has been linked to diseases27 such as melanoma28, ischemia29, 

hypertension30, colitis31, and diabetes32. In adult tissues, Panx1 expression or dysregulation is 

conducive to the onset or progression of different diseases27. However, in early stages of 

development, Panx1 has been reported to regulate functions of cell proliferation and 

differentiation in many cell types such as: dermal fibroblasts33, keratinocytes18, skeletal muscle 

myoblasts34, osteoblasts35, and neural progenitor cells36. There is only one report in the literature 



35 

suggesting that Panx1 is expressed in mature adipocytes and mediates glucose uptake along with 

insulin sensitivity25, but the role of pannexins in early adipogenic development is currently 

unknown.  

Using a global Panx1 knockout mouse model (Panx1 KO used in this study)37,  we 

previously contributed to the characterization of this model and reported that the dorsal skin of 

the Panx1 KO mice had a thinner dermal area and delayed wound healing capabilities, due to the 

lack of Panx1 in keratinocytes and dermal fibroblasts33. Interestingly, we also noticed that there 

was a significant increase in the subcutaneous fat of the Panx1 KO that was evident at 4 days of 

age, and persisted into adulthood33. Based on this, we hypothesized that Panx1 may regulate 

adipogenic cell proliferation and differentiation, thus resulting in changes in fat accumulation. In 

this study, we highlight for the first time the function of Panx1 in early adipocyte development. 

Panx1 regulates the proliferation and differentiation of ASCs, and the germline deletion of Panx1 

results in increased fat mass in vivo, underlining a role for Panx1 in fat accumulation and obesity.  
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2.3 Results  

2.3.1 Panx1 is expressed during adipogenic differentiation  

Since it has been well established that Panx1 is involved in cell proliferation and 

differentiation of many different cell types33–35, we evaluated its potential regulation of 

adipogenic development and differentiation.  It was initially reported by Adamson et al., 201525 

that Panx1 was expressed in mature mouse adipocytes and the more-committed murine 3T3-L1 

pre-adipocyte cell line25. In order to assess changes in Panx1 expression during adipogenic 

differentiation over time, we induced the 3T3-L1 cells to differentiate using adipogenic 

differentiation media and stained the cells with oil red O to assess intracellular lipid 

accumulation at varying time points over 14 days (Fig. S1A). We confirmed that there was 

extensive multilocular lipid accumulation in the cells that had been induced to differentiate (Fig. 

1A). When we stained cells by immunofluorescence for Panx1, we observed that Panx1 was 

expressed mostly intracellularly in the pre-adipocyte cells both before and after differentiation 

(Fig. 1B). We conducted a lipid biosynthesis assay by measuring glycerol-3-phosphate 

dehydrogenase (GPDH) enzyme activity; a key enzyme involved in the process of converting 

carbohydrates to lipids. GPDH activity was significantly upregulated, about 100-fold, after 

adipogenic induction (P<0.001, n=6) (Fig. 1C). We also assessed the secretion of the adipokines 

leptin and adiponectin by ELISA and found upregulation of both markers in the medium of the 

differentiated 3T3-L1 cells (P<0.05, P<0.01, n=6) (Fig. 1D, E). Knowing that the cells were 

efficiently differentiating, we compared Panx1 expression throughout 14 days of differentiation 

in both cells induced to differentiate and non-induced controls maintained in proliferation 

medium. Panx1 was consistently expressed throughout the differentiation process without 

significant changes in protein levels (Fig. 1F, n=6).  
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Figure 2.1 Panx1 is expressed during adipogenic differentiation. 3T3-L1 mouse pre-

adipocyte cells shown before and after adipogenic induction, 14 days in culture. A. Bright field 

images of cells stained with oil red O confirm intracellular lipid accumulation (red) characteristic 

of differentiated multilocular adipocytes, counterstained with hematoxylin (blue). Scale bar= 100 

µm. B. Fluorescent micrographs depicting expression of Panx1 (green) and nuclei (blue). Scale 

bar= 20 µm. C-E, identical microscope parameters were maintained to compare between 

samples. GPDH activity, leptin and adiponectin ELISAs of 3T3-L1 cells before and after 

adipogenic induction validating adipocyte differentiation. F. Western blot and respective 

quantification of Panx1 expression in 3T3-L1 cell lysates over a period of 14 days in induced 

cells (top) and control cells (bottom). Panx1 is expressed in both control and differentiated cells 

and is not significantly different over time or throughout differentiation. N=3, n=6, *P<0.05, 

**P<0.01, ***P<0.0001, means ± s.e.m.   
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2.3.2 Panx1 KO mice have significantly greater fat mass compared to WT 

mice. 

Since we observed that Panx1 was expressed throughout adipogenic differentiation, we 

hypothesized that it may also play a role in fat accumulation.  With the use of the global Panx1 

KO mice, described by Qu et al., 201137, we backcrossed the mice to C57BL/6 until a congenic 

line of mice was generated and assessed their overall body mass composition via echo-MRI. We 

first compared average body weight between WT and Panx1 KO mice and saw no significant 

differences (WT N=10, KO N=11) (Fig. 2A). When assessing overall fat mass composition, we 

observed that Panx1 KO mice had significantly greater fat mass (42% increase) compared to WT 

mice (WT N=10, KO N=11, P<0.01) (Fig. 2B), and significantly decreased overall lean mass 

(P<0.01) (Fig. 2C). To ensure that these differences were not due to genetic variations between 

mice, we crossed heterozygous mice to generate a small cohort of littermate mice (WT, 

Heterozygous, and Panx1 KO) and repeated the measurements. We saw no change in body 

weight (WT N=3, Het N=3, KO N=3) (Fig. 2D), or lean mass between these groups of mice (Fig. 

2F). Consistent with the non-littermate group, we saw that the Panx1 KO mice had significantly 

greater fat mass (45% increase) compared to WT and heterozygous mice (P<0.0001) (Fig. 2E). 

Therefore, the significant increase in overall fat mass was due to the Panx1 deletion, indicating 

that Panx1 may play a role in fat accumulation.  
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Figure 2.2 Panx1 KO mice have significantly greater fat mass compared to WT mice. 

Congenic wildtype (WT) and Panx1 global knockout (KO) mice (12 months-old, A-C), and 6 

month-old WT, KO and heterozygous (Het) male littermate mice (D-F) were fed ad libitum on 

normal chow diet and analyzed with echo-MRI to determine overall body mass composition. A, 

D. There was no significant difference in body weight between groups of mice. B, E. Panx1 KO 

mice had significantly increased fat mass compared to WT mice normalized to body weight 

(including raw fat mass). C, F. Congenic KO mice showed a slight decrease in lean mass (both 

normalized to body weight and raw data), while there was no significant difference in lean mass 

among littermate mice (F). A-C: WT N=10, Panx1 KO N=11. D-F: WT N=3, Heterozygous 

N=3, Panx1 KO N=3. *P<0.01, **P<0.01, ***P<0.0001, means ± s.e.m.   
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2.3.3 Panx1 is expressed in adipose tissue, adipose-derived stromal cells 

(ASCs), and pre-adipocytes. 

Since we observed an increase in fat accumulation in the Panx1 KO mice, it led us to 

investigate if Panx1 could be regulating the proliferation and differentiation of the adipogenic 

cell populations within adipose tissue. Adamson et al., 2015 previously reported that Panx1 is 

present in perigonadal and perivascular adipose tissue of C57/BL6 mice fed on a normal chow 

diet, therefore we evaluated if the same was true for other depots of white adipose tissue. We 

labelled white adipose tissue from WT and Panx1 KO male mice via immunohistochemistry and 

observed that Panx1 was expressed, however localization of Panx1 could neither be determined 

at the cell surface nor intracellulary, as cytoplasm of adipocytes are difficult to visualize (Fig. 

3A). We also confirmed that the signal was ablated in the Panx1 KO white adipose tissue (Fig. 

3A). We placed WT and Panx1 KO mice on a high fat diet (HFD) in order to isolate a greater 

number of adipose-derived cells for in vitro assays. We successfully isolated primary ASCs from 

WT and Panx1 KO mice. In WT ASCs in culture, we observed that Panx1 was expressed mostly 

in the intracellular compartment (Fig. 3B) and Panx1 expression was absent in the ASCs isolated 

from Panx1 KO mice, as expected.  To ensure that we were utilizing a translatable in vivo model, 

we also isolated human ASCs derived from breast tissue of two female donors (reduction surgery 

patient), and immunofluorescence (IF) with anti-human PANX1 antibodies (Fig. 3C), revealed a 

similar intracellular pattern to that observed with anti-mouse Panx1 antibodies in mouse ASCs 

and the 3T3-L1 adipocyte cell line (Fig. 3B, D).  When protein lysates from these cell cultures 

were run on a Western blot we saw that human ASCs, WT mouse ASCs and pre-adipocyte 3T3-

L1 cells exhibited the characteristic multi-banding pattern of Panx1 due to the different 

glycosylation species (Fig. 3E). Thus, Panx1 was shown to be expressed in the pre-adipocyte 
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3T3-L1 cell line, white adipose tissue, mouse and human ASCs, that were used in the present 

studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

Figure 2.3 Panx1 is expressed in visceral adipose tissue, mouse and human adipose-derived 

stromal cells (ASCs), and 3T3-L1 pre-adipocytes. A. Fluorescent micrographs of WT and 

