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Abstract 

In this thesis, novel methodology is developed to extract surface parameters under 

vegetation cover and to map crop types, from the polarimetric Synthetic Aperture Radar 

(PolSAR) images over agricultural areas. The extracted surface parameters provide 

crucial information for monitoring crop growth, nutrient release efficiency, water 

capacity, and crop production. To estimate surface parameters, it is essential to remove 

the volume scattering caused by the crop canopy, which makes developing an efficient 

volume scattering model very critical. 

In this thesis, a simplified adaptive volume scattering model (SAVSM) is developed to 

describe the vegetation scattering as crop changes over time through considering the 

probability density function of the crop orientation. The SAVSM achieved the best 

performance in fields of wheat, soybean and corn at various growth stages being in 

convert with the crop phenological development compared with current models that are 

mostly suitable for forest canopy.  

To remove the volume scattering component, in this thesis, an adaptive two-component 

model-based decomposition (ATCD) was developed, in which the surface scattering is a 

X-Bragg scattering, whereas the volume scattering is the SAVSM. The volumetric soil 

moisture derived from the ATCD is more consistent with the verifiable ground conditions 

compared with other model-based decomposition methods with its RMSE improved 

significantly decreasing from 19 [vol.%] to 7 [vol.%]. 

However, the estimation by the ATCD is biased when the measured soil moisture is 

greater than 30 [vol.%]. To overcome this issue, in this thesis, an integrated surface 

parameter inversion scheme (ISPIS) is proposed, in which a calibrated Integral Equation 

Model together with the SAVSM is employed. The derived soil moisture and surface 

roughness are more consistent with verifiable observations with the overall RMSE of 

6.12 [vol.%] and 0.48, respectively. 
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Additionally, the soil moisture and roughness extraction algorithms are also dependent on 

the crop types. In this thesis, a novel multi-temporal supervised binary-tree classification 

scheme with a criterion that maximizes the difference of polarization signature 

(MTSBTCS-MDPS) is developed. Compared with the Wishart distance (MTSBTCS-WD) 

method, the MTSBTCS-MDPS not only consumes much less processing time, but also 

achieves much higher overall accuracy (87.5%) and kappa coefficient (0.85). 

Keywords 

Polarimetric SAR, RADARSAT-2, surface scattering model, volume scattering model, 

model-based decomposition, soil moisture, surface roughness, polarization signature, 

land cover  mapping.   
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Chapter 1 Introduction 

Agriculture is the cultivation of animals, plants and other life forms for food, fiber, 

biofuel, medicinal and other products used to sustain and enhance human life. The crops 

planted over agricultural land create food supplies that nurtured human beings and 

livestock, even the development of civilization. Crops also have significant effects on 

climate change, primarily through the absorb of greenhouse gases such as carbon dioxide 

(Jones & Vaughan, 2010). Crops are dependent on their physical environment for growth, 

survival, and reproduction. Hence, it is essential to monitor and understand crop response 

to changing environmental conditions. To do this, we need tools to quantify the 

environment and to measure different crop variables.  

Crop variables, such as height, biomass and associated surface parameters, are important 

to crop growth monitoring and yield forecast; hence, they are of paramount importance to 

assure food security to an ever-growing human population affected by increasingly 

uncertain climatic conditions (Liu et al., 2013). In this thesis, only soil moisture and 

surface roughness are investigated. Soil moisture plays an important role in several 

physical processes such as field operability, agricultural drought, irrigation schedule, soil 

erosion, and surface runoff (Wang et al., 2016). It also plays a significant role in organic 

matter mineralization and the cycling of biophilic elements such as nitrogen (Guntiñas et 

al., 2012). Surface roughness determines how the crop interacts with the environment. It 

is also a critical parameter reflecting soil erosion and runoff processes and a major factor 

influencing wind and water erosion (Zheng et al., 2012).  

Mapping and monitoring changes in the distribution of cropland provide information that 

can aid inventory monitoring to agriculture development and support early warning of 

threats to global and regional food security (McNairn et al., 2009). Crop maps are 

required for a variety of applications ranging from the satisfaction of general inventory 

requirements to the enforcement of quota limits. Furthermore, these maps often have to 

be updated at frequent intervals (Foody et al., 1994). However, it is impractical to map 

large regions by traditional survey techniques. In contrast, Earth observation technology 

http://en.wikipedia.org/wiki/Greenhouse_gases
http://en.wikipedia.org/wiki/Carbon_dioxide
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offers an invaluable means to estimate both the environmental conditions and crop 

variables in an efficient manner over large areas (Duveiller & Defourny, 2010).  

Remote sensing is a spatial science used to obtain information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with 

the object, area, or phenomena under investigation (Lillesand et al., 2004). Remote 

sensing technology has the potential to instantaneously provide quantitative information 

on agricultural crops over large areas repetitively (Clevers et al., 1994). However, the 

usability of different optical sensors for determining environmental conditions and crop 

variables depends not only on daylight, but also on the actual weather conditions. Clouds 

and heavy rain are impenetrable for the visible spectrum with the wavelength between 

400 nm and 700 nm. Infrared sensors that are applicable during the day and night are 

even more sensitive to weather conditions. Synthetic Aperture Radar (SAR) as an active 

observation technique, can transmit longer electromagnetic wavelengths from 1 mm to 1 

m and receive the scattered waves after interacting with the ground targets, having proved 

to be valuable because of its day-and-night capability and the possibility to penetrate 

clouds and light rain (Berens, 2006). Of increasing importance are SAR systems that can 

provide multidimensional information via multiple frequencies or polarizations. One such 

technique is the polarimetric SAR (PolSAR) with its definition given in Appendix A, 

which provides an enhanced capacity for investigating Earth terrain because different 

frequencies and polarizations allow for the probing of different scattering mechanisms 

and different components of the scattering layers (Oliver et al., 2004). Compared with the 

single polarization SAR, PolSAR with quad polarizations is more sensitive to crop 

geometric structures from which the radar signal returns and has been extensively used 

for the land use and land cover mapping (Liu et al., 2013; Jiao et al., 2013).  

In addition, PolSAR is also very sensitive to the spatial and temporal changes of surface 

parameters over bare soil, which has led to the development of a number of surface 

scattering models on surface parameter estimation. However, over vegetated areas, 

especially agricultural fields, they are mostly covered by the vegetation canopy, which 

hinders the direct application of SAR on the soil moisture and surface roughness 
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estimation. Fortunately, the capability of PolSAR to penetrate the vegetation canopy 

makes it possible to retrieve these surface parameters under vegetation cover by either 

separating the scattering off bare soil from the backscattering or by accurately removing 

the volume scattering caused by the vegetation canopy. With this notion, retrieval 

methods of surface parameters under vegetation cover are investigated.  In addition, the 

soil moisture and surface roughness extraction algorithms are also dependent on the crop 

types and crop conditions, whereas crop conditions can be determined by the crop 

phenology for different crop, so the crop mapping can be very useful for surface 

parameters retrieval. Therefore, a land cover mapping method is also developed in this 

thesis. Currently, the X-, C- and L-band PolSAR systems are widely developed and in 

operation with their wavelength approximately 3 cm, 5.5 cm and 24 cm, respectively. 

The representative satellites are the German TerraSAR/TanDEM-X (X band), Canadian 

RADARSAT-2 (C band) and the Japanese ALOS-2 (L band). With the notion that the 

shorter the wavelength is, the less the penetration depth is. The application of short 

wavelength to the dense vegetation areas will be limited due to the significant attenuation 

effects. The coherent speckle noise of short wavelength is also much more severe than 

that of the long wavelength, but the short wavelength is more sensitive to the mirco 

surface structures, i.e., bare soils shown in PolSAR images of short wavelength look 

rougher than that of the long wavelength (Huang et al., 2016). Compromisingly, the C-

band Canadian RADARSAT-2 data will be adopted for the research in the entire thesis.  

 



 

 

 

4 

1.1 Surface Parameter Retrieval over Bare Soil    

 

Figure 1-1. Brief category of surface scattering models. 

Surface parameters over bare soil are primarily described by two indicators, soil moisture 

and surface roughness. Soil moisture is a key parameter in the application of hydrology 

and agronomy (Gorrab et al., 2015) and plays an important role in making water resource 

and irrigation management decisions, understanding land surface process, and estimating 

surface runoff and soil erosion potentials. Its measurement in field is given in Appendix 

E. Surface roughness defined in Appendix E plays an important role in determining how 

a real object will interact with its environment (Thomas Jagdhuber et al., 2012; Huang et 

al., 2016) and its digitization process is in given in Appendix F. Both soil moisture and 

surface roughness are also essential climate variables recognized by the Global Climate 

Observing System (Thomas Jagdhuber et al., 2012; Huang et al., 2016). To invert soil 

moisture and surface roughness, either physical or semi-empirical surface scattering 

models are required to model the microwave scattering process interacting with the 

surface. Surface scattering from the soil, related to soil moisture and surface roughness, is 

rather common over agricultural fields. Although the primary topic in this thesis is to 

invert the surface parameters under vegetation cover, it is still necessary to present an 
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overview of the development of the scattering models for bare soil because these models 

employ these parameters to characterize the scattering processes and are used to estimate 

surface parameters in turn. Hence, in this section, we mainly review the surface scattering 

models over bare soil, while the methods to estimate the surface parameters will be given 

in the sections following. 

At present, in order to accurately characterize bare soil scattering, many models, based on 

different assumptions, have been proposed. The first set of surface models are physical 

models, which are derived according to electromagnetic scattering theory via solving the 

Maxwell Equations. The simplest surface scattering model to use to determine soil 

scattering would be an infinite perfectly flat surface, which is also called specular surface 

shown in Figure 1-2.  

 

Figure 1-2. Reflection and transmission of radar wave over a flat surface. 

Under the assumption of specular surface, scattering will concentrate on the specular 

direction, that is, reflection, which can be directly solved as the Fresnel reflection 

coefficient (Jin & Xu, 2013). However, in natural environments, especially in agricultural 

fields after plowing, most surfaces are random rough surfaces, as depicted in Figure 1-3. 

To model these surfaces, surface roughness must be considered as a parameter in the 

models. 
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Figure 1-3. Scattering from a rough surface. 

Taking into account of surface roughness, the small-perturbation method (SPM) was 

proposed by Rice (1963), but it was valid only when the roughness was very small 

compared with the radar wavelength. That is, SPM is only suitable for low frequencies, 

i.e., long wavelength, PolSAR systems such as the spaceborne ALOS (Advanced Land 

Observation Satellite) and airborne E-SAR sensors in L band with its wavelength at 

approximately 24 cm.  In order to meet the requirement of high frequency PolSAR 

systems such as the X-band TerraSAR-X and C-band RADARSAT-2, the integral 

equation method (IEM) proposed by Fung (1994), taking into account of the scattering 

caused by rapid fluctuations, is more suitable and has been extensively employed 

(Lievens & Verhoest, 2011; Song et al., 2009; Barrett, et al., 2009).  For both SPM and 

IEM, however, it is still difficult to retrieve surface parameters, because they require an 

accurate description of surface roughness, but the parameterization of roughness from 

field measurements is known to be problematic (Verhoest et al., 2008). To overcome this 

difficulty, many empirical relationships between the root mean square (RMS) of surface 

height and its correlation length have been developed for various wavelengths ranging 

from the C-band to the L-band to calibrate the IEM model (Baghdadi et al., 2002; 

Baghdadi et al., 2004; Baghdadi et al., 2006; Baghdadi et al., 2015).  

In addition to the physical models, another group of surface scattering models are semi-

empirical models. For example, the co-polarization ratio (HH to VV polarization) reaches 

saturation for high soil surface roughness values, thus simplifying soil moisture 

estimation (Oh, 2004; Oh et al., 1992). Similarly, the depolarization ratio (VH to VV 

polarization) has been found to be sensitive to soil surface roughness as well (Ulaby et 

al., 1986). Sensitivity analyses of these ratios with respect to surface roughness and soil 
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moisture and sensor configurations (frequency, incidence angle and polarization) led to 

the development of the well-known semi-empirical backscattering models for bare soil 

(Oh et al., 1992; Dubois et al., 1995). Although these semi-empirical scattering models 

relate the backscattering coefficients to soil moisture contents, it is still difficult to use 

these relationships for radar signal inversion without time-consuming calibration 

measurements (Park et al., 2009). In addition, these semi-empirical models are depending 

on parameters that are often site-specific and valid only under specific soil conditions. 

Finally, in consideration of PolSAR, a X-Bragg model has recently been proposed in 

which the Bragg surface model is rotated with respect to the orientation angle induced by 

the azimuthal slope satisfying a certain probability density function (PDF) (Hajnsek et al., 

2003; Schuler et al., 2002). According to the PDF employed, two kinds of X-Bragg 

models are extensively used. The first one used by Hajnsek et al. (2003) for soil moisture 

estimation models the surface scattering using a rotated Bragg surface model with a 

uniform PDF. It has been extensively applied in the polarimetric model-based target 

decomposition by many researchers on soil moisture estimation (Jagdhuber et al., 2013; 

Jagdhuber et al., 2014; Ballester-Berman et al., 2013), in which a high accuracy soil 

moisture map was obtained over agricultural or vineyard fields. Huang et al. (2016) 

employed another kind of X-Bragg model with a Gaussian PDF to estimate soil moisture 

over wheat fields at early growing stage. However, regardless of the PDFs employed, the 

X-Bragg model derived from the SPM model is only suitable to describe the agricultural 

field with relatively smooth surface. Furthermore, the issue of the low inversion rate of 

the X-Bragg model is unavoidable, and the relationship between the dielectric constant 

and scattering parameters reaches saturation easily when the incidence angle is steep 

being less than 30 degrees which makes the estimated soil moisture become biased 

(Huang et al., 2016). To summarize, the category of the surface scattering models is 

shown in Figure 1-1 with their suitability listed in Table 1-1. 
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Table 1-1. Surface scattering models. Note:  𝒎𝒗 is the volumetric soil moisture with its 

unit [vol.%]; 𝒌𝒔 is the surface roughness with 𝒌 wavenumber and 𝒔 the root 

mean square of surface height. 

 Suitability 

Models Soil moisture Surface roughness Incident angle 
SPM N/A 𝑘𝑠 < 0.3 N/A 
IEM N/A 𝑘𝑠 < 3 N/A 

Bragg and X-Bragg 𝑚𝑣 < 30 𝑘𝑠 < 0.3 N/A 
Oh (2002) 9 < 𝑚𝑣 < 31 0.1 < 𝑘𝑠 < 6 N/A 

Dubois (1995) 𝑚𝑣 < 35 𝑘𝑠 < 2.5 𝜃 < 30° 
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1.2 Volume Scattering Model over Agricultural Fields  

To invert the surface parameters under vegetation cover, the key issue is to remove the 

effects of the scattering caused by vegetation canopy, which is called the volume 

scattering with its scattering process shown in Figure 1-4. However, until now this has 

been a challenging task to construct the volume scattering for accurate crop variable 

extraction due to the complex nature of the crop structure (Hajnsek et al., 2009). Many 

volume scattering models have been developed recently, but they can only characterize 

certain crop types (Huang et al., 2014). The extensively used method is to model the 

vegetation canopy scattering through integrating the scattering matrix of small-size 

scatterer with its orientation angle with respect to the line of sight (LOS) of radar 

satisfying a certain PDF. The small-size scatterers can be treated as needle-like dipole, 

spheroids, or disk-like plate depending on the size of the object compared with the radar 

wavelength. For long wavelength radar systems, they are often treated as needle-like 

dipoles; whereas for short wavelength radar systems, they are treated as spheroids or 

disk-like plate as shown in Figure 1-4.  

 

Figure 1-4. Volume scattering in different radar frequencies. 
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Cloud of Dipole

Cloud of Spheroid

Short Wavelength

Radar Radar Beam
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Freeman and Durden (1998) developed the first volume scattering model based on the 

dipole assumption using the uniform probability density function. Yamaguchi et al. 

(2005) found that most of the vegetation areas were either horizontal or vertical dipoles, 

so they added the vertical and horizontal volume scattering models to extend the 

Freeman-Durden volume scattering model by making use of the first order sine 

probability density function. The von Mises distribution is in the class of circular 

probability distributions with the desirable characteristic of its PDF smoothly going down 

to zero, which has been proposed by Neumann et al. (2009) to characterize vegetation for 

polarimetric interferometry SAR (PolInSAR) applications. Arii et al. (2010) developed a 

general scattering model based on a 𝑛𝑡ℎ power cosine square function, but the 

randomness and orientation angle that are both unknown variables must be calculated 

simultaneously, which makes it very time-consuming. These volume scattering models 

are primarily developed to characterize forest canopy, but to directly apply them to 

agricultural areas is still limited as forest canopy always shows much higher randomness 

caused by the randomly distributed branches than crops that show certain orientations. To  

circumvent this issue, recently, a simplified adaptive volume scattering model based on 

the 𝑛th-power sine and cosine functions were proposed by Huang et al. (2015) attempting 

to describe the change of crops over time at different growing stages to sensor the C-

Band RADARSAT-2 polarimetric data. Different from these above volume scattering 

models that use amplitude information to characterize the vegetation scattering, a novel 

volume scattering model based on the single-look phase distributions  was developed by 

Lee et al. (2014) to characterize the statistics of phase difference of two polarization 

returns with circular Gaussian distribution, and it can better describe the distributions of 

the orientation angle due to the fact that orientation angles can be estimated by the phase 

difference between the left-left and right-right polarizations. 

 In summary, most of the abovementioned volume scattering models are still limited to 

only a few types of vegetation and cannot characterize crop development change over 

season. Additionally, most of these volume scattering models are based on needle-like 

dipoles as the elementary unit, which are valid only when the size of the objects is much 

smaller compared with the wavelength. Hence, for high frequency PolSAR systems such 
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as RADARSAT-2 in C band (5.4 cm) and TerraSAR-X in X band (3 cm), the needle-like 

dipole assumption is not likely satisfied. Being different from the above methods, An et 

al. (2010) assumed that it was only the vegetation canopy that causes scattering 

randomness. Based on this, they proposed a maximum entropy volume scattering model. 

However, Antropov et al. (2011) noted that the maximum entropy volume scattering 

model may require more experiments to be validated, and they proposed a generalized 

volume scattering model that can adapt to the sensitivity between the HH and VV co-

polarizations for different types of vegetation. Additionally, the volume scattering is 

always related to the physical parameters of vegetation, hence, a finite-length slim 

cylinder is often adopted and the Rayleigh-Gans approximation method is used to model 

the stalk, branches or twiags of the crop (Jin & Xu, 2013). Finally, several empirical 

relationships were developed between polarization and/or dual frequency ratios and the 

physical parameters of crop fields. For instance, the radar vegetation index (RVI) 

computed at the L-band has been used to evaluate the biomass level of a corn crop (Kim 

et al., 2014). Other significant correlations have also been reported between: 1) HV/VV 

and soybean water content obtained in L-band (Roo et al., 2001), and 2) VV/HV and 

maize crop height and biomass at the S- and C-bands (Vecchia et al., 2008). As well, the 

HV/HH ratio at the C-band has been used to estimate the leaf area index (LAI) of 

sugarcane (Lin et al., 2009). Although these cross polarization ratios are almost 

insensitive to soil moisture, the application of these relationships is limited because they 

are only useful for specific crop types. 

1.3 Scattering Mechanisms over Agricultural Fields  

Due to the penetration capacity of the radar signals, five important scattering mechanisms 

can be observed over agricultural fields shown in Figure 1-5. 
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Figure 1-5. Five important scattering mechanisms over agricultural fields. 

1. backscattering from a rough surface. 

2. low-order multiple scattering, as occurs from dihedral effects caused by the crop 

stalk and the ground. 

3. random volume backscatter from a non-penetrable layer of discrete scatterers. 

4. surface scattering after propagation through a random medium, as occurs in the 

use of low frequency P- or L-band radar for penetration of vegetation layer. 

5. single scattering from anisotropic structures such as corn stalks, where the 

backscatter can be modeled as that from a rough dielectric cylinder or other 

canonical object with polarization anisotropy due to shape and dielectric material 

structure. 

To achieve accurate crop variable estimation and model the five important scattering 

mechanisms observed over agricultural fields, the scattering process including soil and 

crop canopy must be modeled so as to separate the surface and volume scattering 

accurately. The current widely-used methods are either backscattering model-based 

retrieval algorithms (Attema & Ulaby, 1978; Bindlish & Barros, 2001; Joseph, et al., 

2008; Ulaby et al., 1990) or target decomposition techniques in PolSAR (Cloude & 

Pottier, 1996; I. Hajnsek et al., 2009; Jagdhuber et al., 2012). The representative 

backscattering model-based retrieval algorithm is the water cloud model (WCM), which 

is a semi-empirical model assuming that the vegetation consists of a collection of 
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spherical water droplets that are held in place structurally by dry matters (Attema & 

Ulaby, 1978). The primary assumption of the WCM is based the fact that the dielectric 

constant of dry vegetation matter is much smaller than that of the water content of 

vegetation, and more than 99% by volume is composed of air in vegetation canopy. 

Therefore, such a model was developed assuming that the canopy “cloud” called the 

water cloud contains identical water droplets randomly distributed within the canopy with 

its figure shown as Figure 1-6 and its formula written as (1-1) 

 

Figure 1-6. Water cloud model. 

 𝜎° =
𝐴 ∙ 𝑐𝑜𝑠𝜃

2𝐵 ∙ 𝑊𝐶
ℎ(1 − 𝑒−2𝐵∙𝑊𝐶∙𝑠𝑒𝑐𝜃) + 𝜎𝑠

°𝑒−2𝐵∙𝑊𝐶∙𝑠𝑒𝑐𝜃 (1-1) 

where 𝜎°  is the observed backscattering coefficient; 𝐴  is a constant representing the 

vegetation scattering; parameter 𝐵  is an empirical parameter depending on both 

vegetation properties and sensor configuration;  ℎ is the crop height; 𝑊𝐶 is the vegetation 

water content (𝑘𝑔 ∙ 𝑚−2).  𝜎𝑠
° is the backscattering form of the bare soils which are often 

characterized by the surface scattering models in section 1.1.  Due to its simplicity, WCM 

has been widely used for surface and biophysical parameters estimation till now 

(Gherboudj et al., 2011; Lievens & Verhoest, 2011). However, the WCM is only suitable 

for describing dense vegetation canopies.  Hence, some researchers have attempted to 

improve it through considering the volumetric fraction of vegetation cover (He et al., 

2014). 
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In fact, the WCM is only a simple solution of the first-order radiative transfer (RT) model 

neglecting the multiple scattering and treating the vegetation canopy as a homogeneous 

medium. To overcome this  limitation, the Michigan Microwave Canopy Scattering 

(MIMICS) model developed by Ulaby et al. (1990), based on a first-order solution of the 

RT equation, treats the tree canopy that is comprised of a crown layer, a trunk layer, and 

a rough-surface ground boundary as an inhomogeneous layer (Figure 1-7). Compared 

with the WCM, the MIMICS model provides a rigorous solution considering not only the 

multiple scattering but also all scatterings shown in Figure 1-5. Hence, it is suitable for 

vegetation-covered areas where the agents responsible for scattering have discrete 

configurations (Toure et al., 1994), and many studies have adopted it to characterize the 

scattering of crops such as wheat and soybean (Toure et al., 1994; De Roo et al, 2001).  

 

Figure 1-7. Discrete scatterers of tree canopy. Adapted from Burgin et al. (2011). 

In MIMICS, the RT theory is an important method to treat multiple scattering in a 

medium consisting of random discrete scatterings, and the scalar RT equation is an 

integro-differential equation that governs the propagation of specific intensities. 

Considering a medium consisting of a large number of particles (Figure 1-8), according 

to Tsang et al. (2000), we have specific intensity 𝐼(�̅�, �̂�) at all location �̅�  and for all 

direction �̂� due to scattering. We consider a “small” volume element 𝑑𝑉 = 𝑑𝐴𝑑𝑙, and 𝑑𝑙 

is along the direction �̂�. The small volume element is centered at �̅�. We consider the 

differential change in specific intensity 𝐼(�̂�) as it passes through 𝑑𝑉. Then the differential 

change of power in direction �̂� is  
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𝑑𝑃 = −𝐼𝑖𝑛(�̂�)𝑑𝐴𝑑Ω + 𝐼𝑜𝑢𝑡(�̂�)𝑑𝐴𝑑Ω

= −𝐼(�̅�, �̂�)𝑑𝐴𝑑Ω + 𝐼(�̅� + 𝑑𝑙�̂�, �̂�)𝑑𝐴𝑑Ω (1-2) 

 

Figure 1-8. Specific intensity 𝑰(�̂�) in direction �̂� in and out of elemental volume. 

In fact, the scalar RT equation can be generalized to the vector electromagnetic 

propagation. Using the property of incoherent addition of Stokes parameters, the vector 

RT equation for specific intensity is given by 

 

𝑑𝐼(�̅�, �̂�)

𝑑𝑠
= −�̿�𝑒(�̅�, �̂�)𝐼(�̅�, �̂�) − 𝑘𝑎𝑔(�̅�, �̂�)𝐼(�̅�, �̂�) + 𝐽�̅� +∫ 𝑑Ω′

4𝜋

�̿�(�̅�, �̂�, �̂�′)

∙ 𝐼(�̅�, �̂�′) 
(1-3) 

where �̿�(�̅�, �̂�, �̂�′) is the phase matrix giving the contributions from direction �̂�′ into the 

direction �̂�. �̿�𝑒 is the extinction matrix for Stokes parameters due to the scatterers, 𝐽�̅� is 

the emission vector, and 𝑘𝑎𝑔  is the absorption coefficient for the background medium 

which is assumed to be isotropic. In general, extinction is a summation of absorption and 

scattering. However, in practice, it is still difficult to make use of it for the surface and 

biophysical parameters estimation because of too many unknown input parameters. 

Compared with the WCM and MIMICS models that are based on the RT theory, 

polarimetric SAR decomposition as an important principle in PolSAR is a much more 
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useful and simpler tool to represent the scattering over agricultural fields. In general, 

there are two types of decomposition methods. One is the coherent target decomposition 

models, including the Krogagar Decomposition (Krogager et al. 1997) and Cameron 

Decomposition (Cameron et al., 1996), which are based on the single-look Sinclair 

matrix with its definition given in Appendix B. The second one is the incoherent 

decomposition models based on the multi-look covariance or coherency matrix with their 

definitions given in Appendix C, such as the Cloude-Pottier decomposition (Cloude & 

Pottier, 1997) that is based on the eigenvalue analysis (Appendix D) and the Freeman-

Durden model-based decomposition (Freeman & Durden, 1998). Crops over agricultural 

fields are distributed targets (incoherent targets) due to their change with time. Hence, the 

incoherent decomposition is primarily investigated in this thesis, in which the Freeman-

Durden model-based decomposition describes the scattering process as the incoherent 

linearly summation of the surface, double and volume scattering model. Due to its 

simplicity and intuitiveness, many decomposition methods were developed (An et al., 

2010; An et al., 2011; Shan et al., 2012;  Yamaguchi et al., 2005; Yamaguchi et al., 2006) 

based on its model-based framework and have been widely applied to vegetation 

information extraction (Ballester-berman et al., 2010; Trudel et al., 2009). The equation 

of the model-based decomposition is written as 

 𝐶3 = 𝑓𝑠𝐶𝑠 + 𝑓𝑑𝐶𝑑 + 𝑓𝑣𝐶𝑣 (1-4) 

where 𝐶3 is the measured covariance matrix; 𝐶𝑠, 𝐶𝑑 and 𝐶𝑣 are the covariance matrices of 

surface, double-bounce, and volume scattering models, respectively. 𝑓𝑠, 𝑓𝑑 and 𝑓𝑣 are the 

contribution coefficients of the surface, double-bounce and volume scatterings. These 

three components are shown in Figure 1-9. The summarized scenarios of the scattering 

process are shown in Figure 1-10. 
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(a) 

 
(b) 

 
(c) 

Figure 1-9. Scattering components in model-based decomposition. (a) surface scattering. 

(b) double-bounce scattering. (c) volume scattering. 
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Figure 1-10. Different scattering process simulation scenarios. 

1.4 Land Cover Mapping  

The soil moisture and surface roughness extraction algorithms are also dependent on the 

crop types and crop conditions, whereas crop conditions can be determined by the crop 

phenology for different crop, so the crop mapping can be very useful for surface 

parameters retrieval. Furthermore, PolSAR with four compositions of polarization 

channels has more potential to reveal the target scattering mechanisms than the single 

polarization SAR, which can facilitate us to analyze the scattering of various targets in 

different shapes and structures so as to distinguish them (Lee & Pottier, 2009). Therefore, 

many classification methods were developed making use of the PolSAR information for 

land cover mapping instead of the single polarization SAR.   

Over years, many researchers have investigated various algorithms to perform 

classification using PolSAR data. These algorithms can primarily be divided into three 

categories. The first one is to classify different targets according to their scattering 

mechanisms. The representative one is the eigen-value decomposition method proposed 

by Cloude and Pottier (1997), which classifies targets as eight classes according to eight 

zones divided in its H- α  plot, and has been widely used for polarimetric image 

segmentation (Cao et al., 2007; Park & Moon, 2007). However, the classes falling on the 
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preset zone boundaries will easily cause misclassification and the predefined number of 

classes might not correspond to the appropriate number of classes in the PolSAR data. 

The second one is based on the statistical distribution, in which the extensively used one 

is based on the maximum likelihood classification (MLC) with Wishart distribution (Lee 

et al., 1994; Lee et al., 1999). Since it makes fully use of the scattering matrix, it is more 

suitable for PolSAR classification than for single polarization. However, in the Wishart 

classification, the physical scattering characteristics are always ignored. To overcome this 

issue, Lee et al. (2004) developed the third kind of classification methods by integrating 

the Freeman-Durden decomposition and the Wishart classification to preserve the 

scattering mechanisms, but misclassification still happens between rough bare soil and 

vegetation, especially for the short wavelength such as the C- and X-band.  

These classification methods are mostly applied to the single-date image, and targets that 

change over time such as crops will reduce its classification accuracy due to the similar 

scattering mechanisms caused by their similar geometric structure that the PolSAR 

primarily senses. These aforementioned classification methods are mostly pixel-based, in 

which each pixel is individually assigned to a designated class and the resulting maps are 

often very noisy due to high spatial variance in the landscape conditions. Moreover, the 

coherent nature of SAR results in noise, which contributes to high class variance, 

reducing the accuracies derived from these pixel-based classification algorithms. 

Therefore, to eliminate the inherent “salt and pepper” noise of the pixel-based 

classification, an object-orientated classification proposed by Benz et al., (2004) is also 

used for classification. The object-oriented classification is first applied to the PolSAR 

images by Benz and Pottier (2001) based on the H-𝛼-A decomposition. After that, many 

object-oriented classification methods were developed for polarimetric SAR land use and 

land cover mapping (Jiao et al. 2013; Qi et al. 2012; Qi et al. 2015). A novel four-

component algorithm that makes fully use of the polarimetric information including 

polarimetric decomposition and polarimetric interferometric SAR to map land use and 

land cover was developed by Qi et al. (2012), which achieved much higher overall 

accuracy and kappa coefficient than the traditional Wishart classification. After that, a 

method to detect the short-term land development based on the object-oriented 
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classification method was also proposed (Qi et al., 2015). Recently, Jiao et al. (2014) 

made use of the multi-temporal polarimetric RADARSAT-2 data for crop mapping and 

monitoring, and obtained a higher classification accuracy than that of the single-date 

image when the object-oriented classification method was adopted. Based on the pixel-

based classification method, Liu et al. (2013) also obtained high classification accuracy 

through making use of the multi-year RADARSAR-2 data. Hence, both the pixel- and 

object-based methods demonstrate the potential of the multi-temporal data on the 

improvement of the classification accuracy.   

1.5 Objectives and Organization 

This thesis attempts to validate both the qualitative and quantitative applications of the 

polarimetric SAR technique in retrieving soil moisture and surface roughness in a 

quantitative manner and mapping land cover types in a qualitative manner. Quantitative 

models and land cover mapping algorithms have been developed with four objectives 

shown as 

(1) Develop an adaptive volume scattering model to characterize the scattering from 

crops at various growing stages as a basis for the surface parameter estimation; 

(2) Develop an adaptive model-based decomposition to retrieve surface parameters 

over vegetated areas by removing the volume scattering; 

(3) Develop an integrated surface parameter inversion scheme over agricultural fields 

including vegetated and unvegetated areas;  

(4) Develop a multi-temporal land cover classification scheme.  

The developed methods will contribute to the farmers to monitor their fields near real-

time and to the Canadian government for the crop inventory and monitoring. To retrieve 

the surface parameters under vegetation cover over agricultural fields, the core task is to 

remove the effects of the scattering from the crop canopy, whereas an efficient volume 

scattering model is required to describe the crop canopy scattering. Therefore, the 

objective of Chapter 2 is to develop a simplified adaptive volume scattering model 

(SAVSM) to describe the volume scattering caused by different crops such as corn, 
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soybean and wheat. The experimental results demonstrate that it is more efficient than 

other existing volume scattering models. The SAVSM provides theoretical basis for the 

surface parameter retrieval models in Chapter 3 and Chapter 4. Hence, by integrating the 

SAVSM and the X-Bragg surface scattering model, Chapter 3 is to investigate the 

potential of the current model-based decompositions and an adaptive two-component 

model-based decomposition (ATCD) is proposed to inverse the soil moisture over wheat 

fields at its early growing stage. However, the estimated soil moisture becomes biased 

and unreliable when the measured soil moisture is greater than 30 [vol%]. To overcome 

this issue, an integrated surface parameter inversion scheme (ISPIS) is developed in 

Chapter 4 making use of a calibrated IEM instead of the X-Bragg surface scattering 

model. Chapter 5 develops a multi-temporal supervised binary-tree classification scheme 

to maximize the difference of the polarization signatures (MTSBTCS-MDPS). Overall, 

the relationships among these five chapters are illustrated in Figure 1-11.  

 

Figure 1-11. Relationships among the five thesis chapters. 
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Chapter 2  Simplified Adaptive Volume Scattering Model and 
Scattering Analysis of Crops over Agricultural Fields* 

2.1 Introduction 

Mapping and monitoring changes in cropland can provide valuable information to aid the 

decision-making for sustainable agriculture production and market access (Liu et al., 

2013; McNairn et al., 2012). Compared with optical sensors, microwave signal has the 

day and night capability and can penetrate clouds and light rain with negligible 

attenuation, thus allowing for reliable repeat measurements over the short dynamic crop 

growing season (Moran et al., 2011). Fully polarimetric SAR (PolSAR) with four 

channels and the phase component contains much more information than the single-

polarization and dual-polarization SAR, and hence has greater potential for retrieving 

crop biophysical parameters. 

Polarimetric SAR decomposition in PolSAR is a very useful tool for characterizing crop 

scattering mechanisms that can be used for crop classification and crop growth condition 

monitoring. In general, there are two types of decomposition methods. One is the 

coherent target decomposition represented by the Krogagar and Cameron 

Decompositions (Krogager et al., 1997; Cameron et al., 1996) which are based on the 

single-look Sinclair matrix; the other is the non-coherent decomposition based on the 

multi-look covariance or coherency matrix, such as the Cloude-Pottier decomposition 

(Cloude & Pottier, 1997) which is based on the eigenvalue analysis and the Freeman-

Durden model-based decomposition (Freeman & Durden, 1998) that describes the 

scattering process as the linear sum of the surface, double-bounce and volume scattering. 

Due to its simplicity and intuition, many decomposition methods (An et al., 2010; An et 

al., 2011; Yamaguchi et al., 2005; Yamaguchi et al., 2006; Yajima et al., 2008; 

                                                 

*
 A version of this chapter has been published as “Huang, Xiaodong, Wang, Jinfei, and 

Shang, Jiali (2015). A Simplified Adaptive Volume Scattering Model and Scattering 

Analysis of Crops over Agricultrual Fields Using the RADARSAT-2 Polarimetric SAR 

Imagery, Journal of Applied Remote Sensing, 9(1), 096026-1-096026-18.” 
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Yamaguchi et al., 2011; Sato et al., 2012; Shan et al., 2012) were developed based on the 

Freeman-Durden model-based framework and have been widely applied to vegetation 

information extractions (Trudel et al., 2009; Ballester-Berman & Lopez-Sanchez, 2010). 

More recently, Chen et al. (2013; 2014; 2014) also proposed several model-based 

decompositions, but their work is primarily focusing on separating the built-up area from 

volume scattering.  

Volume scattering as a characterization of vegetation scattering is a key component in 

model-based decompositions. However, it remains a challenging task to construct the 

volume scattering for accurate information extractions. Although many volume scattering 

models have been developed in recent years, they are limited to characterize only certain 

types of vegetation. Freeman and Durden (1998) first developed a volume scattering 

model using the uniform probability density function. Yamaguchi et al. (2005) added the 

vertical and horizontal volume scattering models to extend the Freeman-Durden volume 

scattering model by making use of the first order sine probability density function. An et 

al. (2010) proposed a maximum entropy volume scattering model, but it requires more 

experiments to validate. Antropov et al. (2011) proposed a generalized volume scattering 

model which can adapt to the sensitivity between the HH and VV co-polarizations for 

different types of forests. Arii et al. (2010), van Zyl et al. (2011) and Arii et al. (2011) 

developed a general scattering model based on an n-power cosine square function. 

However, with the randomness and orientation angle both being the unknown variables, 

they must be calculated simultaneously, which makes the computation very time-

consuming. Overall, most of these existing models are vegetation type dependent and 

very difficult to fully characterize crop changes with time. Therefore, in this chapter, a 

simplified adaptive volume scattering model (SAVSM) is proposed with a three-

component model-based decomposition combing with SAVSM is developed (TCMD-

SAVSM). 

