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Abstract 

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a multifunctional protease that 

invokes changes extracellularly via cleavages of ECM substrates, and intracellularly through 

induction of cell signalling cascades, both to influence cell behaviour and motility. The 

effects of MT1-MMP activation, MMP catalytic activity, and ERK1/2 signalling were 

examined by chemically or genetically altering each parameter. Regardless of treatment, 

expression of the two gelatinases, MMP-2 and -9, were always altered in an inverse 

relationship. This work proposes a pathway through active MT1-MMP initiation of ERK1/2 

phosphorylation and subsequent targeting the NF-κB transcription factor, to ultimately 

influence MMP-9 expression. Modulation of MT1-MMP activation, activity, or downstream 

signalling, all resulted in decreased invasive potential in MDA-MB-231 breast cancer cells. 

In a chicken embryo tumour model, only untreated MDA-MB-231 cells caused tumour 

vascularization and complete wound closure. Furthermore, these results suggest that cells 

lacking active MT1-MMP, phospho-ERK1/2, or adequate MMP-9, have considerably 

reduced invasive potential. 
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Chapter 1  

1 Introduction 

1.1 The Extracellular Matrix  

The Extracellular Matrix (ECM) is a three-dimensional, cross-linked structure of secreted 

macromolecules present within all tissues and is essential for life as it regulates 

eukaryotic cell development, function, and homeostasis (Lu et al.,2011; Rozario and 

DeSimone, 2010). The ECM aids in the support, repair, and regeneration of differentiated 

tissues and organs, whereby integrity is maintained through regulation of structural 

proteins, embedded cytokines, growth factors, growth factor receptors, as well as 

maintenance of hydration and pH of the all-encompassing cell-surrounding environment 

(Naba et al., 2012; Sanes, 2003; Torricelli et al., 2013). The functional importance of the 

ECM is illustrated by the wide range of tissue defects or, in severe cases, embryonic 

lethality caused by mutations in genes that encode essential ECM components (Bateman 

et al., 2009; Järveläinen, 2009).  

In mammals, the ECM is composed of approximately 300 different protein types, known 

as the core matrisome, including proteins such as collagen, proteoglycans, and 

glycoproteins (Järveläinen, 2009; Schaefer and Schaefer, 2010). There are two main 

types of ECM that are distinct due their location and composition within tissues: the 

interstitial connective tissue matrix, which surrounds cells and provides structural 

scaffolding for tissues; and the basement membrane, which is a specialized form of ECM 

that separates the epithelium from the underlying stroma. More specifically, the basement 

membrane is comprised predominately of type IV collagen (Martin and Timpl, 1987) and 

functions to provide support for epithelial, endothelial, muscle and fat cells (Paulsson, 

1992; Kalluri, 2003), acts as a mechanical barrier to cells and other macromolecules, and 

serves as sites for cell-ECM adhesions and interactions (Mouw et al., 2014). 

ECM proteins can also function as ligands for various cell surface receptors present on 

the embedded cells, stimulating diverse cell-signalling pathways, which regulate cell 

adhesion, migration, proliferation, apoptosis, survival, or differentiation (Egeblad and 
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Werb, 2002). Furthermore, the ECM sequesters and locally releases growth factors, such 

as epidermal growth factor (EGF), fibroblast growth factor (FGF) and other signalling 

molecules, such as WNTs and transforming growth factor-β (TGF-β), which additively 

influence cell behaviour (Lu et al., 2011). Cells are capable of rebuilding and remodeling 

the ECM through synthesis, degradation, reassembly, and chemical modification of ECM 

components. The principle molecules responsible for degrading and remodeling the ECM 

are Matrix Metalloproteinases (MMPs) and their endogenous inhibitors, Tissue Inhibitors 

of Metalloproteinases (TIMPs) (Lambert et al., 2004). The actions of MMPs and TIMPs 

within the ECM are complex and need to be tightly regulated to maintain tissue 

homeostasis and to respond to developmental cues, as well as physiological stresses, such 

as injury, wound repair, and disease (Järveläinen, 2009; Hynes, and Naba, 2012; Frantz et 

al., 2010). Collectively, the composition and status of the ECM surrounding, supporting, 

and interacting with cells within a given tissue can vary tremendously, whether it is from 

one tissue to another (muscle versus skin versus bone), within a given tissue (atria versus 

ventricle), or from one physiological state to another (embryonic development versus 

adult maintenance versus cancer metastasis) (Zhen and Cao, 2014).  

1.2 Key ECM Remodelers and Inhibitors: Matrix 
Metalloproteinases and Tissue Inhibitor of 
Metalloproteinases 

MMPs comprise a family of zinc-dependent endopeptidases, which function to 

selectively cleave all components of the ECM, resulting in substrate degradation and 

subsequent remodeling. To date, 24 MMPs have been identified in vertebrates and are 

classified into one of five groups based on their structure and ECM substrate specificity: 

collagenases (e.g. MMP-1, -8, -13), gelatinases (MMP-2 and MMP-9), membrane-type 

(MT1-MMP – MT6-MMP), stromelysins (e.g. MMP-3, -10, -11) and matrilysins (e.g. 

MMP-7 and MMP-26) (Bourboulia, and Stetler-Stevenson, 2010). As the list of known 

MMP substrates increases in number and complexity, a more simplistic categorization of 

MMPs has formed, which describes their structure and cellular localization: Membrane-

Type MMPs (MT-MMPs), which are anchored at the cell surface, and secreted MMPs, 

which are soluble in the ECM (Egeblad and Werb, 2002)  
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Most MMPs share a common domain structure, consisting of an N-terminal pro-peptide 

domain, the catalytic domain, and the hemopexin-like domain. Synthesized as inactive 

zymogens, the MMP pro-peptide domain contains a conserved cysteine residue that 

interacts with the catalytic domain to prevent substrate binding. Activation of MMPs 

occurs upon removal of the pro-domain. Membrane-Type MMPs are activated 

intracellularly in the trans-Golgi by a protein-convertase-dependent mechanism, 

principally by furin, and are anchored at the cell membrane in an active form (Sternlicht 

and Werb, 2001). Secreted MMPs are secreted as pro-enzymes and are activated 

extracellullarly by other, already active, proteinases. After activation, within the catalytic 

domain of MMP’s lies the active site, a conserved histidine motif (HEXXHXXGXXH) in 

which the three histidine residues are essential for zinc chelation and subsequent catalytic 

activity (Stöcker and Bode, 1995). The hemopexin-like domain (located at the C-terminal 

end of secreted MMPs) is comprised of a four bladed β-propeller structure, which dictates 

substrate specificity and mediates protein-protein interactions (Visse and Nagase, 2003). 

Moreover, Membrane-Type MMPs contain an N-terminal pro-domain, catalytic domain, 

and a hemopexin-like domain, but with the addition of a transmembrane domain for 

anchorage into the cell membrane and the C-terminal cytoplasmic tail essential for 

localization and recycling to the membrane surface. Collectively, the catalytic domain 

and hemopexin-like domain in all MMP family members, allow these proteins to function 

proteolytically, to achieve ECM degradation and remodeling, and non- proteolytically, by 

binding of extracellular or cell surface proteins to initiate down stream signalling 

pathways (Strongin, 2010). 

MMPs were initially discovered in tadpole metamorphosis during tail resorption, where 

collagen triple helix degradation was detected, marking the earliest observation of MMP 

mediated ECM remodeling (Gross and Lapiere, 1962). Since this discovery, MMPs have 

been documented to degrade all constituents of the ECM, promoting both cell migration 

and influencing cell behaviour through growth factor availability. Additionally, more 

recent evidence has demonstrated that MMPs are also capable of cleaving chemokines, 

growth factor receptors, and cell adhesion molecules (Egeblad and Werb, 2002). 

Therefore, not only can MMPs influence cell behavior by regulating the integrity and 

composition of the ECM with which a cell interacts, but also by regulating the levels of 

https://en.wikipedia.org/wiki/Catalytic_domain
https://en.wikipedia.org/wiki/Haemopexin
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available growth factors and their receptors through cleavage of ECM and non-ECM 

proteins.  

In order to maintain tissue integrity, the correct MMPs must be present at the correct 

time, in the correct location, and in the appropriate form (inhibited or active). Control of 

MMP-dependent cleavages of the ECM is critical in order to maintain proper organismal 

development and maintenance of normal adult tissues. Retaining proper MMP activity in 

tissues is achieved through regulation of MMP gene expression, pro-enzyme activation, 

and the level of their enzymatic activity through catalytic inhibition by their endogenous 

inhibitors, Tissue Inhibitors of Metalloproteinases (TIMPs) (Visse and Nagase, 2003). 

Currently, there are 4 defined mammalian TIMPs (TIMP 1-4), all of which are small-

secreted proteins consisting of structurally and functionally distinct N- and C-terminal 

domains. TIMP N-terminal domains are responsible for direct inhibition of MMP activity 

by binding, and therefore blocking, the MMP catalytic site (Nagase et al., 2006). TIMP 

C-terminal domains interact with the hemopexin domains of select MMPs to aid in MMP 

activation (Stetler-Stevenson, 2008), as well as carry out various MMP-independent 

functions, such as binding to a variety cell surface receptors to induce downstream 

signalling cascades (Stetler-Stevenson and Seo, 2005). 

1.3 MT1-MMP Structure, Activation, and Function in 
Development and Disease 

Unlike secreted MMPs, which are activated extracellullarly and may diffuse freely 

throughout the ECM, Membrane-Type MMPs (MT-MMPs) are activated intracellularly 

and embedded in the plasma membrane; thus, the activities of MT-MMPs are limited to 

the surface of the cells that produced them (Seiki, 2003). Of the six MT-MMPs, MT1-

MMP (also known as MMP-14) was the first identified and most well characterized. 

MT1-MMP plays an integral role in ECM remodeling, as it possesses both proteolytic 

and non-proteolytic functions. Proteolytically, MT1-MMP is directly involved in 

pericellular cleavage of collagen types I, II, and III, laminins-1 and -5, fibronectin, 

vitronectin, fibrin and aggrecan. Additionally, MT1-MMP is responsible for cleavage of 

other cell surface proteins (CD44, cadherins, or integrins), and activation of other 

secreted pro-MMPs most notably pro-MMP-2 and pro-MMP-9 (Toth et al., 2003). Non-
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proteolytically, MT1-MMP interacts with other ECM molecules to stimulate intracellular 

signalling cascades, such as the Mitogen-Activated Protein Kinase (MAPK) pathway, 

resulting in changes in cell behaviour and function (Pahwa et al., 2014). Collectively, 

MT1-MMP is a key regulator of cellular invasion in development and disease.  

MT1-MMP is classified as a type I transmembrane protein, and is synthesized as an 

inactive zymogen, containing a single transmembrane domain important for membrane 

integration and a short cytosolic C-terminal domain essential for regulating cellular 

localization and turnover (Strongin, 2010). The pro-domain of MT1-MMP contains a 

furin cleavage motif; therefore furin is a crucial component in the activation pathway that 

results in active MT1-MMP present on the cell surface. Furin is a specialized serine 

endoproteinase belonging to the protein convertase family. Furin cleaves the multibasic 

motifs R-X-R/K/X-R to transform many pro-proteins into biologically active proteins and 

peptides (Seidah et al., 2008). In humans, furin is ubiquitously expressed, where it is 

primarily localized in the trans-Golgi network and secondarily found in vesicles cycling 

to the cell surface. The importance of furin in proper cell function is illustrated by its 

developmental lethality in furin knockout mice (Scamuffa et al., 2006). Furin and other 

protein convertases are self-activated and, as a result, they initiate proteolytic cascades 

through their wide variety of targets including, MT1-MMP, TGF-β, stromolysin-3 

(MMP-11), growth factors, and adhesion molecules, all of which are essential in the 

processes of cellular transformation, acquisition of the tumourogenic phenotype, and 

metastases formation (Strongin, 2010). The cytosolic C-terminal tail of MT1-MMP is 

important in regulation of cell migration and invasion as the tail of MT1-MMP facilitates 

MT1-MMP localization to invadapodia— cell membrane protrusions that serve as focal 

sites of ECM degradation (Poincloux et al., 2009). Additionally, the tail of MT1-MMP 

has been linked to internalization and turnover of the enzyme with respect to its presence 

on the membrane surface, highlighting the importance of this domain in regulating MT1-

MMP function (Uekita et al., 2001).  

As well as cleaving known ECM substrates, MT1-MMP is involved in the activation of 

pro-MMP-2, which further potentiates the migratory and invasive potential of MT1-

MMP expressing cells through amplified ECM degradation (Itoh et al., 2001). In brief, 
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during the activation of pro-MMP-2, one MT1-MMP protein acts as a cell surface 

receptor for a TIMP-2, as the inhibitory N-terminus of TIMP-2 binds MT1-MMP at its 

active site. The C-terminal domain of the same TIMP-2 molecule then binds the 

hemopexin-like domain of pro-MMP-2, which can orient the latter into close proximity to 

the active site of a second, adjacent active MT1-MMP. After formation of the MT1-

MMP/TIMP-2/pro-MMP-2 complex, MT1-MMP is in the correct orientation to cleave 

the pro-peptide domain of pro-MMP-2 and release the activated MMP-2 into the ECM 

(Itoh et al., 2001; Lehti et al., 2000). Additionally, the MT1-MMP/TIMP-2/MMP-2 

complex has been shown to activate secreted pro-MMP-9, demonstrating the dependence 

of proper protein associations for subsequent MMP activation events (Toth et al., 2003). 

In conjunction with the activation of pro-MMP-2 and pro-MMP-9, MT1-MMP and 

TIMP-2 can also form an additional complex via the hemopexin domain of MT1-MMP to 

initiate the intracellular cascade of the MAPK pathway leading to the downstream 

phosphorylation of Extracellular Signal-Regulated Kinase (ERK1/2) (Sounni et al., 

2010). Among the cell signalling pathways involved in cancer, the MAPK pathway is one 

of the most prominent, as it regulates diverse cellular functions including cell 

proliferation, survival, angiogenesis, and migration (Fujioka et al., 2006).    

All of the activities MT1-MMP elicits and initiates in the extracellular matrix have 

functions during, and thus impact, development and disease. MT1-MMP is essential for 

proper organismal cellular function during embryogenesis, as knockout of MT1-MMP is 

developmentally lethal in mice. MT1-MMP deficient mice die shortly after birth 

exhibiting craniofacial dysmorphism, arthritis, osteopenia, dwarfism, and fibrosis of soft 

tissues. Of all the 24 known MMP family members, MT1-MMP knockout is the only 

phenotype that is developmentally lethal (Holmbeck et al., 1999), demonstrating the 

importance of proper
 
MT1-MMP function during embryogenesis. Its importance in 

disease is exemplified in pathological conditions, such as cancer, as MT1-MMP promotes 

cell migration and invasion as well as potentiation of ECM remodeling through activation 

of other pro-MMPs. MT1-MMP exhibits increased expression in a wide variety of cancer 

types, classifying MT1-MMP as a pro-invasive and pro-tumourogenic protein. The 

causes of increased MT1-MMP expression in cancer cell types is attributed to 
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transcriptional changes during tumour formation, as there have been no documented 

mutations in the MT1-MMP gene in cancerous cells (Pahwa et al., 2014). 

1.4 Ras-Raf-MEK-ERK Mitogen-Activated Protein Kinase 
Cascade 

Mammalian cells possess four well-characterized MAPKs. The cascades resulting in the 

activation of these MAPK’s are comprised of three protein kinases that act as a signalling 

relay: a MAPK kinase kinase (MAPKKK), which activates a MAPK kinase (MAPKK), 

resulting in the final activation of a MAPK (e.g. ERK1/2, JNK, p38, or ERK5) that 

generally impacts transcription (Roberts, and Der, 2007).  In general, the ERK1/2 

pathway is activated by growth factor-stimulated cell surface receptors, whereas the JNK, 

p38, and ERK5 pathways are activated by stress and growth factors (Mebratu and 

Tesfaigzi, 2009) 

The MAPK pathway of Ras-Raf-MEK1/2-ERK1/2 is of particular interest as ERK1/2 

signalling promotes cell proliferation, cell survival, and cell motility. In this pathway Raf 

is the MAPKKK, MEK1/2 the MAPKK and ERK1/2 the MAPK. Unsurprisingly, this 

pathway is abnormally activated in many cancer types, highlighting the important role of 

ERK1/2 signalling in regulation of proper cell function. During development, ERK1 (44 

kDA) and ERK2 (42 kDa) knockout studies have revealed non-compensatory roles 

between these two proteins, as absence of one is not replaced by the action of the other. 

ERK2 is essential for development as ERK2 knockout mice showed defects in placental 

development resulting in embryonic death, while ERK1 knockout mice were viable, 

fertile, and normal in size (Mebratu and Tesfaigzi, 2009). 

In brief, the Ras-Raf-MEK1/2-ERK1/2 pathway is tightly controlled by a series of 

protein phosphorylation events. Ras directly interacts with Raf, whereby activation of 

MEK1/2 by Raf protein family members leads to the phosphorylation of threonine and 

tyrosine residues within TEY (Thr-Glu-Tyr) recognition sites of ERK1 and ERK2. 

Phosphorylated ERK1/2 can then either be retained within the cytosol or translocated to 

the nucleus, where phospho-ERK1/2 influences gene expression through phosphorylation 

of serine, threonine, or proline residues of downstream transcription factors (Roberts and 
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Der, 2007). Collectively, active phosphorylated ERK1/2 regulates the expression of over 

160 proteins including growth factors, cytokines, cell surface receptors, and MMPs, 

which in turn influence the composition and conditions of the ECM (Meloche and 

Pouysségur, 2007). 

1.5 The Gelatinases: MMP-2 and MMP-9  

The gelatinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), differ from other 

MMP family members as they have a collagen-binding domain (CBD) embedded within 

their catalytic domain. The CBD is composed of fibronectin type II repeats and is 

involved in the binding of collagenous substrates, elastin, and fatty acids (Klein, and 

Bischoff, 2011). MMP-2 and MMP-9 are considered potent ECM remodelers as they 

both share the target substrate collagen IV, an abundant component of physiologically 

important basement membranes.  

