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Abstract 

The extracellular matrix (ECM) is a highly organized, dynamic structure that maintains 

tissue integrity and regulates biological processes involved in organ development and 

function. To explore the role of ECM proteins in ovarian physiology and pathology, my 

thesis characterizes ECM proteins aberrantly overexpressed in the Estrogen Receptor 

(ER)β-null (βERKO) mouse ovary and epithelial ovarian cancer (EOC). The ECM 

undergoes extensive physical changes, and influences numerous cell functions, 

throughout folliculogenesis. This study identifies a role for ERβ in ovarian development 

earlier than previously believed. Nidogen 2 and Collagen 11a1 are aberrantly 

overexpressed in βERKO ovaries as early as postnatal day 13, and this dysregulation 

continues into adulthood, as determined by qPCR and immunofluorescence. Collagen IV, 

Nidogen 1 and Laminin are also more highly expressed in the βERKO ovary than in the 

wildtype ovary, suggesting that the repression of several ECM proteins in the ovary is 

ERβ-dependent. The molecular mechanisms that initiate gene repression by ERβ are not 

well understood; therefore a potential mechanism by which ERβ may act as a 

transcriptional repressor in the ovary is investigated. I characterized a novel ERβ 

transcriptional corepressor – transcription factor 21 (TCF21). In transient transfection 

and reporter assays, TCF21 represses ERβ transactivation of synthetic and natural 

estrogen-responsive promoters in various cell lines. As in the βERKO ovary, when the 

mechanisms regulating ECM dynamics during normal organ function are disrupted, the 

ECM becomes disorganized. This disorganization is associated with various pathologies, 

including cancers. The ECM protein, Spondin 1 (SPON1), is overexpressed in ovarian 

cancers and has been identified as a promising ovarian cancer marker, particularly for 

high-grade serous carcinomas; yet, its cellular functions and related mechanisms in EOC 

progression remain unknown. This study shows that SPON1 is expressed and secreted by 

immortalized EOC cell lines and human primary ascites-derived EOC cells. Treatment 

with exogenous SPON1 reduces EOC cell adhesion, viability and proliferation but not 

migration. Experiments utilizing a non-adherent culture surface suggest SPON1 does not 

effect EOC spheroid formation but is involved in spheroid anchoring and cell dispersion. 

These findings support an important role for ECM proteins in ovarian development and 

progression of ovarian carcinomas. 
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1 

  Chapter 1

 Introduction 1

1.1 Overview of Chapter 1 

This thesis examines the role of extracellular matrix (ECM) proteins in ovarian follicle 

development and ovarian cancer progression.  

This chapter begins with an overview of folliculogenesis (Section 1.2) describing: 

a) the formation and growth of follicles, b) the events necessary for a follicle to mature 

into a preovulatory follicle capable of releasing a fertilizable oocyte, and c) the role of 

ECM components in follicular development. The next section (Section 1.3) describes 

Estrogen Receptor β (ERβ), its structure, mechanisms of action and the phenotype of the 

ERβ knockout mouse. The following two sections focus on the 17β-estradiol-regulated 

ECM proteins Collagen11A1 (Section 1.4) and Nidogen 2 (Section 1.5); in Chapter 2, I 

show data exploring the expression and localization of these two proteins in the ovaries 

of wildtype and ERβ knockout mice. Section 1.6 focuses on Transcription Factor 21 

(TCF21); data suggesting a novel role for TCF21 as a co-regulator of ERβ-transcriptional 

activity is shown in Chapter 3. Spondin1, another 17β-estradiol-regulated ECM protein 

that is also implicated in ovarian cancer, is the focus of Section 1.7. Ovarian cancer is 

described in Section 1.8, with a focus on its origins, classification and the role of ECM 

components in ovarian cancer progression. The relevance of Spondin 1 to ovarian cancer 

progression is supported by my data in Chapter 4. The final section of Chapter 1 (Section 

1.9) provides the rationale for these studies.  

1.2 Folliculogenesis 

1.2.1 Introduction to folliculogenesis 

Folliculogenesis is a highly regulated process in the ovary by which an immature 

primordial follicle develops into a mature preovulatory follicle capable of releasing a 

mature oocyte. The ovary is also an important site of steroid production, including 
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testosterone, 17β-estradiol and progesterone, which are essential for the development of 

secondary sex characteristics and the maintenance of pregnancy.  

The ovarian follicle is the basic functional unit of the ovary (Figure 1-1A). It 

consists of the oocyte and two somatic cell types, granulosa cells (GCs) and theca cells 

(TCs). GCs, an actively differentiating cell type, surround the oocyte and are essential for 

its growth. As GCs proliferate and the follicle grows, the GC layer becomes surrounded 

by a basement membrane and TCs. A fluid-filled cavity known as the antrum then forms, 

resulting in the development of a mature, preovulatory follicle. This cascade of events 

culminates in the rupture of one or more mature preovulatory follicles, and the release of 

a fertilizable oocyte. Although the timing of specific stages in folliculogenesis may differ, 

the overall pattern appears to be fairly well conserved in mammals. 

1.2.2 Formation of primordial follicles 

During mammalian embryonic development, primordial germ cells (PGCs) 

differentiate from the epiblast [1]. PGCs migrate to the genital ridge, then differentiate 

into oogonia once they reach the gonads [2]. Upon their arrival in the gonads, the germ 

cells undergo several rounds of mitosis until meiosis is initiated, which occurs 

approximately 13.5 days post coitum (dpc) in mice [3] and after 13 weeks of gestation in 

humans [4]. Just prior to the initiation of meiosis the germ cells are arranged into clusters 

connected by intercellular bridges. These clusters are known as oocyte “nests” or “cysts”. 

These nests break down to form primordial follicles, which are single oocytes surrounded 

by a layer of epithelial pre-granulosa cells [1] (Figure 1-1B). The first primordial follicles 

are histologically detected as early as postnatal day (PND) 1 in mice [5] and 15 weeks of 

gestation in humans [6]. Although many mechanisms involved in the assembly of 

primordial follicles remain to be elucidated, studies have identified a variety of genes 

involved in this process, including transcription factors, meiosis-specific enzymes, 

growth factors and proteins of the zona pellucida (the glycoprotein layer that surrounds 

the plasma membrane of the oocyte) [7]. This initial pool of primordial follicles is the 

stock from which all growing follicles are derived. Once primordial follicles are formed 

they remain dormant until they are activated at puberty [8].  
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Figure 1-1: Folliculogenesis 

A) A representative antral follicle. An antral follicle consists of an antrum as well as an 

oocyte, surrounded by granulosa cells, a basement membrane and thecal cells. 

B) Stages of folliculogenesis. Growth of the follicle from the primordial to secondary 

stage is gonadotropin-independent. FSH is required for the formation of a large 

preovulatory follicle, which is capable of ovulation and forming a corpus luteum in 

response to an LH surge.  
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1.2.3 Primordial follicle to secondary follicle 

Primordial follicles remain quiescent until they are selected for activation to 

become primary follicles. The factors controlling the activation of primordial follicles, 

i.e. why a particular follicle enters the growing pool while an adjacent one remains 

dormant, remain largely unknown, although it is well accepted that this is a multifaceted 

process involving the oocytes, somatic cells, ECM proteins and growth factors [9, 10].  

According to studies using transgenic mouse models, inhibitory proteins and 

pathways exist to maintain primordial follicles in a dormant state. Anti-Mullerian 

hormone (AMH) controls the recruitment of primordial follicles [11]. An increased 

number of follicles are activated in AMH null mice [11], whereas overexpression of 

AMH suppresses primordial follicle recruitment and decreases the sensitivity of follicles 

to follicle stimulating hormone (FSH) [12]. Premature activation of primordial follicles is 

also observed following the loss of forkhead box O3 (Foxo3a) [13] or the oocyte-specific 

deletion of phosphatase and tensin homolog (Pten) [14], which leads to total depletion of 

the ovarian reserve and infertility in both animal models. It is ultimately the coordinated 

actions of inhibitory and activating signals within the ovary that initiate the recruitment 

of primordial follicles into the growing pool [2].  

Once a primordial follicle enters the growing pool the squamous pre-granulosa 

cells differentiate into a single layer of cuboidal GCs surrounding the oocyte, forming a 

primary follicle. The transcription factor forkhead box L2 (FOXL2) is required for GC 

differentiation. Mice expressing an inactive form of FOXL2 do not complete the 

morphological transition from flattened pre-granulosa cells to cuboidal GCs, and the 

absence of functional GCs leads to an arrest at the primary stage and oocyte atresia [15]. 

The progression from primary to secondary follicles requires further GC proliferation 

(two or more layers), and the formation of both a basement membrane and a distinct layer 

of TCs. The oocyte-derived growth differentiation factor 9 (GDF9) mediates 

communication between the oocyte and GCs and is considered obligatory for this stage of 

growth, given that mice null for Gdf9 are infertile, and lack secondary follicles or TCs 

around the basement membrane [16]. The factors involved in the recruitment of TCs are 
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not well understood; however it is believed that GC-derived signals are involved in the 

recruitment and differentiation of stromal cells into TCs [17]. Follicle growth up to the 

secondary stage is gonadotropin independent, as evidenced by transgenic mouse models 

and clinical studies in patients with FSH deficiency. Both Fshb-/- mice [18], which lack 

the follicle stimulating hormone (FSH) beta subunit and therefore cannot produce FSH, 

and women with inactivating mutations in Fshb [19] show follicular growth up to the 

secondary stage. 

1.2.4 Secondary follicle to preovulatory follicle 

Unlike the transition from the primordial to the secondary stage, the development 

of a large antral preovulatory follicle is dependent on the ability of GCs and TCs to 

respond to the gonadotropins, FSH and luteinizing hormone (LH). Mice with the inability 

to produce FSH (Fshb-/-) or respond to FSH due to a loss of FSH receptor (Fshr-/-) are 

infertile because follicles arrest at the secondary stage [18, 20]. Mice that lack the ability 

to respond to LH due to lack of LH receptor (Lhcgr-/-) or produce it (Lhb-/-) are also 

infertile, with folliculogenesis arrested at the early antral stage and a complete lack of 

preovulatory follicles [21, 22]. Therefore, FSH and LH are absolutely required for the 

careful coordination of mechanisms regulating the development of preovulatory follicles, 

steroid production and formation of a fluid-filled antrum. 

Fluid collects in growing secondary follicles between the GC layers. Once these 

fluid-filled spaces coalesce to form the antrum, the follicle is termed antral [23]. The fluid 

within the antrum is similar in composition to serum but contains fewer proteins with a 

molecular weight above 100 kDa than serum [24]. Follicles at the antral stage have 

increased vascularization within the TC layer compared to follicles at the pre-antral stage, 

along with continued growth of the oocyte and proliferation of the somatic cells.  

The primary role of TCs after the secondary stage of folliculogenesis is to 

produce androgens, specifically androstenedione and testosterone, to serve as precursors 

for 17β-estradiol production in GCs. The increase in androgens stimulates GC expression 

of FSHR. FSH then promotes GC proliferation and the expression of steroidogenic genes 

involved in the conversion of androgens to 17β-estradiol. The expression of Cyp19a1 
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(cytochrome P450, family 19, subfamily A, polypeptide 1) in GCs is the rate-limiting 

step in estrogen biosynthesis. Cyp19a1, commonly referred to as aromatase, converts TC-

derived androgens to 17β-estradiol in GCs [25]. 

Early in FSH-dependent follicle growth the GCs produce low levels of 17β-

estradiol, which suppresses GnRH (gonadotropin-releasing hormone) secretion by the 

hypothalamus, thereby reducing FSH secretion by the pituitary. As the follicle grows and 

the number of GCs increases, the production of 17β-estradiol is also increased, which 

raises GnRH levels and favours the production of LH [26]. In addition to 17β-estradiol 

GCs produce members the TGFβ family, activin and inhibin, named for their effect on 

FSH production. Activin, expressed by small and early antral follicles, stimulates FSH 

biosynthesis and release. Conversely, inhibin is expressed by late antral/pre-ovulatory 

follicles and has an inhibitory effect on follicle growth [27].   

As GCs continue to proliferate in the early antral stage, they differentiate into two 

specialized GC subtypes, mural and cumulus. Layers of mural GCs are located along the 

basement membrane and are responsible for most of the follicle’s steroidogenic activity, 

producing increasing amounts of 17β-estradiol as the follicle grows. Cumulus cells 

surround and are closely associated with the oocyte. They have lower steroidogenic 

activity than mural cells but promote oocyte growth by providing nutrients via gap 

junctions [28]. A defining feature of cumulus cells is their ability to undergo expansion 

later in folliculogenesis, a requirement for ovulation and therefore essential for fertility 

[29].  

1.2.4.1 Selection of a dominant preovulatory follicle 

 Of the several thousand follicles in mice present at birth [30] or several million 

present in humans [31], only about 0.01% eventually develop into an ovulating dominant 

follicle while the rest undergo atresia, an apoptotic process [32]. The number of follicles 

selected to be dominant varies between species, from a select few in rodents to only a 

single follicle in humans. As noted earlier, the cyclical release of FSH at the antral stage 

initiates the growth of a cohort of follicles. Growth and follicle survival is FSH-

dependent at this stage. As the follicle grows and the number of GCs increases, so do the 
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numbers of LHCGR expressed on mural cells. Gradually the mature follicle becomes 

more responsive to LH and less responsive to FSH. Furthermore, the expression of 

LHCGR leads to increased aromatase expression as well as abundant 17β-estradiol and 

inhibin production. The follicle that first acquires these characteristics is selected to 

become the dominant follicle because it is able to release 17β-estradiol more quickly and 

cause a switch in the gonadotropin output by the anterior pituitary, namely suppressing 

FSH levels and promoting LH production [30]. As follicle growth becomes LH-

dependent and FSH levels fall, the remaining subordinate follicles in the growing pool 

that lack the LHCGR, and consequently the necessary LH responsiveness, undergo 

atresia. It has also been observed that dominant follicles are larger and faster growing 

than non-dominant follicles [31]. 

1.2.5 The “LH surge” and ovulation 

As the dominant follicle continues to grow, it secretes high levels of 17β-estradiol 

and inhibin. Once a threshold concentration of estradiol is reached an acute surge of LH 

is released from the anterior pituitary [32]. The LH surge acts on the preovulatory follicle 

to initiate oocyte maturation, cumulus cell expansion, ovulation and the terminal 

differentiation of GCs and TCs to form the corpus luteum (CL). LH rapidly acts on the 

mural GCs to change gene expression and activate several pathways required for these 

events to occur [33]. The LH surge activates multiple pathways including protein kinase 

A (PKA), phosphoinositide-3 kinase/protein kinase B (PI3K/AKT), and RAS signaling 

cascades, all of which are critical for ovulation [34]. The epidermal growth factor (EGF)-

like factors amphiregulin (AREG), epiregulin (EREG) and betacellulin (BTC) are 

secreted from the mural GCs following the LH surge and activate EGF receptors (EGFR) 

in cumulus GCs [35]. The loss of these EGFR ligands in mice impairs ovulation, 

demonstrating that these signaling pathways are essential for ovulation to occur following 

the LH surge [36].  

1.2.5.1 Oocyte maturation 

During primordial germ cell formation, oocytes arrest at Prophase I of meiosis. 

The LH surge triggers oocyte reentry into the cell cycle; however, the exact mechanisms 
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involved are not well understood. It has been demonstrated that oocytes removed from 

follicles and placed in culture spontaneously resume meiosis [37], suggesting that 

follicle-derived factors are involved in maintaining the oocyte in meiotic arrest. It is 

generally accepted that high levels of the cyclic nucleotides, cAMP and cGMP, are 

involved in the maintenance of meiotic arrest because meiotic resumption coincides with 

either a reduction in cAMP [38] or cGMP [39] levels. It is expected that the oocyte 

produces cAMP itself [40], whereas cGMP is likely derived from somatic cells [41]. It 

has also been shown that GPR3 (G-protein coupled receptor 3) and GPR12 are necessary 

for the regulation of oocyte meiosis in mice [42] and rats [43], respectively. Oocytes from 

the Gpr3-/- knockout mouse resume meiosis independent of LH, while treatment of mouse 

oocytes with the GPR3/12 ligands SPC and S1P delayed meiotic resumption.  

1.2.5.2 Cumulus expansion 

Following the LH surge, cumulus GCs produce a hyaluronan (HA)-rich ECM that 

surrounds the oocyte, in preparation for ovulation [44]. This process is called cumulus 

expansion as a result of the increase in cumulus cell-oocyte complex (COC) volume. The 

HA-rich matrix contains various ECM proteins including laminin, collagen IV, 

fibronectin, and proteoglycans [45, 46]. The production of these proteins is dependent on 

the expression of both oocyte- and cumulus cell-derived factors. Many of the genes 

critical for COC expansion have been identified using knockout mouse models, including 

Has2 (hyaluronan synthase 2), Ptgs2 (prostaglandin endoperoxide synthase 2), Tnfaip6, 

and Ptx3 (pentraxin 3). Prostaglandin signaling is necessary for the production of ECM 

proteins by cumulus cells and COC expansion, as mice lacking Ptgs2 [47] or Ptger2 

(prostaglandin E2 receptor) [48] expression have impaired COC expansion and are 

infertile or subfertile, respectively. Tumour necrosis factor, alpha induced protein 6 

(Tnfaip6)-null mice are also infertile [49]. Further studies have shown that isolated COCs 

that demonstrate poor expansion are unfertilizable because sperm are unable to degrade 

the HA-rich matrix, while oocytes isolated without cumulus GCs are unfertilizable due to 

reduced viability [29].  



 

 

9 

1.2.5.3 Follicle rupture 

Ovulation involves the release of the COC from the follicle and ultimately from 

the ovary, as an oocyte surrounded by a single layer of expanded cumulus GCs. Before 

successful ovulation can occur the apical surface of the follicle must associate with the 

periphery of the ovary, and by proteolytic degradation weaken the follicle wall for follicle 

rupture. Following the LH surge, the follicle expresses proteases, including MMPs 

(matrix metalloproteinases) [50] and ADAMTSs (a disintegrin and metallopreoteinase 

with thrombospondin motifs) [51], involved in ECM degradation. Studies have indicated 

that members of both families are upregulated during follicle rupture in various species 

[52-55]; however, only the subfertile Adamts1-/- mice have exhibited a reproductive 

phenotype [56]. Several transgenic mouse models that lack genes encoding LH-induced 

proteases do not exhibit reproductive phenotypes, suggesting certain proteases may have 

a redundant role and may be compensated for by other proteins [57-60], thereby adding 

another level of complexity. The specific mechanisms responsible for selected ECM 

degradation remain to be elucidated although it has been proposed that localized 

expression of TIMPs (tissue inhibitors of metalloproteinases) may be involved [61].  

1.2.5.4 Luteinization and formation of the corpus luteum 

After the release of the oocyte, the remaining somatic cells differentiate into 

granulosa lutein (GL) and theca lutein (TC) cells in a process called luteinization. The 

new structure formed from the luteal cells is termed the corpus luteum (CL), and 

produces high levels of progesterone to prepare the endometrium for implantation and 

pregnancy. The follicular phase is now concluded and the luteal phase begins, 

characterized by the formation of the CL and consequent steroid production.  

The CL produces high levels of 17β-estradiol and inhibin, which act on the 

pituitary to suppress FSH secretion [62]. The model of estrogen production by the follicle 

appears to be conserved by the CL because reminiscent of the GC and TC, the GL and 

TL cells have different roles in the CL. It is suggested that the GL and TL are the primary 

sites of estradiol synthesis and androgen production, respectively [63-65]. Furthermore, 

CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B 
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(hydroxyl-delta-5-steroid dehydrogenase, 3 beta and steroid delta-isomerase) have been 

immunolocalized in GL and TL, demonstrating that both luteal cell types produce 

progesterone [65].  

During the luteal phase, the CL also undergoes extensive neovascularization, 

which is required for the acquisition of large amounts of cholesterol as a substrate for 

progesterone. In the follicular phase, only the vasculature of the theca is well developed 

and does not penetrate the basement membrane. After ovulation, endothelial cells form 

new capillaries that invade the follicle. This process is primarily driven by vascular 

endothelial growth factor (VEGF) [66]. It has also been speculated that the anti-

angiogenic factors, thrombospondin-1 (TSP-1) and TSP-2, are required for normal CL 

vascularization [67, 68].  

If fertilization occurs the CL continues to produce progesterone until the placenta 

is able to produce its own. Throughout pregnancy, the CL continues to produce endocrine 

factors that suppress FSH secretion [62]. If fertilization does not occur the luteal cells 

become apoptotic and the CL regresses to become a corpus albicans. Consequently, the 

levels of 17β-estradiol and inhibin decrease and their suppressive effect on FSH is 

removed. The surge of FSH recruits a new cohort of preantral follicles, which initiates the 

follicular phase and another ovarian cycle begins.  

1.2.6 ECM in follicular development 

The ECM is composed of a diverse network of macromolecules with distinct 

properties; certain proteins are strictly structural components while others serve as 

signaling molecules. An important feature of the ECM is that it can be actively and 

specifically remodeled to serve its function in a certain tissue, at a particular 

physiological state. As described above, a developing follicle undergoes extensive 

morphological and biochemical changes during folliculogenesis. In addition to the HA-

rich matrix produced during COC expansion (1.2.5.2), the composition of the ECM is 

dynamically remodeled throughout follicle growth, ovulation and atresia. The ovarian 

ECM has been characterized in several mammals, including bovine [69-73], human [74-

76], mice [77, 78] and ovine [79, 80]. There are two main types of ECM observed in the 
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follicle: the basal lamina and the basal lamina-like focimatrix (abbreviated from focal 

intraepithelial matrix) [69]. Granulosa cells are thought to produce many of the ECM 

components within the follicle [78, 81].  

The basal lamina, often referred to as the basement membrane (BM), is a 

specialized sheet of ECM that underlies the epithelial cells and separates them from the 

interstitial matrix. The formation of a BM is required for normal tissue development and 

function, as BMs are able to regulate cell differentiation and proliferation as well as 

maintain the selective passage of cells and molecules [82]. The follicular BM is primarily 

composed of collagen type IV and laminin networks, which are connected and stabilized 

by nidogens [83]. The follicular BM possesses molecular exclusion capabilities and is 

necessary for the maintenance of the blood-follicle barrier, although its exact mechanism 

of accomplishing this remains largely unknown. Studies have suggested that not only is 

size a determinant (the mass cut-off of the follicular BM is between 100 and 500 kDa), so 

also is the charge of the molecule, because negatively charged molecules are excluded 

from movement across the barrier [84].  

The focimatrix contains typical basal lamina components; however, it is neither 

basal nor laminate. Unlike basal laminas that envelop cells or groups of cells, the 

focimatrix develops as aggregates between the granulosa cells. Due to its morphology, 

the focimatrix is unable to perform the typical functions of the basal lamina, such as 

filtering material or creating microenvironments around cells. Instead, the focimatrix is 

predicted to be involved in initiating or assisting in the depolarization of granulosa cells, 

which is a prerequisite for luteinization [69]. Focimatrix aggregates are more abundant in 

apical than in basal GCs [73], and the amount of focimatrix increases as the follicle 

grows [69]. The expression of focimatrix genes has also been correlated with expression 

of steroidogenesis genes [72, 73].  

Other proteins in follicles not associated with the basal lamina include 

proteoglycans (typically heparan sulphate proteoglycans such as perlecan, and small 

leucine-rich repeat proteoglycans such as decorin [71]), the matricellular glycoprotein 
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SPARC (secreted protein acidic and rich in cysteine) [85] as well as proteins involved in 

cumulus expansion and ovulation, including MMPs and TIMPs [86].  

The presence and composition of the ECM influences numerous cell functions 

throughout follicle growth and atresia, including morphology, steroidogenesis, survival 

and proliferation [87, 88]. GCs in vivo have a rounded, epithelial morphology; however, 

when seeded onto uncoated tissue culture plastic they become flattened, resembling 

fibroblasts, and undergo rapid cell death. Interestingly, modifying the culture 

environment in vitro can greatly impact the features of isolated GCs. When GCs are 

plated on different matrices of ECM proteins, such as Matrigel (a gelatinous BM mixture 

rich in ECM proteins and growth factors), or individual BM components, they maintain 

their spherical morphology, are protected against apoptosis and proliferate more rapidly 

[79, 89-91].  

The ECM also affects the production of steroids by somatic cells. When human 

GCs are cultured on serum-coated tissue culture plastic they produce significantly lower 

levels of estradiol, following treatment with the substrate androstenedione, than GCs 

cultured in the presence of collagen type I (50% higher) [92]. Furthermore, specific ECM 

proteins have been shown to influence GC production of progesterone in several species 

[87].  

The presence of ECM components also impacts isolated follicles cultured in vitro 

[88]. For example, human ovarian tissue slices cultured on Matrigel possess a greater 

number of viable follicles over time than tissues cultured in the absence of ECM proteins 

[93], and mouse ovaries have higher follicle densities and growth initiation following 

culture on collagen type IV or laminin than on poly-L-lysine [10]. 

1.3 Estrogen Receptor Beta 

1.3.1 Estrogen receptor discovery and structure  

In 1958, Elwood Jensen discovered the existence of a receptor protein that 

mediated the actions of estrogen, and the corresponding gene was cloned in 1985 [94]. A 

novel subtype of the estrogen receptor (ER) was later cloned from the rat prostate and 
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ovary in 1996 [95]. This necessitated the renaming of the previously discovered ER to 

ERα, while the newly discovered ER was accordingly designated ERβ. The human ERα 

(ESR1) and ERβ (ESR2) genes are located on different chromosomes, 6q25.1 and 

14q23.2, respectively. The human (and mouse) ERα and ERβ proteins have molecular 

weights of approximately 66 kDa and 54 kDa, respectively. As members of the nuclear 

receptor superfamily, ERs are found primarily in the nucleus, but also in the cytoplasm 

and mitochondria.  

The ERs consist of five domains with distinguishable functions, designated 

domains A-F: an N-terminal domain (NTD) which includes the (A/B) domains, the 

DNA-binding (C) domain (also known as the DBD), a hinge (D) domain, a ligand-

binding domain (LBD) (E), and a C-terminal (F) domain of unknown function that is 

unique to the ERs within the steroid receptor family (Figure 1-2). ERα and ERβ share the 

highest amino acid identity in the DBD (96%), while the NTD is the least conserved 

(30%) [96]. Interestingly, the LBDs are only ~ 50% identical, yet crystallographic studies 

indicate that the ligand binding pockets of both ERs have a similar structure [97]. ERα 

and ERβ show similar binding affinities towards most physiological and synthetic 

ligands, with some minor differences [98-100]. The ERs also possess two activation 

function (AF) domains that interact with distinct groups of coactivators: a ligand-

independent AF1 in the NTD and a ligand-dependent AF2 in the DBD [96]. 

Several naturally-occurring splice variants have been described for both ER 

subtypes, with at least 3 ERα and 4 ERβ human isoforms known; however it is unclear 

whether all the variants are expressed as functional proteins and biologically active. The 

530 amino acid (aa)-long human ERβ isoform is considered to be the wild type ERβ (rat 

and mouse, 549 aa), while the ERβ splice variants are referred to as ERβcx/2, ERβ3, 

ERβ4 and ERβ5 [94, 101]. All ERβ splice variants possess an altered C-terminus, and are 

unable to bind estrogens, coactivators, or other investigated ligands [94]. The full length 

and alternatively spliced forms of ERβ have been described in the normal ovary and 

ovarian tumours [102-104]. It is generally considered that ERβ2 is endogenously 

expressed only in rodents [102]; however, Fujimura et al. have detected expression of 

ERβ2 in human prostatic cancer, which makes it the only ERβ isoform identified at the  



 

 

14 

 
 

 

 

 

 

 
 

Figure 1-2: Comparison of the amino acid sequences of human ERα and ERβ. 

Schematic of human ERα and ERβ receptors. The amino acid sequence is numbered and 

steroid receptor domains are indicated. The protein sequence identity is shown between 

the ERα and ERβ diagrams as %. NTD: N-terminal domain, DBD: DNA-binding domain, 

LBD: Ligand-binding domain. AF: Activation function 
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protein level in human tissues [105]. The functional significance of these isoforms 

continues to be elucidated. 

1.3.2 Classic mechanisms of ER action 

The classic mechanism of ER action is similar to that of other receptors in the 

nuclear receptor superfamily. In the absence of ligand, the ERs are present in an inactive 

state within the nuclei, sequestered in a multiprotein inhibitory complex. Ligands are able 

to freely diffuse across the plasma and nuclear membranes, and bind the receptor. Ligand 

binding induces a conformational change within the ER and a release of chaperone 

proteins [106], which allows the receptors to dimerize and bind with high affinity to 

specific sequences, termed estrogen response elements (ERE) [100, 106, 107]. The 

consensus ERE is a 13 nucleotide inverted palindrome with a 3 base pair spacer of 

variable bases. Mutant variants/ imperfect EREs typically have a reduced ability to bind 

the ER and decreased transcriptional potency [106]. EREs are found throughout the 

genome, with only about 4% of ER binding sites mapped to 1-kb promoter-proximal 

regions [108]. ChIP-seq analysis has shown that the majority of ERβ binding sites (76%) 

are located within 50 kb of a gene. Approximately 25% of these sites are within a gene, 

13% in proximal promoter regions of genes, 2% at the 3’-end of a gene, 36% elsewhere 

in a more distal region (5-50 kb), and the remaining 24% are over 50 kb from a gene 

[109]. Furthermore, ER binding sites are generally found overlapping Forkhead box 

(FOX) binding motifs [108]. Several studies have shown that FOXA1, for example, is a 

key determinant of ER function, and knockdown of FOXA1 decreases ER binding, 

cofactor recruitment and estrogen-stimulated transcription [110-113]. 

Once the ligand-ER complex is tethered to the ERE, coregulatory proteins are 

recruited and the receptors interact with the general transcription machinery either 

directly or indirectly via cofactor proteins [100, 114]. The cell and promoter involved 

will determine whether the ER will exert a positive or negative effect on the expression 

of the downstream target gene [114]. To activate transcription of a target, the structure of 

chromatin is disrupted through histone acetylation and other modifications, followed by 

initiation of transcription by RNA polymerase II. The molecular processes involved in 
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gene repression are not as well understood and continue to be elucidated; however, it is 

known that corepressor proteins recruit histone deacetylases (HDACs), which remove 

acetyl groups and restrict access of transcription factors to the promoter [115]. 

 When acting through the classic ERE-driven mechanism, ERα homodimers and 

ERα/ERβ heterodimers tend to be stronger activators of transcription compared to ERβ 

homodimers. ERβ demonstrates lower binding affinity for ERE half-sites than ERα [116]. 

Both ERs contain a functional AF2 domain; however, the AF1 domain is only 

constitutively active in ERα whereas it contains a repressor function in ERβ. Once the 

AF1 domain is removed from ERβ, estradiol-ERβ-mediated transcriptional activity is 

increased [117]. Furthermore, it has been suggested that the effects of estrogen in a given 

tissue are a function of the relative levels of ERα and ERβ. Studies have shown that ERβ 

generally represses ERα-mediated gene transcription by competing with ERα for access 

to the DNA target [117-119]. For example, estradiol treatment of U2OS osteosarcoma 

cells engineered to express either ERα or ERβ demonstrated that each ER regulates a 

distinct and overlapping set of genes [120, 121]. Estradiol-treated U2OS cells expressing 

both ERs had a unique transcriptional profile compared to U2OS cells expressing either 

ERα or ERβ alone [122]. A study using ChIP-chip showed that the ratio between ERα 

and ERβ levels affects the ERβ-binding regions in MCF7 breast cancer cells, with ERα 

displacing ERβ when both ERs were present [123]. Lastly, T47D breast cancer cells that 

endogenously express ERα were engineered to also express ERβ. The expression of ERβ 

antagonized ERα-mediated transcription of the ERα target genes pS2 and PR [124]. 

Interestingly, although a role for ERβ2 has yet to be revealed, it has been shown to 

dimerize with wildtype ERs and dose dependently suppress ERα and ERβ1-mediated 

transcriptional activation in vitro, suggesting it to be a negative regulator of estrogen 

action [102, 104].  

 As mentioned previously, the cell and promoter involved will determine the 

nature of ER action on specific genes. For example, ERβ is a less potent transcriptional 

activator of both a consensus ERE and imperfect EREs than ERα in Chinese Hamster 

Ovary (CHO) cells [116]. Conversely, ERβ is a more potent transcriptional activator of a 

consensus ERE in response to estradiol in an osteoblast cell line, as compared to ERα 
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[125]. The different responses to the ERs by gene promoters in different cell types are 

most commonly attributed to the coregulatory proteins, which vary within cell lines and 

tissues. 

1.3.3 Recruitment of transcriptional coregulators by ERβ 

Coregulator proteins bind directly with nuclear receptors and general 

transcriptional machinery to regulate gene transcription. Two major groups of 

coregulators exist: coactivators that enhance transcription and corepressors that repress 

transcription [126]. Nuclear receptors interact with coregulatory proteins via two putative 

motifs: the NR box (LXXLL) and the CorNR box (L/IXXI/VI), which are present in 

coactivators and corepressors, respectively [127, 128].  

Coregulators have enzymatic activities that produce posttranslational 

modifications of chromosomal proteins involved in gene regulation. For example, 

coactivator histone acetyltransferases (HATs) lead to the acetylation of histones, whereas 

HDACs are recruited by corepressors and modify chromatin in such a way that 

transcription is inhibited. It is well understood that multiple HDACs exist, each 

contributing their own combination of enzymatic requirements to the repression complex 

[114, 129]. Another level of complexity is added when other transcription factors are able 

to modify the stability of the transcription complex and/or suppress the enzymatic 

activities of the coregulatory proteins [130]. Coregulators can also function as bridging 

factors or adaptor proteins, by linking protein-binding partners together and facilitating 

the formation of larger signaling complexes [131]. 