2.2 The Framework of Model-Based Decomposition 

The model-based decomposition framework proposed by Freeman and Durden (1998) 

can be described as 
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 C = 𝑓𝑠𝐶𝑠 + 𝑓𝑑𝐶𝑑 + 𝑓𝑣𝐶𝑣 (2-5) 

where C is the covariance matrix measured by polarimetric SAR sensors, 𝐶𝑠, 𝐶𝑑 and 𝐶𝑣 

represent the covariance matrix of surface, double-bounce and volume scattering model 

respectively, and 𝑓𝑠, 𝑓𝑑 and 𝑓𝑣 correspond to the coefficients of each scattering. The 𝐶𝑠, 

𝐶𝑑 and 𝐶𝑣 can be described as 

 𝐶𝑠 = [
|𝛽|2 0 𝛽
0 0 0
𝛽∗ 0 1

] 𝐶𝑑 = [
|𝛼|2 0 𝛼
0 0 0
𝛼∗ 0 1

] 𝐶𝑣 = [
3 8⁄ 0 1 8⁄

0 1 4⁄ 0
1 8⁄ 0 3 8⁄

] (2-6) 

where 𝛽  and 𝛼  are the surface and double-bounce parameters respectively; they are 

related to the dielectric constant of the medium and can also be used to retrieve soil 

moisture (Hajnsek et al., 2009). Although the model-based decomposition is intuitive in 

reflecting the scattering process, a critical problem arises when it is applied to an area 

under vegetation cover, i.e., the negative power problem in which the power of surface or 

double-bounce scattering is negative after decomposition, which is conflicting with 

reality. To circumvent this problem, several researchers developed different models by 

adding in de-orientation or improving volume scattering models (An et al., 2010; An et 

al., 2011; Yamaguchi et al., 2005; Yamaguchi et al., 2006; Yajima et al., 2008; 

Yamaguchi et al., 2011; Sato et al., 2012; Shan et al., 2012). However, in order to avoid 

the negative power and consider the physical realization, the non-negative eigenvalue 

decomposition method (NNED) proposed by van Zyl et al. (2011) was adopted, while the 

de-orientation process will not be considered in this chapter because the orientation 

angles derived from the C-band RADARSAT-2 data contain too much noise (Lee & 

Thomas, 2011). 
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2.3 Simplified Adaptive Volume Scattering Model and 
TCMD-SAVSM 

2.3.1  Framework of Volume Scattering Model Construction 

The general volume scattering model construction has been widely used in literatures 

(Freeman & Durden, 1998; Yamaguchi et al., 2005; Arii et al., 2010), which can be 

described as follows, 

 C𝑣 = ∫ p(θ)C(θ)𝑑θ
𝑏

𝑎

 (2-7) 

Where p(θ) is the probability distribution function (PDF) of the orientation angles of 

dipoles, and C(θ) is the covariance matrix rotated  θ with respect to the line of sight 

(LOS), C𝑣 is the volume scattering model, 𝑎 and 𝑏 are the integration limits. In general, 

the Sinclair matrix used for constructing volume scattering matrix can be described as, 

 𝑆 = [
Sℎℎ 0
0 S𝑣𝑣

] (2-8) 

When Sℎℎ = 1, S𝑣𝑣 = 0 , it represents horizontal dipoles; while Sℎℎ = 0, S𝑣𝑣 = 1 , it 

represents vertical dipoles; when Sℎℎ = 1, S𝑣𝑣 = 1, it represents the sphere or thin flat 

plate. After rotation with respect to the LOS with angleθ, the scattering matrix can be 

described as 

 𝑆(θ) = [
cosθ sinθ
−sinθ cosθ

] [
Sℎℎ 0
0 S𝑣𝑣

] [
cosθ −sinθ
sinθ cosθ

] (2-9) 

Then, the Lexicographic feature vector can be described as, 

 

L

= [(cosθ)2Sℎℎ + (sinθ)
2S𝑣𝑣 √2cosθsinθ(S𝑣𝑣−Sℎℎ) (cosθ)2S𝑣𝑣 + (sinθ)

2Sℎℎ]
𝑇
 

(2-

10) 
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Where L  is the Lexicographic vector, according to C = L ∙ L𝐻 , where 𝐻  denotes the 

complex conjugation and transposition, then, the covariance matrix after rotation can be 

shown as, 

 C(θ) = [

C11 C12 C13
C21 C22 C23
C31 C32 C33

] (2-11) 

Where  

C11 = ((cosθ)
2Sℎℎ + (sinθ)

2S𝑣𝑣)
2 

C12 = C21 = √2 2⁄ ((cosθ)2Sℎℎ + (sinθ)
2S𝑣𝑣)(cosθsinθSℎℎ − cosθsinθS𝑣𝑣) 

C13 = C31 = ((cosθ)
2Sℎℎ + (sinθ)

2S𝑣𝑣)((cosθ)
2S𝑣𝑣 + (sinθ)

2Sℎℎ) 

C22 = 2(cosθsinθSℎℎ − cosθsinθS𝑣𝑣)
2 

C23 = 𝐶32 = √2 2⁄ ((sinθ)2Sℎℎ + (cosθ)
2S𝑣𝑣)(cosθsinθSℎℎ − cosθsinθS𝑣𝑣) 

C33 = ((cosθ)2S𝑣𝑣 + (sinθ)
2Sℎℎ)

2 

2.3.2  Simplified Adaptive Volume Scattering Model (SAVSM) 

It is logical to select either horizontal or vertical Sinclair scattering matrix as the basic 

dipole to construct the covariance matrix since their orientation angles only have a 
π

2
  

phase difference. In this chapter, the horizontal dipole i.e. Sℎℎ = 1, S𝑣𝑣 = 0 was adopted. 

Then, covariance matrix (2-7) can be simplified as, 

 C(θ) = [

(cosθ)4 −√2(cosθ)3sinθ (cosθ)2(sinθ)2

−√2(cosθ)3sinθ 2(cosθ)2(sinθ)2 −√2(sinθ)3cosθ

(cosθ)2(sinθ)2 −√2(sinθ)3cosθ (sinθ)4
] (2-12) 

Accounting for the PDF of the vegetation orientation angles, Freeman and Durden (1998) 

argued that the orientation angles satisfied the uniform distribution, while Yamaguchi et 

al. (2005) added the vertical dipoles volume scattering based on the first order sine 
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function. However, crops at different phenological stages could have different 

architectures which can result in different scattering mechanisms. Corn is a good example 

of this; the scattering mechanisms when leaves are dense and green are different from 

that when leaves become sparse and yellow and start to bend down. From this 

perspective, neither the Freeman-Durden volume scattering model nor the Yamaguchi 

volume scattering model can adequately describe the variation of crops over the entire 

growing season. Different from the above-mentioned volume scattering models, Huang 

and Wang (2014) added the 𝑛th power to the first order sine function to adapt to the 

variation of crops for RADARSAT-2 imagery, but it is restricted to only characterize the 

vertical volume scattering. To enhance its suitability, in this chapter, the 𝑛 th power 

cosine function is added to describe the horizontal volume scattering. Then, the PDFs of 

SAVSM in this chapter are described as, 

 
𝑝ℎ(𝜃) =

(𝑆𝑖𝑛𝜃)𝑛

∫ (𝑆𝑖𝑛𝜃)𝑛𝑑𝜃
𝜋
0

 and 𝑝𝑣(𝜃) =
(𝐶𝑜𝑠𝜃)𝑛

∫ (𝐶𝑜𝑠𝜃)𝑛𝑑𝜃

𝜋
2

−
𝜋
2

 
(2-13) 

Different PDFs with different 𝑛  for vertical volume scattering models are shown in 

Figure 2-1. 

 

Figure 2-1. PDFs of vertical adaptive volume scattering model with orientation angles. 
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When 𝑛 = 0, p(θ) =
1

𝜋
 is the uniform distribution function which is the same as Freeman 

and Durden (1998). When 𝑛 = 1⋯𝑘, p(θ) becomes narrower as 𝑛 increases. When𝑛 →

∞ , p(θ) = 𝛿(θ −
𝜋

2
)  is the Dirac function representing the pure vertical dipole. 

Substituting (2-8) and (2-9) with (2-3), after integration, the vertical and horizontal 

adaptive volume scattering model (V-SAVSM and H-SAVSM) can be re-written as: 

 V-SAVSM: 

 

C𝑣11 =
1

𝐴
∙
3√𝜋Γ (

𝑛 + 1
2

)

4Γ (
𝑛
2
+ 3)

 

C𝑣12 = C𝑣21 = C𝑣23 = C𝑣32 = 0, C𝑣22 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2 )

Γ (
𝑛
2 + 3)

 

C𝑣13 = C𝑣31 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2 )

2Γ (
𝑛
2 + 3)

, C𝑣33 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 5
2 )

Γ (
𝑛
2 + 3)

 

(2-14) 

H-SAVSM： 

 

C𝑣11 =
1

𝐴
∙
3√𝜋Γ (

𝑛 + 1
2 )

4Γ (
𝑛
2 + 3)

 

C𝑣12 = C𝑣21 = C𝑣23 = C𝑣32 = 0, C𝑣22 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2 )

Γ (
𝑛
2 + 3)

 

C𝑣13 = C𝑣31 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2 )

2Γ (
𝑛
2 + 3)

, C𝑣33 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 5
2 )

Γ (
𝑛
2 + 3)

 

(2-15) 

Where 𝐴 = ∫ (𝑆𝑖𝑛θ)𝑛𝑑θ
𝜋

0
= ∫ (𝐶𝑜𝑠θ)𝑛𝑑θ

𝜋

2

−
𝜋

2

=
√𝜋Γ(

𝑛+1

2
)

Γ(
𝑛

2
+1)

 and Γ(𝑎) = ∫ 𝑒−𝑡𝑡𝑎−1𝑑t
∞

0
. It 

should be noted that 𝑛 is greater than 0, but not limited to the integer. It can be seen that 
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the difference between V-SAVSM and H-SAVSM is only in the HH and VV 

components. The HH component of the V-SAVSM is equal to the VV component of the 

H-SAVMS, and vice versa. It should also be noted that the combined V-SAVSM and H-

SAVSM is referred as SAVSM in the sections follow. 

2.3.3  Analysis of SAVSM 

Without loss of generality, the V-SAVSM is analyzed only in this section. The 

components of the V-SAVSM are plotted in Figure 2-2. Figure 2-2(a) shows that, as the 

𝑛 increases, the HH component decreases, while the VV component increases. At the 

same time, the HH-VV components increase first then decrease at the point where 𝑛 = 1. 

The radar vegetation index (RVI) proposed by Kim and van Zyl (2001) as an indicator of 

randomness in scattering by vegetation can be described as, 

 RVI =
4𝑚𝑖𝑛 (𝜆1, 𝜆2, 𝜆3)

𝜆1 + 𝜆2 + 𝜆3
 (2-16) 

Where 𝜆1, 𝜆2 and 𝜆3 are the eigenvalues of adaptive volume scattering models. The RVI 

and the scattering entropy proposed by Cloude and Pottier (1997) are both depicted in 

Figure 2-2(b). Both entropy and RVI decrease as 𝑛  increases. However, RVI has a 

steeper decreasing curve than entropy does. Considering this, the curve of RVI can be 

used to limit the range of 𝑛, thereby accelerate finding the optimum 𝑛 in practice. It can 

be seen that the RVI is very low and almost stays unchanged from 𝑛 = 20 onwards, so 

the maximum 𝑛 in this chapter should be 20. However, since the RADARSAT-2 imagery 

is in short wavelength (5.4cm), and is adopted for validation and analysis, the vegetation 

shows much more randomness compared with other long wavelength microwave such as 

the L (25cm) and P-band (60cm) (Arii et al., 2011). Therefore, the maximum value set in 

this chapter is 5 practically. 
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       (a) 

 
                                 (b) 

Figure 2-2. Vertical volume scattering matrix: (a) components of adaptive volume 

scattering matrix (b) entropy, RVI and randomness of adaptive volume 

scattering matrix. 

Next, some 𝑛 are selected to compare with other volume scattering models proposed by 

Freeman and Durden
 
(1998) (FD-VSM), Yamaguchi et al. (2005) (Y-VSM) and Hajnsek 

et al. (2009) (H-VSM), which are listed in Table 2-1. It can be seen that the SAVSM not 

only includes the FD-VSM, Y-VSM and H-VSM, but also continues to respond to 𝑛. 
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From this view, it has a better potential to describe changes in crops with time than FD-

VSM, Y-VSM and H-VSM. Finding the optimum 𝑛 to fit with crop variations over time 

is very important, so in the next section, the procedures on how to calculate the optimum 

𝑛 to construct the TCMD-SAVSM based on SAVSM are introduced.  

Table 2-1. Comparison of SAVSM with other volume scattering models. 

𝒏 V-SAVSM H-SAVSM Reference 

0 [
0.375 0 0.125
0 0.250 0

0.125 0 0.375
] [

0.375 0 0.125
0 0.250 0

0.125 0 0.375
] FD-VSM  

1 [
0.200 0 0.133
0 0.267 0

0.133 0 0.533
] [

0.533 0 0.133
0 0.267 0

0.133 0 0.200
] Y-VSM  

3.68 [
0.688 0 0.107
0 0.215 0

0.107 0 0.567
] [

0.567 0 0.107
0 0.215 0

0.107 0 0.688
] H-VSM  

2.3.4  The Algorithm of TCMD-SAVSM 

As mentioned by van Zyl et al. (2011), there is a remainder matrix existing in the model-

based decomposition after applying the NNED method, which can be described as, 

 𝐶𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = C − 𝑓𝑠𝐶𝑠 − 𝑓𝑑𝐶𝑑 − 𝑓𝑣𝐶𝑣 (2-17) 

where 𝐶𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 is the remainder matrix. Ideally, the sum of the power of the optimum 

volume scattering model and surface and double-bounce scattering is equal to the total 

power, which means the power of the remainder matrix (PRM) should be zero. However, 

it is very difficult to do so for each pixel due to the complexity of the scattering. In order 

to achieve the optimum volume scattering model, an optimum 𝑛 is needed, which can 

make the PRM minimal. However, there are two volume scattering models proposed in 

this chapter: V-SAVSM and H-SAVSM. Being different from Yamaguchi et al. who used 

the 10log10(𝑉𝑉 𝐻𝐻⁄ ) as the criterion to select the suitable volume scattering from three 

types, i.e., horizontal, vertical and random volume scattering models, whether the V-

SAVSM or the H-SAVSM is adopted in this chapter depends on which one can better 

minimize the PRM. Based on this criterion, the procedure and flowchart of the three-
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component model-based decomposition with SAVSM (TCMD-SAVSM) algorithm 

proposed in this chapter can be described as 

 

 

Figure 2-3. The flowchart of the TCMD-SAVSM for each pixel in covariance matrix. 

Step 1: the V-SAVSM is applied to the TCMD-SAVSM. 

Step 2: looping from 𝑛 = 0 to 5 with steps of 0.01 to find the optimum 𝑛 based on the NNED 

method, and 𝑓𝑣 is obtained first.  

Step 3: 𝑓𝑠 and 𝑓𝑑 are calculated by the Freeman-Durden decomposition based on the sign of 

𝑅𝑒(𝐻𝐻 ∗ 𝑉𝑉∗) which is to determine whether the surface or double bounce is dominant. 

Step 4: the H-SAVSM is also applied and step 3 and 4 are repeated. 

Step 5: 𝑓𝑠, 𝑓𝑑 and 𝑓𝑣 will be selected according to V-SAVSM and H-SAVSM depending on which 

one could make the PRM minimum. 
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2.4 Experiments and Validation 

2.4.1  Experimental Dataset 

The study area selected is near the city of London in southwestern Ontario, Canada. 

Multi-temporal RADARSAT-2 C-band polarimetric data used in this chapter are shown 

in Table 2-2, which were from May 7
th

 to September 28
th

 2012, and the day of year 

(DoY) s was from day 128 to 272. These images are in the same Fine Quad (FQ) mode 

with the incidence angle 40.2 degrees. There is no special reason why only this mode is 

employed in this chapter, while other modes can also be adopted as long as they are 

available and can cover the entire crop growing season, whereas these images must keep 

the same incidence angle as well. In addition, although the SAVSM does not consider the 

incidence angle, the powers of decomposed components closely depend on the incidence 

angle. Figure 2-4 depicts the Pauli image on day 152 and the optical RapidEye image on 

day 160. There are three major crops in this area: corn, winter wheat, and soybean. Every 

data layer was geocoded using the MapReady3.2.1 software 

(https://www.asf.alaska.edu/data-tools/mapready/) with a digital elevation model at a 

pixel spacing of 10m. A 25-multi-look processing with 5-pixel window size in each 

direction was performed using the PolSARPro 4.2 software 

(http://earth.eo.esa.int/polsarpro/Download/) before the TCMD-SAVSM was applied. 

After these processes, the size of the image becomes 642×713 pixels. 

  
(a)                                                              (b) 

https://www.asf.alaska.edu/data-tools/mapready/
http://earth.eo.esa.int/polsarpro/Download/
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Figure 2-4. Pauli and RapidEye images of study area on day 152 and 160 respectively: (a) 

Pauli image with red |𝑺𝑯𝑯 − 𝑺𝑽𝑽|
𝟐, green 𝟒|𝑺𝑯𝑽|

𝟐 and blue |𝑺𝑯𝑯 + 𝑺𝑽𝑽|
𝟐: 

polygons outlined fields that are sample fields that will be analyzed in next 

sections. (b) Optical RapidEye image. 

Table 2-2. RADARSAT-2 dataset acquired over southwestern Ontario, Canada. 

Date DoY Sensor mode-Incidence angle Orbit Look direction 

2012-05-07 128 FQ21-40.2° Ascending Right 

2012-05-31 152 FQ21-40.2° Ascending Right 

2012-06-24 176 FQ21-40.2° Ascending Right 

2012-07-18 200 FQ21-40.2° Ascending Right 

2012-08-11 224 FQ21-40.2° Ascending Right 

2012-09-04 248 FQ21-40.2° Ascending Right 

2012-09-28 272 FQ21-40.2° Ascending Right 

2.4.2  Comparison of TCMD-SAVSM with AMD 

The adaptive model-based decomposition (AMD) proposed by Arii et al. (2011) 

described the volume scattering model with two parameters: orientation angle and the 

randomness of the vegetation. In theory, it has the potential to achieve better performance 

due to more parameters used to characterize the vegetation variation. Hence, to 

demonstrate the TCMD-SAVSM adequately, in this section, the TCMD-SAVSM is 

compared with AMD on two aspects: the time they consume and their decomposed 

components. The AMD depends on three factors: the increment of the randomness (∇𝛿), 

the increment of the orientation angle (∇𝜃), and the increment of the coefficient of 

volume scattering model (∇𝑓𝑣). How to select the suitable values for these increments is 

the key, and also a problem. The range of the randomness 𝛿 is from 0 to 1. When a 

smaller ∇𝛿 is selected, better decomposed components can be obtained, but it can be very 

time consuming. It is the same with ∇𝜃  and ∇𝑓𝑣 . Therefore, in practice, we first fix 

∇𝜃 = 1𝑜 when 𝜃 is from 0 to 180 degrees, and ∇𝛿 = 0.1 with its range from 0 to 1. All of 

the RADARSAT-2 data have been pre-processed to sigma naught, therefore, the total 

power (not in decibel unit) of the majority of pixels in the entire image is from 0 to 1. 

Hence, it is feasible to select a ∇𝑓𝑣 less than 1. Generally, the smaller the ∇𝑓𝑣 is set, the 

better the decomposed results the AMD will have. However, when ∇𝑓𝑣 is set to 0.001, 

each line (713 pixels) of the image will consume approximately 11 minutes, which will 

result in the total time of the entire image being (642 × 11 minutes) around 117.7 hours 
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(about 5 days). Practically, three ∇𝑓𝑣 are selected in this chapter for comparison: ∇𝑓𝑣 =

0.01, ∇𝑓𝑣 = 0.05 and  ∇𝑓𝑣 = 0.1. The time, the mean and standard deviation of the PRM 

of the entire image were computed by a workstation with the Windows 7 Professional 64-

bit operating system, i7 3.20 GHZ processor ad 24 GB installed memory. In addition, all 

programs in this chapter are implemented using Matlab 2013a (64 bit).  

Table 2-3. Comparison of TCMD-SAVSM with AMD within different 𝛁𝒇𝒗. To test the 

time different algorithms, the configuration of the workstation is windows 7 

professional with processor i7 3.20 GHZ and ram 24 GB. All programs are 

implemented using Matlab 2013a (64 bit). 

Methods DoY Time (hours) Mean of PRM Std. of PRM 

AMD with 

∇𝑓𝑣 = 0.01 

128 23.2469 0.0111 0.0214 

152 19.9989 0.0077 0.0211 

176 24.1933 0.0100 0.0210 

200 23.1633 0.0100 0.0214 

224 27.5708 0.0117 0.0218 

248 26.4711 0.0117 0.0240 

272 23.9531 0.0086 0.0215 

AMD with 

∇𝑓𝑣 = 0.05 

128 12.2311 0.0130 0.0219 

152 11.7794 0.0114 0.0211 

176 12.5983 0.0120 0.0213 

200 12.9581 0.0125 0.0217 

224 13.5164 0.0136 0.0222 

248 13.0806 0.0135 0.0244 

272 12.1022 0.0113 0.0217 

AMD with 

∇𝑓𝑣 = 0.10 

128 10.6292 0.0187 0.0225 

152 10.5714 0.0157 0.0217 

176 10.8139 0.0172 0.0220 

200 10.8044 0.0169 0.0225 

224 11.0703 0.0173 0.0228 

248 10.8669 0.0176 0.0250 

272 10.5792 0.0160 0.0222 

The proposed 

TCMD-

SAVSM 

128 3.4967 0.0051 0.0221 

152 3.4847 0.0040 0.0221 

176 3.4794 0.0050 0.0224 

200 3.5142 0.0053 0.0227 

224 3.6142 0.0057 0.0234 

248 3.5253 0.0054 0.0230 

272 3.3339 0.0040 0.0224 

From Table 2-3, the mean of the PRM increases but the time decreases as ∇𝑓𝑣 increases. 

∇𝑓𝑣 = 0.01 has lower mean of PRM on each date compared with the other two ∇𝑓𝑣 ; 

therefore, only AMD with ∇𝑓𝑣 = 0.01 is compared with TCMD-SAVSM in this section. 

The AMD consumes around 6.6 times more time than that of the proposed TCMD-
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SAVSM and the mean PRM is about twice more than that of the proposed TCMD-

SAVSM as well. However, the standard deviation is similar between the two. In addition, 

the mean of the PRM listed in Table 2-3 is for the entire image, i.e., it also includes the 

urban and forest areas besides agricultural fields. Hence, the mean and standard deviation 

of the PRM in the sample agricultural fields shown as polygons in Figure 2-4, are shown 

in Figure 2-5. 

 

Figure 2-5. Comparison of the PRM between TCMD-SAVSM and AMD on each image 

acquisition date over agricultural fields. 

From Figure 2-5, we may infer that the TCMD-SAVSM can characterize crops that 

change over time better than AMD does since TCMD-SAVSM has the minimum mean of 

PRM compared with AMD on each date while both standard deviations are almost the 

same. Among all dates with ∇𝑓𝑣 = 0.01, the mean of the PRM on day 152 is smaller than 

other days. Hence, the decomposed results of the TCMD-SAVSM and AMD on day 152 

are compared further, which are highlighted in Table 2-3. 
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0  2.71     0  3.16 

(a)                                                         (b) 

  
  0  2.73  0  1.00 

(c)                                                                     (d) 

Figure 2-6. Decomposed components by AMD with the RADARSAT-2 image on day 

152: (a) surface scattering component (b) double-bounce scattering 

component (c) volume scattering component (d) randomness. 

A 

B 
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0  2.83     0  2.95 

(a)                                                         (b) 

   
 0  2.73     0  5.00 

(c)                                                                         (d) 

Figure 2-7. Decomposed components by TCMD-SAVSM: (a) surface scattering (b) 

double-bounce scattering (c) volume scattering (d) 𝑛. 

Compared Figure 2-6(a) with 2-7(a), the surface scattering of TCMD-SAVSM in urban 

areas has less power than that of AMD; hence, the TCMD-SAVSM is more consistent 

with reality that the dominant scattering in urban areas should be double-bounce and 

volume scatterings due to the reflective building corners, and the corners of tree trunks 

and the ground. Water area also shows very low surface scattering because its total power 

is already low due to the specular reflection. On the other hand, from Figure 2-6(b) and 

Figure 2-7(b), both double-bounce scatterings are prominent in the urban areas. It should 
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be noted that crops were short and sparse on day 152, in which the double-bounce 

scattering should be less than other components. However, the double-bounce scattering 

of the AMD shows more power than TCMD-SAVSM in agricultural fields. Figure 2-6(c) 

and Figure 2-7(c) reveal the same pattern in volume scattering with higher values 

distributed in the urban and forest areas. Because on day 152 corn and soybean were not 

emerging yet, their fields show low volume scattering because the fields were bare. It 

should be noted that there is a negative relationship between 𝑛 and the randomness. As 𝑛 

increases, the randomness decreases because the SAVSM will become either more 

horizontal or vertical. Even though 𝑛 is shown noisy in Figure 2-7(d), most of 𝑛 in forest 

areas are smaller compared with that in urban and agricultural areas. To compare the 

randomness further, two different urban areas are selected, the first is the area labeled as 

A in Figure 2-6(d) with weak double-bounce scattering, while the other is the area 

labeled as B in Figure 2-6(d) with strong double-bounce scattering. In theory, the double-

bounce component in our model-based decomposition is a strong coherent scattering with 

small randomness values; hence, area B should be less random than that of A. However, 

the AMD result shows the opposite trend; while in the TCMD-SAVSM result, the values 

of 𝑛 are higher in area B than in A with lower randomness in B than A.  

2.4.3  SAVSM Validation Compared with FD-VSM, Y-VSM, 
An-VSM and Antropov-VSM  

To validate the simplified adaptive volume scattering model (SAVSM) proposed in this 

chapter, different currently available volume scattering models, such as Freeman and 

Durden
 
(1998) (FD-VSM), Yamguchi et al.

 
(2005) (Y-VSM), An et al.

 
(2010) (An-VSM) 

and Antropov et al. (2011) (Antropov-VSM) volume scattering models, are compared 

based on the PRM, a criterion used to find the optimum 𝑛 as mentioned above. In order to 

validate the suitability for describing changes in crops with time, all volume scattering 

models are applied to the NNED and the average percentage of the PRM less than 0.001 

is calculated for corn, soybean and wheat separately. The value of 0.001 is adopted to 

enlarge the difference between the SAVSM and other volume scattering models, so as to 

demonstrate the advantage of the SAVSM completely. For instance, we assume that the 
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percentage of the PRM less than 0.001 of SAVSM is 90% while FD-VSM is 80%. 

However, when the threshold is set to 0.1, the percentage of the PRM less than 0.1 of 

both models may be 95%, which makes no difference. In addition, from Fig. 8, the 

average power of corn, soybean and wheat are all almost greater than 0.1 on each date, 

which means when the threshold of 0.001 is selected, only 1% margin of error is present. 

 
     (a) 

  
                                                                        (b) 
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                                                                          (c) 

Figure 2-8. Power of different crops on each date. (a) corn (b) soybean (c) wheat. 

The statistical results of corn are shown in Table 2-4. It depicts that the SAVSM has the 

highest percentage of PRM less than 0.001 on each date with an average of 95.29%. The 

standard deviation is 3.86 which is the lowest compared with the other models. 

Therefore, we may conclude that the SAVSM can better characterize changes in corn 

development over time. In contrast, the percentages of Freeman-Durden, Yamaguchi et 

al., An et al. and Antropov et al. are all very low with the average of 17.00%, 20.10%, 

19.59% and 18.69% respectively, and their standard deviations are very high, about six 

times more than that of SAVSM. It also shows that as the corn grows taller and denser, 

the percentage of PRM less than 0.001 for Freeman, Yamaguchi et al., An et al. and 

Antropov et al. decrease sharply from day 128 to day 200. But as the corn leaves become 

dry and yellow on day 272 (Figure 2-9(d)), their percentages are increasing gradually 

from day 200 to day 272, suggesting that their models cannot fully characterize the 

changes in corn with time. 
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Table 2-4. Results of percentages of PRM less than 0.001 for corn. 

Volume 

Scattering 

Models 

DoY 
Ave. Std. 

128 152 176 200 224 248 272 

FD-VSM 

Y-VSM 

An-VSM 

Antropov-VSM 

SAVSM 

69.50 

89.63 

81.89 

86.09 

97.44 

75.34 

77.41 

78.56 

78.78 

99.45 

43.10 

48.45 

47.46 

49.32 

98.69 

29.51 

37.70 

37.26 

38.63 

95.91 

36.82 

39.99 

46.32 

43.59 

94.16 

46.37 

60.39 

65.79 

62.68 

93.18 

58.27 

74.90 

85.65 

75.67 

88.22 

51.27 

61.21 

63.28 

62.11 

95.29 

17.00 

20.10 

19.59 

18.69 

3.86 

The statistic results of soybean are depicted in Table 2-5. The average percentage of the 

PRM less than 0.001 for soybean is 95.80%, which is still the highest among all volume 

scattering models. Similar to corn, as the soybean going through vegetative growth, the 

percentages of Freeman, Yamaguchi et al., An et al. and Antropov et al. decrease 

gradually with standard deviations of 23.35, 21.30,15.61 and 20.18 respectively, which 

are two times more than that of the SAVSM. On day 248, take note that the percentage of 

the SAVSM is a little low with the percentage of 74.60%. The reason for this is because 

some leaves of the soybean become brown and dry, and this can be seen in Figure 2-

10(c). The microwave can penetrate the dry leaves more easily to interact with the 

branches perhaps resulting in multiple scatterings. Besides the dominant volume 

scattering, other multiple scattering may also occur due to the interaction with the 

intricate branches. At any rate, the percentage of the SAVSM is still higher than that of 

other models on this date. From this perspective, the SAVSM is also suitable to describe 

changes in soybean with time.  

Table 2-5. Results of percentages of PRM less than 0.001 for soybean. 

Volume Scattering 

Models 

DoY 
Ave. Std. 

128 152 176 200 224 248 272 

FD-VSM 

Y-VSM 

An-VSM 

Antropov-VSM 

SAVSM 

86.52 

88.39 

89.23 

89.13 

99.89 

88.46 

88.95 

89.06 

89.66 

99.72 

73.72 

79.28 

78.08 

79.52 

99.40 

59.08 

65.10 

64.46 

66.64 

98.24 

59.68 

63.51 

64.67 

65.55 

98.73 

28.89 

35.15 

56.05 

38.53 

74.60 

97.01 

97.75 

97.43 

97.78 

100.00 

70.48 

74.02 

77.00 

75.26 

95.80 

23.35 

21.30 

15.61 

20.18 

9.37 
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The statistic results of the winter wheat are shown in Table 2-6. Different from corn and 

soybean, the percentages of PRM less than 0.001 of all the volume models increase as the 

wheat is growing. The reason why on day 128 their percentages are low is because the 

wheat was very short and the stems were either vertical or horizontal and are very 

difficult to describe with this variation. As the wheat grows taller, the percentage of PRM 

becomes higher. After day 200, the wheat was harvested and volunteer wheat was 

growing, this is an interesting note. The mixture of wheat stubbles and the re-growth 

makes the scattering more complex. Therefore, on day 248, the percentages of Freeman, 

Yamaguchi et al, An et al. and Antropv et al. models are all very low, and their standard 

deviations are 20.51, 15.83, 18.11 and 16.07 which are three times more than that of the 

adaptive model, suggesting that they cannot describe the changes of wheat with time 

completely, while the SAVSM can adapt to its variation. 

Table 2-6. Results of percentages of PRM less than 0.001 for winter wheat. 

Volume Scattering 

Models 

DoY 
Ave. Std. 

128 152 176 200 224 248 272 

FD-VSM 

Y-VSM 

An-VSM 

Antropov-VSM 

SAVSM 

32.63 

63.76 

63.56 

63.76 

83.98 

75.98 

90.19 

93.89 

91.59 

94.49 

80.78 

84.78 

95.20 

86.69 

92.59 

85.19 

87.19 

87.49 

88.09 

99.70 

73.97 

77.88 

82.38 

78.98 

97.30 

41.04 

48.35 

49.65 

49.35 

93.59 

57.66 

60.66 

59.96 

61.96 

99.60 

63.89 

73.26 

76.02 

74.35 

94.46 

20.51 

15.83 

18.11 

16.07 

5.42 

2.5 Three Components Analysis of Corn, Soybean and 
Wheat 

The TCMD-SAVSM is also validated by comparing with other volume scattering models 

for corn, soybean and wheat. In this section, we will analyze the variation of the surface, 

double and volume scatterings of each crop, which may help assist in identifying or 

classifying crops over different growing stages in the future. To present the decomposed 

results clearly, the percentage power of each component is calculated rather than the 

power itself. Three types of crops (corn, soybean and winter wheat) typical to this region 

are selected for this analysis. The ground photos shown in Figure 2-9, 2-10 and 2-11 are 
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used to help with the interpretation. It should be noted that on day 128, the corn and 

soybean have not emerged yet, and on day 176, the winter wheat was already harvested. 

 

                (a)                               (b)                                 (c)                                (d) 

Figure 2-9. Ground photos of corn: (a) day 152 (b) day 176 (c) day 224 (d) day 272. 

 

                (a)                               (b)                                 (c)                                (d) 

Figure 2-10. Ground photos of soybean field: (a) day 152 (b) day 224 (c) day 248 (d) day 

272. 

 
                (a)                               (b)                                 (c)                                (d) 

Figure 2-11. Ground photos of winter wheat: (a) day 128 (b) day 176 (c) day 200 (d) day 

272. 

2.5.1  Corn Analysis  

The variation of the three components of corn can be shown in Figure 2-12. On day 128, 

the corn field had very strong surface scattering since there were no corns on this date but 

only the bare soil. Until day 152, the corn was growing, but it was very short and sparse 

as can be seen on Figure 2-9(a), so the surface scattering was still dominant although it 

decreased over that time. After day 176, as the corn grew taller and the canopy started to 
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close, as can be seen in Figure 2-9(b), the surface scattering decreased until day 272. In 

terms of the volume scattering, as corn became taller and denser, the volume scattering 

increased gradually until day 248. However, on day 272, the leaves turned yellow and dry 

and started to bend down or fell off. As a result, the canopy became less dense as can be 

seen on Figure 2-9(d). Hence the volume scattering reduced since the microwave can 

penetrate the canopy more easily. Conversely, the percentage of the double bounce had 

been very low until day 248 because when the corn grew denser, it was very difficult for 

the microwave to penetrate the canopy to reach the corn stalks to induce double bounce 

through the stalk and ground interaction. However, on day 272, the double bounce 

increased due to the bounce of corn stalk and the ground. It should be noted that, being 

different from the soybean and wheat, the diameter of the corn stalk is about 2cm which 

cannot be considered as dipole since k𝑎 ≈ 1.14 with 𝑎 being the radius of the cylinder is 

greater than 1.  

 

Figure 2-12.  Surface, double bounce, and volume components of corn. 

2.5.2  Soybean Analysis 

The three components of soybean can be seen on Figure 2-13. At the beginning of its 

growth stage, the volume scattering of the soybean increased gradually until day 200. 

However, on day 224, the density was very high as can be seen on Figure 2-10(b).  

Because the wavelength of the C-band is very short (5.4 cm), so the surface scattering 
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increased. On day 248, the leaves became dry and brown as can be seen on Figure 2-

10(c), the microwave could penetrate the dry leaves more easily and interacted with the 

branches of the soybean resulting in very high volume scattering. It is mainly because the 

volume scattering model we construct in this chapter is based on the dipoles and the 

diameter of its branch is about 3mm with k𝑎 ≈ 0.17 less than 1 and can be considered as 

dipoles. At the end of September, on day 272, although soybeans were not yet harvested, 

they had lost all their leaves and the stems and pods were very dry and the diameter of the 

stem is also very small as can be seen on Figure 2-10(d), the microwave can penetrate 

them easily. There were also more soils exposed to the sensor, so the surface scattering 

was dominant. Unlike corns that have many double bounces, the stem diameter of the 

soybean is very small, only 3mm compared with the corn’s 2cm. 

 

Figure 2-13. Surface, double bounce, and volume components of soybean. 

2.5.3  Wheat Analysis 

The three components of wheat can be seen on Figure 2-14. From day 128 to 176, the 

wheat was in vegetative growth as can be seen on Figure 2-11(a) and 2-11(b), so the 

volume scattering was dominant. However, when the wheat was harvested before day 

200 (white arrow), the ground seemed to be flat since the stem diameter is only 1.5mm 

which is very small compared with the C band wavelength (5.4cm). Therefore, the 

surface scattering was dominant on day 200. After that, the volume scattering was still 
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increasing steadily, which was induced by the re-growth. At the end of September (on 

day 272), then the volunteer wheat started to die down as can be seen on Figure 2-11(d), 

and the surface scattering became dominant. 

 

Figure 2-14. Surface, double bounce, and volume components of wheat. 

2.6 Conclusion 

This chapter developed a simple adaptive volume scattering model (SAVSM) for 

RADARSAT-2 based on the 𝑛th power sine and cosine functions to characterize crop 

development over time. A three-component model-based decomposition with SAVSM 

(TCMD-SAVSM) is also implemented based on the NNED method in which the 

minimum remainder power matrix is used as a criterion to find the optimum 𝑛. Multi-

temporal RADARSAT-2 data were used to validate the SAVSM for crop monitoring. 

Compared with AMD, the TCMD-SAVSM consumes much less time and its surface and 

double-bounce scatterings are more consistent with reality. Even though AMD may have 

better results when very small increments are adopted, the time it consumes will be huge 

and unrealistic when the general configuration of computer is in use. Comparing the 

SAVSM with other volume scattering models, it is concluded that the SAVSM is highly 

suitable to describe the corn, wheat and soybean changes over time.  