Panx1 KO adipose tissue from male mice fed on a high fat diet (HFD), depicting Panx1 (red) 

labeling in the WT and absent in the KO. B. ASCs isolated from adipose tissue of WT and KO 

mice on HFD and grown in culture, show Panx1 expression (green), that is ablated in the KO 

cells. C. Human ASCs (hASCs) isolated from female breast adipose tissue express PANX1 

(green). D. 3T3-L1 pre-adipocyte cells in culture stained for Panx1 (green) E. Corresponding 

Western blots of cell lysates from hASCs, WT and Panx1 KO mouse ASCs (mASC), and pre-

adipocytes. A375 human melanoma cells used as a PANX1 positive control (+) and 293T cells 

ectopically expressing mouse Panx1 as (+) control. GADPH used as loading control. Nuclei 

(blue), scale bars=44 (A), 20 µm (B-D). Identical microscope parameters were maintained to 

compare between samples. 
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2.3.4  Lack of Panx1 causes a reduction in ASC proliferation 

Since Panx1 is expressed in ASCs (Fig. 3B) and there have been no documented reports of 

the role of Panx1 in ASCs or in early adipocyte development, we chose to initially assess cell 

proliferation and viability. We isolated ASCs from the inguinal fat of WT and Panx1 KO male 

littermate mice on a HFD, expanded the cells in culture, and assessed proliferation at passage 2 

by systematic cell counts over 7 days. We observed that Panx1 KO ASCs grew significantly 

slower, with an approximately 50% reduction in total cell number compared to WT ASCs at days 

5 and 7 in culture (N=3, n=3, P<0.01, P<0.001). (Fig. 4A). This reduction in proliferation was 

also observed in Panx1 KO ASCs isolated from the epididymal fat depot (N=3, n=3 P<0.001) 

(Fig. S1B).  In order to assess whether this reduction in cell number was an effect of reduced cell 

proliferation and/or increased cell death, we immuno-labeled the cells at day 5 with the 

proliferation marker, Ki67 and the apoptosis marker, cleaved caspase 3 by 

immunocytochemistry. Panx1 KO ASCs proliferated significantly less than WT cells, with a 

~20% reduction in Ki67 positive cells (N=3, n=15, P<0.001) (Fig. 4B).  When assessing cleaved 

caspase 3, we saw no significant difference in expression between WT and Panx1 KO ASCs, 

indicating there was minimal cell apoptosis in both populations (N=3, n=15) (Fig. 4C). Therefore 

based on these results, Panx1 KO ASCs proliferate significantly slower than WT ASCs, but there 

was no effect on cell death. Thus, Panx1 regulates ASC proliferation.  
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Figure 2.4 Lack of Panx1 causes a reduction in ASC proliferation. A. Panx1 KO ASCs show 

significantly decreased growth compared to WT ASCs in a growth curve assay over 7 days. B-C. 

Quantification of cell proliferation (Ki67, green) and cell death (cleaved caspase 3, green), with 

corresponding fluorescent micrographs from WT and Panx1 KO ASCs at day 5. Positive control 

(inset) of staurosporine induced WT ASC cell death. Panx1 KO ASCs show significantly 

reduced cell proliferation, and no difference in cell death compared to WT ASCs. Nuclei (blue). 

Scale bar= 40um. Identical microscope parameters were maintained to compare between 

samples. A: N=3, n=3, B-C: N=3. N=15, **P<0.01, ***P<0.001, means ± s.e.m. 
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2.3.5 Panx1 regulates adipogenic differentiation. 

We determined that Panx1 expression was slightly upregulated after 14 days of adipogenic 

induction (by approximately 18%) in WT ASCs, suggesting that Panx1 may be regulated during 

adipogenic differentiation (N=3, n=6, P<0.05) (Fig. 5A). WT and Panx1 KO ASCs were grown 

in culture in parallel and induced to differentiate in adipogenic differentiation medium over 14 

days. When stained with the lipid marker oil red O, both WT and Panx1 KO ASCs were able to 

differentiate and develop characteristic round lipid droplets (Fig. 5B). In contrast, there was no 

lipid accumulation in control cells maintained in proliferation medium. In comparing the induced 

populations, we observed that the Panx1 KO ASCs had a more homogeneous response, with a 

higher fraction of cells that were accumulating intracellular lipid and a more mature unilocular 

morphology, as compared to WT ASCs (Fig. 5B). In fact, the Panx1 KO ASCs differentiated so 

extensively that the cells were beginning to detach from the plate by 14 days, with a small 

number of mature adipocytes observed in suspension. To further confirm the enhanced lipid 

content, we extracted the intracellular oil red O dye from the stained WT and Panx1 KO ASCs 

and quantified the levels by absorbance spectroscopy. Panx1 KO induced ASCs had significantly 

increased oil red O content (approximately 45% more) as compared to WT induced ASCs (N=3, 

n=6, P<0.01) (Fig. 5C). To further compare the differentiation response, we measured 

intracellular GPDH activity and observed that the induced Panx1 KO ASCs had significantly 

higher adipogenic enzyme activity than the induced WT ASCs by approximately 35% (N=3, n=9 

P<0.05) (Fig. 5D). As a final measure of terminal differentiation, we assessed leptin and 

adiponectin expression levels in conditioned media from induced and control Panx1 KO and WT 

ASCs. These adipokines are regarded as late-stage markers of adipogenic differentiation and 

therefore provide a measure of the maturity of the differentiating cell populations 38,39. Consistent 

with the other markers, we saw that Panx1 KO induced ASCs had significantly increased leptin 
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(about 40%) and adiponectin (approximately 27%) levels within their conditioned media as 

compared to WT induced ASCs (N=3, n=9, P<0.05) (Fig. 5E, F). Therefore, the lack of Panx1 

can dysregulate ASC differentiation, enhancing adipogenic differentiation capacity and 

intracellular lipid accumulation as compared to WT ASCs.  
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Figure 2.5 Panx1 expression is increased after adipogenic induction in murine ASCs and 

lack of Panx1 enhances adipogenic differentiation. ASCs from WT and Panx1 KO male mice 

fed on a HFD were cultured and induced to differentiate into adipocytes for 14 days. A. Western 

blot and respective quantification of Panx1 expression in WT ASCs showing that expression 

significantly increases after adipogenic induction. B. Oil red O staining of WT and Panx1 KO 

ASCs, control cells (left) and induced cells (right) scale bar= 100µm. C. Panx1 KO ASCs 

revealed increased oil red O content compared to WT ASCs. D. Panx1 KO ASCs showed 

significantly increased GPDH activity compared to WT ASCs. E-F. ELISAs for leptin and 

adiponectin performed on conditioned media of ASCs. Panx1 KO ASCs have significantly 

increased leptin and adiponectin content compared to WT ASCs. A-D. N=3, n=6, E-G. N=3, 

n=9,*P<0.05, different letters denote significant differences (b: P<0.01, c: P<0.05), means ± 

s.e.m. 
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2.3.6 Panx1 KO mice on a HFD show no weight gain differences, but display 

increased activity 

Based on our findings that Panx1 KO mice at baseline had significantly increased fat mass 

(Fig. 2), we set out to determine whether there would be overt phenotypic effects in the context 

of a high fat diet. We hypothesized that Panx1 KO mice on a high fat diet (HFD, 60% kcal from 

fat) would show increased weight gain. Initially, we placed congenic WT and Panx1 KO mice on 

either 5 or 15 week HFDs and observed no significant differences in body weight increase 

between WT and Kos (WT N=13, KO N=12) (Fig. 6A, G). We also looked at blood lipids and 

various metabolic markers associated with obesity and fat accumulation (blood glucose, insulin, 

adiponectin, cholesterol, and triglycerides) but found no significant differences between groups 

(Fig. 6B-F). Finally, we assessed glucose tolerance and found no significant differences between 

WT and Panx1 KO mice (Fig. 6H and I). 
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Figure 2.6 Panx1 KO mice on a HFD show no weight gain differences and no changes in 

blood markers. WT and Panx1 KO congenic male mice were fed on either a 5-week (A-F) or 

15-week (G-I) high fat diet (60% kcal from fat) starting at 3 months of age. A, G.  Panx1 KO 

mice show no difference in body weight increase in either 5- or 15-week HFD. B-F. Fasted blood 

glucose (measured by glucometer), insulin, adiponectin, cholesterol, and triglyceride hormone 

levels (serum ELISA of WT and Panx1 KO mice fed on a 5 week high fat diet). There were no 

significant differences between WT or Panx1 KO groups. H-I. Fasted blood glucose collected 

from WT and Panx1 KO mice fed on a 15-week high fat diet, in addition to a glucose tolerance 

test where mice were administered 1 g/kg of glucose by intraperitoneal injection and blood 

glucose was monitored over time. Fasted blood glucose and glucose tolerance test revealed no 

significant difference between WT or Panx1 KO mice with no difference in combined area under 

the curve (AUC) analysis. WT N= 13, Panx1 KO N=12, means ± s.e.m. 
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We also placed littermate (WT, heterozygotes, and Panx1 KO) male mice at 3 months of 

age on an 11 week HFD and assessed weight and metabolic parameters. We observed that 

littermates showed no significant differences in body weight increase (WT N=6, Het N=13, 

Panx1 KO N=13) (Fig. 7A) or raw body weight (Fig. 7B) during the HFD. We placed this cohort 

of mice individually in metabolic cages (WT N=4, Panx1 KO N=4) in order to assess multiple 

metabolic parameters during their active period (dark) and their sleep period (light) for 24 hours 

after acclimation. Food and water consumption was monitored but showed no significant 

differences between WT and Panx1 KO mice (Fig. 7C, D). Energy expenditure was also 

monitored, but there was no significant difference between groups of mice (Fig. 7E). Volume of 

O2 and CO2 showed no significant differences between mice (Fig. 7F, G). The respiratory 

exchange ratio (RER) (the rate at which CO2 is produced over the rate of O2 consumed) was 

monitored and we expected to see changes in RER because it is a measure of how efficiently the 

body oxidizes fuel sources (carbohydrates or fats). However, we did not observe any differences 

between our mice (Fig. 7H), suggesting that the diet affected the RER of both WT and Panx1 

KO mice to an equal extent. We also measured total activity of the mice and interestingly, the 

Panx1 KO mice had significantly increased total activity both in the light (26% increase) and 

dark periods (38% increase) as compared to the WT mice (P<0.01) (Fig. 7I). Further, we saw 

that the Panx1 KO mice had significantly greater ambulatory activity both in light (38% 

increase) and in dark conditions (46% increase) (P<0.01) (Fig. 7J). Finally, we assessed sleep 

duration, and found that the Panx1 KO mice were sleeping significantly less than the WT mice 

during both the light (13% reduction) and dark (34% reduction) periods (P<0.01) (Fig. 7K). 