 In general, much less is known about the molecular processes involved in gene 

repression than gene activation. The best-characterized nuclear receptor corepressors are 

NCOR1 (nuclear hormone receptor-corepressor) and NCOR2/SMRT (silencing mediator 

of retinoid and thyroid hormone receptors). Both are conserved transcriptional repressors 

known to interact with several transcription factors, including ER [120]. They do not 

appear to have intrinsic repressive activity; rather they function as part of a larger 

repressor complex by recruiting other proteins involved in mediating the molecular 

actions required for repression, such as HDACs. HDACs act as corepressors in their own 
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right and may bridge between transcription factors to silence gene activity [129]. Nuclear 

receptors usually bind corepressors in the absence of ligand or in the presence of 

antagonists. The recruitment of NCOR1 and NCOR2 appears to be essential for the 

antagonist activity of ERα [132]; however, little is known regarding their ability to inhibit 

ERβ-mediated transcription. Interestingly, Webb et al. have shown by GST binding and 

mammalian two-hybrid assays that ERβ, through its AF-2 domain, binds to NCOR1 and 

NCOR2 in the presence of agonists, but not antagonists, via an LXXLL-like motif in the 

NCOR C-terminus [133].  

 Many coregulators that either enhance or inhibit ERα transactivation have been 

identified; however, ERβ coregulators have generally been understudied, and only a 

handful of coregulators have been shown to bind and affect transactivation by both ERs 

[96]. Furthermore, few studies have shown that ERβ recruits coregulators to endogenous 

genes. A U2OS cell line stably expressing a tetracycline-regulated ERβ was used to show 

that ERβ-specific agonists recruit NCOA2 to the endogenous TNFα promoter, thereby 

repressing TNFα gene expression [134]. Unliganded ERβ is also recruited to a known 

E2-induced gene in ERβ-expressing U2OS cells [135]. However, because U2OS cells do 

not endogenously express ERβ, it is unclear whether the effects observed in this artificial 

model would also be observed in primary bone cells.   

 Only a few coregulators that specifically regulate ERβ but not ERα transcriptional 

activity have recently been identified. A yeast two-hybrid assay using the ERβ A/B 

domain as "bait" found NM23-H2 to be an ERβ-associated protein, and its 

overexpression to increase ERβ-mediated transcription [136]. Whether NM23-H2 

interacts with ERα or affects ERα-mediated transcription was not investigated. A 

comparable yeast-two hybrid assay identified HSP27/HSPB2 as an ERβ-binding protein, 

which subtly affects ERβ-mediated transcription [137]. Coimmunoprecipitation assays 

demonstrated that HSP27 specifically interacts with ERβ and not ERα. Although the role 

of coregulators in transcriptional regulation by ERs continues to be explored, there 

remains limited information in the literature regarding corepressors specifically involved 

in ERβ-mediated transcription or transactivation, and much remains to be revealed. 
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1.3.4 Alternative “non-classic” mechanisms of ERβ action 

Over the years it has become apparent that ER can act through alternative 

signaling mechanisms that diverge from the classic model. These include the regulation 

of genes that lack an ERE (1.3.4.1), ER action in the absence of ligand (1.4.3.2), and 

membrane signaling often referred to as “nongenomic” action (1.4.3.3). These 

mechanisms are described briefly below.  

1.3.4.1 Cross-talk with other transcription factors (ERE independent) 

 Ligand-bound ERs can also interact with other transcription factor complexes to 

stimulate the transcription of genes that are not regulated by ER binding to an ERE. This 

mechanism of ERE-independent ER activation involves “tethering” of the ER to other 

transcription factors, such as AP-1, SP-1 (GC-rich SP-1 motifs) or NFκB, that are directly 

bound to DNA by their respective response elements [106, 115]. ChIP-chip studies 

strongly suggest that this is a common mechanism of transcriptional regulation for both 

ERs [108, 123]. As with the classic model of ER action, ERα and ERβ differentially 

regulate target genes when acting via this mechanism [96]. Interestingly, ERβ interacts 

with SP-1 within the ERα promoter region and represses ERα expression [119]. 

1.3.4.2 Ligand-independent signaling 

In addition to being activated by ligands, ERs can also be activated via ligand-

independent pathways. Growth factors and intracellular messengers are able to activate 

ER-mediated gene transcription in the absence of ligand. Ligand-independent activation 

of ERs relies on the activation of kinases, which may phosphorylate the ER and/or its 

associated coregulators [138].   

1.3.4.3 Membrane-associated ER signaling (nongenomic ER action) 

The models of ER action described so far influence changes within a cell by 

acting in the nucleus and modulating the expression of target genes. This is a relatively 

lengthy process unlikely to offer measurable effects for hours following cell exposure to 

steroid. Yet rapid effects of estradiol treatment have been observed, within seconds or 

minutes of ligand treatment [139], which cannot be explained by the nuclear mechanism. 
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These rapid effects include activation of kinases, increases in ion fluxes across 

membranes and activation of nitric oxide synthase in endothelial cells [96]. The rapid 

responses of ER action are often attributed to a nongenomic mechanism, in which ligands 

bind to an ER localized to the membrane or cytoplasm. Although membrane ERs are 

becoming more accepted by the scientific community, they continue to be controversial, 

and it remains uncertain whether the classic ERs are involved or whether a distinct 

membrane-associated ER exists [96, 140, 141].  

1.3.5 Localization of ERβ 

 The ERs exhibit species-, tissue-, and cell-specific patterns of expression and 

localization. ERβ is detected in the ovary, cardiovascular system, central nervous system, 

male reproductive organs, prostate, lung, colon, kidney and bone, whereas ERα is 

expressed in testis, ovary, mammary gland, uterus, breast, white adipose tissue, bone, 

heart and liver [94, 142]. Based on its broad expression ERβ regulates numerous 

physiological processes, such as bone density, the cardiovascular system, inflammation, 

and reproductive organ development and function [142].  

 ERβ is present in the ovaries of numerous species, including rodents, sheep, 

hamster, baboon, cow, pig and human [98], and total ERβ mRNA is more abundantly 

expressed than ERα mRNA in the rat ovary [143]. ERβ is predominantly expressed in the 

granulosa cells (GCs) of the ovary, while ERα is expressed in the ovarian theca cells [98]. 

An examination of immature and adult rat ovaries by in situ hybridization showed that 

ERβ is expressed in the GCs of small, growing and preovulatory follicles, with weak 

expression in a subset of corpora lutea (CL) [144]. Low levels of ERβ mRNA are 

detected as early as postnatal day (PND) 1 in the ovaries of mice [145] and PND 4 in the 

ovaries of rat [143], with levels increasing over time as the follicle grows. ERβ protein is 

detected in the primary follicles of mice on PND 4 [146]. It remains unclear whether ERβ 

is responsive to 17β-estradiol in these early follicles and influences the primordial to 

primary follicle transition; one study suggests it may be indirectly involved in the 

primordial to primary transition in rats by acting through various growth factors [146], 

whereas another shows 17β-estradiol has no effect in the ovaries of rats at this age or 

stage of follicle development [147]. Although it remains unclear at what precise stage 
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ERβ begins to influence folliculogenesis, it is well accepted that it has a critical role in 

the postnatal ovary, as it is required for optimal preovulatory follicle development, 

antrum formation, and ovulation [148, 149]. 

1.3.6 ERβ knockout mice 

Both ERs are expressed within the ovary and the absence of either receptor affects 

ovarian function. ERβ knockout mice (βERKO) are subfertile [150-152] or infertile 

[153], ovulate less frequently and have smaller litters than wildtype females. The βERKO 

mouse has no distinct differences in the size or morphology of the ovary, and contains 

follicles at all stages of development (primordial to antral). However, it has been noted 

that there are fewer large antral follicles and CL, as well as a higher frequency of atretic 

follicles in the βERKO ovary than in the wildtype ovary [150, 152]. The GCs of βERKO 

preovulatory follicles have an impaired response to FSH-induced differentiation, as 

evidenced by decreased aromatase activity and estradiol synthesis, as well as a 

diminished LH surge and reduced expression of the LH receptor [149, 154, 155]. The 

attenuated response to FSH also affects the ovarian response to gonadotropins, 

consequently reducing the rate of follicle rupture, cumulus-oocyte expansion as well as 

the expression of prostaglandin synthase (Ptgs) and the progesterone receptor, which are 

essential for follicle rupture [149, 154]. Therefore due to an impaired response to the LH 

surge, ovaries of superovulated βERKO mice have numerous unruptured, preovulatory 

follicles [150, 154]. Furthermore ERβ is required for the production of cyclic adenosine 

monophosphate (cAMP) in GCs of preovulatory follicles, and insufficient cAMP levels 

may explain the reduced levels of estradiol synthesis in βERKO females [156].   

 The ERα knockout (αERKO) females are infertile [157]. The adult ovaries 

contain hemorrhagic, cystic follicles and no indication of ovulation. Folliculogenesis in 

αERKO ovaries progresses normally until the antral stage, but arrests before reaching the 

preovulatory stage [158]. FSH receptor and LH receptor mRNA expression is increased 

in αERKO ovaries compared to wildtype ovaries, while ovarian androgen receptor and 

progesterone receptor mRNA as well as ERβ protein levels are similar to wildtype levels 

[158]. Based on the ovarian phenotypes of the αERKO and βERKO mice it is evident that 

the receptors have different roles in folliculogenesis. It has been hypothesized that the 
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proliferative action of estrogen is carried out by ERα, whereas the differentiating effects 

of estrogen are mediated predominantly by ERβ [159].  

 Interestingly, the ovarian phenotype of the αβERKO mouse is different from that 

of either αERKO or βERKO mice [152]. The αβERKO mice are infertile, and while 

superovulation of immature females leads to the growth of antral follicles, no 

preovulatory follicles or CL are observed. The antral follicles in αβERKO ovaries are 

much smaller than those of wildtype or single mutant females. Furthermore, αβERKO 

ovaries possess fewer GCs than wildtype ovaries, and consequently the ovarian wall is 

abnormally thin due to the decreased number of mural GCs. The ovaries also have 

tubule-like structures that resemble seminiferous tubules of the testis, which are likely 

transdifferentiated from GCs [152, 160].  

 The identification of ERβ and its detection in numerous tissues expanded our 

understanding of estrogen signaling, physiology and pathophysiology [159]. The ERs 

have nearly a ubiquitous tissue distribution therefore it is not surprising that estrogens are 

involved in a variety of mechanisms in physiology and pathology. It is clear that ERβ 

plays a crucial role in the ovary, and changes in its expression may have clinical 

consequences, such as in infertility or cancer [98, 159]. ERβ levels decrease during the 

progression of many cancer types and it has been described as a potential tumour 

suppressor in epithelial ovarian cancer [161, 162]. 

We have shown that the mRNA levels of several ECM genes are disrupted in the 

ovaries of βERKO mice compared to their wildtype controls (Section 2.2.6, Table S2-1) 

[163]. Two of these genes identified in a microarray study by Dr. Deroo are Col11a1 and 

Nid2, which I further investigated in this thesis (Chapter 2).  

1.4 Collagen 11A1 

1.4.1 Overview 

Collagen is one of the most important components of the ECM. The collagen 

superfamily consists of 28 different types encoded by more than 40 genes [164]. All 

collagens are trimeric molecules consisting of three polypeptide chains that form a triple 
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helix structure. There are three subgroups within this diverse superfamily: fibrillar 

collagens, non-fibril collagens and fibril-associated collagens. Fibrillar collagens, capable 

of forming highly ordered fibrils in the ECM, are the most abundant subgroup. Fibril-

associated collagens are targeted to the surface of collagen fibrils and help regulate 

fibrillar collagens. Non-fibril forming collagens are found in the basement membrane and 

do not form or associate with fibrils [165]. Collagen XI is a fibrillar collagen found in 

both cartilage and non-cartilaginous tissues [166, 167]. The mRNA levels of Col11a1, 

which encodes the collagen α1(XI) chain (COL11A1), is 1.7-fold higher in GCs of eCG-

treated ERβ-null mice, than in eCG-treated ERβ heterozygous mice [156].  COL11A1 

will be the focus of this section because the expression of COL11A1/Col11a1 in the 

ovary is examined in Chapter 2 of this thesis. 

1.4.2 Protein structure 

Collagen XI is a heterotrimeric protein consisting of three alpha chains: α1(XI), 

α2(XI) and α3(XI). The α1(XI) and α2(XI) chains are unique gene products, whereas the 

α3(XI) chain is an overglycosylated form of the collagen α1(II) chain [168]. The alpha 

chains are initially synthesized as procollagens, with their amino and carboxyl termini 

subject to proteolysis to produce mature trimers [169].  

The α1(XI) chain is encoded by the Col11a1 gene, which consists of 67 exons 

[170]. COL11A1 has a globular amino terminal domain (NTD) that consists of the 

amino-propeptide (Npp), the variable region (Vr) and a minor triple helix (mh) (Figure 1-

3A) [166, 171]. The structure of the α1(XI) chain is modulated by alternative splicing of 

the exons that make up the Vr domain (exons 6-8), which is both tissue-dependent and 

developmentally regulated [170, 172-174]. Due to the alternative splicing of the mRNA 

within this region, considerable structural diversity is generated, and at least eight 

different protein variants can be produced [170, 175, 176]. The Npp domain (exons 1-5) 

is common to all isoforms of the collagen α1(XI) chain irrespective of how the mRNA is 

spliced [169]. 

Proteolytic processing of procollagen 11A1 gradually removes the Npp [177]; 

however, the Vr region is maintained in the mature collagen XI and often localized to the 



 

 

24 

fibril surface [167, 178]. Preliminary data have suggested that the rate of proteolytic 

removal of the COL11A1 Npp is dictated by the splice forms in the Vr [169]. The 

presence of the Vr on the surface of the fibril indicates that the NTD will be exposed on 

the surface for an extended period of time after biosynthesis [167, 171]. This surface 

location of the NTD enables immunohistochemical analysis without requiring the 

disruption of fibril structure to access the major triple helix. Following secretion and 

proteolytic cleavage, the mature collagen molecules self-assemble into fibrils [179]. 

1.4.3 Binding partners and regulation 

Collagen XI is best characterized for its copolymerization with collagen II and 

collagen IX to form an extensive network of thin fibrils in cartilage [168, 171, 180]. 

Collagen XI is located in the interior of the fibril; however, its NTD is located on the 

surface of collagen fibrils (Figure 1-3A) and therefore can interact with other proteins 

[168, 181]. The NTD of COL11A1 associates with several ECM components including 

collagens type II, IX, XI, XII and XIV; the proteoglycans perlecan, fibromodulin, 

epiphycan, and biglycan; the thrombospondins 1 and 5 (cartilage oligomeric matrix 

protein); chondroadherin and the matrilins 1 and 3 [182].  

Surprisingly little is known about Col11a1 regulation. Two research groups have 

shown that Nuclear factor Y (NF-Y) regulates the proximal promoter activity of Col11a1 

in cartilage and non-cartilage cells [183, 184]. Lymphocyte enhancer-binding factor 1 

(Lef1), a transcription factor involved in the Wnt signaling pathway as well as 

mesenchymal/epithelial interactions during the development of several tissues [185], 

indirectly activates Col11a1 transcription and negatively regulates osteoblast maturation 

[186]. The expression of Col11a1 is also affected by TGF-β signaling [187]. Recently, 

Wu and colleagues showed that TGF-β1 treatment increases binding of NF-Y to the 

Col11a1 promoter, which increases Col11a1 expression [188]. 

1.4.4 Tissue distribution 

Cartilage fibrils exist in distinct populations of thick and thin fibrils, and collagen 

XI is a minor fibrillar collagen restricted to the thin fibril group [178]. Collagen XI is 

most abundantly expressed in cartilage, but also found in several non-cartilaginous 
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tissues, including brain, skeletal muscle, placenta, lung, heart valve, skin, and vitreous 

fluid [166, 167, 173, 189]. Col11a1 is detected in human fetal tissues [189], in the fetal 

mouse as early as embryonic day 11 [190], and in chick embryos on day 17 [168]. The 

α1(XI) transcripts are primarily found in cartilaginous tissues such as the chondrocranium 

and the developing limbs. They also accumulate in fetal non-cartilaginous sites, including 

odontoblasts, trabecular bones, the tongue, the atrioventricular valve of the heart, and the 

intestine [190]. Within the cartilage fibril the α1(Xl) chain forms a heterotrimer with 

α2(XI) and α1(II) [174]. In contrast, in non-cartilaginous tissues collagen α1(Xl) 

associates with chains of collagen V [174, 191].  

1.4.5 Collagen XI function 

Collagen XI is best characterized for its copolymerization with collagen II and 

collagen IX to form an extensive network of thin fibrils in cartilage [168, 171, 180]. The 

fibrils are composed of approximately 80% type II, 10% type IX and 10% type XI [192]. 

Although it makes up a relatively small amount of the total collagen in these fibrils, 

COL11A1 plays a critical role in cartilage assembly, organization and development 

[167]. 

It has been proposed that collagen XI regulates collagen II fibrillogenesis by steric 

hindrance, specifically through the COL11A1 NTD [193]. The major triple helical 

domains of collagen XI are sequestered within the collagen fibril, whereas the molecular 

dimensions of the NTD prevent it from being accommodated within the interior region; 

therefore, the Npp and Vr are localized on the fibril surface [167, 178]. Retention of the 

NTD at the surface of collagen II fibrils is postulated to restrict lateral growth by 

sterically hindering further addition of collagen II onto the fibril [167, 193], though the 

precise mechanism remains unclear.  

The critical role of collagen XI in fibrillogensis is evidenced by the phenotype of 

chondrodystrophic (cho) mice, which present with a spontaneous mutation in the 

Col11a1 gene that results in premature termination of the procollagen 11A1 (due to the 

introduction of a premature translation-termination codon), and therefore lack of a 

functional Col11a1 [180]. The absence of Col11a1 disrupts the columnar arrangement 
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Figure 1-3: Collagen 11A1 

A) Structure of the collagen 11a1 amino terminal domain (NTD). The NTD of the 

collagen XI chain contains an amino propeptide (Npp), a variable region (Vr) 

modulated by alternative splicing, and a minor collagen triple helix (mh). The Npp is 

coded by exons 1 through 5; the variable region is coded by exons 6 through 9.  

B) Schematic of a cartilage collagen thin fibril. Collagen II (green), IX (orange) and XI 

(blue) copolymerize to form thin collagen fibrils. Collagen XI is located in the core 

of the fibril, and its NTD extends from the interior onto the fibril surface.  
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and maturation of growth plate chondrocytes, leads to thicker fibrils, and reduces the 

cohesive strength of the fibril matrices. The homozygous cho mutation is perinatal lethal, 

and a disproportionate frequency of dwarfism, short snouts and cleft palate are observed. 

Mice heterozygous for the cho mutation have no obvious phenotype. [180] 

Mutations in the Col11a1 gene are also associated with numerous human 

diseases, including Stickler and Marshall syndromes, which are characterized by altered 

facial appearance, eye abnormalities, joint alterations, and hearing loss [194, 195]. 

Col11a1 mutations are also related to osteoarthritis [196], lumbar disc herniation [197], 

limbus vertebra [198], Achilles tendinopathy [199], and fibrochondrogenesis, a lethal 

form of dwarfism [200]. Furthermore, Col11a1/ COL11A1 is highly expressed in human 

invasive carcinomas of the ovary [188, 201], breast [202-204], stomach [205], pancreas 

[206], colon [207, 208], lung [209], head and neck [210], esophagus [211] and oral 

cavity/pharynx [212]. Changes in COL11a1 expression have been associated with 

carcinoma aggressiveness, progression and metastasis. Therefore, COL11A1 is not only 

an important stabilizing factor of cartilage fibrils, these studies suggest it plays a 

structural and organizational role in various tissues. 

1.5 Nidogen 2 

1.5.1 Overview  

The vertebrate nidogen family consists of two members, nidogen 1 and nidogen 2, 

which are distinct gene products of Nid1 and Nid2 respectively. They are both ubiquitous 

BM components that have similar structure and affinity for other ECM proteins [213-

215]. The predominant nidogen, nidogen 1, also known as entactin 1, is a 150 kDa 

protein originally isolated from the ECM of differentiating mouse embryonal carcinoma 

cells [216]. The second member of the nidogen family, nidogen 2, was initially cloned 

and isolated from human osteoblasts and named osteonidogen [83]. Once it was realized 

that this 200 kDa glycoprotein had a much broader expression pattern than osteoblasts 

alone, it was renamed to nidogen 2 or entactin 2 [83, 217]. Amino acid sequence 

similarity between nidogens 1 and 2 is species-dependent. For example, whereas mouse 

nidogens 1 and 2 are 27% similar, human nidogens 1 and 2 are 46% similar [218].  
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Nid2 expression is 3.9-fold higher in GCs of eCG-treated ERβ-null mice than in, 

eCG-treated ERβ heterozygous mice [156], and the expression of Nidogen 2/Nid2 in the 

ovary is examined in Chapter 2 of this thesis. The nidogens have very similar protein 

structure, binding partners and expression patterns; therefore both proteins will be 

described in this section. 

1.5.2 Protein structure 

The nidogens share a similar domain structure, with three globular domains (G1-

G3), separated by a link region between G1 and G2, and a rod region between G2 and G3 

(Figure 1-4). A structural comparison between mouse nidogen 1 and nidogen 2 domains 

revealed 24%, 31.2% and 38.4% homology (common ancestry and similar structure) 

between G1, G2 and G3 domains, respectively. The rod domains showed 33.7% 

homology and the link region was least conserved with only 8% homology [217].  

The N-terminal G1 globular domain is made up of a NIDO domain that resembles 

globular domains in the two ECM proteins α-tectorin and the transmembrane 

glycoprotein MUC4 [216]. G1 is often cleaved because its neighbouring link region is 

highly susceptible to proteolysis [219]. The G2 globular domain, which is important for 

perlecan and collagen IV interactions, contains EGF repeats as well as a G2F domain that 

is also found in fibulin-6 [216, 220]. The rod domain has four additional EGF-like 

repeats. There are consensus sequences for calcium binding within the second and fourth 

EGF-like repeats, followed by two thyroglobulin-like motifs (TY) in nidogen 2 and one 

TY motif in nidogen 1. Both mouse isoforms have an RGD motif within the rod domains, 

which acts as a site for potential integrin interaction. The RGD motif is present in the first 

EGF-like repeat in mouse nidogen 1, and the last EGF-like repeat in mouse nidogen 2, 

but absent in human nidogen 2. The G3 domain contains a low density lipoprotein (LDL) 

receptor-homology region, formed from six LY modules. Nidogen 1 has an additional 

EGF-like motif at the G3 C-terminal [216]. 
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Figure 1-4: Comparison of Nidogen 1 and Nidogen 2 domains 

Nidogens have three globular domains (G1-G3), a link region between G1 and G2, and a 

rod region between G2 and G3. The protein sequence homology between mouse Nidogen 

1 and 2 is shown as %. NIDO: Nidogen like domain, EGF: Epidermal growth factor like 

module, G2F: G2 nidogen and fibulin module, TY: thyroglobulin-like motifs, LY: low 

density lipoprotein receptor module.  

 

 

 



 

 

30 

1.5.3 Binding partners 

Both nidogen isoforms have been shown to interact with many binding partners, 

particularly the other BM components collagen IV, laminin, perlecan and fibulin [83, 

213, 214]. These interactions suggest that nidogens are essential for BM organization 

[216]. Nidogen 1 and 2 show similar binding affinity towards collagen IV and perlecan 

through the central G2 domain [83, 220]. In contrast, in vitro binding assays for human 

nidogen 2 demonstrate that its affinity for laminin-1 is 100- to 1000-fold lower than for 

nidogen 1 [83]. Furthermore, mouse nidogen 2 binds laminin-111 with approximately 20-

fold lower affinity than mouse nidogen 1 [214]. This differential affinity to laminin is 

unexpected since the interacting amino acids of the G3 domain are completely conserved 

in mammalian nidogens; therefore it has been speculated that the differences may be due 

to unconserved residues further from the interacting surfaces [83, 216]. Unlike nidogen 1, 

nidogen 2 is unable to bind fibulin -1 and -2 [83]. Interestingly nidogen 2, but not 

nidogen 1, binds strongly to endostatin, tropoelastin and the carboxyl-terminal domain of 

collagen XVIII [216].  

The pericellular location of nidogens in the BM has prompted a search for 

specific cell receptors; however, limited information is available regarding nidogen 2-cell 

interactions. Salmivirta and colleagues showed that several human and rodent cell lines 

bind to recombinant nidogen 2 more efficiently than recombinant nidogen 1, and that 

nidogen 2-mediated binding primarily occurs through α3β1 integrin (also a receptor for 

nidogen 1) with a minor role for α6β1 integrin [214]. 

1.5.4 Tissue distribution 

Both nidogen isoforms are found in all BMs of adult tissues, though they show 

variation in expression levels, and in particular nidogen 2 shows more restricted 

expression patterns throughout development and some tissue specificity in mature 

basement membranes than nidogen 1 [83, 214, 217, 221-223]. Nidogen 1 predominates in 

the adult mouse, as there is only a 3-18% molar equivalent of nidogen 2 protein [214]; 

however, the levels of the two nidogen proteins are more comparable in human tissues 

[83]. 



 

 

31 

Nidogens are involved in mouse [221] and human [224] organogenesis. During 

human embryonic development both nidogen isoforms are ubiquitously expressed in BM 

zones underneath developing epithelia of most major organ systems as early as 

gestational week 6.5 [224]. Only nidogen 1, but not nidogen 2, is detected in the 

developing intestine and pancreas. Of note, gonadogenesis was not investigated in this 

screen [224].  

 Nidogen 2 is expressed in many adult mouse tissues, as demonstrated by Northern 

blots [83, 217] and immunofluorescence analyses [83]. Nidogen 2 is particularly enriched 

in blood vessels [83]. It is also strongly expressed in heart, lung, kidney, skeletal muscle, 

testis, placenta, and liver, with lower levels in the brain and spleen [83, 217]. Unlike 

nidogen 1, nidogen 2 is also expressed in non-BM matrices such as cartilage and the 

elastic tissues surrounding larger vessels [83, 214]. Double immunofluoresence 

microscopy demonstrated nidogen -1 and -2 colocalization in kidney, skin, and testis 

[83]. In the peripheral nervous system both nidogens are found in the BM of myelinated 

axons while nidogen 2 alone is found in the ECM surrounding unmyelinated axons [216]. 

Conversely, nidogen 2 is not expressed in certain BMs of the developing gastrointestinal 

tract, specifically the glands in the pancreas and in the small intestine [224]. 

1.5.5 Nidogen functions 

Numerous in vivo and in vitro studies have examined the biological significance 

of nidogens. Both isoforms are primarily known for their role in maintaining the 

assembly and structural integrity of the BM, serving as the critical link between the 

collagen IV and laminin network during embryonic development and in adult tissues 

[214, 216, 218, 221, 225, 226]. Nid1/Nid2 double-knockout mice die perinatally with 

abnormalities in heart, lung and limb development, directly related to BM defects [225, 

227]. However, certain tissues, such as kidney [225] and skin [228], form in the absence 

of nidogens with ultrastructurally normal BMs, demonstrating that the requirements for 

nidogens are tissue specific. Interestingly single knockout mice have shown that absence 

of nidogen 1 or nidogen 2 alone does not affect BM formation or overall organ 

development [222, 223]. Mice lacking either nidogen 1 or 2 are generally, healthy, fertile, 

and have a normal life span. Nidogen 2 knockout mice do not have a known phenotype, 
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and no obvious change in the expression pattern of nidogen 1 or other BM components is 

observed [223]. In nidogen 1-null mice, nidogen 2 expression is redistributed; its level is 

higher in skeletal and cardiac tissues than in wildtype mice, suggesting that nidogen 2 can 

generally compensate for the loss of nidogen 1 in BM assembly [222]. Nidogen 1-null 

mice show specific neurological phenotypes [229, 230] and wound-healing defects [231] 

not observed in nidogen 2-null animals, indicating only partial redundancy and isoform 

specific function of the two proteins.   

 Based on the subtle phenotype of the nidogen 1 knockout mouse and lack of 

phenotype of the nidogen 2 knockout mouse it is not surprising that the majority of work 

in the literature has focused on the functional role and signaling events related to nidogen 

1. For example, nidogen 1 has been shown to rescue mammary epithelial cells from 

apoptosis [232], and regulate laminin-dependent gene expression and differentiation in 

the mammary gland [233]. It accelerates epidermal wound healing [231], may regulate 

conformational changes to laminin [234] and regulates the formation and/or maintenance 

of neuromuscular junctions in C. elegans [235]. Some of these effects are likely mediated 

by signalling through integrin α3β1 or αvβ3, to which nidogen 1 has been shown to bind 

[236, 237].  

 Few roles for nidogen 2 have been established. It has been shown that 

recombinant human nidogen 2 promotes cell adhesion and spreading of multiple cell lines 

more strongly than nidogen 1 [83]. After corneal injury stromal keratocytes upregulate 

nidogen 2 protein, which contributes to the regeneration of epithelial BM [238]. Several 

studies have implied that nidogen 2 may play a role in reducing tumour metastasis. For 

instance, the loss of nidogen 2, but not nidogen 1, significantly promotes lung metastasis 

of melanoma cells [239]. The loss of nidogen 2 expression may also have a pathogenic 

role in colon and stomach tumourigenesis [240]. It has been proposed that the absence of 

nidogen 2 likely causes subtle changes in the BM, weakening its strength and 

accelerating the passage of tumour cells across the BM, ultimately leading to a higher 

rate of metastasis and larger tumours [239, 240]. Conversely, elevated serum nidogen 2 

levels are detected in ovarian cancer patients [241], however, the role of nidogen 2 in 

ovarian cancer is not known. 
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1.6 Transcription Factor 21 

1.6.1 Discovery 

Transcription Factor 21 (TCF21), encoded by Tcf21, was initially cloned in 1998 

by four independent laboratories and shown to be expressed in the embryonic 

mesenchymal cells of developing organs, including the heart, lung, kidney, spleen and 

gonads [242-245]. At this time TCF21 was known by three different names based on the 

tissues in which each group originally identified it: “entactin” for its expression in the 

epicardium [245], “podocyte-1” (POD-1) for its presence in the podocytes of the 

developing kidney [244] and the term “capsulin” was derived from its expression pattern 

in the mesenchyme that “encapsulates” the developing organs [242, 243]. POD-

1/Capsulin/Entactin has become most commonly referred to as TCF21 because of its 

predicted molecular weight of 21 kDa. TCF21 is member of the basic helix-loop-helix 

(bHLH) transcription factor family (Section 1.6.2) and as such is critical for the cellular 

differentiation and tissue development for a number of organ systems (Section 1.6.3). 

1.6.2 Protein structure 

Basic helix-loop-helix (bHLH) transcription factors are named for their functional 

domains. The helix-loop-helix (HLH) domain, composed of two amphipathic alpha 

helices separated by a loop region of variable length, is necessary for the formation of 

homo- and heterodimers between these proteins [242, 246, 247]. Immediately upstream 

of the HLH domain is a basic region, which mediates sequence-specific DNA binding. 

Once bHLH proteins dimerize the basic regions form a bipartite DNA-binding domain 

that recognizes a consensus CANNTG sequence known as the E-box. bHLH proteins 

must dimerize to exert their effects. Class I proteins are ubiquitously expressed and 

capable of binding to DNA on their own as homodimers, whereas Class II bHLH proteins 

have a more tissue-specific pattern of expression and require heterodimerization with a 

Class I factor to bind at the conserved E-box sequence of the target gene [246]. 

TCF21 contains an evolutionarily conserved 50 amino acid bHLH domain (Figure 

1-5) and belongs to the Class II bHLH proteins [242-245]. It consists of 179 amino acids, 

and human and mouse TCF21 sequences are 95% identical – 92% within the amino-
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terminal domain, 100% within the bHLH domain and 96% within the carboxyl-terminal 

domain [244]. A phylogenetic analysis and classification of the bHLH gene family has 

recently developed a unified nomenclature resulting in Tcf21 being renamed as bHLHa23 

[247]. This analysis also found that the Tcf21 gene is highly conserved between species. 

Interestingly, it was recently shown that TCF21 is phosphorylated at three sites within the 

N-terminal region on residues that are evolutionarily conserved across species, 

suggesting these post-translational modifications may play a functional role [248]. 

1.6.3 TCF21 functions during embryogenesis 

Members of the bHLH family play important roles in cell fate specification, 

differentiation, and morphogenesis of several tissues during development [249-253]. Cell 

type-specific bHLH transcription factors, a group to which TCF21 belongs, are key 

regulators of organ development. TCF21 is a nuclear protein [254] expressed in 

mesenchymal cells at sites of epithelial-mesenchymal interactions in the developing 

urogenital, gastrointestinal, respiratory, and cardiovascular systems [242-245]. 

Furthermore, it promotes mesenchymal-to-epithelial (MET) transition of cells during 

organogenesis [252].  

Tcf21 is first detectable in the mouse on embryonic day 8 (E8) in small clusters of 

cells in the branchial region [245], and has been detected in the gonads at E9.5 by in situ 

hybridization [253]. Throughout the mouse lifespan, it is expressed at the highest levels 

during embryogenesis, and its expression rapidly decreases in most postnatal tissues, with 

the exception of kidney, lung, heart and ovary [242, 245, 253, 255].  