Based on the analysis of the three components, it suggests that for corn, the volume 

scattering is always increasing while the surface scattering is always decreasing through 
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most part of the growth cycle. At the end of September, the double bounce increases 

prominently because the corn leaves become yellow and dry and the microwave can 

penetrate them more easily. In terms of soybean, it should be noted that the maximum 

percentage of volume scattering is not on day 200 or 224 when they were very dense; 

instead, it was on day 248 when their leaves became a little yellow. For wheat, because it 

was harvested before day 176, the dominant scattering was volume scattering from day 

128 to 176. After this date, the re-growth in the harvested wheat field also influenced the 

scattering in addition to the wheat stubbles. Overall, these analyses can help interpret the 

growth of crops.  In further work, the method will be introduced to crop classification and 

surface parameters retrieval.  
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Chapter 3  An Adaptive Two-Component Model-Based 
Decomposition on Soil Moisture Estimation* 

3.1 Introduction 

The growth, survival, and reproduction of crops are crucially dependent on their physical 

environment. To understand the various responses of crop development, tools are 

required both for the quantification of environmental conditions such as soil moisture, 

and for the study of crop biophysical parameters (Jones & Vaughan, 2010). Synthetic 

aperture radar (SAR) provides multidimensional information via multiple polarizations, 

which has been proved to be valuable due to its day-and-night capability as well as the 

capacity to penetrate the vegetative canopies (Oliver & Quegan, 2004). Polarimetric SAR 

(PolSAR). Such system has been frequently used for Earth terrain investigations, as the 

system’s range of polarizations allow for the exploration of different scattering 

mechanisms and various components of the scattering layers (van Zyl & Kim, 2011).  

To invert the soil moisture under vegetation cover over agricultural fields, the key 

problem is to separate the contributions of vegetation backscattering and vegetation-

covered soil moisture backscattering from the sensor observed backscattering (He et al., 

2014). The model-based decomposition proposed by Freeman and Durden (1998) offers 

an efficient way to separate the backscattering from different layers in agricultural fields 

and has been widely used to estimate soil moisture under vegetation cover. Hajnsek et al. 

(2009) first investigated the potential of surface parameter inversion under vegetation 

cover by comparing different model-based decompositions. Jagdhuber et al. (2013) 

investigated a multi-angular polarimetric decomposition to estimate soil moisture and 

                                                 

*
 2016. IEEE. Reprinted, with permission, from “Huang, Xiaodong, Wang, Jinfei, and 

Shang, Jiali (2016). An Adaptive Two-Component Model-Based Decompostion on Soil 

Moisture Estiamtion for C-Band RADARSAT-2 Imagery over Wheat Fields at Early 

Growing Stages, IEEE Geoscience and Remote Sensing Letters, 13(3), 414-418.” 
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obtained a very high inversion rate and low root mean square error (RMSE). 

Subsequently, a hybrid decomposition method combining model- and eigen-based 

decomposition was recently presented (Jagdhuber et al., 2014), and it also obtained a very 

high inversion rate. However, the validations of these methods are only limited to the L-

band fully polarimetric SAR data. Currently, although a two-component polarimetric 

decomposition model for sparse vineyards using C-band RADARSAT-2 data has been 

presented, no measured ground truth data have been used for validation (Ballester-

Berman et al., 2013). Additionally, the Bragg surface scattering model adopted by the 

authors is constructed based on the assumption that the ground is flat, but this assumption 

is only valid when the sensor frequency is low. This chapter further investigates the 

model-based decomposition for soil moisture estimation using the C-band RADARSAT-

2 data. An adaptive two-component decomposition method is developed that simulates 

the scattering process as the incoherent summation of two components, i.e., the surface 

scattering from the soil and the volume scattering from the crop canopy. This newly 

proposed method has two improvements over the existing methods. Firstly, the X-Bragg 

scattering model considering surface roughness is adopted based on the zero mean 

normal distribution. Secondly, an improved volume scattering model based on the 𝑛th 

power cosine and sine functions is adopted to describe the vegetation scattering. 

3.2 Coherency Matrix 

The Sinclair matrix of each pixel obtained from the mono-static PolSAR image is 

described as, 

 𝑆 = [
𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

] (3-1) 

Its four elements are representing four channels in different polarization composites. For 

example, 𝑆𝐻𝑉  represents transmitting the vertical polarization and receiving the 

horizontal polarization. If the reciprocity is satisfied, that is, 𝑆𝐻𝑉 = 𝑆𝑉𝐻, then the Pauli 

vector can be written as, 
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 𝑘 =
1

√2
[𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑆𝐻𝐻 − 𝑆𝑉𝑉 2𝑆𝐻𝑉]

𝑇 (3-2) 

where 𝑇 denotes transpose, and the coherency matrix is defined as, 

 𝑇 = 𝑘 ∙ 𝑘† = [

𝑇11 𝑇12 𝑇13
𝑇12
∗ 𝑇22 𝑇23
𝑇13
∗ 𝑇23

∗ 𝑇33

] (3-3) 

where †  denotes complex conjugation and transposition and ∗  denotes complex 

conjugation. Then the coherency matrix after multi-look average is shown as, 

 
1

2
[

|〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉|
2 〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉

∗ 2〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉〈𝑆𝐻𝑉〉
∗

〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉
∗ |〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉|

2 2〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉〈𝑆𝐻𝑉〉
∗

2〈𝑆𝐻𝑉〉〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉
∗ 2〈𝑆𝐻𝑉〉〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉

∗ 4|〈𝑆𝐻𝑉〉|
2

] (3-4) 

where 〈∙〉 denotes the ensemble average and |∙| denotes the module. Physically, |〈𝑆𝐻𝐻 +

𝑆𝑉𝑉〉|
2 represents the surface scattering induced by the ground, |〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉|

2 represents 

the double-bounce scattering induced by the ground and trunk interaction, and 4|〈𝑆𝐻𝑉〉|
2 

represents the volume scattering by vegetation canopy. 

3.3 Surface Scattering Model 

3.3.1  Bragg Scattering Model 

Flat and bare soil scattering areas can be characterized by the Bragg surface scattering, 

and their scattering matrix has the form, 

 𝑆 = [
𝑆𝐻𝐻 0
0 𝑆𝑉𝑉

] (3-5) 

where 𝑆𝐻𝐻  and 𝑆𝑉𝑉  are the Fresnel coefficients at horizontal and vertical polarization 

respectively, and are shown as, 

 𝑆𝐻𝐻 =
𝑐𝑜𝑠𝜃 − √휀𝑟 − 𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃
 (3-6) 
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𝑆𝑉𝑉 =
(휀𝑟 − 1)(𝑠𝑖𝑛

2𝜃 − 휀𝑟(1 + 𝑠𝑖𝑛
2𝜃))

(휀𝑟𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃)2
 

where 𝜃  is the local incidence angle and 휀𝑟  is the relative dielectric constant that is 

related to the soil moisture content. According to (3-2) and (3-3), the coherency matrix of 

the Bragg scattering model can be written as,  

 𝑇𝐵𝑟𝑎𝑔𝑔 = [
1 𝛽∗ 0

𝛽 |𝛽|2 0
0 0 0

] , 𝛽 =
𝑆𝐻𝐻 − 𝑆𝑉𝑉
𝑆𝐻𝐻 + 𝑆𝑉𝑉

 (3-7) 

where 𝛽 is the surface scattering coefficient and is real with −1 < 𝛽 ≤ 0. Based on this 

condition, the 𝛽 derived by all of the methods in this chapter is forced to be negative. 

Within different incidence angles, the relationship between 휀𝑟 and 𝛽 is depicted in Figure 

3-1, revealing that when the incidence angle is very low, even a small variation in 𝛽 will 

result in a large fluctuation of 휀𝑟 values. That is, as the incidence angle is decreasing, the 

relationship between 휀𝑟 and 𝛽 gradually reaches saturation.  

 

Figure 3-1. Relationship between 𝜺𝒓 and 𝜷. 
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3.3.2  Extended Bragg Surface Scattering 

The Bragg surface scattering is suitable for the characterization of flat and bare surfaces. 

However, in natural environments, most surfaces have some portion of rough terrain (Jin 

& Xu et al., 2013). Whether the surface appears rough or not also depends on the 

wavelength employed by the sensor (Woodhouse, 2006); as wavelength increases, the 

effects of surface roughness on backscatter diminish. However, for imagery retrieved 

using RADARSAT-2 that works in the C band (5.4 cm), the surface roughness cannot be 

ignored. Another way to construct the rough surface scattering model is to integrate the 

Bragg scattering model with respect to the azimuthal surface slope under a probability 

density function (PDF) (Hajnsek et al., 2003; Schuler et al., 2002), which is called the 

extended Bragg scattering model and can be defined as, 

 𝑇𝐵𝑟𝑎𝑔𝑔(𝜃) = 𝑅 ∙ 𝑇𝐵𝑟𝑎𝑔𝑔 ∙ 𝑅
𝑇 , 𝑅 = [

1 0 0
0 cos 2𝜃 sin 2𝜃
0 − sin 2𝜃 cos 2𝜃

] (3-8) 

Where 𝑅 is the rotation matrix and 𝜃 is the azimuthal surface slope induced by surface 

roughness. Expanding (3-8), we obtain  

 𝑇𝐵𝑟𝑎𝑔𝑔(𝜃) = [

1 𝛽∗ cos 2𝜃 −𝛽∗ sin 2𝜃

𝛽 cos 2𝜃 |𝛽|2 cos2 2𝜃 −|𝛽|2 sin 2𝜃 cos 2𝜃

−𝛽 sin 2𝜃 −|𝛽|2 sin 2𝜃 cos 2𝜃 |𝛽|2 sin2 2𝜃

] (3-9) 

To obtain the extended Bragg scattering model, the integration by a known PDF is 

required, and then the extended Bragg surface scattering model is obtained by, 

 𝑇𝐸−𝐵𝑟𝑎𝑔𝑔 = ∫𝑇𝐵𝑟𝑎𝑔𝑔(𝜃) ∙ 𝑝(𝜃) 𝑑𝜃 (3-10) 

where 𝑝(𝜃) is the probability density function (PDF) of azimuthal slope 𝜃. Generally, 

two different PDFs are adopted. One is the uniform distribution function introduced by 

Hajnsek et al. (2003), and is defined as, 
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 𝑝(𝜃) =
1

2𝜃
 (3-11) 

Where 𝜃 is from 0 to 
𝜋

2
. Substituting (3-9) and (3-11) to (3-10), we obtain, 

 

𝑇𝐸−𝐵𝑟𝑎𝑔𝑔 = ∫ 𝑇𝐵𝑟𝑎𝑔𝑔(𝜃) ∙ 𝑝(𝜃)𝑑
𝜃

−𝜃

𝜃

=

[
 
 
 
 

1 𝛽∗𝑠𝑖𝑛𝑐(2𝜃) 0

𝛽𝑠𝑖𝑛𝑐(2𝜃)
1

2
|𝛽|2(1 + 𝑠𝑖𝑛𝑐(4𝜃)) 0

0 0
1

2
|𝛽|2(1 − 𝑠𝑖𝑛𝑐(4𝜃))]

 
 
 
 

 

(3-12) 

Where 𝑠𝑖𝑛𝑐(2𝜃) is the 𝑠𝑖𝑛𝑐 function being defined as, 

 𝑦 = 𝑠𝑖𝑛𝑐(𝜃) =
sin 𝜃𝜋

𝜃𝜋
 (3-13) 

and is depicted in Figure 3-2, 

 

Figure 3-2.  𝒚 = 𝒔𝒊𝒏𝒄(𝟒𝜽). 
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The 𝑆𝑖𝑛𝑐 function shown in Figure 3-2 is actually a fluctuated function. It should be 

noted that when its value lies in the area between the two dashed lines (Figure 3-2), there 

are more than two 𝜃 values will be obtained when a known y value is given. The second 

PDF used by Schuler et al. (2002) is a zero mean normal distribution assuming that the 

mean height of the surface is zero, and can be defined as, 

 𝑝(𝜃) =
1

√2𝜋𝜎
𝑒
−
𝜃2

2𝜎2 (3-14) 

where 𝜎2 represents the surface height variance. Substituting (3-9) and (3-14) into (3-10), 

then,  

 

𝑇𝐸−𝐵𝑟𝑎𝑔𝑔 = ∫ 𝑇𝐵𝑟𝑎𝑔𝑔(𝜃)
+∞

−∞

∙ 𝑝(𝜃)𝑑𝜃

=

[
 
 
 
 1 𝛽∗𝑒−2𝜎

2
0

𝛽𝑒−2𝜎
2 1

2
|𝛽|2(1 + 𝑒−8𝜎

2
) 0

0 0
1

2
|𝛽|2(1 − 𝑒−8𝜎

2
)]
 
 
 
 

 
(3-15) 

and the function  𝑒−8𝜎
2
 is shown in Figure 3-3. 
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Figure 3-3. 𝒚 =  𝒆−𝟖𝝈
𝟐
. 

Compared with the 𝑆𝑖𝑛𝑐 function, the exponent function has no multi-value problem, and 

the 𝜎2 can describe the surface fluctuation. Therefore, this normal distribution function 

will be adopted in this chapter. 

3.4 Volume Scattering Model 

3.4.1  Volume Scattering Construction Framework 

Generally, volume scattering model is constructed by integrating the vertical or 

horizontal dipoles with respect to the orientation angle under a given PDF, which can be 

described as follows, 

 𝑇𝑉 = ∫ p(θ)𝑇(𝜃)dθ
b

a

 (3-16) 

Where p(θ) is the probability distribution function of the orientation angles of dipoles, 

and 𝑇(𝜃) is the coherency matrix rotated θ with respect to the line of sight (LOS), 𝑇𝑉 is 

the volume scattering model, 𝑎 and 𝑏 are the integration limits. The elementary Sinclair 

matrix employed for constructing the volume scattering model can be described as, 
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 𝑆 = [
S𝐻𝐻 0
0 S𝑉𝑉

] (3-17) 

When S𝐻𝐻 = 1, S𝑉𝑉 = 0 , it represents horizontal dipoles; while S𝐻𝐻 = 0, S𝑉𝑉 = 1 , it 

represents vertical dipoles; when S𝐻𝐻 = 1, S𝑉𝑉 = 1, it represents the sphere or thin flat 

plate. After rotation with respect to the LOS with angle θ, the scattering matrix can be 

described as, 

 𝑆(θ) = [
cosθ sinθ
−sinθ cosθ

] [
S𝐻𝐻 0
0 S𝑉𝑉

] [
cosθ −sinθ
sinθ cosθ

] (3-18) 

Then, the Pauli vector can be described as, 

 𝑘 =
1

√2
[S𝐻𝐻 + S𝑉𝑉 cos 2𝜃(S𝐻𝐻 − S𝑉𝑉) −sin2θ(S𝐻𝐻−S𝑉𝑉)]

𝑇 (3-19) 

Substituting (3-19) to (3-3), the coherency matrix (𝑇(𝜃)) after rotation with respect to the 

orientation angle is shown as, 

 
1

2

[
 
 
 
 

|S𝐻𝐻 + S𝑉𝑉|
2 cos 2𝜃(S𝐻𝐻 + S𝑉𝑉)(S𝐻𝐻−S𝑉𝑉)

∗ −sin 2𝜃(S𝐻𝐻 + S𝑉𝑉)(S𝐻𝐻−S𝑉𝑉)
∗

cos 2𝜃(S𝐻𝐻 − S𝑉𝑉)(S𝐻𝐻+S𝑉𝑉)
∗ cos2 2𝜃 |S𝐻𝐻 − S𝑉𝑉|

2 −
1

2
sin4θ|S𝐻𝐻 − S𝑉𝑉|

2

−sin2𝜃(S𝐻𝐻 − S𝑉𝑉)(S𝐻𝐻+S𝑉𝑉)
∗ −

1

2
sin4θ|S𝐻𝐻 − S𝑉𝑉|

2 sin2 2𝜃 |S𝐻𝐻 − S𝑉𝑉|
2

]
 
 
 
 

 (3-20) 

3.4.2  Probability Distribution Function 

If the horizontal dipoles are adopted, that is, S𝐻𝐻 = 1, S𝑉𝑉 = 0, then, (3-20) is written as, 

 𝑇(𝜃) =
1

2

[
 
 
 
 

1 cos 2𝜃 − sin 2𝜃

cos 2𝜃 cos2 2𝜃 −
1

2
sin4θ

− sin 2𝜃 −
1

2
sin4θ sin2 2𝜃 ]

 
 
 
 

 (3-21) 

According to (3-16), to construct suitable volume scattering models, the probability 

density function must be determined. Freeman and Durden (1998) first assumed that the 

orientation angles of dipoles satisfy the uniform distribution, which can be seen as, 
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 𝑝(𝜃) =
1

2𝜋
 (3-22) 

where 0 ≤ 𝜃 ≤ 2𝜋, substituting (3-21) and (3-22) to (3-16), then we obtain, 

 𝑇𝐹𝑟𝑒𝑒𝑚𝑎𝑛 = ∫
1

2𝜋
T(𝜃)𝑑θ =

2𝜋

0

1

4
[
2 0 0
0 1 0
0 0 1

] (3-23) 

However, Yamaguchi et al. (2005) found that most of the orientation angles of dipoles 

are either vertical or horizontal, thus, the vertical and horizontal volume scattering 

models based on the sine function are proposed, and the PDF is shown as, 

 𝑝(𝜃) =
sinθ

2
 (3-24) 

Substituting (3-21) and (3-24) to (3-16), the vertical and horizontal volume scattering 

models can be described as 

 

𝑇𝑌𝑎𝑚𝑎𝑔𝑢𝑐ℎ𝑖
𝐻 = ∫

sinθ

2
T(𝜃)𝑑θ =

𝜋

0

1

30
[
15 5 0
5 7 0
0 0 8

] 

𝑇𝑌𝑎𝑚𝑎𝑔𝑢𝑐ℎ𝑖
𝑉 = ∫

cosθ

2
T(𝜃)𝑑θ =

𝜋

0

1

30
[
15 −5 0
−5 7 0
0 0 8

] 

(3-25) 

These two models in (3-25) are currently in widespread usage (Yamaguchi et al., 2011; 

Sato et al., 2012; Shan et al., 2012). 

3.4.3  Adaptive Volume Scattering Model 

As crop phenology changes over the course of the growing season, it is very difficult to 

describe crops using only one volume scattering model. Additionally, Yamaguchi et al. 

(2005) figured out that there are many vertical and horizontal dipoles scatterings in L 

band besides the random volume scattering, and then they proposed the vertical and 

horizontal volume scattering models based on a first order sine function. However, the 
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first order function is only one type of vertical or horizontal dipoles, which cannot 

describe all the vertical or horizontal orientations completely. Furthermore, the shorter C-

band senses a mean orientation closer to the vertical direction (Arii et al., 2011); as a 

result, most of the orientation angles of vegetation including crops are closed to 90 

degrees for C-band wavelength imagery. Based on these two conditions, two new 

probability density functions proposed by Huang and Wang (2014) are adopted in this 

chapter, which can be shown as, 

 

𝑝(𝜃) =
𝑠𝑖𝑛𝑛𝜃

∫ 𝑠𝑖𝑛𝑛𝜃𝑑𝜃
𝜋

0

 

𝑝(𝜃) =
𝑐𝑜𝑠𝑛𝜃

∫ 𝑐𝑜𝑠𝑛𝜃𝑑𝜃
𝜋
2

−
𝜋
2

 

(3-26) 

According to (3-16), their volume Scattering models are constructed by (3-27) 

respectively, 

 

𝑇𝑉
𝑉 = ∫ 𝑝(𝜃)

𝜋

0

𝑇(𝜃)𝑑𝜃 

𝑇𝑉
𝐻 = ∫ 𝑝(𝜃)

𝜋
2

−
𝜋
2

𝑇(𝜃)𝑑𝜃 

(3-27) 

Substituting (3-21) and (3-26) to (3-27), these two volume scattering models are shown 

as, 

 

𝑇𝑉
𝑉 =

1

𝐴
[

𝑇𝑉
11 𝑇𝑉

12 0

𝑇𝑉
12 𝑇𝑉

22 0

0 0 𝑇𝑉
33

]  

𝑇𝑉
𝐻 =

1

𝐴
[

𝑇𝐻
11 𝑇𝐻

12 0

𝑇𝐻
12 𝑇𝐻

22 0

0 0 𝑇𝐻
33

] 

(3-28) 



 

 

 

73 

where 

𝑇𝐻
11 = 𝑇𝑉

11 =
√𝜋Γ (

𝑛 + 1
2 )

2Γ (
𝑛
2 + 1)

, 𝑇𝐻
12 = −𝑇𝑉

12 =
𝑛√𝜋Γ (

𝑛 + 1
2 )

4Γ (
𝑛
2 + 2)

 

𝑇𝐻
22 = 𝑇𝑉

22 =
(𝑛2 + 2𝑛 + 4)√𝜋Γ (

𝑛 + 1
2 )

8Γ (
𝑛
2 + 3)

, 𝑇𝐻
33 = 𝑇𝑉

33 =
√𝜋Γ (

𝑛 + 3
2 )

Γ (
𝑛
2 + 3)

 

Where 𝐴 = ∫ 𝑠𝑖𝑛𝑛𝜃𝑑𝜃
𝜋

0
= ∫ 𝑐𝑜𝑠𝑛𝜃𝑑𝜃

𝜋

2

−
𝜋

2

=
√𝜋Γ(

𝑛+1

2
)

Γ(
𝑛

2
+1)

 and Γ(𝑎) = ∫ 𝑒−𝑡𝑡𝑎−1𝑑t
∞

0
 

It should be noted that 𝑛 is real and not limited to integer. Without the loss of generality, 

four components of horizontal volume scattering models are depicted in Figure 3-4, 

 

Figure 3-4. Vertical volume scattering components.  

Figure 3-4 depicts that 𝑇11   stays stable all the time with a value of 0.5. When 𝑛  is 

increasing, 𝑇22 decreases first and later increases at the point between 0.5 and 1. While 

𝑇33  is opposite compared with 𝑇22,  𝑇12 always increases when 𝑛 increases. It should be 

noted that when 𝑛 is equal to 0, it is Freeman volume scattering model (equation (3-23)). 

While 𝑛 is equal to 1, it becomes Yamaguchi volume scattering model (equation (3-25)), 
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which is the dash line shown in Figure 3-4. The comparisons of the adaptive volume 

scattering and the Freeman and Yamaguchi models are shown in Table 3-1. 

Table 3-1. Comparison with other volume scattering models. 

𝑛 V-AVSM H-AVSM Reference 

0 [
0.500 0 0
0 0.250 0
0 0 0.250

] [
0.500 0 0
0 0.250 0
0 0 0.250

] 
Freeman & 

Durden (1998) 

1 [
0.500 −0.167 0
−0.167 0.233 0
0 0 0.267

] [
0.500 0.167 0
0.167 0.233 0
0 0 0.267

] 
Yamaguchi et 

al. (2005) 

Figure 3-4 and Table 3-1 show that the adaptive volume scattering model not only 

include Yamaguchi and Freeman volume scattering models, but also vary with 𝑛 

continuously. To demonstrate further, the RADAR vegetation index (RVI) (Kim & van 

Zyl, 2001) and scattering entropy (Cloude & Pottier, 1997) are calculated separately, 

which are shown as, 

 

𝑅𝑉𝐼 =
4𝑚𝑖𝑛(𝜆1, 𝜆2, 𝜆3)

𝜆1 + 𝜆2 + 𝜆3
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑𝑝𝑖𝑙𝑜𝑔3

3

𝑖=1

(𝑝𝑖), 𝑝𝑖 =
𝜆𝑖

𝜆1 + 𝜆2 + 𝜆3
 

(3-29) 

where  𝜆1, 𝜆2 and 𝜆3 are the eigenvalues of the adaptive volume scattering models, their 

curves are shown in Figure 3-5, 
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Figure 3-5. RVI and Entropy.  

Figure 3-5 depicts that both entropy and RVI decrease as 𝑛 increases, this is because as 𝑛 

increases, the adaptive volume scattering is becoming a more “pure” vertical or 

horizontal scattering, especially when 𝑛 is close to infinite, it is becoming vertical or 

horizontal volume scattering. RVI has a steeper decrease than entropy does. Considering 

this, we can use this feature to limit the maximum range of 𝑛, thereby accelerating the 

process to find the optimum 𝑛 in practice. It can be seen that the RVI is very low and 

stays almost unchangeable at the point where 𝑛 = 20, Therefore, the maximum 𝑛 we 

adopt in this chapter is 20. 

3.5 Adaptive Two-Component Decomposition 

3.5.1  Two-Component Decomposition 

The reflection symmetry hypothesis, assuming that the objects are symmetric with 

respect to a line within the plane being vertical to the LOS, which is valid for agricultural 

surfaces, allows the derivation from the coherency matrix of the analytical expressions of 

the polarimetric parameters. In this case, the correlation between the co- and cross-

polarized channels is assumed to be zero (Ainsworth et al., 2008). Therefore, the 

coherency matrix satisfying the reflection symmetry can be described as,   
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 𝑇 = [

𝑇11 𝑇12 0
𝑇12
∗ 𝑇22 0
0 0 𝑇33

] (3-30) 

The following volume scattering model is used to represent the adaptive volume 

scattering in this chapter, which can be shown as 

 𝑇𝑉 = [

𝑇𝑉
11 𝑇𝑉

12 0

𝑇𝑉
12∗ 𝑇𝑉

22 0

0 0 𝑇𝑉
33

] (3-31) 

Then, the two-component decomposition we proposed in this chapter is described as, 

 𝑇 = 𝑓𝐺𝑇𝐺 + 𝑓𝑉𝑇𝑉 (3-32) 

where 𝑓𝐺  and 𝑓𝑉 are the coefficients of ground and volume scattering, 𝑇𝐺 is the extended 

surface scattering model based on the normal distribution function while 𝑇𝑉  is the 

adaptive volume scattering model (3-28) proposed in this chapter. Substituting (3-15) and 

(3-31) to (3-32), we obtain,  

 

{
  
 

  
 
𝑇11 = 𝑓𝐺 + 𝑓𝑉𝑇𝑉

11

𝑇12 = 𝑓𝐺𝛽
∗𝑒−2𝜎

2
+ 𝑓𝑉𝑇𝑉

12

𝑇22 =
1

2
𝑓𝐺|𝛽|

2(1 + 𝑒−8𝜎
2
) + 𝑓𝑉𝑇𝑉

22

𝑇33 =
1

2
𝑓𝐺|𝛽|

2(1 − 𝑒−8𝜎
2
) + 𝑓𝑉𝑇𝑉

33

 (3-33) 

The resolutions to solve this equation are discussed in the next two sections. 

3.5.2  Non-negative Eigenvalue Method for 𝑓𝑣 

To calculate 𝑓𝑉, the non-negative eigenvalue decomposition (NNED) method introduced 

by van Zyl et al. (2011) based on the energy conservation law is adopted in this chapter.  

We set 𝑎 as the unknown variable and compute the eigenvalues of 𝑇𝑟𝑒𝑚𝑎𝑖𝑑𝑒𝑟, which can 

be seen in (3-34), and its three eigenvalues are shown in (3-35). Setting each eigenvalue 
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zero, three 𝑎 are obtained, the 𝑓𝑉 we adopt is the minimum 𝑎 among them. The remainder 

coherency matrix after the volume scattering model is subtracted is shown as, 

 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑇 − 𝑎𝑇𝑉 (3-34) 

Its three eigenvalues are shown as, 

 

𝜆1 = 𝑇33 − 𝑎𝑇𝑉
33 

𝜆2 =
𝑇11 + 𝑇22 − 𝑎𝑇𝑉

11 − 𝑎𝑇𝑉
22 − √∇

2
 

𝜆3 =
𝑇11 + 𝑇22 − 𝑎𝑇𝑉

11 − 𝑎𝑇𝑉
22 + √∇

2
 

(3-35) 

where  

∇=
4|𝑇12|

2 − 2𝑇11𝑇22 + 𝑇11
2 + 𝑇22

2 + (𝑎𝑇𝑉
11)2 + (𝑎𝑇𝑉

22)2 + 4|𝑇𝑉
12|2𝑎2 − 2𝑇11𝑇𝑉

11𝑎 +

2𝑇11𝑇𝑉
22𝑎 + 2𝑇22𝑇𝑉

11𝑎 − 22𝑇22𝑇𝑉
22𝑎 − 2𝑇𝑉

11𝑇𝑉
22𝑎2 − 4𝑎𝑇12𝑇𝑉

12∗ − 4𝑇𝑉
12𝑇12

∗ 𝑎
 

It can be seen from (3-35) that 𝜆2 ≤ 𝜆3, so we can only compare 𝜆1 and 𝜆2, setting 

𝜆1 = 0 and 𝜆2 = 0, we obtain, 

 

{
 
 

 
 𝑎1 =

𝑇33

𝑇𝑉
33

𝑎2 =
𝑍 − √𝑍2 − 4(𝑇11𝑇22 − |𝑇12|2)(𝑇𝑉

11𝑇𝑉
22 − |𝑇𝑉

12|2)

2(𝑇𝑉
11𝑇𝑉

22 − |𝑇𝑉
12|2)

 (3-36) 

Where 𝑍 = 𝑇11𝑇𝑉
22 + 𝑇22𝑇𝑉

11 − 𝑇12𝑇𝑉
12∗ − 𝑇12

∗ 𝑇𝑉
12 , and then 𝑓𝑉  and its power 𝑃𝑉  are 

shown as, 

 

𝑓𝑉 = 𝑚𝑖𝑛(𝑎1, 𝑎2) 

𝑃𝑉 = 𝑓𝑉 ∙ (𝑇𝑉
11 + 𝑇𝑉

22 + 𝑇𝑉
33) 

(3-37) 
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3.5.3  Adaptive Decomposition for Optimal Solution 

From (3-34), with each 𝑛 , 𝑓𝑉  can be obtained based on the NNED. Subtracting the 

volume scattering contribution, equation (3-33) is re-written as, 

 

{
  
 

  
 
𝐵 = 𝑇11 − 𝑓𝑉𝑇𝑉

11 = 𝑓𝐺

𝐶 = 𝑇12 − 𝑓𝑉𝑇𝑉
12 = 𝑓𝐺𝛽

∗𝑒−2𝜎
2

𝐷 = 𝑇22 − 𝑓𝑉𝑇𝑉
22 =

1

2
𝑓𝐺|𝛽|

2(1 + 𝑒−8𝜎
2
)

𝐸 = 𝑇33 − 𝑓𝑉𝑇𝑉
33 =

1

2
𝑓𝐺|𝛽|

2(1 − 𝑒−8𝜎
2
)

 (3-38) 

where  𝐵, 𝐶, 𝐷 and 𝐸 are  temporary variables, and then we can obtain, 

 𝑒−8𝜎
2
=
𝐷 + 𝐸

𝐷 − 𝐸
 (3-39) 

then,  

 𝜎2 = − ln (
𝐷 + 𝐸

𝐷 − 𝐸
) 8⁄  (3-40) 

then,  

 

𝑓𝐺 = 𝐵 

𝛽∗ = 𝐶 (𝐵 ∙ 𝑒−2𝜎
2
)⁄  

𝑃𝐺 = 𝑓𝐺 ∙ (1 + |𝛽|
2) 

(3-41) 

However, there are four equations, only three parameters are unknown in equation (3-38). 

In order to achieve the optimal solution, the criterion that minimizes the power of 

𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 is adopted with varying 𝑛. Finally, four parameters 𝛽 𝑃𝐺 𝑃𝑉 𝑎𝑛𝑑 𝑛 are 

determined when the power of 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 is minimum, and can be described as, 

 {𝛽, 𝑃𝐺 , 𝑃𝑉 , 𝑛} = 𝑚𝑖𝑛{𝑆𝑝𝑎𝑛(𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)} (3-42) 
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It should be noted that there are two volume scattering models: vertical and horizontal 

models. In contrast with Yamaguchi et al. (2005) usage of the criterion (3-43) to decide 

which volume scattering model is the better one to be adopted, the authors determined the 

volume scattering model to be used in this chapter depending on which one could 

minimize the power of 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. 

 𝑃𝑟 = 10 ∙ 𝑙𝑜𝑔
〈|𝑆𝑉𝑉|

2〉

〈|𝑆𝐻𝐻|2〉
 (3-43) 

3.6 Soil Moisture Estimation 

Although the soil parameter 𝛽 is determined following the steps discussed above, it is 

still difficult to retrieve the relative dielectric constant 휀𝑟  directly, due to its complex 

function relationships (equation (3-6) and (3-7)). In order to accelerate the calculation of 

휀𝑟 in practice, the look-up table between 𝛽 and 휀𝑟 is constructed with the step of 휀𝑟 0.01. 

To retrieve soil moisture from 휀𝑟, an empirical model relating the volume soil moisture 

(𝑚𝑣) to relative dielectric constant (휀𝑟) is adopted, which is suitable to describe mineral 

soil (Topp et al., 1980) can be shown as, 

 𝑚𝑣𝑀 = −0.053 + 2.92𝑒−2휀𝑟 − 5.5𝑒
−4휀𝑟

2 + 4.3𝑒−6휀𝑟
3 (3-44) 

Where the 𝑚𝑣𝑀 is the volumetric soil moisture of mineral soil.  
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Figure 3-6. Relationship between soil moisture and relative dielectric constant. 

Overall, the flowchart of soil moisture estimation based on the adaptive two-component 

decomposition (ATCD) can be shown in Figure 3-7, 
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Figure 3-7. Flowchart of soil moisture estimation using the ATCD. 
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3.7 Experiments 

3.7.1  Dataset, Ground Truth Measurement and Data 
Process 

Figure 3-8 depicts the fully polarimetric RADARSAT-2 Pauli image acquired on May 

9
th

, 2013 and May 6
th

, 2015. Both study areas (study area 2013 and study area 2015) are 

located in Southwestern Ontario, Canada, as observed in the blue and red points on Fig 

3.8. Forests causing higher backscattering are shown in colour green, and agricultural 

fields with low backscattering are in colour blue. Up to the end of May, the winter wheat 

field was covered by sparse wheat with the height ranging from 5 to 25 cm.  Concurrent 

with the RADARSAT-2 acquisitions, soil moisture measurements were taken in six 

wheat fields during the period from late April to late May. The measured soil moistures 

in both study areas cover a wide range, from 15 to 50 [vol. %] in study area 2013 and 5 

[vol. %] to 30 [vol. %] in study area 2015. The soil moisture was measured using a TDR 

probe with its principle defined in Appendix E over the top 5 cm of the soil. For each 

sample site, the soil moisture was measured within a 10 m-by-10 m rectangle, with 6 

points distributed evenly, and the soil moisture of each sample site is the averaged from 

the 6 points. Five RADARSAT-2 images with different beam modes were used for 

validation in this chapter, as shown in Table 3-2.   
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Figure 3-8. Location of the study area and Pauli images acquired on May 9
th

 2013 and 

May 6
th

 2015, with red |𝑺𝑯𝑯 − 𝑺𝑽𝑽|
𝟐, green 𝟒|𝑺𝑯𝑽|

𝟐 and blue |𝑺𝑯𝑯 + 𝑺𝑽𝑽|
𝟐 . 

Table 3-2. RADARSAT-2 datasets. IA: Incidence Angle. DoY: Day of Year. 

3.7.2  Scattering Mechanism Analysis 

To analyze the scattering over wheat fields, in addition to the wheat fields in study area 

2013, the field with bare soils was also selected for scattering analysis. The H-𝛼 

decomposition (Cloude & Pottier, 1997) was adopted. Figure 3-9 depicts that more and 

more pixels in the wheat fields are dominated by volume scattering as time changes with 

Date DoY Orbit Look Direction Beam IA 

20130429 119 Ascending Right FQ09 29° 

20130509 129 Ascending Right FQ19 39° 

20130523 143 Ascending Right FQ09 29° 

20150506 126 Ascending Right FQ10 30° 

20150520 140 Ascending Right FQ01 20° 
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their entropy increasing. This is because as wheat grows taller and denser, the scattering 

is primarily caused by the wheat canopy; when the wheat is short and sparse, its 

scattering is dominated by the underlying soils. In the bare soil fields, the dominant 

scattering is the surface scattering over three dates. However, in the bare soil field, some 

of their scattering lies in the low entropy zone (Z9), which is mainly Bragg scattering 

from the flat bare soils. For those pixels in the medium entropy zone (Z6), their scattering 

is primarily caused by the surface roughness, suggesting that the roughness effects should 

not be ignored for C-band RADARSAT-2 data. In addition, to demonstrate the statistical 

distribution of the orientation angle induced by the azimuthal slope, the histograms of the 

orientation angle over the same bare soil fields on day 129 and 149 are calculated and 

shown in Figure 3-10. As these fields were plowed and flattened before the crop planting 

between day 129 and 143, the mean value of the orientation angle changes from 0.7 

degrees to 0.2 degrees, which is very close to 0 degree. Hence, it is likely that the zero 

mean normal distribution assumption adopted in this chapter is suitable to describe the 

distribution of orientation angles. Overall, we can conclude that the dominant scattering 

in wheat field is comprised of surface and volume scattering at the early growing stages, 

and the orientation angle satisfies the zero mean normal distribution, demonstrating the 

feasibility of our model proposed in this chapter. 

 

 (a) 
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 (b) 

Figure 3-9. Plots of H- 𝛼 decomposition on wheat and bare soil fields on three different 

dates in study area 2013; from left to right, they are day 119, 129, 143, 

respectively. (a) Wheat field. (b) Bare soil field. 

   
           (a)                                                            (b)  

Figure 3-10. Histograms of orientation angles over bare soils in study area 2013. (a) day 

129 (b) day 143. 

3.7.3  Qualitative Analysis 

To verify the application of model-based decomposition methods on soil moisture 

estimation for C-band RADARSAT-2 data and to validate the ATCD, the four other 

methods are compared: 1. The ATCD method using the FVSM (A-FVSM); 2. The ATCD 

method using the YVSM (A-YVSM); 3. Freeman decomposition (FD); and 4. 

Yamaguchi decomposition (YD). The soil moisture values derived from these four 

methods and the ATCD are shown in Figure 3-11. In areas where the soil moisture 

derived from other four methods was less than 10 [vol. %], the image is colored purple. 