Taken together, the Panx1 KO mice showed no overt weight phenotypes compared to the WT 
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mice, however they showed significantly increased total activity, total ambulatory activity, and 

they slept significantly less.  
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Figure 2.7 Littermate WT, Het and Panx1 KO mice show no differences in weight increase 

on a high fat diet, but the Panx1 KO mice exhibit increased activity in metabolic cages. WT, 

Heterozygous (Het), and Panx1 KO, male littermate mice were fed on an 11-week high fat diet 

starting at 3 months of age. A-C.  Panx1 KO mice show no difference in body weight increase, 

body weight, or food consumption. C-K. Mice were individually placed in metabolic cages to 

assess metabolism and activity during their sleep period (light) and during their active period 

(dark). Panx1 KO mice showed significantly increased total activity (I) and ambulatory activity 

(J), with significantly reduced sleep duration (K), while all other parameters remained 

unchanged. A-B: WT N=6, Het N=13, Panx1 KO N=13. C-K: WT N=4, Panx1 KO N=4. 

Different letters denote significant differences. P<0.01, means ± s.e.m. 
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2.4 Discussion 

It has been well established that Panx1 plays important functions in proliferation and 

differentiation of many cell types, however there have been no reports on whether this is true for 

adipogenic cell populations. We have shown for the first time that Panx1 regulates the 

proliferation and differentiation of ASCs into mature adipocytes, and the germline deletion of 

Panx1 in ASCs leads to increased adipogenic differentiation and fat accumulation. We have also 

shown in vivo that the global Panx1 KO mouse model has significantly more fat mass than WT 

controls. However, the KO mice do not gain more weight under an intense high fat diet, which 

may be due to their increased activity and decreased sleep relative to their WT counterparts.  

The first and only report on Panx1 being expressed in adipose tissue by Adamson et al., 

2015 proposed an elegant mechanism in which insulin activates the release of ATP from the 

Panx1 channels, which in turn causes a signaling cascade indirectly allowing the transport of 

glucose into the cell25. They also established that blocking Panx1 channels using 

pharmacological inhibitors significantly reduced glucose uptake in 3T3-L1 pre-adipocyte cells. 

Additionally, they went on to use an adiponectin-inducible Cre recombinase to delete the Panx1 

gene from mature adipocytes, generating an adipocyte-specific Panx1 knockout mouse model25. 

With this model, they found slight diet-induced insulin resistance in the conditional KO, with no 

changes in body mass composition, metabolic parameters, or activity under a high fat diet25. 

This group also assessed body mass composition in Panx1 adipose-specific knockout mice 

on a 12-week high fat diet, and found no significant differences, but observed some trends 

towards increased circulating blood glucose and increased insulin resistance25.  

Our study differs from the previous study as we have chosen to utilize a global Panx1 KO 

mouse with a constitutive germline deletion of Panx1, whereas Adamson et al., 201525 assessed 

mature adipocyte-specific Panx1 knockout mice, driven from an adiponectin promoter. 
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Adiponectin is expressed only in terminally differentiated adipocytes, thus the knockout of 

Panx1 in this model occurs at the final stages of adipocyte development and would not affect 

early precursor cells40, such as ASCs. Additionally, this adipocyte-specific promoter is induced 

by doxycycline, which is an additional variable for the assessment of metabolism and weight, 

potentially altering food consumption and possibly having off target effects41. Therefore, the 

global Panx1 KO mouse model provides a unique approach at assessing Panx1 during early 

adipocyte development and it highlights the striking differences in fat accumulation, proliferation 

and differentiation that were observed. On the other hand, global KO models also present 

limitations, since the germline deletion of the Panx1 gene may be compensated throughout 

development by other members of the pannexin family33,42, or other channel proteins with similar 

function, and the resulting phenotypes may be attenuated or masked by this effect. 

We have demonstrated that the global Panx1 KO mice have significantly greater fat mass 

than WT mice fed on a regular chow diet. Similar to our results, it was demonstrated that Panx1 

KO mice fed on a regular chow diet had a significantly increased area of hypodermal fat under a 

thinner dorsal skin33. We saw no differences in overall body weight, suggesting that the amount 

of fat that is increased in the Panx1 KO mice is subtle. However, we did observe that the overall 

lean mass in some cohorts was significantly decreased, which could compensate for the increases 

in fat mass. Panx1 is also expressed in bone43, muscle34 and other organs24 that could be altered 

in this global KO, which may account for the lack of differences in body weight under normal 

chow.   

Our studies confirm that Panx1 is present in adipose tissue visceral depots that are 

commonly associated with metabolic disorders in obesity. We have demonstrated that Panx1 is 

present not only in mouse white adipose tissue, but also in murine and human ASCs, and in the 
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pre-adipocyte 3T3-L1 cell line. Our preliminary data suggests similarity in the Panx1 expression 

patterns in both human and murine ASCs that reinforces the translational potential of our 

research.  

In our study, the majority of Panx1 expression was found intracellularly, with the 

exception of adipose tissue, where it appeared to localize at the cell surface. However, the 

cytoplasm of adipose cells in vivo is difficult to visualize since they are filled with lipid droplets. 

Panx1 is typically at the cell surface when ectopically expressed, however it has been reported in 

the literature that endogenous Panx1 can localize to the intracellular compartments, in tissues 

such as skin18, skeletal muscle34, canine cardiac myocytes29, or in the retina44. In primary cells 

and cell lines, it is common for endogenous Panx1 to localize intracellularly such as in: primary 

dermal fibroblasts33, mouse melanoma cell lines28 and when ectopically expressed in some 

reference cell lines43. Intracellularly, Panx1 has been proposed to act in the ER as a calcium leak 

channel45. Interestingly, intracellular calcium has been demonstrated to be key regulator of 

keratinocyte differentiation via many different signaling pathways by activation of kinases and 

phospholipases46. In addition, intracellular calcium release and uptake from the sarcolemma and 

sarcoplasmic reticulum signaling plays a role in embryonic stem cell-derived cardiomyocytes 

differentiation47. Finally, calcium from the endoplasmic reticulum has been shown to play a role 

in adipocyte differentiation, where pharmacological blockade of calcium release by thapsigargin  

results in a dose-dependent inhibition of adipocyte differentiation48. It is possible that Panx1 in 

ASCs may act through an intracellular function of the channels as a mediator of adipogenic 

differentiation.  

Panx1 regulates the proliferation of primary cell types including dermal fibroblasts and 

keratinocytes33, osteoblasts24, and skeletal muscle myoblasts34. Our results show that lack of 
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Panx1 expression results in significantly reduced cell proliferation. Consistent with this data, in a 

previous study assessing Panx1 function in mammary gland development, lactating mice 

globally lacking Panx1 showed reduced alveolar development and reduced cell proliferation 

within the mammary glands49. Contrastingly, primary dermal fibroblasts isolated from the same  

Panx1 KO model proliferated more and were less responsive to TGFβ stimulation than WT 

controls, but presented already high levels of  α-SMA, a marker of myofibroblasts 

differentiation, suggesting that they may have been primed towards differentiation33 similar to 

our findings with the KO ASC differentiation pattern. In that same study, Panx1 expression was 

decreased in WT keratinocytes induced to differentiate in vitro33, while we observe a slight 

increase in Panx1 levels of ASCs induced to differentiate. In skeletal muscle myoblasts, Panx1 is 

regulated throughout differentiation and overexpression results in cell differentiation in vitro34. 

Taken together, we propose that Panx1 regulates the processes of cellular proliferation and 

differentiation in a cell type-specific manner. 