Phenotypic analysis of TCF21-knockout mice (Tcf21-/-) demonstrates that it plays 

an important role in the formation of the spleen [256], kidney and lung [252], facial 

skeletal muscle development [257], and is critical for sexual differentiation [258]. Mice 

lacking TCF21 die in the perinatal period, and show male-to-female sex reversal [258]. 

Although TCF21 has a mesenchymal cell-specific pattern of expression during 

development, its loss results in major phenotypic defects in the adjacent epithelia. 
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Figure 1-5: TCF21 

Schematic representation of human TCF21. The amino acid sequence is numbered. 

bHLH: basic helix-loop-helix domain 
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1.6.3.1 Heart development  

TCF21 is primarily studied for its role in heart development and function, and is 

often used for the identification of proepicardial and epicardial cells [242, 259-262]. 

During development, TCF21 is highly expressed in epicardial progenitor cells and recent 

studies have demonstrated that TCF21 determines whether a precursor cell is fated to 

become a differentiated coronary smooth muscle cell (SMC) or a cell of the cardiac 

fibroblast lineages [259, 260]. Specifically, TCF21 is downregulated in cells that will 

become SMC while its expression is required for cardiac fibroblast development, as 

fibroblasts fail to develop in mice lacking TCF21. Interestingly, TCF21-null epicardial 

cells are unable to undergo epithelial-to-mesenchymal transition (EMT) suggesting 

TCF21 is also required for epicardial EMT [259].  

1.6.3.2 Kidney development  

Following its original discovery in podocytes, TCF21 continues to be studied in 

the kidney because it is one of only six transcription factors that are well characterized 

regulators of podocyte specification [263]. Unlike the heart, in the kidney TCF21 is not 

required for cell fate decisions of the mesenchyme or podocyte lineages [252]. However, 

it is clearly essential for kidney development as loss of TCF21 results in severely 

hypoplastic kidneys, decreased tubulogenesis and glomerulogenesis, as well as a failure 

of cells to undergo MET [252, 255, 264, 265].   

1.6.3.3 Gonadal development  

Several laboratories have shown that TCF21 is essential for normal development 

of the ovaries and testes [253, 258, 266, 267]. TCF21 is one of the earliest genes 

expressed in the mesodermal cells that later become the gonads [253]. It is the first Class 

II bHLH transcription factor with a sex and stage-dependent pattern of expression during 

gonadogenesis, with much higher expression in embryonic testes than the ovaries [253, 

258]. Initially at E11.5 the levels of Tcf21 expression are the same between the gonads of 

male and female mice; however at E13.5 the expression becomes stronger in the male 

gonad compared to the female [253]. Interestingly, a time course of Tcf21 expression in 

the gonads from E13.5 to postnatal stages demonstrates that the testis and ovary have 
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opposite patterns of expression. Tcf21 expression remains higher in the testis during 

embryonic development and slowly decreases over time at postnatal stages. Conversely, 

expression in the ovary remains relatively low during gonadogenesis but increases 

markedly after birth and becomes higher than in the testis by PND 21 [253]. Throughout 

testis development TCF21 is detected in the nucleus of somatic cells adjacent to germ 

cells (E13.5), Sertoli cells (E13) and Leydig cells (E16), but is absent in germ cells [266].  

The gonads of TCF21-null mice are markedly hypoplastic, slightly shortened in 

length and have an irregular surface [258]. Although XX and XY Tcf21-/- mice are born 

in the expected 50:50 ratio the external genitalia are feminized in XY Tcf21-/- pups. The 

testes of XY mice begin to resemble ovaries at E12.5 and the urogenital tracts of XX and 

XY mice are indistinguishable for the latter part of gonadal development. Aspects of 

normal ovarian development are initiated by somatic and germ cells in XX Tcf21-/- mice, 

but are disrupted by E18.5 because no meiotic cells are observed at this stage. Although 

the ovaries of Tcf21-/- mice are similar in size to wildtype ovaries, their shape and 

location relative to the kidney are more variable. The ovaries of TCF21-null mice also 

lack a distinct mesenchymal zone [258]. Interestingly, when TCF21 is over-expressed in 

an embryonic E13 ovary culture system it promotes in vitro sex reversal and induces the 

expression of anti-Müllerian hormone (AMH), which is normally expressed by Sertoli 

cells in the embryonic testis but not expressed by the embryonic ovary [258]. These data 

suggest that TCF21 is involved in male sex determination and testis differentiation.   

Both TCF21-null ovaries and testis express higher levels of steroidogenic factor 1 

(SF1/ Ad4BP) and the cholesterol side chain cleavage enzyme (P450SCC) than wildtype 

mice [253, 258]. SF1 is an orphan nuclear receptor that regulates multiple genes involved 

in gonadal development and sexual differentiation, as well as steroidogenesis in adult 

mice [258]. It is proposed to be an essential regulator of P450SCC, an early marker for 

Leydig cell differentiation and a mitochondrial enzyme responsible for the initial reaction 

in the steroidogenic pathway [268]. Although P450SCC is required for the synthesis of 

steroid hormones in the postnatal ovary, it is not normally expressed during ovarian 

development; however, its expression is higher in fetal TCF21-null ovaries than in 

wildtype ovaries [258]. SF1 is localized to many of the same cell types as TCF21 within 
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the developing gonads, and has an interesting pattern of expression comparable to that of 

TCF21, namely that SF1 levels are similar in male and female gonads at E11.5, higher in 

the male gonad than the female gonads at E13.5, then higher in the ovary than the testis 

after birth [269].  

Interestingly, initial reports of how TCF21 regulates SF1 activity indicated that 

TCF21 represses SF1 expression in an indirect manner because TCF21 is unable to bind 

to the E-box located within the SF1 promoter [258]. Since TCF21 was unable to bind 

directly to the SF1 promoter it was suggested that instead, TCF21 interacts with USF1, a 

known activator of SF1 [270], thereby preventing USF1 promoter binding and activation 

of SF1 expression [258]. Of note, the group also failed to show by co-

immunoprecipitation that TCF21 directly interacts with USF1. More recently, however, 

TCF21 was successfully shown to bind to the SF1 E-box sequence and inhibit its 

expression [271]. The discrepancy in results is likely due to the different approaches used 

by each laboratory to analyze protein-DNA interactions; Franco et al. used chromatin 

immunoprecipitation (ChIP) assays, an in vivo method, whereas the earlier study by Cui 

et al. utilized electrophoretic mobility shift assay (EMSA), an in vitro method of 

analyzing protein-DNA interactions.  

Lastly, TCF21 is a direct downstream target of the male sex-determining factor 

SRY, further supporting the essential role of TCF21 in sex determination [266]. SRY 

binds to the TCF21 promoter and initiates a cascade of transcriptional events related to 

Sertoli cell differentiation and testis development. Mutation of the SRY response 

elements within the TCF21 promoter disrupts the actions of SRY in fetal rat testis 

development.  

Collectively, these data demonstrate that TCF21 is critically involved in gonadal 

development and part of a transcriptional network that coordinates cell fate decisions in 

gonadal progenitor cells.  

1.6.3.4 Spleen, lung and skeletal muscle development  

TCF21 regulates differentiation and cell fate decisions during the development of 

spleen, lung and skeletal muscles; however, its role in these tissues has not been 
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investigated as extensively as the organ systems discussed above. Briefly, in the absence 

of TCF21, splenic precursors undergo apoptotic cell death and TCF21-null mice fail to 

form a spleen, demonstrating that TCF21 controls a critical early step in spleen 

development [256]. The lungs of TCF21-null mice are severely hypoplastic and lack 

alveoli [252]. Furthermore, the expression of TCF21 in the mesenchyme is required for 

the appropriate expression of bone morphogenetic protein-4 (BMP-4) in the adjacent 

epithelium, otherwise the airway epithelium does not differentiate [252]. Lastly, TCF21 

is closely related to the bHLH transcription factor MyoR, which acts as a transcriptional 

repressor and blocks myoblast differentiation [254]. TCF21-null mice do not have a 

musculature phenotype; however, specific facial muscles are absent in mice lacking both 

TCF21 and MyoR, demonstrating TCF21 is a negative regulator of myoblast 

differentiation [254, 257]. 

1.6.4 TCF21 functions in postnatal tissues 

In addition to its essential role in embryonic development, TCF21 has recently 

been identified as a tumour suppressor, and deregulated in several types of cancer. 

TCF21 was first shown to function as a tumour suppressor in head and neck squamous 

cell carcinomas and non-small cell lung cancer in 2006 [272]. Since then, the loss or 

reduced expression of TCF21 has been found in many types of human cancers, including 

kidney [273, 274], lung [275-277], melanoma [278], urological [279], colon [280], 

gastric [281] and breast [282]. Decreased expression of TCF21 is often due to promoter 

hypermethylation and has been correlated with larger tumour size and decreased survival 

in patients [282]. It has also been suggested that histone modifications may be involved 

in TCF21 silencing [278], which requires further investigation.  

Multiple studies have shown that restoration of TCF21 in cancer cells results in a 

reduction of tumour properties in vitro. For example, overexpression of TCF21 inhibits 

cell proliferation, induces apoptosis and suppresses migration and invasion in colorectal 

cancer [280], decreases cancer cell growth and colony formation in lung cancer [272], 

reduces motility of melanoma cells [278] and inhibits cell proliferation and epithelial-to-

mesenchymal transition (EMT) in breast cancer [282]. As mentioned earlier, an important 

function of TCF21 in normal tissues is to promote mesenchymal-to-epithelial transition 
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(MET) during organogenesis [252]. The reversal of this process, EMT, is vital for tumour 

dissemination and progression [283]. Therefore, it is significant that the overexpression 

of TCF21 in cancer cells results in reduced expression of mesenchymal markers (SNAI1 

and VIM) and increased expression of an epithelial factor (CDH1), as it suggests that 

TCF21 induces differentiation, likely through MET, in vitro [272, 282]. These studies 

suggest that TCF21 may act as a potential therapeutic target in certain cancers and its 

hypermethylation suggests is could be a useful methylation marker in various tumour 

types.  

In addition to its role as a tumour suppressor, TCF21 is a coronary artery disease 

(CAD)-associated transcription factor. Briefly, it is suggested that following vascular 

injury, which is believed to be critical for vascular disease, TCF21 regulates the 

differentiation state of SMC precursor cells in the adult by a similar mechanism to the 

regulation of the developing epicardium [261]; i.e. TCF21 determines whether epicardial 

progenitor cells will give rise to SMCs or cardiac fibroblasts [260]. The SMC precursors 

in which TCF21 is expressed migrate into vascular lesions, and contribute to the 

stabilization of these lesions and prevent heart attacks [261]. It has also recently been 

found that a SNP of Tcf21 is a susceptible locus for hypertension, a major risk factor for 

CAD [284].   

Therefore, although TCF21 was identified for its role in embryonic development, 

it is apparent that it continues to play critical, yet largely undetermined, roles in postnatal 

tissues. 

1.6.5 TCF21 as a transcriptional regulator 

The molecular mechanisms by which Tcf21 acts to regulate transcription remain 

poorly understood in most systems. As mentioned previously, bHLH proteins must 

dimerize to exert their effects, and heterodimerization between Class I and Class II bHLH 

proteins is preferred. TCF21 heterodimerizes with four bHLH proteins, namely TCF3 

(E12/E47) [243, 278], TCF4 (E2-2) [278], TCF12 (HEB) [242, 243, 266, 278] and ITF-2 

[285]. Of note, TCF21 is unable to homodimerize [285]. TCF21 has also been shown to 

associate with HDAC-1 and AR (androgen receptor) in Sertoli cells [286], as well as 
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HDAC-2, Ctbp2 (C-terminal-binding protein 2) and Pbx1 (pre-B-cell leukemia 

transcription factor 1) in proepicardial cells [248].  

 Transcriptional assays and electrophoretic mobility shift assays in a number of in 

vitro systems have demonstrated that TCF21 has both activating and repressing 

transcriptional activity. It exhibits repressive activities in HepG2 cells from its C-terminal 

and N-terminal domains; constructs that include either of these domains retain repressive 

activity, while the bHLH domain alone had no activity. Conversely, transactivation 

activities in HT1080 and HeLa cells were only observed when TCF21 constructs retained 

the C-terminal domain. It is suggested that this dual function of the C-terminal domain 

may be cell-type dependent, and result from the presence of specific coactivators and 

corepressors [285]. Importantly, there are a limited number of direct transcriptional 

targets of TCF21 that have been reported and confirmed by functional assays. These 

include MCK (muscle creatine kinase) [243, 254], Kiss1 (Kisspeptin-1) [278], AR [286], 

p21 (cyclin-dependent kinase inhibitor) [254], Sf-1 [253, 258, 287], SHP (Small 

Heterodimer Partner) [288] and Scx (Scleraxis) [267]. Bhandari et al recently identified 

121 direct downstream binding targets of TCF21 using a modified ChIP-ChIP 

comparative hybridization analysis [267]. All targets contained an E-Box sequence, and 

10 of the 121 targets were bHLH genes. To date, only one newly identified TCF21 target 

– Scx (bHLHa41), previously localized to Sertoli cells and shown to promote Sertoli cell 

differentiation in rats [267] – has been investigated in subsequent functional assays. The 

authors show that TCF21-induced SCX is required for the latter part of Sertoli cell 

differentiation associated with pubertal development.  

TCF21 is the first bHLH protein suggested to act as a general repressor of nuclear 

receptors [286]. It was first identified as a repressor of the orphan nuclear receptor SF1 

[253], and suppresses the promoter activity and transactivation of the AR, a nuclear 

receptor important in male sexual differentiation and testicular function [286]. Hong and 

colleagues propose that TCF21 acts as a repressor of several nuclear receptors, including 

Estrogen Receptor β, glucocorticoid receptor and retinoic acid receptor alpha [286]; 

however, this has not been tested by subsequent studies and warrants further 

investigation. 
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1.7 Spondin 1 

1.7.1 Discovery  

Spondin 1 (SPON1), encoded by Spon1, was originally identified in 1992 as a 

secreted ECM glycoprotein highly expressed it the floorplate of the developing rat [289]. 

It was originally named F-Spondin for its location in the floorplate of the neural tube (F) 

and its thrombospondin repeats (spondin), and is also known as vascular smooth muscle 

cell growth promoting factor (VSGP) [290]. Spondin 1 is a member of the neuronal 

subgroup of the diverse thrombospondin type 1 (TSR) repeats superfamily. The tissue 

expression pattern of Spon1 is highly conserved in vertebrates [291].   

1.7.2 Protein structure 

Spondin 1 is a molecule of 807 amino acids with a predicted molecular mass of 

87 kDa [289, 291]. The protein is subdivided into three domains (Figure 1-6). The first 

half of the N-terminal region (amino acids 1-200) is homologous with a domain in 

Reelin, and is aptly named the “reelin domain”, while the similar domain in Reelin is 

referred to as the “F-Spondin domain” [292]. The second half of the N-terminal region 

(amino acids 201-440) is named the “spondin domain”, and shares similarity with a 

domain in Spondin 2 (also known as Mindin), another member of the neuronal class of 

TSR proteins [291, 293, 294]. The C-terminal region (amino acids 441-807) contains six 

thrombospondin type 1 repeats (TSR).  

Analysis of the crystal structure of the reelin domain revealed potential heparin-

binding sites and weak dimerization between two reelin domains, which may be a 

location for glycosaminoglycan (GAG) binding [295]. The exact function of the GAG-

binding site remains unclear; however, it may be used to for anchoring Spondin 1 to the 

ECM in such a way that the spondin domain and C-terminus are available for interactions 

with other proteins or cells [295]. The spondin domain is not well studied; however, it 

has been to shown to promote outgrowth of sensory neurons and may be involved in 

axonal regeneration following nerve injury [296]. TSRs are found in several protein 

families, and are involved in various functions including cell adhesion, GAG binding, 

inhibition of angiogenesis and activation of TGFβ [297, 298]. Most of the post-
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translational modifications in Spondin 1 are found within the TSR repeats, as eight of ten 

tryptophan residues are C-mannosylated, while several serine and threonine residues are 

potential sites of O-fucosylation [299]. There are three N-glycosylation sites within the 

spondin and C-terminal domains [289]. Each TSR in Spondin 1 contains a WxxW 

sequence, which is known to bind TGFβ. The sixth TSR also has a KRFK motif, required 

for the activation of latent TGFβ [297].  

 Spondin 1 contains three proteolytic cleavage sites. The first was identified 

between the spondin and TSR domains [296]. Western blot analysis of conditioned 

medium from HEK293 (human embryonic kidney) and primary rat Schwann cells 

revealed SPON1 was cleaved into two half proteins - a 60 kDa amino-half with the reelin 

and spondin domains, and a 40 kDa half that contains the TSRs [296, 300]. Spondin 1 

also has two plasmin-mediated cleavage sites, one between TSR-4 and TSR-5, and the 

second between TSR-5 and TSR-6. The fifth and sixth TSRs are bound to the ECM, 

whereas TSRs 1- 4 are not. By cleaving the first four non-adhesive TSRs from the fifth 

and sixth adhesive TSRs, plasmin generates a secreted protein [301].  

1.7.3 Proteins with similar structure 

In addition to the unique domains Spondin 1 shares with Spondin 2 and Reelin, it 

also shares the TSR domain with members of the diverse TSR superfamily, which 

contains numerous ECM and transmembrane proteins [302]. A few proteins that share 

domains with Spondin 1 are briefly described below. 

Thrombospondin (TSP) -1 and -2: TSP-1 and TSP-2 are matricellular ECM proteins. As 

matricellular proteins they exist within the ECM but do not have a role in structural 

integrity [85]. Instead, TSP-1 and TSP-2 are involved in supporting cell attachment, cell 

motility and inhibiting angiogenesis [297]. Of note, TSP-1 and TSP-2 are both expressed 

in the early CLs of the rat ovary, with TSP-1 also expressed in the GCs of antral follicles 

[68].  

Spondin 2: Spondin 1 and 2 are evolutionarily conserved, matrix-attached adhesion 

proteins involved in neural development [291]. They are the only proteins to contain the 
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spondin domain. Furthermore, Spondin 2 is the only protein to share two domains with 

Spondin 1 – the spondin domain and a TSR. Spondin 2 is involved in the regulation of 

axonal development and promotes the outgrowth and adhesion of embryonic 

hippocampal neurons [293]. It is also involved in the immune response and cardiac 

functions, and has been shown to bind integrins and block Akt signaling [303].  

R-Spondin: The four R-Spondins (R-spondin 1-4) are relatively recent additions to the 

TSR family, with R-Spondin 1 being identified in 2004 and R-Spondins 2-4 discovered 

over the next four years [304]. The gene encoding R-spondin 1 (Rspo1) was first 

identified in the boundary region between the roof plate and neuroepithelium in the 

developing mouse, and thus was named R(oof plate specific)-spondin [305]. The four R-

Spondins are small secreted proteins, with a single TSR near the C-terminus, and are all 

agonists of the canonical Wnt/β-catenin signaling pathway during embryogenesis [304]. 

R-Spondin 1 and -2 are both involved in ovarian development. Studies have 

demonstrated that mice lacking R-Spondin 1 display a partial sex reversal phenotype 

[306], and R-Spondin 2 is detected from the primary to antral stage in the oocyte and 

promotes follicle growth [307]. Currently, R-Spondin 3 and 4 have no known role in the 

ovary.  

Reelin: The reelin domain is only shared by Reelin, Spondin 1 and ferric-chelate 

reductase 1 (FRRS1). Reelin is a large secreted glycoprotein involved in neural 

development. Its name is derived from the Reelin-deficient mouse that has a “reeling” 

gait (impaired motor coordination, tremors and ataxia) [292]. In humans, loss of Reelin 

expression has been linked to several neurological disorders [308]. Reelin expression has 

recently been detected in the TCs of dominant bovine ovarian follicles [309], and shown 

to promote proliferation of chicken GCs in culture [310]. 

1.7.4 Spondin 1 functions and mechanisms of action in the central 
nervous system 

Following its discovery by Klar and colleagues in the floorplate of the embryonic 

rat [289], Spondin 1 has primarily been studied for its role as a neurological ECM  
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Figure 1-6: Domain diagram of Spondin 1 and similar proteins 

Schematic representations of Spondin 1 and proteins with similar domains, 

thrombospondin 1 (Tsp-1), Spondin-2, R-spondin, Reelin. Reeler domain (blue), Spondin 

domain (green), TSR domain (orange) and other domains are shown in grey. 
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glycoprotein. In that first publication, Klar et al. demonstrated that Spondin 1 regulates 

cell adhesion and neurite outgrowth. Dorsal root ganglia cells plated on recombinant 

Spondin 1 grew to a greater length and were more adherent than those plated on the 

control bovine serum albumin (BSA) [289]. Since then, Spondin 1 has also been shown 

to promote adhesion and outgrowth of embryonic hippocampal neurons [293], and its 

expression is upregulated during axonal outgrowth following nerve injury [296]. Spondin 

1-mediated cell adhesion is inhibited following treatment with heparin [289] and 

chondroitin sulfate [293], suggesting that binding by Spondin 1 is affected by 

proteoglycans. Further studies have demonstrated that Spondin 1 has a dual role in the 

accurate patterning of axons at the floorplate, because it acts as a chemoattractant that 

promotes the outgrowth of commissural axons [300] and as a contact-repellent molecule 

to inhibit outgrowth of motor neurons [311]. Spondin 1 also acts as an inhibitory signal 

for segmentation in somites in chicken embryos, patterning the migration of neural crest 

cells [312].  

Neural outgrowth is mediated by the immobilization of the TSR 1-4 fragment of 

the secreted Spondin 1 protein by lipoprotein receptor–related protein (LRP) receptors 

expressed in the floorplate, including ApoER2 (apolipoprotein E receptor 2), also known 

as LRP8 (low-density lipoprotein receptor- related protein 8) [313]. Spondin 1 also 

interacts with the ApoER2 ligand, APP (β-amyloid precursor protein) via its reelin 

domain [314]. Spondin 1 affects APP processing, increases its expression at the cell 

surface, and appears to form an extracellular bridge between ApoER2 and APP [315]. 

Considering APP is a key protein in the pathogenesis of Alzheimer’s disease, Spondin 1 

is an intriguing target for Alzheimer’s therapeutics [315].  

 In addition to affecting nerve growth and adhesion, Spondin 1 promotes nerve cell 

differentiation and viability. Treatment with Spondin 1 promotes the differentiation of a 

rat adult hippocampal precursor cell line, AHP, from neural precursor cells into cells with 

the biochemical and morphological features of nerve cells [316]. Furthermore, Spondin 1 

increases the viability of chicken ciliary ganglion (CG) cells in culture by activating 

TGF-β signaling via its KRFK motif in TSR-6 [317]. Interestingly, Spondin 1 deletion 

mutants that contain the TSRs but lack the reelin and spondin domains were unable to 
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increase CG cell survival, suggesting that the N-terminal domains are required for 

complete TGF-β signaling and survival of CG cells [317]. This increased cell survival 

was also due to Spondin 1 binding to APP and inducing rapid phosphorylation of 

disabled-1 (DAB-1) [317]. Reelin has previously been shown to increase the 

phosphorylation of DAB-1, through APP receptor binding [308], further supporting the 

idea that the reelin domain is involved in promoting neuron cell survival. 

1.7.5 Spondin 1 function and mechanism of action in non-neural 
tissues 

The function of Spondin 1 is not restricted to the nervous system. Northern blot 

analysis revealed that Spon1 is expressed in numerous tissues, including the ovary, 

kidney, bone and small intestine [290], where several functions for SPON1 have been 

identified.  

Spondin 1 promotes cell-ECM adhesion in both neural and non-neural tissues of 

C. elegans [318]. It is localized to BMs and integrin-containing regions within body 

muscles of C. elegans embryos. Spondin 1 is responsible for maintaining strong 

attachments between muscles and epidermis, and muscles in Spon1 mutants gradually 

detach from the epidermis [318].  

Spondin 1 that was isolated and purified from bovine follicular fluid promoted 

growth of primary rat aortic vascular smooth muscle cells [290]. Alternatively Spondin 1 

inhibits vascular endothelial growth factor (VEGF)-stimulated migration and tube 

formation of HUVECs (human umbilical vein endothelial cells) as well as angiogenesis 

in the rat cornea [319]. In this model system, Spondin 1 inhibits migration by blocking 

integrin ανβ3-mediated adhesion of HUVECs to vitronectin as well as VEGF-induced 

activation of Akt [319] 

Spondin 1 has also been shown to increase cell survival of mouse Neuro-2a 

neuroblastoma cells [320]. Loss of viability following knockdown of Spondin 1 was 

attributed to the lower levels of IL-6, and correlated with decreases of NF-κB and p38 

mitogen-activated protein kinase (MAPK). Treatment with Spondin 1 or IL-6 rescued the 

cells from death [320]. Furthermore, Spondin 1 expression is higher in osteosarcoma 
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specimens compared to benign osteochondroma samples. It promotes the migration and 

invasion of metastatic and non-metastatic osteosarcoma cell lines through Fak and Src 

dependent pathways [321].  

Spondin 1 is upregulated in osteoarthritis articular chondrocytes where it is likely 

involved in the activation of latent TGF-β1. TGF-β1 activation leads to increased 

expression of prostaglandin E2 (PGE2) and matrix metalloproteinase 13 (MMP-13), 

which reduces proteoglycan synthesis and increases collagen degradation [322]. Spondin 

1 is also highly expressed in embryonic cartilage, where it enhances chondrocyte terminal 

differentiation and mineralization by activating TGF-β1, which increases MMP-13 and 

alkaline phosphatase (AP) expression [323]. It promotes the differentiation of a human 

cementoblast-like cell line (HCEM) via bone morphogenic protein 7 (BMP7) [324]. 

Alternatively, Spondin1 inhibits the receptor activator of NF-κB ligand (RANKL)-

mediated differentiation of osteoclastic precursors via LRP8 [325].  

Surprisingly, despite the broad expression of Spondin 1 and its role in neural and 

non-neural tissues the SPON1-knockout mouse (Spon1-/-) is viable and has a grossly 

normal phenotype [326]. The Spon1-/- mice undergo normal skeletal development without 

major skeletal abnormalities, which was unexpected considering the authors’ prior 

detection of elevated Spondin 1 levels in embryonic cartilage and chondrocytes of 

osteoarthritic cartilage [322, 323]. At 6 months of age, the Spon1-/- mice have increased 

bone mass, likely as a result of increased bone synthesis. They also exhibit reduced levels 

of TGF-β1 in serum and cultured chondrocytes, and increased levels of phosphorylated 

SMAD1/5, BMP-regulatory SMADs. Palmer et al. speculate that the loss of Spon1 

decreases the activation of TGF-β, resulting in increased BMP signaling and bone 

deposition in adult mice [326]. Our laboratory has recently determined that Spon1-/- mice 

also have an ovarian phenotype. The Spon1-/- female mice are mildly subfertile, have 

smaller litters, decreased ovulation capacity, and smaller ovarian weights than wildtype 

mice (unpublished data). 
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1.7.6 Spondin 1 and the ovary 

There is limited yet compelling evidence that Spondin 1 plays a role in the ovary. 

As mentioned above, Spondin 1 mRNA is abundantly expressed in the adult human 

ovary, as determined by Northern blot. Spondin 1 isolated and purified from the bovine 

follicular fluid has growth promoting properties towards vascular smooth muscle cells 

[290]. When ovariectomized mice are treated with 17β-estradiol, Spon1 mRNA 

expression increases in the uterus and mammary gland [327, 328]. Additionally, Spon1 

expression is 2.5-fold in GCs of eCG-treated ERβ-null mice than in eCG-treated ERβ 

heterozygous mice [156]. Our laboratory has recently demonstrated that Spon1-/- female 

mice are subfertile (unpublished data). These studies collectively suggest a role for 

Spondin 1 in ovarian folliculogenesis.  

Furthermore, Spondin 1 mRNA is highly expressed in ovarian carcinomas 

compared to normal ovarian tissues [329]. An extensive screen of 500 ovarian 

carcinomas suggests Spondin 1 is a negative prognostic indicator and a promising 

biomarker for ovarian cancer, particularly for high-grade serous epithelial ovarian cancer 

[330]. 

1.8 Ovarian Cancer 

1.8.1 Ovarian cancer classification 

Ovarian cancers are divided into three categories – epithelial, stromal and germ 

cell – of which epithelial is the most common and lethal type, comprising over 85% of 

ovarian cancer cases [331, 332]. Epithelial Ovarian Cancer (EOC) is not a single disease, 

but consists of four main subtypes (endometrioid, mucinous, clear cell and serous) that 

are histopathologically, genetically and biologically distinct diseases [333, 334]. The four 

subtypes can be further classified as benign, borderline or malignant, and low- or high- 

grade [335]. EOC is the focus of my research and will be the focus of this section.   

Serous ovarian cancer represents approximately 80% of EOCs [336]. As the most 

aggressive subtype, high-grade serous ovarian carcinoma (HGSC), accounts for 90% of 

serous cancers, two-thirds of all EOC deaths, and it is the most studied subtype [337]. 
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HGSC often responds well to adjuvant platinum/taxane chemotherapy; however, 

recurrence occurs in the majority of cases [338, 339]. Clear cell and endometrioid 

carcinomas are less common, each accounting for approximately 10% of ovarian 

carcinomas [336]. Endometrioid carcinomas predominantly present at low stage and low 

grade therefore mortality associated with this subtype is relatively low. Clear cell 

carcinomas usually present with low-stage disease; however, all are considered high-

grade and do not respond well to conventional treatments, which results in poor outcome 

for most patients [340, 341]. Only 3-4% of ovarian tumours are of the mucinous type, and 

most are confined to the ovary at presentation. As with clear cell carcinomas, current 

chemotherapeutics are ineffective for treatment of recurring mucinous carcinomas [336].  

 Over a decade ago, a new model for classification was proposed that separated 

EOCs into two broad categories – type I and type II tumours – by taking into account 

clinical and genetic findings in addition to tumour histopathology [342]. Type I tumours 

include all of the histotypes (serous, endometrioid, mucinous and clear cell) that are low 

grade and slow growing. These tumours have mutations rarely found in Type II tumours, 

such as BRAF (v-Raf murine sarcoma viral oncogene homolog B), KRAS (V-Ki-ras2 

Kirsten rat sarcoma viral oncogene homolog), CTNNB1 (β-catenin), ARID1A (AT-rich 

interactive domain-containing protein 1A), PIK3CA (phosphatidylinositol-4,5-

bisphosphate 3-kinase, catalytic subunit alpha) and PTEN (phosphatase and tensin 

homolog) mutations [342, 343]. Type II tumours include HGSCs, carcinosarcomas and 

undifferentiated carcinomas [342]. These tumours are highly aggressive, present at an 

advanced, metastatic stage and are associated with poor patient outcome. Type II tumours 

contain mutations in BRACA1/2 (breast cancer 1 and 2) and almost ubiquitously express 

TP53 mutations (97%) [344, 345]. Unlike earlier characterizations, this model does not 

consider low and high-grade tumours a spectrum of disease, but rather distinct diseases 

with different origins, epidemiology and mutations [334, 342]. 

1.8.2 Origins of ovarian cancer 

The term ‘ovarian cancer’ can be misleading. Although the unifying clinical 

feature for all ovarian cancer is dissemination to the ovary and related pelvic organs, it 

has been proposed that a considerable number of tumours do not originate from ovarian 
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tissue [334]. The site of origin for HGSC remains strongly debated. Over the years it has 

been suggested that ovarian cancers can develop from any of the following origins: the 

ovarian surface epithelium (OSE), cells lining subsurface inclusion cysts, the abdominal 

peritoneum or the fallopian tube epithelium [332, 346].  

Early theories hypothesized that all epithelial ovarian cancers arose from the OSE 

[335]. This traditional view is based on the idea that repeated ovulation during a woman’s 

reproductive life increases the susceptibility of the OSE to transformation because of the 

frequent damage and repair to the OSE, as a result of follicle rupture to release oocytes 

[346]. Ovulation also leads to the formation of epithelial cell-lined inclusion cysts. It is 

hypothesized that the cells surrounding these intraovarian cysts differentiate into a 

Müllerian-like epithelium in response to the hormone-rich environment in the ovary, 

become dysplastic and lead to ovarian tumours [347]. These theories are consistent with 

epidemiological evidence showing that decreased ovulation, whether a result of multiple 

pregnancies, prolonged lactation or use of oral contraceptives, decreases the risk of 

developing ovarian cancer [346]. These models do not, however, address the fact that the 

different ovarian subtypes are histologically diverse and share few molecular similarities 

[348].  

Recent studies indicate that the ovarian cancer subtypes arise from various sites of 

origin; certain subtypes that were traditionally believed to be primary ovarian tumours 

actually originate from non-ovarian tissues and involve the ovary secondarily [349]. 

Many studies have provided strong evidence that endometrioid and clear cell ovarian 

cancers are derived from endometriosis [350-355], whereas mucinous ovarian cancers are 

metastases to the ovary from gastrointestinal and appendiceal tumours [334]. The site of 

origin for serous cancers remains unknown. It continues to be strongly debated whether 

HGSC is derived from the surface of the ovary and/ or the distal fallopian tube [332, 335, 

356-358]. The latter became a site of interest once pathologists examined fallopian tubes 

from patients who underwent prophylactic salpingo-oopherectomies and found that tubal 

lesions were present in women with germline BRCA1/2 mutations [357]. Therefore a new 

model for the origin of HGSCs was proposed whereby cancer cells are shed from the 

fimbria of the fallopian tube, implant on the surface of the ovary and produce ovarian 
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carcinomas [359, 360]. These possible precursor lesions, designated serous intraepithelial 

tubal carcinomas (STICs), morphologically and molecularly resemble HGSCs [349]. 