However, this evaluation is not consistent with the observed field conditions because 
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there was rain on day 119 and 143, with a recorded precipitation of approximately 10 mm 

within 24 hours. However, the soil moisture derived from the A-YVSM has a higher 

quality compared with the A-FVSM because the cyan that emerged with the soil moisture 

greater than 10 [vol. %]. This difference can perhaps be explained by the fact that the 

Yamaguchi volume scattering model contains both vertical and horizontal volume 

scattering models in addition to the random volume scattering model. In contrast, the A-

FVSM only used the random scattering model. In terms of the soil moisture derived from 

the FD and the YD, most areas are still covered by purple, indicating a soil moisture 

content between 0 [vol. %] and 10 [vol. %]. Compared with the soil moisture derived 

using these four methods, the soil moisture derived from the ATCD looks much better 

because much cyan and green emerged. In these regions, the soil moisture value was 

between 10 [vol. %] and 40 [vol. %]. It can be noted that the soil moisture values obtained 

on day 129 were lower than those on days 119 and 143 because no rain fell on day 129; 

as such, the imagery results correspond better with the observed field conditions.  

In addition to study area 2013, the ATCD is also performed on study area 2015 with their 

decomposed components shown in Figure 3-12. We can see that these agricultural fields 

have the dominant surface scattering while the forest area is dominated by volume 

scattering. The randomness was also derived by 𝑛 in our volume scattering model based 

on the relationship proposed by Arii et al. (2011). Agricultural fields dominated by 

surface scattering will have low randomness, while the volume scattering caused in the 

forest areas tends to lead to a very high randomness. This is consistent with the 

decomposed components shown in Figure 3-12, in which the randomness has much lower 

value in agricultural fields with blue colour than that in forest areas with red colour. 

Furthermore, as wheat grows denser from day 126 to 140, the scattering caused by the 

denser wheat canopy makes the increase of scattering randomness with more red colour 

emerging, which can be seen from Figure 3-12. Same with study area 2013, soil moisture 

was not inverted over the forest area due to the short wavelength of the C-band with 

limited penetration. However, the soil moisture over some agricultural fields in study area 

2013 on day 119 is also not inverted, which perhaps is due to the multiple scattering 
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caused by the crop residues (McNairn et al., 2002), which will cause a complicated 

scattering leading to a difficult soil moisture inversion. 

 

 

      
(a) 

      
(b) 

      
(c) 

 

Figure 3-11. Comparison of different soil moisture estimation methods on three different 

dates in study area 2013; from left to right, they are the soil moisture 

derived from the A-FVSM, A-YVSM, FD, YD and ATCD. (a) day 119. (b) 

day 129. (c) day 143. 
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(a) 

 

(b) 

Figure 3-12. Decomposed components and inversed soil moisture from ATCD on 

different dates in study area 2015; from left to right they are surface 

scattering, volume scattering, randomness, and estimated soil moisture 

with black areas not inverted. (a) day 126. (b) day 140. 

3.7.4  Quantitative Analysis  

To validate the retrieved results quantitatively, the ground truth data collected from the 

wheat fields are compared for these two study areas using the RMSE. To calculate the 

soil moisture of the sample site, these points within a 5-by-5 window size around the 

sample site are averaged. Pixels that are not inverted are ignored and are not plotted. 

Figure 3-13 (a) and Table 3-3 show that the RMSE of the soil moisture according to the 

ATCD on day 119 is approximately 8.58 [vol. %] compared with the ground reference 

data records, whereas the soil moisture derived by other methods has a severe 

underestimation (most of them are under 10 [vol. %]); all of the other methods also 

exhibit much higher RMSEs of approximately 30 [vol. %]. On day 129, no precipitation 

occurred, and the soil is not wet according to observed field conditions; thus, the soil 

moisture values were lower than those on day 119, with the measured values less than 

25%. The soil moisture derived on day 129 from the ATCD is well correlated with the 

measured reference data, with an RMSE of 1.51 [vol. %], whereas the RMSE of the other 

methods is much higher, with a value of approximately 15 [vol. %]. On day 143, the soil 

moisture derived from the ATCD presents a fluctuation when the soil moisture is greater 

Day 126 

Day 140 

Surface Volume Randomness Soil Moisture 
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than 27 [vol. %], with an RMSE of 14.95 [vol. %]. The soil moistures derived from other 

methods are all less than 10 [vol. %] on either day 129 or 143, which appears to be a 

severe underestimation with a very high RMSE of approximately 30 [vol. %]. For study 

area 2015, the measured soil moisture is less than 25 [vol. %]. The soil moisture derived 

by ATCD has much lower RMSE approximately at 5.5 [vol. %] compared with other 

methods with their RMSE greater than 15 [vol. %], which can be seen from Figure 3-

13(b) and Table 3-3. Being the same as day 126, the soil moisture derived on day 140 

using the ATCD also has the lowest RMSE with its value of 6.20 [vol. %], while other 

methods have much higher RMSE. Overall, the ATCD has the lowest overall RMSE of 

7.12 [vol. %] while the other methods all have the RMSE of over 20 [vol. %] when all 

sample sites are considered. Finally, to perform the uncertainty analysis of the ATCD, the 

soil moisture over bare soil is also estimated by the ATCD with a RMSE of 3.77 [vol. %], 

which is shown in Figure 3-13(c). Compared with the wheat fields, the overall RMSE of 

bare soil is less than that of wheat fields. In addition, we also observed from Table 3-3 

that, in study area 2015, as wheat grows, the RMSE increases. From this perspective, we 

could perhaps conclude that the major uncertainty error comes from the volume 

scattering model, which is reasonable because the volume scattering caused by the wheat 

is much complex in reality. Being different from the complicated physical models, other 

researchers made use of a simple coherency matrix to represent the volume scattering, 

which is not adequate. This is also the reason why we attempt to improve the volume 

scattering model in this chapter. Although it is not perfect, it does improve the accuracy 

of the retrieved soil moisture significantly compared with the other model-based 

decomposition methods. 
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                                         (a)                                                             (b)                                  

 
 (c) 

Figure 3-13. Comparison of the estimated soil moisture by different methods in two study 

areas, different geometric shapes represent different methods. (a) Wheat 

fields in study area 2013 with the red is on day 119, the green is on day 129, 

and the blue is on day143. (b) Wheat fields in study area 2015 with the red is 

on day 126, and the blue is on day 140. (c) Bare soil fields. 

Table 3-3. RMSE of different methods in wheat fields on different dates in two study 

areas (unit: [vol. %]). 

Methods 
DoY of 2013 DoY of 2015 Overall 

RMSE 119 129 143 126 140 

A-FVSM 32.01 15.84 29.72 18.1 13.58 19.27 

A-YVSM 31.91 17.73 29.72 17.6 13.17 19.15 

FD 29.26 12.03 28.68 18.9 13.08 18.48 

YD  30.71 16.00 28.68 18.9 12.80 18.90 

ATCD 8.58 1.51 14.95 5.50 6.20 7.12 
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It should also be noted from Table 3-3 that on day 143 in 2013, its RMSE is very high at 

15 [vol. %]. This is perhaps because the measured soil moisture is greater than 30 [vol. %] 

on this day with its corresponding 휀𝑟 around 17, hence, the relationship between 휀𝑟 and 𝛽 

reaches saturation as its incidence angle is around 30 degrees, which can be seen in 

Figure 3-1. An interesting phenomenon is observed on day 119 that it has the same 

incidence angle as that on day 143, but its RMSE is only 8.59 [vol. %] around half of that 

on day 143. This is perhaps because the measured soil moisture both are greater than 30 

[vol. %], which makes the estimated soil moisture biased and causes an unreliable RMSE. 

3.8 Conclusion 

Due to the limited penetration capacity of the short wavelength C-band RADARSAT-2, 

the soil moisture is estimated only at the early crop growing stages with short and sparse 

crops. Model-based decomposition methods were discussed on C-band RADARSAT-2 

data for soil moisture estimation under crop cover, and an adaptive two-component 

decomposition (ATCD) method was developed in this chapter. The existing methods, 

such as the Freeman and Yamaguchi decompositions, suffer from severe underestimation 

and with a very large RMSE. Therefore, the direct application of the Freeman or 

Yamaguchi decomposition for soil moisture retrieval for C-band will lead to very poor 

results with the overall RMSE of around 19 [vol. %]. In contrast, the soil moisture derived 

by the ATCD is more consistent with the observed ground measurements with an overall 

RMSE of around 7 [vol. %] in wheat fields at early growing stages. However, the 

estimated soil moisture is perhaps biased when the soil moisture is greater than 30 [vol. 

%], especially when the incidence angle is low.  
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Chapter 4  An Integrated Surface Parameter Inversion 
Scheme over Agricultural Fields* 

4.1 Introduction 

Soil moisture is a key parameter in hydrological modeling, and surface roughness plays 

an important role in determining how a real object will interact with its environment. 

Synthetic Aperture RADAR (SAR), with its longer wavelength compared with the optical 

sensors, has the potential to retrieve surface parameters due to its increased penetration 

into the vegetation canopy and sensitivity to the soil dielectric constant and surface 

roughness (Woodhouse, 2006). Fully polarimetric SAR (PolSAR) has four polarization 

compositions and offers more observations than a single polarization SAR, which can 

assist in investigating the scattering mechanism in agricultural fields and in developing 

more robust methods for surface parameter retrieval (Cloude, 2010). Algorithms using 

PolSAR to retrieve surface parameters are primarily divided into two categories, 

depending on whether they are applied to bare soil or fields under vegetation cover.  

To retrieve surface parameters of bare soil, the co-polarization ratio reaches saturation 

when soil surface roughness value is high, thus simplifying soil moisture estimation (Oh 

et al., 1992; Oh, 2004). Similarly, the depolarization ratio has been found very sensitive 

to soil surface roughness (Ulaby et al., 1981). Sensitivity analyses of these ratios with 

respect to the soil (roughness and moisture) and sensor (frequency, incidence angle and 

polarization) have led to the development of the well-known semi-empirical 

backscattering models for bare soil (Oh et al., 1992; Dubois et al., 1995). Although these 

semi-empirical scattering models relate the backscattering coefficients to the soil 

moisture contents, it is difficult to use these relationships for radar signal inversion 

without the time-consuming calibration measurements (Park et al., 2009). The physical 

                                                 

*
 2016. IEEE. Reprinted, with permission, from “Huang, Xiaodong, Wang, Jinfei, and 

Shang, Jiali (2016). An Integrated Surface Parameter Inversion Scheme over Agricultural 

Fields at Early Growing Stages by Means of C-Band Polarimetric RADARSAT-2 

Imagery, IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2510-2528.” 
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models derived from the electromagnetic scattering theory can overcome this issue. The 

simplest method used to determine the soil scattering concentrates on the reflection, 

which is directly solved as the Fresnel reflection coefficient (Jin & Xu, 2013). However, 

in natural environments, most surfaces are random rough surfaces. Taking into account 

the surface roughness, the small-perturbation method (SPM) (Rice, 1963) is valid only 

when the roughness is very small compared with the sensor wavelength. To deal with soil 

conditions with high roughness, Hajnsek et al. (2003) developed a X-Bragg surface 

scattering model based on the SPM, but the low inversion rate is still a problem. The 

integral equation method (IEM) proposed by Fung et al. (1992), which takes into account 

the scattering caused by rapid fluctuations, can meet the demands of a high frequency 

PolSAR system. However, it is still difficult to retrieve surface parameters because an 

accurate description of the surface roughness is required, but the parameterization of 

roughness from field measurements is known to be problematic (Verhoest et al., 2008). 

The retention of crop residue on the ground to reduce soil erosion and maintain soil 

health is a common practice, and this consequently increases the fluctuated scattering in 

agricultural fields, which can also make the surface parameter retrieval difficult for both 

the physical and semi-empirical models for soils without vegetation cover (McNairn et al., 

2002; McNairn et al., 2012).  

In terms of the surface parameter inversion for soils under vegetation cover, the model-

based polarimetric target decomposition first proposed by Freeman and Durden (1998) 

separates the backscattering from different layers in agricultural fields. Due to its 

simplicity, many decomposition methods have been developed based on its framework 

(Yamaguchi et al., 2005; Yamaguchi et al., 2006; Yajima et al., 2008; An et al., 2010; 

Yamaguchi et al., 2011; An et al., 2011; Sato et al., 2012; Chen et al., 2014; Chen et al., 

2014) and have been widely employed for surface parameter inversion under vegetation 

cover. Hajnsek et al. (2009) investigated the potential of surface parameter inversion 

under vegetation cover by comparing different model-based decompositions, showing 

that these methods had not only low inversion rate but also the problem of severe 

underestimation. Jagdhuber et al. (2013) investigated the multi-angular polarimetric 

decomposition to estimate soil moisture with high inversion rate and low RMSE for fully 
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polarimetric L-band SAR data. Ballester-Berman et al. (2013) presented a two-

component polarimetric decomposition model for sparse vineyards using C-Band 

RADARSAT-2 data, but no measured ground truth data  were used for validation. More 

recently, a hybrid decomposition method combining both the model-based and eigen-

based decompositions has been presented by Jagdhuber et al. (2014) and showed a very 

high inversion rate for L-band data. Ponnurangam et al. (2014) compared various 

polarimetric parameters for soil moisture inversion and revealing the potential of the X-

Bragg model for surface parameter retrieval. However, the surface scattering adopted in 

the above methods is either the Bragg or X-Bragg model, which has a critical problem in 

that, as the soil moisture increases, the inversion becomes more difficult, especially when 

the incidence angle is low. In addition, the volume scattering models from the vegetation 

adopted by the above mentioned methods are restricted to forest areas, but agricultural 

fields, especially row crops, have a certain orientation (Lopez-Sanchez et al., 2012). 

In response, an integrated retrieval scheme is developed in this chapter to estimate 

surface parameters based on the H- 𝛼 zones in agricultural fields, including bare soils, 

fields with low vegetation cover, and fields with crop residues. The H and 𝛼 parameters 

are first analyzed to investigate the scattering in agricultural fields in various growing 

stages. A calibrated IEM is employed to describe bare soils in the low entropy and low 

polarization angle zones. An adaptive two-component decomposition considering the 

surface scattering from soil and scattering from crop residue or vegetation canopy is 

proposed, in which the surface scattering is modeled by the calibrated IEM, whereas the 

simplified adaptive volume scattering model (SAVSM) with a wide range of randomness 

is adopted to describe the scattering from crop residue and vegetation cover in the high 

entropy zones. The organization of this chapter is as follows: the study area and ground 

truth measurement are described in section 4.2, the analysis of the H- 𝛼 parameters in 

different agricultural fields is discussed in section 4.3, the ISPIS is presented in section 

4.4, the results and validation are analyzed in section 4.5, and the conclusion is given in 

section 4.6. 
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4.2 Study Areas and Data Collection 

4.2.1  Data Collection  

Two study areas selected for analysis and validation in this chapter are located in the 

southwest of Ontario, Canada, which are shown as red and blue points in the upper left 

corner of Figure 4-1. We named these two different study areas as study area 2013 and 

study area 2014 for convenience, as the ground truth data collected in these two study 

areas were in 2013 and 2014 respectively. There are three major crops growing in both 

study areas: soybean, corn and winter wheat. For study area 2013, only two wheat fields 

that are shown in the Pauli image in the upper right corner of Figure 4-1 are selected, in 

which 13 sample sites were surveyed on April 29
th

 and18 sample sites were surveyed on 

May 9
th

 in 2013.  For study area 2014, five fields were selected including two corn fields, 

two soybean fields, and one wheat field, with their polygons displayed in the lower left of 

Figure 4-1. Their distributions are shown in the Pauli image on the right side of Figure 4-

1. A total of 37 sample sites were surveyed for all fields, including 17 points from the 

corn fields, 16 points from the soybean fields, and 4 points from the wheat field. The 

distribution of the sample points of each field in the polygons is shown in the lower left 

of Figure 4-1. Each site is labeled as the capital letter of the first letter of the crop name, 

plus the field number, plus a hyphen, and plus the sample site number. Take C1-08, for 

example, it represents the eighth sample site in the first corn field. The RADARSAT-2 

data was acquired from the beginning of May to the end of June in 2014 and on April 29
th

 

and May 9
th

 in 2013, while the fieldwork was performed simultaneously when 

RADARSAT-2 was over passing.  The fieldwork schedule and the image acquisition 

dates are shown in Table 4-1.  
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Table 4-1. RADARSAT-2 dataset and fieldwork schedule. The blue cell represents the 

data acquired on that day while grey cell means no fieldwork or dataset 

acquired on that day. MV: soil moisture. KS: surface roughness. The 

resolution (unit: m) is the one after geo-correction using the Mapready 

software. 

 FIELD WORK 

RADARSAT-2 DATASET 
 Corn Soybean Wheat 

Date MV KS MV KS MV KS Mode Orbit 
Look 

direction 

Resolution  

2014-05-04       FQ15-35° Ascending Right 5 

2014-05-05       FQ19-39° Descending Right 5 

2014-05-15       FQ09-29° Descending Right 5 

2014-05-18       FQ05-24° Ascending Right 10 

2014-06-04           

2014-06-11       FQ05-24° Ascending Right 10 

2014-06-21       FQ15-35° Ascending Right 5 

2013-04-29       FQ09-29° Ascending Right 10 

2013-05-09       FQ19-39° Ascending Right 10 

The soil moisture measurements were collected on April 29
th

 and May 9
th

 in the study 

area 2013 in the low and sparse wheat covered fields that are shown in Figure 4-1. For 

study area 2014, the soil moisture was collected on five days: May 4
th

, May 5
th

, May 18
th

, 

June 4
th

 and June 21
st
, whereas the surface roughness was collected on May 5

th
, May 18

th
 

and June 4
th

 in the soybean and corn fields. The soil moisture was not collected in the 

wheat field on June 21
st
 because the wheat was already very high and dense with high 

biomass by then; the penetration of the short wavelength C-Band RADARSAT-2 sensor 

is limited when the agricultural field is under the dense wheat canopy cover due to the 

strong attenuation effects (Lopez-Sanchez & Ballester-Berman, 2009).  For the same 

reason, the surface roughness was not measured in the wheat field on June 21
st
 either. 

Although fieldwork was conducted on June 4
th

, no RADARSAT-2 data was available on 

this date. The associated ground truth photos are shown in Figure 4-2.  It can be seen that 

at the beginning of May 2014, the soybean fields were not cultivated, with many corn 

residues from the previous year left on the ground; whereas the corn fields were mainly 

bare soils, although a few crop stalks were present. The wheat field was in the tillering 

stage with very low height, and there were still a lot of crop residues present, as can be 

seen in Figure 4-2(c). In mid-May, many crop residues in the soybean had been flattened 
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due to human activities. At the end of May, both the soybean and corn fields were under 

seedbed preparation. At the beginning of June, the corn had emerged and at early 

vegetative growth stage with very low vegetation cover fraction, whereas the wheat is 

growing taller and denser, as shown in Figure 4-2(c). Till the end of June, the corn 

continues to grow taller, and the soybean was budding in low height, as shown in Figure 

4-2(a) and Figure 4-2(b). 

4.2.2  Ground Truth Measurement  

For ground truth measurements, soil moisture and surface roughness were measured in 

these fields during the early growing stages. Soil moisture was measured using the TDR 

(Time-Domain Reflectometry) Probe for all the sample sites, with an average of 6 points 

measured at each sample site within a 10 m by 10 m area surrounding the centroid of the 

sample site. The surface roughness was measured for only half of the sample sites in the 

corn and soybean fields using a one-meter long profiler with 200 pins and an interval of 

0.5 cm. For the corn field, because it had been ploughed before May, there were many 

large clods in the field, and rain events made the clots smooth without obvious oriented 

roughness patterns. Hence, the surface roughness measurement was randomly taken 6 

times from the relatively smooth and rough surfaces within a 10 m by 10 m square 

surrounding the centroid of the sample site, and their average is taken as the value of the 

roughness for that site.  For the soybean field, the roughness was measured in the same 

way with disregard for corn residue.  

For the fields covered with standing corn stubbles or vegetation, the height of the stubble 

or vegetation were also measured simultaneously. The ranges of the soil moisture 

measurements, the root mean square (RMS) of surface height and the height of vegetation 

or corn stubble at the early growing stage are listed in Table 4-2. The RADARSAT-2 

data was pre-processed with the radiometric correction performed first to covert the data 

to sigma naught, i.e., the backscattering coefficient. It was then filtered using the Boxcar 

method with the window size of 5 by 5, and geo-corrected using the MapReady software 

developed by the Alaska Satellite Facility (ASF) with the resolution after geo-correction 

shown in Table 4-1.  
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Table 4-2. Measured ground truth on different dates in different agricultural fields. MV: 

soil moisture ([vol.] %). RMS: root mean square of the surface height (cm). 

H: height of vegetation or corn residue (cm). Note: “-“ means no data was 

collected on that day. The height measured in soybean field before June 4
th

 

2014 is the height of the standing corn stubbles. 

Date 
Corn Field Soybean Field Wheat Field 

MV RMS H MV RMS H MV RMS H 

2014-05-04 12-48 - - 21-50 - 15-45 37-49 - 8-11 

2014-05-05 8-45 1.5-5.3 - 15-50 1.4-4.0 15-45 15-41 - 8-11 

2014-05-18 14-44 1.3-4.5 - 28-50 1.4-3.2 15-45 35-50 - 13-18 

2014-06-04 11-26 1.1-2.3 5-8 15-40 1.4-2.5 - 23-33 - 20-35 

2014-06-11 - 1.1-2.3 7-13 - 1.4-2.5 2-3 - - - 

2014-06-21 5-25 - 20-26 5-35 - 5-8 - - - 

2013-04-29 - - - - - - 19-50 - 5-8 

2013-05-09 - - - - - - 13-34 - 10-15 
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Figure 4-1. Study area locations, field polygons and Pauli images (right) from the fully 

polarimetric RADARSAT-2 data in 2013 and 2014. The Pauli image in 2013 

is acquired on April 29
th

 2013 while the one at the bottom is acquired on 

May 5
th

 2014. It should be noted that only wheat fields are measured in 2013 

while the soybean, corn and wheat fields are measured in 2014. 
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(a) 

   
(b) 

   
(c) 

Figure 4-2. Ground truth photos in the corn, soybean and wheat fields on different dates 

in 2014: (a) corn fields (b) soybean fields (c) wheat fields. From left to right, 

the photos of the soybeans and corn were taken on May 5
th

, May 18
th

 and 

June 21
st
, respectively, whereas the photos of the wheat were taken on May 

5
th

, May 18
th

 and June 11
th

. 

4.3 Scattering Analysis over Agricultural Fields 

4.3.1  Scattering Mechanisms Analysis 

The H-𝛼 decomposition (Cloude & Pottier, 1997) is a method based on the eigen-analysis 

of the covariance or coherence matrix. It characterizes the backscattering in terms of two 
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parameters, entropy (H) and polarization angle (𝛼), which divide the backscattering into 

9 zones representing different scattering mechanisms. It is expressed as, 

 

𝐻 =∑−𝑃𝑖𝑙𝑜𝑔3𝑃𝑖

3

𝑖=1

 

𝑃𝑖 = 𝜆𝑖 ∑𝜆𝑗

3

𝑗=1

⁄  

�̅� =∑𝑃𝑖𝑎𝑐𝑜𝑠(𝑒𝑖)

3

𝑖=1

 

𝑒𝑖 = [𝑒𝑖1 𝑒𝑖2 𝑒𝑖3]𝑇 

(4-1) 

where 𝐻 is the entropy, �̅� is the polarization angle, 𝜆𝑖 is the eigenvalue, and 𝑒𝑖 is the unit 

eigenvector. To analyze the scattering of these crop fields on different dates, the H-𝛼 

decomposition analysis was performed on RADARSAT-2 imageries in four different 

sensor modes, FQ5, FQ9, FQ15 and FQ19, with the incidence angle ranging from 24 

degrees to 39 degrees (Table 4-1). For presentation purposes, the S2, C2 and W1 fields in 

study area 2014 were selected for analysis, and their results are shown in Figure 4-3 

 
 (a)  

 
 (b) 
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 (c)  

 
 (d)  

 
 (e)  

 
 (f) 

Figure 4-3. H and 𝛼 plots in three fields (from left to right: corn, soybean and wheat) 

from May 4
th

 to June 21
st
: (a) May 4

th
 (b) May 5

th
 (c) May 15

th
 (d) May 18

th
 

(e) June 11
th

 (f) June 21
st
. 

As the corn field had been ploughed up before May, the corn fields were mainly bare 

soils. Hence, from May 4
th

 to May 15
th

, Figure 4-3(a) through Figure 4-3(c) depict that 
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many pixels in the corn fields lie in Z9, which represents the dominated surface scattering 

with a range of entropy from 0.2 to 0.5. However, there are still many pixels in the high 

entropy zone from 0.6 to 0.9 that lie in Z6. This is perhaps the result of the fluctuated 

scattering caused by the randomly distributed stalks or the dry soil penetration effect, and 

more details are presented in section 4.5.6.  For the soybean fields, there are many pixels 

in Z9 and Z5, showing the surface and volume scattering dominance. That is mainly 

because corn stubbles standing in these fields resulted in the fluctuation of the scattering. 

Hence, most of their entropy is from 0.5 to 1.0, which is higher on average than in the 

corn fields, where there were mainly bare soils. Figure 4-3(a) through Figure 4-3(c) 

depict that the wheat fields show the dominant surface and volume scatterings before 

June because the wheat hadn’t grown very tall, with a very sparse canopy. There is a 

similar sensor configuration on May 4
th

 and May 5
th

 with a slightly different incidence 

angle, except that their orbits are ascending and descending, respectively. Hence, 

ignoring the effects of the incidence angle, the scattering difference is only observed in 

the soybean field, with more dipole scattering emerging on May 5
th

; this is mainly 

because the orientation angle of crop residues depends on the line of sight (LOS) of 

RADARSAT-2. The ascending orbit on May 4
th

 senses little dipole scattering, but more 

emerges with the descending orbit on May 5
th

.  

The entropy in the soybean and wheat fields is almost greater than 0.5 on May 15
th

, 

which is higher than that on May 5
th

; this is mainly due to the lower incidence angle (≈29 

degrees) on May 15
th

, which resulted in more multiple scattering than the higher 

incidence angle (≈39 degrees) on May 5
th

. The dominant scattering of most pixels moves 

from high entropy fluctuated scattering to low entropy surface scattering on May 18
th

, as 

depicted in Figure 4-3(d). Theoretically, in the same agricultural area with the same radar 

configuration, the lower resolution RADARSAT-2 data will have higher entropy than 

that of the high resolution data, as the lower resolution data averages various types of 

scattering within a single pixel. However, the blanket fertilizer application occurred 

during the period from May 15
th

 to May 18
th

, and the wheels of the tractor flattened many 

crop residues in the soybean field and made the surface roughness of the wheat and corn 

fields relatively smooth, resulting in a single dominant surface scattering with lower 
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entropy on May 18
th

. At the end of May, both the corn and soybean fields were under 

seedbed preparation; hence, on June 11
th

, the soybean and corn fields became smooth, 

and many pixels are dominated by surface scattering. Although some corn was growing, 

they were very small. By 21
st
 June, the corn was growing taller, and the scattering of 

many pixels in the corn fields moved from surface scattering to volume scattering. 

Because the soybean was very short, as depicted in Figure 4-3(f), the scattering in the 

soybean fields is still dominated by surface scattering. It should be noted that, on 21
st
 

June, some double bounce scattering emerged from the wheat fields, which was caused 

by the interaction between the soil and taller wheat stalks. Overall, the scattering in 

agricultural fields in our study area is primarily composed of surface and volume 

scattering before the end of June, and the average entropy in fields with crop residues and 

vegetation cover is higher than that in bare soil fields. 

4.3.2  Threshold Selection and the ISPIS 

As both the corn and soybean fields (C2, S2) became smooth due to seedbed preparation 

at the end of May, four RADARSAT-2 datasets acquired on May 5
th

, May 15
th

, June 11
th

, 

and June 21
st
 covering the periods of before and after seedbed preparation were selected 

to determine the threshold for distinguishing the surface and volume scatterings based on 

the H and 𝛼 values. The W1 field was selected for analysis as well. Firstly, the normal 

distributions of H and the histograms of 𝛼 are shown in Figure 4-4. The corresponding 

statistical parameters of H such as the mean and standard deviation values and the 

percentage of the divided surface and volume scattering components by the criteria that 

the H is less than 0.6 and 𝛼 is less than 40 degrees are listed in Table 4-3. 
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 (a) 

  
 (b) 

  
 (c) 

Figure 4-4. The normal distributions of H (left) and the histograms of 𝛼  (right) on 

different dates. (a) corn field.  (b) soybean field. (c) wheat field. 
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Table 4-3. The statistic information of the H and 𝜶 on different dates in different fields. 

Crop 

Type 
Date 

Normal Distribution 

Parameters of H 
% of H % of 𝛼 

𝝁 𝝈 Surface Volume Surface Volume 

Corn 

Field 

20140505 0.534267 0.113429 73.17 26.83 98.32 1.68 

20140515 0.559852 0.097608 67.54 32.46 98.96 1.04 

20140611 0.347310 0.116623 95.65 4.35 99.25 0.75 

20140621 0.632599 0.098117 37.68 62.32 95.46 4.54 

Soybean 

Field 

20140505 0.708732 0.100398 14.88 85.12 81.59 18.41 

20140515 0.744974 0.087116 5.78 94.22 74.18 25.82 

20140611 0.477109 0.127268 83.28 16.72 97.99 2.01 

20140621 0.577768 0.110713 59.45 40.55 97.08 2.92 

Wheat 

Field 

20140505 0.775290 0.084704 3.13 96.87 54.89 45.11 

20140515 0.808162 0.076213 1.15 98.85 24.4 75.6 

20140611 0.702328 0.097242 15.07 84.93 38.69 61.31 

20140621 0.747821 0.087515 5.80 94.20 15.17 84.83 

 

 For the bare soil fields, the majority of their pixels are dominated by surface scattering. 

As the crop grows over time, the volume scattering caused by the crop canopy will 

increase gradually. Thus, the surface scattering from the soil and the volume scattering 

from the vegetation canopy will be mixed together at the early growing stage when the 

crops are sparse, making their complete separation very difficult. In this case, we tend to 

classify the majority of pixels in bare soil as surface scattering because the surface and 

volume scattering in fields covered with crop residues or vegetation are mixed together. 

As the corn fields were bare on May 5
th

 and May 15
th

 and were covered by sparse 

vegetation on June 21
st
 as shown in Figure 4-2(a), the data collected on May 5

th
, May 15

th
 

and June 21
st
 are adopted for threshold determination. Figure 4-4(a) shows that the range 

of H from 0.55 to 0.6 can be used to distinguish the scattering in bare soil and in 

vegetated fields according to their normal distribution curves. However, considering 

surfaces with rough soils, their entropy will be greater than 0.5 as their roughness 

increases, and the entropy will increase to 0.6, when the scattering of bare soils is 

dominated by a surface cover comprised of oblate spheroidal scatterers (Cloude, 1992). 

Therefore, 0.6 is determined as the threshold to distinguish the bare soils from field with 

corn cover. In this case, Figure 4-4(a) and Table 4-3 depict that the majority of the pixels 

of H are occupied by surface scattering in fields of bare soils, with all of their percentages 

greater than 67%. For the soybean fields, the fields with corn residues on May 5
th

 and 
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May 15
th

 and the fields with bare soils on June 11
th

 can be discriminated by the threshold 

of 0.57 and 0.6 respectively according to the normal distribution shown in Figure 4-4(b). 

Their thresholds are similar to that of the corn fields. When 0.6 is determined as the H 

threshold for the soybean fields with corn residues, the number of pixels on June 11
th

 in 

bare soils is greater than 80%, whereas less than 15% of the pixels fall under bare soils 

for the fields with corn residues. In addition, the number of pixels dominated by surface 

scattering in the wheat fields is less than 15% because they are either influenced by the 

crop residues at the early growing stage or by the growing wheat canopy as time 

progresses. Lastly, the 𝛼 threshold of less than 40 degrees is employed as the threshold to 

distinguish the surface scattering from the volume scattering as proposed by Cloude and 

Pottier (1997). 

 Consequently, the entropy less than 0.6 and polarization angle less than 40 degrees 

divide the H- 𝛼 plane into two zones separating the dominating surface scattering from 

bare soils and volume scattering from other cases (fields with crop residues and fields 

under low vegetation cover) in this chapter. The ISPIS shown in Figure 4-5 is described 

as: bare soils (smooth and rough) are characterized by the calibrated IEM in the zone 

with entropy less than 0.6 and 𝛼 less than 40 degrees, and the others are described by an 

adaptive two-component decomposition (ATCD) composed of surface and volume 

scatterings. 
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Figure 4-5. Integrated surface parameter inversion scheme (ISPIS). 

4.4 Integrated Surface Parameter Inversion Scheme 
(ISPIS) 

4.4.1  Bragg and X-Bragg Surface Scattering Models 

The scattering of bare soil modeled as Bragg surface scattering (Freeman & Durden, 

1998) or X-Bragg surface scattering (Hajnsek et al., 2003) derived by the SPM model 

with its validity condition 𝑘𝑠 < 0.3, where 𝑘 is the wavenumber and 𝑠 is the RMS of 

surface height, is widely used in many surface parameter retrieval schemes, and their 

coherency matrices have the forms, 

 𝑇𝐵𝑟𝑎𝑔𝑔 = [
1 𝛽∗ 0

𝛽 |𝛽|2 0
0 0 0

] (4-2) 

 

𝑇𝑋−𝐵𝑟𝑎𝑔𝑔

=

[
 
 
 
 

1 𝛽∗𝑠𝑖𝑛𝑐(2𝜑) 0

𝛽𝑠𝑖𝑛𝑐(2𝜑)
1

2
|𝛽|2(1 + 𝑠𝑖𝑛𝑐(4𝜑)) 0

0 0
1

2
|𝛽|2(1 − 𝑠𝑖𝑛𝑐(4𝜑))]

 
 
 
 

 (4-3) 
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where 𝜑 is the surface slope, and 𝛽 is equal to, 

 
𝛽 =

𝑅𝐻𝐻 − 𝑅𝑉𝑉
𝑅𝐻𝐻 + 𝑅𝑉𝑉

 
(4-4) 

where 𝑅𝐻𝐻  and 𝑅𝑉𝑉  are the Bragg coefficients at horizontal and vertical polarization 

respectively and are shown as, 

 

𝑅𝐻𝐻 =
𝑐𝑜𝑠𝜃 − √휀𝑟 − 𝑠𝑖𝑛

2𝜃

𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃
 

𝑅𝑉𝑉 =
(휀𝑟 − 1)(𝑠𝑖𝑛

2𝜃 − 휀𝑟(1 + 𝑠𝑖𝑛
2𝜃))

(휀𝑟𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃)2
 

(4-5) 

where 𝜃 is the local incidence angle, 휀𝑟 is the relative dielectric constant, which is related 

to the soil moisture content. The relationship between 휀𝑟  and 𝛽  for different local 

incidence angles is depicted in Figure 4-6. 

 

Figure 4-6. Relationship between 𝜺𝒓 and 𝜷. 
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Figure 4-6 depicts that 𝛽 is real and is greater than -1 and less than 0. It also shows that, 

when the incidence angle is very low, even a small variation of 𝛽 will result in a large 

fluctuation of 휀𝑟. This means that both the Bragg and X-Bragg surface scattering models 

are restricted to high incidence angles. Because the 휀𝑟  has a positive relation with 

volumetric soil moisture, hence, when the soil moisture becomes high, the variation of 

the derived 𝛽 is very small as the incidence angle decreases.  That means the 𝛽 derived 

by the Bragg or X-Bragg model should be very accurate in order to obtain a high 

accuracy soil moisture map. 

4.4.2  Calibrated Integral Equation Model 

Bare soils with rough condition of 𝑘𝑠 < 3.0  can be described using the physical 

integrated equation model (IEM) (Fung et al., 1992), where 𝑘 is the wavenumber equal 

to
2𝜋

𝜆
. For C-band RADARSAT-2, it is approximately 1.11.  𝑠 is the root mean square 

(RMS) of surface height. Its general form of the backscattering coefficients for vertical 

and horizontal polarization 𝜎𝑝𝑝
0  is described as, 

 

 
𝜎𝑝𝑝
0 =

𝑘2

4𝜋
𝑒𝑥𝑝[−2𝑘2𝜎2𝑐𝑜𝑠2𝜃]∑|𝐼𝑝𝑝

𝑛 |
2𝑤(𝑛)(2𝑘𝑠𝑖𝑛𝜃, 0)

𝑛!