To date, little is known on the role of Panx1 in precursor or stem-like cells throughout 

differentiation. Most prominently, one group has reported that Panx1 is expressed in postnatal 

neural stem and progenitor cells, and by either inhibiting or overexpressing Panx1, they observed 

reductions or increases in cell proliferation, respectively36.  Our results revealed that lack of 

Panx1 results in significantly decreased proliferation and increased differentiation in ASCs. We 

postulate that Panx1 KO ASCs may be more pre-committed to the adipogenic lineage, as 

evidenced by the more homogeneous differentiation response and mature phenotype observed 

over the 14 day culture period. Given that there is an inverse relationship typically observed 

between proliferation and adipogenesis, with the cells undergoing growth arrest at the onset of 

differentiation9, the reduced proliferation rates observed in the Panx1 KO ASCs are consistent 
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with this interpretation. Additionally, it has been reported in the literature that mouse ASCs from 

either inguinal or perigonadal depots show differences in their ability to cope with HFD by either 

delineating between hypertrophy and hyperplasia. ASCs from inguinal depots have been shown 

to be more hyperplastic with greater amount of adipogenic progenitors (more amenable for 

isolation), compared to the perigonadal depots which are more prone to hypertrophy, suggesting 

depot dependent fat accumulation mechanisms50. Thus, lack of Panx1 may alter the response to 

HFD in inguinal ASCs, causing them to behave in a more hypertrophic (and less hyperplastic) 

manner as observed by the increased intracellular lipid content in the Panx1 KO cells. However, 

we also observed reduced cell numbers in epididymal ASCs from Panx1 KO perigonadal fat 

pads (Suppl. 1) indicating that the lack of Panx1 may affect other white adipose depots in a 

similar manner. Alternatively, the lack of Panx1 may also alter the composition of the ASC 

population causing greater uniformity and commitment towards the adipogenic lineage. There is 

evidence that multipotent mesenchymal stem cell (MSCs) clones are highly proliferative, 

whereas unipotent cells exhibit significantly slower growth rates51, and lineage commitment 

leads to reduced proliferation52. This is consistent with our results where Panx1 KO ASCs have 

significantly reduced proliferation, which may indicate commitment towards the adipogenic 

lineage compared to WT ASCs.  

 Our data has shown that there were no differences in weight gain in the Panx1 KO mice. 

We expected that the excess fat mass in the KO mice under regular chow would contribute to 

increased weight gain when challenged with a significantly higher amount of fat in the diet. It is 

possible that the HFD that we chose at 60% kcal from fat (Western HFD chow is only 45% kcal) 

may have had a saturating effect on the weight phenotype53. We cannot rule out other effects of 

the global Panx1 deletion in other organs where the protein is expressed, or the effect of 
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compensation by other channel proteins that may prevent the detection of a more overt weight 

phenotype. However, the options for a tissue specific Cre-deleter are limited since the 

Adiponectin Cre is the most specific one, but as shown by Adamson et al., 201525 is only 

effective when adipocytes are fully mature and would miss the early stages of adipogenesis 

where Panx1 plays a key role. In our model, we did not detect differences in weight gain. 

However, overall activity and ambulatory activity were significantly increased in the KO mice, 

and they also slept significantly less. We propose that these increases in activity and reduction in 

sleep may counteract any differences in weight gain. In a different global Panx1 KO model54, it 

has also been established that the mice exhibit greater anxiety55 and greater motility56, thus 

demonstrating a collective role for Panx1 in increased activity. It is well known in the literature 

that Panx1 is present in the brain35, and thus a global Panx1 knockout could have a multitude of 

effects across the body, including at a behavioral level. It is possible that our global Panx1 

knockout could be affecting neurological aspects of behavior in the mice, as it has been reported 

that the Panx1 KO mice possess mechanisms of neuroprotection against ischemia-induced 

neurodegeneration57 and seizures58.  This is an intriguing finding, as lack of Panx1 in the brain 

may result in changes in behavior, causing dysregulation in brain centers responsible for sleep 

and activity. Panx1 channels can be activated by extracellular potassium59 and Panx1 has been 

reported to interact with the potassium channel subunit Kvβ3 mediating redox potentials60. In a 

knockout model of Kv3-type inhibitory fast-spiking potassium channels, mice exhibited 

increased seizure susceptibility61 and significantly reduced sleep with associated hyperactivity62. 

As such, Panx1 may also interact with Kv3-type channels regulating activity and sleep. It should 

be noted that there are many different factors that regulate sleep and activity, which should be 

further pursued in the context of the Panx1 KO mouse.  
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In summary, we have shown for the first time that Panx1 regulates both the proliferation 

and differentiation of adipogenic cells resulting in increased fat accumulation. We have 

demonstrated that Panx1 KO mice have higher fat content but show no overt weight gain 

increase on a high fat diet, potentially due to their increased activity and sleep alterations. Taken 

together, we have identified Panx1 as a novel regulator of ASC proliferation and differentiation, 

and subsequently, a key component of the regulation of fat accumulation, representing a 

potential new target for obesity intervention.  
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2.5 Materials and Methods 

3T3-L1 cell culture 

3-day transfer, inoculum 3x105 mouse embryonic fibroblast pre-adipocyte (3T3-L1) cells 

(ATCC) were grown in culture and induced to differentiate once confluent. Undifferentiated 

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L glucose, 1% 

Pen-Strep, and 10% calf serum (Thermo Fisher Scientific) and cells beyond passage 10 were not 

included in studies. Adipogenic media was composed of: DMEM with 4.5 g/L glucose (Thermo 

Fisher Scientific), 10% fetal bovine serum (Thermo Fisher Scientific), 1% Pen-Strep, 100 µg/mL 

of IBMX, 390 ng/mL dexamethasone, and 5 µg/mL insulin (Sigma Aldrich), and was replaced or 

supplemented every other day as described previously63 over 14 days.  

Animals and ethics  

Experiments performed on animals were approved by the Animal Care Committee of the 

University Council on Animal Care at the University of Western Ontario, London ON, Canada. 

Panx1 KO mice were originally obtained from Genentech (San Francisco, CA) and were 

previously described37. These mice were backcrossed with the WT mice: C57BL/6N strain mice 

from Charles River Canada (Saint-Constant, PQ) until a congenic line was obtained.  Human 

samples were obtained from breast reduction surgeries from consented patients at the London 

Health Research Centre, according to an approved ethics protocol (REB# 105426). 

High fat diet 

Congenic and littermate WT and Panx1 KO male mice were placed on either a 5-, 15-, or 

11-week high fat diet (HFD, 60% kcal from fat, TestDiet 58Y1) and fed ad libitum. Mice were 3 

months old at the start of the experiments and initially fed regular chow diet (6.2% kcal from fat, 

Harlan 2018).  
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Body mass composition 

Fat and lean mass composition of 12 month-old mice, in addition to 6 month-old littermate 

male mice were measured using quantitative magnetic resonance (echo-MRI) analysis with an 

echo magnetic resonance imaging mobile unit (Avian Facility of Advanced Research, University 

of Western Ontario, London, ON, Canada) as described by Guglielmo, et al., 201164 with the 

modification of placing live mice in the apparatus and measuring on the “bird” setting omitting 

water content. Measurements were taken in duplicate to ensure consistency of the results.  

Immunofluorescence 

White adipose tissue (WAT) was isolated from WT and Panx1 KO mice after a 15 week 

high fat diet, by incising the abdomen of the mouse and excising all visible epididymal fat. 

Adipose tissue was fixed in 10% neutral buffered formalin overnight, processed at the Robarts 

Research Pathology facility and embedded in paraffin. Paraffin sections were taken at 6 µm 

thickness, sections were deparaffinized and immune-labeled with Panx1-CT primary antibody in 

a (stock 1ug/ul) 1:500 dilution as described previously by Penuela et al., 200724. For proliferation 

studies, cell were labelled with active cell cycle phase specific marker Ki-67 in a 1:1000 dilution 

(Abcam, Cambridge, UK), and for cell death assays cells were labelled with CellEvent (Thermo 

Fisher Scientific) Caspase-3 Green Detection Reagent following manufacturer’s protocols, and 

counterstained with Hoechst nuclei stain in a 1:1000 dilution, as described previously after 5 

days in culture33. Staurospoine was used to induce cell death in WT ASCs at day 5 in culture and 

was utilized as a positive control. Images of adipose tissue were collected using a Leica DM 

IRE2 inverted epifluoresence microscope equipped with a 20X objective, while images of cells 

were collected using an LSM 800 inverted confocal microscope equipped with a 40X water 
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objective (Carl Zeiss, Jena, Germany). Identical parameters were maintained to compare between 

samples.  

Adipose-derived stromal cell isolation 

ASCs were isolated as previously described by Yu et al., 201166 from WT and Panx1 KO 

littermate male mice fed on the 11 week HFD, with the modification of isolating cells from the 

inguinal adipose depot (or epididymal fat pads, supplemental figure 1) and cells were filtered 

through a 100μm filter to remove debris prior to cell seeding.  Fat from up to three mice were 

pooled together for each separate isolation. Cells were seeded at high density (80 000 cells/cm2) 

and rinsed 24 hours after isolation with sterile PBS, cells were passaged when confluent 

(approximately 7 days). ASCs were grown in DMEM: Ham’s F-12 (Sigma Aldrich), 

supplemented with 10% fetal bovine serum and 1% Pen-Strep and growth medium was changed 

every 2 days. ASCs used for assays were grown up to Passage 2. Human ASCs were isolated 

from two female breast adipose tissue donors and isolation was conducted as described 

previously65.  

Western Blotting 

Western blots of protein lysates (primary cells and cell lines) were conducted as described 

previously by Penuela et al., 200724. Cell lysates were collected with a Triton-based extraction 

buffer [1% Triton X-100, 150 mM NaCl, 10 mM Tris, 1 mM EDTA, 1 mM EGTA, 0.5% Np-40, 

100 mM NaF, 100 mM sodium orthovanadate, proteinase inhibitor mini-EDTA tablet (Roche-

Applied Science, Laval, QC)] and subsequently run on a western blot, then probed using the 

Panx1-CT antibody at 1:5000 dilution or 0.2ug/ml, and anti-hPANX1 (412-426) antibody at 

1:1000 dilution or 1.0ug/ml with the modification of using 50 g of protein for all blots24. 