MMP-2 is synthesized in a 72 kDa pro- form and upon removal of the pro-domain by 

active MT1-MMP, the 63 kDa active form of MMP-2 cleaves a wide variety of substrates 

found within the extracellular milieu (Khasigov et al., 2003). MMP-2 has substrate 

specificity for ECM and non-ECM components such as collagens (I, IV, V, VII, and X), 

gelatin, elastin, fibronectin, laminins, galectin-3, aggrecan, as well as various cell surface 

receptors, growth factors, and chemokines (Järveläinen, 2009). Moreover, active MMP-2 

has the ability to activate pro-MMP-9 to further increase ECM degradation. As a potent 

ECM remodeler with large substrate specificity, altered expression and activity of MMP-

2 has been linked with poor prognosis in multiple cancer types including colorectal, 

melanoma, breast, lung, and prostate. For example, in colorectal cancer many metastatic 

cases involving increased MMP-2 activity have been correlated with increased expression 

in surrounding healthy tissues, in addition to metastatic lesions (Mook et al., 2004).  

MMP-9 is produced as an inactive 92 kDa pro-MMP-9 and degrades both ECM and non-

ECM substrates in an 82 kDa active form (Khasigov et al., 2003). MMP-9 possess 

substrate specificity for collagens III, IV and V, gelatin, elastin, vitronectin, and entactin, 

as well as TNF-α and IL-1β (Järveläinen, 2009). In cancer, MMP-9 contributes to 

angiogenesis of the pre-existing metastatic niche by recruiting macrophages and 
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hematopoietic stem cells (Kaplan et al., 2005; Hiratsuka et al., 2006). In some cases 

metastatic potential of tumors is associated with increased MMP-9 protein levels, and 

down-regulation of MMP-9 depresses metastasis (Björklund and Koivunen, 2005). 

MMP-9 expression is increased through the oncogenic properties of the Ras/Raf pathway 

to activate MEK1/2 and phospho-ERK1/2 (Gum et al., 1997). Phosphorylation of 

ERK1/2 leads to upregulation of MMP-9 transcription factors AP-1 and NF-κB (Fig. 1), 

which can increase transcription of pro-MMP-9 (Lee et al., 2013), ultimately resulting in 

further degradation of the ECM.  

Until recently, the data obtained from most studies suggested that gelatinases played a 

dominant role in basement membrane invasive events because of their ability to degrade 

collagen IV. However, recent studies in cancer cells engineered to express active MMP-2 

and MMP-9 (Hotary et al., 2006) and fibroblasts isolated from MMP- 2−/− and MMP-

9−/− mice (Sabeh et al., 2009) strongly suggest that gelatinases do more than promote 

basement membrane invasion. Recent evidence shows that gelatinases play major, but 

indirect roles in cell signalling by controlling the bioavailability and bioactivity of 

molecules that target specific receptors regulating cell growth, migration, inflammation, 

and angiogenesis. For example, cleavage of laminin-5 by MMP-2 results in the exposure 

of an epitope that enhances endothelial cell migration (Giannelli et al., 2016), while 

MMP-9 can release ECM-sequestered factors VEGF, TGF-β and FGF-2, which stimulate 

proliferation and migration of endothelial cells (Bergers et al., 2000; Yu and 

Stamenkovic, 2000).  

In cancer, there is a loss of tissue organization resulting from aberrant behaviour of ECM 

remodeling proteins. Tumours are characteristically stiffer than the surrounding normal 

tissue resulting from increased ECM deposition and remodeling by MMPs (Butcher et al., 

2009) , which in turn release more chemokines and growth factors embedded within the 

ECM (De Wever et al., 2008). The release of growth factors, such as VEGF by MMP-9, 

enhances vascular permeability and promotes new vessel growth to potentiate tumour 

growth and survival via angiogenesis and cell invasion to ultimately support
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Figure 1. Only MMP-9 contains binding sites for transcription factors AP-1 and NF-

κB within its promoter region.  

Shown are the known cis up-stream regulatory elements in the promoter regions of three 

human MMP genes: MMP-2, MMP-9, and MT1-MMP (MMP-14). The promoters are 

shown in the 5’-3’ direction, with the transcriptional start site indicated by a bent arrow. 

Transcription-factor-binding sites include: the activator proteins (AP)-1 (purple arrows) 

and -2 site, the CCAAT/enhancer-binding protein (C/EBP) site, the cyclic AMP 

response-element binding protein (CREB) site, the early growth response-1 (EGR1) site, 

the keratinocyte differentiation-factor responsive element (KRE), the nuclear factor of κB 

(NF-κB) site (pink arrows), the polyomavirus enhancer-A binding-protein-3 (PEA3) site, 

retinoblastoma control element (RCE), TGF-β inhibitory element (TIE), and the TATA-

box (TATA). The functional activity of the indicated binding sites has been verified by 

either using cell-transfection studies with MMP promoter constructs or functional 

analysis in transgenic mice models. Only the promoter region for MMP-9 contains both 

an AP-1 and NF-κB binding site, while the promoter region for MT1-MMP contains NF-

κB, and the promoter region for MMP-2 contains neither. Adapted from Christopher 

Mark Overall and Carlos López-Otín (2002).  
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metastasis (Butcher et al., 2009; Erler and Weaver, 2009; Paszek et al., 2005). 

1.6 Proteolytic and Non-Proteolytic Functions of MT1-MMP 
in Promoting Cell Motility 

Cell migration and invasion extensively contribute to the development and metastasis of 

cancers. The process of cell migration has been well characterized, and is initiated by the 

binding of chemoattractants or other pro-migratory ligands to cell surface receptors. 

Binding of ligands induces cell-signalling cascades, which influences gene transcription 

and cytoskeletal dynamics. At the leading edge of the cell during migration, actin is 

polymerized and stabilized by localized activity of multiple actin binding proteins 

including WASP and ARP2/3. Actin polymerization drives membrane extensions from 

the cell surface, called filipodia or lamellipodia, which contact and bind to the ECM 

using specific integrins to form focal adhesions. Actin and myosin contract to drive the 

cell body forward along ECM substrates, while the trailing edge of cells detaches from 

the ECM (Friedl and Wolf, 2003). 

In order to move through ECM barriers, a migrating cell must also be capable of ECM 

degradation. It is well documented that MT1-MMP localizes to the leading edge of cells, 

where it is presumed to promote matrix cleavage directly and indirectly at the cell-ECM 

interphase (Mori et al., 2002). Direct cleavage of laminin-5 by MT1-MMP in numerous 

cell types has been shown to promote cell migration. Additionally, CD44 and MT1-MMP 

co-localize within lamellipodia of migrating cells, whereby cleavage and subsequent 

shedding of CD44 initiated by MT1-MMP, promotes cell migration (Itoh, et al., 2006; 

Koshikawa et al., 2000, Ueda et al., 2003). In invasive cells, specific degradative cellular 

structures form that are rich in MT1-MMP. While structurally similar to filipodia and 

lamellipodia in migration, these structures are called podosomes in physiological cells 

and invadapodia if formed in cancer cells (Alblazi and Siar, 2015). The formation of 

invadapodia occurs on the basal side of a cell, whereby membrane protrusions are formed 

by actin polymerization, followed by shuttling of MT1-MMP to the distal ends (Artym, 

2006). This formation relies on hundreds of individual proteins that regulate the initiation 

and regulation of actin dynamics, vesicular transport, and cellular adhesion (Alblazi and 

Siar, 2015). While the fundamental organization of invadapodia can still form in the 
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absence of MT1-MMP, the resulting structures are non-functional and do not degrade 

ECM substrates (Buccione et al., 2009; Itoh et al., 2006).  

It is hypothesized that soluble pro-MMPs such as the gelatinases, are transported in 

vesicles destined for cell surface protrusions such as invadapodia (Itoh et al., 2006). In 

addition to direct ECM proteolysis, localized MT1-MMP activates pro-MMP-2, by which 

active MMP-2 can activate pro-MMP-9, to further potentiate ECM degradation 

(Khasigov et al., 2003). Cell protrusion localized MT1-MMP can also non-proteolytically 

initiate the MAPK pathway at the distal ends. Phosphorylated ERK1/2 is involved in both 

migration and invasion through phosphorylation and activation of cytoskeletal proteins. 

For example, phospho-ERK1/2 positively regulates the filamentous F-actin regulatory 

protein, cortactin. Cortactin plays an important role in tumour cell movement and 

invasion, as cortactin stabilizes ARP2/3 mediated actin networks (Kelley et al., 2011). 

Additionally, phospho-ERK1/2 activates the cells’ motility machinery by enhancing 

myosin light-chain kinase (MLCK) activity leading to increased myosin light chain 

(MLC) phosphorylation, allowing for myosin to bind actin filaments and resultantly 

contract to allow for cell movement (Reddy et al., 2003).  

Collectively, MT1-MMP localized during migration and invasion to cell specific motility 

structures, orchestrates both proteolytic and non-proteolytic cell functions necessary to 

promote both ECM degradation and movement along ECM substrates.   

1.7 Development of Synthetic MMP Inhibitors as Cancer 
Therapeutics 

Within distinct cancer types, diverse MMP family members are upregulated resulting in 

abnormal ECM remodeling, making MMPs an ideal target for therapeutic treatments. 

Many different MMP inhibitors (MMPIs) have been designed to target MMPs in cancer 

and although these compounds differ in their inhibitory potencies towards MMPs, none 

of them are selective for individual MMPs (including the gelatinases). The first 

generation of MMPIs were peptidomimetics (such as batimastat and marimastat) that 

mimicked the structure of collagen. They acted as competitive inhibitors and chelated the 

zinc ion present at the MMP's active site. To improve specificity, non-peptidomimetics 
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were synthesized on the basis of the MMP active site's three-dimensional conformation. 

Other MMPIs included tetracycline derivatives that inhibited both the MMPs' enzymatic 

activity and their synthesis (by blocking gene transcription) (Cathcart et al., 2015).  

To date, all clinical trials of these MMPIs in advanced cancer patients have failed. There 

are several possible reasons for the failure of MMPIs in the clinic such as dose limiting 

toxicity to surrounding healthy cells, interference with non-targeted cell signalling 

pathways, and structural similarity among the MMPs' catalytic domains. Moreover, the 

role of MMPs in cancer progression is not restricted to ECM-degrading activity, as 

various MMPs are also involved in, and influenced by, different signalling pathways that 

additionally impact tumour cell behaviour (López-Otín and Matrisian, 2007). All clinical 

trials regarding MMPs have converged upon the same problems, difficulty in designing 

MMPIs or cell signalling pathway targets with high selectivity. This project investigates 

the broad cellular function consequences of using non-selective inhibitors. 

1.8 Hypothesis and Objectives  

The presence and activation of both gelatinases (MMP-2 and MMP-9) within the ECM is 

heavily influenced by the abundance of active MT1-MMP present on the cell surface, 

while intracellular signalling pathways, such as the MAPK pathway, influence MMP-2 

and MMP-9 transcription factor activity and govern the availability of secreted gelatinase 

MMPs. In order to achieve proper cell function, the amount of active MT1-MMP, 

phosphorylated ERK1/2, and MMP-2 and -9 expression must be tightly regulated, as 

imbalance can result in aberrant ECM remodeling allowing for increased cell migration 

and invasion among other irregular cell functions.  

I hypothesized that the levels of phosphorylated ERK1/2 will be directly 

proportional to the levels of active MT1- MMP, and be correlated with increased 

gelatinase (MMP-2 and -9) MMP mRNA levels and increased invasive potential of 

breast cancer cells. 

Using MCF-7 (MT1-MMP and phospho-ERK1/2 deficient), MCF-7 MT1-MMP C2 

(predominately active MT1-MMP, high phospho-ERK1/2), MDA-MB-231 (High active 
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MT1-MMP, constitutive phospho-ERK1/2, high gelatinase MMP expression), and 231-

PDX (high pro and active MT1-MMP, high phosphoERK1/2) breast cancer cell lines 

(Table 1 and 2), this study was conducted to examine how altering ERK1/2 

phosphorylation, MMP catalytic activity, and MT1-MMP activation, affects MMP-2 and 

MMP-9 expression and subsequent breast cancer cell migration and invasion.  

The above breast cancer cell lines were treated with U0126, a MEK1/2 kinase inhibitor, 

BB-94, a pan-MMP catalytic site inhibitor, and Furin Inhibitor I targeting MT1-MMP 

activation. Each treatment was used to observe how changes to the MT1-MMP, phospho-

ERK1/2, gelatinase relationship influenced: 1) MT1-MMP and phospho-ERK1/2 protein 

levels, 2) changes in MT1-MMP, MMP-2, MMP-9, TIMP-2 mRNA levels, 3) 

transcription factor availability, 4) cell migratory and invasive potential, 5) cellular 3D 

morphology, and 6) ability of breast cancer cells to form vascularized tumours within 

chicken embryos. My Master’s research has taken an approach of selective removal of 

key players involved in breast cancer cell invasion in order to better understand each 

parts necessity in promoting this phenotype. 
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Table 1. A comparison of the relative levels of MT1-MMP and phospho-ERK1/2 

protein, gelatinase expression, and invasive potential of MCF-7, MCF-7 MT1-MMP 

C2, MDA-MB-231, and 231-PDX breast cancer cells. 

 

 

 

 

 

 

 MT1-MMP 

protein 

MMP-2 

expression 

MMP-9 

expression 

Phospho-

ERK1/2 

Invasive 

Potential 

MCF-7 + + + + + (Cepeda et al., 

2016) 

MCF-7 

MT1-MMP 

C2 

+++++++++ +++ +++++ +++++ ++ (Cepeda et al., 

2016) 

MDA-MB-

231 

++++ ++++++ +++++++ +++++++ ++++++ 

231-PDX ++++++ ++++ +++++++++ ++++++++ +++++ 
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Table 2. Origin, classification, and key characteristics of MCF-7 and MDA-MB-231 breast cancer cell lines.  

 MCF-7 cells are less invasive compared to MDA-MB-231 cells. The presence or absence of ER (estrogen receptor), PR (progesterone 

receptor), or HER2 (human epidermal growth factor receptor 2) receptors is indicative of how well cells respond to endocrine signals 

and chemotherapy treatment. Ki67 is a marker for cell proliferation; during interphase Ki67 is exclusively present within the nucleus. 

Ki67 protein is present during all active phases of the cell cycle (G1, S, G2, and mitosis), but is absent from resting cells (G0). Adapted 

from Holliday and Speirs 2011.  

 

 Tumour 

Source 

Pathology Organism Classification Immunoprofile Other Characteristics 

MCF-7 Metastasis; 

pleural 

effusion  

Adenocarcinoma Human Luminal A ER
+
, PR

+/-
, HER2

-
 Ki67 low, endocrine 

responsive, often 

chemotherapy responsive, 

invasive potential (+) 

MDA-

MB-231 

Metastasis; 

pleural 

effusion  

Adenocarcinoma Human Claudin-low/ 

triple negative 

ER
-
, PR

-
, HER2

-
 Ki67 high, low E-cadherin, 

claudin-3, claudin -4, and 

claudin 7, intermediate 

response to chemotherapy, 

invasive potential (++++++) 

https://en.wikipedia.org/wiki/Cell_cycle
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Chapter 2  

2 Material and Methods 

2.1 Cell Culture Conditions 

Human adenocarcinoma breast cancer cell lines MCF-7 (ATCC
®
 HTB-22

™
) and MDA-

MB-231 (ATCC
®
 HTB-26

™
) were generously donated by Dr. Lynne-Marie Postovit, 

University of Alberta.  

Three MCF-7 breast cancer cell lines that overexpress MT1-MMP were generated by PhD 

candidate Mario Cepeda, Western University. MCF-7 MT1-MMP C1, expressed ~2,500 

fold increase in MT1-MMP mRNA compared to MCF-7 parental cells, MCF-7 MT1-

MMP C2 showed a  ~1,100 fold increase, and MCF-7 MT1-MMP C3 had the lowest with 

an ~11 fold increase. These lines will be called MCF-7 C1, C2 and C3. Additionally, 

three MDA-MB-231 breast cancer cell lines were generated by Mario Cepeda that 

overexpress MT1-MMP. MDA-MB-231 MT1-MMP C1, expressed ~10 fold increase in 

MT1-MMP mRNA compared to MDA-MB-231 parental cells, MDA-MB-231 MT1-

MMP C2 showed a ~7 fold increase, and MDA-MB-231 MT1-MMP C3 had a ~2 fold 

increase. These lines will be referred to as MDA-MB-231 C1, C2, and C3. For relative 

comparison, MDA-MB-231 cells express ~175 fold more MT1-MMP mRNA compared 

to MCF-7 cells. Each stable cell line was characterized according to their levels of pro- 

and active MT1-MMP, expression of other ECM remodeling proteins, as well as their 

cellular movements in 2D and 3D space (Cepeda et al., 2016). 

Cells were cultured in Dulbecco’s Modified Eagles (DMEM)/F-12 medium (Thermo 

Fisher) supplemented with 10% fetal bovine serum (FBS), 100 IU/mL penicillin, 100 

μg/mL streptomycin, in a humidified incubator at 37
°
C and 5% CO2. Cells were 

maintained under 80% confluency and passaged accordingly using 0.25% Trypsin-EDTA 

(Thermo Fisher).  
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2.2 Generation of 231-PDX Stable Cell Line 

Additionally, to observe changes in cell behaviour following alteration to MT1-MMP 

activation, cellular expression of α1-PDX was used to block furin dependent processing 

of protein precursors. The Alpha1-Antitrypsin Portland, α1-PDX cDNA, contained within 

the mammalian expression pRc/CMV vector (Thermo Fisher), was obtained by generous 

donation from Dr. Gary Thomas, University of Pittsburgh (Pittsburgh, PA).  

MDA-MB-231 breast cancer cells were seeded at a density of 5x10
5
 cells/mL in a 35 mm 

cell culture dish (Corning) and incubated for 24 hours. Following incubation, cells were 

transfected with α1-PDX pRc/CMV vector, which contains a neomycin selection marker, 

using OPTI-MEM (Gibco) reduced serum medium and Lipofectamine 2000 (Thermo 

Fisher) according to the manufacturer’s instructions. Following transfection, cells were 

split 1:1000 and incubated in DMEM/FBS medium containing 1 mg/mL neomycin 

analog G418 (VWR). Individual colonies were selected after four weeks of incubation in 

selection medium and expanded to assay for alpha1-Antitrypsin Portland (α1-PDX) 

expression by qPCR and changes in MT1-MMP protein forms (pro- and active) via 

western blot analysis.  