Further studies supporting this mechanism have shown that 48% of women with HGSCs 

have STICs, and 92% of STICs from patients with HGSC have identical mutations in 

TP53 [335, 357]. Importantly, STICs have been found in patients in the absence of 

ovarian carcinomas, which negates the suggestion they formed as a result of metastases 

from HGSCs [335].   

All of the current theories have something to offer regarding ovarian cancer 

development, yet none of them successfully merges all aspects of ovarian carcinogenesis 

[349]. While the data suggesting that HGSC originate from non-ovarian sites is 

compelling, serous ovarian cancers involve the ovaries and the peritoneum considerably 

more than the fallopian tubes. The relative importance of these two sites continues to be 

debated; nevertheless, all novel findings have critical implications for screening, 

prevention and treatment of this heterogeneous disease [334, 349]. 

1.8.3 Ovarian cancer prognosis and treatment 

Ovarian carcinoma is the most lethal gynecological malignancy, and the fourth 

most common cause of female cancer death in the world [343]. The prognosis is more 

favourable for patients diagnosed at an early stage, before the tumour has spread beyond 

the ovary (stage I); surgical resection provides a 90% cure rate. Unfortunately, most 

patients present with advanced disease (stage III/IV) once the tumour has metastasized to 

the peritoneal cavity. The five-year survival rate for ovarian cancer patients is a 

discouraging 45% [361], and patients with HGSC have a further diminished survival rate 

between 35% and 40% [362]. Although most patients initially respond well to 

cytoreduction and platinum- and taxane-based chemotherapeutics, approximately 70% 

will develop chemoresistance and suffer recurrences [332]. The high mortality rates are 

also strongly influenced by the amount of residual tumour following cytoreductive 

surgery [362]. The unusual mechanism of EOC dissemination (Section 1.8.4) is a major 

contributor to the challenges associated with current treatment and the design of 

improved therapeutics. 
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1.8.4 Ovarian cancer metastasis 

Compared to many epithelial cancers the initial dissemination of EOC is unique 

because it rarely involves the vasculature, although the vasculature is often associated 

with advanced stages of the disease [363]. Instead the characteristic early step of EOC 

metastasis is proteinase-mediated shedding of cancer cells from the primary tumour into 

the peritoneal cavity, where malignant cells are disseminated by peritoneal fluid or 

ascites (an increased volume of fluid in the abdomen) [364]. Shed EOC cells exist as 

single cells or multicellular spheroids within the abdominal cavity, where they attach to 

and invade the mesothelial lining to establish secondary lesions [365, 366]. 

1.8.4.1 Peritoneal ascites fluid 

The peritoneal ascites fluid is a unique and complex environment in which EOC 

cells are forced to survive in suspension [363]. The typical composition of cellular 

components in ascites fluid from ovarian cancer patients (often as much as 4.5 litres 

accumulates) consists of 37% lymphocytes, 29% mesothelial cells, 32% macrophages, 

and <0.1% adenocarcinoma cells [364, 367]. Malignant ascites also contains an assembly 

of non-cellular factors that promote EOC cell survival and metastatic implantation, 

including growth factors, cytokines, chemokines and ECM fragments [368]. Over one-

third of ovarian cancer patients present with ascites at diagnosis, and approximately 10% 

of patients with recurrent EOC are affected by malignant ascites [369]. Patients routinely 

undergo paracentesis to have the fluid removed, which provides a convenient source of 

tumour cells for EOC studies. 

1.8.4.2 Multicellular spheroids 

Appropriate cell-matrix interactions are an important aspect of cellular and tissue 

homeostasis [370]. Programmed cell death occurs when adhesion between epithelial cells 

and ECM components is disrupted, thereby preventing detached cells from reattaching to 

a new matrix and undergoing dysplastic cell growth [371]. The apoptosis induced by the 

loss of interaction between cells and the ECM is called anoikis [372]. The ability to resist 

anoikis is a critical mechanism in tumour metastasis [373].  
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 Many tumour cells are unable to survive as single cells under anchorage-

independent growth conditions; thus they form aggregates to avoid anoikis [365, 374, 

375]. EOC cells that are shed from the primary tumour, and forced into suspension within 

the abdominal cavity, are believed to aggregate as multicellular spheroids in order to 

maintain cell-cell contact as part of their natural survival response [363]. Key cell-cell 

adhesion molecules such as cadherins and integrins facilitate cell compaction and create a 

tumour microenvironment that supports mechanisms of cell survival [363, 376, 377]. The 

formation of ovarian cancer spheroids is greatly disrupted, for example, when cells are 

treated with blocking antibodies against α5- or β1-integrin subunits [378]. Furthermore, 

the formation of multicellular aggregates is likely an important intermediate mechanism 

that facilitates metastasis. It has been suggested that spheroids should be considered in 

the dissemination of EOC and that the adhesion of spheroids initiates the conversion of 

floating cells within the ascites to an anchored metastatic lesion [364].  Of note, when 

spheroids implant on the mesothelium (a cell monolayer that covers all organs in the 

peritoneal cavity) they do not directly adhere to mesothelial cells, but rather to the ECM 

underneath [364-366]. The Brugge laboratory has demonstrated that ovarian cancer 

spheroids use myosin-generated force to displace the mesothelium, thereby gaining 

access to the ECM to promote invasion [379]. Burleson and colleagues have also shown 

that ovarian cancer spheroids adhere to, migrate on and invade into live human 

mesothelial cell monolayers in vitro [365, 380, 381].  

Both single cells and spheroids can theoretically seed metastases [363]; however, 

multicellular spheroids in vitro more closely mimic the characteristics of solid tumours in 

the clinical microenvironment [334]. Spheroids grown in the presence of cellular or 

extracellular components normally found in the tumour microenvironment exhibit many 

histologic features similar to those of cells in vivo [364]. Ovarian cancer spheroids can be 

isolated from the peritoneal ascites (30-200 mm) or produced by culturing cells on non-

adherent plates [382]. Of note, spheroids derived from ascites of patients with advanced 

disease vary in number and size, suggesting high variability between patients [332]. Non-

adherent cell culture systems are an advantageous tool for simulating aspects of the 

peritoneal microenvironment and cells cultured in these conditions can provide further 

insights into ovarian cancer biology. The three-dimensional system also provides a 
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unique opportunity to examine the response of multicellular spheroids to many cancer 

therapies [383-385]. Various studies have shown that spheroids have increased resistance 

to common cytotoxic drugs and ionizing radiation compared to monolayer cultures of the 

same cells [386-388]. The majority of cytotoxic drugs target rapidly dividing cells; 

however, spheroids only have proliferating cells in the outer cell layers, whereas the cells 

in the center of the spheroid enter a quiescent state [389, 390]. Therefore it is not 

surprising that spheroids are generally more resistant to these therapeutic agents and may 

present a substantial impediment to effective treatment of late stage EOC.  

1.8.5 ECM and cancer progression    

The cellular components within the tumour microenvironment (also referred to as 

the tumour “niche”) have been explored extensively for their role in the initiation of 

cancer development and its progression [391]. However, many studies have recently 

emphasized the important role that noncellular components of the tumour niche play as 

well, particularly the ECM [392-395]. The ECM is a complex, highly organized three-

dimensional structure composed of several core components, including collagens, 

laminin, nidogen, fibronectin, and proteoglycans [396]. These components are produced 

and secreted by cells, and the composition and organization (including isoform 

expression and post-translational modifications) are specific to the particular 

requirements of a tissue [397, 398]. The ECM also serves as a reservoir for cytokines, 

growth factors and ECM-remodeling enzymes that work with ECM proteins to signal to 

cells [399]. Although the ECM was initially viewed as simply a support system involved 

in maintaining tissue morphology, it is now also recognized as a dynamic and flexible 

structure that either directly or indirectly influences many essential aspects of cellular 

biology [391, 399, 400]. Several mechanisms exist to closely regulate the production, 

degradation and remodelling of the ECM during normal development and organ function 

[401]. However, these control mechanisms can be disrupted, and when these pathways 

fail the composition and assembly of the matrix becomes disorganized, which disrupts 

ECM dynamics [402, 403]. Aberrant ECM dynamics are associated with various 

pathologies, including skeletal diseases, fibrosis and cancers [404, 405].  
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The role of tumour-associated ECM has emerged as an essential contributor to 

cancer progression [403, 406, 407]. The composition of the extracellular niche is a 

significant predictor of patient outcome, and classical pathology has demonstrated that 

excessive deposits of ECM are a common characteristic of tumours with poor prognosis 

[408]. Breast cancer tumours for instance can be divided into subcategories based only on 

their ECM composition, which are predictive of clinical outcome [409]. Recently, Rafii 

and colleagues analyzed data from a TCGA study where 316 serous EOC primary tumors 

underwent exome sequencing [410], and discovered that 89% of tumours have at least 

one mutation in cell adhesion related genes, including the ECM-receptor interaction 

pathway [411]. Gene expression screens have also shown that many genes encoding 

ECM components and ECM receptors are dysregulated during tumour metastasis [412-

414]. Interestingly, using human melanoma xenografts in mice, Naba and colleagues 

have shown that the tumour matrix is produced by both tumor cells and stromal cells, and 

differs with metastatic potential [408]. 

 Metastasis is a complex process that not only requires a microenvironment to 

support cancer cell growth at the primary site, but also a metastatic niche that will allow 

disseminated cancer cells to invade and migrate through new tissues to form secondary 

lesions [391, 415]. The ECM is an essential component of both niches. Ovarian cancer 

cells remodel the normal ECM by releasing proteases to degrade the pre-existing 

molecules, and by depositing new ECM with an altered composition and assembly [416]. 

It has been proposed, for example, that the loss of collagen IV and laminin in the ECM of 

primary tumours facilitates the shedding of ovarian cancer cells into the peritoneal cavity, 

and its restored expression later in tumour development promotes metastasis [417]. 

Deregulation of ECM dynamics facilitates cancer cell survival, migration and invasion, 

disrupts tissue polarity, and dysregulates angiogenesis [394, 418-420]. Abnormal ECM 

composition and dynamics have also been associated with resistance of tumour cells to 

conventional therapeutics [391, 421, 422]. The interactions between cancer cells and 

ECM are carefully balanced to support these pro-tumourigenic processes [407, 423]. 

Migration, for example, requires an intermediate level of cell-ECM adhesion because 

high adhesiveness prevents cells from fracturing the cell-matrix linkage, whereas low 

adhesiveness prevents cells from being able to generate enough traction to move 
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efficiently [424, 425]. During invasion, the proteolytic process of degrading and 

remodeling the ECM must be tightly controlled as well, so that the ECM becomes 

degraded enough for cell passage, but not so degraded that cells lose traction [423].  

Ovarian cancer cell adhesion to the ECM initiates signaling pathways through 

specialized transmembrane ECM receptors and cell-cell adhesion molecules, such as 

integrins and cadherins [402, 403]. Integrins are the most prominent and likely the best 

characterized ECM receptors involved in adhesion interactions [426], and are essential in 

ovarian cancer metastasis [423]. They are a diverse family of glycoproteins that form 

heterodimers between covalently linked α- and β-subunits, with each pairing being 

specific for a set of ligands [402]. The β1-integrin can heterodimerize with numerous α-

subunits and promote the adhesion of disseminated cells to the mesothelium where 

integrin α2β1-collagen type IV, α6β1-laminin and α5β1-fibronectin interactions occur [283, 

332, 378]. Simultaneously, cancer-associated proteases degrade the existing ECM and 

allow invasion of the mesothelium [365, 366]. The adhesion of cancer cells to the 

mesothelial-lined peritoneal surfaces also triggers intracellular signaling pathways that 

can regulate cell growth, differentiation, migration and invasion [391, 403]. For example, 

an increase in collagen deposits or ECM stiffness increases integrin signaling, which 

promotes cell proliferation and survival [391]. Therefore, as a key component of the 

tumour niche, the ECM affects tumour initiation, progression and metastatic potential. 

1.9 Scope of thesis 

The ECM is a highly organized, dynamic three-dimensional structure with many 

physiological and pathological roles. It maintains tissue integrity, regulates various 

cellular and biological processes such as cell adhesion, migration, cellular differentiation, 

and proliferation, and acts as a reservoir of growth factors and cytokines. The functional 

diversity that allows the ECM to play an active role in developmental processes also 

makes it an interesting target whose deregulation can make it a rate-limiting step in 

cancer progression. Using several model systems we examined select ECM proteins that 

we predicted to have a possible role in normal ovarian development or ovarian cancer 

progression. 
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1.9.1 Hypothesis and Objectives 

The work presented in this thesis was executed to test the hypothesis that ECM 

proteins play a functional role in ovarian folliculogenesis and ovarian cancer progression. 

To test this hypothesis I pursued the following objectives: 

1) To characterize the expression of ECM components in the immature and adult 

Estrogen Receptor β-null mouse ovary. 

2) To determine whether TCF21 represses estrogen receptor-mediated transcription. 

3) To characterize the ECM protein Spondin1 and its function in immortalized 

epithelial ovarian cancer (EOC) cell lines and primary ascites-derived ovarian cancer 

cells in order to discover a possible role for Spondin 1 in cellular processes essential 

for ovarian cancer progression. 

1.9.2 Rationale and Studies 

Microarray and cell-clumping studies performed by Dr. Deroo indicate that ECM 

composition and cell adhesion are disrupted in ERβ-null granulosa cells ([156] and 

unpublished data), which may contribute to the attenuated folliculogenesis observed in 

ERβ-null ovaries. Therefore, in Chapter 2, I characterize the expression and localization 

of two 17β-estradiol-regulated ECM proteins, Collagen 11A1 (Col11a1) and Nidogen 2 

(Nid2), in the ovaries of ERβ-null and wildtype mice, which had been identified as 

differentially expressed in ERβ-null GCs in Dr. Deroo’s microarray study. I also examine 

several other ECM proteins not identified as dysregulated by the original microarray, but 

previously identified in the ovary. I demonstrated that the expression of several ECM 

components is disrupted in the ovary of the immature and adult ERβ-null mouse. I 

identify several genes of the ECM whose protein levels are significantly higher in ERβ-

null follicles than in wildtype follicles, suggesting that ERβ represses their expression. 

 The molecular mechanisms that initiate gene repression by ERβ are not well 

understood, and there remains limited information in the literature regarding corepressors 

specifically involved in ERβ-mediated transcription. Therefore, in Chapter 3 I investigate 

a potential mechanism by which ERβ may be acting as a transcriptional repressor in GCs. 

A yeast two-hybrid screen of a mouse granulosa cell cDNA library performed by Dr. 
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Deroo revealed a physical interaction between ERβ and the basic helix-loop-helix 

protein, Transcription factor 21 (TCF21) (unpublished data). Biochemical and genetic 

analyses have previously demonstrated that TCF21 can act as a transcriptional repressor 

[253, 254, 258, 285, 286]. Furthermore, it is well established that TCF21 is essential for 

normal gonadogenesis and sexual differentiation. Although TCF21 transcripts have 

previously been identified in ovaries of mice, the detailed mechanism of its role in 

postnatal ovaries is unknown. We demonstrate that TCF21 regulates estradiol-dependent 

transcriptional activity in an ER isoform-specific manner; TCF21 represses ERβ, but not 

ERα transactivation. Despite our best efforts we were unable to show that TCF21 forms a 

complex with ERβ in vivo. Therefore, we returned our focus to another 17β-estradiol-

regulated ECM protein, Spondin 1, and its potential role in ovarian cancer progression.  

As a key component of the tumour microenvironment, the ECM is essential at 

various stages of tumourigenesis. Spondin 1, a secreted glycoprotein, is abundantly 

expressed in the normal ovary and our laboratory has (unpublished) evidence identifying 

a role in folliculogenesis. Spondin 1 is highly overexpressed in ovarian cancer and has 

recently been identified as a promising ovarian cancer marker, particularly for high-grade 

serous epithelial ovarian cancer. Therefore, in Chapter 4 I characterize Spondin1 and its 

function in immortalized EOC cell lines and primary ascites-derived ovarian cancer cells. 

Spondin1 has previously been shown to have functional and mechanistic roles in various 

tissues, effecting cell adhesion, migration, and survival. Since many of the same cellular 

processes and behaviours that are necessary for normal development are also essential for 

cancer progression, I examined the effect of Spondin 1 on these processes in EOC cells. I 

demonstrate that Spondin 1 significantly reduces EOC cell adhesion, viability and 

proliferation; however, it does not effect cell migration.  

The studies in this thesis have uncovered novel functions of ECM proteins in normal 

ovarian development and ovarian cancer progression, further demonstrating the diverse 

roles of ECM in infertility and tumourigenicity. 
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  Chapter 2

 Expression of Extracellular Matrix Components is 2
Disrupted in the Immature and Adult 
Estrogen Receptor β-null Mouse Ovary 

This chapter is based on a peer-reviewed journal article: 

Zalewski, A., E.L. Cecchini, and B.J. Deroo, Expression of extracellular matrix 

components is disrupted in the immature and adult estrogen receptor beta-null mouse 

ovary. PLoS One, 2012. 7(1): p. e29937. 

2.1 Introduction 

It is well established that estrogens play a critical role in the ovary during 

folliculogenesis. 17β-estradiol (E2) synergizes with follicle stimulating hormone (FSH) 

to induce granulosa cell differentiation and the formation of a healthy preovulatory 

follicle capable of ovulation in response to luteinizing hormone (LH) [1]. E2 acts directly 

on granulosa cells [2, 3] via its receptor, ERβ [4, 5], which is the predominant ER form 

expressed in granulosa cells of both humans and mice.  

E2 and ERβ are essential for folliculogenesis in mice. Adult ERβ-null females are 

sub-fertile or infertile [6-8], possess ovaries with reduced numbers of growing follicles 

and corpora lutea and, due to infrequent ovulation, have litters one-third the size of 

wildtype (WT) females or are completely sterile [6-8]. There is almost a complete lack of 

antral follicles in the prepubertal ERβ-null ovary [7]. Furthermore, ERβ-null granulosa 

cells isolated from post-natal day (PND) 23 mice have an attenuated response to FSH, 

resulting in reduced cAMP accumulation [5], and poorly differentiated granulosa cells 

[4]. This lack of differentiation results in attenuated follicular production of cAMP in 

response to LH [9], and reduced ovulation. Therefore, an important role for E2 and ERβ 

in the response to FSH in the ovaries of adult mice has been firmly established; however, 

a role for ERβ in the postnatal/immature ovary has not been explored. Lack of ERβ in the 

immature ovary might contribute to the impaired FSH response observed in ERβ-null 

granulosa cells.  



 

 

94 

Several lines of evidence indicate that both E2 and ERβ are not only present in 

the ovaries of immature rodents, but that E2 acting through ERβ regulates 

folliculogenesis at this time. E2 has been detected in neonatal circulation in the rat [10]. 

In addition, androstenedione (which can be converted to E2) is detectable at PND 7 in the 

mouse, and increases by PND 15 [11]. ERβ protein is present [12-14] and functional [13] 

in primary follicles in PND 4 mouse ovaries, consistent with earlier data indicating that 

ERβ mRNA is detectable in the mouse ovary as early as PND1 [14] or PND 4 [13, 14], 

and increases dramatically by PND 12 in the mouse [14] and rat [15]. Thus, both E2 and 

ERβ protein are simultaneously present in mice as early as PND 4, and increase around 

PND 12-15, when the ovary contains primordial and primary follicles, as well as 

secondary follicles with 2-3 layers of granulosa cells [16]. 

Evidence also suggests that E2, acting through ERβ, may regulate development of 

primordial and primary follicles. First, adult female Cyp19a1-null mice (which lack the 

enzyme Cyp19a1, also known as aromatase, which converts testosterone to 17β-estradiol 

in granulosa cells) have reduced numbers of primordial and primary follicles compared 

with WT mice [17], suggesting that production of E2 is required for optimal primordial 

and primary follicle development. Second, adult female ERβ-null mice have elevated 

numbers of primordial follicles, but reduced numbers of primary follicles [18]. Third, 

treatment of PND 20 mice with the ERβ-selective agonist 8β-VE2 significantly increases 

the number of primary follicles, while the ERα-selective agonist, 16α-LE2 did not [19]. 

These data suggest that E2 acting through ERβ may regulate the formation of primordial 

and/or primary follicles in young mice.  

Based on these data, we hypothesized that disrupted gene expression would be 

observed in the ovaries of immature ERβ-null mice. The ERβ-null ovarian phenotype has 

been described almost exclusively in adult or gonadotropin-treated PND 23-29 mice; 

however, few studies have examined ERβ-null immature ovaries. Therefore, we 

examined the expression of a subset of genes (originally identified by microarray analysis 

[5] of granulosa cells isolated from PND 23-29 ERβ-null mice) in ERβ-null ovaries as 

early as PND 13. Specifically, we focussed our analysis on proteins of the extracellular 
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matrix because functional analysis of the microarray data revealed the novel observation 

that many ECM genes were dysregulated in ERβ-null granulosa cells, suggesting a novel 

phenotype in ERβ-null ovaries not previously reported. 

It is well established that dramatic changes in the ECM occur throughout 

folliculogenesis to allow for the dramatic growth of the follicle from the primary to 

preovulatory stage [20-27]; the ECM regulates follicular cell morphology, aggregation, 

communication, differentiation, steroidogenesis, survival, and proliferation [27]. Two 

main follicular ECMs are the basal lamina and the "focimatrix," a basal lamina-like 

matrix located between granulosa cells, and granulosa cells are thought to produce many 

of these ECM components [22, 23]. In this study, we chose to further characterize the 

expression and ovarian localization of two ECM proteins whose expression was higher in 

ERβ-null granulosa cells than in WT cells, suggesting that ERβ may repress their 

expression: Collagen 11a1 (Col11a1) and Nidogen 2 (Nid2). We characterize Col11a1 

and Nid2 localization and mRNA levels in the ovaries of immature mice at PND 13 and 

PND 23-29, as well as in adult mice. We also investigate several other ECM proteins 

(Col4a1, Nid1, and Laminin) which were not identified as differentially regulated in the 

original microarray, but whose ovarian expression has been previously characterized in 

the mouse [20, 24]. Surprisingly, many of these ECM proteins are elevated as well in the 

ERβ-null ovary, suggesting a general disruption of ECM composition, and a potential 

role for this disruption in the reduced fertility observed in ERβ-null mice. 

Therefore, the overall aim of our study was to demonstrate that gene expression is 

dysregulated in the immature ERβ-null ovary, and in particular, that extracellular matrix 

(ECM) gene expression is dysregulated. We now report for the first time that the 

expression of several ECM genes is dysregulated in the ERβ-null ovary as early as PND 

13, and that this dysregulation is maintained within the adult ERβ-null ovary, resulting in 

altered expression of ECM components compared to WT mice. Taken together, our data 

identify two novel findings: a) that ERβ regulates gene expression in the mouse ovary 

much earlier than previously thought, and b) that ERβ plays a role in the regulation of 

ECM composition in the immature and adult mouse ovary. 
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2.2 Materials and Methods 

2.2.1 Mice 

Experiments were performed in compliance with the guidelines set by the 

Canadian Council for Animal Care, and the policies and procedures approved by the 

University of Western Ontario Council on Animal Care (Protocol Number: 2007-042). 

The generation of ERβ-null mice has been described previously [8]. Mice were obtained 

from Taconic Farms Inc., NY. Immature ERβ-null (ERβ-/-) female mice were generated 

via breeding homozygous (ERβ-/-) males with heterozygous (ERβ+/-) females. Wildtype 

(WT) C57BL/6 females were generated via breeding WT males and females. WT females 

were used as controls in all experiments. All females were weaned at PND 21 and 

genotyped as previously described [8]. All studies were conducted with untreated animals 

(ie. no gonadotropin or any other treatment). 

2.2.2 Isolation of granulosa cells 

Ovaries were removed from PND 23-29 mice and immediately transferred to a 

100-mm cell culture dish containing 15 ml ice-cold M199 medium supplemented with 1 

mg/ml BSA, 2.5 µg/ml Amphotericin B, and 50 µg/ml gentamicin (all reagents from 

Invitrogen, Carlsbad, CA). Ovaries were pooled according to genotype, and the granulosa 

cells from each were then expressed by manual puncture with 25-gauge needles followed 

by pressure applied with a sterile spatula. Follicular debris was removed manually and 

the granulosa cell suspension filtered through a 150-µm Nitex nylon membrane (Sefar 

America Inc., Depew, NY) mounted in Swinnex filters (Millipore, Billerica, MA). The 

granulosa cells were then pelleted by centrifugation at 250 x g for 5 min at 4°C, followed 

by two washes in DMEM/F-12 medium containing 1% Penicillin/Streptomycin solution 

(Invitrogen, Catalog # 15070-063). The final cell pellet was frozen at 80°C.  

2.2.3 RNA isolation and quantitative qRT-PCR 

Frozen pellets of granulosa cells (PND 23-29 mice) or frozen whole ovaries (PND 

13 mice) were solubilized in Trizol (Invitrogen, Carlsbad, CA) and RNA was isolated 

according to the manufacturer's protocol. RNA was further treated with DNaseI, then 
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reverse-transcribed using Superscript II (Invitrogen). cDNA levels were detected using 

quantitative PCR with the ABI PRISM 7900 Sequence Detection System (Applied 

Biosystems, Foster City, CA) and Power Sybr Master Mix (Invitrogen). Primers were 

designed using the Applied Biosystems Primer Express Software version 2.0 (Table 2-1). 

Fold changes in gene expression were determined by quantitation of cDNA from target 

(ERβ-null) samples relative to a calibrator sample (WT). The gene for ribosomal protein 

L7 (Rpl7) was used as the endogenous control for normalization of initial RNA levels. 

Expression ratios were calculated according to the mathematical model described by 

Pfaffl [28], where ratio = (Etarget)∆Ct(target)/(Econtrol)∆Ct(control) and E=efficiency of the 

primer set, calculated from the slope of a standard curve of log (ng of cDNA) vs. Ct value 

for a sample that contains the target according to the formula E=10-(1/slope) and 

∆Ct=Ct(vehicle)-Ct(treated sample). 
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Table 2-1: Primer sequences used for quantitative RT-PCR. 
Gene Accession #  Forward Primer Reverse Primer 
Col11a1 NM_007729.2 5’- AGTTGGTCTGCAGTGGCAATTTCG -3’ 5’- AGATCCCAGATCCACCGTTTCGTT -3’ 
Col4a1 NM_009931.2 5’- CTCCAGGTCCCTACGATGTC -3’ 5’- TCCAAAGGGTCCTGTCTCTC -3’ 
Lama1 NT_039658.1 5’- TCCGTGGATGGCGTCAA -3’ 5’- TGTAGCGGGTCAAACACTCTGT -3’ 
Nid1 NM_010917.2 5’- CACAGGCAATGGCAGACAGT -3’ 5’- CCCTTCACCTTGCCATTGA -3’ 
Nid2 NM_008695.2 5’- GTCTGTTTGGCTGGCTCTTTGCTT -3’ 5’- TCCACGTCATGGACAAAGGTAGCA -3’ 
Rpl7 NM_011291 5’- AGCTGGCCTTTGTCATCAGAA -3’ 5’- GACGAAGGAGCTGCAGAACCT -3’ 
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2.2.4 Immunofluorescence 

Ovaries were dissected from PND13, PND 23-29, or two-month old adult WT and 

ERβ-null female mice and embedded in Cryomatrix (Fisher, Ottawa, ON). Using a 

cryostat, tissues were cut into 6 µm sections, mounted onto slides (Fisher) and stored at -

20°C until use. Sections were fixed with 4% formaldehyde for 10 minutes, rinsed three 

times with phosphate-buffered saline (PBS), then permeabilized with 0.1% Triton X-100 

for 15 minutes. Sections were again rinsed three times with PBS, blocked for 30 minutes 

with blocking solution (5% BSA in 0.1% Triton X-100), then rinsed three times with 

blocking solution. The tissue was then incubated for one hour with primary antibodies 

specific to each target, including rabbit polyclonal anti-nidogen 2 raised against a mouse 

epitope (1:50, Santa Cruz Inc. sc-33143), rat monoclonal anti-nidogen 1 raised against a 

mouse epitope (1:400, Abcam, Cambridge, MA, ab44944), rabbit polyclonal anti-

collagen 11a1 raised against a human epitope (1:200, Abcam ab64883), rabbit polyclonal 

anti-collagen 4a1 raised against a mouse epitope (1:500, Abcam ab19808), rabbit 

polyclonal anti-laminin raised against a mouse epitope (1:200, Abcam ab11575), and 

rabbit polyclonal anti-calnexin raised against a dog epitope (1:50, Enzo Life Sciences 

ADI-SPA-860). Sections were then rinsed three times in blocking solution and incubated 

in secondary antibody (FITC-conjugated goat anti-rabbit secondary antibody, 1:250 

Sigma F9887). The tissue was then washed twice in PBS followed by a 5 minute 

incubation in 4′,6-diamidino-2-phenylindole (1:1000, Sigma), and slides were mounted 

with Vectashield (Vector Laboratories, Burlington, ON). Slides were stored at 4°C and 

visualized the following day with an Olympus Provis AX70 upright microscope. Images 

were captured using Image-Pro 6.2 Software.  

2.2.5 Statistical Analysis 

Differences in average mRNA levels of Nid2, Nid1, Col11a1, and Col4a1 

between ERβ-null and WT granulosa cells as determined by qPCR were compared using 

an unpaired two-tailed Student’s t-test. To estimate and quantify the amount of Nid2, 

Nid1, Col4a1, and laminin present in the focimatrix, the number of immunoreactive 

speckles per follicle in each follicle within the section was counted manually by an 
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experimenter blinded to genotype. Atretric follicles were not included in the count. 

Speckles were counted in 21-78 follicles per genotype for each protein of interest from a 

minimum of three mice per genotype per protein. Larger aggregates of speckles were 

estimated based on a pre-determined minimum speckle size. The number of 

speckles/follicle was compared between ERβ-null and WT using two statistical tests. 

First, averages were compared using an unpaired, two-tailed Student’s t-test. Second, 

differences were investigated using the more stringent criteria of Receiver Operating 

Characteristic (ROC) analysis, an analysis that tests for differences over the entirety of 

both distributions. 

2.2.6 Gene Ontology Analysis 

The Database for Annotation, Visualization and Integrated Discovery 6.7 

(DAVID 6.7) Functional Annotation tool [29, 30] was used to determine Gene Ontology 

Cellular Components [31] presented in Supplementary Table 2-1 from a previously 

published dataset by Deroo et al [5]. All analyses were conducted with Maximum EASE 

Score/P value set to 0.05. 

2.3 Results 

Our previous microarray studies (Gene Expression Omnibus accession number 

GSE11585) [5] comparing the gene expression profiles of granulosa cells isolated from 

gonadotropin-treated immature (PND 23-29) ERβ-het (ERβ+/-) and ERβ-null (ERβ-/-) 

mice indicated that the expression of numerous extracellular (ECM) proteins was 

dysregulated in ERβ-null granulosa cells compared to ERβ-het cells (Supplementary 

Table 2-1). From this set of ECM proteins (Supplementary Table 2-1), we chose to 

further characterize the expression and ovarian localization of two proteins whose 

expression was higher in ERβ-null granulosa cells than in ERβ-het cells: Collagen 11a1 

(Col11a1) and Nidogen 2 (Nid2). We focussed on these two proteins because they met 

the following four criteria: 1) follow-up studies confirming the microarray data indicated 

that both genes were dysregulated in granulosa cells isolated from untreated ERβ-null 

PND 23-29 mice, suggesting an earlier role for ERβ in ovarian development than 

previously thought, 2) the higher levels of expression in ERβ-null granulosa cells 
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compared to ERβ-het cells suggested a novel inhibitory role for ERβ in the regulation of 

their expression (rather than an activational role), 3) there is previously-reported evidence 

for regulation of Col11a1 (Gene Expression Omnibus dataset GDS884) and Nid2 

expression by 17β-estradiol [32, 33], and 4) the fold difference between ERβ-het and 

ERβ-null granulosa cells was greater than two, our predetermined cut-off value for 

further analysis. In addition, to our knowledge, expression of Collagen 11a1 had not been 

previously reported in the ovary, suggesting that its aberrantly high expression in ERβ-

null granulosa cells may contribute to the disrupted folliculogenesis observed in ERβ-null 

mice. Note that untreated mice were used for all studies, ie. mice were not primed with 

gonadotropins or estradiol. 

Therefore, we wanted to investigate Col11a1 and Nid2 expression and 

localization at PND 13 and PND 23-29 to determine when dysregulated gene expression 

could first be detected in the ERβ-null ovary. We also investigated these genes in adult 

ovaries to determine if the dysregulation observed in immature mice was maintained in 

the adult ovary. 

2.3.1 Collagen 11A1 

At PND 13, Col11a1 mRNA levels were approximately two-fold higher in ERβ-

null whole ovaries than in WT ovaries, as determined by quantitative RT-PCR (qPCR) 

(Figure 2-1A). Similarly, Col11a1 mRNA levels were 2.5-fold higher in granulosa cells 

isolated from PND 23-29 ERβ-null mice than in WT granulosa cells isolated from age-

matched mice (Figure 2-1A). We then wanted to determine, using immunofluorescence: 

a) if these increases in Col11a1 mRNA levels correlated with increases in protein 

expression, and b) the localization of Col11a1 within the immature and adult ovaries of 

WT and ERβ-null mice. At PND 13, when the mouse ovary contains many preantral 

follicles with 2-3 rows of granulosa cells surrounded by a basal lamina, in addition to 

primary and primordial follicles [16], ERβ-null ovaries expressed higher levels of 

Col11a1 than WT mice of the same age (Figure 2-1B), and Col11a1 appeared to be 

localized to the cytoplasm and extracellular region of granulosa cells. AT PND 23-29 

(Figure 2-1C) Col11a1 was almost undetectable in WT PND 23-29 ovaries. However, 
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Col11a1 was dramatically elevated in the follicles of ERβ-null mice (Figure 2-1C). 