Human embryonic kidney (293T) cells ectopically expressing mouse Panx1 were used as a 
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positive control for all mouse blots as described by Penuela et al., 200843, while A375 human 

melanoma cells that express endogenous PANX1 were used as a positive control for human 

blots. Loading control used was GAPDH (Millipore, Billerica, MA). Detection of blots was 

established on an Odyssey infrared imaging system (LICOR).  

Proliferation and differentiation assays 

ASCs from WT and Panx1 KO mice were plated for differentiation in 12 well plates at a 

seeding density of 10 000 cells/cm2. Cell counts were measured in triplicate every other day up 

until day 7 using trypan blue (1:1) and a Countess automated cell counter (Thermo fisher 

Scientific). For differentiation assays, ASCs were plated in 6 well plates at a seeding density of 

30 000 cell/cm2. Adipogenic media was made as previously described66, with the modifications 

of substituting 1 µg/mL troglitazone and 0.25 mM isobutylmethylxanthine (IBMX) (instead of 

0.5 mM) (Sigma Aldrich) for days 1-3. After day 3, a modified adipogenic media was made, 

lacking troglitazone and IBMX. Modified adipogenic media was changed every other day until 

differentiation was complete at day 14. Differentiation assays were performed on day 14. GPDH 

enzyme activity was measured using the GPDH Activity Measurement Kit (Kamiya Biomedical 

Corporation, Seattle, WA, USA) following the manufacturer’s protocols and as described 

previously67. GPDH activity was normalized to total protein content measured using the Bio-Rad 

Protein Assay.  

Oil Red O staining 

For visual inspection of differentiating cells, plates were stained with oil red O (Sigma 

Aldrich) after 14 days of differentiation as previously described by Flynn et al., 200765, with the 

modification of an 8 minute oil red O incubation, followed by hematoxylin counterstaining for 2 

minutes. Staining was visualized on a bright field microscope and images were recorded in 4 
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randomly selected areas from each well. In order to quantify oil red O content, the intracellular 

dye was extracted by incubating the stained cells in 100% isopropanol at room temperature for 

15 minutes. The absorbance of the dye extract was measured at 492 nm using a CLARIOstar 

(BMG Labtech) plate reader and compared against groups.  

ELISA assays 

Conditioned media from induced ASCs and 3T3-L1 wells, as well as non-induced controls 

were collected at 14 days post-induction, where the media had been conditioned for 48 hours 

prior to analysis.  Leptin and adiponectin content in the media was measured by ELISA 

following the manufacturer’s protocols (Crystal Chem Inc., IL, USA). Total leptin and 

adiponectin content was normalized to total protein content measured using the Bio-Rad Protein 

Assay. Additionally, ELISAs (ALPCO, NH, USA) were performed following manufacturer’s 

protocols for insulin and adiponectin, while cholesterol was assessed by CHOD-PAP kit (Roche 

Diagnostics, Indianapolis, IN) and triglyceride analysis was conducted by Triglycerol/Glycerol 

kit (Roche Diagnostics, Indianapolis, IN) following manufacturer’s protocols. Analysis for in 

vivo studies were conducted using serum collected from congenic mice fed on a 5-week HFD.  

Metabolic analysis 

Blood glucose analysis was conducted at the time of termination, while glucose tolerance 

testing was conducted one week prior to termination. Male congenic mice that were placed on a 

15-week HFD were fasted 4 hours prior to testing. Fasted blood glucose was measured via a 

glucometer (OneTouch Ultra) and glucose tolerance testing was conducted by administration of 

1 g/kg of glucose by intraperitoneal injection and blood glucose was monitored at 15, 30, 60, and 

120 minutes. Metabolic analysis was assessed using the Comprehensive Lab Animal Monitoring 

System (CLAMS) with the Oxymax software (Columbus Instruments, Columbus, OH, USA) at 
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the Robarts Research Institute. Mice were individually caged and acclimated for 24 hours prior 

to measurement of food consumption, water consumption, energy expenditure, volume of 

oxygen (VO2) and carbon dioxide (VCO2),  respiratory exchange ratio (RER), total activity, 

total ambulatory activity, and sleep duration as described previously by68.  

Statistical analysis 

Statistical analyses were performed using Graph Pad Prism (GraphPad, San Diego, CA). 

Student’s t-test or ANOVA were performed with Tukey’s post hoc comparisons. Data are 

presented as mean ± SEM. N values in in vitro ASC assays represent pooled cells from up to 3 

mice, whereas, N values in in vivo experiments represent individual mice. Biological replicates 

are indicated by N. Technical replicates indicated by n.  
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2.7 Supplemental Figure 

 

Supplemental Figure 1. Representation of 3T3-L1 adipogenic differentiation over time and 

Panx1 KO ASCs from epididymal fat grow significantly slower than WT ASCs.  A. 3T3-L1 

mouse pre-adipocyte cells shown during a time course of adipogenic induction, 10 days in 

culture. Bright field images of cells stained with oil red O show gradual differentiation of cells 

into lipid-loaded (red) adipocytes, counterstained with hematoxylin (blue). Scale bar= 100µm. B. 

Panx1 KO ASCs from another fat depot (epididymal fat) also grow significantly slower than 

their WT counterparts in a growth curve assay over 7 days. N=3, n=3, ***P<0.001, means ± 

s.e.m.  
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3.1 Introduction 

The pannexin glycoprotein family is involved in the development of many different cell 

types and the wealth of knowledge surrounding them continues to grow. Since their discovery in 

20001, it has been established that the members: Panx1, Panx2 and Panx3 are expressed in 

mammalian tissues, and emerging literature states that they exist in many different pathologies. 

The large pore pannexin channels participate in cellular communication through the extracellular 

environment via paracrine signaling2. There is evidence that Panx1 is expressed in adipocytes 

and involved in glucose metabolism and insulin sensitivity3. In humans, Panx1 and Panx3 share 

sequence homology (41%)4 and are often co-expressed in the same cells and tissues. Panx3 has 

been documented to be expressed in cartilage5, bone6, muscle7, the inner ear8, and testes9. Panx3 

plays a catabolic role in osteoarthritis10, as was revealed by a study using the first ever mouse 

lacking Panx3 globally or conditionally in cartilage which showed resistance to the development 

of surgically-induced osteoarthritis10.    

In mice, Panx3 has been reported to regulate functions of cell proliferation and 

differentiation in many cell types such as: osteoblasts6, chondrocytes5, keratinocytes11, skeletal 

muscle myoblasts12, and odontoblast13. In osteoblasts, Panx3 is a target for runt-related 

transcription factor (Runx2), essential for the formation of bone. Panx3 is also found in 

intramembranous bones in mouse embryos, and has been identified in chondrocytes6. It has been 

proposed that Panx3 is regulated throughout chondrocyte differentiation via the regulation ATP 

and cAMP content5. Most notably, Panx3 has been shown to play an essential role in skeletal 

long bone development in rodents, as lack of Panx3 results in significantly shorter long bones14 

and dysregulated chondrocyte and osteoblast development15. Similar to Panx1, Panx3 is involved 

in keratinocyte differentiation11and is also  involved in the differentiation and proliferation of 

skeletal muscle myoblasts12.  
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Based on the knowledge that Panx3 is highly involved in proliferation and differentiation 

of many cell types, and that it shares similar sequence homology to Panx1, we hypothesized that 

Panx3 could also regulate adipocyte proliferation and differentiation. In this study, we highlight 

for the first time the expression and function of Panx3 in adipose precursor cells and pre-

adipocytes throughout adipogenic differentiation. Panx3 expression is regulated in the 

proliferation and differentiation of ASCs, underlining a potential function in fat accumulation 

and obesity.  
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3.2 Results 

3.2.1 Panx3 is expressed in pre-adipocytes and mouse ASCs 

Since it has been well established that Panx1 is involved in cell proliferation and 

differentiation of many different cell types in conjunction with Panx311,12,16, we hypothesized that 

Panx3 could also be expressed in adipocytes and play a role in adipocyte development.  We 

labeled 3T3-L1 pre-adipocyte cells via immunohistochemistry and observed that Panx3 was 

clearly expressed both before and after adipocyte differentiation (Appendix 1a-b). Panx3 

labelling in the control cells was observed mostly intracellularly. We isolated multipotent 

primary adipose derived-stromal cells (ASCs) from WT mice and subsequently labelled the 

ASCs for Panx3. We observed that Panx3 was also expressed intracellularly (Appendix 1c) 

Therefore, we show for the first time that Panx3 is expressed in the pre-adipocyte 3T3-L1 cell 

line before and after adipocyte differentiation and in mouse ASCs.  
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Appendix 3.1 Panx3 is expressed in pre-adipocytes and mouse ASCs. A. Fluorescent 

micrographs depicting Panx3 expression (green) in 3T3-L1 cells before (control) and after 

adipogenic induction (induced). B. Panx3 is expressed in WT ASCs (green) with Hoechst nuclei 

stain (blue). Scale bars= 20µm, 100µm. Identical microscope parameters were maintained to 

compare between samples. 
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3.2.2 Panx3 KO mice have less fat mass at baseline and gain slightly less 

weight on a HFD. 