2.3 Generation of MDA-MB-231 and 231-PDX ZsGreen 
Stable Cell Lines 

To identify MDA-MB-231 and 231-PDX cells injected into wounded vasculature of 

avian embryo CAM, ZsGreen fluorescent stable cell lines were generated. MDA-MB-231 

breast cancer cells and 231-PDX stable cells were subjected to viral transfection with 

cDNA encoding ZsGreen, a cytoplasmic-localized fluorescent protein, to generate the 

respective stably expressing ZsGreen lines ZsMDA-MB-231 and Zs231-PDX. This 

procedure was generously performed by personnel in the laboratory of Dr. Hon Leong, 

Lawson Health Research. In brief, cells were treated with a lentivirus containing ZsGreen 

in polybrene, a reagent that aids in viral transfection. One-day post transfection cells were 

treated with selection agent, puromycin (2 μL/mL), which was replenished for three days. 

Successful stable transfection was determined using fluorescence microscopy. These cell 

lines were used exclusively in the avian embryo  
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Table 3. Select chemical inhibitors used to treat MCF-7 and MDA-MB-231 cells, 

targeting ERK1/2 phosphorylation, MMP catalytic activity and MT1-MMP 

activation. 

 

 Treatment 

U0126 BB-94 Furin Inhibitor I 

Action 
 Targets MEK1 and 

MEK2 directly by 

inhibiting catalytic 

activity of active 

MEK1/2  

 Prevents 

phosphorylation of 

ERK1 and ERK 2 

 Inhibition is 

noncompetitive 

with respect to 

ERK and ATP 

substrates (DeSilva 

et al., 1998) 

 Broad spectrum 

MMP inhibitor 

 Competitive 

inhibition 

 Substrate analog 

binds to the zinc 

ion in MMP 

catalytic site (Low 

et al., 1996) 

 

 Competitive 

inhibitor of pro-

protein convertase 

(furin) 

 Binds catalytic site 

of furin, blocking 

activity (Coppola 

et al., 2008) 
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Table 4. Primer sequences used for qPCR. 

 

 

 

 Forward Reverse 

MT1-MMP 5’-GCAGAAGTTTTACGGCTTGCA-3’ 5’- TCGAACATTGGCCTTGATCTC-3’ 

MMP-2 5’- AGCTCCCGGAAAAGATTGATG-3’ 5’-CAGGGTGCTGGCTGAGTAGAT-3’ 

MMP-9 5’-CCTGGAGACCTGAGAACCAATC-3’ 5’-GATTTCGACTCTCCACGCATCT-3’ 

TIMP-2 5’-‘CGACATTTATGGCAACCCTATC-3’ 5’-GCCGTGTAGATAAACTCTATATCC-3’ 

α1-PDX 5’-TGAAATCCTGGAGGGCCTGA-3’ 5’-AACCAGCCAGACAGCCAGCT-3’ 

GAPDH 5’-ACCCACTCCTCCACCTTTGA-3’ 5’-CTGTTGCTGTAGCCAAATTCGT-3’ 
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tumour assay. 

2.4 Chemical Inhibitors 

The following inhibitors were used: BB-94 (Batimastat; Santa Cruz Biotechnology), 

U0126 (Santa Cruz Biotechnology), and Furin Inhibitor I (Millipore; Table 3).  Dosages 

of respective inhibitors were determined using cell viability assays performed in the 

Damjanovski laboratory, and are as follows: U0126 10 μM, BB-94 10 μM, and Furin 

Inhibitor I 5 μM, 10 μM, 20 μM.  

2.5 RNA Extraction and Quantitative real-time PCR 

Cells were seeded at a density of 1x10
6 

cells/mL in 35 mm cell culture plates (Corning) in 

2 mL of DMEM/FBS medium and were treated with U0126 (10 μM), BB-94 (10 μM), 

Furin inhibitor I (5, 10, 20 μM), or DMSO (0.1%) for 24 hours, lysed, RNA was 

collected using the RNeasy Kit (Qiagen). cDNA was synthesized from 1 μg of RNA 

using qScript cDNA supermix (Quanta). The relative mRNA levels of MT1-MMP, MMP-

2, MMP-9, alpha1-Antitrypsin Portland (α1-PDX), and TIMP-2 (Table 4) were assayed 

by qPCR using SensiFAST SYBR No-ROX Kit (FroggaBio) and the CFX Connect™ 

Real-Time PCR Detection System (Bio-Rad). mRNA levels were quantified by the 

ΔΔCT method and displayed as fold change relative to MCF-7 or MDA-MB-231 breast 

cancer cells under normal culture conditions. The level of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) mRNA was used as the internal control.  

2.6 Antibodies 

For immunoblot analysis, the following primary antibodies were used: Human MT1-

MMP (1:1000, AB6004, Millipore), Phospho-ERK1/2 (phospho-ERK1/2) (1:2000, 

D13.14.4E), Total ERK1/2 (1:2000, 137F5) (Cell Signalling Technology), and β-Actin 

(1:1000, C4). Goat anti-mouse IgG (H+L) (Bio-Rad) and goat anti-rabbit IgG (H+L) 

(Thermo Fisher) HRP conjugates were used as secondary antibodies (1:10000).  

2.7 Protein Collection and Immunoblotting 

Cells were seeded at a density of 1x10
6 

cells/mL in 35 mm culture plates (Corning) in 2 
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mL of DMEM/FBS medium and treated with U0126 (10 μM), BB94 (10 μM), Furin 

inhibitor I (5, 10, 20 μM), or DMSO (0.1%) for 24 hours. Post-incubation cells were 

washed with PBS (pH=7.2) and disrupted using lysis buffer (150 mM NaCl, 1% NP-40, 

0.5% NaDC, 0.1% SDS, 50 mM Tris pH 8.0) supplemented with protease/phosphotase 

inhibitor (Thermo Scientific). Cell lysates were incubated on ice for 20 minutes and 

homogenized by sonication (Misonix Ultrasonic Liquid Processors XL-2000 Series). 

Total protein concentration was determined by Pierce BCA Protein Assay Kit (Thermo 

Fisher) performed as per manufacturer’s instructions and absorbance was measured at 

595 nm by the Microplate Reader Model 3550-UV (BioRad). Protein aliquots (15 μg) 

were analyzed by immunoblotting with MT1-MMP, β-actin, phospho-ERK1/2 or total 

ERK1/2 primary antibodies, followed by incubation with the appropriate secondary HRP-

conjugated antibody and detected using SuperSignal West Pico chemiluminescent 

substrate (Thermo Fisher). Blots were blocked using either 0.5% BSA or 5% BSA in 

TBST, as directed by the primary antibody manufacturer, and probed using the 

appropriate primary antibodies. Incubation with primary antibodies occurred overnight at 

4°C, and secondary antibodies for one hour at room temperature. Images were captured 

using the Molecular Imager
®
 ChemiDoc

TM
 XRS System (BioRad) and blots were 

analyzed using QuantityOne 1-D analysis software. 

2.8 Generation of MMP-2 Conditioned Medium for Cell 
Culture Treatment 

MMP-2 conditioned medium was provided by PhD candidate, Mario Cepeda, Western 

University, and used to verify the efficiency of BB-94 in preventing substrate cleavage 

activity of MMPs as determined by gelatin zymography analysis  In brief, conditioned 

medium (CM) containing high levels of MMP-2 protein was created by transfecting 

MCF-7 breast cancer cells with a cDNA construct coding for pro-MMP-2 protein. 

Following a 24-hour incubation period, pro-MMP-2 transfected MCF-7 cells were 

washed with phosphate buffered saline (PBS) and incubated in DMEM/F12 medium void 

of FBS for 24 hours. This serum-free medium conditioned with the soluble pro-MMP-2 

transfection product was then collected, aliquoted, and stored at -80°C for later use.  
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2.9 Gelatin Zymography and Reverse Gelatin Zymography 

Gelatin zymography was performed as previously described (Toth et al., 2001) to 

compare the levels of secreted pro- and activated MMP-2 and MMP-9 in the medium of 

MCF-7, MCF-7 MT1-MMP C2, and MDA-MB-231 cells following treatment with 

DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM). Briefly, 15 μL of medium collected 

from treated cells were loaded to a 10% polyacrylamide-0.1% gelatin gel and subjected to 

electrophoresis. After electrophoresis, the gels were incubated in renaturing buffer (25% 

v/v Triton X-100 in dH2O) to ensure MMP functional ability, and then incubated in 

developing buffer (0.5 M Tris–HCl, pH 7.8, 2 M NaCl, 0.05 M CaCl2, and 0.2% Brij 35) 

at 37°C for 48 hours to allow the MMPs to cleave the gelatin embedded within the 

polyacrylamide gel. After the incubation period, the gel was stained with a 0.5% 

Coomassie blue, 5% methanol, 10% acetic acid solution. The gel was then progressively 

destained with a 20% methanol, 10% acetic acid solution until bands that represent 

cleaved gelatin were clearly visible. Images were taken using the Molecular Imager
®
 

ChemiDoc
TM

 XRS System (BioRad).  

Reverse zymography, which measured TIMP activity, was performed by adding MMP 

conditioned medium to the 10% polyacrylamine-0.1% gelatin gel lacking denaturing 

detergents. Conditioned medium was obtained by incubating HS578t breast cancer cells 

in serum-free medium for 24 hours, as these cells naturally express high levels of MMP-2 

(Takahashi et al., 1999). Samples subjected to gelatin zymography were additionally 

subjected to reverse gelatin zymography. Protein loading, renaturing, and staining 

processed are identical to gelatin zymography analysis, however in reverse zymography 

when the gel is destained it will remain clear, while dark blue banding represents TIMP 

proteins bound to MMPs embedded in the polyacrylamide gel. 

2.10  Firefly Luciferase Transcriptional Activity Assay 

Transcriptional activity of AP-1 and NF-κB, MT1-MMP and MMP-9 specific 

transcription factors, was examined in MCF-7, MCF-7 MT1-MMP C2, MDA-MB 231, 

and 231-PDX cells following respective inhibitor treatment. In brief, cells were seeded at 

a density of 3.0 x10
4
 cells/well in a 96-well culture plate (Corning) and incubated for 24 
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hours. Following incubation, cells were transfected with Lipofectamine 2000 (Thermo 

Fisher) according to the manufacturer’s instructions and OPTI-MEM (Gibco) reduced 

serum medium, in combination with 0.2 μg of mammalian 3xAP1pGL3 (Plasmid # 

40342) (Transcription factor: AP-1) or p1242 3xKB-L (Plasmid #26699) (Transcription 

factor: NF-κB) luciferase plasmids (Addgene). 24 hours post transfection, MCF-7, MCF-

7 MT1-MMP C2, and MDA-MB-231 cells were subjected to treatment with DMSO 

(0.1%), U0126 (10 μM), or BB-94 (10 μM). 12 hours later cells were lysed and treated 

with Firefly Luciferase Glow Assay reagents (Thermo Fisher) according to the 

manufacturer’s instructions. Luminescence was detected using Modulus
TM 

II Microplate 

Multimode Reader and the GloMax
®
- Multi Detection System with Instinct

®
 Software.  

2.11  Scratch Wound Closure Migration Assay 

To examine the effects of respective inhibitor treatment on cell migratory potential, 

MDA-MB-231 breast cancer cells were seeded at a density of 2.5x10
5
 cells/mL in a 35 

mm cell culture dish (Corning) in 2 mL of DMEM/FBS medium and allowed to form a 

monolayer for 24 hours. Following incubation, medium was aspirated and the monolayer 

was disrupted using a 1000 μL pipette tip to create a wound down the length of the 

culture dish. The remaining adhered cells were washed three times with PBS (pH 7.2) to 

remove cell debris and then incubated with fresh DMEM 10% FBS, 1% pen/strep 

medium containing treatment of DMSO (0.1%), U0126 (10 μM), BB-94 (10 μM), or 

Furin Inhibitor I (20 μM). 2 hours post wound generation, using the Zeiss Observer.A1 

AX10 microscope, 10 images were captured down the length of the scratch that represent 

the ‘initial’ size of the wound for each respective sample. The same area of the wound 

was imaged at 6, 12, and 24 hours following wound healing to examine the ability to 

migrate into the wound space. Scratch closure was quantified by measuring the width of 

the scratch each day and normalizing it to the initial size of the scratch. Scratch closure is 

presented as a mean percentage of the initial scratch size ± SEM.  

2.12  Transwell Cell Motility Assays 

The migratory and invasive potential of MDA-MB-231 cells was measured using 24-well 

8 μm pore transwell inserts (Corning). 2.0 x 10
4 

cells were seeded on the upper chamber 
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of the transwell in serum-free medium treated with DMSO (0.1%), U0126 (10 μM), or 

BB-94 (10 μM). Treated cells were allowed to migrate (24 hours) or invade (48 hours) 

towards the bottom chamber which was placed in DMEM/F-12 medium supplemented 

with 10% FBS and 1% pen/strep, serving as the chemoattractant. Migration assays were 

performed with uncoated transwell inserts, whereas invasion assays were performed with 

inserts coated with 20% Matrigel, a basement membrane analog. 20% Matrigel was 

generated by diluting Matrigel (BD Biosciences) in DMEM/F-12 serum-free medium. 

Cells that migrated to the lower chamber of the transwell insert were fixed, stained, and 

quantified as per Marshall, 2011. To quantify cell migration, cells were fixed in 100% 

methanol, and non- motile cells remaining in the upper surface of the transwell removed 

with a damp cotton swab. Cells on the bottom of transwells were stained using a 0.5% 

solution of crystal violet in distilled water. These stained transwells were then 

individually destained in 33% acetic acid, and the absorbance of this solution at 490 nm 

was quantified using the Microplate Reader Model 3550-UV (BioRad) as a correlative 

measurement of cell number. Invasion transwells, were fixed with 100% methanol and 

cells that did not invade through the transwell insert and residual Matrigel were removed 

from the upper membrane surface with a damp cotton swab. Invading cells were then 

stained with a 0.5% crystal violet solution and residual stain was removed using a cotton 

swab. Invasion transwells were imaged using the Leica DM16000 B microscope with 

Hamamatsu camera controller (C10600) at 20X magnification. 15 images were taken per 

transwell and were blindly quantified using ImageJ software (U.S. National Institutes of 

Health, Bethesda, Maryland, USA).  

2.13  Three Dimensional (3D) Cell Culture 

MDA-MB-231 and 231-PDX cells were embedded in 50% Matrigel matrix (BD 

Biosciences) and processed for fluorescent staining to assess changes in invasive 

morphological features as described by Cvetković, et al., 2014. 35 mm Glass-bottom cell 

culture dishes (MatTek) were prepared by coating the glass with 50% Matrigel (BD 

Bioscience) in serum-free medium, allowing the matrix to solidify, and seeding 2.5x10
4 

cells in 50% Matrigel in serum-free medium above this layer to result in cells completely 

suspended in matrix. DMEM/F-12 serum-free medium combined to generate 50% 
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Matrigel and DMEM/F-12 medium supplemented with 10% FBS and 1% pen/strep were 

treated with DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM).  

Fluorescent staining procedure was done as described in Cvetković, et al., (2014) using 

Alexa Fluor 633 phalloidin (1:100) and DAPI (1 ug/mL) staining. Cell colony 

morphology was monitored for five days using bright-field microscopy (Leica DM16000 

B microscope with Leica DFC425 camera) at 10X magnification, and representative 50 

μm z-stack images (2 μm interval) taken at random locations across the matrix were 

captured using Leica MMAF software (Metamorph®). After five days, cells within the 

matrix were fixed using 20% acetone, 80% methanol and prepared for fluorescent 

staining using  Alexa Fluor 633 phalloidin (Thermo Fisher, 1:100), and DAPI (1 μL/mL, 

BioShop Canada) to examine F-actin and nuclei, respectively. Prepared samples were 

imaged using a Nikon A1R+ confocal microscope and NIS Elements software (Nikon), 

capturing Z-stacks of approximately 100 μm. 

To analyze and score morphology of cell colonies, images representing a field of view at 

20x magnification, were blindly analyzed using ImageJ software (U. S. National 

Institutes of Health, Bethesda, Maryland, USA). Protrusions were defined as thin 

extensions that emanated from a round cell colony. The number of protrusions on all cell 

colonies in an image was counted, with longer protrusions counted as multiples of the 

average protrusion length seen in that image to adjust for the heterogeneity in size 

observed. Disseminations were identified as small, round cells immediately adjacent to a 

larger colony. The score, representing the total number of protrusions or total number of 

disseminations for each treatment, was divided by the total number of colonies to arrive 

at the final measurement of protrusions or disseminations per colony. 

2.14  Avian Embryo Tumour Vascularization Assay 

The vascularization of artificial Matrigel tumours of ZsGreen tagged MDA-MB-231 cells 

(ZsMDA-MB-231) treated with DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM), and 

ZsGreen tagged 231-PDX cells (Zs231-PDX) in Matrigel (BD Bioscience) was assessed 

in avian embryos following the technique developed by Dr. Hon Leong, Lawson Health 

Sciences, Western University. Avian embryos, materials, equipment, and facilities were 
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generously provided by Dr. Hon Leong, Lawson Health Research Institute, London 

Ontario. Chick embryos were incubated in culture boats for nine days at 37°C in a 

humidified chamber. A superficial wound was introduced to the vasculature of the 

chorioallantoic membrane (CAM) of embryos and an artificial tumour composed of 10 

μL of Matrigel (BD Bioscience) containing ~500 000 cells was injected into the wound. 

Embryos were incubated for a further eight days, during which appropriate inhibitor 

treatments were applied every 48 hours directly on top of the tumour using a 10 μL 

pipette within the wounded CAM vasculature. Tumours were then examined using 

fluorescent stereomicroscopy to assess if vasculature had developed at the tumour site. 

Vascularization was determined to have occurred if the wound site showed capillaries 

associated with a tumour, which had successfully grown beneath the CAM layer. This 

was accomplished by comparing observed vasculature using bright field microscopy to 

areas of contrast observed under fluorescent conditions. Vascularization was quantified 

as a binary measurement, indicated by the presence or absence of tumour-localized 

vasculature in individual embryos. Degree of wound closure was also used as a measure 

of tumor invasion, whereby wound closure was characterized as the presence of the 

tumor completely under the CAM and regression of initially wounded vasculature.  