Col11a1 protein was localized primarily to the cytoplasm of granulosa cells (Figure 2-1C, 

panel f). Similar localization in the follicle was observed for calnexin, which localizes to 

the endoplasmic reticulum and is frequently used as a cytoplasmic marker (Figure S2-1). 

Col11a1 expression was primarily observed in preantral follicles (both small and large), 

which predominate in the immature ERβ-null ovary. Only very weak Col11a1 staining 

was observed in the thecal layer or ovarian interstitium. In adult mice, as observed in the 

immature mice, Col11a1 expression was again higher in the granulosa cell cytoplasm in 

ERβ-null ovaries than in WT ovaries (Figure 2-1D). 

2.3.2 Nidogen 2 

At PND 13, Nid2 mRNA levels were approximately 1.5-fold higher in ERβ-null 

whole ovaries than in WT ovaries, as determined by qPCR (Figure 2-2A). Similarly, Nid2 

mRNA levels were approximately 2.3-fold higher in granulosa cells isolated from PND 

23-29 ERβ-null mice than in WT granulosa cells isolated from age-matched mice (Figure 

2-2A). With respect to localization of Nid2 within the ovary as determined by 

immunofluorescence, while Col11a1 localized almost exclusively to the cytoplasm of 

granulosa cells (Figure 2-1C), Nid2 was localized to the follicular basal lamina, thecal 

matrix, sub-endothelial basal lamina of stromal blood vessels, and in a punctate pattern as 

“speckles” or “plaques” between granulosa cells (known as focimatrix) (Figure 2-2C) of 

PND 23-29 WT mice, as previously reported [24]. The focimatrix (focal intra-epithelial 

matrix; a term coined by Irving-Rodgers et al. [34]), is a specialized ECM composed of 

basal-lamina like material that exists as plaques or aggregated deposits between 

granulosa cells, but does not surround the cells as a true basal lamina. Focimatrix is found 

in the ovaries of many species. In the mouse, primary focimatrix components include 

collagen, type IV α1 and α2, laminin α1, β1 and γ1, nidogens 1 and 2, perlecan, and 

collagen type XVIII [24]. Granulosa cells express mRNA encoding many focimatrix 

proteins [23, 35], and granulosa cells are thought to be the source of focimatrix protein 

production [25]. In our study, Nid2 localization was similar in both WT and ERβ-null 

ovaries (Figure 2-2B and 2-2C) at PND 13 and PND 23-29. However, as predicted by the 
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mRNA levels (Figure 2-2A), Nid2 expression was higher in the follicles of ERβ-null 

mice (Figures 2-2B and 2-2C) than in WT mice at both ages. However, this increase was 

only observed in the focimatrix of ERβ-null ovaries; Nid2 levels in the follicular basal 

lamina, thecal matrix, and sub-endothelial basal lamina of stromal blood vessels were 

similar in both genotypes. These differences in focimatrix Nid2 expression between WT 

and ERβ-null follicles were quantified in PND 23-29 ovaries by counting the number of 

focimatrix speckles per follicle, and the difference tested for statistical significance 

(Figure 2-2E). A statistically significant difference in the number of focimatrix speckles 

per follicle was observed between WT and ERβ-null follicles (Figure 2-2E) on average, 

as determined by Student’s t-test (Figure 2-2E, left panel). In addition, a statistically 

significant difference was also detected using the more stringent criteria of Receiver 

Operating Characteristic (ROC) analysis (Figure 2-2E, right panel), an analysis that tests 

for differences over the entirety of both distributions. At PND 13, ERβ-null ovaries again 

expressed higher levels of Nid2 protein than WT mice of the same age (Figure 2-2B). 

Interestingly, Nid2 expression appeared higher throughout the ovary of ERβ-null mice at 

this stage: in the focimatrix, in the follicular basal lamina and in thecal matrix. 

(Focimatrix speckles were not counted due to difficulty of accurate counts resulting from 

the irregularity of follicle shapes and sizes at this stage). Expression of Nid2 was 

strikingly and significantly higher (Figure 2-2D and 2-2F) in adult ERβ-null focimatrix 

than in WT focimatrix, while expression of Nid2 in other follicular compartments was 

similar in both genotypes, as observed in younger mice (Figures 2-2B and 2-2C). 
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Figure 2-1: Collagen 11a1 mRNA and protein levels are higher in granulosa cells 

and ovaries of ERβ-null mice than in wildtype mice. 

(A) Granulosa cells were isolated and pooled from ovaries of untreated PND 13 or PND 

23-29 wildtype (+/+) or ERβ-null (-/-) mice, and the levels of Col11a1 mRNA were 

determined by quantitative RT-PCR compared to an Rpl7 control (± SEM of three 

independent experiments). Wildtype and ERβ-null average mRNA levels were compared 

using an unpaired two-tailed Student’s t-test. a: p < 0.05. B-D. Immunofluorescence with 

an anti- Col11a1 antibody was used to detect Col11a1 localization and expression in 

ovaries isolated from wildtype (+/+) and ERβ-null (-/-) mice at (B) PND 13 (a-d), (C) 

PND 23-29 (a-f; negative controls with secondary antibody only are shown in g and h), 

and (D) PND 60 (adult). Various magnifications are shown. (B) Scale bar = 100 µM for 

a-b, and 50 µM for c-d. (C) Scale bar = 200 µM for a-b and g-h, 100 µM for c-d, and 

50 µM for e-f; (D) Scale bar = 200 µM for a-b, 100 µM for c-d.    
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Figure 2-2: Nidogen 2 mRNA and protein levels are higher in granulosa cells and 

ovaries of ERβ-null mice than in wildtype mice. 

(A) Granulosa cells were isolated and pooled from ovaries of untreated PND13 or PND 

23-29 wildtype (+/+) or ERβ-null (-/-) mice, and the levels of Nid2 mRNA were 

determined by quantitative RT-PCR compared to an Rpl7 control (± SEM of three 

independent experiments). Wildtype and ERβ-null average mRNA levels were compared 

using an unpaired two-tailed Student’s t-test. a: p < 0.05; b: p < 0.01. B-D. 

Immunofluorescence with an anti-Nid2 antibody was used to detect NID2 localization 

and expression in ovaries isolated from wildtype (+/+) and ERβ-null mice (-/-) at (B) 

PND 13 (a-d), (C) PND 23-29 (a-d; negative controls with secondary antibody only are 

shown in e and f), and (D) PND 60 (adult). Various magnifications are shown at each 

age. (B) Scale bar = 100 µM for a-b, and 50 µM for c-d. (C) Two different sections from 

each genotype are shown (same magnification for both sections). Scale bar = 100 µM for 

a-f; (D) Scale bar = 200 µM for a-b, 100 µM for c-d. Nid2 is localized to the follicular 

basal lamina (white filled arrowhead), focimatrix (open arrowhead), thecal matrix 

(asterix), and endothelial basal lamina of stromal blood vessels (square). (E, F) 

Focimatrix speckles in the PND 23-29 and adult sections were counted per follicle, and 

the difference between genotypes analyzed by a two-tailed, un-paired Student’s t-test (± 

SEM, left panel) and by Receiver Operating Characteristic analysis (right panel). Each 

dot in the scatter plot (right panel) represents one follicle. b: p < 0.01; d: p < 0.0001.   
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To show that this difference in expression between ERβ-null and WT granulosa 

cells was specific to Nid2 and Col11a1, but not to all ECM genes, we also investigated 

the expression of Nidogen 1 (Nid1), Collagen, type IV (Col4a1), and Laminin (Lama1). 

We chose the Nid1, Col4a1, and Lama1 genes because their expression and localization 

has been previously characterized in the mouse ovary [20, 24, 36], and because neither 

gene had been detected as differentially expressed between WT and ERβ-null granulosa 

cells by our previously-conducted microarray (Supplemental Table 1). Nidogen 1 is 

structurally similar to Nidogen 2 and shares overlapping expression patterns during 

development and in many adult tissues [37, 38], and both Collagen, type IV and Laminin 

are ubiquitous ECM proteins found in many tissues, including the ovary.  

2.3.3 Nidogen 1 

Nid1 mRNA levels were similar in both ERβ-null and WT granulosa cells at PND 

23-29 (Figure 2-3A). Similar to Nid2, Nid1 localized to the follicular basal lamina, thecal 

matrix, focimatrix, and basal lamina of stromal blood vessels (Figure 2-3B) of PND 23-

29 WT mice as previously reported [24]. No differences in Nid1 expression levels were 

observed between genotypes in the follicular basal lamina, thecal matrix, or basal lamina 

of stromal blood vessels. Unexpectedly, Nid1 expression in the focimatrix was slightly 

higher in ERβ-null follicles than in WT follicles (Figure 2-3B), and this increase was 

statistically significant (Figure 2-3C). No significant differences were observed in Nid1 

expression (Figures 2-3D and E) between adult wildtype and ERβ-null mice in the 

focimatrix, although the overall signal in the basal lamina and stroma appeared higher in 

ERβ-null ovaries than in WT ovaries. 
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Figure 2-3: Nidogen 1 expression and localization in immature and adult ERβ-null 

and wildtype mouse ovaries. 

(A) Granulosa cells were isolated and pooled from ovaries of untreated PND 23-29 

wildtype (+/+) or ERβ-null (-/-) mice, and the levels of Nid1 mRNA were determined by 

quantitative RT-PCR compared to an Rpl7 control (± SEM of three independent 

experiments). (B) Immunofluorescence with anti-Nid1 antibodies was used to detect 

Nid1 localization and expression in ovaries isolated from wildtype (+/+) and ERβ-null  

(-/-) mice at PND 23-29 (a-d; negative controls with secondary antibody only are shown 

in e and f). Nid1 was localized to the follicular basal lamina (white filled arrowhead), 

focimatrix (open arrowhead), thecal matrix (asterix), and endothelial basal lamina of 

stromal blood vessels (square). Nid1 focimatrix expression is slightly higher in ERβ-null 

ovaries than in wildtype ovaries at PND 23-29. Scale bar = 200 µM for a-b and e-f, 

100 µM for c-d. (C) A significant increase in Nid1 expression within the focimatrix of 

ERβ-null ovaries compared to wildtype ovaries was observed at PND 23-29, as 

determined by the number of focimatrix “speckles” counted per follicle. Differences in 

the number of speckles/follicle between genotypes were analyzed by Receiver Operating 

Characteristic analysis (top panel) and a two-tailed, un-paired Student’s t-test (± SEM, 

bottom panel). Each dot in the scatter plot (top panel) represents one follicle. a: p < 0.05. 

(D) Nid1 expression in adult ERβ-null and wildtype mouse ovaries. Immunofluorescence 

with anti-Nid1 antibodies was used to detect Nid1 localization and expression in ovaries 

isolated from adult wildtype (+/+) and ERβ-null (-/-) mice. Two magnifications are 

shown. Scale bar = 200 µM for a-b, 100 µM for c-d. (E) Expression of Nid1 in the adult 

focimatrix was quantified by counting the number of focimatrix speckles/follicle, and 

these values were compared between genotypes by Receiver Operating Characteristic 

analysis (E, top panel) and a two-tailed, un-paired Student’s t-test (± SEM, E bottom 

panel) in each case. Each dot in the scatter plot (E, top panel) represents one follicle. No 

statistically significant difference in NID1 focimatrix was observed between genotypes in 

the adult ovary. 
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2.3.4 Collagen 4a1 

Col4a1 mRNA levels were similar in both ERβ-null and WT granulosa cells at 

PND 23-29 (Figure 2-4A). Similarly, Col4a1 protein levels were the same in WT and 

ERβ-null mice (Figure 2-4B). Interestingly, the localization of Col4a1 and Col11a1 was 

not the same within the WT or ERβ-null ovary. While Col11a1 localized almost 

exclusively to the cytoplasm of granulosa cells (Figure 2-1C), Col4a1 staining was 

observed in the follicular basal lamina, the focimatrix, the thecal matrix, and in the 

stromal sub-endothelial basal lamina of blood vessels (Figure 2-4B), as previously 

reported for WT mice [20, 24, 36]. Similar Col4a1 localization and staining intensity was 

observed in WT and ERβ-null PND 23-29 ovaries (Figure 2-4A). Focimatrix Col4a1 

expression was quantified by counting the number of focimatrix speckles per follicle 

(Figure 2-4C). As predicted by the mRNA levels (Figure 2-4A), no statistically 

significant differences in the number of focimatrix speckles per follicle were observed 

between WT and ERβ-null follicles (Figure 2-4C). Expression of Col4a1 (Figure 2-4D) 

was strikingly and significantly higher (Figure 2-4E) in adult ERβ-null focimatrix than in 

WT focimatrix, while expression of Col4a1 in other follicular compartments was similar 

in both genotypes, as observed in younger mice (Figure 2-4D). 

2.3.5 Laminin 

Lama1 mRNA levels were similar in both ERβ-null and WT granulosa cells at 

PND 23-29 (Figure 2-5A). As previously reported [24], laminin was localized to the 

follicular basal lamina, the basal lamina of stromal blood vessels, the thecal matrix, 

focimatrix, and corpora lutea in both immature and adult mice (Figures 2-5B and 2-5D). 

At PND 23-29, ERβ-null follicles consistently possessed significantly higher numbers of 

focimatrix speckles per follicle than WT follicles (Figures 2-5B and 2-5C). Interestingly, 

laminin expression in the focimatrix of adult ERβ-null ovaries (Figure 2-5D) was again 

significantly higher than in WT focimatrix (Figure 2-5E).  
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Figure 2-4: Collagen 4a1 expression and localization in immature and adult ERβ-

null and wildtype mouse ovaries. 

(A) Granulosa cells were isolated and pooled from ovaries of untreated PND 23-29 

wildtype (+/+) or ERβ-null (-/-) mice, and the levels of Col4 mRNA were determined by 

quantitative RT-PCR compared to an Rpl7 control (± SEM of three independent 

experiments). (B) Immunofluorescence with an anti-Col4a1 antibody was used to detect 

Col4a1 localization and expression in ovaries isolated from wildtype (+/+) and ERβ-null 

(-/-) mice at PND 23-29 (a-d; negative controls with secondary antibody only are shown 

in e and f). Col4a1 was localized to the follicular basal lamina (white filled arrowhead), 

focimatrix (open arrowhead), thecal matrix (asterix), and endothelial basal lamina of 

stromal blood vessels (square). Scale bar = 200 µM for a-b and e-f, 100 µM for c-d. (C) 

No significant differences in Col4a1 expression within the focimatrix were observed, as 

determined by the number of focimatrix “speckles” counted per follicle analyzed by 

Receiver Operating Characteristic analysis (top panel) and a two-tailed, un-paired 

Student’s t-test (± SEM, bottom panel). Each dot in the scatter plot (top panel) represents 

one follicle. (D) Col4a1 expression in adult ERβ-null and wildtype mouse ovaries. 

Immunofluorescence with anti-Col4a1 antibodies was used to detect Col4a1 localization 

and expression in ovaries isolated from adult wildtype (+/+) and ERβ-null (-/-) mice. 

Two magnifications are shown. Scale bar = 200 µM for a-b, 100 µM for c-d. (E) 

Expression of Col4a1 in the focimatrix was quantified by counting the number of 

focimatrix speckles/follicle, and these values were compared between genotypes by 

Receiver Operating Characteristic analysis (top panel) and a two-tailed, un-paired 

Student’s t-test (± SEM, bottom panel). Each dot in the scatter plot (bottom panel) 

represents one follicle. d: p < 0.0001 
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Figure 2-5: Laminin expression and localization in immature and adult ERβ-null 

and wildtype mouse ovaries.  

(A) Granulosa cells were isolated and pooled from ovaries of untreated PND 23-29 

wildtype (+/+) or ERβ-null (-/-) mice, and the levels of Lama1 mRNA were determined 

by quantitative RT-PCR compared to an Rpl7 control (± SEM of three independent 

experiments). (B) Immunofluorescence with an anti-laminin antibody was used to detect 

laminin localization and expression in ovaries isolated from wildtype (+/+) and ERβ-null 

(-/-) mice at PND 23-29 (a-d; negative controls with secondary antibody only are shown 

in e and f) wildtype (+/+) and ERβ-null (-/-) mice. Two magnifications are shown. Scale 

bar = 200 µM for a-b, 100 µM for c-d. (C) Focimatrix levels of laminin were quantified 

by counting the number of focimatrix speckles/follicle, and these values compared 

between genotypes by Receiver Operating Characteristic analysis (top panel) and a two-

tailed, un-paired Student’s t-test (± SEM, bottom panel). Each dot in the scatter plot (top 

panel) represents one follicle. f: p < 0.005. (D) Laminin expression in adult ERβ-null and 

wildtype mouse ovaries. Immunofluorescence with anti-laminin antibodies was used to 

detect laminin localization and expression in ovaries isolated from adult wildtype (+/+) 

and ERβ-null (-/-) mice. Two magnifications are shown. Scale bar = 200 µM for a-b, 

100 µM for c-d. (E) Expression of laminin in the focimatrix was quantified by counting 

the number of focimatrix speckles/follicle, and these values were compared between 

genotypes by Receiver Operating Characteristic analysis (top panel) and a two-tailed, un-

paired Student’s t-test (± SEM, bottom panel). Each dot in the scatter plot (bottom panel) 

represents one follicle. e: p < 0.0005.  
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2.4 Discussion 

In this study, we show that disrupted gene expression is observed in the ovaries of 

immature ERβ-null mice as early as PND 13, resulting in abnormal expression of ECM 

components in the ERβ-null ovary. We found that the mRNA levels of the ECM genes, 

Col11a1 and Nid2 were higher in granulosa cells isolated from ERβ-null PND 23-29 

mice, or in whole ovaries isolated from PND 13 mice, than in age-matched WT controls. 

These elevated mRNA levels correlated with higher Col11a1 in the cytoplasm of 

granulosa cells and higher Nid2 expression in the focimatrix of the immature ERβ-null 

ovary, at both PND 23-29 and PND 13. Interestingly, the elevated expression of Col11a1 

and Nid2 in ERβ-null follicles continued into adulthood. Finally, levels of the ubiquitous 

ECM proteins, collagen IV and laminin, were also higher in the adult ERβ-null ovary 

than in the WT ovary. 

2.4.1 An early role for ERβ in ovarian development 

Our results showing that gene expression is dysregulated in ovaries of ERβ-null 

mice at PND 13 are consistent with studies suggesting that both the levels of ovarian ERβ 

and its ligand, E2, increase during a similar time-frame in post-natal ovarian 

development, and that E2 may act through ERβ at this time to regulate gene expression, 

and possibly follicle development. The presence of circulating E2 or its precursors has 

been established in neonatal rats [10] and mice [39], and androstenedione is detectable at 

PND 7 and increases dramatically at PND 15 [11]. ERβ protein is present and functional 

in the ovaries of PND 4-5 mice, but not in younger mice [13, 14], and ovarian ERβ 

protein levels increase with age [14], with the most abundant expression in granulosa 

cells. ERβ mRNA is detectable at PND 1 [14] or PND 4 [13] in the mouse ovary, with a 

dramatic increase occurring between PND 1 and PND 12 [14]. Evidence supporting a 

role for both E2 and ERβ in regulating primary and primordial follicle development in 

the mouse ovary has been suggested using various model systems [17, 19, 40], and our 

results showing disrupted gene expression in ERβ-null mice at PND 13 support a role in 

ovarian development in the immature mouse. Interestingly, during the period of human 

gestation when primordial follicles are formed, the fetal ovary expresses both the 
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steroidogenic enzymes necessary for E2 production, and ERβ protein, suggesting that 

estrogen signaling may also regulate human primordial follicle formation [41]. While it 

may be possible that ERβ plays a role during prenatal ovarian development in the mouse, 

this is unlikely because ERβ mRNA is undetectable in the mouse ovary 26 days post-

coitum [14] and only becomes detectable between PND 1 to PND 4 [13, 14]. 

Interestingly, although detectable at PND 8, we do not observe differences in gene 

expression by qPCR or protein levels by immunofluorescence in Col11a1 or Nid2 

between ERβ-null and WT ovaries (data not shown) as we do at PND 13. One possible 

explanation for this lack of differential Col11a1/Nid2 gene expression at PND 8 may be 

that ovarian ERβ levels are not high enough at PND 8 to detectably alter Col11a1/Nid2 

gene expression in WT mice, since there is a dramatic increase in ERβ mRNA between 

PND 1 and PND 12 in the mouse [14]. Thus it may not be until PND 13 that the lack of 

ERβ would result in significant differences in Col11a1/Nid2 gene expression. On the 

other hand, there may be transcriptional coregulators required for ERβ-mediated 

transcription that are not present at PND 8 but are expressed at PND 13. Further 

experiments in WT and ERβ-null ovaries isolated from mice between PND 8 and 

PND 13 will be required to determine at which point during ovarian development ERβ 

activity is required for Col11a1/Nid2 gene expression.  

We have previously shown that ERβ-null granulosa cells isolated from PND 23-

29 mice demonstrate an attenuated response to FSH, resulting in impaired Lhcgr and 

Cyp19a1 expression, despite similar expression of FSH receptors [4, 5]. At least part of 

this attenuated response is due to reduced cAMP levels in response to FSH stimulation 

compared to WT granulosa cells [5]. Another important finding resulting from this 

previous study was that granulosa cells freshly-isolated from PND 23-29 ERβ-null 

ovaries produced significantly less cAMP than WT cells, even prior to stimulation by 

FSH. This reduced cAMP correlated with the elevated expression of phosphodiesterase 

1c (PDE1C) in ERβ-null granulosa cells compared to WT cells (both isolated from 

untreated PND 23-29 mice) [5]. These results suggested that prior to PND 23, differences 

in granulosa cell gene expression between ERβ-null and WT mice are observed. Our 

current study supports and expands this observation, and provides strong evidence that 
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the impaired ERβ-null granulosa cell response to FSH at PND 23-29 is also due to the 

dysregulation of perhaps numerous ERβ-dependent genes prior to PND 23 that are 

required to prepare a granulosa cell to fully respond to FSH at the onset of puberty.  

Thus, we propose that ERβ, acting either through E2 or in a ligand-independent 

manner, regulates granulosa cell gene expression in follicles at various stages of growth: 

in the primordial, primary, or preantral follicle, and in response to FSH during the 

formation of a preovulatory follicle, as has previously been shown. While it is well 

established that E2 acting through ERβ is required to augment the granulosa cell response 

to FSH for the formation of a preovulatory follicle [4, 5, 42-46], fewer studies exist 

establishing a role for E2 in folliculogenesis, prior to the gonadotropin surge at puberty. 

Several reports indicate that E2 enhances or is required for the production of primary 

follicles [17, 19], although others suggest that E2 inhibits primordial follicle assembly 

[12, 40]. It has been reported that the number of primordial and primary follicles are 

similar in immature (PND 23) ERβ-null and WT mice, suggesting that ERβ is not 

required for the formation of primordial or primary follicles [18]. In contrast, adult 

female ERβ-null mice have elevated numbers of primordial follicles, and reduced 

numbers of primary follicles [18], suggesting that ERβ may participate in primordial 

follicle recruitment and/or maintenance. Further experiments will be required to 

determine the function of ERβ in the PND 13 ovary, and whether ERβ’s loss at earlier 

stages truly impacts primary follicle formation and/or granulosa cell function.  

2.4.2 Disrupted Expression of ECM components in ERβ-null 
ovaries 

This work is also novel in that we have characterized a significant elevation in 

multiple ECM proteins in immature and adult ERβ-null ovaries: a phenotype that has not 

previously been reported at either age. Col11a1 is expressed at very low levels in the WT 

immature ovary (Figure 2-1), but is robustly expressed in the cytoplasm of granulosa 

cells in the ERβ-null ovary at these ages. The localization of Col11a1 in the ovary of any 

species has, to our knowledge, not previously been reported, and in the mouse, Col11a1 

mRNA levels are highest in bone and cartilage [47]. In rat cartilage, Col11a1 is localized 
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in the ECM between chondrocytes [48]; however, in human colon tissue, Col11a1 is 

localized to the cytoplasm (specifically, the Golgi apparatus) of goblet cells [49]. We also 

observed Col11a1 in the cytoplasm of granulosa cells, and the function of Col11a1 in 

granulosa cell cytoplasm certainly merits further study, as does the possibility that 

granulosa cells may secrete Col11a1 and contribute to granulosa cell-cell adhesion or 

migration. We also observe Nid2 overexpression in the focimatrix in ERβ-null ovaries as 

early as PND 13 (Figure 2-2B), and Nid2 remains elevated in the adult (Figure 2-2D). 

Similarly, laminin expression (Figure 2-5) was higher in the focimatrix of both PND 23-

29 and adult ERβ-null ovaries compared to their WT counterparts, while Col4a1 was 

elevated in ERβ-null adult but not PND 23-29 ovaries (Figure 2-4). Our results are 

consistent with two previous reports in which global collagen levels were higher in adult 

ERβ-null ovaries than in WT ovaries, in either: a) both stromal and thecal layers [50], or 

b) in the stroma only [6]. Our work supports and expands these observations, indicating 

that not just collagen, but a number of other ECM proteins are aberrantly highly 

expressed in the adult ERβ-null follicle, and in addition, these elevated levels are 

observed in immature mice. The fact that Nid2, laminin and Col4a1 expression was 

higher specifically in the focimatrix of ERβ-null ovaries, and not, for example, in the 

stroma, suggests that it is likely ERβ within granulosa cells regulating the expression of 

these genes (or other upstream genes required for their expression), since granulosa cells 

are the primary location of ERβ within the ovary, resulting in their secretion from the cell 

and localization to the extracellular region of granulosa cells. Further studies using in situ 

hybridization are needed determine which cells within the ovary produce these common 

ECM components. 

2.4.3 Regulation of Nid2 and Col11a1 by Estradiol and ERβ 

There is evidence that E2 regulates ECM composition in the ovary and other 

tissues. For example, E2 regulates collagen turnover and ECM maintenance in the uterus 

and vagina of ovariectomized rats [51], and neonatal estrogen treatment disrupts the 

ECM composition of the rat prostate [52]. Abnormal ECM composition and structure is 

also observed in lungs of ERβ-null mice [53]. Within the context of our study, several 

hypotheses can be put forward to explain how the lack of ERβ results in increased 
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expression of Nid2 and Col11a1 in the ERβ-null immature ovary. First, ERβ may directly 

repress the transcription of these genes either by binding EREs located proximal to or 

distant from the transcriptional start site, or by binding to other transcription factors, 

which themselves are bound to DNA (tethering). There is evidence that Col11a1 and 

Nid2 expression is regulated by E2 in other model systems. Col11a1 mRNA is increased 

by E2 treatment of osteosarcoma cells expressing ERβ, but not ERα, indicating that not 

only is Col11a1 regulated by E2 but that ERβ is selectively required for its regulation 

(Gene Expression Omnibus dataset GDS884) [33], although in this case E2 increases 

rather than decreases Col11a1 expression, as would be predicted by the elevated Col11a1 

levels we observe in the absence of ERβ. Treatment of ovariectomized adult mice with 

E2 decreases uterine Nid2 mRNA levels within six hours of treatment, consistent with a 

role for ERβ in repressing Nid2 gene expression in the ovary [32]. It is also possible that 

ERβ indirectly decreases the transcription of Nid2 and Col11a1 by regulating the 

expression of other protein(s), such as transcription factors or transcriptional 

coregulators, or signaling molecules known to regulate folliculogenesis. In fact, in a 

whole ovary culture model in which PND 4 rat ovaries (which contain almost exclusively 

primordial follicles) were treated with Kit ligand [54], Col11a1 expression was reduced, 

suggesting that Kitl signaling may be disrupted in ERβ-null neonatal ovaries. Lack of 

ERβ may also stabilize Nid2 and Col11a1 mRNA through regulation of a protein 

involved in RNA stability. Finally, it is possible that, ERβ may upregulate expression of 

a proteinase that degrades ECM proteins, resulting in the accumulation of Nid2 and 

Col11a1, and perhaps laminin and Col4a1 as well, in the absence of ERβ. Further 

experiments are required to determine which of these potential mechanisms is responsible 

for the elevated expression of Col11a1 and Nid2, and the other ECM proteins we 

observed elevated in ERβ-null ovaries. 

2.4.4 Potential impact of altered expression of ECM components 
on ERβ-null ovaries 

What impact the elevated levels of ECM protein in the cytoplasm (Col11a1) or in 

focimatrix (Nid2, Col4a1, laminin) of granulosa cells might have on folliculogenesis or 

function of the ERβ-null ovary is not clear. It is well established that dramatic changes in 



 

 

121 

the ECM occur throughout folliculogenesis [24, 25, 27], and that the ECM carries out 

many functions within the ovary. Within the ovary and follicle, the ECM provides 

structural support, organizes and connects cells, and serves as a reservoir for signaling 

molecules that regulate follicle growth. The ECM also regulates establishment of the 

basement membrane, oocyte maturation, follicle atresia, steroidogenesis, and cell lineage 

[21, 26]. Further studies testing these specific functional endpoints in ERβ-null ovaries 

will help determine the potential impact of these overexpressed ECM proteins on ERβ-

null ovary and granulosa cell function. The role of the focimatrix in granulosa cell and 

follicular function is less clear than that of the ECM, and very little is known regarding 

focimatrix function, although recent studies are beginning to address this question. 

Irving-Rodgers et al. have demonstrated that cholesterol side-chain cleavage cytochrome 

P450 (Cyp11a1) mRNA levels are highly and positively correlated with the expression of 

a number of focimatrix proteins in bovine ovaries, suggesting that the focimatrix 

participates in the selection of a dominant follicle [23, 35]. The same authors have also 

suggested that focimatrix may trigger the transition of an epithelial granulosa cell to a 

mesenchymal luteal cell by reducing the polarizing “cue” provided by the follicular basal 

lamina [34]. Thus, it is possible that the increased Nid2, Col4a1, and laminin expression 

we observe in the focimatrix of ERβ-null ovaries may impact the steroidogenic capacity 

of ERβ-null granulosa cells, and indeed, reduced E2 levels have been observed in 

cultured ERβ-null follicles [18]. Altered focimatrix composition may also affect ERβ-

null granulosa cell luteinization, and this effect would be consistent with the dramatically 

reduced luteinization of ERβ-null granulosa cells in response to LH [4, 5, 41]. Also, 

given that focimatrix Nid2 levels are lower in bovine partially dominant follicles than in 

fully dominant follicles or subordinate follicles, it is also possible that increased Nid2 in 

focimatrix of ERβ-null ovaries may interfere with or alter follicle selection. Further 

experiments will be required to test these hypotheses. 

A surprising finding was that Nid1 mRNA is not elevated in immature ERβ-null 

granulosa cells, but that its protein expression is significantly higher in the focimatrix of 

immature ERβ-null follicles than WT follicles. Given this elevated Nid1 expression 

observed in immature ERβ-null follicles, it was also surprising that Nid1 focimatrix 
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levels are similar in both genotypes in the adult mouse. One possible explanation for 

these findings is that ERβ may regulate export or secretion of focimatrix proteins such as 

Nid1, and that attenuation of this activity might occur with age, resulting in similar Nid1 

protein levels in the adult ovaries of both genotypes. The ERβ-dependent regulation of 

focimatrix protein secretion may also explain the elevated focimatrix levels of Col4a1 

and laminin observed in adult ERβ-null ovaries (and for laminin, also in immature 

ovaries), although Col4a1 and Lama1 mRNA levels were similar in both genotypes in 

both immature (Figures 2-4 and 2-5) and adult (data not shown) ovaries. A final 

possibility to explain Col4a1 accumulation in the adult but not the immature focimatrix is 

that Col4a1 protein may begin to accumulate in the ERβ-null immature focimatrix, but 

differences between WT and ERβ-null may not be detectable until sufficient Col4a1 has 

accumulated in the adult to detect these differences. In total, these results suggest that not 

all focimatrix genes are regulated via the same transcriptional mechanisms, and that ERβ 

may differentially regulate focimatrix protein export, as differential mechanisms of 

export have previously been observed for individual ECM proteins [55-57]. Although co-

regulated expression of Nid1, Nid2, and Col4a1 mRNA has been previously observed in 

bovine follicles [23], species differences may also account for the lack of coordinated 

regulation we observe in the ERβ-null ovary. 

2.4.5 Conclusions 

In summary, we have shown for the first time that disrupted gene expression is 

observed in the ovaries of immature ERβ-null mice as early as PND 13, resulting in 

elevated expression of ECM proteins in the extracellular regions within the focimatrix or 

surrounding granulosa cells within the ERβ-null ovary. This increased expression is also 

observed in the adult ERβ-null ovary. These findings suggest that ERβ regulates gene 

expression in the ovary prior to puberty, and we speculate that dysregulation of ERβ-

mediated gene expression in early postnatal life may disrupt folliculogenesis and/or 

contribute to the impaired response of immature ERβ-null granulosa cells to FSH [4, 5]. 
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Figure S2-1: Calnexin and Col11A1 localize to the cytoplasm of granulosa cells in 

ovaries of immature PND 23-29 mice 

Immunofluorescence with anti-calnexin (A) and anti-Col11A1 (B) antibodies were used 

to confirm the cytoplasmic localization of (A) calnexin in PND 23-29 wildtype mice, and 

(B) Col11A1 in PND 23-29 ERβ-null (-/-) mice (identical image to that in Figure 2-1C, 

section f). (A): Scale bar = 100 µM; (B) Scale bar = 50 µM. 
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Table S2-1: Dysregulated extracellular matrix genes in ERβ-null granulosa cells 

compared to ERβ-het cells. 