∞

𝑛=1

 
(4-6) 

where 

𝐼𝑝𝑝
𝑛 = (2𝑘𝜎𝑐𝑜𝑠𝜃)𝑛𝑓𝑝𝑝𝑒𝑥𝑝[−𝑘

2𝜎2𝑐𝑜𝑠2𝜃] + (𝑘𝜎𝑐𝑜𝑠𝜃)𝑛𝐹𝑝𝑝, 𝑝 = 𝑣, ℎ 

𝑓𝑣𝑣 =
2𝑅𝑣
𝑐𝑜𝑠𝜃

, 𝑓ℎℎ =
−2𝑅ℎ
𝑐𝑜𝑠𝜃

 

𝑅ℎ =
𝜇𝑟𝑐𝑜𝑠𝜃 − √𝜇𝑟휀𝑟 − 𝑠𝑖𝑛2𝜃

𝜇𝑟𝑐𝑜𝑠𝜃 + √𝜇𝑟휀𝑟 − 𝑠𝑖𝑛2𝜃
, 𝑅𝑣 =

휀𝑟𝑐𝑜𝑠𝜃 − √𝜇𝑟휀𝑟 − 𝑠𝑖𝑛2𝜃

휀𝑟𝑐𝑜𝑠𝜃 + √𝜇𝑟휀𝑟 − 𝑠𝑖𝑛2𝜃
 

𝐹𝑣𝑣 = (
𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃
−
𝑠𝑞

휀𝑟
)𝑇𝑣

2 − 2𝑠𝑖𝑛2𝜃 (
1

𝑐𝑜𝑠𝜃
+
1

𝑠𝑞
)𝑇𝑣𝑇𝑣𝑚 + (

𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃
+
휀𝑟(1 + 𝑠𝑖𝑛

2𝜃)

𝑠𝑞
)𝑇𝑣𝑚

2  
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𝐹ℎℎ = −[(
𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃
−
𝑠𝑞

𝜇𝑟
) 𝑇ℎ

2 − 2𝑠𝑖𝑛2𝜃 (
1

𝑐𝑜𝑠𝜃
+
1

𝑠𝑞
)𝑇ℎ𝑇ℎ𝑚

+ (
𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃
+
𝜇𝑟(1 + 𝑠𝑖𝑛

2𝜃)

𝑠𝑞
)𝑇ℎ𝑚

2 ] 

𝑇𝑝 = 1 + 𝑅𝑝, 𝑇𝑝𝑚 = 1 − 𝑅𝑝, 𝑠𝑞 =  √𝜇𝑟휀𝑟 − 𝑠𝑖𝑛2𝜃 

where 𝑅𝑝  is the 𝑝-polarized Fresnel reflection coefficient; and the quantity 𝑤(𝑛)  is the 

surface spectrum corresponding to the two-dimensional Fourier transform of the surface 

auto-correlation coefficient (ACF) 𝜌(𝑥, 𝑦) raised to its 𝑛th power, 𝜌𝑛(𝑥, 𝑦), defined as, 

 
𝑤(𝑛)(𝑢, 𝑣) = ∫ ∫ 𝜌𝑛(𝑥, 𝑦)

∞

−∞

∞

−∞

𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦 
(4-7) 

Although many ACFs, such as Gaussian, Exponential, Fractal, etc., have been proposed 

to describe the surface coefficient, the exponential function has been demonstrated to 

characterize the agricultural fields better than others (Shi et al., 1997; Wegmüller et al., 

1994). The exponential function is described as, 

 

 𝜌(𝑥, 𝑦) = 𝑒−
|𝑥|+|𝑦|
𝐿  (4-8) 

where 𝐿 is the correlation length. However, the parameterization of roughness from field 

measurements is known to be problematic (Verhoest et al., 2008); hence, Baghdadi et al. 

(2002; 2004; 2006) developed many empirical models that relate the RMS of surface 

height to the correlation length. The relationship for C-band RADARSAT-2 developed 

by Baghdadi et al. (2006) is adopted in this chapter and is described as, 

 
𝐿𝑜𝑝𝑡2(𝑟𝑚𝑠, 𝜃, 𝑝𝑝) = 𝛿(𝑠𝑖𝑛𝜃)𝜇𝑟𝑚𝑠(𝜂𝜃+𝜉) (4-9) 
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where 𝜃 is the incidence angle, and  𝑟𝑚𝑠 is the root mean square of the surface height. 

The parameters 𝛿 and 𝜉 are dependent of the polarization, whereas parameters 𝜇 and 𝜂 

are found to be independent of the polarization. 

𝛿ℎℎ = 4.026, 𝜉ℎℎ = 1.551, 𝛿𝑣𝑣 = 4.026 

𝜉𝑣𝑣 = 1.222, 𝜇ℎℎ = 𝜇𝑣𝑣 = −1.744, 𝜂ℎℎ = 𝜂𝑣𝑣 = −0.0025. 

The calibrated correlation length is substituted into the IEM model, and the relationship 

between the volumetric soil moisture and the relative dielectric constant developed by 

Halikainen et al. (1985) is adopted. The calibrated IEM (CIEM) describing the 

backscattering coefficients with 𝑟𝑚𝑠 and 𝑚𝑣 is shown in Figure 4-7. The advantage of 

the CIEM is that the correlation length dimension is taken off and the unknown 

parameters are reduced from 3 to 2, which can simplify the equation solving via the co-

polarizations alone. 

 
                                    (a)                                                                  (b) 

Figure 4-7. Calibrated IEM model with exponential ACF in a 40-degree incidence angle. 

(a) HH backscattering coefficient (b) VV backscattering coefficient. 

4.4.3  Simplified Adaptive Volume Scattering Model (SAVSM) 

Because both crop residues and vegetation canopies can cause an increase in the cross-

polarization, we treat the scattering from both of them as volume scattering in this 
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chapter. To model the volume scattering, Freeman and Durden (1997) argued that the 

distribution of the orientation angles of vegetation satisfied the uniform distribution, 

whereas Yamaguchi et al. (2005) added the vertical and horizontal dipoles volume 

scattering based on the first order sine function. Arii et al. (2010) proposed a generalized 

volume scattering model to describe the canopy scattering based on a cosine-squared 

distribution raised to the 𝑛th power for the vegetation orientation angles, demonstrating 

that C-band senses a mean orientation closer to the vertical direction. Huang and Wang 

(2014) simplified this model to be the nth power to the first order sine function to allow it 

to adapt to the variations of crops for RADARSAT-2 imagery because the C-band senses 

the vegetation in vertical orientations (Arii et al., 2010). The vertical orientation 

distribution function is shown in (4-10). 

 
𝑝𝑣(𝜃) =

(𝑆𝑖𝑛𝜃)𝑛

∫ (𝑆𝑖𝑛𝜃)𝑛𝑑𝜃
𝜋

0

 
(4-10) 

This volume scattering model is restricted to characterize the vertical volume scattering, 

but the disordered orientations of crop residues may also result in horizontal volume 

scattering. To enhance its suitability further, we added the 𝑛th power cosine function to 

describe the horizontal volume scattering. The horizontal orientation distribution function 

is expressed as, 

 

𝑝ℎ(𝜃) =
(𝐶𝑜𝑠𝜃)𝑛

∫ (𝐶𝑜𝑠𝜃)𝑛𝑑𝜃
𝜋
2

−
𝜋
2

 

(4-11) 

For both distribution functions, when n = 0, ph(θ) = pv(θ) =
1

π
 is the function uniform 

distribution, which is the same as Freeman and Durden (1997). When n = 1 , their 

distributions are the same as those by Yamaguchi et al. (2005). When n = 1⋯k, p(θ) 

becomes narrower as n  increases. When n → ∞ , pv(θ) = δ(θ −
π

2
)  and ph(θ) = δ(θ)  

are the Dirac functions representing the pure vertical and horizontal dipoles respectively. 

The same as the Yamaguchi et al. (2006), after integration, elements of the vertical (V-

SAVSM) and horizontal (H-SAVSM) simplified adaptive volume scattering models are 

described as, 
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V-SAVSM: 

 

C𝑣11 =
1

𝐴
∙
3√𝜋Γ (

𝑛 + 1
2 )

4Γ (
𝑛
2
+ 3)

 

C𝑣12 = C𝑣21 = C𝑣23 = C𝑣32 = 0, C𝑣22 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2 )

Γ (
𝑛
2
+ 3)

 

C𝑣13 = C𝑣31 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2

)

2Γ (
𝑛
2
+ 3)

, C𝑣33 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 5
2

)

Γ (
𝑛
2
+ 3)

 

(4-12) 

 

H-SAVSM： 

 

C𝑣11 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 5
2 )

Γ (
𝑛
2 + 3)

 

C𝑣12 = C𝑣21 = C𝑣23 = C𝑣32 = 0, C𝑣22 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2

)

Γ (
𝑛
2
+ 3)

 

C𝑣13 = C𝑣31 =
1

𝐴
∙
√𝜋Γ (

𝑛 + 3
2

)

2Γ (
𝑛
2
+ 3)

, C𝑣33 =∙
3√𝜋Γ(

𝑛 + 1
2

)

4Γ (
𝑛
2
+ 3)

 

(4-13) 

where 𝐴 = ∫ (𝑆𝑖𝑛θ)𝑛𝑑θ
𝜋

0
= ∫ (𝐶𝑜𝑠θ)𝑛𝑑θ

𝜋

2

−
𝜋

2

=
√𝜋Γ(

𝑛+1

2
)

Γ(
𝑛

2
+1)

 and Γ(𝑎) = ∫ 𝑒−𝑡𝑡𝑎−1𝑑t
∞

0
. It 

should be noted that 𝑛 is greater than 0 but not limited to integers. We can see that the 

HH component of the V-SAVSM is equal to the VV component of the H-AVMS, and 

vice versa. It should also be noted that we refer the V-SAVSM and H-SAVSM combined 

as SAVSM in the chapter. Without loss of generality, the V-SAVSM is analyzed alone in 

this section. The components of the V-SAVSM are plotted in Figure 4-8. Figure 4-8(a) 

reveals that, as 𝑛 increases, the HH component decreases, whereas the VV component 
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increases. At the same time, the HH-VV components increase first then decrease at the 

point where 𝑛 = 1. To analyze it further, the radar vegetation index (RVI) proposed by 

Kim and van Zyl (2001) as an indicator of scattering by vegetation can be described as, 

 𝑅𝑉𝐼 =
4𝑚𝑖𝑛 (𝜆1, 𝜆2, 𝜆3)

𝜆1 + 𝜆2 + 𝜆3
=

8𝜎𝐻𝑉
𝜎𝐻𝐻 + 2𝜎𝐻𝑉 + 𝜎𝑉𝑉

 (4-14) 

where 𝜆1, 𝜆2 and 𝜆3 are the eigenvalues of SAVSM, whereas 𝜎𝐻𝐻, 𝜎𝑉𝑉 and 𝜎𝐻𝑉  are the 

horizontal, vertical and cross polarizations, respectively. The RVI generally ranges 

between 0 and 1, and it is near zero for a smooth bare surface and increases as crop grows 

(Kim et al., 2014). It has been found that there is a high correlation between the RVI and 

vegetation water content (Kim et al., 2012), and it has low sensitivity to environmental 

condition effects (Kim & van Zyl, 2009). The RVI is in fact the ratio between the cross-

polarization and total power, as shown in equation (4-14), but crop residues can also 

result in an increase in the cross-polarization. Therefore, theoretically, the crop residue, in 

addition to the vegetation canopy, can also be described by the RVI. The RVI and the 

scattering entropy of V-SAVSM are both depicted in Figure 4-8(b). Both entropy and 

RVI decrease as 𝑛 increases. However, RVI has a steeper decreasing curve than entropy 

does. Considering this, we can use the curve of RVI to limit the range of 𝑛, thereby 

accelerating the discovery of the optimum 𝑛 in practice. Because the entropy adopted in 

this chapter to separate bare soils and others is 0.6, the corresponding 𝑛 is approximately 

4.5. Hence, the maximum 𝑛 adopted in this chapter is 5. In addition, we select some 𝑛 to 

compare with other volume scattering models proposed by Yamaguchi et al. (2005), 

which are listed in Table 4-4. We can see that the SAVSM not only includes the volume 

scattering model developed by Freeman and Durden (1997) and Yamaguchi et al. (2005) 

but also continues to respond to 𝑛. From this view, it has a better potential to describe 

changes in crops with time than Freeman and Durden (1997) and Yamaguchi et al. 

(2005). 
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(a) 

 
(b) 

Figure 4-8. V-SAVSM: (a) Elements of the V-SAVSM covariance matrix (b) Entropy 

and RVI. 
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Table 4-4. Comparison of the SAVSM with the Freeman and Yamaguchi volume 

scattering models in terms of their RVI and entropy. 

𝒏 V-SAVSM H-SAVSM RVI Entropy Reference 

0 [
0.375 0 0.125
0 0.250 0

0.125 0 0.375
] [
0.375 0 0.125
0 0.250 0

0.125 0 0.375
] 1.00 0.95 

Freeman and 

Durden 

(1997); 

Yamaguchi et 

al. (2005).  

1 [
0.200 0 0.133
0 0.267 0

0.133 0 0.533
] [
0.533 0 0.133
0 0.267 0

0.133 0 0.200
] 0.61 0.87 

Yamaguchi et 

al. (2005). 

4.4.4  Adaptive Two-Component Decomposition 

The analysis from section 4.3 has demonstrated that the scattering from fields under 

vegetation cover or fields with crop residue is primarily composed of surface and volume 

scattering. Therefore, the scattering from the fields under vegetation cover or fields with 

crop residue can be modeled as the incoherent summation of the surface scattering from 

soil and volume scattering from vegetation cover. The adaptive two-component 

decomposition proposed in this chapter to describe the scattering in fields with crop 

residues and fields under vegetation cover is expressed as, 

 𝜎0 = 𝑓𝑆𝜎𝑆
0 + 𝑓𝑉𝜎𝑉

0 (4-15) 

where 𝑓𝑆 and 𝑓𝑉 are the coefficients of surface and volume scattering, whereas 𝜎𝑆
0 and 𝜎𝑉

0 

are the backscattering coefficients of the surface and volume scattering. The scattering 

from soil is described by the CIEM, whereas the scattering from vegetation cover is 

described by the SAVSM. Because two volume scattering models are developed in this 

chapter, either the H-SAVSM or the V-SAVSM is chosen depending on the criterion 

developed by Yamaguchi et al. (2005). In addition, because the SAVSM depends on 𝑛 

and RVI can be an index to describe the randomness of scattering, the optimum 𝑛 is 

selected when it can minimize the difference between the RVI derived by the covariance 

matrix (𝑅𝑉𝐼𝐶) and by the SAVSM (𝑅𝑉𝐼𝑉). The Non-Negative Eigenvalue Decomposition 

(NNED) (van Zyl et al., 2011) that satisfies the energy conservation law is adopted to 
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calculate the scattering coefficient of volume scattering. Finally, the surface scattering is 

obtained by the subtraction of volume scattering. Alternatively, to accelerate inverting the 

soil moisture and RMS of the height using the CIEM, the look-up table (LUT) method is 

adopted, and the surface parameters are selected depending on which can minimize the 

cost function ∆ representing the least square difference between the measured 𝜎𝑀𝑝𝑝
0  and 

the simulated 𝜎𝑆𝑝𝑝
0  backscatter coefficients of the form,  

 Δ = √(𝜎𝑀ℎℎ
0 − 𝜎𝑆ℎℎ

0 )2 + (𝜎𝑀𝑣𝑣
0 − 𝜎𝑆𝑣𝑣

0 )2 (4-16) 

The flowchart of the ATCD algorithm that describes the scattering mechanism in fields 

with crop residue and fields under vegetation cover is described in Figure 4-9. 
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Figure 4-9. Flowchart of the ATCD algorithm. 

4.5 Validation and Analysis 

4.5.1  𝑇1 Maps of Different Crop Fields 

To show the variation of 𝑇1 , i.e., 10𝑙𝑜𝑔10(|𝑉𝑉|
2 |𝐻𝐻|2⁄ ), in different crop fields at 

different growing stages, some 𝑇1 maps of different crops at different stages shown in 

Figure 4-10 in study area 2014 are selected for discussion in this section. 
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(a)                                                                            (b) 

   
(c)                                                                            (d) 

   
(e)                                                                              (f) 

   
(g)                                                                           (h) 
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(i)                                                                              (j) 

   
(k)                                                                             (l) 

Figure 4-10.  𝑇1 maps of corn, soybean and wheat fields on May 5
th

, May 15
th

, June 11
th

 

and June 21
st
. in study area 2014. (a) corn field on May 5

th
 (b) corn field on 

May 15
th

 (c) corn field on June 11
th

 (d) corn field on June 21
st
 (e) soybean 

field on May 5
th

 (f) soybean field on May 15
th

 (g) soybean field on June 11
th

 

(h) soybean field on June 21
st
 (i) wheat field on May 5

th
 (j) wheat field on 

May 15
th

 (k) wheat field on June 11
th

 (l) wheat field on June 21
st
. 

Figure 4-10(a) to Figure 4-10(d) show the variation of 𝑇1 in the corn field from May 5
th

 

to June 21
st
, revealing the backscattering coefficient of VV to be greater than that of HH 

from May 5
th

 to May 18
th

 when only bare soil exists in the corn field. This is consistent 

with the results simulated by the calibrated IEM model shown in Figure 4-7. The similar 

pattern is also observed on June 11
th

, as the corn was emerging from the soil and had very 

low height on that date. However, when the corn grew taller on June 21
st
, the geometry of 

the corn influenced the polarization of the SAR response, which resulted in a higher HH 

backscattering than the VV backscattering as can be seen in Figure 4-10(d). From Figure 

4-10(e) to Figure 4-10(h), when many corn residues were left in the soybean field, the 

HH backscattering is greater than the VV backscattering, which is depicted from Figure 

4-10(e) to Figure 4-10(f). However, after the field had been cultivated, the bare soils were 
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observed and the VV backscattering became greater than the HH gradually until June 

21
st
. In terms of the wheat field, as the wheat grew, the HH backscattering became more 

prominent than the VV as shown in Figure 4-10(i) to Figure 4-10(l), which was primarily 

caused by the attenuation from the wheat canopy. We can conclude that when the 

agricultural fields are bare, they are dominated by the VV backscattering, and while 

fields are covered by crops or corn residues, the HH backscattering is more prominent 

than the VV backscattering due to the attenuation from the crop canopy. In fact, as the 

wheat growth progresses and the plants undergo tillering and stem elongation, the VV 

response decreases while the HH response stabilizes (Henderson & Lewis, 1998), and 

this ratio can perhaps be employed to aid in monitoring the crops at different growing 

stages. Here, being the same as (Yamaguchi et al., 2005; Yamaguchi et al., 2006; Yajima 

et al., 2008) and (Jagdhuber et al., 2013), we only employ it to determine the selection of 

the vertical and horizontal volume scattering models. 

4.5.2  Soil Moisture Validation 

Soil texture that is related to the saturated percentage (S.P.) of water (Stiven & Khan, 

1996), which is the ratio of water to soil in a saturated paste multiplied by 100, was 

collected by A&L Canada Lab Inc. during this period. In addition, to determine the soil 

moisture, an empirical linear relationship with the relative dielectric constant with the 

coefficients representing the soil texture is employed in this chapter (Halikainen et al., 

1985).  Hence, it is possible that if different soil moisture and dielectric constant values 

over crop fields are observed, the soil texture can be determined through solving the 

linear equations, but this is not investigated in this chapter even in this thesis. It will be 

investigated in future. Both the soil texture and S.P. are listed in Table 4-5. It shows that 

the S1, S2, W1 and C1 fields are loamier than the C2 field, where there are three sample 

sites shown as sandy, C2-01, C2-09 and C2-10. Their S.P.s are lower than other samples, 

with the values 34.35 [vol. %], 30.81 [vol. %] and 34.03 [vol. %], respectively. Therefore, 

the soil moisture of these three sample sites should be less than the others for each date. 

The derived volumetric soil moisture of these sample sites on the four dates shown in 

Figure 4-11 is lower than the values of others, thereby confirming this. 
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Table 4-5. Soil texture of each site in study area 2014. 

SAMPLE ID Sand (%) Silt (%) Clay (%) Soil Texture  S. P. [vol. %] 

S1-01 43.2 36.4 20.4 Loam 49.35 

S1-02 41.2 33.4 25.4 Loam 60.86 

S1-03 75.2 14.4 10.4 Sandy Loam 42.52 

S1-04 73.2 17.4 9.4 Sandy Loam 41.98 

S1-05 69.2 21.4 9.4 Sandy Loam 42.62 

S1-06 69.2 18.4 12.4 Sandy Loam 45.20 

S1-07 77.2 13.4 9.4 Sandy Loam 41.34 

S1-08 53.2 24.4 22.4 Sandy Loam 56.36 

S2-01 10.3 38.8 50.9 Clay 87.74 

S2-02 51.2 24.4 24.4 Sandy Loam 58.40 

S2-03 54.3 22.8 22.9 Sandy Loam 56.62 

S2-04 63.2 18.4 18.4 Sandy Loam 44.43 

S2-05 23.2 41.4 35.4 Clay Loam 65.45 

S2-06 41.2 29.4 29.4 Clay Loam 57.41 

S2-07 35.2 37.4 27.4 Clay Loam 56.65 

S2-08 29.2 42.4 28.4 Clay Loam 58.47 

C1-01 63.2 15.4 21.4 Sandy Loam 47.01 

C1-02 57.2 27.4 15.4 Sandy Loam 42.81 

C1-03 61.2 26.4 12.4 Sandy Loam 39.59 

C1-04 39.2 39.4 21.4 Loam 50.85 

C1-05 34.3 34.8 30.9 Clay Loam 59.81 

C1-06 41.2 38.4 20.4 Loam 49.67 

C1-07 31.2 43.4 25.4 Loam 55.57 

C1-08 41.2 42.4 16.4 Loam 46.23 

C2-01 83.2 6.4 10.4 Loamy Sand 34.35 

C2-02 79.2 8.4 12.4 Sandy Loam 36.71 

C2-03 69.2 14.4 16.4 Sandy Loam 41.75 

C2-04 23.2 38.4 38.4 Clay Loam 68.03 

C2-05 23.2 39.4 37.4 Clay Loam 67.17 

C2-06 17.2 42.4 40.4 Silty Clay 70.71 

C2-07 19.2 43.4 37.4 Silty Loam 67.81 

C2-08 27.2 38.4 34.4 Clay Loam 63.95 

C2-09 89.2 3.4 7.4 Sand 30.81 

C2-10 85.2 4.4 10.4 Loamy Sand 34.03 
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             (a)                                                   (b) 

   
(c)                  (d) 

Figure 4-11. Soil moisture in the C2 field on different dates: (a) May 4
th

 (b) May 5
th

 (c) 

May 18
th

 (d) June 21
st
. 

For further validation, a comparison is performed based on the root mean square error 

(RMSE) between the estimated soil moisture via the Y-CIME and ISPIS and the 

measured soil moisture collected from fieldwork. The estimated soil moisture for each 

sample site is an average of the 5-by-5 window surrounding the sample site for the 5m 

resolution data while a 3-by-3 window for the 10m resolution data to achieve similar 

sampling resolution for the soil moisture inversion. Their results are shown in Figure 4-

12, and the RMSE and R
2
 information is listed on Table 4-6. 
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      (a)                  (b) 

   
      (c)                  (d) 

   
      (e)                  (f) 
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      (g)                  (h) 

   
      (i)                  (j) 

   
  (k)                  (l) 
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 (m)                  (n) 

Figure 4-12. Measured and estimated soil moisture on different days: (a) Corn field on 

May 4
th

 (b) Soybean field on May 4
th

 (c) Wheat field on May 4
th

 (d) Corn 

field on May 5
th

 (e) Soybean field on May 5
th

 (f) Wheat field on May 5
th

 (g) 

Corn field on May 18
th

 (h) Soybean field on May 18
th

 (i) Wheat field on 

May 18
th 

(j) Corn field on June 21
st
 (k) Soybean field on June 21

st
 (l) Wheat 

field on April 29
th

 2013 (m) Wheat field on May 9
th

 2013. (n) Overall 

RMSE of different methods. 

Table 4-6. RMSE and R
2 
information on different days ([vol. %]). 

Models Fields 0504 0505 0518 0621 0429 0509 

Y-CIEM 

CORN  5.63 9.49 9.35 6.51   

SOYBEAN  9.07 12.42 8.14 6.13   

WHEAT  3.54 7.21 4.68  9.17 5.83 

OVERALL 8.20 

R
2 

0.54 

ISPIS 

CORN  5.60 7.88 6.71 3.95   

SOYBEAN  7.82 6.72 8.05 4.90   

WHEAT  2.56 7.35 4.64  5.15 2.82 

OVERALL 6.12 

R
2
 0.74 

 For the corn fields during the period from May 4
th

 to May 18
th

, the soils were mostly 

bare soils, and the RMSEs of almost all methods are less than 10 [vol. %]. It should be 

noted that although many sample sites were bare soils in the corn field, some crop stalks 

were randomly present, which could affect the backscattering coefficient. From this view, 

both the SAVSM and Yamaguchi volume scattering model can describe the fluctuated 

scattering caused by crop residues, but the SAVSM is perhaps more suitable to simulate 
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the scattering by crop residues because the ISPIS achieved lower RMSE than that of Y-

CIME. In terms of the soybean fields, their RMSEs are basically higher than those in the 

corn fields. The crop residues in the soybean fields are the primary reason that the 

scattering is more complex than in bare soils. From Figure 4-12(b), Figure 4-12(e) and 

Figure 4-12(i), we can see that the ISPIS and Y-CIEM have lower RMSE even if there 

are corn residues. However, the ISPIS has lower RMSE than that of Y-CIEM; this is 

mainly because the SAVSM varies with RVI, whereas the RVIs of Yamaguchi volume 

scattering stays constant with its values 0.61 or 1 that are depicted in Table 4-4. It should 

also be noted that, in the wheat fields, only four sample sites are collected in 2014. This 

may not be adequate to demonstrate the feasibility of the ISPIS in the wheat field. To 

overcome this issue, two datasets collected on April 29
th

 and May 9
th

 2013 are employed 

for the wheat field validation with their results shown in Figure 4-12(l) and Figure 4-

12(m). We can see that the ISPIS has much lower RMSE than that of the Y-CIEM on 

each date with their average RMSE at approximately 4.5 [vol. %] and 6.1 [vol. %], 

respectively. Lastly, on June 21
st
, the ISPIS has lower RMSE than the Y-CIEM in the 

corn fields when the corn has already emerged with a sparse canopy. From this view, the 

SAVSM is perhaps more suitable to describe the field under vegetation cover than the 

Yamaguchi volume scattering model. Overall, the ISPIS has lower RMSE, 6.12 [vol. %], 

for all fields on different dates than that of Y-CIEM, with its value of 8.20 [vol. %]. The 

R
2
 of the ISPIS is also higher than that of the Y-CIEM with their values of 0.74 and 0.54 

respectively. Therefore, we may conclude that the soil moisture derived by the ISPIS is in 

agreement with the ground truth in the corn, soybean and wheat fields during the period 

from May to June in 2013 and 2014 at the early growing stage, and the SAVSM is 

perhaps more suitable to describe the fluctuated scattering than the Yamaguchi volume 

scattering model. 

In addition, because the soil moisture changes over time due to the rain events or the 

drying process caused by the sun, the variability of the averaged soil moisture measured 

at fieldwork (solid lines) and the estimated ones by the ISPIS (dash lines) is compared 

and presented in Figure 4-13. According to the weather records in study area 2014, it 

shows that the rainfall happened in late April 2014 making the corn, soybean and wheat 
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fields wet at the beginning of May 2014 with an average soil moisture greater than 25 

[vol. %]. A small rainfall event happened before May 18
th

 2014 and made the measured 

soil moisture greater than 25 [vol. %] in these three fields as well.  However, the drying 

period that happened at the beginning of June resulted in the measured soil moisture 

decreasing to values less than 20 [vol. %]. In terms of study area 2013, the wet soil on 

April 29
th

 2013 was due to the rainfall that occurred on April 29
th

. This later decreases to 

approximately 18 [vol. %] on May 9
th

 because of the drying period happening at the 

beginning of May. Overall, the variation of the soil moisture estimated by the ISPIS over 

time shows the consistency with the measured soil moisture in those fields in 2013 and 

2014, which can be seen clearly in Figure 4-13 with their correlation coefficients of 0.99, 

0.95 and 0.97 in corn, soybean and wheat fields, respectively.  

 

Figure 4-13. Changes in soil moisture over time as estimated by RADARSAT-2 and as 

measured in the agricultural fields in 2014 and 2013. 

4.5.3  Surface Roughness Validation  

The validation of the surface roughness is performed on two aspects: the first is its 

variation over time, and the other is the estimated surface roughness compared with the 

measured one. Specifically, the C2 and S2 fields in study area 2014 are selected for the 

variation analysis. The histograms of the surface roughness in their fields are shown in 

Figure 4-14, and the comparison between the estimated roughness and measured 

roughness is shown in Figure 4-15.  
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 (a)  

  
 (b)  

   
 (c)  

   
 (d)  
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(e) 

Figure 4-14. Surface roughness histograms for the corn and soybean fields, from left to 

right, on different days: (a) May 5
th

 (b) May 18
th

 (c) June 11
th

 (d) June 21
st
 

(e) variation of roughness over time in corn and soybean fields. 

 

 
 (a)                (b) 
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(c)                (d) 

 
 (e)                (f) 

 
 (g)                (h) 
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 (i) 

Figure 4-15. Measured and estimated surface roughness on different dates: (a) Corn field 

on May 4
th

 (b) Soybean field on May 4
th

 (c) Corn field on May 5
th

 (d) 

Soybean field on May 5
th

 (e) Corn field on May 18
th

 (f) Soybean field on 

May 18
th

 (g) Corn field on June 11
th

 (h) Soybean field on June 11
th

 (i) entire 

field on all days. 

Before the beginning of May, the corn field had been ploughed showing mainly bare soils, 

and many smooth large size clods were left in the field, which makes the corn field very 

rough from the beginning of May to the middle of May. The soybean field also appear 

rough due to the fluctuation scattering caused by the corn residues. However, the seedbed 

preparation of both fields occurred at the end of May, resulted in a relatively smooth 

surface for both fields. That means the KS will be changing from a high value to a low 

value from May to June. Figure 4-14(c) and Figure 4-14(d) show this change, with 

average KS values of 1.22 and 1.32 in the corn fields and 1.43 and 1.41 in the soybean 

fields. This change has also been depicted in Figure 4-14(e), which shows the change of 

roughness from May to June, before and after the crop planting. The same as for the 

estimated soil moisture, the surface roughness is also obtained by averaging the pixels. It 

should also be noted that the peaks in the histograms of Figure 4-14(a) and Figure 4-

14(b) on May 5
th

 and May 18
th

 are observed in both the corn and soybean fields. In the 

corn fields, there are around 30% and 15% pixels having values of 2.5 and 2.1 on May 5
th

 

and May 18
th

, respectively. It is primarily caused by the relatively large roughness during 

the ploughed stage as the ploughed field had large clods according to our measurements. 

Other studies have also reported that the majority of the averaged RMS heights are 
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approximately 2.6 cm, or as high as 4 cm (Alvarez-Mozos et al., 2006; Baghdadi et al., 

2008), which are consistent with our measurements. For the soybean field, the peaks in 

the histograms have approximately 30% and 40% pixels with their roughness being 

approximately 2.5 and 2.1 respectively. The high peak is likely caused by the corn 

residues that were left in the soybean fields as shown in Figure 4-2(b), and the corn 

residues can cause fluctuated scatterings. The similar histograms observed on May 5
th

 

and May 18
th

 in the soybean field can also demonstrate the consistent performance of the 

ISPIS. This is because the high peaks are observed on both dates except that the 

roughness on May 18
th

 is less than that on May 5
th

 due to the flattened residues caused by 

the human activities. 

Figure 4-15 shows the KS derived by different methods on different dates. For both the 

ISPIS and Y-CIEM, the RMSE in the corn fields is lower than that in the soybean fields, 

which is primarily due to the crop stalks left in the corn fields, which caused the 

scattering to fluctuate. Specifically, on May 4
th

 and May 5
th

 in the corn fields, the surface 

roughness derived by the ISPIS and Y-CIEM did not change much on either date because 

they were both bare soils. We also know that the RADARSAT-2 data on the two dates 

had different orbits: one is ascending and the other is descending. However the orbit 

difference is not the primary reason causing the variation, as there were no prominent 

roughness patterns. In addition, both the ISPIS and the Y-CIEM have the issue of 

underestimation. This is because to avoid the speckle noise, a window size averaging 

process is adopted for the estimation of the soil roughness. This can influence the 

estimated results, because the roughness often shows little spatial dependency, which 

means that the surface roughness taken at one position often poorly represents its 

surrounding areas. Therefore, the averaging process for the estimation of surface 

roughness could lead to an underestimation.  

We also observed that the estimated roughness of both Y-CIEM and ISPIS has no strong 

correlation with the ground truth, with their R
2
 values of 0.184 and 0.185, respectively, 

which is perhaps caused by the small range of the roughness between 1.5 and 2.5, 

resulting in a biased correlation coefficients calculation. Both the ISPIS and Y-CIEM 
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have RMSEs less than 0.75 on different days in the corn and soybean fields. The overall 

RMSE of the ISPIS is around 0.48, which is very similar to that of the Y-CIEM with its 

value of 0.50. This similar RMSE is because the sample sites in the corn or soybean 

fields with bare soils that are dominated by surface scattering are also considered for the 

overall RMSE calculation. For the surface scattering dominant regions, the CIEM is 

employed by both the ISPIS and Y-CIEM for surface parameter inversion, because the H 

and 𝛼 threshold to distinguish the surface and volume scattering employed in this chapter 

is both adopted by the Y-CIEM and ISPIS. Therefore, to invert the surface parameters of 

these surface scattering dominated pixels, their results will be almost the same as shown 

in Figure 4-15(c), Figure 4-15(e) and Figure 4-15(h). However, for fields covered with 

corn residues or short corn plants, the volume scattering is dominant. To invert surface 

parameters for these fields, the difference between the ISPIS and the Y-CIEM becomes 

larger compared with fields with bare soils as depicted in Figure 4-15(d) and Figure 4-

15(g). From this perspective, we conclude that the ISPIS can describe more complex 

situations than the Y-CIEM, as the ISPIS can vary with the RVI, whereas the RVI of the 

Yamaguchi volume scattering model stays constant. 

4.5.4  RVI and Vegetation Water Content (VWC) of Wheat 

The ISPIS determines the optimum volume scattering model based on the RVI, which is 

related to the vegetation water content (VWC) of wheat (Kim et al., 2014), having a 

strong correlation with the coefficient 0.94 for the C band. The empirical relationship 

between the RVI and VWC developed by Kim et al. (2014) is adopted for wheat VWC 

inversion in this chapter, and the results are shown in Figure 4-16. The wheat planting 

time in our study area is different from that of Kim et al. (2014) since they are from 

different ecoregions, with a time difference of approximately 30 days through comparing 

the ground truth photos and phenology. To analyze the derived VWC qualitatively using 

the ISPIS, we treat the VWC derived by Kim et al. (2014) as the ground truth, and 

compare it with the VWC derived by the ISPIS, and the comparison is shown in Figure 4-

16(e).  
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(a)          (b) 

   
(c)        (d) 

 
 

 (e) 

Figure 4-16. VWC of wheat on different days and its comparison with the ground truth 

measured by Kim et al.: (a) May 5
th

 (b) May 18
th

 (c) June 11
th

 (d) June 21
st
 

(e) comparison between the ISPIS and the Kim et al. (2014) DoY: Day of 

Year. Note: the “DoY by Kim et al.” means the day of year Kim et al. 
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(2014), which has the same phenology corresponding to the “DoY” in this 

chapter. 

Figure 4-16(a) and Figure 4-16(e) depict the very high VWC on day 125 (May 5
th

), with 

a value greater than 3.0 kg m
-2

, whereas the corresponding VWC by Kim et al. (2014) is 

approximately 0.1 kg m
-2

. This significant difference is mainly caused by the interaction 

with the crop residue left in the wheat field on May 5
th

 when the RADARSAT-2 can 

penetrate the sparse wheat canopy easily and the VWC is high. The ground truth photo 

shown in Figure 4-2(c) confirms this. In addition, as the wheat grew tall and dense, the 

VWC derived by the ISPIS is coherent with that by Kim et al. (2014) from June 11
th

 due 

to the dominating volume scattering from the wheat canopy. From this view, we conclude 

that the crop residues also affect the RVI, especially when the RADARSAT-2 can 

penetrate the wheat canopy and reach the ground, resulting in the derived VWC being not 

very accurate. Therefore, the RVI is not only an index that describes the vegetation 

scattering but also an indicator that characterizes the randomness of scattering caused by 

crop residues.  

4.5.5  Simple Analysis of the Two-way Attenuation by Crop 
Canopy 

In this chapter, we treat the total backscattering as the sum of the surface scattering 

caused by the bare soil and the volume scattering caused by the crop canopy or the crop 

residues without considering the attenuation effect. This is primarily because the 

attenuation is relatively weak at the early growing stage. A simple analysis of the two-

way attenuation caused by the vegetation and corn residues is performed in this section. 

The Michigan Microwave Canopy Scattering Model (MIMICS) developed by Ulaby in 

1990 (Ulaby et al., 1990) is suitable for vegetation covered areas where the agents 

responsible for scattering have discrete configurations (Toure et al., 1994). They include 

wheat, corn residue, soybean and corn; and many studies have adapted this model to 

describe the scattering of crops such as wheat and soybean (Toure et al., 1994; De Roo et 

al., 2001). The MIMICS offers an efficient way and is employed for different crop 

attenuation analysis in this section. However, to apply the MIMICS for attenuation 
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analysis, some assumptions are required for each crop as the MIMICS was originally 

developed for the forest areas. In the MIMICS model, the trunk height is considered 

much larger than the wavelength in order to simplify the computation of the trunk’s 

scattering matrix. However, in agricultural fields, particularly for corn, soybean and 

wheat where the stem heights are of the order of the wavelength for the C band earlier in 

the growing stage (Toure et al., 1994). Therefore, it is reasonable that we assume the 

wheat in tillering stage consisting of small-sized leaves without stems at the early 

growing stage from the end of April to the middle of May. The corn residue standing in 

the soybean field can be treated as a very dry primary branch with a vertical distribution 

without any leaves as they are slightly larger than the C-band radar wavelength. It should 

also be noted that on June 21
st
, the soybean had emerged but very small and the effects on 

the backscattering by their stems can be ignored. In terms of the corn, it can be assumed 

as consisting of a primary trunk with some broad leaves within its canopy. In addition, 

the soil conditions are also required in the MIMICS model. Although the soil conditions 

are variable in different fields, this chapter is focusing on the canopy attenuation analysis. 