2.15  Densitometry Analysis 

Quantitative densitometric analysis of immunoblots was performed using QuantityOne 

software (Bio-Rad). Band intensity was obtained for the MT1-MMP, β-Actin, phospho-

ERK and total ERK1/2 signal of each sample from three independent biological 

experiments. MT1-MMP pro- and active protein is presented as a ratio between each 

respective band intensity and β-Actin signal. ERK1/2 activation is presented as a ratio 

between phospho-ERK1/2 and total ERK1/2 band intensity normalized to MCF-7 or 

MDA-MB-231 cells under control conditions.  

2.16  Statistical Analysis 

Statistical analysis and graphing was performed using GraphPad Prism version 6.0 

(GraphPad software, La Jolla, CA, USA). Data is presented as mean ± SEM, where all 

experiments were comprised of at least 3 biological replicates. One-way and Two-way 
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ANOVA followed by Tukey’s, Dunnett’s, or Sadik’s post-hoc tests or students t-test were 

used and are indicated respectively in each figure legend. Different levels of statistical 

significance are denoted by a different number of asterisks and are as follows: ****, p ≤ 

0.0001, ***, p ≤ 0.001, **, p ≤ 0.01, *, p ≤ 0.05, ns, p < 0.05. 
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Chapter 3  

3 Results  

3.1 MEK1/2 inhibitor altered MMP-2 and MMP-9 mRNA 
levels in MCF-7 MT1-MMP C2 and MDA-MB-231 cells 

Overexpression of MT1-MMP in MCF-7 cells (MCF-7 MT1-MMP C1, C2, and C3) 

resulted in higher levels of phosphorylated ERK1/2 compared to MCF-7 parental cells. 

MCF-7 C2 cells notably contained the highest levels of phospho-ERK1/2 and were thus 

chosen for further investigation. In addition to showing the highest phospho-ERK1/2 

levels, these MCF-7 C2 cells were the only cell line exhibiting MT1-MMP protein 

predominately in its active form (Cepeda et al., 2016), and also had the highest 

expression of MMP-2 and MMP-9. When each MCF-7 cell line was treated with the 

MEK1/2 inhibitor, U0126, ERK1/2 phosphorylation was consistently decreased in each 

cell line (Fig. 2a). In addition, treatment of MCF-7 C2 cells with the MEK1/2 inhibitor 

resulted in a prominent inverse relationship between MMP-2 and MMP-9 mRNA levels, 

with a significant (p ≤ 0.01) ~1.6 fold increase in MMP-2 and a significant (p ≤ 0.01) 

~7.5 fold decrease in MMP-9, respectively (Fig. 2b). These results indicated that 

inhibiting ERK1/2 phosphorylation in cells with predominately active MT1-MMP 

protein, expression of MMP-9 was impacted more greatly than expression of MMP-2. 

While MCF-7 C2 cells provide a model demonstrating the impact of artificially elevated 

levels of active MT1-MMP protein on phospho-ERK1/2, and MMP-2 and -9 expression, 

MDA-MB-231 breast cancer cells naturally posses high basal levels of active MT1-

MMP, phospho-ERK1/2, and increased MMP-2/-9 expression (Cepeda et al., 2016), and 

are thus a target for comparison. To determine if the relationship between phospho-

ERK1/2 and MMP-2 and -9 mRNA levels is conserved between breast cancer cells 

MDA-MB-231 cells were treated with the MEK1/2 inhibitor. Treatment of MDA-MB-

231 cells with 10 μM of U0126 (Fig. 3a) resulted in a significant (p ≤ 0.0001) decrease in 

ERK1/2 phosphorylation (~10.9 fold difference), but negligible changes were observed in 

the levels of pro- and active forms of MT1-MMP (p > 0.05) (Fig. 3b). Nonetheless, MT1- 
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Figure 2. Phosphorylated ERK1/2 mediates an inverse relationship between MMP-2 

and MMP-9 gene expression in MCF-7 breast cancer cells. 

(a)Western blot analysis showing levels of phosphorylated ERK1/2 protein in MCF-7 

breast cancer cells and three clonally selected MCF-7 cell lines that stably express 

different levels of MT1-MMP, treated with MEK1/2 inhibitor (U0126 10 μM) or vehicle 

control (DMSO 0.1%). Total ERK1/2 was used as a loading control. MCF-7 MT1-MMP 

C2 cells exhibited the highest levels of phospho-ERK1/2, however all cell lines 

demonstrated a decrease in phosphorylated ERK1/2 protein following treatment with 

U0126. (b) qPCR analysis of MMP-2 and MMP-9 mRNA in MCF-7 breast cancer cells 

and three clonally selected MCF-7 cell lines that stably express different levels of MT1-

MMP subjected to U0126 (10 μM) or DMSO (0.1%). Fold change was quantified using 

the ΔΔCT method and shown as mean ± SEM. One-way ANOVA followed by Tukey’s 

post-hoc test; **, p ≤ 0.01, ns, p > 0.05. MCF-7 C2 cells showed an inverse relationship 

between MMP-2 and MMP-9 mRNA levels, which significantly increased and decreased 

respectively, following treatment with U0126.  
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Figure 3. Phosphorylated ERK1/2 mediates an inverse relationship between MMP-2 

and MMP-9 gene expression in MDA-MB-231 breast cancer cells. 

(a) Western blot (top 4 panels), gelatin zymography (middle panels), and reverse gelatin 

zymography analysis (bottom panel) of MDA-MB-231 breast cancer cells subjected to 

MEK1/2 inhibitor (U0126 10 μM) or vehicle control (DMSO 0.1%) presenting ERK1/2 

phosphorylation, pro- and active MT1- MMP, pro-and active MMP-2 and -9, and TIMP-

2 protein levels, respectively. For western blot analysis, total ERK1/2 and β-actin served 

as loading controls. (b) Densitometry quantification of phospho-ERK1/2 protein 

measured in western blots, Student’s t-test; ****, p ≤ 0.0001, where U0126 was effective 

at decreasing ERK1/2 phosphorylation, however MT1-MMP pro- and active protein 

levels were unchanged, analyzed by two-way ANOVA followed by Tukey’s post hoc 

test; ns, p > 0.05. (c) qPCR analysis of MT1-MMP, MMP-2, MMP-9 , and TIMP-2 

mRNA isolated from MDA-MB-231 breast cancer cells treated with U0126 (10 μM) or 

DMSO (0.1%). Fold change was quantified using the ΔΔCT method and shown as mean 

± SEM, as analyzed by Student’s t-test; ****, p ≤ 0.0001, **, p ≤ 0.01, ns, p > 0.05. 

Following treatment with U0126, MDA-MB-231 cells showed a significant increase in 

MMP-2 mRNA levels and a significant decrease in MMP-9 mRNA levels, and therefore 

indicated that this MMP expression relationship was conserved between the MCF-7 

MT1-MMP C2 and MDA-MB-231 breast cancer cell lines. 
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MMP mRNA levels were significantly (p ≤ 0.01) decreased ~1.4 fold. Furthermore, 

treatment of MDA-MB-231 cells with U0126 (10 μM) resulted in a significant (p ≤ 

0.0001) ~4.4 fold increase in MMP-2 mRNA levels, but a significant (p ≤ 0.0001) ~5 fold 

decrease in MMP-9 mRNA levels, with no change (p > 0.05) in TIMP-2 mRNA (Fig. 3c), 

all of which are consistent with gelatin zymography analysis of these proteins (Fig. 3a). 

The consistency of the inverse relationship of increased MMP-2 mRNA and decreased 

MMP-9 mRNA following inhibition of ERK1/2 phosphorylation not only suggests how 

these gelatinases are regulated, but also that their regulation is conserved between breast 

cancer cell lines used.  

3.2 Inhibition of MT1-MMP catalytic site increased total 
MT1-MMP protein levels and altered subsequent MMP-
2 and MMP-9 mRNA levels in MCF-7 and MDA-MB-231 
breast cancer cells 

Gelatin zymography analysis of low MT1-MMP protein MCF-7 parental cells and high, 

predominately active MT1-MMP, MCF-7 C2 cells treated with the pan-MMP catalytic 

site inhibitor BB-94 showed the effect of MMP inhibition on pro-MMP-2 activation. 

Using gelatin zymography, MCF-7 C2 cells treated with pro-MMP-2 conditioned 

medium demonstrated a transition of pro-MMP-2 through its intermediate to active form 

(Fig. 4a, lane 3). Additionally, MCF-7 C2 cells treated with BB-94 lack active MMP-2 

(Fig. 4a, lane 4) and confirmed the efficiency of the BB-94 chemical inhibitor in 

preventing MMP catalytic site activity. BB-94 treatment to inhibit MT1-MMP catalytic 

activity was used along with MEK1/2 inhibitor, U0126, to further examine the regulation 

of MT1-MMP protein forms. 

Treatment of parental MCF-7 and MCF-7 C2 cells with DMSO (0.1%), U0126 (10 μM), 

and BB-94 (10 μM) changed the total amount of MT1-MMP protein present within 

MCF-7 C2 cells, with most prominent changes in the active form, as shown by western 

blot (Fig. 4b). Specifically, inhibition of ERK1/2 phosphorylation caused a significant (p 

≤ 0.0001) decrease in active MT1-MMP thus reducing the total amount of MT1-MMP  
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Figure 4. Inhibition of ERK1/2 phosphorylation and MT1-MMP catalytic site 

changes MT1-MMP pro- and active protein forms and associated MMP-2 and 

MMP-9 mRNA levels in MCF-7 MT1-MMP C2 cells.  

(a) Gelatin zymography analysis of MCF-7 and MCF-7 MT1-MMP C2 cells treated with 

pan-MMP catalytic site inhibitor BB-94 (10 μM) or vehicle control (DMSO 0.1%) and 

incubated for 12 hours with serum-free medium (control) or serum-free medium 

supplemented with conditioned medium (CM) containing pro-MMP-2. Only MCF-7 C2 

cells treated 0.1% DMSO and supplemented with CM containing pro-MMP-2 showed a 

transition of pro-MMP-2 through its intermediate and active forms, whereas application 

of BB-94 prevented pro-MMP-2 activation, and demonstrated the effectiveness of BB-94 

in inhibiting MMP catalytic activity. (b) Western blot analysis of MCF-7 and MCF-7 C2 

cells showing pro- and active MT1-MMP protein levels and ERK1/2 phosphorylation 

following treatment with DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM). β-actin and 

total ERK1/2 respectively serve as loading controls. (c) Densitometry quantification of 

western blotted MT1-MMP protein isoforms in MCF-7 C2 cells, Two-way ANOVA 

followed by Tukey’s post hoc test; ****, p ≤ 0.0001,*, p ≤ 0.05 and phospho-ERK1/2 

protein, Student’s t-test; ***, p ≤ 0.001, **, p ≤ 0.01. U0126 treated MCF-7 C2 cells 

exhibited less total MT1-MMP, therefore both decreased pro- and active forms, while 

MCF-7 C2 cells treated with BB-94 showed more total MT1-MMP, comprising of 

increased pro- and active forms. (d) qPCR analysis of MT1-MMP, MMP-2, and MMP-9 

mRNA from MCF-7 C2 cells treated with BB-94 (10 μM) or DMSO (0.1%). Fold change 

was quantified using the ΔΔCT method and shown as mean ± SEM. Student’s t-test; ***, 

p ≤ 0.001,**, p ≤ 0.01. An inverse, yet opposite relationship to that of U0126 treatment, 

between MMP-2 and MMP-9 mRNA levels following BB-94 treatment was observed, 

comprising of significantly decreased MMP-2 mRNA and significantly increased MMP-9 

mRNA. 
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protein compared to MCF-7 parental cells by ~75%. Inhibition of MT1-MMP catalytic 

activity significantly (p ≤ 0.0001) increased both active MT1-MMP and overall total 

MT1-MMP protein levels by ~69%. In addition, treatment of MCF-7 C2 cells with 

U0126 significantly (p ≤ 0.0001) reduced ERK1/2 phosphorylation, while treatment with 

BB-94 significantly (p ≤ 0.05) increased ERK1/2 phosphorylation (Fig. 4b lane 4, and c). 

As shown by qPCR, treatment of MCF-7 C2 cells with BB-94 significantly increased 

MT1-MMP ~1.8 fold (p ≤ 0.01) and MMP-9 mRNA levels ~1.6 fold (p ≤ 0.001), but 

significantly decreased MMP-2 mRNA ~0.1 fold (p ≤ 0.01) (Fig. 4d). BB-94 treatment 

altered MMP mRNA levels in an inverse manner (decreased MMP-2, increased MMP-9) 

when compared to that of U0126 treatment (increased MMP-2, and decreased MMP-9). 

In order to determine if this alteration of MMP-2 and MMP-9 mRNA levels upon BB-94 

treatment was breast cancer cell specific, MDA-MB-231 cells were also treated with 10 

μM of BB-94. MDA-MB-231 cells appeared more resistant to treatment, as MT1-MMP 

protein levels and ERK1/2 phosphorylation were not significantly (p > 0.05) changed 

(Fig. 5a and b). However, these BB-94 treated cells did exhibit changes in MT1-MMP 

and MMP-9 mRNA levels which were significantly increased ~1.8 fold (p ≤ 0.01) and 

~1.5 fold (p ≤ 0.05) respectively. Additionally MMP-2 mRNA levels were significantly 

decreased ~0.7 fold (p ≤ 0.01) (Fig. 5c). There is a consistent inverse relationship 

between the mRNA levels of the gelatinases when treated with BB-94. This inverse 

relationship, decreased MMP-2 and increased MMP-9 mRNA levels, following inhibition 

of MMP catalytic activity is conserved among breast cancer cell lines, and may provide 

insight as to how these gelatinases are regulated. 

3.3 Inhibiting pro-MT1-MMP activation changed MMP-2 
and MMP-9 mRNA levels and resulted in altered 
migratory and invasive potential in MCF-7 and MDA-
MB-231 breast cancer cells 

To determine the effects of reduced MT1-MMP active protein levels in influencing 

phosphorylation of ERK1/2, MCF-7 C2 cells which contain predominately active MT1-

MMP, were treated with increasing concentrations of protein convertase Furin inhibitor. 

(Fig. 6a). 24-hour treatment of MCF-7 C2 cells with 20 μM of Furin inhibitor I was  
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Figure 5. Inhibition of the MT1-MMP catalytic site does not changes MT1-MMP 

pro- and active protein forms, but does change MT1-MMP, MMP-2, and MMP-9 

mRNA levels in MDA-MB-231 breast cancer cells.  

(a) Western blot analysis showing pro- and active MT1-MMP protein and ERK1/2 

phosphorylation following treatment of MDA-MB-231 breast cancer cells with pan-

MMP catalytic site inhibitor BB-94 (10 μM) or vehicle control (DMSO 0.1%). β-actin 

and total ERK1/2 respectively serve as loading controls. (b) Densitometry quantification 

of western blotted MT1-MMP protein isoforms, Two-way ANOVA followed by Tukey’s 

post hoc test; ns, p > 0.05 and phospho-ERK1/2 protein, Student’s t-test; ns, p > 0.05. (c) 

qPCR analysis of MT1-MMP, MMP-2, MMP-9 , and TIMP-2 mRNA from MDA-MB-

231 cells treated with BB-94 (10 μM) or DMSO (0.1%). Fold change was quantified 

using the ΔΔCT method and shown as mean ± SEM and analyzed by Student’s t-test; **, 

p ≤ 0.01, *, p ≤ 0.5, ns, p > 0.05. An inverse, yet opposite relationship to that of U0126 

treatment, between MMP-2 and MMP-9 mRNA following BB-94 treatment was 

observed, comprising of significantly decreased MMP-2 mRNA levels and significantly 

increased MMP-9 mRNA levels. This observed relationship, decreased MMP-2 and 

increased MMP-9 mRNA levels, was conserved between MCF-7 MT1-MMP C2 and 

MDA-MB-231 breast cancer cell lines. 
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Figure 6. Inhibition of MT1-MMP activation reduces active MT1-MMP levels and 

ERK1/2 phosphorylation with subsequent changes MMP-2 and MMP-9 mRNA 

levels in MCF-7 MT1-MMP C2 cells.  

(a) Western blot analysis showing pro- and active MT1-MMP and phospho-ERK1/2 

protein levels following treatment of MCF-7 and MCF-7 MT1-MMP C2 cells with MT1-

MMP activation inhibitor, Furin Inhibitor I, at increasing concentrations (5, 10, 20 μM) 

or vehicle control (DMSO 0.1%). β-actin, and total ERK1/2 served as loading controls 

respectively. (b) Densitometry quantification of western blot analysis of MT1-MMP 

protein isoforms in MCF-7 C2 cells showed decreased levels of active MT1-MMP with 

increasing concentration of Furin Inhibitor I, as analyzed by two-way ANOVA followed 

by Sidak’s post hoc test; ***, p ≤ 0.001, **, p ≤ 0.01,*, p ≤ 0.05. Densitometry 

quantification of western blotted phospho-ERK1/2 protein showing decreased ERK1/2 

phosphorylation with increasing concentration of Furin Inhibitor I, as analyzed by one-

way ANOVA followed by Tukey’s post hoc test; ****, p ≤ 0.0001, ***, p ≤ 0.001,**, p 

≤ 0.01. (c) qPCR analysis of MMP-2 and MMP-9 mRNA in MCF-7 C2 cells subjected to 

increasing concentrations (5, 10, 20 μM) of Furin inhibitor I or DMSO (0.1%) exhibiting 

significantly increased MMP-2 mRNA levels and significantly decreased MMP-9 mRNA 

levels. Fold change was quantified using the ΔΔCT method and shown as mean ± SEM. 

One-way ANOVA followed by Dunnett’s post-hoc test; ****, p ≤ 0.0001,**, p ≤ 0.01, *, 

p ≤ 0.05.   
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determined to be the most effective in altering the forms of MT1-MMP (Fig. 6a, lane 8). 

This treatment caused an 11.9% significant (p ≤ 0.001) increase in pro-MT1-MMP 

protein levels, and 11.8% significant (p ≤ 0.01) decrease in active MT1-MMP protein 

levels. 20 μM of Furin inhibitor I also significantly (p ≤ 0.0001) reduced ERK1/2 

phosphorylation by 50% (Fig. 6b). Furthermore, this treatment resulted in ~0.8 fold 

significant (p ≤ 0.01) increase in MMP-2 and ~1.8 fold significant (p ≤ 0.0001) decrease 

in MMP-9 mRNA levels (Fig. 6c).  