Genbank ID Gene Symbol Gene Name Fold P-value 
NM_008695 Nid2 nidogen 2 3.9 6.5E-42 
NM_178929 Kazald1 Kazal-type serine peptidase inhibitor 

domain 1 
3.7 1.2E-40 

NM_007729 Col11a1 collagen, type XI, alpha 1 2.3 1.4E-16 
NM_175506 Adamts19 a disintegrin-like and metallopeptidase 

(reprolysin type) with thrombospondin 
type 1 motif, 19 

2.3 1.6E-07 

NM_016762 Matn2 matrilin 2 1.7 9.3E-10 
NM_008606 Mmp11 matrix metallopeptidase 11 1.6 0.00002 
NM_011775 Zp2 zona pellucida glycoprotein 2 1.6 9.5E-10 
NM_009369 Tgfbi transforming growth factor, beta induced 1.6 0.00083 
AK078108 Ptprz1 protein tyrosine phosphatase, receptor type 

Z, polypeptide 1 
1.5 0.00001 

NM_008482 Lamb1 laminin B1 subunit 1 1.4 4.2E-11 
NM_009368 Tgfb3 transforming growth factor, beta 3 1.4 3.1E-06 
NM_026439 Ccdc80 coiled-coil domain containing 80 1.4 0.00004 
NM_009929 Col18a1 collagen, type XVIII, alpha 1 1.4 9.5E-10 
NM_007833 Dcn decorin 1.4 0.00002 
NM_175148 N/A RIKEN cDNA 2300002M23 gene 1.3 0.00002 
NM_016696 Gpc1 glypican 1 -1.2 0.00007 
AK003211 N/A RIKEN cDNA 1110001D15 gene -1.3 0.00093 
NM_011261 Reln reelin -1.4 0.00041 
NM_012050 Omd osteomodulin -1.5 5.6E-09 
NM_010681 Lama4 laminin, alpha 4 -1.9 0.00007 
NM_028266 Col14a1 collagen, type XVI, alpha 1 -1.9 0.00001 
NM_145584 Spon1 spondin 1, (f-spondin) extracellular matrix 

protein 
-2.5 6.1E-19 

NM_019919 Ltgp1 latent transforming growth factor beta 
binding protein 1 

-2.7 6.8E-20 

NM_016685 Comp cartilage oligomeric matrix protein -15.7 7.2E-33 
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Chapter 3 

 The Basic Helix-Loop-Helix Transcription Factor TCF21 3
Represses Estrogen Receptor β-Mediated Transcription 

3.1 Introduction 

Estrogens are a class of steroid hormones that regulate cell differentiation, 

proliferation and function in many tissues. The biological effects of estrogens are 

facilitated by estrogen receptors (ERs), which are transcription factors that bind both 

natural and synthetic estrogens to regulate transcription of target genes [1]. The ER 

belongs to the nuclear receptor family of ligand-inducible transcription factors. Its classic 

mechanism of action is similar to that of other receptors in this superfamily. In the 

absence of ligand, the ERs are present in an inactive state within the nuclei. Ligand 

binding induces a conformational change within the ER, which allows the receptors to 

dimerize and bind with high affinity to specific sequences, called estrogen response 

elements (ERE), located within the regulatory regions of target genes and many other 

regions within the genome [2-4]. The receptors then interact with the general 

transcription machinery either directly or indirectly via cofactor proteins [3, 5]. The cell 

and promoter involved will determine whether the ER will exert a positive or negative 

effect on the expression of the downstream target gene [5]. 

Two isoforms of ER have been identified, ERα and ERβ. Although both are 

widely distributed throughout the body, they have distinct levels and expression patterns 

in different tissues and cell types [6, 7]. ERβ is expressed in fewer tissues than ERα, and 

is most highly expressed in the ovary [6]. Within the ovary ERβ is restricted to the 

granulosa cells, which nourish the oocyte and are essential for its growth [8]. Mice 

lacking ERβ ovulate less frequently and have smaller litters than wildtype mice due to an 

impaired response to follicle stimulating hormone, resulting in poor granulosa cell 

differentiation[9]. 

We have previously shown that the levels of expression of ECM components is 

disrupted in the ovary of the immature and adult ERβ-null mouse [10]. We have 
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identified a number of genes of the ECM whose protein levels are significantly higher in 

ERβ-null follicles than in wildtype follicles. This results in abnormally high expression of 

ECM components in the ERβ-null ovary, suggesting that these ECM genes are repressed, 

either directly or indirectly by ERβ. The molecular processes that initiate gene repression 

by ERβ in vivo are not well understood, and there remains limited information in the 

literature regarding corepressors specifically involved in ERβ-mediated transcription or 

transactivation in vivo [11-14]. Herein we look at the mechanism by which ERβ may be 

acting as a transcriptional repressor in granulosa cells. 

Transcription factor 21 (TCF21) is a basic helix-loop-helix (bHLH) protein 

identified for its role in embryonic development [15-17]. Class II bHLH proteins, to 

which TCF21 belongs, have a tissue-specific pattern of expression. While Class I proteins 

are widely expressed and capable of binding to DNA as homodimers, a Class II bHLH 

factor typically requires heterodimerization with a Class I factor to bind at the target 

gene. TCF21 often binds to the E Box, a consensus CANNTG sequence, as a heterodimer 

with the ubiquitously expressed E12 protein [15, 16]. A phenotypic analysis of 

homozygous TCF21 mouse mutants demonstrates that TCF21 plays an important role in 

the formation of the spleen [18], kidney and lung [19], and is critical for sexual 

differentiation [20]. Mice lacking TCF21 die in the perinatal period and show male-to-

female sex reversal [18-20]. TCF21 is one of the earliest genes expressed in the 

mesodermal cells that later develop into the gonads [21]. TCF21 transcripts have been 

identified in fetal and postnatal ovaries of mice, with the levels of TCF21 expression 

increasing from 13.5 dpc to PND28 [21]. Although it has become clear that TCF21 is 

essential for normal gonadogenesis, the detailed mechanism of its role in postnatal 

ovaries remains unclear. 

Biochemical and genetic analyses have demonstrated that TCF21 can act as a 

transcriptional repressor [20-24]. It is the first bHLH protein suggested to act as a general 

repressor of nuclear receptors [24]. A detailed analysis of its effect on the Androgen 

Receptor (AR), another member of the nuclear receptor family, has suggested that TCF21 

controls AR transcription and function [24]. A yeast two-hybrid screen of a mouse 
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granulosa cell cDNA library performed by Dr. Deroo revealed a physical interaction 

between ERβ (amino acids 1-254) and TCF21 (amino acids 23-149) (unpublished data).  

To test the hypothesis that TCF21 represses ERβ-mediated transcription we 

utilized transient transfection of immortalized cell lines in combination with reporter 

assays. We also aimed to identify which regions of ERβ and TCF21 interact for this 

repression to occur. In the present study we demonstrate that TCF21 represses ERβ-

mediated transcription, which is, to the best of our knowledge the first evidence of a 

bHLH transcription factor repressing the function of ERβ.  

3.2 Materials and Methods 

3.2.1 Cell Culture 

HuH7 human hepatoma cells were maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Wisent) supplemented with 5% (v/v) fetal bovine serum (FBS; 

Wisent) and 1% (v/v) penicillin/streptomycin (P/S; Wisent). The HuH7 cells were a gift 

from Dr. J. Matthews (University of Toronto). MCF7 human breast cancer cells (a gift 

from Dr. J. Torchia, University of Western Ontario) and COS-7 African green monkey 

kidney cells (a gift from Dr. J. Mymryk, University of Western Ontario) were both 

cultured in DMEM supplemented with 10% FBS and 1% P/S. HEC1 cells derived from a 

human endometrial adenocarcinoma were grown in McCoy’s 5a medium supplemented 

with 10% FBS and 1% P/S. The HEC1 cells were a gift from Dr. B. Katzenellenbogen 

(University of Illinois) The HEK293 human embryonic kidney cell line (a gift from 

Dr. A. Babwah, Univerity of Western Ontario) was cultured in Minimal Essential 

Medium (MEM; Wisent) with 10% FBS and 1% P/S. The KGN cells derived from a 

human granulosa cell tumour were cultured in Dulbecco modified Eagle medium/F-12 

(DMEM/F12; Wisent) supplemented with 10% FBS and 1% P/S. The KGN cells were 

obtained from the RIKEN BioResource Center. The GFSHR-17 rat granulosa cell line 

(obtained from Dr. A. Amsterdam, Weizmann Institute of Science) was grown in 

DMEM/F12 with 5% FBS +1% P/S. All cell lines were maintained at 37°C in 5% CO2 

and subcultured every 2–3 days or when cells reached 80% confluency. 
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3.2.2 Transient transfection and reporter assays 

HuH7 cells were seeded 24 h before transfection in 12-well plates at a density of 

1.5x105 cells/well in phenol red-free DMEM supplemented with 5% charcoal-stripped 

FBS (CS-FBS) and 1% P/S. Complete culture medium was freshly added 1 h before 

transfection. HuH7 cells were transfected with “GenJet Reagent for HuH7 Cells” 

(SignaGen) according to the manufacturer’s protocol; 0.8 µg plasmid DNA was added to 

each well. Cells were transfected with 200 ng of receptor (pcDNA-hERβ), 500 ng of 

reporter (3x-ERE-luc, pS2-Luc, C3-luc or Lf-Luc), 5 ng of the pRL-SV40 renilla 

luciferase normalization vector, and either 200 ng bHLH expression plasmid (pCMV-

SPORT-TCF21 (hTCF21), pcDNA-Mist1 (Mist1) or E12-pCLBabe (E12)) or the empty 

vector pcDNA3.1 to maintain the total amount of DNA constant per well. The pS2 and 

Lf-luc were generous gifts from Dr. T. Teng and Dr. K. Korach, respectively 

(NIH/NIEHS). The C3-ERE-luc reporter, TCF21 and E12 expression plasmids were 

purchased from Addgene.org. The Mist1 expression plasmid was a kind gift from Dr. 

C. L. Pin (University of Western Ontario). Transfections were performed in triplicate. 

Twenty-four hours after transfection cells were treated with 10 nM (10-9 M) of 17β-

estradiol (estradiol) for 24 h. This dose was selected based on published studies in which 

HepG2 liver hepatocellular carcinoma cells were treated with estradiol (ranging from 10-
11 to 10-4 M) and ERβ-specific induction of several promoters was investigated [2, 3]. 

Cells were then rinsed twice with PBS and 1X Passive Lysis Buffer (Promega) was added 

directly to the culture plates. The plates were gently rocked for 15 min at room 

temperature (RT) to ensure complete coverage of the cell monolayer. Luciferase assays 

were performed using the Dual-Luciferase Reporter Assay System (Promega) according 

to the manufacturer’s standard protocol, and each value was normalized to its Renilla 

luciferase control. Fluorescence was measured using a Synergy H4 Microplate Reader 

(Biotek). 

HEC1, HEK293 and KGN cells were seeded 24 h before transfection in 24-well 

plates at a density of 8 x 104 cells/well in phenol red-free culture medium (McCoy’s 5a, 

MEM and DMEM/F12 respectively) supplemented with 10% CS-FBS. Transfections 

were performed using FuGENE HD (Promega); 0.7 µg DNA was added to each well. A 
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reagent:complex ratio (µl FuGENE HD:µg DNA) of 7:2 was used to transfect HEC1 and 

HEK293 cells, and 5:2 to transfect KGNs. Cells were transfected with 90 ng hERβ, 500 

ng reporter plasmid, 10 ng pRL-SV40 and 100 ng hTCF21 or pcDNA plasmid. 

Treatments with estradiol and luciferase assays were performed as described above for 

HuH7 cells.  

MCF7 and COS7 cells were seeded 24 h before transfection in 6-well plates at a 

density of 2.5x105 in phenol red-free DMEM with 10% CS-FBS.  Both cell lines were 

transfected using FuGENE 6 (Promega) according to the manufacturer’s protocol; a 

complex of reagent and plasmid was prepared at a ratio of 3:1 (µl FuGENE 6:µg DNA) 

with 1 µg DNA added per well. The amount of receptor plasmid, reporter plasmid and 

TCF21/pcDNA plasmid transfected was consistent with the HuH7 protocol described 

above. The lacZ expression plasmid pCMVβ (200 ng) was used as an internal 

transfection control in these reporter assays. Twenty-four hours after transfection cells 

were treated with 10 nM of estradiol for 24 h. Luciferase activity was assayed using the 

Luciferase Assay System (Promega) and normalized to β-galactosidase activity 

determined by X-gal staining.  

All experiments were repeated a minimum of three times, and reproducible results 

were obtained in independent experiments. 

3.2.3 Cell extracts and Western blotting 

Protein lysates from adult mouse tissues were generated by homogenizing tissues 

in ice-cold radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl [pH 8.0], 

150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% SDS) with a 

protease inhibitor cocktail (1:100; Sigma) until the resulting lysate was completely 

homogeneous. Lysates were incubated on ice for 20 min then clarified by centrifugation 

(15 000 × g for 20 min at 4°C). Total cellular protein from adherent cells was isolated 

using Pierce IP Lysis Buffer (Thermo Scientific) with 1X Halt Protease Inhibitor Cocktail 

(Thermo Scientific), clarified by centrifugation (13 000 × g for 10 min at 4°C) and 

quantified by DC Protein Assay (Bio-Rad).  
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Protein extract was boiled in Laemmli Buffer for 5 min and separated by SDS-

PAGE (40 µg/lane) using a 12% gel. The separated proteins were then transferred to a 

polyvinylidene difluoride membrane (PVDF; Roche) at 100V for 1 h at 4°C, and blocked 

for 1 h at RT with 5% skim milk in Tris-buffered saline with Tween-20 (TBST). 

Following washes with TBST, the membrane was incubated with anti-TCF21 antibody 

(1:200 in 5% skim milk/TBST; Santa Cruz Inc. sc-15007) overnight at 4°C, then with a 

peroxidase-conjugated anti-goat (1:10 000 in 5% skim milk/TBST; Santa Cruz) for 1 h at 

RT. Immunoreactive bands were visualized using enhanced chemiluminescence reagent 

(ECL Plus; Amersham Biosciences) and Hyperfilm (Amersham).  

3.2.4 Coimmunoprecipitation 

Optimization of coimmunoprecipitation assays was performed with HuH7, HEC1, 

HEK293 and MCF7 cell lines. Cells were seeded 24 hours before transfection in 100 mm 

dishes and transfected with 10 µg of DNA (hERβ, FLAG-ERβ, hTCF21, hERβ + 

hTCF21, FLAG-ERβ + TCF21, hAR, hAR + hTCF21 or pcDNA3.1). The appropriate 

transfection reagent for each cell line was used as described above. Transfected cells 

were treated 24 and 48 hours later with 10 nM ligand (ERβ transfected cells with 

estradiol, AR transfected cells with testosterone) for 24 and 48 hours.  

We tested four lysis buffers to isolate cellular proteins: Radioimmunoprecipitation 

assay (RIPA) buffer A (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% Triton X-100, 

0.5% sodium deoxycholate, and 0.1% SDS) supplemented with a protease inhibitor 

cocktail (1:100; P8340; Sigma), RIPA buffer B (50 mM Tris-HCl [pH 7.5], 50 mM NaCl, 

2.5 mM EGTA, 1% Triton X-100, 50 mM NaF, 10 mM Na4P2O7, 10 mM Na3VO4) 

supplemented with a protease inhibitor cocktail (1:100; Sigma), Pierce IP Lysis Buffer 

(Thermo Scientific) with 1X Halt Protease Inhibitor Cocktail (Thermo Scientific) and 

NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific). Cells 

harvested with RIPA A or RIPA B Buffer were incubated for 20 (or 40 min) at 4°C with 

gentle rocking, then scraped and transferred to a 1.5-mL microcentrifuge tube. Lysates 

were then clarified by centrifugation (RIPA A: 15 000 × g for 20 min at 4°C; RIPA B: 23 

000 × g for 20 min at 4°C). Pierce IP Lysis Buffer and NE-PER reagents were used 
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according to the manufacturer’s protocol to isolate total cellular protein. Total protein 

was quantified using the DC Protein Assay (Bio-Rad).  

Whole cell lysate (500 µg) was incubated with 50 µl of 50% protein G Sepharose 

Fast Flow (Sigma) slurry and one of the following antibodies [TCF21 (Abcam; ab32981); 

TCF21 (Santa Cruz; sc-15007); ERβ (Abcam; ab16813); ERβ (Abcam; ab92306); ERβ 

(Santa Cruz; sc-8974); AR (Santa Cruz; sc-815); FLAG (Sigma; F7425)] overnight, 

rotating at 4°C. The following day, the beads were washed four to six times with lysis 

buffer at 4°C, boiled in Laemmli Buffer for 5 min and separated by SDS-PAGE (50 

µg/lane) using a 12% gel. The separated proteins were then transferred to a PVDF 

membrane (Roche) and probed for coimmunprecipitated proteins. Because we were 

attempting to optimize this protocol, we ran samples in duplicate whenever possible 

which allowed us to also probe for the immunoprecipitated protein with its own antibody. 

When this was not possible the single membrane was stripped and reprobed for the 

immunoprecipitated protein. The protein bands were detected with an enhanced 

chemiluminescence reagent (ECL Plus; Amersham Biosciences) and Hyperfilm 

(Amersham). 

3.2.5 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software. Data were 

expressed as mean ± SEM. Statistical analysis was performed using one-way ANOVA 

and Tukey’s post-hoc test with significances set at *p < 0.05, ** p < 0.01, *** p < 0.001 

and **** p < 0.0001 as indicated. 

3.3 Results 

It has been reported that TCF21 is critical for sexual differentiation[20] and its 

expression increases in the murine whole ovary from the embryonic to postnatal 

stages[21]. Because ERβ is predominantly expressed in granulosa cells of the ovary we 

sought to determine whether granulosa cells also express TCF21. I have confirmed by 

Western blot that TCF21 is expressed in both primary mouse granulosa cells and in 

several granulosa cell lines, as well as various cell lines of other tissue origin, and mouse 
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tissues (Fig 3.1). HEK293 cells were transfected with hTCF21 expression plasmid to 

serve as a positive control in Western blot analysis.  

3.3.1 TCF21 is a novel transcriptional repressor of ERβ-mediated 
transcription 

The malignant liver cell lines HuH7[25] and HepG2[2, 3] are commonly used in 

the literature to study ER transcriptional activity because they do not have functional 

endogenous ER and therefore require exogenous ER to activate ERE-mediated 

transcription. Therefore, we elected to use HuH7 cells for each of our assays. Taking into 

account that different cell types will have different endogenous cofactors, we also used 

other cell lines to determine whether the effect of TCF21 on ERβ transcriptional activity 

is cell-line or cell type-specific.   

To examine the possibility that TCF21 may modulate ERβ transcriptional activity 

we performed transient transfections and luciferase assays. We utilized both ER negative 

(HuH7 [25], HEC1 [26], COS7 [27], HEK293 [27]) and ER positive (MCF7 [high 

endogenous ERα, lower levels of ERβ] [28], KGN [ERβ positive, ERα negative] [29]) 

cell lines for these assays. Cells were co-transfected with an ERβ expression plasmid, a 

synthetic estrogen-responsive 3x-ERE (three copies of the vitellogenin estrogen response 

element) firefly luciferase reporter vector, a renilla luciferase or LacZ normalization 

vector and either hTCF21 or an empty vector. Because ERβ is a ligand-inducible 

transcription factor the cells were then treated with 10 nM estradiol (E2) for 24 hours. 

Luciferase assays were performed to determine the effect of TCF21 on ERβ-mediated 

transcriptional activity. 

HuH7 cells were initially transfected with an increasing hTCF21:ERβ ratio (1:1, 

2:1, and 3:1) to optimize transfection efficiency. Surprisingly, increasing the amount of 

TCF21 had no significant effect on ERβ-mediated transcription of the 3x-ERE luciferase 

reporter, which contains three copies of the canonical estrogen response element (Fig 

3.2). Therefore, the 1:1 ratio was used for subsequent experiments.  
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Figure 3-1: TCF21 expression in cell lines and mouse tissues. 

Whole cell extracts from adult mouse tissues (granulosa cells, testis, kidney and spleen) 

as well as immortalized cell lines (HEK293, HEK293 transfected with a hTCF21 

expression vector, KGN, KK1, GFSHR17, HEC1, MCF7 and HuH7) were analyzed by 

Western blot to detect TCF21 protein expression. 
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Figure 3-2: Effect of TCF21 on ERβ-mediated transcription.  

HuH7 cells were transiently transfected with a 3x-ERE-luc reporter (200 ng), pRL-SV40 

(5 ng) and increasing amounts of TCF21 expression plasmid (+, 200 ng; ++, 400 ng; +++, 

600 ng). They were then treated with 10 nM estradiol (E2) (24 hours). Dual luciferase 

assays were performed. Data are expressed as means ±SEM of three independent 

experiments performed in triplicate. ****, p <0.0001; ns = not significant (one-way 

ANOVA and Tukey’s post-hoc test). RLU, relative light unit.  
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We have demonstrated that TCF21 represses ERβ transactivation of the 3x-ERE-

luc reporter in six mammalian cell lines (Fig 3.3). The level to which E2 activates and 

TCF21 inhibits ERβ-mediated transcription is cell-line dependent. The lowest level of 

E2-induced activation was observed in the KGN cell line (Fig 3.3D), which is not 

surprising because ERE-luc is poorly activated by E2 when either ER form is transfected 

in KGN cells[29]. The relative level of repression by TCF21 is also low (33%), yet 

significant. In all remaining cell lines we studied TCF21 represses ERβ-mediated 

activation of the 3x-ERE-luc by at least 50%. TCF21 had no significant affect on ERα 

transactivation (Fig S3.1). 

3.3.2 TCF21 inhibits ERβ transactivation of naturally occurring 
estrogen response elements 

Estradiol does not activate transcription from all estrogen-responsive promoters in 

an equivalent manner and studies have shown that the transcriptional activity of ER is 

significantly affected by the nature of the target promoter [2]. Most naturally occurring 

EREs are imperfect, non-canonical EREs; therefore we used three well-known naturally-

occurring estrogen-responsive promoters to determine if TCF21 would repress their 

estrogenic activity. Specifically, we studied the lactoferrin (Lf), pS2 and complement 3 

(C3) promoters. We tested these promoters in two ER negative cell lines – HuH7 and 

HEC1; we elected to use these cell lines because the former is TCF21 positive, while the 

latter does not express endogenous TCF21 (Fig 3.1). We have demonstrated that TCF21 

represses ERβ-mediated transcriptional activity of all three natural estrogen-responsive 

promoters; the extent to which TCF21 inhibits ERβ transactivation depended on the 

nature of the response element as well as being cell-type dependent (Fig 3.4). TCF21 has 

a significantly greater repressive effect on pS2 activation compared to the C3-ERE in 

HuH7 cells. Lactofferin is neither activated upon E2 treatment, nor repressed when 

TCF21 expression plasmid is co-transfected in HuH7 cells (Fig 3.4A). In HEC1 cells, the 

relative level of repression by TCF21 is C3>pS2>Lf. Surprisingly, pS2 was not activated 

by E2 treatment yet we still observed significant repression of the promoter by TCF21 

(Fig 3.4B).  
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Figure 3-3: TCF21 represses ERβ-mediated transcription of a 3x-ERE reporter. 

Various cell lines were transiently co-transfected with an ERβ expression plasmid, a 3x-

ERE firefly luciferase reporter vector, a renilla luciferase (A-D) or lacZ (E-F) 

normalization vector, and either the TCF21 expression plasmid or empty vector 

(pcDNA). The cells were then treated with 10 nM estradiol (E2) for 24 hours. Dual 

luciferase assays were performed to determine ERβ-mediated transcriptional activity. All 

values represent mean  ±SEM of three separate experiments. *p<0.01; **p<0.01; 

***p<0.001; ****p<0.0001 as determined by one-way ANOVA and Tukey’s post-hoc 

test. RLU, relative light unit.  
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Figure 3-4: TCF21 represses ERβ transactivation of natural estrogen-responsive 

promoters. 

HuH7 (A) and HEC1 (B) cell lines were transfected with ERβ expression plasmid, a 

native estrogen-responsive promoter (C3, pS2 or Lf), a renilla luciferase normalization 

vector, and either TCF21 or empty vector (pcDNA). The cells were then treated with 10 

nM estradiol (E2) for 24 hours. Dual luciferase assays were performed to determine ERβ-

mediated transcriptional activity. All values represent mean ±SEM of three separate 

experiments. *p<0.01; ***p<0.001; ****p<0.0001 as determined by one-way ANOVA 

and Tukey’s post-hoc test. RLU, relative light unit. 
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3.3.3 ERβ transactivation is not inhibited by co-transfection with 
Mist1, another Class II bHLH protein 

To confirm that the repression of ERβ transactivation by TCF21 is specific, rather 

than a broad response to co-transfection of ERβ with a Class II bHLH protein, we tested 

the effect of another Class II bHLH transcription factor on ERβ-mediated transcription. 

Mist1 is a bHLH transcription factor expressed in pancreatic acinar cells and other serous 

exocrine cells. It represses myogenic differentiation by targeting the MyoD gene[30]. We 

showed that Mist1 had no effect on ERβ-mediated transcription of the 3x-ERE reporter 

(Fig 3.5), demonstrating that the repression we have observed by TCF21 is specific and 

cannot be achieved by all Class II bHLH transcription factors. 

3.3.4 Repression of ERβ transactivation by TCF21 does not 
require E12 

E12 is a Class I bHLH transcription factor that often heterodimerizes with Class II 

bHLH transcription factors. TCF21 has previously been shown to transactivate promoters 

alone or in combination with E12[15, 16, 24, 31]; therefore we tested whether E12 was 

required for optimal TCF21-mediated repression of ERβ activity. We found that ERβ-

mediated transactivation does not require TCF21 heterodimerization with E12 in this 

model (Fig 3.6). Unlike TCF21, E12 alone enhanced the effect of E2 treatment on 3x-

ERE-luc promoter activity. Interestingly, co-expression of E12 with TCF21 appeared to 

antagonize the ability of TCF21 to repress ERβ-mediated estrogenic activity. 

3.3.5 ERβ and TCF21 interaction 

After successfully demonstrating that TCF21 represses ERβ-mediated 

transcription in vitro, we next determined whether ERβ and TCF21 interact to form a 

complex in vivo. Both proteins are localized in the nucleus [23, 32] and Dr. Deroo’s 

previous yeast two-hybrid screen suggested that the repressive effect of TCF21 on ERβ 

involved their physical association. Our objective was to assess their direct physical 

interaction using both GST-pull-down analyses and co-immunoprecipitation (Co-IP) 

experiments in TCF21 and ERβ-containing granulosa cell lines, with the ultimate goal of 

testing their interaction in primary granulosa cells.  
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Figure 3-5: Mist1 does not repress ERβ-mediated transcription of a 3x-ERE 

reporter. 

HuH7 cells were transfected with an ERβ expression plasmid, 3x-ERE firefly luciferase 

reporter vector, a renilla luciferase normalization vector, and either an empty vector 

(pcDNA), TCF21 or Mist1. The cells were then treated with 10 nM estradiol (E2) for 24 

hours. Dual luciferase assays were performed to determine ERβ-mediated transcriptional 

activity. All values represent mean  ±SEM of three separate experiments. **p<0.011 as 

determined by one-way ANOVA and Tukey’s post-hoc test. RLU, relative light unit. 
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Figure 3-6: E12 is not required for TCF21 to repress transactivation of ERβ. 

HuH7 cells were transfected with ERβ expression plasmid, 3x-ERE firefly luciferase 

reporter vector, a renilla luciferase normalization vector, and either an empty vector 

(pcDNA), TCF21 and/or E12. The cells were then treated with 10 nM estradiol (E2) for 

24 hours. Dual luciferase assays were performed to determine ERβ-mediated 

transcriptional activity. All values represent mean  ±SEM of three separate experiments. 

**p<0.01; ***p<0.001; ns, not significant, as determined by one-way ANOVA and 

Tukey’s post-hoc test. RLU, relative light unit. 
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Initial experiments focused on GST pull-down assays. However, we were unable 

to successfully purify ERβ or its deletion mutants (data not shown). We next turned our 

attention to Co-IP experiments. Our first objective was to optimize our protocol using the 

previously described protocol that demonstrated the interaction between TCF21 and the 

Androgen Receptor (AR) (Hong et al); however, we were unable to reproduce these data 

primarily due to non-specific binding by the AR antibody (data not shown). Therefore we 

proceeded to determine whether our proteins of interest, ERβ and TCF21, interact. 

Despite our best efforts we were unable to produce evidence of TCF21-ERβ interactions 

(data not shown). For over a year we tested a large variety of conditions including: four 

cell lines, four lysis buffers, duration of cell lysis, duration of transfection and ligand 

treatment, as well as numerous antibodies from different commercial sources. We were 

unable to show interaction, regardless of which protein we used for the IP. The most 

significant obstacle was the lack of a trusted ERβ antibody; all antibodies tested produced 

inconsistent results, significant background and non-specific bands in Western blot 

analyses [33]. We also attempted co-transfecting and detecting FLAG-ERβ without 

success. Therefore, although we were able to successfully demonstrate TCF21 repression 

of ERβ activity at the transcriptional level, we were unable to show they form a complex 

in vivo.  

3.4 Discussion  

Nuclear receptors (NR) and basic helix-loop-helix (bHLH) proteins are two 

superfamilies of transcription factors. The NRs regulate vital processes such as 

reproduction, development and metabolism, while the bHLH factors are involved in 

regulation of the cell cycle as well as many developmental processes. The interactions 

between members of the NR and bHLH families allow for accurate expression of 

downstream target genes.  

 Estrogens regulate many important physiological processes, including tissue-

specific gene regulation in the reproductive tract. The biological responses to estrogens 

are mediated by estrogen binding to one of two specific estrogen receptors, ERα or ERβ. 

Both ERs are expressed in the body, yet there are considerable differences in their tissue 
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distribution [34]. Within the ovary ERβ is restricted to the granulosa cells, whereas ERα 

is expressed in the thecal cells [8]. Granulosa cells are responsible for estradiol synthesis, 

nourish the oocyte throughout folliculogenesis and are essential for its growth. Therefore, 

the function of ERβ in granulosa cells during follicle development has to be tightly 

regulated for proper ovarian function. As a member of the NR superfamily, ERβ 

regulates gene expression by binding to an estrogen response element and/ or by forming 

protein-protein complexes with other transcription factors.  

3.4.1 TCF21 is a repressor of ERβ-mediated transcription 

In this study, we investigated the role of the bHLH transcription factor TCF21 in 

regulating transcription of estradiol target genes. Our promoter assays in numerous 

mammalian cell lines demonstrated that TCF21 has an ER isoform-specific affect in 

regulating estradiol-dependent transcriptional activity. We observed significant 

repression of ERβ transactivation of the synthetic 3x-ERE promoter as well as three ER 

target genes that contain imperfect EREs (C3, pS2 and Lf), however, we saw no impact 

on ERα-mediated transcription. To our knowledge, this is the first bHLH transcription 

factor identified to act as a specific co-repressor of ERβ.  

TCF21 has previously been reported to exert inhibitory effects on gene 

expression[20-24] and shown to associate with repressor complex proteins [35]. The 

transactivation property of TCF21 was first analyzed using the Gal4 fusion system, which 

found that TCF21 exhibits repressive activities in HepG2 cells from its C-terminal and N-

terminal domains; constructs that include either of these domains retained repression 

activity, while the bHLH domain alone had no activity [22]. Conversely, transactivation 

activities in HT1080 and HeLa cells were only observed when constructs retained the C-

terminal domain. It is suggested that this dual function of the C-terminal domain may be 

cell-type dependent, likely a result of specific coactivators and corepressors [22]. 

Interestingly, we found that the repression by TCF21 on ERβ-mediated transcriptional 

activity is not cell-type dependent. 
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3.4.2 TCF21 does not dimerize with E12 to repress ERβ-mediated 
transcription  

TCF21 has previously been shown to interact with other bHLH transcription 

factors – E12 (TCF3), HEB (TCF12) and E2-2 (TCF4) [36]; E12 is the most likely Class 

I bHLH to heterodimerize with TCF21. We found that E12 does not improve the ability 

of TCF21 to repress ERβ transactivation; rather E12 acts as a coactivator and interferes 

with TCF21 repression. In this system E12 may be inhibiting the ability of TCF21 to bind 

an E box or preventing its interaction with ERβ. We cannot exclude the possibility that 

TCF21 heterodimerizes with another Class I bHLH to repress the activation of estradiol 

target genes.  