Therefore, we treat all crop fields as having the same ground conditions. For attenuation 

analysis, crop parameters at different growing stages on May 5
th

 2014 (S01), May 18
th

 

2014 (S02), June 4
th

 2014 (S03), and June 21
st
 2014 (S04) are listed in Table 4-7 with 

their corresponding two-way attenuation percentage shown in Figure 4-17. It should be 

noted that some parameters such as the height, leaf density and gravimetric moisture 

content are measured during field work while other parameters such as the dry density of 

leaf material or stem material are either referred to Toure et al. (1994) or using default 

values given by the MIMICS for a simple analysis.  Finally, because the RADARSAT-2 

data we adopted in this chapter has four modes with incidence angles of 24, 29, 35, and 

39 degrees respectively, the analysis of the attenuation of these crops is performed on 

these four different incidence angles as the crop grows. 
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Table 4-7. Crop parameters of different agricultural fields in study area 2014 at different 

growing stages for C-band RADARSAT-2 data with its frequency of 5.405 

GHZ. S01: 2014 May 5
th

; S02: 2014 May 18
th

; S03: 2014 June 04
th

; S04: 

2014 June 21
st
. 

Crops Structure Parameters S01 S02 S03 S04 

Ground 

Soil Moisture (%) 20 

RMS height (cm) 1 

Correlation Length (cm) 10 

Soil 

Texture 

Clay (%) 25 

Sand (%) 15 

Wheat 
Leaf 

Gravimetric Moisture Content (%) 80 80 75 - 

Dry density of leaf material (0-1) 0.1 0.1 0.1 - 

Thickness (cm) 0.02 0.02 0.02 - 

Length (cm) 6 11 16 - 

Width (cm) 0.4 0.9 1.5 - 

Density (N/m
3
) 

1000

0 
7500 4500 - 

Canopy Thickness (m) 0.10 0.15 0.25  

Corn 

Residue 

Stem 

Gravimetric moisture content (%) 10 - - - 

Dry density of stem material (0-1) 0.3 - - - 

Density (N/m
3
) 15 - - - 

Diameters (cm) 2.5 - - - 

Length (m) 0.4 - - - 

Canopy Thickness (m) 0.40    

Corn 

Stem 

Gravimetric moisture content (%) - - 70 70 

Dry density of stem material (0-1) - - 0.3 0.3 

Density (N/m
3
) - - 350 140 

Diameters (cm) - - 0.5 0.8 

Length (m) - - 0.02 0.05 

Leaf 

Gravimetric moisture content (%) - - 80 80 

Dry density of leaf material (0-1) - - 0.1 0.1 

Thickness (cm) - - 0.03 0.03 

Length (cm) - - 6 15 

Width (cm) - - 1.5 4 

Density (N/m
3
) - - 170 120 

Canopy Thickness (m)   0.08 0.25 

Soybean 
Leaf  

Gravimetric moisture content (%) - - - 80 

Dry density of leaf material (0-1) - - - 0.1 

Thickness (cm) - - - 0.05 

Length (cm) - - - 3 

Width (cm) - - - 2.5 

Density (N/m
3
) - - - 360 

Canopy Thickness (m) - - - 0.05 
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      (a)                                                                 (b) 

   
      (c)                                                                 (d) 

    
      (e)                                                                 (f) 
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(g) 

Figure 4-17. Two-way attenuation coefficients of different crops at different growing 

stages under different incident angles. (a) wheat field on May 5
th

 2014 (b) 

wheat field on May 18
th

 2014 (c) wheat field on June 04 2014 (d) soybean 

field on May 5
th

 (e) corn field on June 4
th

 2014 (f) corn field on June 21
st
 

2014. (g) soybean field on June 21
st
. 

Generally, in corn, soybean and wheat fields, as the incidence angle increases, the two-

way attenuation becomes more significant as shown in Figure 4-17. This is because the 

large incidence angle increases the path length through the vegetation which will cause 

an increase in the extinction coefficient, which is composed of both absorption and 

scattering losses. In addition, Figure 4-17 shows that the two-way attenuation of wheat is 

not significant until June 4
th

 with its two-way attenuation being approximately greater 

than 30% for the V polarization and greater than 22% for the H polarization. On May 5
th

 

and May 18
th

, both the H and V polarizations have small two-way attenuation 

coefficients with values less than 4% and 15% respectively. For the corn residues left in 

the soybean field, they are very dry, with gravimetric water content being approximately 

10%. This will cause a weak two-way attenuation with values less than 17% for V 

polarization and less than 15% for the H polarization when the incidence angle is less 

than 40 degrees. When the corn emerged on June 4
th

 with a very few leaves and small 

stems, its two-way attenuation for the V polarization is less than 3% while for the H 

polarization it is less than 1.5%. As the corn continues to grow until June 21
st
, the two-

way attenuation becomes larger than that of on June 4
th

 but not significant with H 
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polarization less than 13% and V polarization less than 20%. In terms of the soybean, on 

June 21
st
 only very small leaves were observed and their stems can be ignored. Hence, it 

seems apparent for both H and V polarization with their two-way attenuation much less 

than 1%. The proposed model in this chapter is focusing on the crops at the early growing 

stage; hence, it is reasonable to ignore the attenuation caused by the crop canopy during 

the early growing stages.  

4.5.6  Discussion of Scattering over Bare Soils 

The threshold of 𝐻 < 0.6 𝑎𝑛𝑑 𝛼 < 40∘ is adopted to distinguish the bare soils from other 

fields such as fields with crop residues and low vegetation cover. However, 

approximately 30% of pixels are dominated by the volume scattering even if it is bare 

soil, which is shown prominently on the two histograms for May 5
th

 and May 15
th

 2014 

in the corn field shown in Figure 4-18. High entropy values that are classified as volume 

scattering in the bare soil field are perhaps contributed by the randomly distributed crop 

residues or the dry soil penetration effect for high frequency radar that has been 

investigated by Baghdadi et al. (2013). The moisture profile (i.e., soil penetration) has 

small effect on the HH and VV backscattering signals, but it is important to use the same 

protocol to measure the ground truth soil moisture for accurate inversion (Le Morvan et 

al., 2008). In addition, the effects of the moisture profile on the HV backscattering signals 

still require further investigation. In addition, at the early growing stage when the crop is 

less dense, the volume scattering from the corn residues or vegetation and the surface 

scattering caused by the direct ground scattering are mixed together. Therefore, it is 

difficult to distinguish bare soils and the fields covered by vegetation completely. 

However, for the corn fields with bare soil on May 5
th

 and May 15
th

 most of the pixels 

(approximately 70%) are classified as surface scattering as shown in figure 18 when the 

threshold is applied. From this perspective, the threshold selected in this chapter is 

appropriate. Finally, the coefficients of the surface and the volume components of the 

bare soil on May 5
th

 2014 and May 15
th

 2014 are shown in Figure 4-19. It shows that 

even though approximately 30% of pixels are occupied by the volume scattering, their 

backscattering coefficients are much less than that of the surface scattering.  
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 (a) 

   
 (b) 

Figure 4-18. Histograms and cumulative distribution of functions (CDF) of H and 𝛼 in 

C2 field on May 5
th

 and May 15
th

. 

 

   

 (a) 
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 (b) 

Figure 4-19. The coefficients of the surface and volume components for the bare soils on 

May 5
th

 and May 15
th

 (from left to right is the surface and volume 

coefficient respectively). 

4.6 Conclusion 

An integrated surface parameter inversion scheme is developed in this chapter, 

integrating the calibrated IEM and a simplified adaptive volume scattering model.  The 

analysis of the H-𝛼 decomposition shows that the dominant scatterings are surface and 

volume scatterings in wheat, soybean and corn fields at their early growing stages. The 

dominant surface scattering caused by the bare soil and the dominant volume scattering 

by crop residues and fields under vegetation cover are distinguished by an H less than 0.6 

and an 𝛼 less than 40 degrees. For the inversion of the soil moisture, both the Y-CIEM 

and ISPIS have lower RMSE in the corn fields than in the soybean fields, which is due to 

the fluctuated scattering caused by the corn residues. However, the Y-CIEM has an 

overall RMSE of 8.35 [vol. %], which is higher than the 6.12 [vol. %] of the ISPIS, 

demonstrating the advantage of the SAVSM over the Yamaguchi volume scattering 

model. In terms of the surface roughness, the Y-CIEM and ISPIS have very small 

differences in their overall RMSEs of 0.50 and 0.48, respectively, over bare soils. 

However, in fields covered with corn residues or vegetation, the ISPIS has lower RMSE 

and performs better than that of the Y-CIEM. It should also be noted that both methods 

have certain underestimation, which is caused by the averaging process to avoid the 

intrinsic speckles of radar. The VWC of wheat derived by the ISPIS is analyzed 

qualitatively through comparing with the results obtained by Kim et al. (2014), 

demonstrating that the RVI is not only an index that describes the vegetation scattering 
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but also an indicator that characterizes the randomness of scattering caused by the crop 

residues at the beginning of the crop growing stage.  

Finally, two aspects must be considered when the ISPIS is applied: one is that in addition 

to the dominant surface scattering, there are many volume scatterings (approximately 

30% in our experiments) over bare soils, which are perhaps caused by the crop residues 

or the dry penetration effects, and this issue requires further investigation. Whereas the 

other one is the two-way attenuation caused by the vegetation canopy that has not been 

considered in this chapter, as at the early growing stage the two-way attenuation rates are 

relatively weak according to the simulated results of the MIMICS. Future research will 

continue to improve the ISPIS by taking into consideration the attenuation effect caused 

by the crop canopy to extend the model application to the whole growing season even 

with dense crop canopy. In addition, a multi-angular polarimetric decomposition 

proposed by Jagduhuber et al. (2013) uses L band to estimate the soil moisture 

successfully. This method attempts to improve the inversion rate of soil moisture 

estimation whereas the inversion rate is not a key issue in ISPIS due to the mathematical 

fitting. However, multi-angular data increases the number of observations, which can 

improve solving the unknown parameters in ISPIS.  
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Chapter 5  Application of Polarization Signature to Crop 
Monitoring and Classification* 

5.1 Introduction 

Synthetic Aperture Radar (SAR) with its all-weather day and night data acquisition 

capability provides a more reliable data source than optical sensors, which are limited by 

solar illumination, cloud cover, and haze (Woodhouse, 2006). In particular, Polarimetric 

SAR (PolSAR) with four polarization channels has more potential to reveal the target 

scattering mechanisms than the single polarization SAR does, which can help better 

capture the scattering of various targets with different shapes and structures so as to 

distinguish them (Lee & Pottier, 2009). More encouragingly, several countries are in 

preparation to launch radar constellations which will significantly reduce the revisit time 

and increase the multi-angle and InSAR capability. Some examples are the RADARSAT 

Constellation Mission (RCM) in Canada, TerraSAR (TerraSAR-X, Tandem-X and 

Tandem-L) in Germany, and the Sentinel constellation (Sentinel-1, Sentinel-2, and 

Sentinel-3, etc.)  by the European Commission. The short revisit time means that repeat 

data coverage can be achieved within shorter intervals to avoid data gaps during key crop 

growth stages.  It will also help the development of multi-temporal classification and 

analysis method.  

To analyze the scattering mechanisms of the target, the widely used methods in PolSAR 

are based on two primary target decomposition theories: the coherent decomposition that 

is based on the single look scattering matrix and the incoherent decomposition that is 

based on the multi-look scattering matrix (Huang et al., 2015). The coherent 

decomposition is usually applied to analyze stationary targets such as buildings in urban 

                                                 

*
 A version of this chapter has been submitted and under review as “Huang, Xiaodong, 

Wang, Jinfei, and Shang, Jiali (2016). Application of Polarization Signature  to Crop 

Monitoring and Classification Using Multi-Temporal C-Band Polarimetric RADARSAT-

2 Imagery, Remote Sensing of Enviroment.” 
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areas, and the representative ones are the Krogager and the Cameron decompositions 

(Krogager et al., 1997; Cameron et al., 1996). The incoherent decomposition is mostly 

applied to targets that vary with time, and its representative ones are the eigen-based 

decomposition (Cloude & Pottier, 1997) and the model-based decomposition (Freeman & 

Durden, 1998). To analyze the scattering mechanisms of the targets, their decomposed 

polarimetric parameters are always adopted in the analysis in a mathematical way; 

whereas the polarization signature as a 3D plot can fully characterize responses of a 

target as the orientation angle and the ellipticity angle of the polarization ellipse of the 

target changes in a visual way (van Zyl et al., 1987), hence permits easier visual 

identifications of subtle changes in scattering characteristics.  Over the year, many 

researchers have employed the polarization signature for the target scattering analysis or 

the coherent targets identification (Evans et al., 1998; Jafari et al., 2015; Strzelczyk & 

Porzycka-Strzelczyk, 2014), and we will carry on adopting the polarization signature to 

perform the scattering analysis in this chapter. 

 For land use classification, many researchers have developed various algorithms for 

analyzing the PolSAR data. The algorithms can be divided into three categories: 1) 

scattering based method, represented by the eigen-value decomposition method proposed 

by Cloude and Pottier (1997), which classifies targets as eight classes according to eight 

preset zones divided in its H-𝛼 plot. This method has been widely used in polarimetric 

image segmentations (Cao et al., 2007; Park & Moon, 2007). While this method is easy 

to use, the predefined number of classes does not always correspond to the number of 

classes in the PolSAR data, and misclassification can occur when the classes fall on the 

boundaries between the preset zones on the H- 𝛼 plot. 2) statistic-based method: in which 

the widely used one is based on the maximum likelihood classification (MLC) with the 

Wishart distribution (Lee et al., 1999; Lee et al., 1994). It makes full use of the scattering 

matrix, so it is more suitable for the PolSAR classification; however, the physical 

scattering characteristics are always ignored in the Wishart classification. 3) Integrated 

method: to overcome the shortcoming of the Wishart classification, Lee et al. (2004) 

integrated the Freeman decomposition and Wishart classification to preserve the 

scattering mechanisms.  However, misclassification occurs between the rough bare soil 
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and vegetation, especially for the short wavelength such as C- and X-band.  In summary, 

all these classification methods are mostly applied to the single-date image, and targets 

that change over time such as crops will have reduced classification accuracy due to the 

similar scattering mechanisms caused by their similar geometric structure that the 

PolSAR primarily senses. Therefore, to improve the classification accuracy using multi-

temporal images, the time dimension needs to be considered and a multi-temporal 

classification scheme needs to be developed. Jiao et al. (2014) made use of the multi-

temporal polarimetric RADARSAT-2 data for crop mapping and obtained a higher 

classification accuracy than that of the single-date image when the object-oriented 

classification method is adopted. Based on the pixel-based classification method, Liu et al. 

(2013) also obtained high classification accuracy through making use of the multi-year 

RADARSAR-2 data. Hence, both the pixel- and object-based methods demonstrate the 

potential of the multi-temporal data on improving the classification accuracy. In this 

chapter, a new supervised binary-tree classification scheme based on the maximum 

difference of polarization signature (MTSBTCS-MDPS) is proposed for multi-temporal 

full polarimetric SAR data classification. 

In addition to its application of the scattering analysis, the MTSBTCS-MDPS also takes 

the polarization signatures into consideration.  Polarization signature has the potential to 

maximize the difference between two targets in certain orientation angle and ellipticity 

angle (van Zyl et al., 1987), which could help improve land use and land cover 

classification. The MTSBTCS-MDPS attempts to construct a binary tree, in which each 

pair of targets are distinguished based on a newly generated col-polarization or cross-

polarization power image with an optimum polarization basis on an optimum data 

acquisition date. The optimum polarization basis is determined by the optimum 

orientation angle and ellipticity angle that could maximize the difference of col-

polarization or cross-polarization power through comparing the polarization signatures of 

both targets date by date. The organization of this chapter is as follows:  an introduction 

of the polarization signature as well as the correlation coefficient and the pedestal height 

(PH) is given in section 5.2; the multi-temporal binary-tree classification scheme with the 

maximum difference of polarization signature is given in section 5.3.  The scattering 
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analysis and classification are performed in section 5.4. The conclusion is given in the 

last section. 

5.2 Polarization Signature (PS) 

5.2.1  Polarization Ellipse  

When the propagation medium is free of mobile electric charges, the solution of the 

Maxwell’s equation is a monochromatic plane wave, and the spatial evolution of the 

plane monochromatic wave shows a helical trajectory with its temporal trajectory being a 

polarization ellipse at a fixed position as shown in Figure 5-1.  

 

Figure 5-1. Polarization ellipse. 

Figure 5-1 depicts that the geometry of the polarization ellipse is primarily described by 

two parameters: one is the orientation angle (𝜙) with its range from -90 degrees to 90 

degrees, while the other is the ellipticity angle (𝜏) with its range from -45 degrees to 45 

degrees. As both parameters change, the geometry of polarization ellipse changes 

correspondingly. Specifically, when 𝜏  is equal to 0 degrees, it becomes the linear 

polarization. When 𝜏 is equal to 45 or -45 degrees, it is the circular polarization. Others 

are the elliptical polarizations. The sign of 𝜏  determines the rotation direction of the 

polarization ellipse. By convention, the sense of rotation is determined while looking in 

the direction of propagation. When its sign is negative, it is a right hand rotation; while it 
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is positive, the polarization ellipse shows left hand rotation. For the current SAR antennas, 

only the Cartesian polarization basis is adopted, which means it transmits the H 

(horizontal) or V (vertical) polarization and receives the H or V correspondingly. Then, a 

2 by 2 Sinclair matrix in Cartesian basis is formed to relate the transmit and receive 

electric field vectors (Lee & Pottier, 2009), 

 𝑆(𝑥,𝑦) = 𝑒
𝑗𝜙ℎℎ [

|𝑆ℎℎ| |𝑆ℎ𝑣|𝑒
𝑗(𝜙ℎ𝑣−𝜙ℎℎ)

|𝑆𝑣ℎ|𝑒
𝑗(𝜙𝑣ℎ−𝜙ℎℎ) |𝑆𝑣𝑣|𝑒

𝑗(𝜙𝑣𝑣−𝜙ℎℎ)
] (5-1) 

where the  𝑒𝑗𝜙ℎℎ is the absolute phase term and can be ignored. When the Stokes vector 

is applied, the Muller matrix that relates the transmit and receive Stokes vectors will be 

described as, 

 

𝑀

=

[
 
 
 
 

|𝑆ℎℎ|
2 |𝑆ℎ𝑣|

2

|𝑆𝑣ℎ|
2 |𝑆𝑣𝑣|

2

𝑅𝑒(𝑆ℎ𝑣
∗ 𝑆ℎℎ) −𝐼𝑚(𝑆ℎ𝑣

∗ 𝑆ℎℎ)

𝑅𝑒(𝑆𝑣ℎ
∗ 𝑆𝑣𝑣) −𝐼𝑚(𝑆𝑣ℎ

∗ 𝑆𝑣𝑣)

2𝑅𝑒(𝑆𝑣ℎ
∗ 𝑆ℎℎ) 2𝑅𝑒(𝑆𝑣𝑣

∗ 𝑆ℎ𝑣)

2𝐼𝑚(𝑆𝑣ℎ
∗ 𝑆ℎℎ) 2𝐼𝑚(𝑆𝑣𝑣

∗ 𝑆ℎ𝑣)

𝑅𝑒(𝑆𝑣𝑣
∗ 𝑆ℎℎ + 𝑆ℎ𝑣

∗ 𝑆ℎ𝑣) −𝐼𝑚(𝑆𝑣𝑣
∗ 𝑆ℎℎ − 𝑆ℎ𝑣

∗ 𝑆ℎ𝑣)

𝐼𝑚(𝑆𝑣𝑣
∗ 𝑆ℎℎ + 𝑆ℎ𝑣

∗ 𝑆ℎ𝑣) 𝑅𝑒(𝑆𝑣𝑣
∗ 𝑆ℎℎ − 𝑆ℎ𝑣

∗ 𝑆ℎ𝑣) ]
 
 
 
 

 (5-2) 

where  𝑀  is the Stokes matrix while  𝑅𝑒(∙)  means the real part and 𝐼𝑚(∙) means the 

imagery part. 

5.2.2  Polarization Signature 

As seen from the above section, either the Sinclair matrix or the Muller matrix only 

represents the polarization in the Cartesian polarization basis. To present the scattering 

matrix in other polarization basis, the theory of the polarization signature proposed by 

van Zyl et al. (1987) provides an efficient way to fully characterize the polarimetric 

responses of a target with its formula shown as, 

 𝜎°(𝜏𝑖, 𝜙𝑖, 𝜏𝑗 , 𝜙𝑗) =
4𝜋

𝑘2
(

1
𝑐𝑜𝑠 2𝜏𝑖 𝑐𝑜𝑠 2𝜙𝑖
𝑐𝑜𝑠 2𝜏𝑖 𝑠𝑖𝑛 2𝜙𝑖

𝑠𝑖𝑛 2𝜙𝑖

) ∙ (∑[𝑀(𝑛)]

𝑁

𝑛=1

)

(

 

1
𝑐𝑜𝑠 2𝜏𝑗 𝑐𝑜𝑠 2𝜙𝑗
𝑐𝑜𝑠 2𝜏𝑗 𝑠𝑖𝑛 2𝜙𝑗

𝑠𝑖𝑛 2𝜙𝑗 )

  (5-3) 
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Where 𝜎° is the polarimetric response, while 𝜏𝑗  and 𝜙𝑗  are the orientation angle and 

ellipticity angle of the receiving antenna. The 𝜏𝑖  and 𝜙𝑖  are the orientation angle and 

ellipticity angle of the transmitting antenna. The 𝑀 is the Muller matrix. For each pair of 

transmitting and receiving orientation and ellipticity angles, there exists a corresponding 

polarization response. Hence, a 3D plot can be constructed when all pairs are combined 

together. Commonly, there are two different types of polarization signatures widely used 

currently: one is the co-polarization signature (col-PS) with the orientation and ellipticity 

angles of the receive and transmit polarizations being identical, the other one is the cross-

polarization signature (cross-PS) with the orientation and ellipticity angles of the receive 

and transmit polarization being orthogonal. In this chapter, both polarization signatures 

are adopted. In practice, the coherency matrix is more widely used than the Muller matrix 

due to its underlying physical meanings. When the reciprocity theorem is fulfilled, the 3 

by 3 coherency matrix in Cartesian polarization basis is shown as, 

 

𝑇3(𝑥,𝑦)

=
1

2
[

|〈𝑆ℎℎ + 𝑆𝑣𝑣〉|
2 〈𝑆ℎℎ + 𝑆𝑣𝑣〉〈𝑆ℎℎ − 𝑆𝑣𝑣〉

∗ 2〈𝑆ℎℎ + 𝑆𝑣𝑣〉〈𝑆ℎ𝑣〉
∗

〈𝑆ℎℎ − 𝑆𝑣𝑣〉〈𝑆ℎℎ + 𝑆𝑣𝑣〉
∗ |〈𝑆ℎℎ − 𝑆𝑣𝑣〉|

2 2〈𝑆ℎℎ − 𝑆𝑣𝑣〉〈𝑆ℎ𝑣〉
∗

2〈𝑆ℎ𝑣〉〈𝑆ℎℎ + 𝑆𝑣𝑣〉
∗ 2〈𝑆ℎ𝑣〉〈𝑆ℎℎ − 𝑆𝑣𝑣〉

∗ 4|〈𝑆ℎ𝑣〉|
2

] (5-4) 

where the |〈𝑆ℎℎ + 𝑆𝑣𝑣〉|
2 represents the dominant surface scattering, the |〈𝑆ℎℎ − 𝑆𝑣𝑣〉|

2 

represents the double-bounce scattering, and the 4|〈𝑆ℎ𝑣〉|
2  represents the volume 

scattering. The procedure of generating the polarization signature based on the coherency 

matrix is shown below (Lee & Pottier, 2009), 

 𝑇3(𝑢,𝑢⊥) = 𝑈3𝑇(2𝜙, 2𝜏, 2𝛼)
−1𝑇3(𝑥,𝑦)𝑈3𝑇(2𝜙, 2𝜏, 2𝛼) (5-5) 

where, 

 

𝑈3𝑇(2𝜙, 2𝜏, 2𝛼) = 𝑈3𝑇(2𝜙)𝑈3𝑇(2𝜏)𝑈3𝑇(2𝛼) 

𝑈3𝑇(2𝜙) = [
1 0 0
0 𝑐𝑜𝑠2𝜙 𝑠𝑖𝑛2𝜙
0 −𝑠𝑖𝑛2𝜙 𝑐𝑜𝑠2𝜙

] 
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𝑈3𝑇(2𝜏) = [
𝑐𝑜𝑠2𝜏 0 𝑗𝑠𝑖𝑛2𝜏
0 1 0

𝑗𝑠𝑖𝑛2𝜏 0 𝑐𝑜𝑠2𝜏
] 

𝑈3𝑇(2𝛼) = [
𝑐𝑜𝑠2𝛼 𝑗𝑠𝑖𝑛2𝛼 0
𝑗𝑠𝑖𝑛2𝛼 𝑐𝑜𝑠2𝛼 0
0 0 1

] 

Where the 𝑇3(𝑢,𝑢⊥) is the coherency matrix in another polarization basis; 𝑈3𝑇(2𝜙, 2𝜏, 2𝛼) 

is the rotation matrix to change the Cartesian polarization to other polarizations. It should 

be noted that 𝑈3𝑇(2𝛼) is only related to the phase, and it’s independent of the power of 

the polarization signature; hence, it is set to 0 degree. The powers of co-polarization and 

cross-polarization are, 

 

𝐶𝑜𝑙𝑝𝑜𝑙 =  (𝑅𝑒(𝑇11) + 𝑅𝑒(𝑇22) + 2 ∗ 𝑅𝑒(𝑇12)) 2⁄  

𝐶𝑟𝑜𝑠𝑠𝑝𝑜𝑙 =  𝑅𝑒(𝑇33) 2⁄  

(5-6) 

where 𝑇11 = |〈𝑆ℎℎ + 𝑆𝑣𝑣〉|
2 2⁄ ,  𝑇12 = 〈𝑆ℎℎ + 𝑆𝑣𝑣〉〈𝑆ℎℎ − 𝑆𝑣𝑣〉

∗ , 𝑇22 = |〈𝑆ℎℎ − 𝑆𝑣𝑣〉|
2 2⁄  

and 𝑇33 = 2|〈𝑆ℎ𝑣〉|
2. To analyze the target scattering, it is essential to understand some of 

the canonical scatterings such as the surface, double-bounce and helix scattering. Their 

coherency scattering matrices in the Cartesian polarization basis with their polarization 

signatures are shown in Table 5-1. 
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Table 5-1. Polarization signatures and coherency matrices of canonical scatterings. 

Targets Coherency Matrix 
Col-polarization 

signature 

Cross-polarization 

signature 

Surface [
1 0 0
0 0 0
0 0 0

] 

  

Double-

bounce 
[
0 0 0
0 1 0
0 0 0

] 

  

Helix [

0 0 0
0 1 2⁄ 1 2⁄ 𝑗

0 −1 2⁄ 𝑗 1 2⁄
] 

  

Dipole 

with 0 

degrees 

[
1 2⁄ 1 2⁄ 0
1 2⁄ 1 2⁄ 0
0 0 0

] 

  

Dipole 

with 45 

degrees 

[
1 2⁄ 0 1 2⁄
0 0 0
1 2⁄ 0 1 2⁄

] 

  

Dipole 

with 90 

degrees 

[
1 2⁄ −1 2⁄ 0
−1 2⁄ 1 2⁄ 0
0 0 0

] 
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5.2.3  Correlation Coefficient and Pedestal Height of PS 

The polarization signature is a full description of the scattering of the target in a 3D plot. 

To analyze the scattering mechanisms of the interested targets based on the polarization 

signatures, the Pearson correlation coefficient is employed, which is shown as,  

 𝑟 =
𝑛∑𝑝1𝑝2 − ∑ 𝑝1∑ 𝑝2

𝑛
1

𝑛
1

√[𝑛∑ 𝑝1
2 − (∑ 𝑝1

𝑛
1 )2𝑛

1 ][𝑛 ∑ 𝑝2
2 − (∑ 𝑝2

𝑛
1 )2𝑛

1 ]
 (5-7) 

where 𝑛  is the number of the polarization states. The range of the Pearson correlation 

coefficient varies from -1 to 1, and the minus value means the negative correlation while 

the positive value means the positive correlation. Being the same as Jafari et al. (2015), it 

is normalized between 0 and 1 for simplicity, then the new correlation coefficient 

becomes, 

 𝑃𝑐 = 0.5 × (𝑟 + 1) (5-8) 

Because both the col-polarization and cross-polarization signatures are adopted in this 

chapter, the modified correlation coefficient employed is shown as, 

 𝑃 = 0.5 × (𝑃𝑐𝑜𝑙 + 𝑃𝑐𝑟𝑠) (5-9) 

Where 𝑃 is the correlation coefficient, and 𝑃𝑐𝑜𝑙 and 𝑃𝑐𝑟𝑠 are the correlation coefficients of 

the col-polarization signature and the cross-polarization signature, respectively. To 

perform the scattering analysis, the correlation coefficient between the PS of the target 

and each PS of the canonical scatterings will be calculated, and the one having the 

highest value of 𝑃  is considered to be the dominant scattering. Since the canonical 

scattering mentioned above are all completely polarized, to describe the un-polarized 

components, the pedestal height (PH) is employed and defined as, 

 𝑃𝐻 =
𝑃𝑚𝑖𝑛
𝑃𝑚𝑎𝑥

 (5-10) 
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where PH is the pedestal height; the 𝑃𝑚𝑖𝑛 is the minimum power of the PS while 𝑃𝑚𝑎𝑥 is 

the maximum power of the PS.  The value of PH is affected by different effects, while the 

first cause is when adjacent pixels really contain different types of scatterers, and others 

include multiple scattering and the presence of noise. The smaller the value of PH is, the 

more the backscatter cross section changes with a change in polarization with its value of 

zero meaning a null at some polarization; the higher value means the high un-polarization 

which contains many different kinds of scattering. For those canonical scattering in the 

previous section, all of their PH values are equal to zero, meaning the complete 

polarization and pure scattering. 

5.3 Supervised Binary-Tree Classification Scheme 
(SBTCS) 

5.3.1 Maximum Difference of Polarization Signature (MDPS) 

The polarization signature provides a full description of the polarization response of the 

target in various polarization basis, which offers a potential way to discriminate the 

targets. Many researchers have applied its geometric shape to target discrimination or 

scattering analysis. However, the comparison of polarization signature shapes via the 

point-to-point comparison of each pair of 𝜙  and 𝜏  will be very time-consuming, 

especially when the increments of the 𝜙 and 𝜏 are very small. Moreover, as the number 

of input images (i.e., the multi-temporal images) increases, the issue becomes much more 

severe. In response, a simple way to distinguish two targets is developed by selecting an 

optimum polarization basis to maximize the difference of polarization signatures rather 

than comparing the shapes of the polarization signatures. The optimum 𝜙  and 𝜏 

(𝑂𝑝𝑡(𝜙, 𝜏, 𝑡)) that can maximize the difference between two polarization powers are 

determined through comparing the power ratio of each pair of 𝜙 and 𝜏. The 𝑂𝑝𝑡(𝜙, 𝜏, 𝑡) 

is determined by the maximum difference of the polarization signature (MDPS) proposed 

and is written as, 
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 𝑂𝑝𝑡(𝜙, 𝜏)  ← 𝑀𝐷𝑃𝑆 =  𝑚𝑎𝑥 (
𝑚𝑎𝑥 (𝑃𝑆1(𝜙𝑖, 𝜏𝑗), 𝑃𝑆2(𝜙𝑖 , 𝜏𝑗))

𝑚𝑖𝑛 (𝑃𝑆1(𝜙𝑖, 𝜏𝑗), 𝑃𝑆2(𝜙𝑖, 𝜏𝑗))
) (5-11) 

where the 𝑀𝐷𝑃𝑆 is the maximum difference of the polarization signatures;  𝑃𝑆1(𝜙𝑖, 𝜏𝑗) 

and 𝑃𝑆2(𝜙𝑖 , 𝜏𝑗) are the polarization signatures corresponding to each pair of  𝜙 and 𝜏. 

𝑚𝑎𝑥(∙) and 𝑚𝑖𝑛(∙) are the maximum and minimum value. The above equation is only 

suitable for the single-date image. When it is applied to the multi-temporal images, i.e., 

the time dimension needs to be considered in addition to the optimum 𝜙 and 𝜏, and the 

optimum time (𝑡) also needs to be determined, which is accomplished by the criterion 

that on this data acquisition date and with this pair of 𝜙 and 𝜏, the ratio of power is 

maximum with its formula shown as, 

 𝑂𝑝𝑡(𝜙, 𝜏, 𝑡) ← 𝑀𝐷𝑃𝑆 =  𝑚𝑎𝑥 (
𝑚𝑎𝑥 (𝑃𝑆1(𝜙𝑖, 𝜏𝑗 , 𝑡𝑘), 𝑃𝑆2(𝜙𝑖, 𝜏𝑗 , 𝑡𝑘))

𝑚𝑖𝑛 (𝑃𝑆1(𝜙𝑖, 𝜏𝑗 , 𝑡𝑘), 𝑃𝑆2(𝜙𝑖, 𝜏𝑗 , 𝑡𝑘))
) (5-12) 

Finally, as there are two different polarization signatures (the col-polarization signature 

and the cross-polarization signature), to make full use of them, either the col-polarization 

or the cross-polarization signature is adopted depending on which one has the maximum 

MDPS, and the optimum ϕ, τ and t is determined by, 

 {
 𝑂𝑝𝑡(𝜙, 𝜏, 𝑡) =  𝑂𝑝𝑡(𝜙𝑐𝑜𝑙, 𝜏𝑐𝑜𝑙, 𝑡𝑐𝑜𝑙), 𝑖𝑓 (𝑀𝐷𝑃𝑆𝑐𝑜𝑙 ≥ 𝑀𝐷𝑃𝑆𝑐𝑟𝑠)

𝑂𝑝𝑡(𝜙, 𝜏, 𝑡) =  𝑂𝑝𝑡(𝜙𝑐𝑟𝑠, 𝜏𝑐𝑟𝑠, 𝑡𝑐𝑟𝑠), 𝑖𝑓 (𝑀𝐷𝑃𝑆𝑐𝑜𝑙 < 𝑀𝐷𝑃𝑆𝑐𝑟𝑠)
 (5-13) 

Where 𝑀𝐷𝑃𝑆𝑐𝑜𝑙 and 𝑀𝐷𝑃𝑆𝑐𝑟𝑠 are the maximum difference of polarization signatures of 

the col-polarization and cross-polarization signatures respectively; (𝜙𝑐𝑜𝑙, 𝜏𝑐𝑜𝑙, 𝑡𝑐𝑜𝑙) and 

(𝜙𝑐𝑟𝑠, 𝜏𝑐𝑟𝑠, 𝑡𝑐𝑟𝑠) are the optimum orientation angles, ellipticity angles and time (date of 

acquisition) of col-polarization and cross-polarization respectively. Taking the surface 

and dihedral scatterings as an example, Table 5-1 shows that it is when the orientation 

and ellipticity angles are 0 degree and ±45 degrees respectively, their values of PS have 

the maximum difference. 
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5.3.2  Supervised Binary-Tree Classification Scheme 
(SBTCS) 

As each pair of targets can be maximally distinguished by an optimum polarization basis 

and date determined by the MDPS proposed in the previous section, a multi-temporal 

supervised binary-tree classification scheme based on the MDPS (MTSBTCS-MDPS) is 

developed. The core idea is that each pair of targets is distinguished in a new image 

generated by converting the data acquired on the optimum date with the optimum 

polarization basis determined by the MDPS. There are two primary steps included in the 

MTSBTCS-MDPS as listed below. 

 1. Look-Up Table Construction Based on MDPS 

To perform the binary-tree classification, a Look-Up Table (LUT), containing the 

optimum 𝜙 , 𝜏  and 𝑡  to distinguish each pair of targets, the polarization power, and 

polarization state (col-polarization or cross-polarization) on the MDPS, must be 

constructed. Firstly, a number of multi-temporal polarimetric SAR images are ingested in 

the algorithm. Then, the training samples of each target are selected and averaged with 

the mean coherency matrix to represent each target. The col- and cross- polarization 

signatures of each pair of targets on each date are generated using equation (5-5). 

Through comparing polarization signatures of each pair of targets, the optimum 𝜙, 𝜏 and 

𝑡 to distinguish each pair of targets and the corresponding polarization power and state 

are determined via MDPS. Finally, a Look-Up Table (LUT) is constructed which 

includes the optimum 𝜙, 𝜏 and 𝑡 as well as the polarization power and state. This step is 

shown in the left side of Figure 5-2(b). 

2. Binary-Tree Classification  

Based on the LUT constructed from the previous step, a binary-tree classification scheme 

is proposed. Firstly, an initial classification map is created to include only the first class, 

and the value of each pixel is numbered to be 0. For each pair of targets (classes), the 

Opt(ϕ, τ, t) is selected from the constructed LUT, and the data acquired on the optimum 
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date will be converted to a new image with an optimum polarization basis by the 

optimum ϕ and τ. In this image, this pair of targets will be maximally distinguished. 

Then, for each pixel on this new image, either the col-polarization power or cross-

polarization power will be employed based on the LUT. Then, the corresponding 

polarization power based on the optimum polarization basis is calculated for each pixel. 

Through comparing the polarization power of the unknown pixel with the power of each 

of the classes, this pixel is classified as this class if the distance between them is the 

minimum. The classification map is updated. Repeating the above procedures, other pairs 

of targets can be classified in the same way until the final pair is classified. This step is 

shown in the right side of Figure 5-2(b). The flowchart of the core algorithm of the 

binary-tree classification is shown in Figure 5-2(a). 

 
 (a) 
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(b) 

Figure 5-2. Flowchart of MTSBTCS-MDPS. (a) the core algorithm of the binary-tree 

classification scheme, taking 4 classes as an example, and the Date means 

the data acquired on that date. (b) flowchart of the MTSBTCS-MDPS. Note: 

PB is the polarization basis. 

5.4 Scattering Analysis and Classification Validation 

5.4.1  Dataset, Data Process and Ground Truth Photos 

The study area is located in southwestern Ontario, Canada, and the pauli RGB from May 

7
th

 2014 is shown in Figure 5-3. There are three main crops growing in this area: corn, 
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soybean and wheat. There are also some alfalfa and hay growing in this area and are 

referred to as grass. Figure 5-3 depicts that the urban areas are dominated by double-

bounce scattering and shown in red; the forest area is dominated by volume scattering 

and shown in green color. As on May 7
th

, many fields were bare with no crops planted 

yet, they are shown in blue in Figure 5-3(d) with the surface scattering dominating the 

scene. In addition, the ground truth map as well as reference data collected in the 

fieldwork is also shown at the upper-right corner of Figure 5-3. The ground truth photos 

of corn, soybean and wheat are shown in Figure 5-4, Figure 5-5, and Figure 5-6. 