Because 20 μM of Furin Inhibitor I successfully reduced active MT1-MMP and phospho-

ERK1/2 levels, and induced changes in gelatinase expression in MCF-7 C2 cells, MDA-

MB-231 cells were treated with the same concentration in order to determine if the furin 

inhibitor was capable of eliciting the same effect in cells which naturally contain higher 

levels of active MT1-MMP protein. Treatment of MDA-MB-231 cells with this inhibitor 

did not significantly (p > 0.05) change MT1-MMP protein forms, and did not effect 

ERK1/2 phosphorylation (Fig. 7a and b). However, this inhibitor changed MT1-MMP 

mRNA levels, as treated MDA-MB-231 cells displayed a significant (p ≤ 0.05) decrease 

in MT1-MMP (~0.22 fold) and MMP-9 (~0.2 fold) mRNA levels and a significant (p ≤ 

0.05) increase in MMP-2 mRNA (~0.9 fold) (Fig. 7c. The changes in MMP-2 and MMP-

9 mRNA levels in MDA-MB-231 cells following treatment with Furin inhibitor I were 

consistent with the changes observed in the MCF-7 C2 cells.  

As the use of chemical inhibitors is transient, to elucidate the effect of a more consistent 

alteration of furin function, MDA-MB-231 stable cell lines were generated expressing the 

alpha1-Antitrypsin Portland gene, α1-PDX (Fig. 8a). The alpha1-Antitrypsin Portland 

gene contains an R-X-X-R conserved sequence, which similarly to Furin Inhibitor I, 

targets the activation site of furin (Thomas, 2002) inhibiting its protein convertase 

activity. These 231-PDX stable cells contained overall higher levels of total MT1-MMP 

protein, and while they contained significantly (p ≤ 0.01) increased (~6 fold) levels of 

pro-MT1-MMP, they also contained significantly (p ≤ 0.001) increased (~3 fold) levels 

of active MT1-MMP (Fig. 8b and c). 231-PDX cells also had significantly (p ≤ 0.05) 

more phosphorylated ERK1/2 (Fig. 8b and c) and significantly increased mRNA levels of 
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MT1-MMP (~3.1 fold) (p ≤ 0.001), and MMP-9 (~7.2 fold) (p ≤ 0.01), and a significantly 

decreased MMP-2 (~2.2 fold) (p ≤ 0.0001) mRNA levels (Fig. 8d).  
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Figure 7. Chemical inhibition of MT1-MMP activation does not change active MT1-

MMP levels, but does change MT1-MMP, MMP-2 and MMP-9 mRNA levels in 

MDA-MB-231 breast cancer cells.  

(a) Western blot analysis showing pro- and active MT1-MMP and phospho-ERK1/2 

protein levels following treatment of MDA-MB-231 breast cancer cells with MT1-MMP 

activation inhibitor Furin Inhibitor I (20 μM) or vehicle control (DMSO 0.1%). β-actin 

and total ERK1/2 respectively serve as loading controls. (b) Densitometry quantification 

of western blots for MT1-MMP protein isoforms in MDA-MB-231 cells treated with 20 

μM of Furin Inhibitor I, analyzed by two-way ANOVA followed by Tukey’s post hoc 

test; ns, p > 0.05 and for phospho-ERK1/2 protein exhibiting significantly decreased 

phospho-ERK1/2, Student’s t-test; *, p ≤ 0.05. (c) qPCR analysis of MT1-MMP, MMP-2, 

and MMP-9 mRNA in MDA-MB-231 cells treated with either DMSO (0.1%) or Furin 

inhibitor I (20 μM). Fold change was quantified using the ΔΔCT method and shown as 

mean ± SEM. MDA-MB-231 cells treated with Furin Inhibitor I show significantly 

increased MMP-2 mRNA levels and significantly decreased MMP-9 mRNA levels, 

Student’s t-test; *, p ≤ 0.05. The inverse change in gelatinase mRNA levels upon treated 

with Furin inhibitor I is a conserved relationship between MCF-7 MT1-MMP C2 and 

MDA-MB-231 breast cancer cell lines. 
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Figure 8. Overexpression of α1-PDX in MDA-MB-231 breast cancer cells alters 

MT1-MMP activation causing changes in MT1-MMP protein forms, ERK1/2 

phosphorylation, and MMP expression. 

(a) qPCR analysis of alpha1-Antitrypsin Portland (α1-PDX) mRNA a protein which 

binds and inhibits the protein convertase activity of furin confirms its overexpression, in 

generated MDA-MB-231 cells stably expressing alpha1-Antitrypsin Portland (231-PDX 

cells). Fold change was quantified using the ΔΔCT method and shown as mean ± SEM, 

Student’s T-test; ***, p ≤ 0.001. (b) Western blot analysis showed pro- and active MT1-

MMP protein and ERK1/2 phosphorylation in MDA-MB-231 breast cancer cells and 

231-PDX cells. β-actin and total ERK1/2 served as loading controls. (c) Densitometry 

quantification of MT1-MMP pro- and active protein forms in MDA-MB-231 and 231-

PDX cells, exhibited significantly more pro- MT1-MMP in 231-PDX cells, (Two-way 

ANOVA followed by Sidak’s post hoc test; ***, p ≤ 0.001, **, p ≤ 0.01) and phospho-

ERK1/2 protein levels, showing significantly increased ERK1/2 phosphorylation 

(Student’s t-test; *, p ≤ 0.01). (c) qPCR analysis MT1-MMP, MMP-2, and MMP-9 

mRNA in MDA-MB-231 and 231-PDX cells. Fold change was quantified using the 

ΔΔCT method and shown as mean ± SEM. 231-PDX cells exhibited significantly 

decreased MMP-2 mRNA levels and significantly increased MMP-9 mRNA according to 

Student’s T-test ; ****, p ≤ 0.0001, ***, p ≤ 0.001.  
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3.4 Low levels of pro-MT1-MMP and high levels of active 
MT1-MMP in stable MT1-MMP overexpression MDA-
MB-231 cell lines resulted in increased MMP-9 mRNA 
levels 

Three MDA-MB-231 cell lines stably overexpressing MT1-MMP were generated to 

determine if the levels of pro- and active MT1-MMP protein influenced the transcription 

of other MMPs. Similar to the MCF-7 cell lines described previously, these cell lines 

were MDA-MB-231 MT1-MMP C1 which had high levels of both pro- and active MT1-

MMP, MDA-MB-231 MT1-MMP C2 which had low pro and predominantly active levels 

of MT1-MMP, and MDA-MB-231 MT1-MMP C3 which had low pro and slightly more 

active MT1-MMP protein compared to MDA-MB-231 parental cells as shown by 

western blot (Fig 9a). For simplicity, these cell lines will be referred to as MDA-MB-231 

C1, C2 and C3, respectively. Both MDA-MB-231 C2 and C3 cell lines exhibited high 

MMP-9 mRNA levels coupled with lower MMP-2 mRNA levels, while MDA-MB-231 

C1 cells displayed the opposite of low MMP-9 mRNA levels in conjunction with high 

MMP-2 mRNA levels. MDA-MB-231 C1 cells had ~9 fold significantly (p ≤ 0.0001) 

increased MMP-2 mRNA levels and ~13-fold significantly (p ≤ 0.0001) decreased MMP-

9 mRNA levels (Fig. 9b), which were confirmed at the protein level using gelatin 

zymography analysis (Fig. 9c).  When the MDA-MB-231 MT1-MMP overexpression 

stable cell lines were treated for 12 hours in serum-free medium conditioned with pro-

MMP-2, gelatin zymography analysis showed that all three cell lines have the ability of 

activate pro-MMP-2 (Fig. 9c), however MDA-MB-231 C1 cells activated the most pro-

MMP-2. Genetically altering MDA-MB-231 cells to overexpress different levels of MT1-

MMP, subsequently changed the levels of pro- and active MT1-MMP protein forms 

present in each cell line. This in turn influenced MMP-2 and MMP-9 mRNA levels in 

consistently opposite directions.  
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Figure 9. MT1-MMP over-expression in MDA-MB-231 breast cancer cells alters 

pro- and active MT1-MMP protein forms and subsequently results in distinct 

inverse relationships between MMP-2 and MMP-9 gene expression. 

(a) Western blot analysis showing pro- and active MT1-MMP protein in MDA-MB-231 

breast cancer cells and three clonally selected MDA-MB-231 cell lines that stably express 

different levels of MT1-MMP, which result in altered levels of pro- and active MT1-

MMP protein forms. β-actin was used as a loading control. (b) qPCR analysis of MMP-2 

and MMP-9 mRNA from isolated from MDA-MB-231 cells and three MDA-MB-231 

MT1-MMP over expression stable cell lines. Fold change was quantified using the ΔΔCT 

method and shown as mean ± SEM. One-way ANOVA followed by Tukey’s post-hoc 

test; ****, p ≤ 0.0001, **, p ≤ 0.01. MDA-MB-231 C1 cells displayed the inverse 

expression relationship between MMP-2 and MMP-9 a significant increase and a 

significant decrease in mRNA levels respectively. (c) Gelatin zymography analysis of 

MDA-MB-231 parental and MDA-MB-231 MT1-MMP over expression stable cell 

protein extracts incubated for 12 hours with serum-free medium (control) or serum-free 

medium supplemented with conditioned medium containing pro-MMP-2. Red asterisks 

highlights low levels of pro-MMP-9 protein present in the MDA-MB-231 MT1-MMP C1 

stable cell line corroborating the low MMP-9 mRNA levels observed by qPCR. 

 

 

 

  



52 

 

3.5 MEK1/2 inhibitor decreased NF-κB transcription while 
AP-1 transcription was unaffected in MCF-7 MT1-MMP 
and MDA-MB-231 breast cancer cells 

To further investigate possible mechanisms for the observed changes in MMP-2 and 

MMP-9 mRNA levels and alterations to cell invasive potential, a luciferase gene reporter 

assay was conducted to assess the transcriptional activity of AP-1 and NF-kB 

transcription factors. Plasmids encoding luciferase under the regulation of either AP-1 or 

NF-kB promoters were transiently transfected into MCF-7, MCF-7 C2, MDA-MB-231, 

and 231-PDX, which were incubated for 24 hours, then subjected to DMSO (0.1%), 

U0126 (10 μM), or BB-94 (10 μM) treatment for 12 hours.  

MCF-7 cells displayed significantly more AP-1 (p ≤ 0.001) and less NF-κB (p ≤ 0.0001) 

transcriptional activity compared to MCF-7 C2 cells, which had less AP-1 and more NF-

κB (Fig. 10a and b). Neither MCF-7 nor MCF-7 C2 cells displayed any significant 

change in AP-1 transcriptional activity following inhibitor treatment. However, in MCF-7 

C2 cells, U0126 evoked a significant (p ≤ 0.01) ~1.5 fold decrease in NF-κB 

transcriptional activity, while BB-94 treatment had no statistical effect (Fig. 10b). Both 

untreated MDA-MB-231 and 231-PDX cells showed a similar pattern of AP-1 and NF-

κB transcriptional activity to MCF-7 C2 cells, that of low AP-1 and high NF-κB 

transcriptional activity. Moreover, treatment of MDA-MB-231 cells with U0126 caused a 

significant (p ≤ 0.05) ~1.95 fold decrease in NF-κB transcriptional activity, a decrease 

also observed in the 231-PDX cell line (Fig. 10c and d). These results suggest that the 

levels of phosphorylated ERK1/2 present within each breast cancer cell line heavily 

influenced NF-κB transcriptional activity and that this is conserved among breast cancer 

cell lines. 

3.6 Only MDA-MB-231 cells treated with MERK1/2 inhibitor 
exhibited both reduced migratory and invasive potential 

The migratory potential of MDA-MB-231 cells was examined through treatment with 

DMSO (0.1%), U0126 (10 μM), BB-94 (10 μM), or Furin Inhibitor I (20 μM) during  
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Figure 10. Inhibition of ERK1/2 phosphorylation affects transcription of NF-κB 

more strongly than inhibition of MT1-MMP catalytic site activity in breast cancer 

cells.  

(a, b) MCF-7 breast cancer cells and MCF-7 MT1-MMP C2 cells were seeded at a 

density of 3.0x10
4
/mL and transfected with mammalian 3xAP-1 or 3xNF-κB luciferase 

reporter plasmids. After 24 hours of transfection, cells were treated with DMSO (0.1%), 

U0126 (10 μM), or BB-94 (10 μM) for 12 hours. Bioluminescent signal resulted from the 

oxidation of D-Luciferin. Luciferase activities in triplicate samples were measured. 

Values represent mean ± SEM from three independent transfection experiments. MCF-7 

cells contained more AP-1 and less NF-κB transcriptional activity compared to MCF-7 

C2 cells, One-way ANOVA followed by Tukey’s post hoc test; ****, p ≤ 0.0001,***, p ≤ 

0.001, **, p ≤ 0.01. (c, d) MDA-MB-231 breast cancer cells treated with either DMSO 

(0.1%), U0126 (10 μM), or BB-94 (10 μM), and MDA-MB-231 cells stably expressing 

alpha1-Antitrypsin Portland (α1-PDX), 231-PDX, were seeded at a density of 

3.0x10
4
/mL and transfected with mammalian 3xAP-1 or 3xNF-kB luciferase reporter 

plasmids. After 24 hours of transfection, cells were treated with DMSO (0.1%), U0126 

(10 μM), or BB-94 (10 μM) for 12 hours. Bioluminescent signal resulted from the 

oxidation of D-Luciferin. Luciferase activities in triplicate samples were measured. 

Values represent mean ± SEM from three independent transfection experiments. MDA-

MB-231 cells contained less AP-1 and more NF-κB transcriptional activity, whereby 

treatment of MDA-MB-231 cells caused a significant decrease in NF-κB transcriptional 

activity, One-way ANOVA followed by Tukey’s post hoc test; *, p ≤ 0.05. 
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a scratch wound closure assay over a 24-hour period, where images were taken at 2, 6, 

12, and 24 hours (Fig. 11a). Only MDA-MB-231 cells treated with U0126 were 

significantly (p ≤ 0.01) less efficient at wound closure, showing ~12% decrease and were 

therefore less migratory, compared to DMSO (0.1%) treated cells at 12 hours post wound 

generation (Fig. 11b). The impact of MEK1/2 inhibition, MMP site inhibition, and 

alteration of MT1-MMP activation, on migratory and invasive potential in MDA-MB-

231 cells were also investigated using transwell assays. MDA-MB-231 cells were treated 

with DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM), and 231-PDX cells, where 

migration was observed through uncoated transwell insert, or invasion through a 

Matrigel-coated transwell insert, for 24 and 48 hours respectively. MDA-MB-231 cells 

treated with the MEK1/2 inhibitor U0126 were significantly (p ≤ 0.01) by 25% less 

efficient at migration through the transwell pores, while the pan-MMP catalytic site 

inhibitor BB-94 did not affect the migratory ability of these cells (p > 0.05). It is not 

surprising that inhibition of MMP catalytic site activity did not affect MDA-MB-231 

migratory potential, as there was no physical barrier present to be degraded.  231-PDX 

cells were significantly (p ≤ 0.01) 19% less migratory compared to MDA-MB-231 

parental cells. (Fig. 11c). 

When Matrigel was present and invasion required, MDA-MB-231 cells treated with 

U0126 were significantly (p ≤ 0.0001) 90% less efficient at invading through the barrier, 

as were BB-94 treated cells that were significantly (p ≤ 0.0001) 62% less efficient 

compared to DMSO (0.1%) treated MDA-MB-231 cells. 231-PDX cells were also 

significantly (p ≤ 0.5) 10% less invasive compared to MDA-MB-231 parental cells. 

These results demonstrated the overall importance of phospho-ERK1/2 signalling in 

influencing cell movements, as impeding this signalling pathway affected both migratory 

and invasive potential of MDA-MB-231 cells, a well-classified invasive breast cancer 

cell type (Fig. 11c). 
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Figure 11. Inhibition of ERK1/2 phosphorylation is more influential on cell 

migration and invasion than inhibition of MMP enzymatic activity or MT1-MMP 

activation.  

(a) MDA-MB-231 breast cancer cells were seeded at a density of 2.5x10
5
/mL, treated 

with either DMSO (0.1%), U0126 (10 μM), BB-94 (10 μM), or Furin Inhibitor I (20 μM), 

and allowed to form a monolayer for 24 hours. A scratch was made in the monolayer and 

the closure of this scratch was monitored at time points of 2, 6, 12, and 24 hours after the 

initial scratch. White dotted lines indicate the initial scratch size; red dotted lines indicate 

the scratch size at the respective times point. (b) Scratch closure was quantified by 

dividing the width of the scratch at the respective day by the initial scratch size and then 

expressing it as mean percentage ± SEM, as analyzed by one-way ANOVA followed by 

Tukey’s post hoc test; **, p ≤ 0.01, ns, p > 0.05. Scale bars = 100 μm. U0126 treatment 

was successful at decreasing migration up until 12 hours post wound generation. (c) 

Twenty thousand MDA-MB-231 cells treated with either DMSO (0.1%), U0126 (10 

μM), or BB-94 (10 μM), or 231-PDX cells, were seeded onto a transwell insert 

(migration), or an insert coated with 20% Matrigel (invasion), and incubated for 24 

(migration) and 48 hours (invasion) respectively. Number of migrated/invaded cells were 

normalized to DMSO (0.1%) treated MDA-MB-231 cells and expressed as a mean 

percentage ± SEM. One-way ANOVA followed by Tukey’s post hoc test; ****, p ≤ 

0.0001, **, p ≤ 0.01, *, p ≤ 0.05. Both migration and invasion of MDA-MB-231 cells 

was significantly decreased following U0126 treatment. BB-94 treatment however, only 

affected invasion resulting in a significant decrease in invasive potential of MDA-MB-

231 breast cancer cells. 231-PDX cells also less migratory and less invasive compared to 

MDA-MB-231 cells.  
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3.7 MDA-MB-231 cells with decreased ERK1/2 
phosphorylation, inhibited MMP catalytic activity, or 
altered MT1-MMP activation all exhibited morphological 
changes in 3D cell culture 

In order to determine the effects of the inhibitors used on cell morphology, MDA-MB-

231 and 231-PDX cells were embedded in 50% Matrigel and treated with DMSO (0.1%), 

U0126 (10 μM), or BB-94 (10 μM). By Day 5, morphological differences among the 

treatments were apparent (Fig 12a). MDA-MB-231 cells treated with U0126 (10 μM) and 

BB-94 (10 μM) were significantly (p ≤ 0.0001) less protrusive (~ 2- 3 protrusions per  

colony) than MDA-MB-231 parental cells (~9 per colony) or 231-PDX cells (~6 per 

colony). Alternatively, MDA-MB-231 cells treated with U0126 and BB-94, and 231-  

PDX cells all had significantly (p ≤ 0.01) more disseminations per colony compared to 

MDA-MB-231 cells treated with DMSO (Fig. 12b). These results indicated that treatment 

altering ERK1/2 phosphorylation, MT1-MMP activity, or MT1-MMP activation caused 

changes within these cells to divide and move rather than remain stationary and invade. 