Since we observed that Panx3 was present during adipogenic differentiation of 3T3-L1 

pre-adipocytes, we hypothesized that along with Panx1, it could also play a role in fat 

accumulation.  With the use of the first global Panx3 KO mice, as described by Moon et al., 

201510, we assessed overall body mass composition via echo-MRI. We first compared average 

body weight between WT and Panx3 KO mice and saw no significant differences (WT N=11, 

Panx3 KO N=12) (Appendix 2a). When assessing overall fat mass composition, we were 

surprised to see that the Panx3 KO mice had significantly less fat mass (15% reduction) 

compared to WT mice (P<0.05) (Appendix 2b), and no significant differences in overall lean 

mass (Appendix 2c). Therefore, the significant reduction in overall fat mass was due to the lack 

of Panx3 in the mice, indicating that Panx3 may play a role in fat accumulation that may be 

opposite to that of Panx1.  

Since we saw differences in overall fat mass in Panx3 KO mice at baseline, we wanted to 

determine whether there would be any phenotypic effects in the context of a high fat diet. We 

hypothesized that by placing Panx3 KO mice on a high fat diet (HFD) they would show reduced 

weight gain. When we placed WT and Panx3 KO mice on a 16 week HFD we observed a slight 

reduction in weight gain for the Panx3 KO mice between weeks 2 and 8 of the HFD. Beyond that 

time frame there were no longer any significant differences (WT N=16, Panx3 KO N=13, 

P<0.05) (Appendix 2d). When we assessed raw body weight, we saw no significant differences 

between WT or Panx3 KO mice (Appendix 2e). Therefore, Panx3 seems to affect fat 

accumulation and may exert slight effects on weight gain.  
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Appendix 3.2 Panx3 KO mice have significantly less fat mass at baseline and gain slightly 

less weight on a HFD compared to WT mice. A-C. Panx3 KO mice fed ad libitum on normal 

chow diet (baseline) at 3 months of age, were placed in echo-MRI to determine body mass 

composition. There was no significant difference in average body weight or average lean mass 

between groups of mice, however Panx3 KO mice had significantly decreased fat mass 

compared to WT mice and relative to body weight. D-E. Pannexin 3 global knockout (Panx3 

KO) mice fed on a high fat diet (60% kcal from fat) starting at 3 months of age for 17 weeks, and 

congenic WT controls. Panx3 KO mice had a slight reduction in weight increase (normalized to 

initial weight) between 2 and 8 weeks on HFD, but no change in raw body weight compared to 

WT mice. A-C. WT N=11, Panx3 KO N=12.  D-E. WT N=16, Panx3 KO N=13, Asterisks 

denote significant differences, P<0.05, means ± s.e.m.   
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3.2.3 Panx3 KO mice at baseline exhibit normal metabolic behavior 

Based on the findings that Panx3 KO mice had significantly reduced fat mass, along with 

reduced weight gain on HFD, we determined that it would be beneficial to assess metabolic 

parameters at under normal chow diet conditions. When we placed WT and Panx3 KO mice 

individually in metabolic cages, we saw no significant differences in any of the measured 

parameters comparing WT and Panx3 KO mice during their active period (dark) or their sleep 

period (light) over 24 hours. Thus Panx3 does not seem to regulate any aspects of metabolism 

and activity such as mobility, or metabolism (WT N=4, Panx3 KO N=4) (Appendix 3a-i).   
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Appendix 3.3 Panx3 KO mice at baseline exhibit normal metabolic behavior. A-I. WT and 

Panx3 KO male mice fed ad libitum on a normal chow diet (baseline) were placed in metabolic 

cages to assess metabolism and activity during their sleeping period (light) and the active period 

(dark). There were no overt differences in any of the metabolic parameters between WT and 

Panx3 KO mice.  WT N=4, Panx3 KO N=4. Different letters denote significant differences, 

P<0.05, means ± s.e.m.   
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3.2.4 Panx3 KO ASCs grow significantly slower than WT ASC, and Panx3 is 

expressed throughout adipogenic differentiation. 

Since we observed that the reduction in fat accumulation and weight gain were not due to 

metabolic or activity parameters in the Panx3 KO mice, it led us to believe that Panx3 could be 

regulating fat accumulation processes at the level of the adipocytes. We isolated ASCs from 

epididymal fat pads of WT and Panx3 KO male mice on a HFD, grew them in culture and 

assessed their growth by systematic cell counts over 7 days. We observed that Panx3 KO ASCs 

grew significantly slower with approximately 30% reduction in cell number compared to WT 

ASCs at days 4 and 7 in culture (N=3, P<0.001) (Appendix 4a). We induced the 3T3-L1 cells 

and WT ASCs to differentiate using adipogenic differentiation media for 10 and 14 days 

respectively to assess Panx3 expression before and after differentiation. In the 3T3-L1 cells, we 

observed that Panx3 expression was significantly increased after differentiation by 

approximately 50% (n=3, P<0.01) (Appendix 4b). In ASCs, there was also a trend towards 

increased Panx3 levels upon differentiation but it was not statistically significant. (Appendix 4c).  
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Appendix 3.4 Panx3 KO ASCs grow significantly slower than WT ASCs, and Panx3 is 

expressed throughout adipogenic differentiation. ASCs from WT and Panx3 KO male 

congenic mice fed on a 16 week HFD (60% kcal from fat) were isolated from epididymal 

adipose tissue and grown in culture. A. Panx3 KO ASCS grow significantly slower than WT 

ASCs. B. Panx3 expression is significantly increased after terminal differentiation in 3T3-L1 

pre-adipocytes. C. Panx3 expression is unchanged in WT ASCs induced to differentiate. N=3, 

n=3. **P<0.01, ***P<0.001, means ± s.e.m.   
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3.3 Discussion 

We have shown for the first time that Panx3 is expressed in adipocytes, and also that it 

may play an opposing role compared to Panx1 on fat accumulation and weight gain, where lack 

of Panx1 was shown to result in significantly increased adipogenic differentiation, resulting in 

increased intracellular lipid content. We have also further established that Panx3 may be 

involved in adipocyte proliferation since Panx3 KO ASCs had reduced proliferation. Panx3 may 

also play a role in adipocyte differentiation since its expression is regulated before and after 

differentiation, however this remains to be further investigated. Finally, we have characterized 

body mass composition of the novel Panx3 KO mouse, in that they have significantly less fat 

mass at baseline and show slight resistance to weight gain on a HFD, with no differences in 

metabolism or activity.  

Panx3 is present in pre-adipocytes and in adipocyte precursor cells (ASCs). We determined 

that the majority of Panx3 expression was found mostly intracellularly. In the literature, Panx3 

expression has been shown both at the cell surface and also intracellularly in cell types such as 

the inner ear: dieter cells and pilar cells17, mouse skin11, calvarial cells18 (precursor cells derived 

from the skull), which have cell surface expression, while cells in the testis express Panx3 

intracellularly9. Thus it is not unusual for expression of Panx3 to be widespread and intracellular. 

Panx3 has been reported to act as an intracellular ER calcium channel during osteoblast 

differentiation that is activated by an interaction with PI3K/Akt signaling19.  

Our study has demonstrated for the first time that the global Panx3 KO mice have 

significantly less fat mass than WT mice fed on a regular chow diet. We saw no differences in 

overall body weight or lean mass (consistent with Moon et al., 201510) suggesting that the 

amount of fat that is reduced in the Panx3 KO mice must be subtle. Although Moon et al., 2015 

saw no overt phenotypes in skeletal formation of the KO mice10, Caskenette et al., 2016 
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described that this Panx3 KO mice have significantly shorter diaphyseal shafts in both humerus 

and femoral bones, which were also more robust compared to WT mice, as shown by cross-

sectional geometric properties analysis14.  Panx3 KO mice also had larger areas of muscle 

attachment14, suggesting that the mice were relatively stockier with potentially more muscle. 

Results from metabolic cages showed that there were no obvious differences in metabolic 

parameters or activity of mice, suggesting that Panx3 may not affect metabolism or behavior 

unlike the Panx1 KO mice, which showed greater activity and reduced sleep duration. Thus, 

Panx3 may affect different metabolic mechanisms not covered by the scope of this study. When 

we placed Panx3 KO mice on a HFD, they exhibited slight reduction in weight gain between 2 

and 8 weeks. Therefore we have shown that Panx3 may play a role in reducing or inhibiting fat 

accumulation, but further studies are needed to reach more solid conclusions.  

Since Panx3 plays key roles in the proliferation and differentiation of many progenitor cell 

types, we hypothesized that Panx3 could also be involved adipocyte development. Our results 

demonstrate that lack of Panx3 causes a significant reduction in cell growth. Additionally when 

we differentiated pre-adipocytes we observed that Panx3 expression was significantly 

upregulated, whereas there were no significant differences in Panx3 expression in the 

differentiated ASCs, but a similar trend was observed. Contrasting with these data, in a study 

assessing the function of Panx3 in osteoprogenitor cells, it was found that Panx3 overexpression 

inhibited cell proliferation6 and promoted cell cycle arrest at G0/G1
6.  The proposed mechanism 

was that Panx3 releases ATP which induces signaling pathways involved in β-catenin 

degradation and Wnt signaling, promoting cell cycle exit and switching cells from proliferation 

to differentiative states6.  Interestingly, in order for adipocytes to differentiate, cell cycle arrest 

occurs at the G1 and G0 cell cycle phases20. Additionally, the Wnt family has been shown to 
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influence cell fate and development in many cell types including adipocytes21. The function of 

Wnt is to inhibit adipocyte differentiation by blocking master transcription factor expression of: 

PPARγ and C/EBPα22.Thus, lack of Panx3 may dysregulate cell proliferation and based on our 

studies, we have indications that fat accumulation is also potentially targeted.  