According to the ground truth, six classes are determined and will be classified. They are 

corn, soybean, wheat, grass (alfalfa, hay), forest and urban, and training samples are 

selected based on them as well. In terms of the available dataset, as the polarization 

signature can be affected by the incidence angle (Jafari et al., 2015), to avoid the effects 

of incidence angle variation, seven C-band fully polarimetric RADARSAT-2 data with 

the same mode (FQ21-40.2°) covering the entire growing stages are included in the 

classification (Table 5-2). Prior to performing the classification, a 9 by 9 window size 

Boxcar filter is applied first to reduce the image noise. Then, the MapReady software 

developed by the ASF facility is adopted to perform the geo-correction with an output 

cell resolution of 10 m by 10 m.  

Table 5-2. Dataset. 

Date Sensor mode Orbit Look Direction 

20120507 FQ21-40.2° Ascending Right 

20120531 FQ21-40.2° Ascending Right 

20120624 FQ21-40.2° Ascending Right 

20120718 FQ21-40.2° Ascending Right 

20120811 FQ21-40.2° Ascending Right 

20120904 FQ21-40.2° Ascending Right 

20120928 FQ21-40.2° Ascending Right 
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Figure 5-3. Study area and reference data. 

 

               (a)                                 (b)                                 (c)                              (d) 

Figure 5-4. Ground truth photos of corn. (a) May 7
th

, (b) May 31
st
, (c) August 11

th
, (d) 

September 28
th

. 
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               (a)                                 (b)                                 (c)                              (d) 

Figure 5-5. Ground truth photos of soybean. (a) May 7
th

, (b) May 31
st
, (c) September 4

th
, 

(d) September 28
th

. 

 

               (a)                                 (b)                                 (c)                              (d) 

Figure 5-6. Ground truth photos of wheat. (a) May 7
th

, (b) May 31
st
, (c) June 24

th
, (d) July 

18
th

.  

5.4.2  Polarization Signature Analysis 

To analyze the scattering mechanisms of each target over time, the correlation 

coefficients between the target and the canonical targets are first calculated, which are 

shown in Figure 5-7. Their corresponding polarization signatures are shown in Figure 5-8, 

Figure 5-9, Figure 5-10, Figure 5-11, Figure 5-12 and Figure 5-13. 

   
                              (a)                                                                   (b)  
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                              (c)                                                                   (d)  

  
                              (e)                                                                   (f)  

Figure 5-7. Correlation coefficients of different classes on different days. (a) corn, (b) 

soybean, (c) wheat, (d) grass, (e) forest, (f) urban. 

 
(a)                                            (b)                                           (c)                                    

 
(d)                                            (e)                                           (f)                                     

 
(g)                                            (h)                                           (i)                                     
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(j)                                            (k)                                           (l)                                     

    
                     (m)                                            (n)  

Figure 5-8. Polarization signatures of corn on different dates. (a) col-PS on May 7
th

, (b) 

cross- PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 

    
(a)                                            (b)                                           (c)                                    

 

(d)                                            (e)                                           (f)                                     
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(g)                                            (h)                                           (i)                                     

 
(j)                                            (k)                                           (l)                                     

   
                     (m)                                            (n)  

Figure 5-9. Polarization signatures of soybean on different dates. (a) col-PS on May 7
th

, 

(b) cross-PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 
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(a)                                            (b)                                           (c)                                    

 
(d)                                            (e)                                           (f)                                     

 
(g)                                            (h)                                           (i)                                     

 
(j)                                            (k)                                           (l)                                     

   
                     (m)                                            (n)  

Figure 5-10. Polarization signatures of wheat on different dates. (a) col-PS on May 7
th

, (b) 

cross-PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 
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(a)                                            (b)                                           (c)                                    

 
(d)                                            (e)                                           (f)                                     

 
(g)                                            (h)                                           (i)                                     

 
(j)                                            (k)                                           (l)                                     

   
                     (m)                                            (n)  
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Figure 5-11. Polarization signatures of grass on different dates. (a) col-PS on May 7
th

, (b) 

cross-PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 

 
(a)                                            (b)                                           (c)                                    

 
(d)                                            (e)                                           (f)                                     

 
(g)                                            (h)                                           (i)                                     

 
(j)                                            (k)                                           (l)                                     
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                     (m)                                            (n)  

Figure 5-12. Polarization signatures of forest on different dates. (a) col-PS on May 7
th

, (b) 

cross-PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 

 
(a)                                            (b)                                           (c)                                    

 
(d)                                            (e)                                           (f)                                     

 
(g)                                            (h)                                           (i)                                     
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(j)                                            (k)                                           (l)                                     

 
                     (m)                                            (n)  

Figure 5-13. Polarization signatures of urban on different dates. (a) col-PS on May 7
th

, (b) 

cross-PS on May 7
th

, (c) col-PS on May 31
st
, (d) cross-PS on May 31

st
, (e) 

col-PS on June 24
th

, (f) cross-PS on June 24
th

, (g) col-PS on July 18
th

, (h) 

cross-PS on July 18
th

, (i) col-PS on August 11
th

, (j) cross-PS on August 11
th

, 

(k) col-PS on September 4
th

, (l) cross-PS on September 4
th

, (m) col-PS on 

September 28
th

, (n) cross-PS on September 28
th

. 

Table 5-3. Pedestal height (PH). 

 20120507 20120531 20120624 20120718 20120811 20120904 20120928 

Corn 0.1672 0.2679 0.3268 0.4213 0.4630 0.4387 0.4250 

Soybean 0.3717 0.2084 0.3997 0.4070 0.3758 0.5664 0.1540 

Wheat 0.4256 0.4023 0.4845 0.2395 0.3360 0.4058 0.2389 

Grass 0.3985 0.5452 0.3512 0.2674 0.4845 0.3092 0.4071 

Forest 0.5428 0.4354 0.5007 0.4985 0.4743 0.4964 0.4962 

Urban 0.5208 0.5498 0.5547 0.5623 0.4909 0.5190 0.5120 

Figure 5-7(a) and Figure 5-8(a) reveal that on May 7
th

, the corn field was plowed with 

rough bare soils as shown in Figure 5-4(a), and the dominant scattering is surface 

scattering with the value of correlation coefficient of approximately 0.9. At this time, the 

helix and double-bounce scattering are rather week with both values less than 0.3. It is 

also observed that the dipole with 90 degrees also shows stronger than other dipole 

scattering, which is caused by Bragg scattering from the rough surface, in which the VV 

polarization is higher than the HH polarization according to the simulation of the physical 
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surface models (Rice, 1951; Valenzue, 1967).  By May 31
st
, the corn field had been 

flattened for seed preparation; hence, the Bragg scattering is degraded to specular 

scattering caused by the very smooth surface, making its polarization signature being 

similar to the canonical surface scattering shown in Table 5-1. On both days, their PH 

values are very low with their values less than 0.3 as shown in Table 5-3, which means 

weak un-polarization. From May 31
st
 to August 11

th
, the polarization signatures are rather 

similar to the canonical surface scattering as shown in Table 5-1, which suggests that the 

surface scattering is always dominant during this period of time, which are primarily 

caused by the broad corn leaves of the corn canopy due to the limited capacity of wave 

penetration as corn grows denser and denser. The coefficient correlation values of three 

kinds of dipoles are almost equal, demonstrating a random scattering with high PH with 

its value of approximately 0.45. When time goes to September, the water content of corn 

leaves decrease and the corn leaves start to become yellow and dry as shown in Figure 5-

4(d). The C-band wave can penetrate the corn canopy more easily during this time; hence, 

the scattering caused the interaction among the corn stalks increases while the surface 

scattering decreases with its correlation coefficient reducing to approximately 0.8. The 

double-bounce scattering caused by the interaction between the crop stems and the 

ground also increases with its value being up to 0.5. The helix scattering caused by the 

interaction among the corn stems also increases.  It also shows that during this time the 

scattering from the dipole with 0 degrees (HH polarization) is much higher than that of 

the VV polarization (dipole with 90 degrees), which is perhaps caused by the attenuation 

effects where the VV polarization attenuated much more than that of the HH polarization 

according to the scattering simulation by Michigan Microwave Canopy Scattering Model 

(MIMICS) (Huang et al., 2016). These polarization signatures are shown in Figure 5-8(k), 

Figure 5-8(l), Figure 5-8(m), and Figure 5-8(n).  

In terms of the soybean, at the beginning of its growth, many small pieces of corn 

residues layered on the soybean field. Hence, the scattering caused by the corn residues 

as shown in Figure 5-5(a) results in the scattering from the dipole with 0 degrees higher 

than that of other dipole scattering as shown in Figure 5-9(a), but the surface scattering is 

still dominant as shown in Figure 5-7(b). Its PH is also high with a value of 
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approximately 0.4, caused mainly by the multiple scattering resulted from the corn 

residues. As the soybean grows taller and denser, its PH increases from 0.2 to up to 0.56 

as shown in Table 5-3, but the surface scattering keeps almost unchanged as shown from 

Figure 5-9(c) to Figure 5-9(j) with their values of correlation coefficients all greater than 

0.9. These surface scattering are primarily caused by the broad leaves of the soybean. 

During this period of time, it also should be noted that the correlation coefficients of all 

dipoles are almost the same and no dominant dipole scattering exists, which means a high 

randomness of the scattering.  Similar to the corn field, as the leaves of the soybean 

become yellow as shown in Figure 5-5(c), the C-band wave penetrates the soybean 

canopy resulting in multiple scattering due to the interaction among the small soybean 

branches. Hence, many kinds of scattering are induced, which result in a very high PH 

value on September 4
th

. Figure 5-7(b) shows that on September 4
th

, the double-bounce 

scattering increases while the surface scattering decreases but still dominated, and the 

scattering from the dipole with 0 degrees also increases as shown in Figure 5-9(k) and 

Figure 5-9(l). Finally, as the soybean becomes much dryer and lost almost its leaves at 

this stage, only the stems and pods existed, the C-band wave can penetrate it completely, 

the surface scattering is only from the smooth bare soils.  

For the wheat field, at its early growing stages, Figure 5-7(c) shows that the surface 

scattering and the dipole scattering are dominant, which can also be seen from their 

polarization signatures shown in Figure 5-10(a) to Figure 5-10(d). Both values of 

correlation coefficient are around 0.7 with their values of PH greater than 0.4. It 

demonstrates that the wheat leaves at their early growing stages cause prominently the 

dipole scattering with 0 degree. As the wheat grows taller and denser, the heads of wheat 

and the stems are coming out as shown in Figure 5-6(b), and the scattering from the 

dipoles with 90 degrees caused by the stems and heads increases with their polarization 

signatures shown in Figure 5-7(c). In addition, as the leaves of wheat become dry and 

yellow as shown in Figure 5-6(c), the scattering from the dipoles with 90 degrees caused 

by its stems increases with its correlation coefficient greater than that on May 31
st
 when 

the leaves were green. This is also observed from its polarization signature as shown in 

Figure 5-10(e) and Figure 5-10(f). During this time, its PH value increases to 



 

 

 

182 

approximately 0.5, due to the multiple scattering caused by the interaction among the 

wheat stems. On July 8
th

, the wheat was harvested, and the stubbles left on the ground 

were very dry; hence, the surface scattering from the bare soil are dominant with the 

value of PH at approximately 0.2, while the double-bounce scattering caused by the 

wheat stem and the ground surface also decreases as shown in Figure 5-7(c). After that, 

the grass started to grow on the harvested wheat field, and their scattering will be 

analyzed in the next paragraph. 

Due to the limited ground truth photos of the grass, its scattering is merely analyzed 

according to its polarization signatures. The grasses growing in this region are primarily 

alfalfa and hay, which have similar appearance to wheat at the early growing stages. 

Hence, we infer that the surface scattering is dominant as can be seen from Figure 5-7(d), 

and the polarization signatures also show similar geometric shape to surface scattering as 

shown from Figure 5-11(a) to Figure 5-11(h). In addition, the scattering from the dipole 

with 0 degree, which are perhaps caused by the grass leaves, has much higher values of 

correlation coefficients than that of other dipoles. At the final growing stages, the grass 

becomes mature and dry, the surface scattering from the ground increases, and the 

scattering from the dipole with 0 degree decreases. In terms of its PH, when it grew 

denser till June 24
th

, its PH increases. On July 18
th

, its PH decreases significantly with its 

value at approximately 0.25.  From this we could perhaps infer that the grass had been 

harvested before this date. 

The scattering of the forest is very interesting, with its polarization signatures over the 

entire growing seasons remain the same as the surface scattering as can be seen from 

Figure 5-12. This is because forest regions are in the trihedral scattering component, 

which corresponds to the flat and sphere targets while the forest leaves are very broad, 

which also demonstrates the limited capacity of short wavelength penetration. Table 5-3 

depicts that its PH value is always high over the entire growing season due to its 

dominant volume scattering with its value almost higher than 0.5. There are some minor 

differences as can be seen from Figure 5-7(e). At the beginning of May, the leaves of the 

trees were not coming out yet; hence, the C-band wavelength can penetrate the forest 
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canopy more easily. The scattering from the dipole with 0 degrees caused by the tree 

branches is higher than other dipole scatterings. Meanwhile, the double-bounce scattering 

caused among the small branches is also higher at this stage than that at other stages. 

However, as the forest canopy grows denser and denser, the surface scattering is 

primarily caused by the top of the forest canopy. We also observe that during this time, 

its HH polarization is slightly greater than VV polarization, and this is because in heavily 

forested area, the return for the horizontal and vertical linear polarization is very similar, 

but the vertical is being slightly smaller as demonstrated by Durden et al. (1989). That is 

the reason why the HH polarization is slightly higher than that of the VV polarization 

during the time between May 31
st
 and August 11

th
 as shown in Figure 5-12(c) to Figure 

5-12(j).  In terms of the dipole scatterings, as the leaves of the forest become denser, 

values of the dipole with 0 degree, 45 degrees and 90 degrees are almost equal, which 

suggests the completely random scattering.  

Finally, as urban is a stationary target, its polarization signatures are almost the same and 

very similar to that of the double-bounce scattering over time, which can be seen from 

Figure 5-13.  In theory, its PH value should be lower than that of the vegetation; however, 

Table 5-3 shows that all the values of the PH are almost greater than 0.5 owing to the 

relatively high unpolarized return from this area, while this unpolarized component is 

directly caused by multiple scatters or heterogeneity (Zhang et al., 2015). Urban area 

consists of a mixture of low- and high-entropy processes, which are due to the different 

street/building classes that are aligned along the radar look direction or aligned somewhat 

off bore sight or 45 degrees aligned. As shown in Figure 5-7(f), the double-bounce 

scattering caused by the wall of the building and the ground is always dominant with its 

value of correlation coefficient at around 0.8 on each date.  Meanwhile, the helix 

scattering is also very high compared with other targets such as the forest, corn, soybean, 

wheat, and grass, which is in agreement with Yamaguchi et al. (2005) on that the urban 

areas can easily cause the helix scattering. The scattering from the dipole with 0 degree is 

also very high. The surface scattering is much lower compared with that of the crop.  
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5.4.3  Classification 

To perform the proposed classification scheme on multi-temporal polarametric SAR data, 

the Look-Up Table (LUT) contains the optimum ellipticity angle, orientation angle, and 

the optimum data acquisition date is constructed first, which is shown in Table 5-4. It 

depicts that each pair of classes can be maximally distinguished only by the linear 

polarization because the optimum ellipticity angles are almost 0 degree. In addition, when 

seven images are input to the algorithm, only three of them are selected for classification. 

They are May 7
th

, July 18
th

, and September 28
th

, which are the dates at the beginning, the 

middle, and the end of the growing season. It also should be noted that the polarization 

signatures employed are all cross-polarization signatures. Combining the LUT and the 

binary-tree classification scheme developed, the classification results are shown in Figure 

5-14. For validation purpose, this classification method is also compared with the 

traditional Wishart classification in two aspects. The first one is to compare the MDPS 

with the Wishart distance (WD), and both MDPS and WD are applied to the binary-tree 

classification scheme on the single-date data; while the second one is comparing them 

when they are applied to multi-temporal images within the binary-tree classification 

scheme as well. It should be noted that as the WD does not depend on the polarization 

basis, there are no optimum orientation angle and ellipticity angles to be determined. It 

should also be noted that the calibrated sigma naught (i.e., backscattering coefficient) is 

almost less than 1, hence, the log operation in the Wishart classifier will lead to a 

negative value. To avoid this issue and not affect the classification results, the value of 

each pixel is multiplying by 10
5
.  Then, the optimum dates determined for the 

classification are shown in Table 5-5. Compared with the MDPS, it depicts that when 

seven images are applied to the binary-tree classification scheme, only five images are 

selected as the input images, while the MDPS only has three. Moreover, for each pair of 

classes, their WD are all at approximately 40 even though some are greater than 50. The 

classification results are shown in Figure 5-14. 
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Table 5-4. Look-Up Table of MTSBTCS-MDPS. 

  Corn Soybean Wheat Grass Forest Urban 

Corn 

Date  20120928 20120718 20120928 20120507 20120507 

Phi  33.0 2.0 -47.0 89.0 57.0 

Tau  3.0 0.0 -6.0 -1.0 1.0 

IsCol  0 0 0 0 0 

Power 1  0.0597 0.0232 0.0672 0.0057 0.0075 

Power 2  0.0084 0.0020 0.0168 0.0291 0.1071 

Soybean 

Date 20120928  20120718 20120507 20120507 20120507 

Phi 33.0  -88.0 -1.0 3.0 57.0 

Tau 3.0  0.0 0.0 0.0 1.0 

IsCol 0  0 0 0 0 

Power 1 0.0597  0.0201 0.0034 0.0034 0.0055 

Power 2 0.0084  0.0020 0.0106 0.0292 0.1071 

Wheat 

Date 20120718 20120718  20120718 20120718 20120718 

Phi 2.0 -88.0  3.0 -89.0 -30.0 

Tau 0.0 0.0  0.0 0.0 -1.0 

IsCol 0 0  0 0 0 

Power 1 0.0232 0.0201  0.0020 0.0020 0.0032 

Power 2 0.0020 0.0020  0.0088 0.0328 0.1000 

Grass 

Date 20120928 20120507 20120718  20120718 20120718 

Phi -47.0 -1.0 3.0  90.0 57.0 

Tau -6.0 0.0 0.0  -1.0 2.0 

IsCol 0 0 0  0 0 

Power 1 0.0672 0.0034 0.0020  0.0088 0.0122 

Power 2 0.0168 0.0106 0.0088  0.0329 0.1036 

Forest 

Date 20120507 20120507 20120718 20120718  20120928 

Phi 89.0 3.0 -89.0 90.0  52.0 

Tau -1.0 0.0 0.0 -1.0  -1.0 

IsCol 0 0 0 0  0 

Power 1 0.0057 0.0034 0.0020 0.0088  0.0298 

Power 2 0.0291 0.0292 0.0328 0.0329  0.1110 

Urban 

Date 20120507 20120507 20120718 20120718 20120928  

Phi 57.0 57.0 -30.0 57.0 52.0  

Tau 1.0 1.0 -1.0 2.0 -1.0  

IsCol 0 0 0 0 0  

Power 1 0.0075 0.0055 0.0032 0.0122 0.0298  

Power 2 0.1071 0.1071 0.1000 0.1036 0.1110                                                                                                                                                                  
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Table 5-5. Look-Up Table of the MTSBTCS-WD. 

  Corn Soybean Wheat Grass Forest Urban 

Corn 
Date  20120928 20120718 20120928 20120507 20120531 

WD  39.0382 41.9817 37.3879 38.4119 43.7008 

Soybean 
Date 20120928  20120718 20120811 20120531 20120531 

WD 39.0382  41.2173 37.7661 40.4564 47.4302 

Wheat 
Date 20120718 20120718  20120811 20120718 20120718 

WD 41.9817 41.2173  36.4559 46.2753 55.5681 

Grass 
Date 20120928 20120811 20120811  20120718 20120531 

WD 37.3879 37.7661 36.4559  37.6831 40.6814 

Forest 
Date 20120507 20120531 20120718 20120718  20120531 

WD 38.4119 40.4564 46.2753 37.6831  38.7469 

Urban 
Date 20120531 20120531 20120718 20120531 20120531  

WD 43.7008 47.4302 55.5681 40.6814 38.7469                                                                                                                                                                  

 

  

(a) 

  
(b) 
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(c) 

  
(d) 

  
(e) 
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(f) 

   
(g) 

   
                               (h)                                                                       (i) 

Figure 5-14. Classification maps. (a) May 7
th

. The left is MDPS and the right is WD. (b) 

May 31
st
. The left is MDPS and the right is WD. (c) June 24

th
. The left is 

MDPS and the right is WD. (d) July 18
th

. The left is MDPS and the right is 

WD. (e) August 11
th

. The left is MDPS and the right is WD. (f) September 

4
th

. The left is MDPS and the right is WD. (g) September 28
th

. The left is 

MDPS and the right is WD. (h) the MTSBTCS-MDPS (i) the MTSBTCS-

WD. 
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Table 5-6. Overall accuracy and kappa coefficient of MDPS and WD when they are 

applied to the single-date image. 

 MDPS WD 

 OA (%) Kappa OA (%) Kappa 

20120507 71.59 0.65 83.00 0.79 

20120531 71.74 0.65 72.36 0.64 

20120624 69.67 0.63 75.14 0.69 

20120718 73.88 0.68 70.30 0.63 

20120811 52.76 0.42 66.15 0.58 

20120904 50.55 0.40 54.55 0.45 

20120928 60.66 0.51 71.77 0.66 

MTSBTCS 87.50 0.85 30.80 0.20 

Table 5-7. Confusion matrix of MTSBTCS-MDPS. Note: OA is overall accuracy, UA is 

user accuracy, and PA is producer accuracy. 

Categories 

Reference Data (Pixels)   

corn soybean wheat grass forest urban Total  UA 

(%) 

corn 413 9 1 6 1 4 434 95.16 

soybean 32 468 2 0 2 0 504 92.86 

wheat 0 1 345 15 0 1 362 95.30 

grass 35 34 26 155 24 4 278 55.76 

forest 9 23 2 8 401 57 500 80.20 

urban 0 0 0 0 4 317 321 98.75 

Total 489 535 376 184 432 383 2399  

PA (%) 84.46 87.48 91.76 84.24 92.82 82.77   
OA (%) 

Kappa 

  87.50 

  0.85 

 

Compare the MDPS with the Wishart classification for the single-date image, Figure 5-

14(a) to Figure 5-14(g) and Table 5-6 show that as the crops grow denser and denser, the 

issue of the misclassification becomes much more severe, which makes the overall 

accuracy lower and lower. This is because as the crop grows denser, the scattering from 

the crop, grass and forest become similar, which are all dominated by the volume 

scattering, and this can also be demonstrated by their polarization signatures in the 

previous section. In addition, from Table 5-6, we can observe that the Wishart 

classification has higher classification accuracy than that of the MDPS when it is applied 

to the single-date image. Sometimes, its overall accuracy is even as high as 83% (i.e., 

May 7
th

). It also should be noted that, the worst classification is observed on September 
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4
th

, as discussed in the previous section, the leaves of soybean and corn become yellow 

and dry on this date. In addition to the scattering from the crop canopy, some scatterings 

from the crop stems are also emerging due to its penetration, which makes the scattering 

much more complicated. In addition, when the MDPS and WD are applied to the binary-

tree classification scheme, Figure 5-14(h) depicts that the classification boundaries 

between different classes look much smoother than other classification maps, while the 

classified agricultural fields also have less noise than other classification maps, whereas 

the MTSBTCS-WD shows much severe misclassification as shown in Figure 5-14(i) with 

its overall accuracy at only 30.8%, and its kappa coefficient is also very low. In contrast, 

the MTSBTCS-MDPS has much higher classification accuracy than that of the Wishart 

classification with an overall accuracy of 87.5% and the kappa coefficient of 0.85 

respectively. To demonstrate it further, the confusion matrix of the MTSBTCS-MDPS is 

listed in Table 5-7. Table 5-7 depicts that there are some misclassifications between the 

grass and crops. The urban and forest also shows some misclassifications with the 

producer accuracy of urban around 83% as shown in Table 8, which is perhaps due to the 

alignment of building (Lee et al., 2004). For those buildings that not aligned with the 

flight direction, they are more easily to be misclassified. From this perspective, we could 

perhaps conclude that the WD has higher overall classification accuracy than that of the 

MDPS when they are applied to the single-date RADARSAR-2 data; whereas when they 

are applied to the multi-temporal images, the MTSBTCS-MDPS has much higher overall 

accuracy than that of the MTSBTCS-WD with their overall accuracy of 87.5% and 

30.8%, respectively. It also should be noted that the WD method on single-date image 

achieves the overall accuracy of 83% on May 7
th

. Although it has the similar OA 

compared with the MTSBTCS-WD, in practice, on which day it could obtain the highest 

OA is still unpredictable. Hence, the multi-temporal data is still required. 

Finally, to validate the efficiency of this algorithm, the time consumed by this algorithm 

is also compared with other algorithms, which is listed in Table 5-8.  
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Table 5-8. Execution time of algorithms (unit: s). All algorithms are implemented by the 

64-bit python program using a desktop with four cores of CPU E3-1226 3.3 

GHZ. The operating system is a 64bit windows 8.1. The RAM is 16g.   

Algorithms Time (s) 

Single-date image with MDPS 1240 

Single-date image with WD 880  

Single-date image with PS 1350000 

MTSBTCS-WD 4200 

MTSBTCS-MDPS 1680 

Note: polarization signatures are compared with the increment of 5 degrees for both 

orientation angle and ellipticity angle and the image size is 1338 by 1125. 

Table 5-8 depicts that when the geometric shape of the polarization signature is used for 

the classification, the time it consumes is approximately 1000 times more than that of 

other algorithms. This is due to the fact that the point-to-point comparison between two 

different classes is much more time-consuming. Compared with the WD and MDPS, 

when they are applied to the single-date image, the WD consumes less time than that of 

the MDPS. This is because the process of the LUT consumes much more time in the 

MDPS classification scheme. However, when they are applied to multi-temporal images, 

the LUT is only constructed once before the classification, then the MTSBTCS-MDPS 

consumes much less time than that of the MTSBTCS-WD with its value around 3 times 

less than that of the MTSBTCS-WD. Overall, we could conclude that the MTSBTCS-

MDPS is much more efficient in classifying multi-temporal images than MTSBTCS-WD, 

in addition to the high overall classification accuracy and kappa coefficient. 

5.5 Conclusion 

In this chapter, the polarization signature was employed to analyze the scattering of 

targets over time and applied to the multi-temporal polarimetric SAR classification. A 

multi-temporal supervised binary-tree classification scheme based on the polarization 

signature was also proposed. The criterion of the maximum difference of polarization 

signatures was developed to determine the optimum orientation angle, ellipticity angle, 

and data acquisition date.  The results show that the VV polarization is greater than the 
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HH polarization due to the Bragg scattering when the targets are bare soils; while crops 

and grasses are dominated with surface scattering, and the HH polarization is greater than 

that of other dipole scattering at C band. The double-bounce and helix scattering are 

rather weak over the entire growing season, but they increase in corn field due to the 

interaction between the ground and corn stalks. As the crop and grass grow taller and 

denser, their pedestal height values increase, demonstrating the dominance of un-

polarized components such as multiple scattering and volume scattering.  For forest area, 

its polarization signature is very similar to surface scattering over the entire growing 

season, but its HH polarization is slightly greater than that of the VV polarization when it 

is in full canopy. In urban areas, the dominant scattering is the double-bounce scattering, 

and the helix scattering is much stronger than that of other classes. In terms of the 

classification, the Wishart classification shows much higher accuracy than that of the 

MDPS when applied to the single-date image, and the execution time is also less than that 

of the MDPS. However, when applied to multi-temporal images, the MTSBTCS-MDPS 

proposed in this chapter achieved much higher accuracy than that of the MTSBTCS-WD 

with its overall accuracy at 87.5% and kappa coefficient   at 0.85, and the executive time 

is round 3 times less than that of the MTSBTCS-WD, demonstrating the high accuracy 

and efficiency of the newly proposed multi-temporal classification method.  
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Chapter 6  Conclusion and Discussion 

6.1 Summary 

This thesis addresses two important applications of PolSAR: 1) surface parameter 

inversion under vegetation cover and 2) multi-temporal land cover mapping. Surface 

parameters are critical determining factors of crop growth and its final yield.  Therefore, 

it is important to understand the state of the surface parameters of each crop through its 

entire growing cycle. With the recent advancement of the high-resolution SAR satellites 

and satellite constellations, the revisit time has largely reduced from several weeks to  

few days and even daily. For example, the Italian X-band COSMO SkyMed 

(COnstellation of small Satellites for Mediterranean basin Observation) mission consists 

of four medium satellites, which offers a frequent revisit.  The Canadian C-band 

RADARSAT Constellation Mission (RCM), with a scheduled launching date in 2018, is 

made of three identical satellites and offers both frequent revisit and interferometry 

capability. This leads closer to the realization of continuous, near-real-time monitoring of 

crop growth and surface parameters. It also satisfies the need for multi-temporal data to 

develop advanced image classification methods that can take advantage of the rich 

temporal information. 

Many semi-empirical or physical surface scattering models have been developed to 

retrieve the surface parameters (soil moisture and surface roughness) for bare soil. 

However, for a long period of time through the year, the field is covered with the crops or 

other vegetation, and the usefulness of these models designed under the ideal condition of 

bare soil is challenged. To solve the problem of retrieving surface parameters in real-

world situation, with crop cover, the method should be able to separate the scattering of 

the underlying bare soil from the volume scattering caused by the vegetation canopy. In 

other words, the primary issue is to develop an advanced volume scattering model to 

better characterize the scattering of crops. In view of the PolSAR, the assumption to 

model the volume scattering is to treat the crops as consisting of a cloud of dipoles with 

their orientation angles with respect to the line of sight (LOS) satisfying certain feasible 

probability density functions. Then, the corresponding volume scattering models are 
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constructed using the second-order statistical integration. In general, the traditional 

probability density functions are uniform, first-order sine or first-order cosine functions. 

In this way, the derived volume scattering model is in a constant manner, and can only 

describe the crops that are completely random or having a certain orientation.  However, 

the appearance (i.e. structure) of the crop is always changing as they grow and go through 

different development stages through the growth cycle over time. To overcome this issue, 

the first task is to develop a more feasible volume scattering model than the existing 

constant models.  In Chapter 2, a simplified adaptive volume scattering model (SAVSM) 

to employ the 𝑛th power of sine and cosine functions is developed.  Unlike the existing 

constant models that include only the uniform and first-order sine or cosine functions, the 

SAVSM model uses the nth power of sine and cosine functions where 𝑛 can vary to 

include other situations.  

With the SAVSM in place, the next step is to apply it to estimate the soil moisture under 

vegetation cover by removing the effect of the volume scattering from the crop canopy. 

The Freeman-Durden decomposition is a classic model-based polarimetric decomposition, 

which models the total backscattering as the composition of the surface, double-bounce 

and volume scattering. Due to its efficiency and intuitiveness, many new methods were 

built based on the Freeman-Durden concept, such as the Yamaguchi decomposition 

(Yamaguchi et al., 2005; 2006). In Chapter 3, the model-based decomposition framework 

is also adopted and applied to the winter wheat fields as a case study. Due to the limited 

penetration depth of the C-band RADARSAT-2 data, soil moisture estimation is only 

targeted at the early growing stages. Firstly, the eigen-based decomposition proposed by 

Cloude and Pottier (1997) is performed to investigate the scattering mechanisms over 

bare soil and soil with winter wheat cover. Then, an adaptive two-component model-

based decomposition (ATCD) is developed to estimate the soil moisture over wheat fields, 

in which the surface scattering is the X-Bragg surface scattering model while the volume 

scattering is the SAVSM developed in Chapter 2. The X-Bragg model is developed based 

on the Bragg surface scattering model derived from the small perturbation model, and is 

only suitable for describing very smooth surfaces with very low roughness values. 

However, the surface would look much rougher in short-wavelength configuration than 
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that in long wavelength. Hence, for C-band RADARSAT-2 data, the surface scattering 

with higher roughness must be employed to estimate the soil moisture. Therefore, the X-

Bragg model is proposed to describe rougher surfaces than that of the Bragg model. The 

X-Bragg model is constructed by integrating the Bragg model with the orientation angle 

induced by the azimuthal slope satisfying the zero mean normal distribution. However, 

before applying the ATCD for soil moisture estimation, the issue of the negative power 

must be solved, i.e., the decomposed power of the surface scattering is negative, which is 

inconsistent with reality. Therefore, the Non-Negative Eigen-value Decomposition 

(NNED) method is employed to determine the volume scattering component to avoid this 

issue. Finally, the relative dielectric constant is determined from the X-Bragg surface 

scattering model, and an empirical relationship between the relative dielectric constant 

and soil moisture is adopted to invert the soil moisture over winter wheat fields. 

In reality, agricultural fields do not often exist in the form of bare soils; they are usually 

covered with crop residues that are left for moisture retention, preventing wind erosion, 

and maintaining soil carbon balance. To extend the application of the ATCD to 

agricultural fields under crop cover (early growing stage), an integrated surface parameter 

inversion scheme is developed in Chapter 4, in which bare soil and vegetation/residue 

covered fields are treated separately. Firstly, the eigen-based decomposition is employed 

to derive the 𝐻 and 𝛼 thresholds for distinguishing the bare soil fields from the fields 

with crop or residue cover. Then, the bare soil is characterized using a calibrated 

Integration Equation Model (CIEM) while the others are described by the ATCD. The 

difference between Chapter 4 and Chapter 3 lies in the use of the X-Bragg model to 

describe surface scattering.  In Chapter 4, a calibrated IEM (CIEM) model is employed, 

which could describe higher rough surfaces than the X-Bragg model does. The reason 

why the CIEM is adopted rather than the IEM is because the measurement of the surface 

correlation length is always problematic, and three unknown values are reduced to two, 

which can simplify the equation solving. In ATCD, the surface scattering is replaced by 

the CIEM instead of the X-Bragg model while the volume scattering is still the SAVSM. 

Like in Chapter 3, the NNED is employed to determine the volume scattering component 

to avoid the negative power issue. 
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In addition, the soil moisture and roughness extraction algorithms are also dependent on 

the crop types and crop conditions, whereas crop conditions can be determined by the 

crop phenology for different crop, so the crop mapping can be very useful for surface 

parameter retrieval. Therefore, a multi-temporal supervised binary-tree classification 

scheme (MTSBTCS) with a criterion that maximizes the difference between the 

polarization signatures (MDPS) of two different targets is developed (MTSBTCS-MDPS) 

in Chapter 5 for crop growth monitoring. With MTSBTCS, each target can be 

characterized by a 3D plot―the polarization signature (PS) with its response changing 

with the orientation angle and ellipticity angle. For each pair of two different targets, an 

optimum pair of orientation angle and ellipticity angle can always be found to maximize 

the difference of these two targets. For targets changing with time, such as crops, an 

optimum time can also be found to maximally distinguish these two targets. Therefore, to 

perform the MTSBTCS-MDPS, a binary tree is first constructed, in which each pair of 

targets is maximally differenced by choosing the optimum orientation angle and 

ellipticity angle at an optimum data acquisition time by means of the MDPS. Then, the 

image acquired on the optimum date will be converted to a new image based on the 

optimum orientation angle and ellipticity angle, and these two targets will be classified 

based on the newly generated image. When other targets are added to the binary three, 

they are classified in the same way. This algorithm will stop until all targets are classified. 

6.2 Conclusions and Contributions 

The main objective of this thesis is to validate the application of the fully polarimetric 

SAR data towards the quantitative estimation of surface parameters (soil moisture and 

surface roughness) over agricultural fields under vegetation cover and qualitative land 

cover mapping. Four specific objectives are introduced in Section 1.5, and they have all 

been met. Overall, the research suggests that the RADARSAT-2 fully polarimetric SAR 

data has the potential to estimate the soil moisture and surface roughness at the crop early 

growing stages as well as for fields covered with crop residues. In addition, when the 

multi-temporal PolSAR data is applied, the classification accuracy is improved 

significantly, which leads to a high potential of the SAR data for high accuracy 
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classification especially when the re-visit time of satellites are reduced to a few days in 

future. The innovations this thesis has achieved and its contribution to the scientific 

literature are summarized as follows: 

1) A simplified adaptive volume scattering model (SAVSM) was developed in this thesis, 

which considers the distribution of the dipoles as the 𝑛 th power of sine and cosine 

probability density functions. It can better describe the scattering caused by vegetation 

canopy. Compared with the traditional methods as represented by Freeman-Durden and 

Yamaguchi volume scattering models, the SAVSM achieves the best performance over 

agricultural fields measured with the highest percentage of the power of remainder matrix 

(less than 0.001). The decomposed surface, double-bounce and volume scattering 

components of wheat, soybean and corn tested at various growth stages are consistent 

with the crop phonological development observed in the fields. 

2) Due to the limited penetration depth of the short wavelength C-band RADARSAT-2, 

the soil moisture is estimated only at the early crop growing stages when the crop is short 

and sparse. An adaptive two-component model-based decomposition (ATCD) on soil 

moisture estimation is developed that considers the surface and volume scattering caused 

by the soil and crop canopy, separately. The surface scattering adopted is a X-Bragg 

scattering, whereas the volume scattering is described by SAVSM developed in Chapter 

2. The fully polarimetric RADARSAT-2 data acquired in 2013 and 2015 over two study 

areas are used for model validation. The results revealed that the volumetric soil moisture 

derived from the ATCD is more consistent with the verifiable ground conditions than 

with other existing model-based decomposition methods. Moreover, the suitability of this 

model to other crops still needs further investigation. 