Control MDA-MB-231 cells treated with DMSO displayed a meshwork phenotype of 

cells resulting from a combination of round clumped and elongated cells. Inhibition of 

ERK1/2 phosphorylation achieved by U0126 treatment abolished the ability of MDA-

MB-231 cells to from elongated processes and resulted in small round single cells with 

very concentrated F-actin. Inhibition of MMP catalytic activity through treatment with 

BB-94 resulted in large distinct aggregations of round cells, however some BB-94 treated 

MDA-MB-231 cells were still able to elongate in a manner similar to the morphology of 

control cells. Lastly, 231-PDX cells exhibited large round clumps of cells that lacked 

long elongated cell morphology (Fig 12c). The morphological changes observed in each 

treatment and cell line were supported by quantitative analysis of protrusions and 

disseminations per cell colony. 
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Figure 12. Interfering with MT1-MMP activation, MT1-MMP catalytic activity, and 

MAPK signalling affects 3D morphology of MDA-MB-231 breast cancer cells.  

(a) MDA-MB-231 breast cancer cells treated with DMSO (0.1%), U0126 (10 μM), or 

BB-94 (10 μM), and MDA-MB-231 cells stably expressing alpha1-Antitrypsin Portland, 

231-PDX, were embedded in 50% Matrigel and incubated in medium containing 10% 

FBS with the respective inhibitor treatment. Images were taken every day for 5 days 

using DIC microscopy at 10x (50 μm z-stacks, 2 μm slices). Shown is a representative 

focal panel field of view of each cell line with respective treatment at day 1, 3, and 5. 

Scale bars = 100 μm. (b) Five z-stacks per cell line/treatment were acquired and 

disseminations and protrusions were blindly counted and expressed as a mean normalized 

to the colony number per z-stack ± SEM. MDA-MB-231 breast cancer cells treated with 

DMSO (0.1%) exhibited the highest number of protrusions per colony but lowest number 

of disseminations per colony, while MDA-MB-231 cells treated with U0126 (10 μM) 

exhibited the lowest number of protrusions per colony, but the highest number of 

disseminations per colony, as analyzed two-way ANOVA followed by Tukey’s post hoc 

test; ****, p ≤ 0.0001, **, p ≤ 0.01. (c) MDA-MB-231 cells treated with DMSO (0.1%), 

U0126 (10 μM), or BB-94 (10 μM), and MDA-MB-231 cells stably expressing alpha1-

Antitrypsin Portland, 231-PDX, were embedded in 50% Matrigel, incubated in medium 

containing 10% FBS with the respective inhibitor treatment for 5 days and processed for 

immunocytochemistry to examine nuclei and F-actin distribution. Samples were imaged 

using confocal microscopy at 20x and 60x and are displayed as a 3D volume overlay 

showing DAPI (blue) and Alexa Fluor 633 phalloidin (red) channels, where all treatments 

are morphologically different from one another. Scale bars = 100 μm. All experiments 

were repeated in triplicate with comparable results. 
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3.8 Changes in MT1-MMP activation, ERK1/2 
phosphorylation, and MMP-2 and MMP-9 mRNA levels 
in vitro contributed to in vivo tumour growth 

To assess the role of level of MT1-MMP activation, MMP activity, and ERK1/2 

phosphorylation in tumourigenicity, artificial Matrigel tumours composed of ZsMDA-

MB-231 and Zs231-PDX cells were injected into a wound in the CAM vasculature of a 

nine-day-old chicken embryo and incubated for eight days. ZsMDA-MB-231 Matrigel 

tumours were subjected to DMSO (0.1%), U0126 (10 μM), or BB-94 (10 μM) every 48 

hours. Following incubation, vascularization of the tumour site was observed.  ZsMDA-

MB-231 Matrigel tumours treated with DMSO (0.1%) had the highest incidences of 

vascularization (19/21) and complete wound closure (13/16 closed) at the injection site. 

Conversely, ZsMDA-MB-231 tumours treated with U-0126 had the least incidences of 

vascularization (3/14) and incomplete wound closure (1/12 closed), while BB-94 treated 

ZsMDA-MB-231 tumours displayed reduced incidences of vascularization (5/12) and  

decreased wound closure (2/10 closed). Zs231-PDX tumours exhibited intermediate 

vascularization (9/13) and variable wound closure (3/8 closed) (Figure. 13a-c).  

Excision and cross sectioning of ZsMDA-MB-231 control Matrigel tumours revealed 

vascularization not only on the surface of the tumor, but also throughout (Figure. 13d). 

Internal vascularization of ZsMDA-MB-231 control tumours indicates the possibility that 

other Matrigel tumors with surface vascularization contain additional vasculature running 

throughout the inside of the tumors (Data to be published in Cepeda et al., 2016). 
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Figure 13. MDA-MB-231 breast cancer cells treated with U0126 showed fewer 

incidences of vascularization and wound closure within avian CAM.  

ZsGreen-tagged MDA-MB-231 (ZsMDA-MB-231 and ZsGreen-tagged 231-PDX 

(Zs231-PDX) cell lines were combined with Matrigel and injected into a wound made in 

the vasculature of the CAM of a nine-day-old chicken embryo. Embryos were incubated 

for eight days, the introduced cells were treated with either DMSO (0.1%), U0126 (10 

μM), or BB-94 (10 μM), every 48 hours directly onto the tumour injection site. Nine days 

post wound generation; bright field and fluorescence stereomicroscopy were used to 

examine the tumour site, where vascularization of the tumour was assessed by identifying 

novel capillaries around the tumours growing within the CAM. Wound closure was 

assessed based on growth and closure of scar tissue via the resultant lack of tumour 

present above the CAM and regression of originally wounded vessels. (a) Representative 

bright field and fluorescence microscopy images of complete and partial submersion of 

tumours beneath the CAM at day nine post wound generation. Complete submersion of 

tumours beneath CAM with ZsMDA-MB-231 (top panel) and Zs231-PDX cells (bottom 

panel). Partial submersion of tumour treated with U0126 (10 μM) and BB-94 (10 μM). 

Blue arrows indicate submerged tumours, yellow arrows represent tumours that remained 

above the CAM. Scale bars = 2 mm. (b) Enlarged bright field and fluorescence 

stereomicroscopy images of areas denoted by red boxed outline in (a) of ZsMDA-MB-

231 cells treated with DMSO (0.1%) and U0126 (10 μM) to show vascularization and 

wound closure. Left panels (top and bottom), show high levels of vascularization 

surrounding DMSO (0.1%) treated tumours (black arrows), and the most incidence of 

complete wound closure (black outline, red arrow). Vascularization in ZsGreen cells is 

visualized as darkened areas of contrast against green fluorescence (white outline, black 

arrow), right panels (top and bottom). Inhibitor (U0126, 10μM) treated tumours displayed 

a vascularization that looped away from the tumour (black arrow heads) accompanied by 

incomplete wound closure delineated by scabbed borders (black outline, red arrows). 
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Scale bar = 1mm. (c) Multiple chicken embryos (N ≥ 12) were wounded, injected, and 

had tumour sites assessed for vascularization and completeness of wound closure. 

ZsMDA-MB-231 cells treated with DMSO (0.1%) had the highest number of incidences 

of vascularization and complete wound closure. ZsMDA-MB-231 Matrigel tumours 

treated with U0126 (10 μM) showed the least incidences of tumour vascularization and 

incomplete wound closure, while BB-94 (10 μM) treated tumours exhibited intermediate 

incidences of tumour vascularization and incomplete wound closure. Zs231-PDX 

Matrigel tumours displayed intermediate incidences of tumour vascularization and 

variable wound closure. A chi-squared test of independence was performed to examine 

the relationship between cell line / treatment and vascularization.  The relationship 

between these variables was significant X
2 

(4, N= 59) = 19.76; ***,p <0.001. A chi-

squared test of independence was performed to examine the relationship between cell line 

/ treatment and wound closure.  The relationship between these variables was significant 

X
2 

(4, N= 46) = 17.83; ***,p <0.001. (d) A tumour from MDA-MB 231 cells expressing 

ZsGreen was excised from a chicken embryo 8 days post-implantation and imaged using 

brightfield and fluorescence microscopy. Vessels within the tumour (white arrows) can 

be seen by the presence of blood (dark colour) and absence of fluorescent signal 

(ZsGreen), which indicate that these vessels originate from the chicken embryo.  Excision 

of the tumour revealed vascularization present on the surface of the tumour, and cutting 

the tumour in cross section showed vascularization throughout the center (white arrows). 

The image of the upper half of the tumour is maintained in original position, while the 

lower half of the sectioned tumour is rotated 90° to reveal internal vessels.  Scale bars = 2 

mm. (e) Schematic illustration representing the relative positions of the tumours within 

the cam CAM, and vasculature. Shown are cross-sections perpendicular to the images 

shown in (a). i) Un-invaded, un-vascularized tumours remain sitting on top of the CAM, 

representative of incidences of tumour rejection. ii) Vascularized tumours that retain an 

open wound were seen in ZsMDA-MB-231 cells treated with inhibitors and Zs231-PDX 

cells. iii) Vascularized tumours with complete CAM wound closure and vascularization, 

occurred with ZsMDA-MB-231 DMSO (0.1%) and Zs231-PDX tumours.  
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Chapter 4  

4 Discussion 

This work aimed to examine the effects of MT1-MMP proteolytic and non-proteolytic 

functions on the invasive ability of cells, by manipulating MT1-MMP activation 

(chemically and genetically), catalytic activity (chemically), and ERK1/2 

phosphorylation (chemically). This study used MCF-7 breast cancer cells, which are 

deficient in MT1-MMP and phospho-ERK1/2, as well as other cell lines, which have 

increased MT1-MMP levels (MCF-7 MT1-MMP C2), high levels of active MT1-MMP 

and phospho-ERK1/2 (MDA-MB-231 cells), and cells that have altered levels of active 

MT1-MMP and phospho-ERK 1/2 (231 PDX cells). These cells all were subjected to 

inhibitors targeting ERK1/2 phosphorylation (U-0126), MMP catalytic activity (BB-94), 

and furin convertase activity (Furin inhibitor I). I hypothesized that inhibiting ERK1/2 

phosphorylation, MMP catalytic activity, or furin convertase activity, would alter the 

expression of key ECM remodeling proteins, the gelatinases (MMP-2 and MMP-9) and 

subsequently alter breast cancer cell invasion. My results indicate that inhibiting MT1-

MMP activation or activity, or ERK1/2 phosphorylation, results in an inverse 

expressional relationship between MMP-2 and MMP-9 and reduced cell invasion. 

Moreover, a possible pathway influencing breast cancer cell invasion can be proposed: 

Active MT1-MMP is required to initiate the MAPK signalling pathway, resulting in 

ERK1/2 phosphorylation, and subsequent transcriptional activity of NF-κB to influence 

MMP-9 transcription. This model will be discussed below by examining the overall 

effects (changes in transcription, protein levels, and cell motility) of inhibiting ERK1/2 

phosphorylation, MMP catalytic activity, or MT1-MMP activation in individual sections.  

4.1 Inhibiting ERK1/2 phosphorylation inversely effects 
gelatinase expression, reduces total MT1-MMP active 
protein levels, and decreases migratory and invasive 
potential of breast cancer cells 

Proper phospho-ERK1/2 signalling is essential in many cellular processes including 

migration, proliferation, and apoptosis (Fujioka et al., 2006). As discussed below, 
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treatment of MCF-7, MCF-7 C2, and MDA-MB-231 cells with MEK1/2 kinase inhibitor 

(U-0126) decreases phospho-ERK1/2 and alters MT1-MMP, MMP-2, and MMP-9 mRNA 

levels (Fig. 2 and 3). Total MT1-MMP protein is decreased (Fig. 4a and b), as well as 

migration and invasion in 2D and 3D space are reduced (Fig. 11, 12, 13).  

4.1.1 Decreasing ERK1/2 phosphorylation increased 
MMP-2 mRNA levels, but decreased MMP-9 mRNA 
levels in MCF-7 MT1-MMP C2 and MDA-MB-231 
breast cancer cells 

The binding of TIMP-2 to the hemopexin domain of MT1-MMP initiates the MAPK 

pathway by an uncharacterized mechanism to result in the phosphorylation and 

successive activation of ERK1/2 — this activation being a non-proteolytic function of 

MT1-MMP. Sequentially, phospho-ERK1/2 is translocated to the nucleus of the cell to 

influence transcription factors, including AP-1, which is known to regulate the 

transcription of a broad number of MMPs, and NF-κB, which regulates only specific 

MMPs, namely MT1-MMP and MMP-9 (Overall, and López-Otín 2002). 

Inhibiting ERK1/2 phosphorylation in both MCF-7 C2 and MDA-MB-231 cells resulted 

in increased MMP-2 and decreased MMP-9 mRNA levels (Fig. 2b and 3c), indicating 

that the mechanism between phospho-ERK1/2 and gelatinase expression is conserved 

between breast cancer cell lines. Additionally, as decreasing phospho-ERK1/2 decreased 

MMP-9 mRNA levels, but increased MMP-2 mRNA levels, it can be surmised that 

phospho-ERK1/2 acts directly upon transcription factors to positively influence MMP-9 

expression, and negatively affect MMP-2 expression. Both MMP-2 and MMP-9 are 

considered potent ECM remodelers as they share the target substrate collagen IV, an 

abundant component of basement membranes. Active degradation of basement 

membrane substrate is needed in many critical developmental events such as epithelial to 

mesenchymal transitions, and is also needed for cancer cell invasion and for metastasis to 

occur (Hotary et al., 2006). 

 

The MMP transcriptional regulatory mechanisms are complex. Most MMPs are not 

expressed in adult cells under quiescent conditions, but their transcription can be induced 



67 

 

in tumour or stromal cells by various signals, such as cytokines, growth factors and 

oncogene products. Additionally, the signal-transduction pathways that mediate the 

activity of MMP transcriptional activators are also diverse. NF-κB is known to interact 

with phospho-ERK1/2 and is well known for its importance in regulation of MMP-9 

expression (Overall, and López-Otín 2002). Here, inhibition of phospho-ERK1/2 in 

MCF-7 C2 and MDA-MB-231 cells resulted in decreased NF-κB transcriptional activity, 

indicating further support for a mechanism of phospho-ERK1/2 regulation of MMP-9 

(Fig. 10b and d). A similar study performed by Lee et al., (2013) in bladder cancer cells, 

also suggests a relationship among phospho-ERK1/2, NF-κB, and MMP-9 expression. 

Lee et al., (2013) demonstrated in bladder cancer cells that upon chemical inhibition of 

phospho-ERK1/2, NF-κB transcriptional activity and MMP-9 expression was decreased. 

To confirm regulation of MMP-9, NF-κB transcriptional activity was also chemically 

inhibited and resulted in decreased MMP-9 expression in bladder cancer cells. To further 

support the relationship among phospho-ERK1/2, NF-κB, and MMP-9 mRNA levels as 

presented here (Fig. 2, 3 and 10), assays should be performed in MCF-7, MCF-7 C2, and 

MDA-MB-231 cells with an NF-κB inhibitor to observe changes that occur in ERK1/2 

phosphorylation, as well as MMP-2 and MMP-9 mRNA levels. When these cells are 

treated with the NF-κB inhibitor, it is proposed that ERK1/2 phosphorylation will remain 

basal, MMP-9 mRNA levels will be decreased, and MMP-2 mRNA levels will be 

unaffected as the promoter region of MMP-2 does not contain a NF-κB binding domain 

(Overall, and López-Otín 2002). However, when cells are treated with inhibitors for both 

ERK1/2 phosphorylation and NF-κB, a decrease in phospho-ERK1/2 and MMP-9 

expression are predicted, whereas MMP-2 mRNA levels remains increased. The 

regulation of MMP-2 expression through phospho-ERK1/2 is more complex than that just 

described for MMP-9. AP-2 has been shown in various other cell types to be critically 

responsible for MMP-2 expression (Fig. 1) (Overall and López-Otín, 2002). The 

MAPK/ERK pathway is known to interact with the PI3K/AKT pathway, as Ras also 

activates PI3K resulting in the activation of AKT, with AP-2 a downstream target of 

AKT. To investigate this proposed interaction, AKT phosphorylation and AP-2 

transcriptional activity should be targeted to observe changes in MMP-2 expression 

(Moulick et al., 2013). 
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Inhibition of ERK1/2 phosphorylation additionally decreased MT1-MMP mRNA levels 

in MDA-MB-231 cells (Fig. 3c) and decreased total MT1-MMP protein in MCF-7 C2 

cells (Fig. 4a), indicating that the mechanism regulating phospho-ERK1/2 and MT1-

MMP is conserved between breast cancer cell lines. Transcriptional regulation of MT1-

MMP may occur in similar fashion to that of MMP-9 —through phospho-ERK1/2’s 

influence on NF-κB transcriptional activity, as the MT1-MMP promoter also contains an 

NF-κB binding domain (Overall and López-Otín 2002). Interestingly, only MCF-7 C2 

cells exhibited decreased total MT1-MMP, specifically less active MT1-MMP protein, 

despite both cell lines having decreased MT1-MMP RNA levels. MDA-MB-231 MT1-

MMP protein levels remained unaffected, indicating differential post transcriptional or 

post translational regulation of MT1-MMP transcript in this more invasive breast cancer 

cell line.  