In a study assessing keratinocyte differentiation, Panx3 expression increased when rat 

epidermal keratinocytes (REK) cells were grown in organotypic epidermis, suggesting a role for 

Panx3 in differentiation11. When assessing skeletal muscle myoblast differentiation and 

proliferation, it was observed that Panx3 expression was low in fetal tissue, but it was present in 

adult tissue. Overexpression of Panx3 caused inhibition of proliferation, but induced myoblast 

differentiation. However, when silenced by shRNAs, reduction of Panx3 caused inhibition of 

proliferation, similar to our data, but this seemed to also inhibit differentiation12. Panx3 has also 

been implicated in osteoblast differentiation, where Panx3 expression is consistently expressed 

during osteogenesis and upon overexpression, caused the upregulation of differentiation markers. 

Panx3 overexpression in newborn metatarsal bones caused increased growth in both length and 

width18.  Similarly, Panx3 was found in chondrogenic cells both before and after differentiation, 

and upon overexpression, chondrogenic differentiation was induced. Finally, it has been shown 

that Panx3 is required in skeletal bone development and cartilage development in both mice and 

zebrafish. In knockout models of both species, embryos exhibited delays in chondrocyte and 

osteoblast differentiation manifesting in shortened long bones15, similar to the model that 

Caskenette at al., 201614 had shown. Taken altogether, there have been no reports of Panx3 in 

adipocytes or adipocyte differentiation, however there is substantial evidence of its role in skin, 

bone, and cartilage development. Therefore, Panx3 could be regulated during both proliferation 

and adipogenic differentiation.   



92 

There is evidence that there is a relationship between fat accumulation and the 

development of bone in humans and rodents23. In humans, those with higher fat mass 

(overweight and obese) exhibit increased total body bone mineral content24. The mechanism and 

cross-talk between bone and fat is not well understood, however there are a few potential 

theories. Both in vitro and in vivo, it has been shown that osteoblasts contain insulin receptors25, 

and administration of exogenous insulin causes osteoblast proliferation26. In male mice, addition 

of insulin to the calvariae (skullcap) resulted in increased bone formation27. Thus, throughout fat 

accumulation, it is proposed that increased insulin leads to increased bone density. Additionally, 

both osteoblasts and chrondrocytes possess leptin receptors28, 29 another key hormone released 

from adipocytes. Similarly, exogenous addition of leptin causes proliferation and differentiation 

of osteoblasts and chondrocytes29, 30, contributing to increased bone growth and density. Taken 

altogether with our data and the current body of knowledge of Panx3 in bone and cartilage 

development, it is possible that a cross-talk with fat may lead to dysregulated proliferation and 

differentiation of osteoblasts, chondrocytes, and adipocytes. Lack of Panx3 may ultimately lead 

to changes in fat accumulation and weight gain.   

In summary, we have shown for the first time that Panx3 is expressed in pre-adipocytes 

and ASCs. Panx3 seem to play a role in the regulation of proliferation and differentiation of 

ASCs that may result dysregulated fat accumulation. We have further characterized the Panx3 

KO mice showing that they have significantly less fat mass at baseline, and have a slight 

reduction in weight gain on a high fat diet. Based on this current data, it is clear that Panx3 is an 

interesting candidate for the study of fat accumulation, proliferation and differentiation of 

adipocyte. Therefore, further in vitro studies should be conducted assessing differentiation 
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capacity, cell proliferation, and the mechanisms affecting fat accumulation. Panx3 shows 

promise as a target for therapeutic interventions in obesity.   
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3.4 Materials and Methods 

3T3-L1 cell culture 

3-day transfer, inoculum 3x105 mouse embryonic fibroblast pre-adipocyte (3T3-L1) cells 

(ATCC) were grown in culture and induced to differentiate once confluent. Undifferentiated 

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L glucose, 1% 

Pen-Strep, and 10% calf serum (Thermo Fisher Scientific) and cells beyond passage 10 were not 

included in studies. Adipogenic media was composed of: DMEM with 4.5 g/L glucose (Thermo 

Fisher Scientific), 10% fetal bovine serum (Thermo Fisher Scientific), 1% Pen-Strep, 100 µg/mL 

of IBMX, 390 ng/mL dexamethasone, and 5 µg/mL insulin (Sigma Aldrich), and was replaced or 

supplemented every other day as described previously 31 over 14 days.  

Animals and ethics  

Experiments performed on animals were approved by the Animal Care Committee of the 

University Council on Animal Care at the University of Western Ontario, London ON, Canada. 

Panx3 KO mice were generated as described by Moon et al., 201510. These mice were 

backcrossed until a congenic line was obtained against C57BL/6N strain mice from Charles 

River Canada (Saint-Constant, PQ).  

High fat diet 

Congenic WT and Panx3 KO male mice were placed on a 16-week high fat diet (HFD, 

60% kcal from fat, TestDiet 58Y1) and fed ad libitum. Mice were 3 months old at the start of the 

experiments and initially fed regular chow diet (6.2% kcal from fat, Harlan 2018). 

Body mass composition 

Fat mass and lean mass composition was measured using quantitative magnetic resonance 

(echo MRI) analysis with an echo magnetic resonance imaging mobile unit (Avian Facility of 



95 

Advanced Research, University of Western Ontario, London, ON, Canada) as described by 

Guglielmo, et al., 201132 with the modification of placing live mice in the apparatus and 

measuring on the “bird” setting omitting water content. Measurements were taken in duplicate to 

ensure consistency of the results. 

Adipose-derived stromal cells isolation 

ASCs were isolated as previously described by Yu et al, 201134 from WT and Panx3 KO 

male mice fed on the 16 week HFD, and fat from up to three mice were pooled together for each 

separate isolation. Cells were filtered through a 100μm filter to remove debris prior to cell 

seeding. Cells were seeded at high density (80 000 cells/cm2) and rinsed 24 hours after isolation 

with sterile PBS, cells were passaged when confluent (approximately 7 days). ASCs were grown 

in DMEM: Ham’s F-12 (Sigma Aldrich), supplemented with 10% fetal bovine serum and 1% 

Pen-Strep and growth medium was changed every 2 days. ASCs used for assays were grown up 

to Passage 2. 

Immunofluorescence 

Coverslips containing ASCs were grown in culture for 3 days and 3T3-L1 cells were 

grown in culture for 14 days for analysis of before and after adipogenic differentiation. Cells 

were rinsed with PBS and fixed in 80% methanol and 20% acetone solution for 20 minutes at 

4°C. Cells were then rinsed in PBS three times and immuno-labeled with Panx3-CT primary 

antibody (stock of 1ug/ml) diluted at 1:400 as described previously by Penuela et al., 20077. 

Images were collected using an LSM 800 inverted confocal microscope equipped with a 40X 

water objective (Carl Zeiss, Jena, Germany). Identical parameters were maintained to compare 

between samples. 
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Western Blotting 

Western blots of protein lysates (primary cells and cell lines) were conducted as described 

previously by Penuela et al., 20077. Cell lysates were collected with a Triton-based extraction 

buffer [1% Triton X-100, 150 mM NaCl, 10 mM Tris, 1 mM EDTA, 1 mM EGTA, 0.5% Np-40, 

100 mM NaF, 100 mM sodium orthovanadate, proteinase inhibitor mini-EDTA tablet (Roche-

Applied Science, Laval, QC)] and subsequently run on a western blot, then probed using the 

Panx3-CT antibody at 1:5000 dilution or 0.2ug/ml with the modification of using 50 g of 

protein for all blots7.  Human embryonic kidney (293T) cells ectopically expressing mouse 

Panx3 were used as a positive control for all mouse blots as described by Penuela et al., 200833. 

Loading control used was GAPDH (Millipore, Billerica, MA). Detection of blots was established 

on an Odyssey infrared imaging system (LICOR). 

Proliferation and differentiation assays 

ASCs from WT and Panx1 KO mice were plated for differentiation in 12 well plates at a 

seeding density of 10 000 cells/cm2. Cell counts were measured in triplicate every other day up 

until day 7 using trypan blue (1:1) and a Countess automated cell counter (Thermo fisher 

Scientific). For differentiation assays, ASCs were plated in 6 well plates at a seeding density of 

30 000 cell/cm2. Adipogenic media was made as previously described34, with the modifications 

of substituting 1 µg/mL troglitazone and 0.25 mM isobutylmethylxanthine (IBMX) (instead of 

0.5 mM) (Sigma Aldrich) for days 1-3. After day 3, a modified adipogenic media was made, 

lacking troglitazone and IBMX. Modified adipogenic media was changed every other day until 

differentiation was complete at day 14. Differentiation assays were performed on day 14.  
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Metabolic analysis 

Metabolic analysis was assessed with the usage of the Comprehensive Lab Animal 

Monitoring System (CLAMS) with the Oxymax software (Columbus Instruments, Columbus, 

OH, USA). Mice were individually caged and acclimated for 24 hours prior to measurement of 

food consumption, water consumption, energy expenditure, volume of oxygen (VO2) and carbon 

dioxide (VCO2),  respiratory exchange ratio (RER), total activity, total ambulatory activity, and 

sleep duration as described previously by Guzman et al, 200735.  