3.4.3 Future studies 

Many studies have focused on the molecular mechanisms that regulate the 

transcription of the ERα gene [37-39]; however, the mechanisms that regulate the ERβ 

gene remain largely unclear. Fujimoto et al. identified good homology between the 

human, mouse and rat ERβ promoters (80% identity between positions −1 and −550 

between the rat and mouse, and 69% identity between −30 and −110, as well as −300 and 

−400 between the rat and the corresponding section of the human promoter) [40], and an 

evolutionarily conserved E box in the 5’ promoter region of ERβ exists which has 

previously been shown to bind the bHLH-zip factor USF [40, 41]. The presence of an E-

Box does not imply that it will be active for all bHLH proteins. However, considering 

TCF21 has previously been shown to act as a transcriptional repressor, including a 

repressor of the nuclear receptor AR, it may also function as a negative transcriptional 

regulator of the ERβ gene by binding to the E-Box within the ERβ promoter. In future 

studies it may be of interest to perform chromatin immunoprecipitation (ChIP) assays and 

determine whether TCF21 is recruited to the E-Box found in the ERβ promoter. If TCF21 

and ERβ form a complex in vivo, further ChIP and GST-pulldown assays could be used 

to investigate the potential involvement of histone deacetylases (HDACs), well 

understood downstream recruits of corepressors that are often found within a repressor 

complex [11].  
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3.4.4 Limitations of study 

The yeast two-hybrid screen suggests that the functional interaction we have 

observed between TCF21 and ERβ involves their physical association. Our objective was 

to identify what regions of ERβ and TCF21 interact using GST-pulldown assays; 

however, our attempts to purify GST-tagged ERβ and ERβ deletion mutants did not yield 

a detectable product. We also attempted to utilize Co-IP analysis to determine whether 

these proteins form a complex in vivo. In spite of our best efforts, testing numerous 

conditions and variables, we were unable to optimize the Co-IP protocol and confirm an 

ERβ/TCF21 complex. The most significant obstacle was the lack of a reliable ERβ 

antibody, an appreciated issue in the ERβ field [33, 42]. We also tried transfecting a 

FLAG-tagged ERβ into HuH7 and HEK293 cells to circumvent the need for an ERβ 

antibody. Unfortunately, we were unable to produce reliable results with a FLAG 

antibody as well. Despite our best efforts, we were disappointed with inconsistent results.  

3.4.5 Potential mechanisms by which TCF21 inhibits ERβ 
transactivation 

Since we were unable to obtain results from our Co-IP experiments due to the 

lack of a reliable ERβ antibody, we were also unable to conclusively determine whether it 

is by a passive or active mechanism that TCF21 inhibits ERβ transactivation. Therefore, 

we are proposing two potential mechanisms by which TCF21 may be acting as a 

corepressor. The first is a classic mechanism of transcriptional repression whereby a 

repression complex is formed and recruited to a target gene promoter. The second is 

based on a mechanism recently proposed for repression of ERα transcriptional activity 

[43]. 1) In the absence of TCF21, ERβ is recruited to the ER-target gene promoter upon 

ligand binding and target gene transcription is initiated. When TCF21 is expressed, it is 

recruited together with ERβ once ligand is introduced. Upon ligand binding, a 

TCF21/ERβ complex is formed and ERβ activity is inhibited. 2) Alternatively, TCF21 

and ERβ could both be present on the ER-target gene promoter in the absence of ligand. 

Once ligand is introduced and ERβ is activated, TCF21 gradually is released from the 

promoter as more ERβ is recruited, and target gene transcription begins. Consequently, 

when we over-express TCF21 in promoter assays, more TCF21 remains bound to the ER-
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target gene promoter, out-competing ERβ, and repression of ERβ transcriptional activity 

is observed. 

3.4.6 Conclusions 

We have demonstrated that TCF21 regulates estradiol-dependent transcriptional 

activity in an ER isoform-specific manner; TCF21 represses ERβ, but not ERα 

transactivation. Further studies with cell type-specific knockout of TCF21 in granulosa 

cells would allow for analysis of its role and its mechanism in the development and 

function of the granulosa cells and the ovary. Once a trusted antibody for ERβ is 

identified, it would be greatly beneficial to not only determine the interaction between 

TCF21 and ERβ in cell lines, but also in primary granulosa cells. 
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Figure S3-1: TCF21 does not repress ERα transactivation. 

HuH7 and MCF7 cell lines were transfected with ERβ expression plasmid, 3x-ERE 

firefly luciferase reporter vector, a renilla luciferase normalization vector, and either 

TCF21 or empty vector (pcDNA). The cells were then treated with 10 nM estradiol (E2) 

for 24 hours. Dual luciferase assays were performed to determine ERβ-mediated 

transcriptional activity. All values represent mean ±SEM of three separate experiments. 

No significance was found by one-way ANOVA and Tukey’s post-hoc test. RLU, 

relative light unit.  
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Chapter 4 

 Characterization of the extracellular matrix protein 4
Spondin 1 and its function in immortalized ovarian 
cancer cell lines and primary ascites-derived cancer 
cells  

4.1 Introduction 

Ovarian carcinoma is the most lethal gynaecological malignancy, and the fourth 

most common cause of female cancer death, in the world [1]. Despite modern 

management the prognosis remains poor, with a five-year survival rate of 45% after 

initial diagnosis [2]. The prognosis is more favourable for patients with stage I/II 

tumours; however, most patients present with advanced disease (III/IV) [1]. 

Ovarian cancer is a heterogeneous disease [3]. Epithelial ovarian tumours are 

classified as serous, clear cell, endometrioid, and mucinous subtypes. Each subtype is 

correlated with different genetic risk factors and molecular events during oncogenesis [4], 

and each has a characteristic mRNA profile [5, 6]. Serous ovarian cancer represents 

approximately 70% of epithelial ovarian cancers (EOC) [7]. The most aggressive 

subtype, high-grade serous ovarian carcinoma, accounts for 90% of serous cancers, two-

thirds of all EOC deaths, and it is the most studied subtype [8].  

Metastasis of EOC is unique because unlike most solid tumours, ovarian cancer 

rarely disseminates through the vasculature; rather malignant cells spread from the 

primary tumour into the peritoneal cavity [9]. The peritoneal cavity accumulates ascites 

fluid containing malignant single EOC cells or EOC aggregates called spheroids [10]. 

The successful adhesion of these cells to the surfaces of abdominal organs is a key step 

controlling ovarian cancer metastasis and the formation of secondary tumours [9].  

Many of the same cellular processes and behaviours that are necessary for normal 

tissue development are also essential for cancer progression. An example of such a 

process is remodelling of the extracellular matrix (ECM), which is closely regulated 

during normal development. When these remodelling pathways fail, cells can grow 
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uncontrollably, such that changes to the ECM composition can occur and tumours 

develop [11]. Another important aspect of cancer progression is the tumour 

microenvironment, which is composed of ECM proteins, fibroblasts and endothelial cells 

[12]. The tumour microenvironment can have a direct effect on cell proliferation, 

migration and differentiation through secreted proteins, cell–cell interactions and ECM 

remodelling [12].  

Ovarian cancer cells are able to adjust the type and amount of ECM proteins they 

produce and secrete into their microenvironment, which can result in both stimulatory 

and inhibitory affects on tumour development [13]. The ECM is in direct contact with the 

tumour cells, thereby providing factors involved in growth, survival, motility, and 

angiogenesis, which affect the progression of the tumour [11, 14]. Furthermore, cell 

adhesion to the ECM through integrins and other cell surface receptors initiates signalling 

pathways, that are involved in regulating migration and differentiation [14]. ECM 

components can also contribute to tumour dormancy and enhance chemotherapy 

resistance [11, 15]. Therefore, as a key component of the tumour niche, the ECM is 

essential at various stages of tumourigenesis, and it may serve as a rate-limiting step in 

cancer progression and provide a potential target for therapeutics.  

Spondin 1 (SPON1), also referred to as F-Spondin and vascular smooth muscle 

cell growth-promoting factor (VSGP), is a secreted ECM protein that was originally 

identified in the mouse embryonic floorplate [16]. SPON1 is a member of the diverse 

thrombospondin type 1 repeat superfamily, and possesses six C-terminal thrombospondin 

repeats (TSRs), an N-terminal reeler domain, and a spondin domain [16, 17]. The reeler 

domain is homologous with a domain in Reelin, a protein involved in neuronal migration 

[16, 18]. The spondin domain is homologous with regions in Mindin, a secreted protein 

and member of the thrombosondin type 1 family that binds to the ECM [16, 18, 19]. 

SPON1 has been primarily studied for its role in the central nervous system 

(CNS), where it regulates migration of neurons during embryonic development and cell 

adhesion in many cell types of the CNS [17, 19-22]. Apart from neuronal tissues, SPON1 

has been shown to affect differentiation, proliferation and migratory functions in other 
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tissues. SPON1 localizes to integrin-containing tissues and basement membranes in C. 

elegans, coupling with integrins to maintain ECM adhesion [23]. SPON1 promotes 

growth of vascular smooth muscle cells [24] and increases cell survival of murine 

neuroblastoma [25]. It promotes the differentiation of chondrocytes [26], a human 

cementoblast-like cell line (HCEM) [27], and inhibits differentiation of osteoclastic 

precursors [28]. It has also been shown to promote the migration and invasion of 

osteosarcoma cells in vitro [29], and to inhibit the migration of HUVECs [30] and 

HCEMs [27].  

SPON1 isolated from bovine follicular fluid has growth promoting properties 

[24], and our laboratory has recently demonstrated that SPON1 regulates steroidogenesis 

and increases proliferation of ovarian granulosa cell lines in vitro (unpublished data). 

Interestingly, Spondin 1 mRNA expression is higher in ovarian tumours than in normal 

ovarian tissues [31]. Furthermore, a recent study involving an extensive screen of ovarian 

carcinomas from 500 patients has suggested SPON1 is a promising biomarker for ovarian 

cancer, particularly high grade serous EOC, and a potential target for cancer 

immunotherapy [32]. However, the functional role of SPON1 in ovarian cancer cells has 

yet to be examined. 

We hypothesized that SPON1 regulates properties essential for the progression 

and metastasis of epithelial ovarian cancer cells. Herein, we used EOC cell lines and 

primary ascites-derived ovarian cancer cells to examine the effect of exogenous 

recombinant human SPON1 on the adhesion, migration, viability and proliferation of 

ovarian cancer cells. 

4.2 Materials and Methods 

4.2.1 Culture of cell lines and ascites-derived cells 

All experiments described below were performed in three established ovarian 

cancer cell lines: OVCAR3, OVCAR8 and HEY. OVCAR3 and OVCAR8 cells were 

originally established from the ascites fluid of patients with progressive adenocarcinoma 

that had prior chemotherapy treatment30. The HEY cell line is derived from a human 

ovarian cancer xenograft originally grown from a peritoneal deposit of a patient 
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diagnosed with moderately differentiated cystadenocarcinoma of the ovary31. Our 

preliminary studies also included the OVCAR5 and OVCA429 EOC cell lines. 

OVCA429 cells were cultured in Alpha Modified Eagle Medium (Wisent) supplemented 

with 5% (v/v) fetal bovine serum (FBS; Wisent), 1% (v/v) penicillin/streptomycin (P/S; 

Wisent) and 1x non-essential amino acids (Invitrogen). The remaining four cell lines 

were cultured in RPMI-1640 supplemented with 5% FBS and 1% P/S. All cell lines were 

a generous gift from Dr. T. Shepherd and Dr. G. DiMattia (University of Western 

Ontario). 

Work with patient materials was approved by The University of Western Ontario 

Health Sciences Research Ethics Board and coordinated with Dr. Trevor Shepherd of the 

Translational Ovarian Cancer Research Group. Dr. Shepherd and Dr. Gabriel DiMattia 

generously provided all primary ascites cell cultures, collected from patients with 

advanced stage (III or IV) high-grade serous epithelial ovarian cancer. Patient cultures 

were generated from ascites fluid collected from patients at the time of paracentesis or 

debulking surgery. Patient EOC samples were cultured in Dulbecco Modified Eagle 

Medium/F12 (Wisent) supplemented with 10% FBS and 1% P/S. Fresh media was 

replaced every other day. All experiments with primary EOC cells were performed 

between passages 3 and 5. All cells were maintained at 37°C in 5% CO2 and subcultured 

when cells reached 80% confluency.  

4.2.2 Cell extracts and secreted protein concentration 

Total cellular protein from adherent cells was isolated using Pierce IP Lysis 

Buffer (Thermo Scientific) with 1X Halt Protease Inhibitor Cocktail (Thermo Scientific). 

Lysates were clarified by centrifugation (13 000 × g for 10 min at 4°C) and quantified by 

DC Protein Assay (Bio-Rad).  

Protein isolation from media: Conditioned media from cell lines and patient 

samples was concentrated using ultrafiltration columns (30K Amicon Ultra-0.5 mL 

Centrifugal Filters; Millipore). Prior to concentration of medium, cells were cultured as 

follows. Cells were plated in T25 flasks in complete medium and grown to 80% 

confluency. The cells were then rinsed twice with serum- and antibiotic-free medium to 

ensure that excess albumin from high serum was eliminated. Otherwise, the high albumin 
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levels during media concentration result in the formation of a gel and clogging of the 

Amicon columns. Fresh media with lower (0.1% FBS) or no serum was then added. 

Conditioned medium from cell lines was collected 24 and 48 h after the media change 

(1 ml at each time point). Conditioned medium from primary EOC samples was collected 

after 48 h only. Samples were centrifuged at 10 000 x g for 5 min at room temperature 

(RT) to remove cell debris prior to concentration. Amicon columns were used according 

to the manufacturer’s protocol. Briefly, media was centrifuged twice at 14 000 x g for 10 

min to concentrate the conditioned media (500 µl loaded onto the same column twice), 

followed by a final spin of 1000 x g for 10 min to recover the concentrated sample into a 

fresh microcentrifuge tube. 

4.2.3 Western blotting 

Protein extracts and concentrated media samples were boiled in Laemmli Buffer 

for 5 min and separated by SDS-PAGE (40 µg/lane and 20 µl/lane, respectively) using a 

8% gel. The separated proteins were then transferred to a polyvinylidene difluoride 

membrane (PVDF; Roche) at 100V for 2 h at 4°C, and blocked for 1 h at RT with 5% 

skim milk in Tris-buffered saline with Tween-20 (TBST). Following washes with TBST 

the membrane was incubated with anti-SPON1 antibody (1 µg/ml in 5% skim 

milk/TBST; Abcam ab40797) overnight at 4°C, then with a peroxidase-conjugated anti-

rabbit (1:10 000 in 5% skim milk/TBST; Santa Cruz) for 1 h at RT. Immunoreactive 

bands were visualized using enhanced chemiluminescence reagent (ECL Plus; Amersham 

Biosciences) and Hyperfilm (Amersham). The membrane was re-probed with anti-actin 

antibody (1:5000; Sigma A2668) overnight at 4°C, followed by incubation with 

peroxidase-conjugated anti-rabbit, and visualized as described for SPON1.  

Additional antibodies used: anti-WNK-1 (1:1000; Abcam ab53151), anti-phospho-WNK-

1 (1:500; Cell Signalling Technology 4946S) and anti-p53 (1:1000; Cell Signalling 

Technology 9282). 

4.2.4 Cell viability assay 

Cell viability was assessed using the MTS CellTiter 96®AQueous One Solution 

assay (Promega), which detects the activity of NAD(P)H-dependent cellular 
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oxidoreductase enzymes, and serves as a measure of the relative number of viable cells. 

Each of the five ovarian cancer cell lines was seeded at 1.0 x 103 cells/well in 1% FBS-

containing medium onto 96-well plates. Two hours (h) later the cells were treated with 

5 µg/ml human recombinant SPON1 (R&D Systems 3135-SP) or 250 µg/ml BSA 

(BioShop) vehicle control. At a series of time points (24, 48 and 72 h after treatment), 

20 µl of MTS reagent was added to each well, and the cells were incubated at 37°C for 

2 h. Following incubation, the plate was shaken and the absorbance was measured at 490 

nm using a microplate reader (Synergy H4 Microplate Reader; Biotek).  

Cell viability was similarly assessed in patient samples using the MTS assay, with 

minor changes: 2.5 x 103 cells/well were seeded in 10% FBS-containing medium, and the 

MTS assays were performed on Days 2, 4 and 6 after recombinant SPON1 treatment.  

4.2.5 Cell proliferation assay 

Cell proliferation assays were performed in parallel with the Cell Viability 

Assays. The five established cell lines were seeded in triplicate (6.0 x 103 cells/well) in 

1% FBS-containing medium in 24-well dishes and treated 2 h after seeding with human 

recombinant SPON1 (5 µg/ml) or a BSA (250 µg/ml) control. Cell counts were 

performed using the Coulter counter (Beckman Coulter) 24, 48 and 72 h after treatment; 

each cell suspension was counted in triplicate. Cell growth assays for patient samples 

were performed in parallel with the MTS assays; however, 6.0 x 103 cells were seeded in 

96-well dishes in 10% FBS-containing medium (rather than 1% FBS for the cell lines).  

4.2.6 Cell detachment assay 

OVCAR3, OVCAR5 and OVCAR8 (3 x 104/well), HEY and OVCA429 

(2 x 104/well) cells were seeded into 96-well plates and treated with carrier-free 

recombinant SPON1 (R&D Systems 3135-SP/CF) (1 µg/ml, 5 µg/ml or 10 µg/ml) or 

vehicle. After 48 h cells were detached first using weak trypsin (0.06% trypsin/EDTA) 

and counted using the Coulter counter [33]. Because we found that each cell line adhered 

with different strengths to the tissue culture surface, we optimized the length of time that 

each cell line was incubated in 0.06% trypsin so that 10-50% of cells detach yet no more 

than half of the total cells on the plate. The remaining cells were completely detached 
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from the culture dishes using full trypsin (0.25% Trypsin/EDTA) and counted using a 

Coulter counter. Cell adhesion was scored as the percentage of cells detached with 0.06% 

trypsin. Each experiment was conducted using three technical replicates; each experiment 

was carried out three times.  

The cell detachment assay was performed in patient EOC samples as described 

above, except that 1 x 104 cells were seeded per well in 10% FBS-containing medium. 

All primary EOC cells were incubated with 0.06% trypsin/EDTA for 1 min. 

4.2.7 Cell adhesion assay 

96-well plates were incubated with increasing amounts (250 ng, 500ng or 1µg) of 

the following protein solutions for 12 h at 4°C: carrier-free recombinant SPON1, laminin 

or poly-L-lysine (positive control) or PBS (no coating control), to coat the wells with the 

specified proteins. After 12 h of incubation, the protein solution was aspirated and the 

plate air-dried at RT in the tissue-culture hood overnight. The following day, cells that 

had been serum starved for 12 h were seeded (2 x 104 cells/well) in serum-free media on 

the immobilized protein substrate and incubated at 37°C. After one hour, non-adherent 

cells were removed using gentle washes with a multi-channel pipettor, and full media 

replaced to allow adhered cells to recover from the serum starvation. After 4 h of 

recovery, 20 µl of the MTS CellTiter 96®AQueous One Solution assay substrate (Promega) 

was added and the absorbance determined 2 h later (490 nm) using a microplate reader 

(Synergy H4 Microplate Reader; Biotek), which provided a relative measure of the 

number of adherent cells on the different protein substrates. 

4.2.8 Spheroid formation and reattachment assays 

Spheroid formation assays: Ultra Low-Attachment (ULA) plates (Corning) are 

commercially-purchased tissue culture plates that are coated with a hydrophilic, neutrally 

charged hydrogel to prevent cell attachment. Single-cell suspensions of HEY, OVCAR8 

and OVCAR3 cells (5 x 104 cells/ml) were seeded onto ULA plates, and spheroids 

formed over time [34]. To determine whether SPON1 affects the formation of spheroids, 

cells were treated with recombinant SPON1 (10 µg/ml) or vehicle control (in triplicate) at 

the time of seeding. Spheroid formation was visualized after 24, 48 and 72 h and images 
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captured at the centre of each well. After 3 days in culture the spheroids were collected 

and re-plated onto 6-well tissue culture dishes with fresh growth medium, and allowed to 

reattach. Once re-attached the cells were fixed and stained using the HEMA-3 stain kit 

(Fisher). Phase contrast images of re-attached spheroids were captured using an Olympus 

IX70 inverted microscope and ImagePro software. 

Spheroid reattachment assays: To determine whether SPON1 affects spheroid 

reattachment, spheroids were first formed on ULA plates for 3 days as described above, 

with the notable exception that cells were not treated with recombinant SPON1 at the 

time of seeding. HEY, OVCAR8 and one primary EOC sample (EOC 272) were used. 

Individual spheroids were collected, transferred onto 48-well dishes and treated with 

10 µg/ml recombinant SPON1 (or vehicle control) at the time of spheroid re-plating. 

Phase contrast images of reattaching spheroids were taken prior to dispersion (3 h after 

re-plating) as well as 24 h (HEY and primary sample EOC 272) and 48 h (OVCAR8) 

following re-plating. Reattached spheroids were fixed and stained using the HEMA-3 

stain kit (Fisher). Phase contrast images were captured using an Olympus IX70 inverted 

microscope and ImagePro software. Spheroid dispersion was quantified using the area 

measurement tool in ImageJ  (NIH). Dispersion area at 24 h/48 h was calculated as a 

percentage of the original spheroid size at 3 h. 

4.2.9 Cell migration assay 

We utilized Transwell filters (8 µm pore size) (Corning) placed in 24-well plates 

to determine whether SPON1 affects cell motility. Cells were seeded in the upper 

chamber of a transwell dish in 0.5% FBS-containing medium, ± 5 µg/ml of SPON1. The 

bottom chamber was filled with 0.5% FBS-containing medium, 10% FBS-containing 

medium (positive control) or 5µg/ml SPON1 in 0.5% FBS-containing medium. After 

24 h, cells that had not migrated through the membrane were gently removed from the 

membrane using a cotton swab. The remaining cells were fixed with 4% 

paraformaldehyde, and the nuceli of migrated cells stained using 4',6-diamidino-2-

phenylindole (DAPI). Six random fields of view per membrane were imaged with an 
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Olympus IX70 inverted microscope and ImagePro software, and the nuclei counted. Each 

experiment was performed in triplicate.  

4.2.10 Chemotaxis assay 

We used the ibidi µ-Slide Chemotaxis2D system to determine whether SPON1 

may act as a chemoattractant or a chemorepellant. HEY cells were seeded according to 

the manufacturer’s protocol. Briefly, cells were diluted to a concentration of 3 x 106/ml. 

6 µl of cell suspension was applied to one filling port of the µ-Slide, after which 6 µl of 

air was aspirated from the opposite filling port. This procedure flushed the cell 

suspension through the observation channel. The slides were maintained at 37°C in 5% 

CO2 in a moist chamber (a 10 cm dish lined with damp Kimwipes [Kimtech]) until the 

cells attached. To conduct the chemotaxis experiment each chamber was first filled with 

80 µl medium supplemented with 0.5% FBS (without test reagent) or 10% FBS (positive 

control). One chamber previously filled with 0.5%-containing medium was then filled 

with 18 µl of 50 ng/µl SPON1 solution. The cells were tracked over time by capturing 

images at a series of time points using an Olympus IX70 inverted microscope and 

ImagePro software.  

4.2.11 siRNA transfections 

All siRNA transfections were performed in 6-well tissue culture dishes. The day 

before transfection, cells were plated at a density of 1 x 105
 cells per well (OVCAR8 and 

HEY) or 2 x 105
 cells per well (OVCAR3) in antibiotic-free media. The following day, 

Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific) was used to 

transfect cells according to the manufacturer’s protocol. A set of three predesigned 

SPON1 Stealth Select RNAi™ siRNA oligos was tested (siRNA 1: HSS115946, 

siRNA  2: HSS173622, siRNA 3: HSS115945) (Invitrogen). Briefly, for each well we 

diluted 4 µl of RNAiMAX in 196 µl Opti-MEM (Thermo Fisher Scientific) and 2 µl 

siRNA in 198 µl Opti-MEM. The diluted siRNA was added to diluted RNAiMAX and 

incubated for 5 min at RT. The siRNA-lipid complexes were then added directly to each 

well. Media was replaced 24 h after transection with fresh growth media. The cells were 

harvested 48 h and 72 h post transfection, and lysates prepared for Western blot analysis 
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as described above using Pierce IP Lysis Buffer (Thermo Scientific) with 1X Halt 

Protease Inhibitor Cocktail (Thermo Scientific). Densitometric quantification was carried 

out using ImageJ software. SPON1 expression was calculated relative to a β-actin 

control. 

4.2.12 Functional blocking with antibody 

To identify potential function blocking antibodies against SPON1, we utilized the 

Detachment Assay and Viability Assay protocols described above. For these assays, we 

used four antibodies that we had previously found to detect SPON1 by Western blot 

analysis (C-16, N-19, S17 from Santa Cruz and ab40797 from Abcam) were tested.  

Detachment assay: Briefly, HEY cells were seeded as for the Detachment Assays 

described (Methods – 4.2.6), and diluted antibodies (1µg/ml), vehicle control or SPON1 

(5µg/ml) were added at the time of seeding. Each of the three Santa Cruz antibodies 

detects a different fragment of SPON1 therefore they were combined together and the 

treatment referred to as the Santa Cruz cocktail (SCC). After 48 h cells were detached 

with weak trypsin (0.06%), then full trypsin (0.25%) and counted as described above.  

Viability assay: Functional blocking of SPON1 was also attempted with the 

Viability Assay protocol. HEY cells were plated as before (Methods – 4.2.4), and diluted 

antibodies (1 µg/ml and 10 µg /ml), vehicle (250 µg/ml BSA) or SPON1 (5 µg/ml) were 

added 2 h after seeding. MTS assays were performed as described above: 24, 48 and 72 h 

following treatments.  

The effects of SPON1-antibodies on detachment and viability were determined by 

using wells with no added antibodies as reference. 

4.2.13 Phospho-kinase array 

To screen for potential downstream targets of SPON1 in EOC cell lines we used 

the Human Phospho-Kinase antibody array (R&D Systems), which simultaneously 

detects the relative levels of phosphorylation of 43 kinases or their targets. OVCAR3 and 

HEY cells were cultured as described above (see Culture of cell lines section) in 10 cm 

dishes. Upon reaching 80% confluency the cells were serum starved for 12 h, then treated 
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with 5 µg/ml SPON1 or 250 µg/ml BSA (vehicle) for 15 min. This time point was 

selected based on published studies [25, 35] in which cultured cells were treated with 

recombinant SPON1 and SPON1-induced kinase activation was observed 10-30 minutes 

after treatment. Cell lysates (100 µg OVCAR3 and 350 µg HEY protein lysate) were 

applied to the phospho-kinase array and the blots developed according the manufacturer’s 

instructions. Spot intensities were quantified using ImageJ software (National Institutes 

of Health). 

4.2.14 Statistical analysis 

Graphs were generated and statistical analysis was performed using GraphPad 

Prism software. Data were expressed as the mean ± SD. Statistical analysis was 

performed using Student’s t-test or Analysis of Variance (ANOVA) and Tukey’s 

Multiple Comparison Test with significances set at *p < 0.05, ** p < 0.01, *** p < 0.001 

and **** p < 0.0001 as indicated. 

4.3 Results 

SPON1 is abundantly expressed in the ovary relative to other tissues in both 

human and mouse (Figure 4-1). Furthermore SPON1 is highly overexpressed in ovarian 

cancer and has been identified as a promising ovarian cancer biomarker [31, 32]. 

Therefore, herein, we investigated the functional role of SPON1 in ovarian cancer cells.  

Ovarian cancer is a heterogeneous disease and many ovarian cancer cell lines are 

used as in vitro models in cancer research. Some of the most commonly used cell line 

models for high grade serous ovarian carcinoma (HGSC), particularly SKOV3 and 

A2780, are poor models for the disease as they do not accurately represent the molecular 

profiles of HGSC tumour samples[36]. The five epithelial ovarian cancer (EOC) cell 

lines we used in this study – OVCAR3, OVCAR5, OVCAR8, HEY and OVCA429 –

more closely resemble tumour profiles [36]. We also utilized eight primary human EOC 

samples (EOC181, EOC183, EOC193, EOC196, EOC 200, EOC208, EOC25 and 

EOC272) generously provided by Dr. Shepherd and Dr. DiMattia. Carcinoma cell lines 

remain a fundamental tool in pre-clinical research; however the ascites-derived primary 

EOC cells provide greater clinical relevance. The ascites-derived EOC cells can only be 
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cultured for approximately three weeks and are relatively slow growing [37]. Therefore, 

due to the limited source material, we selected a few key functional assays to determine 

the effect of SPON1 on the primary EOC cells. 

4.3.1 EOC cell lines and primary human EOC cells express and 
secrete SPON1 

Spon1 mRNA expression is elevated in ovarian tumour tissues compared to the 

healthy ovary[31]. We first investigated whether our cell lines of interest and primary 

human EOC cells endogenously express SPON1 protein. Two granulosa cell lines, the 

human granulosa cell-like cell line, KGN[38] and the KK-1 cell line, an immortalized 

mouse ovarian granulosa cell line [39] were used as positive controls with the EOC 

samples because our laboratory has previously demonstrated that both cell lines express 

SPON1 protein as determined by Western blot.  I found that, as expected, both KGN and 

KK-1 cell lines expressed SPON1 (Figure 4-2A-i) as determined by Western blot. 

Similarly, SPON1 was robustly expressed in all EOC cell lines (Figure 4-2A-i) and 

primary EOC samples (Figure 4-2B-i). 

SPON1 is a secreted ECM glycoprotein[16]; therefore we next investigated 

whether the cell lines and primary EOC samples secreted SPON1 into the culture 

medium. SPON1 was recovered from the conditioned medium of cell cultures using 

centrifugal concentrators. The concentration of albumin in cell culture medium is 

typically high because of the presence of FBS; concentration of supernatant with a high 

albumin concentration will result in the formation of a gel and clogging of the 

concentration columns. To avoid this technical difficulty, cells were incubated in serum-

free medium and reduced serum (0.1% FBS).  

SPON1 was detected in conditioned medium from all five EOC cell lines after 

24h. The level of secreted SPON1 increased over time, as higher SPON1 expression was 

observed after 48 h (Figure 4-2A-ii). Consistent with the cell line data, we found that 

primary EOC cells also secreted SPON1 into the medium (Figure 4-2B-ii). Due to the 

slower proliferation of primary cells, we only incubated them in reduced-serum and 

collected medium after 48 h. 
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Figure 4-1: SPON1 expression in human and mouse tissues.  

A) A human tissue INSTA-Blot™ was incubated with an anti-Spondin 1 antibody to 

detect SPON1. Lanes: 1) Brain; 2) Heart; 3) Small Intestine; 4) Kidney; 5) Liver; 6) 

Lung; 7) Muscle; 8) Stomach; 9) Spleen; 10) Ovary; 11) Testis. Amido black staining as 

a control (bottom). B) A mouse tissue INSTA-Blot™ was incubated with an anti-SPON1 

antibody to detect SPON1. Lanes: 1) Brain; 2) Heart; 3) Small Intestine; 4) Kidney; 5) 

Liver; 6) Lung; 7) Muscle; 8) Stomach; 9) Spleen; 10) Ovary; 11) Testis. Amido black 

staining as a control (bottom). 
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Figure 4-2: SPON1 is expressed and secreted by EOC cell lines and primary human 

EOC cells.  

A) (i) Western blot analysis of SPON1 expression in five EOC cell lines: OVCAR3, 

OVCAR5, OVCAR8, HEY and OVCA429. KGN, human granulosa cell tumour cell line, 

and KK1 mouse granulosa cell line were used as positive controls. β-actin was used as a 

loading control. 

(ii) Western blot analysis of SPON1 in conditioned media of EOC cell lines (HEY, 

OVCAR8, OVCAR3, OVCAR5, OVCA429). Conditioned media was collected after 

cells were in culture for 24 h and 48 h, in media supplemented with 0% FBS or 0.5% 

FBS. OVCAR3 cell lysate was a positive control.  

B) (i) Western blot analysis of SPON1 in primary EOC cells (β-actin was used as a 

loading control) and (ii) conditioned media of primary EOC cells.  
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4.3.2 SPON1 reduces adhesion of EOC cell lines and primary 
human EOC cells to tissue culture surfaces 

Changes in cell-cell and cell-matrix adhesion play important roles in tumour 

development and metastasis, contributing to angiogenesis, cell migration and 

proliferation [40]. Given that Spondin 1 has previously been shown to affect adhesion 

properties in vivo, by promoting muscle-epidermal adhesion in C. elegans [23], we 

postulated that it also alters the adhesion properties of EOC cells in vitro. We tested this 

in monolayer adherent cell cultures by utilizing two adhesion assays – the Detachment 

Assay (Methods 4.2.6) and Adhesion Assay (Methods 4.2.7). We used the Detachment 

Assay to first measure the effect that carrier-free recombinant SPON1 treatment has on 

cell adhesion to cell culture plastic. BSA is a non-adhesive protein that has the ability to 

‘trigger’ or ‘activate’ the attachment of cells to low levels of adhesion protein [41]; 

therefore, to avoid interference with BSA we used carrier-free recombinant SPON1 

(BSA-free) for all adhesion studies. The Adhesion Assay was then used to examine 

whether coating of tissue culture plastic with carrier-free recombinant SPON1 affects cell 

adhesion.  

Ovarian and/or circulating concentrations of SPON1 in humans or mice are 

currently unknown. Therefore, initially during Detachment Assay optimization, cell lines 

were treated with 1 µg/ml and 5 µg/ml of recombinant human SPON1. Treatment with 

1µg/ml SPON1 did not have a significant effect on cell adhesion (Figure S4-1); cell 

detachment was comparable between untreated and 1µg/ml SPON1-treated cells when 

incubated with weak trypsin. Cells treated with 5 µg/ml SPON1 released more readily 

from the cell culture surface than untreated cells when incubated with weak trypsin. 

Therefore 5 µg/ml and 10 µg/ml SPON1 were used for subsequent Detachment Assays. 

These doses are comparable to those used in other studies in which cell lines were treated 

with recombinant SPON1, which ranged from 0.5 µg/ml [26, 28] to 10 µg/ml [25]. The 

cell detachment assays showed that SPON1-treated HEY, OVCAR8 and OVCAR3 cells 

had increased sensitivity to trypsinization compared to vehicle-treated cells (Figure 4-3). 