 

Collectively, decreased MMP-9 and MT1-MMP mRNA levels following inhibition of 

ERK1/2 phosphorylation observed in this study is consistent with other studies. This 

relationship is well documented and occurs in many different cell lines such as 

rhabdomyosarcoma, fibrosarcoma, bladder carcinoma, colon adenocarcinoma, and 

prostate carcinoma (Tanimura et al., 2003). However, my observation of increased MMP-

2 mRNA levels following decreased phospho-ERK1/2, is novel as previously MMP-2 

and -9 mRNA levels are always altered in the same direction, while in this study, levels 

are always inverse. 

s 

 4.1.2 Decreased migratory and invasive potential is 
observed with decreased phospho-ERK1/2 in vitro, ex 
vivo, and in vivo in MDA-MB-231 breast cancer cells 

Phospho-ERK1/2 influences the migratory and invasive potential of cells through 

activation of a multitude of genes whose products control cytoskeletal arrangements, 

presence or absence of cell surface receptors, ECM degradation, and the release of 

cytokines and growth factors. Consequently, inhibition of ERK1/2 phosphorylation in 

invasive MDA-MB-231 cells resulted in decreased migration (Fig. 11) and invasion in 

diverse assays investigating cell motility (Fig. 11c, 12, and 13). This study further 
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supports the necessity of proper phospho-ERK1/2 signalling in order to achieve cell 

migration and invasion (Meloche, and Pouysségur, 2007). 

Invasive capabilities were examined using a transwell invasion assay and 3D cell culture, 

both of which showed decreased invasive potential following treatment with the MEK1/2 

kinase inhibitor, U0126. Acquisition of an invasive phenotype requires modulation of 

cell-ECM interactions through cytoskeletal organization, proteolysis of the extracellular 

matrix, and migration (Friedl and Wolf, 2003). 

 

Upon inhibition of ERK1/2 phosphorylation in 3D cell culture, the morphology of MDA-

MB-231 breast cancer cells changes to become round, with a minimally protrusive 

phenotype, as fluorescence microscopy revealed a condensed and aggregated F-actin 

cytoskeletal network, contrasting that which forms in untreated cells (Fig. 12c). Previous 

studies have found that the filamentous F-actin regulatory protein, cortactin, plays an 

important role in tumour cell movement and invasion through organization of plasma 

membrane protrusions. Cortactin is positively regulated through phosphorylation by 

phospho-ERK1/2, to promote APR2/3-mediated actin networks (Kelley et al., 2011). The 

reduction of protrusions and associated condensed actin phenotype observed in 3D cell 

culture following treatment with U0126 could be attributed to deficiency in cytoskeletal 

organization, such as cortactin stabilization. 

For reduced invasion, in addition to deficiencies in cytoskeletal arrangement, degradation 

of ECM substrates is also thought to be compromised. Breast cancer cells in which 

ERK1/2 phosphorylation was inhibited also exhibited changes in mRNA and altered 

protein levels of MT1-MMP, MMP-2, and MMP-9. Specifically, cells with decreased 

phospho-ERK1/2 consequently have decreased active MT1-MMP (Fig. 4b and c) and 

pro-MMP-9 protein, but elevated levels of pro-MMP-2 protein (Fig. 3a). With a resultant 

lack of active MT1-MMP present on the cell surface, MT1-MMP-medicated pro-MMP-2 

activation would also be reduced consequently reducing the activation of pro-MMP-9. 

Therefore cells with decreased phospho-ERK1/2 also have minimal ability to degrade 

ECM constituents as evidenced by reduced invasive potential in the Matrigel coated 

transwell invasion assay (Fig. 11c). 
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MT1-MMP is essential for forming filipodia and lamellipodia in migration and 

invadapodia during invasion. The formation of invadapodia requires actin polymerization 

to form a membrane protrusion, followed by MT1-MMP shuttled to the distal end 

(Artym, 2006). While the basal machinery of invadapodia still functions in the absence of 

MT1-MMP, the resulting structures are non-functional and do not degrade ECM 

substrates (Buccione et al., 2009; Itoh et al., 2006). Thereby, the minimal protrusions that 

did form following U0126 treatment, in MDA-MB-231 cells, most likely lacked MT1-

MMP protein at the distal end, and also had reduced secretory vesicle transportation of 

gelatinase proteins to the cell surface that resulted from altered MT1-MMP expression 

and expected activation deficiency. 

 

To better understand the mechanisms involved in invasion, migration was investigated 

using scratch wound closure and transwell mediated assays, both of which demonstrated 

decreased migration when ERK1/2 phosphorylation was inhibited (Fig. 11). U0126 

treated MDA-MB-231 cells showed decreased scratch wound closure up until 12 hours 

post wound generation, after which distance migrated is equivalent to that of untreated 

cells at 24 hours. These changes could be a result of depleted inhibitor over time, or by 

increased cell number over time. During cell proliferation, rapid and persistent nuclear 

transfer of phosphorylated ERK1/2 during the entire G0 to G1 period of the cell cycle is 

crucial to ensure rapid cell growth and cell abundance (Mebratu and Tesfaigzi, 2009). As 

such, in the presence of U0126, proliferation of these cells is minimal, as they cannot 

transition out of G0, and thus if they do not enter the cell cycle, they can be more prone 

to cell migration. Therefore, comparable migratory ability between untreated and U0126 

treated MDA-MB-231 cells at 24 hours can be attributed to the decreased effect of 

inhibitor over time as apposed to cell proliferation. Consistent with the scratch assay, 

cells treated with U0126 and induced to migrate through a porous transwell barrier, also 

exhibited decreased migration. The transwell assay was performed over a 24-hour span, 

where only cells capable of cytoskeletal rearrangement pass through the barrier. 

Additional to cortactin stabilization, previous studies also indicate that phospho-ERK1/2 

activates cell motility machinery by enhancing myosin light-chain kinase (MLCK) 

activity leading to increased MLC phosphorylation and enhanced cell migration (Reddy 



71 

 

et al., 2003). Decreasing phospho-ERK1/2 would lead to the reduction of MLCK activity 

to result in decreased migration.  

Through targeting the MT1-MMP non-proteolytic function, ERK1/2 phosphorylation, 

both cytoskeletal organization and ECM proteolysis, which are necessary for invasion, 

have been considerably impaired. These observations are also of importance when 

assessing tumour vascularization and wound closure data observed in the CAM of 

chicken embryos. A wound was generated into the CAM vasculature whereby an 

artificial tumour consisting of Matrigel and MDA-MB-231 cells was injected. Treatment 

with U0126 resulted in the least number of incidences of tumor vascularization and 

incomplete wound closure compared to control MDA-MB-231 cells. As previously 

discussed, inhibition of phospho-ERK1/2 impairs migratory and invasive potential of 

cells to then prevent movement of cells. Additionally, growth factors critical to 

angiogenesis such as VEGF family members, can be sequestered within the ECM, and 

are cleaved by MMP-9 to stimulate proliferation and migration of endothelial cells 

(Bergers et al., 2000; Yu and Stamenkovic, 2000). Here MDA-MB-231 cells treated with 

U0126 expressed very little MMP-9 mRNA resulting in negligible levels of active MMP-

9; reduction of this gelatinase is one possible explanation for lack of tumour 

vascularization in the chick CAM model. Phospho-ERK1/2 signalling itself is also 

involved in numerous angiogenic processes such as endothelial cell division, influencing 

selective degradation of basement membrane structures, endothelial cell migration and 

the formation of tubular structures (Hoeben et al., 2004). Likewise, this can also affect 

vascularization of the tumour, as well as impairing growth of surrounding vessels. 

Moreover, the chicken tumor vascularization assay is a holistic in vivo assay, making 

exploring inhibitor effects solely on tumour cell invasion and vascularization difficult, as 

phospho-ERK1/2 inhibition is expected to be influencing cells not only within, but 

surrounding the tumour. Decreased vascularization and wound closure of U0126 treated 

MDA-MB-231 tumours in the chick CAM is most likely a combination resulting from 

inhibitory effects on both the cells within the tumour and nearby endothelial cells within 

the CAM. 

 

Exploring the effects of ERK1/2 phosphorylation through inhibition has revealed its 
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importance in diverse cellular processes involving MT1-MMP and gelatinase MMPs 

levels, cell migration and invasion, to ultimately modulate tumour vascularization and 

wound closure in an in vivo model. The usefulness of broad spectrum targeting of 

phospho-ERK1/2 through MEK1/2 kinase inhibition in breast cancer cells is mitigated by 

the many roles phospho-ERK1/2 plays in diverse cellular processes, including cancer 

progression. In order to further explore the cellular consequences of ERK1/2 inhibition in 

an MT1-MMP specific context, the hemopexin domain of MT1-MMP should be targeted 

to prevent the binding of TIMP-2 to decrease activation of the MAPK pathway and 

precisely investigate the downstream role of this ligand-receptor interaction.  

4.2 Inhibiting MMP catalytic activity increases total MT1-
MMP active protein levels, inversely effects gelatinase 
expression, and decreases invasive potential of breast 
cancer cells 

MMPs have been well documented to degrade all constituents of the ECM, influencing 

availability of growth factors, growth factor receptors, chemokines, and cell adhesion 

molecules, in order to elicit cell behaviours such as migration and invasion.  

As will be discussed below, treatment of MCF-7, MCF-7 C2, and MDA-MB-231 cells 

with a pan-MMP catalytic activity inhibitor batimastat (BB-94) subsequently alters MT1-

MMP, MMP-2 and MMP-9 mRNA levels, increases total MT1-MMP protein 

(predominately active MT1-MMP) (Fig. 4 and 5), as well as decrease invasive potential 

in 2D and 3D space (Fig. 11, 12, 13).  

4.2.1 Inhibition of MMP activity by BB-94 addition 
decreased MMP-2 mRNA levels, but increased MMP-9 
mRNA levels in MCF-7 MT1-MMP C2 and MDA-MB-
231 breast cancer cells 

Pan-inhibition of MMP catalytic activity in both MCF-7 C2 and MDA-MB-231 cells 

resulted in increased MT1-MMP expression, perhaps as a compensatory mechanism as 

active MT1-MMP protein levels were increased. Furthermore, BB-94 treatment of MCF-

7 C2 resulted in increased levels of ERK1/2 phosphorylation as shown by western blot 
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(Fig. 4a and b). Additionally, BB94 treated MCF-7 C2 and MDA-MB-231 cells exhibited 

decreased MMP-2, but increased MMP-9 mRNA levels (Fig. 4d and 5c), indicating that 

the mechanism of gelatinase expression, as it is proposed to be regulated by the activity 

state of MT1-MMP, is conserved between breast cancer cell lines. When the catalytic 

domain of MT1-MMP is inhibited, all proteolytic functions are decreased, including pro-

MMP-2 activation mediated by TIMP-2. Nonetheless, the hemopexin domain of MT1-

MMP is still available for TIMP-2 binding. In this situation increased phospho-ERK1/2 

levels seen following MMP catalytic site inhibition can be attributed to availability of the 

MT1-MMP hemopexin domain to still bind to TIMP-2 and initiate MAPK activation. 

Indeed, TIMP-2 mutants incapable of binding the MT1-MMP catalytic site are still able 

to induce the MAPK pathway (D'Alessio et al., 2008; Sounni et al., 2010). Thus, despite 

MMP catalytic inhibition, MAPK activation can still occur, whereby activity of phospho-

ERK1/2 could be influencing the increased expression of MT1-MMP in these two cell 

lines, perhaps as a compensatory mechanism for catalytic inhibition.  

Increased MT1-MMP mRNA is not a result of transcriptional activity of transcription 

factors AP-1 or NF-κB (Fig. 10), as their activity was not altered in the presence of MMP 

catalytic site inhibition. MT1-MMP transcriptional control is unique compared to other 

MMP family members due to differences in its promoter sequence. Lohi et al., (2000) 

identified a GC-rich region within the promoter region of MT1-MMP as the putative 

binding sequence for the Sp1 transcription factor in multiple cell lines (Sroka et al., 

2007). Phospho-ERK1/2 directly phosphorylates Sp1 to increase Sp1 transcriptional 

activity specifying this transcription factor as a possible target for increased MT1-MMP 

mRNA levels. Changes in Sp1 transcriptional activity should be investigated following 

BB-94 treatment in order to confirm involvement of this transcription factor. Ultimately 

the increase in MT1-MMP mRNA levels following catalytic site inhibition resulted in 

increased total MT1-MMP protein, with the greatest increase seen with active MT1-

MMP levels in MCF-7 C2 cells (Fig. 4b and c). More active MT1-MMP present on the 

cell surface, whether catalytically inhibited by BB-94 or not, would still have the ability 

to activate phospho-ERK1/2 signalling, and therefore influence MT1-MMP expression in 

a proposed positive loop. However, MDA-MB-231 MT1-MMP protein levels were not 

altered following treatment with BB-94, suggesting that the more invasive cells, unlike 
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the MCF-7 cells, regulate MT1-MMP differently both post transcriptionally and post 

translationally. 

In cells treated with BB-94, increased levels of active MT1-MMP resulted in increased 

ERK1/2 phosphorylation and increased mRNA levels of both MT1-MMP and MMP-9. 

These observations further support my hypothesis that a signalling pathway exists that 

co-regulates these proteins. However, in cells treated with BB-94, transcriptional activity 

of AP-1 and NF-κB remained unchanged by the application of the inhibitor (Fig. 10). As 

MMP-9 mRNA levels increased, changes in expression of these transcription factors is 

hypothesized to increase. Promotion of MMP-9 transcription is controlled by many other 

transcription factors such as KRE, TIE, and RCE (Fig. 1) (Overall and López-Otín, 

2002). Any of these regulating proteins can be turned on or repressed by phospho-

ERK1/2, and disrupt endogenous transcription factor stoichiometry to be influencing the 

increased expression of MMP-9 in cells treated with BB-94. Others have reported that the 

influence of phospho-ERK1/2 on MMP-2 expression is complex, where crosstalk 

between the PI3K/AKT pathway has been proposed (Moulick et al., 2013).  

In a proteolysis dependent pathway, a cell is proposed to be able to detect the cleavage 

ability of proteins on its cell surface. That being said, catalytically active MT1-MMP is 

necessary to activate pro-MMP-2. With a lack of ability by MT1-MMP to activate MMP-

2, a cell may have feedback mechanisms whereby the expression of MMP-2 is reduced, 

and MMP-9, which can be activated independently of MT1-MMP, would not be 

regulated by the same mechanism. 

4.2.2 Inhibition of MMP cleavage activity does not affect 
migration, but does decrease invasive potential of 
MDA-MB-231 breast cancer cells 

MT1-MMP localization is well characterized as it is found at the leading edge of cells 

during migration, and in membrane protrusions called invadapodia during invasion 

(Artym, 2006). MDA-MB-231 breast cancer cells are highly invasive yet upon treatment 

with the pan-MMP catalytic site inhibitor BB-94, invasion is drastically reduced as 

demonstrated by decreased invasion through a Matrigel coated transwell barrier (Fig. 
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11c), a less protrusive phenotype in 3D cell culture (Fig. 12), and decreased 

vascularization and wound closure in the avian embryo CAM assay (Fig. 13). 

Intriguingly, the migratory ability of these cells is not impaired. MDA-MB-231 BB-94 

treated cells do not exhibit changes in the active forms of the MT1-MMP protein, nor 

ERK1/2 phosphorylation, therefore supporting unchanged migratory ability, and the 

changes observed during invasion can be attributed to proteolysis alone.  

A number of observations have been made regarding MT1-MMP activity influencing the 

migration of cells in a manner not dependent on proteolytic activity. These include amino 

acid sequences in the catalytic domain that do not impact enzymatic activity (Woskowicz 

et al., 2013), and interactions of ECM substrates with the hemopexin domain of MT1-

MMP to initiate MAPK signalling (Zarrabi et al., 2011). In further support of these non-

catalysis dependent migration-promoting characteristics of MT1-MMP, migratory 

abilities of MDA-MB-231 cells were not impaired when treated with BB94. Treating 

these cells did not impact migration to close a wound in the scratch wound closure assay 

(Fig. 11a and b), nor did it impact migration though a porous barrier in the transwell 

migration assay (Fig. 11c). As migration alone does not require degradation of ECM 

constituents, and relies more on cytoskeletal rearrangements, the changes observed in 

MMP-2 and MMP-9 mRNA levels are assumed not to impact this cell motility event. 

Invasion on the other hand, was considerably impacted by inhibition of MMP catalytic 

activity, as all MT-MMPs present on the cell surface and all soluble MMPs secreted by 

MDA-MB-231 cells would have inhibited enzymatic activity. This is evident based on 

decreased transwell invasion (Fig. 11c) and a noticeably less protrusive phenotype in 3D 

culture (Fig. 12). As BB-94 treated MDA-MB-231 cells do not have changes in MT1-

MMP protein levels or ERK1/2 phosphorylation, which are involved in invadapodia and 

cytoskeletal stabilization respectively, I postulated that the decreased protrusiveness of 

cells is attributed to MMP catalytic inhibition. Phenotypically, cells with MMP catalytic 

site impairment were much more aggregated compared to the elongated phenotype of 

control MDA-MB-231 cells. BB-94 treated cells appear to have gone from an elongated 

mesenchymal morphology, seen in untreated MDA-MB-231, to a more amoeboid 

ellipsoid shape. This transition is often seen when MMPs or serine proteases are 
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inhibited. Cells adapt to altered catalytic abilities by using a protease-independent 

amoeboid method of movement involving weak interactions with surrounding matrix in 

order to passively move through existent spaces within the ECM (Fiedl and Wolf, 2003). 

BB-94 impaired invasion was apparent in CAM vascularization of artificial Matrigel 

tumours. These tumours showed decreased vascularization and inhibited wound closure 

following consistent application of BB-94 inhibitor (Fig. 13). In clinical application, BB-

94 has been shown to convert ascite tumours into avascular tumours in mice with cervical 

carcinoma xenografts (Davies et al., 1993, Lu et al., 2011). In these conditions, BB-94 

did not affect cell proliferation or migration, but did inhibit endothelial cell sprouting and 

morphogenesis, preventing the formation of complex networks and tubule-like structures. 

This suggests BB-94 may inhibit both early and late stages of angiogenesis. As the CAM 

tumour vascularization assay involves a whole functioning organism, it is uncertain to 

attest the reduction in tumour vascularization to inhibition of MMP catalytic ability of 

MDA-MB-231 cells within the tumour or to surrounding endothelial cells within the 

avian embryo CAM.  

Investigating the implications of pan-MMP inhibition in invasive MDA-MB-231 breast 

cancer cells has demonstrated a compensatory effect of increased MT1-MMP and MMP-9 

expression when MMP catalytic activity is inhibited. However, increased expression of 

MT1-MMP and MMP-9 is ineffective in rescuing invasive potential in 2D and 3D space, 

as well as in vivo tumour vascularization.  