3) An integrated surface parameter inversion scheme (ISPIS) based on the analysis of H-

𝛼 parameters is proposed for surface parameter inversion at the early crop growing stages, 

in which the surface scattering is described using the calibrated Integral Equation Model 

(CIEM) while the volume scattering model is still the SAVSM. This is to compensate the 

bias of soil moisture estimation when the soil moisture content is greater than 30 [vol.%], 
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especially when the SAR incidence angle is low. This is because the X-Bragg surface 

scattering model was developed by the Small Perturbation Method (SPM) which is only 

suitable for longer wavelength where the surface appears smooth. For short-wavelength 

C-band RADASAT-2, surface scattering model like ISPIS is more suitable. Compared 

with other methods, the ISPIS derived volumetric soil moisture and surface roughness are 

more consistent with the verifiable field observations with the lowest overall RMSE 6.12 

[vol.%] and 0.48, respectively. 

4) A multi-temporal supervised binary-tree classification scheme with a criterion that 

maximizes the difference of polarization signatures (MTSBTCS-MDPS) of two different 

targets is developed for land use classification using multi-temporal polarimetric SAR. 

Compared with the MDPS with the traditional Wishart Distance (WD), the classification 

accuracy of WD is higher than that of the MDPS when a single-date image is used.  

When multi-temporal images are used, the newly developed MTSBTCS-MDPS achieved 

much higher accuracy with an overall accuracy of 87.5% and kappa coefficient of 0.85.  

The MTSBTCS-MDPS also has a much-reduced execution time, approximately 2.5 times 

less than that of the MTSBTCS-WD. 

6.3 Future Research 

This thesis has developed three models to quantitatively estimate the surface parameters 

under vegetation cover. A classification scheme is also developed for land cover mapping 

using multi-temporal SAR data.  Although results from these newly developed methods 

have shown increases in both feasibility and efficiency, there is always room for 

improvement in the quest for better methods.   

6.3.1  Volume Scattering Model Considering the Shape 
Parameter  

The SAVSM developed in this thesis was based on the dipole assumption, which is most 

suitable for describing vegetation with long wavelength RADAR configuration as the 

size of the stem or branches of the vegetation is smaller compared with the wavelength. 

However, in real world situations, the leaves of different vegetation species can have 
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different geometric structures and be in various shapes. For example, the leaves of wheat 

are seen as needles while the leaves of soybean are seen as disks. When using high 

frequency SAR to model crop canopies, the non-spherical particles including spheroids 

and disk-like plate are usually used (Ishimarum, 1978). Lee et al. (2014) and Wang et al. 

(2014) modeled the volume scattering using a generalized scattering matrix that takes 

into consideration the shape factor of the vegetation based on the probability density 

functions mentioned in Section 1.2. In future work, the SAVSM will be further improved 

by including the shape parameter and validated with more experiments. The change of 

shape with a shape factor |𝛿| is shown in Figure 6-1. The scattering matrix of a particle is 

defined as 

 [𝑆] = [
𝑆ℎℎ 0
0 𝑆𝑣𝑣

] (6-1) 

For simplicity, 𝑆ℎℎ and 𝑆𝑣𝑣 are assumed to be real. The shape factor is defined as 

 𝛿 = (
𝑆ℎℎ − 𝑆𝑣𝑣
𝑆ℎℎ + 𝑆𝑣𝑣

) (6-2) 

and its coherency matrix can be derived as proportional to equation (6-3). 

 [𝑇𝛿] =
1

1 + |𝛿|𝟐
[
1 𝛿 0
𝛿 |𝛿|𝟐 0
0 0 0

] (6-3) 

 

Figure 6-1. Schematic representation of the scatterer shape changing with |𝜹|. 



 

 

 

203 

6.3.2  Surface Parameter Inversion under Dense Vegetation 
Cover  

To estimate the surface parameter under vegetation cover, Chapter 4 presents an 

integrated surface parameter inversion scheme (ISPIS) through integrating the CIEM and 

ATCD without considering the attenuation effects caused by the water content of the 

vegetation canopy, even though the attenuation effects are rather weak at the crop early 

growing stages. To further extend the application of the ISPIS to dense vegetation cover, 

the attenuation effects must be considered.  

Currently, the semi-empirical water cloud model (WCM) is the most widely used model 

assuming that the vegetation consists of a collection of spherical water droplets that are 

held in place structurally by dry matter (Attema & Ulaby, 1978). The WCM is based on 

the fact that the dielectric constant of dry vegetation matter is much smaller than that of 

the water content of vegetation, and more than 99% air by volume is contained in 

vegetation canopy. Therefore, such a model was developed assuming that the canopy 

“cloud” called the water cloud contains identical water droplets randomly distributed 

with the canopy with its figure shown as in Figure 1-6. It has been widely used for the 

surface and biophysical parameters estimation until now due to its simplicity (Gherboudj 

et al., 2011; Lievens & Verhoest, 2011). However, the WCM can only be suitable to 

describe the vegetation canopy with dense canopy and is only a simple solution of the 

first-order radiative transfer model. Most importantly, WCM requires ground truth data to 

fit the unknown parameters, which limits its application to areas without the support of 

ground data. The Michigan Microwave Canopy Scattering (MIMICS) model developed 

by Ulaby et al. (1990) provides a rigorous solution, considering not only the multiple 

scattering but also all scatterings shown in Figure 1-5. It is also suitable for vegetation-

covered areas where the agents responsible for scattering have discrete configurations, 

and many studies have adapted it to characterize the scattering of crops such as wheat and 

soybean (Toure et al., 1994; De Roo et al., 2001). However, too many parameters need to 

be determined before applying it to surface parameter retrieval.  In remote sensing 

applications, it is desirable to treat the microscopically complicated mixture as 
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macroscopically homogeneous and characterize it by an effective permittivity, while 

many natural heterogeneous media have been widely studied from this point of view 

including vegetation canopy (Sihvola & Kong, 1988). Therefore, to overcome the issues 

of the WCM and MIMICS to develop a simple and reliable method, it is feasible to treat 

the vegetation canopy as a homogeneous medium characterized by an effective dielectric 

constant, which is shown in Figure 6-2. Then, the solution will be solved by the wave 

propagation theories.  

 

Figure 6-2. Scattering with a homogeneous medium. 

6.3.3  Integration of Land Cover Map and Surface Parameter 
Inversion Scheme 

The soil moisture and roughness extraction algorithms are also dependent on the crop 

types and crop conditions, whereas crop conditions can be determined by the crop 

phenology for different crop, so the crop mapping can be very useful for surface 

parameters estimation. Different crops show various structures and orientations, and to 

estimate surface parameters accurately, it is also essential to construct specific volume 

scattering model for each crop as shown in Figure 6-3 especially for physical scattering 

models such as coherent models for soybean by Huang, et al. (2016) and rice by Liu et al. 

(2015). Therefore, crop types should be identified before applying the surface parameter 

inversion scheme to estimate the underlying surface parameters. The land cover map and 

the surface parameters inversion algorithms should be integrated, but in this thesis, 



 

 

 

205 

although a multi-temporal classification scheme is proposed, it is not integrated to the 

surface parameter inversion developed in Chapter 3 and Chapter 4. This needs to be 

further investigated in future. 

 

Figure 6-3. Integration of land cover map and surface inversion scheme. 

 

6.3.4  Relations with the RCM 

The methods developed in this thesis are merely based on the fully polarimetric 

RADARSAT-2 data, which is being different from the compact SAR transmitting 

circular polarizations and receiving two orthogonal mutually-coherent linear polarizations. 

The compact mode will be operated by the RCM that will be launched by Canadian 

Space Agency in 2018. Accordingly, to adapt the developed methods to the compact 

SAR mode, it still needs further investigation due to the reduced information of the 

compact SAR. In addition, the compact SAR has double swath-width of that of the fully 

PolSAR, and is suitable for the task of large-area coverage applications, but the 

developed methods are in field level and to apply them for the large areas such as country 

level requires further investigation as well. However, methods that will be applied to a 

larger scale need to be validated in the field level first.  
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Appendix A: Polarization and Polarization Ellipse 

The time-space behavior of electromagnetic waves is ruled by the Maxwell equation set 

defined as 

 

∇ × �⃗� (𝑟 , 𝑡) = −
𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
 

∇ × �⃗⃗� (𝑟 , 𝑡) = 𝐽𝑇⃗⃗  ⃗(𝑟 , 𝑡) +
𝜕�⃗⃗� (𝑟 , 𝑡)

𝜕𝑡
 

∇ ∙ �⃗⃗� (𝑟 , 𝑡) = 𝜌(𝑟 , 𝑡) 

∇ ∙ �⃗� (𝑟 , 𝑡) = 0 

(A-1) 

where  �⃗� (𝑟 , 𝑡), �⃗⃗� (𝑟 , 𝑡), �⃗⃗� (𝑟 , 𝑡) and �⃗� (𝑟 , 𝑡) are the wave electric field, magnetic field, 

electric induction and magnetic induction, respectively. The total current density 

𝐽𝑇⃗⃗  ⃗(𝑟 , 𝑡) = 𝐽𝑎⃗⃗  ⃗(𝑟 , 𝑡) + 𝐽𝑐⃗⃗  (𝑟 , 𝑡)  with 𝐽𝑎⃗⃗  ⃗(𝑟 , 𝑡)  corresponding to a source term and 𝐽𝑐⃗⃗  (𝑟 , 𝑡) 

depending on the conductivity of the propagation medium. When the propagation 

medium is free of mobile electric charges, the solution of the Maxwell equation can be 

significantly simplified by considering the complex expression �⃗� (𝑟 )  of the 

monochromatic time-space electric field �⃗� (𝑟 , 𝑡), defined as 

 �⃗� (𝑟 , 𝑡) = 𝑅𝑒(�⃗� (𝑟 )𝑒𝑗𝜔𝑡) (A-2) 

The propagation equation may be written as, 

 ∆�⃗� (𝑟 ) + 𝜔2𝜇휀 (1 − 𝑗
𝜎

𝜔휀
) �⃗� (𝑟 ) = ∆�⃗� (𝑟 ) + 𝑘2�⃗� (𝑟 ) = 0 (A-3) 

where the complex dielectric constant 휀 is given by 

 휀 = 휀 − 𝑗
𝜎

𝜔
 (A-4) 
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and the wavenumber 𝑘 is given by 

 𝑘 = 𝜔√𝜇휀 (A-5) 

Without any loss of generality, the electric field may be represented in an orthogonal 

basis (�̂�, �̂�, �̂�) defined so that the direction of propagation �̂� = �̂�. When the is assumed to 

be loss free, then, the expression of the electric field becomes 

 �⃗� (𝑧, 𝑡) = [

𝐸0𝑥𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿𝑥)

𝐸0𝑦𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿𝑦)

0

] (A-6) 

At a fixed position 𝑧 = 𝑧0 , as time evolves, the wave propagates through equi-phase 

planes and describes a characteristic elliptical locus, which is called polarization as 

shown in Figure A-1. The nature of the temporal wave trajectory may be determined 

from the following parametric relation between the components of �⃗� (𝑧0, 𝑡). 

 

[
𝐸𝑥(𝑧0, 𝑡)

𝐸0𝑥
]

2

− 2
𝐸𝑥(𝑧0, 𝑡)𝐸𝑦(𝑧0, 𝑡)

𝐸0𝑥𝐸0𝑦
𝑐𝑜𝑠(𝛿𝑦 − 𝛿𝑥) + [

𝐸𝑦(𝑧0, 𝑡)

𝐸0𝑦
]

2

= 𝑠𝑖𝑛(𝛿𝑦 − 𝛿𝑥) 
(A-7) 

This expression is the equation of an ellipse, which we call polarization ellipse that 

describes the wave polarization. 
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Figure A-1. Temporal trajectory of a monochromatic plane wave at a fixed abscissa 

𝒛 = 𝒛𝟎. Adapted from Lee & Pottier (2009). 

The polarization ellipse shape may be characterized using three parameters as shown in 

Figure A-2. 𝐴 is called the ellipse amplitude and is determined from the ellipse axis as  

 𝐴 = √𝐸0𝑥
2 + 𝐸0𝑦

2  (A-8) 

𝜙 ∈ [−
𝜋

2
,
𝜋

2
 ] is the ellipse orientation and is defined as the angle between the ellipse 

major axis and �̂�: 

 𝑡𝑎𝑛2𝜙 = 2
𝐸0𝑥𝐸0𝑦

𝐸0𝑥
2 − 𝐸0𝑦

2 𝑐𝑜𝑠(𝛿𝑦 − 𝛿𝑥) (A-9) 
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Figure A-2. Polarization ellipse. 

 

Reference 

Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging : from basics to applications. 

Boca Raton: CRC Press. 
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Appendix B: Polarimetric Scattering Cross Section and 
Scattering Amplitude Matrix 

Compared with the optical sensors, SAR is an active remote sensing technique, which 

receives the scattering cross section through transmitting a long wavelength 

electromagnetic wave interacting with the target. To simply understand the scattering 

cross section, we consider an electromagnetic wave impinging upon an object shown in 

Figure B-1 and the derivation of the scattering cross section is a simplified version 

introduced by Tsang et al. (2000). 

 

Figure B-1. Scattering of a plane electromagnetic wave by an object. 

The incident wave is in direction �̂�𝑖  and has electric field in direction �̂�𝑖  that is 

perpendicular to �̂�𝑖, and the electric field of the incident wave is 

 �̅�𝑖 = �̂�𝑖𝐸0𝑒
𝑖𝑘�̂�𝑖 ∙�̅� (B-1) 

where �̅� is the position vector, 𝑘 = 2𝜋 𝜆⁄  is the wavenumber with 𝜆 the wavelength, and 

𝐸0 is the amplitude of the electric field. In the far field, the scattered field is that of a 

spherical wave with dependence 𝑒𝑖𝑘𝑟 𝑟⁄ , where 𝑟 is the distance from the particle. Let �̅�𝑠 

be the far field scattered field in direction of �̂�𝑠, and �̅�𝑠 is written as 
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 �̅�𝑠 = �̂�𝑠𝑓(�̂�𝑠, �̂�𝑖)𝐸0
𝑒𝑖𝑘�̂�𝑠 ∙�̅�

𝑟
 (B-2) 

where �̂�𝑠 is perpendicular to �̂�𝑠. The 𝑓(�̂�𝑠, �̂�𝑖) is the scattering amplitude from direction 

�̂�𝑖 into direction �̂�𝑠. The Poynting vector denoting power flow per unit area is 

 𝑆�̅� =
1

2
𝑅𝑒(�̅�𝑖 × �̅�𝑖

∗) =
|𝐸0|

2

2𝜂
�̂�𝑖 (B-3) 

Similarly, for the scattered wave, its Poynting vector is 

 𝑆�̅� =
1

2
𝑅𝑒(�̅�𝑠 × �̅�𝑠

∗) =
|𝑓(�̂�𝑠, �̂�𝑖)|

2

𝑟2
|𝐸0|

2

2𝜂
�̂�𝑠 (B-4) 

where 𝜂 = √𝜇 휀⁄  is the wave impedance. Considering a differential solid angle 𝑑Ω𝑠  in 

the scattered direction �̂�𝑠, in the spherical coordinate system at a distance 𝑟, the surface 

area subtended by the differential solid angle 𝑑Ω𝑠 is 

 𝑑𝐴 = 𝑟2𝑑Ω𝑠 = 𝑟
2𝑠𝑖𝑛𝜃𝑠𝑑𝜃𝑠𝑑𝜙𝑠 (B-5) 

Then, the differential scattered power 𝑑𝑃𝑠 through 𝑑𝐴 is 

 𝑑𝑃𝑠 = |𝑆�̅�|𝑑𝐴 = |𝑓(�̂�𝑠, �̂�𝑖)|
2 |𝐸0|

2

2𝜂
𝑑Ω𝑠 (B-6) 

It is convenient to define a differential scattering cross section 𝜎𝑑(�̂�𝑠, �̂�𝑖) by 

 
𝑑𝑃𝑠
|𝑆�̅�|

= 𝜎𝑑(�̂�𝑠, �̂�𝑖)𝑑Ω𝑠 (B-7) 

Integrating the above equation, the scattered power is  

 𝑃𝑠 = |𝑆�̅�|∫ 𝜎𝑑(�̂�𝑠, �̂�𝑖)𝑑Ω𝑠 = 𝜎𝑠|𝑆�̅�| (B-8) 
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where 𝜎𝑠 is the scattering cross section which is written as,  

 𝜎𝑠 = ∫𝜎𝑑(�̂�𝑠, �̂�𝑖)𝑑Ω𝑠 = ∫|𝑓(�̂�𝑠, �̂�𝑖)|
2
𝑑Ω𝑠 (B-9) 

Assuming that |𝑓(�̂�𝑠, �̂�𝑖)|
2
 is independent of the coordinate, 𝜎𝑠 is written as, 

 𝜎𝑠 = 4𝜋|𝑓(�̂�𝑠, �̂�𝑖)|
2
 (B-10) 

In the polarization’s perspective, for the incident wave, the electric field �̅�𝑖  is 

perpendicular to the direction of propagation �̂�𝑖 . There are two linearly independent 

vectors that are perpendicular to �̂�𝑖 . We name them �̂�𝑖  and �̂�𝑖  respectively, and the 

incident electric field is written as, 

 �̅�𝑖 = ( �̂�𝑖𝐸𝑎𝑖 + �̂�𝑖𝐸𝑏𝑖)𝑒
𝑖𝑘�̂�𝑖 ∙�̅� (B-11) 

Similarly, the scattered wave is written as 

 �̅�𝑠 = ( �̂�𝑠𝐸𝑎𝑠 + �̂�𝑠𝐸𝑏𝑠)
𝑒𝑖𝑘�̂�𝑠 ∙�̅�

𝑟
 (B-12) 

The scattered field components 𝐸𝑎𝑠 and 𝐸𝑏𝑠  are linearly related to 𝐸𝑎𝑖  and 𝐸𝑏𝑖 . The 

relationship can be presented by a 2 by 2 scattering amplitude matrix, 

 [
𝐸𝑎𝑠
𝐸𝑏𝑠
] = [

𝑓𝑎𝑎(�̂�𝑠, �̂�𝑖) 𝑓𝑎𝑏(�̂�𝑠, �̂�𝑖)

𝑓𝑏𝑎(�̂�𝑠, �̂�𝑖) 𝑓𝑏𝑏(�̂�𝑠, �̂�𝑖)
] [
𝐸𝑎𝑖
𝐸𝑏𝑖
] (B-13) 

where the Sinclair matrix is described as 

 𝑆2 = [
𝑓𝑎𝑎(�̂�𝑠, �̂�𝑖) 𝑓𝑎𝑏(�̂�𝑠, �̂�𝑖)

𝑓𝑏𝑎(�̂�𝑠, �̂�𝑖) 𝑓𝑏𝑏(�̂�𝑠, �̂�𝑖)
] (B-14) 
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Let 𝑓𝑎𝑎(�̂�𝑠, �̂�𝑖) = 𝑆11 , 𝑓𝑎𝑏(�̂�𝑠, �̂�𝑖) = 𝑆12 , 𝑓𝑏𝑎(�̂�𝑠, �̂�𝑖) = 𝑆21 , and 𝑓𝑏𝑏(�̂�𝑠, �̂�𝑖) = 𝑆22 , the 

Sinclair matrix is written as 

 

 𝑆2 = [
𝑆11 𝑆12
𝑆21 𝑆22

] (B-15) 

 
(a) 

 
(b) 

Figure B-2. Geometry for defining the orthonormal unit system based on scattering plane. 

(a) forward scatter alignment (FSA). (b) back scatter alignment (BSA). 

Figure B-2 shows the geometry of the scattering coordinate frameworks, in which the 

forward scattering is shown in Figure B-2(a) while the backscattering one is shown in 

Figure B-2(b). The relationship between the Sinclair matrices in these two coordinates 

are written as, 
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 𝑆𝐵𝑆𝐴 = [
−1 0
0 1

] 𝑆𝐹𝑆𝐴 (B-16) 

 

where 𝑆𝐵𝑆𝐴  and 𝑆𝐹𝑆𝐴  are the Sinclair matrices of the backscattering and forward 

scattering respectively. We use the BSA convention in our thesis, which is because the 

BSA convention is for a monostatic configuration when the transmitting and receiving 

antennas are collocated (Lee & Pottier, 2009), whereas, the polarimetric SAR data we 

employ in this thesis are from a space borne satellite with its transmitting and receiving 

antennas collocated. 

 

Reference 

Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging : from basics to applications. 

Boca Raton: CRC Press. 

Tsang, L., Kong, J. A., & Ding, K.-H. (2000). Scattering of electromagnetic waves. 

Theories and applications. New York: Wiley. 
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Appendix C: Polarimetric Scattering Matrices 

As shown in Appendix B, the incident and scattered electric fields are connected by a 

2 × 2 scattering matrix (Equation B-14). In the monostatic backscattering case, where the 

transmitting and receiving antennas are placed at the same location, the incident and 

scattered electric fields are expressed in the same orthogonal basis. Without loss of 

generality, let us define a local Cartesian basis for convenience, the 2 × 2  complex 

backscattering matrix can be expressed as 

 𝑆 = [
𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

] (C-1) 

The elements 𝑆𝐻𝐻 and 𝑆𝑉𝑉 produce the power return in the copolarized channels and the 

elements 𝑆𝐻𝑉  and 𝑆𝑉𝐻  produce the power return in the cross-polarized channels. If the 

role of the transmitting and the receiving antennas are interchanged, the reciprocity 

theorem requires that the backscattering matrix be symmetric, with 𝑆𝐻𝑉 = 𝑆𝑉𝐻 . In 

practice, not all radar targets are stationary, but generally are situated in a dynamically 

changing environment and are subject to spatial and temporal variations. Such scatters 

are called partial scatters or distributed targets. However, even if the environment is 

dynamically changing, one has to make assumptions concerning stationarity, 

homogeneity, and ergodicity. This can be analyzed more precisely by introducing the 

concept of space and time varying stochastic processes, where the target or the 

environment can be described by the second order moments of the fluctuations which 

will be extracted from the polarimetric coherency or covariance matrices. When the 

reciprocity is fulfilled, the coherency matrix and covariance are defined as, 

 

𝑇 = 〈𝑘 ⋅ 𝑘𝐻〉

=
1

2
[

|〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉|
2 〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉

∗ 2〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉〈𝑆𝐻𝑉〉
∗

〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉
∗ |〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉|

2 2〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉〈𝑆𝐻𝑉〉
∗

2〈𝑆𝐻𝑉〉〈𝑆𝐻𝐻 + 𝑆𝑉𝑉〉
∗ 2〈𝑆𝐻𝑉〉〈𝑆𝐻𝐻 − 𝑆𝑉𝑉〉

∗ 4|〈𝑆𝐻𝑉〉|
2

] (C-2) 
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 𝐶 = 〈𝛺 ⋅ 𝛺𝐻〉 = [

|〈𝑆𝐻𝐻〉|
2 √2〈𝑆𝐻𝐻𝑆𝐻𝑉

∗ 〉 〈𝑆𝐻𝐻𝑆𝑉𝑉
∗ 〉

√2〈𝑆𝐻𝑉𝑆𝐻𝐻
∗ 〉 2|〈𝑆𝐻𝑉〉|

2 √2〈𝑆𝐻𝑉𝑆𝑉𝑉
∗ 〉

〈𝑆𝑉𝑉𝑆𝐻𝐻
∗ 〉 √2〈𝑆𝑉𝑉𝑆𝐻𝑉

∗ 〉 |〈𝑆𝑉𝑉〉|
2

] (C-3) 

where 𝐻 represents the conjugate transpose and 𝑘 and 𝛺 are defined as 

 

𝑘 =
1

√2
[𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑆𝐻𝐻 − 𝑆𝑉𝑉 2𝑆𝐻𝑉]

𝑇 

𝛺 = [𝑆𝐻𝐻 √2𝑆𝐻𝑉 2𝑆𝑉𝑉]
𝑇
 

(C-4) 

The total power is defined as 

 𝑆𝑝𝑎𝑛 = |𝑘|2 = |𝛺|2 = |〈𝑆𝐻𝐻〉|
2 + 2|〈𝑆𝐻𝑉〉|

2 + |〈𝑆𝐻𝑉〉|
2 (C-5) 

Meanwhile, there is a conversion between the covariance and coherency matrices, and it 

is defined as 

 𝐶 =
1

2
[
1 1 0

0 0 √2
1 −1 0

] ∙ 𝑇 ∙ [
1 0 1
1 0 −1

0 √2 0

] ∙ (C-6) 
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Appendix D: Eigen-Value Decomposition 

The eigenvector-based decomposition proposed by Cloude and Pottier (1997) has been 

suggested as the alternative to the Huynen decomposition because the eigenvalue is 

automatically basis invariant. A set of three uncorrelated targets can be obtained through 

diagnosing the averaged coherency matrix.  Then, its coherency matrix is written in the 

following two forms, 

 

𝑇3 = 𝑈3∑𝑈3
−1 

𝑇3 =∑𝜆𝑖

3

𝑖=1

𝑢𝑖𝑢𝑖
∗𝑇 = 𝑇01 + 𝑇02 + 𝑇03 

(D-1) 

A coherency matrix can be written as the summation of three independent targets each of 

which representing a deterministic scattering mechanism associated with a single 

equivalent scattering matrix. If only one eigenvalue is nonzero then the coherency matrix 

corresponding to the pure target and can be related to a single scattering matrix. If the 

other eigenvalues are equal, then three orthogonal scattering mechanisms with equal 

amplitudes; it means the target is random and no correlated polarized structure at all. The 

entropy and polarimetric angle (alpha) derived from the eigen-based decomposition led to 

a well-known classification Scheme in terms of entropy and alpha (Cloude & Pottier, 

1997). The entropy and alpha, and their plot are shown as, 

 𝐻 =∑−𝑃𝑖𝑙𝑜𝑔3𝑃𝑖

3

𝑖=1

, 𝑃𝑖 = 𝜆𝑖 ∑𝜆𝑗 ,

3

𝑗=1

⁄ �̅� =∑𝑃𝑖𝑎𝑐𝑜𝑠(𝑒𝑖)

3

𝑖=1

 (D-2) 
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Figure D-1. H-𝜶 zones. 

They classify targets into eight different classes according the zones shown. Z1 is the 

high entropy multiple scattering. Z2 is the high entropy vegetation scattering. Z3 is the 

high entropy surface scatter. Z4 is the medium entropy multiple scattering. Z5 is the 

medium entropy vegetation scattering. Z6 is the medium entropy surface scatter. Z7 is the 

low entropy multiple scattering events. Z8 is the low entropy dipole scattering. Z9 is the 

low entropy surface scatter (Cloude & Pottier, 1997).  

Reference 

Cloude, S. R., & Pottier, E. (1997). An Entropy Based Classification Scheme for Land 

Applications of Polarimetric SAR. IEEE Transactions on Geoscience and Remote 

Sensing, 35(1), 68-78. 
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Appendix E: Surface Parameters over Bare Soil 

The surface parameters over bare soil are consisting of soil moisture, standard deviation 

of surface height and the surface correlation length. The TDR (Time-Domain 

Reflectometry) Probe shown in Figure E-1 is used to measure the volumetric soil 

moisture, while surface roughness is measured by a one-meter long needle profiler shown 

in Figure E-2.  

 

Figure E-1. Time-Domain Reflectometry. 

The TDR probe responds to the soil relative dielectric constant (휀𝑟), which is strongly 

dependent on the water content, many authors have shown that there is a simple 

relationship between the square root of 휀𝑟, and the volumetric water content (𝑚𝑣), as 

follows: 

 √휀𝑟 = 𝑎0 + 𝑎1 × 𝑚𝑣 (E-1) 

Where 𝑎0 and 𝑎1 are soil specific parameters being unique for each soil type. They are 

used to convert the sensor output (휀𝑟) into soil moisture readings. Table E-1 depicts the 

examples of these two parameters according to Roth et al. (1992) with mineral and 

organic soils. 
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Table E-1. Specific parameters for each soil type. 

 𝑎0 𝑎1 

Mineral soils 1.6 8.4 

Organic soils 1.3 7.7 

 

 

Figure E-2. Needle profiler. 

The standard deviation of surface height and the surface correlation length describe the 

statistical variation of the random component of surface height relative to a reference 

surface. Consider a surface in the 𝑥 − 𝑦 plane. For a statistically representative segment 

of the surface, of dimensions 𝐿𝑥 and 𝐿𝑦, centered at the origin, the mean height of the 

surface is  

 𝑧̅ =
1

𝐿𝑥𝐿𝑦
∫ ∫ 𝑧(𝑥, 𝑦)

𝐿𝑦 2⁄

−𝐿𝑦 2⁄

𝐿𝑥 2⁄

−𝐿𝑥 2⁄

𝑑𝑥𝑑𝑦 (E-2) 

and the second moment is  
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 𝑧2̅̅ ̅ =
1

𝐿𝑥𝐿𝑦
∫ ∫ 𝑧2(𝑥, 𝑦)

𝐿𝑦 2⁄

−𝐿𝑦 2⁄

𝐿𝑥 2⁄

−𝐿𝑥 2⁄

𝑑𝑥𝑑𝑦 (E-2) 

The standard deviation of the surface height (RMS) is then given by 

 𝜎 = √𝑧2̅̅ ̅ − 𝑧̅2 (E-3) 

For one-dimensional surface profile shown in Figure E-4, 𝜎 is computed, in practice, by 

digitizing the profile into discrete values 𝑧𝑖(𝑥𝑖), at an appropriate spacing ∆𝑥. Then, the 

standard deviation 𝜎 for the discrete one-dimensional case is given by  

 𝜎 = [
1

𝑁 − 1
(∑(𝑧𝑖)

2

𝑁

𝑖=1

− 𝑁(𝑧̅)2)]

1 2⁄

 (E-4) 

where 

 𝑧̅ =
1

𝑁
∑𝑧𝑖

𝑁

𝑖=1

 (E-5) 

The normalized autocorrelation function for a one-dimension surface profile 𝑧(𝑥)  is 

defined as  

 𝜌(�́�) =
∫ 𝑧(𝑥)𝑧(𝑥 + �́�)
𝐿𝑥 2⁄

−𝐿𝑥 2⁄
𝑑𝑥

∫ 𝑧2(𝑥)
𝐿𝑥 2⁄

−𝐿𝑥 2⁄
𝑑𝑥

 (E-6) 

and is a measure of the similarity between the height 𝑧 at a point 𝑥 and at a point �́� 

distant from 𝑥. For the discrete case, the normalized autocorrelation function for a spatial 

displacement �́� = (𝑗 − 1)∆𝑥. Then, the surface correlation length 𝑙 usually is defined as 

the displacement �́� for which 𝜌(�́�) is equal to 1 𝑒⁄ : 

 𝜌(𝑙) = 1 𝑒⁄  (E-7) 
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The correlation length of a surface provides a reference for estimating the statistical 

independence of two points on the surface; if the two points are separated by a horizontal 

distance greater than 𝑙 , then their heights may be considered to be statistically 

independent of one another. In the extreme case of a perfectly smooth surface, every 

point on the surface is correlated with every other point with a correlation coefficient of 

unity. Hence, 𝑙 = ∞ in this case. 

 

Figure E-3. Surface height profile. 

Reference 

Roth, C. H., Malicki, M. A., & Plagge, R. (1992). Empirical Evaluation of the 

Relationship between Soil Dielectric Constant and Volumetric Water Content as the 

Basis for Calibrating Soil Moisture Measurements by TDR. Journal of Soil Science, 

43(1), 1-13. 

Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: Active and 

passive. Volume 3 - From theory to applications. New York: Addison-Wesley Pub. 

Co., Advanced Book Program/World Science Division. 
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Appendix F: Surface Roughness Measurement 

To measure the surface roughness, three steps are required: geometric correction, 

digitalization, and calculation. The PCI Geomatics software is adopted. 

GEOMETRIC CORRECTION  

 As surface roughness needle profiler photo images contain geometric distortion, we 

perform geometric correction to the images. The geometric correction is carried out in a 

two-step process:  

(1) Transformation of Pixel Coordinates: The geometric relationship between the 

input pixel location (line number and pixel number) and the associated map 

coordinate of this same point (x and y) must be identified. For example, 

polynomial functions will be fitted to describe the relationship. Then, each pixel 

in the target (georeferenced) image can be transformed according to the 

polynomial (1
st
 order or higher order) to determine a sampling location in the 

input (uncorrected) image. 

(2) Resampling: Resampling is used to determine the pixel brightness values for the 

georeferenced (output) image based on the spatial interpolation from the 

uncorrected (input) image (using nearest neighbour, bilinear or cubic convolution 

method). 

Here I use an example: We will register the uncorrected image: P1030848.pix, to the 

corrected image: ref838.pix. 
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Figure F-1. Uncorrected image:  P1030848.pix. 

 

Figure F-2. The reference image:  ref838.pix. 

1. INITIAL SETUP IN OrthoEngine 

1.1. Start OrthoEngine. The first step is setup, which involves choosing what kind of 

geometric correction or registration you will be doing with OrthoEngine. You will need 

to setup your new project, by choosing File>New.  This will bring up the Project 
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Information panel.  Make sure to name your project, for example 848 and save the *.prj 

file in a suitable location. Choose Polynomial Math Modeling Method and click OK. 

1.2. Now you will need to set the Projection for the Output image and the GCPs. Click on 

Earth Model. Select "WGS 1984” (D000) and accept. (You can click on the “Set GCP 

Projection Based on Output Projection” button to ensure that your projections are the 

same.)  Set the output pixel and line spacing to 0.5 meter each. Here 1 meter represents 1 

mm. Click "OK". 

 

Figure F-3. Setting up projection. 

1.3. Now we can open the image we would like to geometrically correct.  In the 

Processing Step drop down box, select GCP Collection and click on the “Open new or 

existing file” button.   ‘Select Uncorrected Image’ and click on the “New Image” 

button. Select P1030848.pix to load it into the list box.  Now open the image using the 

‘Quick Open and Close’ Button.  You should now be able to browse the image in the 

Viewer window. Try clicking on a point in the image.  You should see a red cross where 

you clicked.   

2. COLLECTING GROUND CONTROL POINTS 

2.1. To begin collecting GCPs, select “GCP Collection” in the Processing step drop-down 

box, and select the “Collect GCPs manually” button.  For "Ground control source", select 

"geocoded image" from the pull down menu. Then specify the reference image 

"ref838.pix". Click "Open". Select the RGB channels. Click on "Load and close".  
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Using your image Viewer and the reference image, find a common point that is easily 

discernible on both. Zoom in close enough so that you are within one pixel accuracy. 

2.2. Once you are confident that you have located the right point on the imagery, click on 

the location in the Viewer, and select the “Use Point” button at the top of the Viewer to 

transfer uncorrected coordinates (pixel and line numbers) to the GCP Collection panel. 

You will locate the matching point in the uncorrected and geocoded image by using the 

viewers for both.  Zoom into a common point on the reference image and select “Use 

Point”. Make sure your coordinates appear in the GCP collection panel. Select "accept". 

You will see this point added to the list of accepted GCPs and the GCP ID will 

automatically increase to the next ID number. Repeat these steps until you have collected 

enough GCPs. You should select at least 6 GCPs: Four at the four corners (such as the 

ends of the red lines) and two in the middle. GCPs should spread over the image. Use 1st 

order polynomial in most cases. You can select more points and use 2nd order or 3rd 

order polynomial if there is obvious distortion in the image. For a more accurate result, 

the RMS errors should be less than 1 pixel, or 0.5 m. 

2.3. Once you have collected enough GCPs, save your project by using the File menu in 

the main OrthoEngine panel.  By saving your project, you will also be saving your GCPs 

as well. You will also need to export your GCPs to a text file.  You will need to close the 

“GCP Collection” window before you can export.  In the main OrthoEngine panel, select 

Options>Export>GCPs… Make sure to export as a text file.  Name the export file 

“848.txt” (don’t forget to add the .txt extension) and Apply the default formatting.  

2.4. Within OrthoEngine, the actual geometric correction (registration) is done using the 

‘Geometric Correction’ panel.  You can access this by selecting “Geometric 

Correction” in the drop-down box.   Select the “Schedule geometric correction” button. 

In the following window, add your uncorrected image P1030848 to the “Images to 

Process” list box.  Make sure you include all channels (six 8-bit channels).  Name the 

new “corrected” file as oP1030848.pix.   You can set your Resampling Method to 

“Nearest” if you use first order polynomial.  Please set the output extent to:  Upper left: -

54 X, 486 Y; Lower right: 1150 X, -200 Y. See Figure below. 
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Figure F-4. Setting the output image extent: upper left and lower right coordinates. 

Now you can correct the image.  Then open oP1030848.pix in Focus. 

 

Figure F-5. Corrected image: oP1030848.pix. 

IMAGE DIGITIALIZATION  

1.  Open the corrected image oP1030848 using Focus in PCI, 
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2. Right click “New Area”, and click “New Vector layer” 

 

3. A dialog is opened and select “Point” and “Use Layer Georeferencing ” then 

click “Ok” 
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4. Select “Point” in the “Tool Bar” 

 

5. Digitalize the point in order from left to right (MUST BE IN ORDER!!), and 

ONLY DIGITALIZE THE POINTS ON TOP OF PIN.  
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6. After you finish all points, right click “New Point Layer”, and click “Save as…” 
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7. Do not check any check-box in the opened dialog, and File Format must be 

“Generic ASCII Vector (.txt)”, and output file is named via “Site Name + 

Photo #”. 

 

8. Please check the output “C1_01_P1030848.txt”file is looking like Figure F-6. 

 

Figure F-6. C1_01_P1030848.txt 

SOIL ROUGHNESS CALCUALTION 
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The roughness is calcuated by the programm we made through reading the text file 

generated in Step 2. 

1. Open the “surface_roughenss.exe”. 

 

2. Click “Open File”, select the “C1_01_P1030848.txt”, and click “Calculate” 
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From: Gwen Weerts  

Date: April 14, 2016 at 11:04:59 PM GMT+8 
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personal use of this material is permitted. If interested in reprinting/republishing IEEE 

copyrighted material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn 

how to obtain a License from RightsLink.  
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may supply single copies of the dissertation. 
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