Statistical analysis 

Statistical analyses were performed using Graph Pad Prism (GraphPad, San Diego, CA). 

Student’s t-test or ANOVA were performed with Tukey’s post hoc comparisons. Data are 

presented as mean ± SEM. N values in in vitro ASC assays represent pooled cells from up to 3 

mice, whereas, N values in in vivo experiments represent individual mice. Biological replicates 

are indicated by N and technical replicates indicated by n.  
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Chapter 4 – Discussion and Conclusions 

4.1 Overall study conclusions 

Panx1 and Panx3 are important players in cellular proliferation and differentiation, 

regulating tissue development and having implications in disease. Here, we have shown for the 

first time the role of Panx1 and Panx3 in adipocyte development and fat accumulation. Panx1 

and Panx3 are present in adipocytes, and they function in mediating cellular proliferation of 

adipocyte progenitors. When assessing differentiation capacity and fat accumulation, Panx1 KO 

ASCs show enhanced differentiation along with increased fat accumulation or lipid content. This 

remains to be explored in the context of Panx3. We have also shown that Panx1 and Panx3 are 

regulated throughout differentiation, with Panx1 protein expression being slightly increased in 

ASC differentiation, whereas Panx3 expression is significantly increased in pre-adipocyte 

differentiation. Finally our in vivo studies have revealed a function for Panx1 and Panx3 in fat 

accumulation under normal conditions, where Panx1 KO mice have significantly greater fat 

mass, however Panx3 KO mice have significantly less fat mass compared to WT mice. When 

placed on a high fat diet, Panx1 KO mice do not exhibit changes in weight gain, which could be 

due in part to their increased mobility and reduced sleep. Contrastingly, Panx3 KO mice show 

slightly reduced weight gain, however no changes at baseline in metabolism or activity. 

Metabolism and activity of the Panx3 KO mice on a high fat diet is currently unknown and will 

be explored in the future. Our overall data suggests that Panx1 and Panx3 are both regulated in 

adipocyte development, and may play opposing or contrasting roles. Panx1 seems to control the 

extent of fat accumulation and adipocyte differentiation tightly regulating early adipogenic 

events, while Panx3 may be important in the onset of fat accumulation promoting growth or 

differentiation. Consistent with our findings, it has been established that Panx1 and Panx3 play 
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opposing roles in keratinocyte differentiation where Panx1 is highly expressed in embryonic 

mice but decreases in aged skin, however Panx3 expression is unchanged throughout maturity. 

Ectopic expression of both Panx1 and Panx3 in REKs reduce cell proliferation, but 

overexpression of Panx1 dysregulates organotypic epidermis1. Both Panx1 and Panx3 are highly 

upregulated during keratinocyte differentiation, suggesting their collective role in mediating 

differentiation in addition to proliferation2. In skeletal muscle myoblasts, Panx1 and Panx3 are 

co-expressed however, prior to differentiation low levels of Panx1 are detected, but at the onset 

of differentiation Panx1 is significantly increased. Contrastingly, Panx3 expression is high in 

undifferentiated cells, and is reduced during differentiation. Upon Panx1 overexpression, skeletal 

muscle myoblasts exhibit enhanced differentiation, and Panx3 overexpression shows a similar 

effect with reduced proliferation and increased differentiation. However, blocking Panx1 causes 

inhibition of differentiation whereas knockdown of Panx3 causes inhibition of proliferation but 

does not affect differentiation3. Therefore, similar to our results, Panx1 and Panx3 regulate 

proliferation and differentiation of skeletal muscle myoblasts in a contrasting fashion, where it 

appears that Panx1 regulates differentiation to a greater degree.  

4.1 Limitations and Future directions 

This study has shown for the first time both Panx1 and Panx3 as novel regulators of 

adipocyte proliferation and differentiation, which also leads to the regulation of fat accumulation. 

There are a few limitations that should be addressed in the studies outlined in this thesis.  

Panx1 KO and Panx3 KO mice fed on a regular chow diet were not fully characterized, and 

most of the data comes from mice on a high fat diet which represents a limiting factor to this 

study. The data collected on ASCs outlines the function of Panx1 and Panx3 in ASCs isolated 

from mice on high fat diets. The reason being is that a greater number of cells can be harvested 
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from larger amounts of fat. Therefore it would be necessary in the future to assess proliferation 

and differentiation of cells from regular chow fed mice in addition to assess metabolic activity 

(metabolic cages), to rule out the diet as a confounding factor. Ideally more studies on 

epididymal ASCs should be conducted but a limitation of these cells is that they do not grow 

well after a couple of passages and therefore are limited in their usefulness for our studies. 

We were fortunate to be able to assess PANX1 expression in human ASCs derived from 

patients undergoing reduction surgeries. However, it is difficult to translate our Panx1 KO mouse 

model to humans. Future experiments could focus on human and mouse studies for a better 

understanding of cellular mechanisms.  Human ASCs and pre-adipocytes (3T3-L1 cells) could 

be isolated and Panx1 could be subjected to Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR) deletion4. Alternatively, known pharmacological blockers of PANX1/Panx1 

could be used to assess potential changes in proliferation or differentiation, further reinforcing 

the role of Panx1 in adipocyte development. Cell cycle markers and alternative markers of 

apoptosis such as TUNEL could be utilized to further understand the mechanism of reduced 

growth in Panx1 KO and Panx3 KO ASCs. An extension of this study would be an in vivo model 

using WT and Panx1 KO mice on a high fat diet, with a subgroup of mice being fed the 

pharmacological blockers. I would expected that WT mice fed blockers would show possible 

weight increases or changes in activity. Using a global knockout model also has its limitations 

regardless of the study due to its broad spectrum of effects that could affect a multitude of 

organs, tissues, and systems. Thus, an additional next step would be utilizing a conditional or 

adipogenic specific Panx1 knockout mouse (other than the Adiponectin Cre5) and isolate 

adipogenic progenitors to verify whether there are outside mechanisms or compensation 

affecting proliferation or differentiation.  



103 

It is possible that Panx1 and Panx3 may compensate for each other. Panx2 has been shown 

to potentially be compensated in Panx1 KO mice and vice versa leading to ischemic damage in a 

stroke model. However, when both Panx1 and Panx2 are ablated, mice are neuroprotected6. 

Thus, a limitation of our study is the effect of compensation in our mouse models and cell lines. 

We have shown that both Panx1 and Panx3 are present in adipocytes and ASCs, however in 

either knockout model, it is unknown whether the opposing Panx family members are 

upregulated in response. Our group has published that Panx3 is upregulated in young Panx1 KO 

dorsal skin7. Thus, it would be beneficial to assess the role of compensation in adipocyte 

development and eventually a double Panx1/3 knockout could be used as a useful tool to account 

for Panx compensation and additionally assess metabolism, obesity and overall activity.   

Currently, there is only one known human germline mutation of PANX1, where a patient 

presents with severe cognitive, reproductive, development delays, and notably has fatty liver 

disease of unknown etiology. This report is interesting, specifically noting the presence of fatty 

liver disease, potentially hinting at dysregulated fatty acid metabolism or overproduction of fat in 

the liver.  Additionally, this study has reported defective PANX1 channel ATP release and dye 

uptake, in addition to reduced channel function8. It would be beneficial to screen for PANX1 and 

PANX3 mutations, specifically in those who are overweight or obese which could potentially act 

as an indicator for obesity.  

It would be important to determine if Panx1 and Panx3 are also localized to the cell surface 

of ASCs or just intracellularly, and if that is the case, then it would be imperative to perform 

functional ATP release or dye uptake studies to evaluate channel function alterations in the KO 

ASCs. In the event that all the pannexin is intracellular, it would be important to determine their 
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function inside the cells (e.g. ER calcium channel) and the potential interactions with other 

intracellular proteins that may be behind the phenotypes observed. 

Finally, as obesity is an inflammatory disease and it is well established that Panx19 and 

Panx310 are involved in inflammation and release of nucleotides, it would be valuable to assess 

immune cell infiltration and changes in anti or pro-inflammatory cytokines within Panx1 KO or 

Panx3 KO mice. This could be assessed at the level of adipocytes, where localized inflammation 

is commonly reported, or in whole body analysis with a focus on metabolically related tissues 

such as muscles and the liver.  

4.2 Summary 

 In summary, we have shown for the first time the role of Panx1 and Panx3 in early 

adipocyte development and its effects on fat accumulation. We have shown that not only are 

Panx1 and Panx3 expressed in adipocytes, but expression is also regulated during adipogenic 

differentiation. Panx1 KO mice have significantly greater fat mass, however Panx3 KO mice 

have significantly less fat mass compared to WT mice on a regular diet. Lack of Panx1 and 

Panx3 causes a reduction in ASC proliferation. Panx1 regulates differentiation capacity of ASCs, 

and lack of Panx1 significantly enhances adipogenic differentiation capacity leading to increased 

fat accumulation. Finally, Panx1 KO mice on a high fat diet show no differences in weight gain, 

but they exhibit enhanced total activity, ambulatory activity, and sleep less than WT mice. 

Comparatively, Panx3 KO mice on a regular chow diet show no differences in metabolism or 

activity, however when fed on a high fat diet they have slightly reduced weight gain. Therefore 

both Panx1 and Panx3 are novel regulators of adipocyte precursor cell proliferation and 

differentiation, while regulating fat accumulation in vivo. Thus, Panx1 and Panx3 represent novel 

and unique targets for obesity intervention. 
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