4.3 MT1-MMP overexpression in MDA-MB-231 breast 
cancer cells altered pro- and active forms of MT1-MMP 
and inversely affects gelatinase expression  

Instead of chemically altering pro- and active MT1-MMP levels in MDA-MB-231 breast 

cancer cells, MT1-MMP overexpression cell lines were generated from these parental 

cells to further increase total MT1-MMP protein present within cells. Compared to 

parental MDA-MB-231cells, MDA-MB-231 C2 and C3 cell lines both have moderate 

amounts of pro- and predominately active MT1-MMP (Fig. 9a). Additionally in these 

cells MMP-2 and MMP-9 mRNA levels are altered, where both cell lines have decreased 
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MMP-2 and increased MMP-9 mRNA and protein levels (Fig. 9b and c). This was also 

seen with MCF-7 C2 and MDA-MB-231 cells treated with BB-94 (Fig. 4d and 5c), where 

overall MT1-MMP protein increase consisted of predominately active MT1-MMP (MCF-

7 C2 cells), with similar increased MMP-9 mRNA and decreased MMP-2 mRNA levels 

as a result (MCF-7 C2 and MDA-MB-231 cells). 

MDA-MB-231 C1 cells displayed both excessive pro- and active forms of MT1-MMP. 

Together with this MT1-MMP overexpression, MMP-2 mRNA levels are increased and 

MMP-9 mRNA levels are decreased. This cell line in particular demonstrates that there 

are optimal levels of active MT1-MMP needed to influence MMP-9 expression. Whereby 

MMP-9 expression could be decreased by the amount of pro-MT1-MMP present or 

through repression or activation of cell signalling pathways, such as MAPK and 

PI3K/AKT respectively. Most importantly, the genetic modification of MT1-MMP 

overexpression in MDA-MB-231 cell lines supports the continually observed inverse 

relationship of expression of the two gelatinases, and the contribution active MT1-MMP 

plays in cell signalling to influence MMP-9 expression.  

4.4 Inhibiting furin convertase activity alters MT1-MMP 
activation, inversely effects gelatinase expression, and 
alters cell migratory and invasive potential 

In this section, I will examine the role of inhibition of MT1-MMP activation on MMP 

expression as well migration and invasive potential of breast cancer cells. Treatment of 

MCF-7, MCF-7 C2, and MDA-MB-231 cells with furin convertase inhibitor, Furin 

Inhibitor I, decreased MMP-9 mRNA levels and increased MMP-2 mRNA levels (Fig. 6c 

and 7c). Only MCF-7 C2 cells showed decreased MT1-MMP mRNA and active MT1-

MMP protein levels, when treated with Furin Inhibitor I (Fig. 6a and b). As treatment of 

MDA-MB-231 cells with the furin inhibitor did not alter MT1-MMP protein forms, a 

stable MDA-MB-231 line (231-PDX) was created. 231-PDX cells overexpress α1-PDX, 

a small peptide that elicits the same effect as Furin Inhibitor I, to bind and block the 

active site of furin. These 231-PDX cells where furin activity is lower, exhibited 

increased MT1-MMP mRNA levels, and consequently, more of both pro-MT1-MMP and 

active MT1-MMP (Fig. 8). Additionally, 231-PDX cells have more phospho-ERK1/2 and 
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more MMP-9 mRNA in agreement with the proposed model of phospho-ERK1/2 directly 

influencing MMP-9 expression.  

4.4.1 Chemical inhibition of furin decreased levels of 
active MT1-MMP, phospho-ERK1/2, and MMP-9 
mRNA, but increased MMP-2 mRNA, and did not 
change cell migratory ability 

Active MT1-MMP present on the cell surface is dictated by intercellular activation within 

the Golgi and trans-Golgi network through a protein convertase called furin (Seidah et 

al., 2008). Inhibition of furin in MCF-7 C2 and MDA-MB-231 breast cancer cell lines 

resulted in decreased phospho-ERK1/2, decreased MMP-9 mRNA levels, and increased 

MMP-2 mRNA levels. The consistency between the two cell lines regarding decreased 

phospho-ERK1/2 signalling, and inverse expression of the gelatinase MMPs 

demonstrates a conserved mechanism for influencing MMP-2/-9 expression.  

MCF-7 C2 cells exhibited a dose dependent decrease in active MT1-MMP and phospho-

ERK1/2 levels following treatment with Furin Inhibitor I (Fig. 6a and b), while MDA-

MB-231 cells showed decreased MT1-MMP mRNA and ERK1/2 phosphorylation levels, 

but unaltered MT1-MMP protein forms (Fig. 7). Additionally, both cell lines when 

treated with Furin Inhibitor I, demonstrated the inverse mRNA level relationship seen 

with the two gelatinases, where MMP-9 mRNA levels were decreased and MMP-2 

mRNA levels were increased at 20 μM treatment. The results from furin inhibited MCF-7 

C2 cells, which showed decreased active MT1-MMP, phospho-ERK1/2 and MMP-9 

mRNA levels, further supports the hypothesis that active MT1-MMP is necessary for 

MAPK pathway activation, and phospho-ERK1/2 acts directly to influence MMP-9 

expression. Regulation of MMP-2 expression is not directly regulated by phospho-

ERK1/2, but attributed to crosstalk between MAPK and other pathways. Furthermore, the 

dose-dependent treatment of MCF-7 C2 cells with Furin Inhibitor I, highlights the 

importance of a proper stoichiometric relationship between the levels of active MT1-

MMP and MMP-2. Cells treated with 5 μM and 10 μM of the inhibitor have relatively 

more active MT1-MMP and less MMP-2 mRNA, while cells treated with 20 μM of the 

inhibitor have less active MT1-MMP and more MMP-2 mRNA. It is interesting that in a 
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situation where there is less active MT1-MMP, which is needed to active pro-MMP-2, 

that there is upregulation of the expression of MMP-2. In this case, I predicted that 

decreased activation of pro-MMP-2 on the cell surface is resulting in a feedback 

mechanism to increase MMP-2 transcription. 

In terms of cell motility, the migratory ability of MDA-MB-231 cells treated with Furin 

Inhibitor I observed via a scratch wound closure assay, was not impaired (Fig. 11a and b). 

MT1-MMP is known to be found in the leading edge of a migrating cells (Friedl and 

Wolf, 2003), and as MT1-MMP protein levels were unaffected in Furin inhibitor I treated 

MDA-MB-231 cells, it is unsurprising that treated cells retained migratory efficiency. 

Although phospho-ERK1/2 levels are decreased (Fig. 7a and b) in treated MDA-MB-231 

cells, migration is not (Fig. 11a and b), and it poses the question of the proportional 

amount of phospho-ERK1/2 needed to stabilize actin-associated structures and promote 

cell motility. 

4.4.2 Overexpression of α1-PDX increased active MT1-
MMP, phospho-ERK1/2, MMP-9 mRNA levels, but 
decreased MMP-2 mRNA in MDA-MB-231 cells 

As chemical inhibition was ineffective in changing MT1-MMP activation in MDA-MB-

231 breast cancer cells, the stable cell line 231-PDX was created overexpressing α1-PDX, 

a small peptide that inhibits the convertase activity of furin (Thomas, 2002). 231-PDX 

cells have more total MT1-MMP protein, both pro and active forms, compared to MDA-

MB-231 cells (Fig. 8b and c). Additionally, these cells have increased phospho-ERK1/2 

and elevated MT1-MMP mRNA levels (Fig. 8c and d). 231-PDX cells also exhibited an 

inverse expressional relationship between MMP-2 and MMP-9, decrease and increase 

respectively (Fig. 8d).  

Although it was expected that overexpression of α1-PDX and resultant furin inhibition 

would cause less active MT1-MMP, the presence of more pro- and active MT1-MMP 

was a surprising result. However, increased levels of active MT1-MMP are still 

consistent with my overall hypothesis, as 231-PDX cells also had elevated ERK1/2 

phosphorylation and increased MMP-9 mRNA. However, altering MT1-MMP activation 
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in MDA-MB-231 cells did not induce changes in levels of transcription factors AP-1 and 

NF-κB (Fig. 10c and d), therefore other transcription factors which are regulated by 

phospho-ERK1/2 and are MMP-9 specific, such as RCE, TIE, or KRE, or MT1-MMP 

specific, Sp-1, should be assessed in 231-PDX cells (Overall and López-Otín 2002). 

Increased active MT1-MMP levels following expression of α1-PDX has been noted in 

other cancerous cell lines as well, including squamous cell carcinoma, epidermoid 

carcinoma cells, and pharyngeal carcinoma cells (Bassi et al., 2001). Additionally, CHO 

cells co-transfected to secrete a soluble form of MT1-MMP and α1-PDX, displayed an 

increase in total MT1-MMP protein with predominately active MT1-MMP (Coppola et 

al., 2008). MT1-MMP has been found to be activated through furin-independent 

mechanisms primarily by other active MMPs (Rozanov et al., 2001; Sato et al., 1999). 

For example there is evidence that MT1-MMP may undergo a two-step activation 

process, including autocatalysis (Strongin, 2010). If furin-dependent mechanisms of 

activation are being inhibited by α1-PDX peptides, it is possible that feedback occurs to 

transcriptionally upregulate MT1-MMP expression, and additional pro-MT1-MMP 

proteins are being translated and activated by a furin-independent manner to result in 

increased active MT1-MMP present within 231-PDX cells.  

4.4.3 Overexpression of α1-PDX in MDA-MB-231 cells 
exhibit decreased migration and invasive potential  

231-PDX cells are the only experimental cell in this study that exhibited high increased 

levels of active MT1-MMP protein and MMP-9 mRNA, accompanied by moderately 

increased ERK1/2 phosphorylation, all features that could increase cell migration and 

invasion. Nonetheless, 231-PDX cells exhibited decreased transwell migration, decreased 

transwell invasion (Fig. 11c), decreased protrusions in 3D cell culture (Fig. 12b), and 

decreased vascularization and wound closure in an avian embryo CAM wound assay 

(Fig. 13).  

In 3D cell culture, 231-PDX cells have a very round morphology, with fewer protrusions 

than MDA-MB-231 cells, and lack the meschenymal-like elongated cell phenotype. 231-

PDX cells are morphologically most like MDA-MB-231 C2 cells —circular and round, 
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with decreased protrusions (Cepeda et al., 2016). Furthermore, MDA-MB-231 C2 cells 

have increased total MT1-MMP mRNA compared to MDA-MB-231 parental cells and 

high active MT1-MMP protein, increased MMP-9 mRNA but decreased MMP-2 mRNA 

(Fig. 9), all similar features of 231-PDX cells. Through analysis of both MCF-7 and 

MDA-MB-231 MT1-MMP overexpression cell lines, Cepeda et al (2016) found that as 

levels of MT1-MMP overexpression increased, the migratory and invasive potential of 

breast cancer cells decreased, and 231-PDX cells fit into this categorization as 

exemplified by transwell migration and invasion assay. Furin also cleaves a wide variety 

of substrates in addition to MT1-MMP, such as TGF-β, stromolysin-3, growth factors, 

and adhesion molecules, which are also important for proper cell motility (Strongin, 

2010). Activation of other furin substrates could be altered by the presence of α1-PDX 

peptides and additionally be contributing factors in decreased cell migration, invasion, 

and altered cell morphology in 231-PDX cells.  

Analysis of vascularization and wound closure of 231-PDX comprised Matrigel tumors 

in an avian CAM assay revealed intermediate incidences of vascularization and variable 

wound closure (Fig. 13c). This assay is very general, and it is difficult to assess if lack of 

vascularization and wound closure is attributed to decreased migratory and invasive 

potential of 231-PDX cells, altered MMP expression, changes in TGF-β, growth factors, 

or adhesion molecules, or due to changes in secreted VEGF family members. MDA-MB-

231 naturally express high levels of VEGF family members needed to promote 

development of new vasculature (Di Benedetto et al., 2015) whereby cleavages of VEGF 

are executed by MMP-9 (Bergers et al., 2000; Yu and Stamenkovic 2000). It is possible 

that in modulating MT1-MMP protein forms, resultant ERK phosphorylation levels, and 

MMP-9 expression, that other aspects needed for cell movement and angiogenesis were 

altered as well in order to produce this very intermediate characterization of 

vascularization and wound closure. 
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Chapter 5 

5 Conclusion 

 

MT1-MMP proteolytic and non-proteolytic functions are strongly implicated in the 

promotion and progression of cancer by promoting cell migration and invasion. As 

shown here, by disrupting ERK1/2 phosphorylation, MMP catalytic activity, or MT1-

MMP activation, the migratory and invasive potential of MDA-MB-231 breast cancer 

cells is impaired. I initially hypothesized that the levels of phosphorylated ERK1/2 would 

be proportional to the levels of active MT1-MMP, and be correlated with increased 

MMP-2 and MMP-9 mRNA and increased invasive potential of breast cancer cells.  

 

Inhibition of ERK1/2 phosphorylation caused decreased MT1-MMP mRNA and 

subsequently decreased active MT1-MMP protein levels. This resulted in decreased 

ERK1/2 phosphorylation and subsequent decreased NF-κB transcriptional activity. 

However the mRNA levels of the two gelatinases were not affected proportionally to 

ERK1/2 phosphorylation — an inverse relationship between MMP-2 (increased mRNA) 

and MMP-9 (decreased mRNA) was observed indicating MMP-9 expression was more 

directly controlled by phospho-ERK1/2. Cells with reduced active MT1-MMP levels 

exhibited decreased migratory and invasive potential. Inhibition of MMP catalytic 

activity by BB-94 caused an increase in phospho-ERK1/2 and successive increased MT1-

MMP mRNA and protein levels. Furthermore, following BB-94 treatment phospho-

ERK1/2 was increased and gelatinase expression was inversely associated —increased 

MMP-9 mRNA and decreased MMP-2 mRNA, and invasive potential was reduced. The 

effect inhibition of MT1-MMP activation, by the inhibition of furin, was dependent on 

mode of inhibition. Chemical alteration of furin convertase activity caused decrease 

active MT1-MMP, decreased phospho-ERK1/2, decreased MMP-9 mRNA levels, and 

decreased MMP-2 mRNA levels. However, counter to my original hypothesis, invasive 

potential was not increased despite having increased active MT1-MMP protein, phospho-

ERK1/2 and MMP-9 mRNA. Therefore cells that have levels of phospho-ERK1/2, active 

MT1-MMP, or MMP-9 mRNA above or below their endogenous levels, invasive 
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potential is reduced. Additionally, despite the gelatinase MMPs sharing substrate 

similarity, this study proposes that altering MMP-2 or MMP-9 expression and proposed 

functions do not compensate for one another in vitro. As consequential to chemical or 

genetic alteration of cell specific components, MMP-2 and MMP-9 expression was 

always effected in an inverse manner (Fig. 14).  

 

Through targeting of different proteolytic and non-proteolytic functions of MT1-MMP 

this study proposes that active MT1-MMP is needed for induction of MAPK signalling 

causing increased phospho-ERK1/2. Phospho-ERK1/2 then influences MT1-MMP and 

MMP-9 specific transcription factor NF-κB to ultimately regulate their respective 

expression. MMP-2 expression is indirectly regulated through proposed feedback 

mechanisms and signalling pathway cross talk. This study demonstrates the difficulty of 

designing direct protein targeting cancer therapeutics, as MMP and cell signalling 

functions are complexly intertwined.   
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Figure 14. Proposed cell models individually outlining cellular outcomes of 

inhibiting ERK1/2 phosphorylation, MMP catalytic activity, or altering of MT1-

MMP activation via changes in MMP transcription and protein levels, ERK1/2 

phosphorylation, and cell motility. 

(a) Treatment of breast cancer cells with MEK1/2 inhibitor (U0126) resulted in decreased 

ERK1/2 phosphorylation, decrease in the activity of MT1-MMP and MMP-9 specific 

transcription factor NF-κB, but no change in AP-1 transcription. Levels of MMP-2 

mRNA were increased, while mRNA levels of MMP-9 and MT1-MMP were decreased.  

Consequently, there was less overall MT1-MMP (less pro- and active) protein. Moreover, 

migration and invasive potential was decreased in cells treated with U0126. (b) 

Treatment of breast cancer cells with the pan-MMP inhibitor (BB-94) resulted in 

decreased MMP catalytic activity. Subsequently, BB-94 treated cells displayed decreased 

ERK1/2 phosphorylation, but no change in the activity of transcription factors AP-1 and 

NF-κB. However, MMP mRNA levels were altered. MMP-2 mRNA was decreased, 

while MMP-9 and MT1-MMP mRNA was increased As a result, cells treated with BB-94 

had more MT1-MMP protein overall, with an increase in both pro- and active forms. 

Furthermore, inhibition of MMP catalytic activity did not influence migratory potential, 

but decreased invasive potential. In this BB-94 treatment, it is possible that an alternative 

pathway influences MMP expression, as more active MT1-MMP did not result in an 

increase in phospho-ERK1/2, nor was the activity of transcription factors changed. (c) 

Altering MT1-MMP activation by chemical inhibition (Furin inhibitor I) reduced active 

MT1-MMP protein levels. Decreased levels of active MT1-MMP resulted in decreased 

phospho-ERK1/2 as well as decreased MT1-MMP and MMP-9 mRNA levels, but 

increased MMP-2 RNA levels. Altering MT1-MMP activation did not change the 

migratory potential of cells. As Furin Inhibitor I elicited a weaker effect on MDA-MB-

231 cells than U0126 or BB-94, stable MDA-MB-231 breast cancer cells were generated 

expressing Alpha1-Antitrypsin Portland, as an alternative approach to block MT1-MMP 

activation. (d) MDA-MB-231 cells stably overexpressing α1-PDX, 231-PDX, displayed 

more pro- and more active MT1-MMP compared to MDA-MB-231 parental cells. This 

resulted in increased phospho-ERK1/2 but decreased activity of NF-κB and no change in 

activity of AP-1. However, MMP-9 and MT1-MMP mRNA was increased, and MMP-2 
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mRNA was decreased. Migratory and invasive potential was decreased in 231-PDX cells. 

Ultimately, the results from each respective treatment propose a pathway in which active 

MT1-MMP is needed to initiate the MAPK pathway resulting in subsequent ERK1/2 

phosphorylation, activation of NF-κB, expression of MMP-9. 
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