Indeed both SPON1 treatments initiate significantly higher cell detachment with weak 

trypsin incubation compared to vehicle-treated cells. A dose-response relationship exists 
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because significantly greater cell detachment occurred when these three cell lines were 

treated with 10 µg/ml SPON1 compared to 5 µg/ml SPON1. Interestingly, neither 

treatment with 5 µg/ml nor 10 µg/ml SPON1 changed the adhesion of OVCAR5 or 

OVCA429 cells (Figure S4-2). 

To determine if the effect of SPON1 on cell adhesion in cell lines would also 

occur in a more clinically-relevant model, we conducted the Detachment Assay with 

primary EOC cells. All eight patient samples assayed demonstrated a significant increase 

in cell detachment with weak trypsin incubation following treatment with 10 µg/ml 

SPON1 compared to vehicle treated cells. The lower SPON1 dose significantly decreased 

the adhesion of one of the patient samples (EOC183, Figure 4-4B). 

To further examine the effect of SPON1 on adhesion we used another model 

system and conducted Adhesion Assays with HEY, OVCAR8 and OVCAR3 cells; we 

excluded OVCAR5 and OCVA429 because they did not respond to SPON1 in the 

Detachment Assays. Plates were coated with serial dilutions of carrier-free recombinant 

human SPON1, Laminin, Poly-L-lysine (PLL) or PBS (no coating control). Based on our 

earlier results demonstrating that treatment of EOC cells with recombinant SPON1 

decreases their adhesion, we wanted to compare the adhesion of EOC cells to another 

protein substrate previously shown to decrease EOC cell adhesion in vitro. Therefore we 

used laminin as a negative control to coat the plates because SKOV3 ovarian cancer cells 

do not adhere well when plated on a laminin-coated surface [42]. PLL was used as a 

positive control because it is a well-known promoter of cell adhesion [42, 43]. An MTS 

assay, a colorimetric method for determining the relative number of viable cells, was 

used as a read-out of the relative number of adherent cells on the different protein 

substrates, and therefore as a measure of adhesion. As in the Detachment Assay, we 

noticed a dramatic reduction in cells adhering to the SPON1-coated surface compared to 

uncoated wells or those coated with PLL (Figure 4-5). Interestingly, cells were also less 

likely to adhere to SPON1-coated wells compared to laminin-coated wells.  
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Figure 4-3: SPON1 reduces adhesion of ovarian cancer cell lines in a dose-

dependent manner.  

HEY (A), OVCAR8 (B) and OVCAR3 (C) cells were treated with vehicle, 5 µg/ml 

carrier-free recombinant human SPON1 or 10 µg/ml carrier-free recombinant human 

SPON1 at the time of seeding. After 48 h the cells were detached with 0.06% trypsin. 

Any adherent cells remaining were then detached with 0.25% trypsin and cells from each 

pool were counted. The proportion of cells detached by 0.06% trypsin is shown. SPON1 

reduced adhesion in a dose-dependent manner because higher percentages of cells detach 

following weak trypsinization when treated with a higher SPON1 dose. The data 

represent the mean ± SD of triplicate measurements from at least two independent 

experiments. One-way ANOVA with Tukey’s test was performed (*p<0.05; **p<0.01; 

***p<0.001). 
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Figure 4-4: SPON1 reduces the adhesion of primary epithelial ovarian cancer cells. 

Eight primary EOC samples were treated with vehicle, 5 µg/ml carrier-free recombinant 

human SPON1 or 10 µg/ml carrier-free recombinant human SPON1 at the time of 

seeding. After 48 h the cells were detached with 0.06% trypsin. Any adherent cells 

remaining were then detached with 0.25% trypsin. Cells from each pool were then 

counted. The proportion of cells detached by 0.06% trypsin is shown. SPON1 decreased 

cell detachment in seven out of the eight EOC patient samples tested. All values represent 

the mean ± SD of triplicate measurements from at least two independent experiments. 

One-way ANOVA with Tukey’s test was performed (*p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001). 
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Figure 4-5: SPON1 inhibits adhesion of EOC cell lines to cell culture surfaces.   

Tissue culture surfaces were pre-coated with several dilutions of carrier-free recombinant 

human SPON1, Laminin, Poly-L-lysine (PLL) or left uncoated (horizontal dashed line). 

The MTS assay provides a relative measure of the number of cells attached to each 

protein substrate following 1 h incubation and 4 h recovery. HEY (A), OVCAR8 (B) and 

OVCAR3 (C) cells attach best to PLL and least to SPON1. Data represents mean ± SD of 

triplicate wells. Each assay is representative of three independent experiments. Two-way 

ANOVA with Tukey’s test was performed (*p<0.05; ** p<0.001). 
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4.3.3 SPON1 affects reattachment of EOC spheroids but not 
spheroid formation 

Within peritoneal ascites, shed EOC cells can be present as single cells and/or 

multi-cellular spheroids, and both populations of cells are capable of seeding secondary 

metastases [10]. EOC dissemination is significantly impacted by the formation of 

multicellular spheroids and their ability for reattachment and growth at secondary sites 

[10]. Given our results in monolayer cultures of EOC cells thus far, we postulated that 

treatment of EOC spheroids with SPON1 would decrease spheroid formation, 

reattachment and dispersion.  

To determine whether SPON1 affected spheroid formation, at the time of seeding 

onto Ultra Low-Attachment (ULA) plates, we treated HEY, OVCAR8 and OVCAR3 

cells with 10 µg/ml recombinant SPON1. Spheroid formation was visualized, as well as 

spheroid size and number, after 24, 48 and 72 h. No differences in spheroid size or 

number following SPON1 treatment were observed at these time points, and the 

spheroids did not appear more loosely aggregated, which suggested SPON1 does not 

affect cell-cell adhesion (Figure 4-6).  

Since SPON1 treatment consistently reduced cell attachment in monolayer EOC 

cell cultures, we next sought to determine whether SPON1 treatment would affect the 

ability of EOC spheroids to reattach to standard tissue culture plastic. To test this, we 

again utilized ULA plates to form EOC spheroids; however we did not treat cells at the 

time of seeding; rather, cells were treated with 10 µg/ml recombinant SPON1 once the 

spheroids were re-plated onto standard tissue culture plastic. HEY, OVCAR8 and EOC 

272 spheroids were formed on ULA dishes. OVCAR3 cells were excluded from these 

experiments because they form smaller, more delicate spheroids than the other cell lines, 

and are too difficult to transfer for a reliable experimental model. Spheroids were plated 

for reattachment by directly transferring them from ULA dishes onto standard tissue 

culture plastic with fresh culture medium.  
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Figure 4-6: SPON1 treatment does not effect the formation of spheroids by EOC cell 

lines.  

HEY (A), OVCAR8 (B) and OVCAR3 (C) cells were cultured with vehicle or 10 µg/ml 

recombinant SPON1 on ULA plates for three days (each treatment performed in 

triplicate/ cell line). Phase contrast images were captured daily at the centre of each well 

and representative images are shown. SPON1 does not affect the ability of EOC cell lines 

to form multicellular spheroids, as the size and number of spheroids formed were 

comparable to vehicle-treated controls. After 72 h on ULA dishes in the presence of 

SPON1, spheroids were re-plated in fresh medium onto standard tissue culture plastic and 

allowed to re-attach. Once re-attached the cells were fixed and stained using the HEMA-3 

stain kit (Fisher). Scale bar = 50 µm.  
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Interestingly, we observed increased cell dispersion areas for HEY and EOC 272 

SPON1-treated spheroids within the first 24 h of re-plating compared to controls; cell 

dispersion was increased by 59% and 51% for HEY and EOC 272 cells, respectively  

(Figure 4-7A and C). OVCAR8 cells form irregular spheroids and reattach more slowly 

than HEY or EOC 272 cells; therefore, dispersion areas of OVCAR8 cells were measured 

after 48 h, rather than 24 h. Consistent with the other cell lines, we found that SPON1-

treated OVCAR8 spheroids also produced a greater dispersion area than control 

spheroids (68% increase) (Figure 4-7B). These results suggested that SPON1 reduced 

cell-cell adhesion upon spheroid reattachment to standard tissue culture plastic, as more 

cells were released from the SPON1-treated multicellular aggregates than controls. Taken 

together, these results suggest a functional role for SPON1 in reducing adhesion of 

adherent monolayer and spheroid EOC cells. 

4.3.4 SPON1 does not affect EOC cell migration 

Cell migration is an essential factor in tumour progression and metastasis. 

Although cells can move randomly, dissemination, invasion and migration are most 

efficient when cells are involved in directed migration in response to a chemical stimulus 

(chemotaxis) [44]. Adhesion of cancer cells to the ECM is a prerequisite for cells to 

develop the traction necessary for movement [45, 46]. Therefore, we sought to determine 

whether the decreased adhesion following SPON1 treatment impacts EOC cell migration. 

Furthermore, we wanted to investigate whether the increased dispersion area generated 

by SPON1-treated spheroids might be due in part to increased cell motility. Spondin1 has 

previously been shown to promote and inhibit the cell migration of other cell types. 

Spondin1 increases migration of osteosarcoma cells [29], and inhibits vascular 

endothelial growth factor (VEGF)-stimulated migration and tube formation of human 

umbilical vein endothelial cells (HUVECs) [30]. It has also been proposed that Spondin1 

may act as a chemoattractant and/or chemorepellant, guiding commissural axons at the 

floor plate [18].   
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Figure 4-7: SPON1 enhances the dispersion area generated by reattached EOC 

spheroids. 

HEY (A), OVCAR 8 (B) and EOC272 (C) spheroids were treated with 10 µg/ml SPON1 

or vehicle at the time of re-plating onto standard tissue culture plastic. SPON1 increases 

the dispersion area generated by reattached EOC spheroids as quantified using ImageJ 

software. Dispersion area was calculated 24 h (A and C) or 48 h (B) after spheroids were 

re-plated, and the dispersion area normalized to the size of the original spheroid (3 h after 

re-plating). Representative images are shown of EOC cells at each time point. Each data 

point represents one spheroid. **p<0.01; ***p<0.001 as determined by Student’s t-test. 

Scale bar = 50 µm. 
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To test this hypothesis, we initially used Transwell filters (Corning) to evaluate 

the effect of SPON1 on EOC cell migration. HEY, OVCAR8 and OVCAR3 cells were 

seeded in the upper chamber of a transwell insert in low serum (0.5% FBS), ± 

recombinant SPON1. The cells were allowed to migrate for 24 h towards recombinant 

SPON1, low serum (0.5% FBS) or a high serum positive control (10% FBS) in the 

bottom chamber of the transwell insert. We found that the presence of SPON1 did not 

affect the migration of EOC cells across the transwell membrane (Figure S4-3).  

We also utilized the ibidi µ-Slide Chemotaxis2D system to determine whether 

SPON1 affects cell motility. The slides are designed for analysis of migrating adherent 

cells on a 2D surface. The small chambers of the ibidi system allowed us to use higher 

concentrations of recombinant SPON1 (10 µg/ml) than we used with the transwell model.  

HEY cells were used for the optimization of the ibidi system protocol because they are 

the fastest growing of the EOC cell lines we studied and their epithelial-like, slightly 

elongated morphology makes them the easiest to track over time (compared to the 

cobblestone-like morphology of the OVCAR3 and OVCAR8). The preliminary 

experiments demonstrated that SPON1 had no effect on chemotaxis; rather we observed 

HEY cells migrating randomly within the ibidi observation chamber (Figure S4-4). Based 

on these results and the transwell migration data we did not pursue SPON1’s potential 

impact on migration further, with other EOC cell lines or with primary EOC cells.   

4.3.5 SPON1 reduces cell viability and proliferation of EOC cells 

To determine whether SPON1 affects EOC cell viability we treated EOC cell 

lines with recombinant human SPON1 or bovine serum albumin (BSA) vehicle as a 

negative control for 24, 48 and 72 h. We assessed viability using an MTS assay, which 

measures the conversion of a tetrazolium compound into formazan by a mitochondrial 

dehydrogenase enzyme in live cells. The amount of formazan is measured 

spectrophotometrically and provides a measure for the relative number of viable cells. 

We found that SPON1 reduced the viability of HEY cells modestly by 8% after 24 h, 

with a significant decrease in viability of 21% and 22% after 48 and 72 h, respectively 

(Figure 4-8A-i). Surprisingly, SPON1 did not significantly effect the viability of the other 

ovarian cancer cell lines (Figure 4-8B-i, 4-8C-i and Figure S4-5), even when a higher 
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SPON1 concentration (10 µg/ml) was used (Figure S4-6), or when SPON1 was 

replenished daily (Figure S4-7). Interestingly, we also did not observe a dose-response 

relationship between SPON1 and cell viability because the decrease in viability following 

treatment with 10 µg/ml SPON1 was not significantly different than the reduction 

observed with 5 µg/ml SPON1 (Figure S4-6). Therefore the lower SPON1 dose was used 

for subsequent experiments. 

The effect of SPON1 on primary EOC cell viability was also assessed. Due to the 

slower proliferation of these cells the treatment times were extended to 2, 4 and 6 days 

rather than 24, 48 and 72 h, as used for the cell lines. Although the results are variable, 

SPON1 significantly decreased cell viability of each primary EOC sample (Figure 4-9). 

Of note, EOC 196 cell viability was significantly decreased after 2, 4 and 6 days of 

SPON1 treatment, compared to BSA-treated cells, by 21%, 11% and 10%, respectively 

(Figure 4-9D). We found that half of the primary EOC samples demonstrated a 

significant reduction in cell viability after 4 days of SPON1 treatment and this continued 

into day 6 (Figure 4-9A, E, F, H). On day 6, EOC 193 cell viability decreased 

dramatically with SPON1 treatment (Figure 4-9C), and in parallel, a subtle, yet 

significant decrease in EOC 183 viability (Figure 4-9B). The effect of SPON1 treatment 

on EOC 259 cells followed a different trend from the other samples; viability decreased 

early on day 2, however, there was no difference in viability at later time points (Figure 

4-9G).  

To determine whether the changes in cell viability might be due at least in part to 

decreased cell proliferation, we determined cell number under corresponding conditions 

to the viability assay treatments and time points. We found that the number of HEY cells 

decreased significantly compared to controls following SPON1 treatment at 48 and 72 h 

by 11% and 20%, respectively (Figure 4-8A-ii). SPON1 treatment had no effect on the 

proliferation of OVCAR8 (Figure 4-8B-ii) and OVCAR3 (Figure 4-8C-ii) cells.  

We also found that SPON1 treatment decreased proliferation of primary human 

EOC cells (Figure 4-10). Generally in the EOC samples, a decrease in viability coincided 

with decreased cell numbers. Of the eight EOC samples assessed, EOC 193 was the only 
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sample that did not show a decrease in cell number following SPON1 treatment at any 

time point (Figure 4-10C), whereas SPON1 treatment decreased EOC 193 cell viability 

on Day 6 (Figure 4-9C).  

4.3.6 Challenges with silencing SPON1 expression 

Given that we observed significant effects of exogenous SPON1 treatment (gain-

of-function assays) on adhesion, viability and proliferation of EOC cells, we wanted to 

complement these functional assays after blocking endogenous Spondin1 expression 

using “knockdown assays” to serve as loss-of-function experiments. We hypothesized 

that inhibiting endogenous SPON1 expression would increase EOC cell adhesion, 

viability and proliferation. 

Knockdown of SPON1 was attempted using small interfering RNA (siRNA) 

contructs. A variety of conditions and protocols was tested; however, a successful 

knockdown was not achieved. The protocol that was the most successful was described 

earlier (4.3.11 – siRNA transfections). Densitometric quantification was carried out using 

ImageJ software, measuring SPON1 expression relative to β-actin control. The “no 

treatment” controls (Lane 1 and Lane 5) were considered as 100% SPON1 expression 

and all values were normalized to them. The greatest success we had with this approach 

was a 45% and 40% reduction of SPON1 protein in HEY and (Figure S4-8A) and 

OVCAR8 (Figure S4-8B) cells, respectively, that lasted only 24 h before SPON1 levels 

began to increase or were nearly restored to pre-knockdown levels. Knockdown of 

SPON1 in OVCAR3 cells (Figure S4-8C) was not achieved under any conditions tested. 

Function-blocking antibodies can be an attractive experimental alternative to 

siRNA for clarifying the function of proteins [47]; therefore we next tried blocking 

SPON1 function in HEY cells using antibodies against SPON1. Four antibodies we 

previously found to detect SPON1 by Western blot analysis (C-16, N-19, S17 from Santa 

Cruz and ab40797 from Abcam) were tested within the Detachment Assay and Viability 

Assay protocols.  
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Figure 4-8: SPON1 has a cell line-dependent effect on the viability and proliferation 

of EOC cells. 

Cell viability (i) was assessed in EOC cell lines by MTS assay in the presence or absence 

of SPON1. Cells were cultured in BSA vehicle (black bars) or human recombinant 

SPON1 (5 µg/mL) (grey bars). Cell proliferation (ii) was determined by measuring cell 

counts under corresponding conditions to the viability assay treatments and time points. 

Each bar represents the mean ± SD of triplicate measurements. Each assay is 

representative of a minimum of three independent experiments. SPON1 significantly 

decreased the viability and proliferation of HEY (A) EOC cells, but has no significant 

affect on the viability and proliferation of OVCAR8 (B) or OVCAR3 (C) cells. Two-way 

ANOVA with Tukey’s test was performed (*p<0.05; **p<0.01; ****p<0.0001). 
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Figure 4-9: SPON1 decreases viability of primary human EOC cells. 

Cell viability was assessed in ascites-derived primary EOC cells by MTS assay in the 

presence or absence of SPON1. Cells were cultured in BSA vehicle (black bars) or 

human recombinant SPON1 (5 µg/mL) (grey bars). Each bar represents the mean ± SD of 

six measurements. Each assay is representative of a minimum of three independent 

experiments. SPON1 significantly decreased the viability of each primary EOC sample. 

Two-way ANOVA with Tukey’s test was performed (*p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001).  
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Figure 4-10: SPON1 decreases proliferation of primary human EOC cells 

Cell proliferation of ascites-derived primary EOC cells was determined by measuring cell 

counts under corresponding conditions to the viability assay treatments [BSA (black 

bars), SPON1 (grey bars)] and time points. Each bar represents the mean ± SD of six 

measurements. Each assay is representative of a minimum of three independent 

experiments. SPON1 significantly decreased the proliferation of each primary EOC 

sample. Two-way ANOVA with Tukey’s test was performed (*p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

189 

Using the Viability Assay as a read out we attempted to block SPON1 function by 

adding each antibody independently to the EOC cells 2 h after seeding. Two 

concentrations of antibodies were used, 1 µg/ml and 10 µg /ml, which are comparable to 

doses previously used to block integrin function [47]. We postulated that one of the 

antibodies would successfully block endogenous SPON1 function, and EOC cell viability 

would increase. Surprisingly, this did not occur with any of the antibodies, at either 

concentration (Figure S4-9A). Of note, treatment with the higher dose of C-16, N-19 and 

S17 antibodies killed most of the cells after 48 h and 72 h.  

We then tried blocking SPON1 function using the Detachment Assay as a read 

out. Since each of the Santa Cruz antibodies detects a different amino acid sequence of 

SPON1 we used a combination of the three (referred to as Santa Cruz Cocktail, SCC), 

which spanned the entire length of the protein. Each anti-SPON1 antibody was used at a 

concentration of 1 µg/ml. The morphology of HEY cells was affected by the Santa Cruz 

Cocktail in the Detachment Assay. Specifically, cells were rounded, and detached from 

the tissue culture plastic in multicellular clusters following weak trypsinization, which 

may have produced inaccurate cell counts despite sample triteration. The 1 µg/ml 

ab40797 treatment slightly reduced the percentage of cells that detached following weak 

trypsin incubation compared to vehicle-treated cells. However, neither antibody resulted 

in a significant effect on cell attachment. Therefore, we did not pursue this method of 

SPON1 function blocking in other assays. Although there are multiple SPON1 specific 

antibodies commercially available it appears that none of them block SPON1 function 

under the conditions we tested (Figure S4-9B). 

4.3.7 Screening for downstream targets of SPON1-induced 
signaling in EOC cells 

To screen for potential intracellular targets of SPON1 in EOC cells that could be 

responsible for decreased adhesion, viability and/or proliferation, we used the Proteome 

Profiler Human Phospho-kinase Array Kit, which simultaneously detects the relative 

levels of phosphorylation of 43 phosphorylation sites on 43 proteins and 2 kinase-related 

(nonphosphorylated) total proteins, and/or their targets. HEY and OVCAR3 cells were 

serum starved for 12 h to reduce background kinase activity, then treated with vehicle or 
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SPON1 for 15 minutes, after which cell lysates were prepared. The lysates were then 

applied to the Human Phospho-Kinase array, and the blots processed and spot intensities 

quantified according to the manufacturer’s directions. Overall there were very subtle 

differences between the pixel densities of vehicle and SPON1-treated cells (Figure S4-

10). The phosphorylation of WNK-1 (T60) decreased by 40% in HEY cells and by 35% 

in OVCAR3 cells after SPON1 treatment compared to control. SPON1 treatment of 

OVCAR3 cells also decreased the phosphorylation of p53 at three sites (S392, S46 and 

S15); however, this was not reproduced in HEY cells.  

To validate the SPON1-mediated decreases in WNK-1 and p53 phosphorylation 

that we observed in the array, we conducted Western blot analysis with lysates from HEY 

and OVCAR3 cells serum starved for 12 h and treated with vehicle or SPON1 for 15 

minutes. Despite multiple attempts, we were unable to confirm these results by Western 

blot because of high background and non-specific binding of the phospho-WNK-1 

antibody, and inconsistent results with the total p53 antibody (data not shown).  

4.4 Discussion 

Epithelial ovarian cancer, a leading cause of death in women around the world, is 

a disease of dysregulated and aberrant protein expression and activation [1]. The 

extracellular matrix (ECM) is a complex, dynamic and essential component of the 

microenvironment of cells, particularly for providing mechanical support. The role of 

ECM in tumourigenesis has been intensively studied because ECM composition and 

organization undergo major changes in cancer that can affect properties of both tumor 

and stromal cells [48]. Although many details of the relationship between the ECM and 

cancer cells remain unknown, growing evidence suggests that the interactions of cells 

with ECM components can have either positive or inhibitory effects on cancer cell 

behaviour depending on the context [12, 13]. An extensive screen of 500 ovarian 

carcinomas suggests the ECM glycoprotein SPON1 is a promising biomarker for ovarian 

cancer, particularly high grade serous EOC [32]. Its use in combination with other 

markers could improve both specificity and sensitivity of monitoring and diagnosing the 

disease, yet its role in ovarian cancer had not previously been investigated. In this study 

we utilized established EOC cell lines to determine the affect of SPON1 on various 
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ovarian cancer cell phenotypes, and repeated select experiments in primary human 

ascites-derived EOC cells.  

4.4.1 SPON1 is involved in changes of the adhesive, proliferative 
and viability phenotype of human ovarian cancer cells. 

Firstly, we have shown that recombinant SPON1 treatment decreases adhesion of 

EOC cell lines and primary ovarian cancer cells. Dissemination of cells from the primary 

tumour to other organs is often the cause of patient morbidity and mortality [49]. 

Shedding of cells into the peritoneal cavity and subsequent adhesion to the serosal and 

organ surfaces is the initial step in further metastasis [50]. This progression of ovarian 

cancer relies on different forms of cell adhesion to maintain the signals necessary for 

sustaining and advancing tumour development [13]. We have demonstrated that either 

treating cells with exogenous SPON1 (Figure 4-3, 4-4) or plating cells on SPON1-

precoated tissue culture plastic (Figure 4-5) reduces cell adhesion, as compared to control 

cells.  

Interestingly, there is a dose-dependent relationship between SPON1 and the 

extent to which adhesion is affected in most EOC cell lines and primary EOCs. Patient 

EOC 259 cells were the only patient sample not significantly affected by recombinant 

SPON1 treatment. However, EOC 259 primary cells were prone to forming cellular 

aggregates upon trypsinization, despite sample triteration, which likely impacted cell-

surface availability and cell counts and consequently led to SPON1-treated cells failing to 

reach significance.  

Malignant cells survive in the peritoneum as single cells or multicellular 

spheroids until they are able to reattach to a hospitable substratum [10]. Adhesion of 

spheroids initiates a transition from a floating cell population to a metastatic lesion 

anchored in the peritoneal cavity. Given that malignant cells are capable of altering cell-

substratum as well as cell-cell interactions, and the clinical relevance of multicellular 

spheroids has been documented [10, 51, 52], we also investigated the effect of SPON1 on 

spheroid formation and reattachment. Surprisingly, we did not observe a difference in 

spheroid size or density following SPON1 treatment of EOC cell lines in suspension 
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(Figure 4-6). If cell-cell adhesion was reduced during spheroid formation we would 

expect to see smaller, less dense-appearing spheroids [53]. Interestingly, treatment with 

exogenous SPON1 at the time of spheroid transfer from ULA plates did affect spheroid 

reattachment (Figure 4-7). The cell dispersion area was significantly higher in HEY, 

OVCAR8 and primary EOC 272 cells, which may suggest that cells detach from the 

spheroid more readily when treated with SPON1. The treated cells were more loosely 

dispersed than controls, which suggested that the increased cell dispersion area was 

unlikely due to an increase in cell proliferation. In fact, in this study we showed that 

SPON1-treated EOC cells had significantly decreased proliferation (Figure 4-8, 4-10) and 

viability (Figure 4-8, 4-9) than vehicle-treated controls. The development of secondary 

metastases is dependent on both successful cell proliferation and motility of reattached 

EOC cells from the peritoneum [10]. Unexpectedly, despite affecting migration in other 

tissues [18, 29, 30], the increase in cell dispersion was also unlikely due to an increase in 

cell motility because SPON1 did not affect migration of EOC cell lines (Figure S4-2 and 

S4-3).   

Although we failed to observe an effect of SPON1 on the migration of EOC cell 

lines using trans-well dishes and the ibidi chemotaxis system, the effect of SPON1 on 

spheroid reattachment merits further attention, as larger studies may reveal a role for 

SPON1 in EOC cell motility. In this study, we were only able to test one primary human 

sample and with few replicates on ULA dishes due to limited sample availability. In the 

future, it would be beneficial to further examine the effect of SPON1 on primary EOC 

spheroid formation and reattachment with a greater number of samples and replicates. 

4.4.2 Mechanisms by which SPON1 regulates cellular function in 
other model systems 

A small number of studies in various model systems have examined the 

mechanisms and signaling pathways by which SPON1 regulates cellular functions, yet no 

common mechanism has been identified. Some studies have found that SPON1 acts 

either via integrin-mediated adhesion. In C. elegans, SPON1 localizes to integrin-

containing structures on body muscles and to other basement membranes, and may be 

required for integrin-mediated muscle-epidermal adhesion [23]. SPON1 inhibits the 
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spreading of human umbilical vein endothelial cells (HUVECs) on vitronectin by 

specifically blocking integrin αvβ3 [30].  

Integrins are known to associate with kinases to initiate cascades of signaling 

events [54]; therefore it is not surprising that SPON1 has also been shown to regulate 

kinase activity. SPON1 inhibits the VEGF-stimulated activation of Protein Kinase B 

(Akt) and phosphorylation of focal adhesion kinase (FAK) in HUVECs plated on 

vitronectin-coated dishes [30]. Conversely, SPON1 increases the phosphorylation of p38 

mitogen-activated protein kinase (MAPK) in murine neuroblastoma cells [25], the 

phosphorylation of the intracellular adaptor protein, disabled-1 (DAB-1) and Akt in chick 

ciliary ganglion [35], as well as phosphorylation of FAK and SRC in osteosarcoma cells, 

which promotes cell migration and invasiveness [29]. SPON1 also interacts with LRP8 

(low-density lipoprotein receptor-related protein 8) which leads to inhibition of the 

TRAF6 and c-Fos signaling pathways in clastic cells [55], and acts as an adaptor protein 

and bridge between APP (amyloid precursor protein) and several apoE receptors 

(apoER2, LRP2 and LRP4) [56, 57]. Considering the diverse mechanisms and signaling 

pathways by which SPON1 exerts its effects, it is clear that much remains to be 

discovered regarding its actions in various tissues and model systems, including ovarian 

cancer progression. 

4.4.3 Searching for mechanisms by which SPON1 may reduce 
adhesion and growth of epithelial ovarian cancer cells 

Certain cell-ECM interactions in the tumour microenvironment induce cell 

adhesion, proliferation, migration and invasion by activating well-studied signaling 

pathways that include kinases such as MAPK and Akt [58]. To identify potential 

signaling pathways induced or repressed by SPON1 in ovarian cancer cells, quiescent 

HEY and OVCAR3 cell lines were treated with recombinant SPON1 and downstream 

signaling targets evaluated using the human phospho-kinase array. We quantified the spot 

intensities of targets that have previously been shown to influence tumourigenesis and 

appeared even slightly dysregulated by SPON1 treatment in either cell line. These studies 

identified p53, Chk2, ERK, GSK3, and WNK1 as potential SPON1 targets. 
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 The p53 tumour suppressor protein has well-established functions in monitoring 

various stress signals and controlling cell cycle arrest and apoptosis. Many 

phosphorylation sites span the p53 protein, with the majority of these sites rapidly 

phosphorylated in response to cellular stress [59]. The phospho-kinase array targets three 

of these sites. One of the more widely studied N-terminal phosphorylation sites is S15. Its 

phosphorylation reduces p53 affinity for its negative regulator Hdm2 and encourages the 

recruitment of transcriptional co-activators. Phosphorylation of S46 is essential for p53-

mediated induction of pro-apoptotic genes but is not necessary for the activation of cell 

cycle arrest targets. C-terminal S392 is phosphorylated in response to ultra-violet light. 

S392 phosphorylation stabilizes the p53 tetramer and activates specific DNA binding [59, 

60]. SPON1 decreased p53 phosphorylation at all three sites in OVCAR3 cells (by 20-

35%), which was not reproduced in HEY cells. We were unable to confirm this by 

Western blotting because of inconsistent detection of total p53 levels (data not shown).  

Elements upstream or downstream of p53 can also be dysregulated in cancer, and 

Checkpoint kinase 2 (Chk2) is such a target. Chk2, a key regulator within the complex 

network of DNA damage checkpoints, is phosphorylated and recruited to DNA strand 

breaks to recruit several members involved in mediating cell cycle arrest, thereby 

delaying cell cycle arrest and allowing for DNA repair [61]. Chk2 is a direct regulator of 

p53 and mediates p53-mediated cell cycle arrest and apoptosis after DNA damage. For 

example, following activation by ionizing radiation Chk2 stabilizes p53 [62]. We 

observed only a subtle increase in phosphorylation of Chk2 following SPON1 treatment.  

Disruptions of the ERK and PI3K/Akt/mTOR pathways are common in many 

types of cancer, including ovarian carcinomas. Specifically, genetic alterations are 

common in a high percentage of high-grade serous ovarian cancers, and therefore ideal 

targets for inhibitors in clinical development [50]. A 15 min treatment with recombinant 

SPON1 induced a slight increase in ERK1/2 phosphorylation and Akt S473 

phosphorylation in HEY and OVCAR3 cells. SPON1 treatment did not affect Akt T308 

phosphorylation.  
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SPON1 slightly increased the phosphorylation of GSK3 in both EOC cell lines, 

with more pronounced phosphorylation in HEY cells. GSK-3 has various roles in cancer, 

which even after years of study remain complex and controversial. GSK-3 is 

overexpressed in various tumour types including ovarian, in which it is believed to exert 

pro-proliferative effects [63].  

In both EOC cell lines the most obvious change in phosphorylation levels 

following SPON1 treatment was a decrease of WNK1 T60 phosphorylation (39% 

reduction in HEY cells and 33% in OVCAR3 cells). The serine/threonine protein kinase 

WNK1 [with no lysine (K)] is ubiquitously expressed in tissues; however its biological 

functions and regulation are not well understood. The only known activators of WNK are 

changes in ionic strength, which is consistent with its role in regulating ion transport [64]. 

The down regulation of WNK1 in a mouse neural progenitor cell line greatly reduced cell 

growth and migration [65]. Despite our best efforts we were unable to confirm the 

phospho-kinase array results by Western blotting due to high background and non-

specific antibody binding (data not shown).  

Lastly, we analyzed the phosphorylation of Proline Rich AKT1 Substrate of 40 

kDa (PRAS40) because our laboratory recently identified it to be a target of SPON1 in 

the KGN granulosa cell tumour cell line using the same phospho-kinase array. PRAS40 is 

a member of the mTORC1 complex, and when PRAS40 is not phosphorylated it is bound 

to mTORC1 and inhibits its activity. Phosphorylation of PRAS40 activates the mTORC1 

complex and promotes ovarian cancer cell proliferation [66]. SPON1 does not 

significantly affect PRAS40 phosphorylation in either OVCAR3 or HEY cell lines 

(Figure S4-10). 

The phospho-kinase array did not clarify which pathways SPON1 is using to 

affect biological events in ovarian carcinomas; consequently we will have to utilize other 

techniques when pursuing this question in the future, such as global gene expression 

analysis. We could also use a targeted approach and examine whether SPON1 interacts 

with integrins in this system. Not only are integrins one of the few known interacting 

partners of SPON1 (as discussed above), but they play an essential role in tumour 
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progression by providing a dynamic interface for the ECM to “integrate” with the cell 

interior [58, 67]. High levels of integrin expression increase tumourigenesis and impact 

cell shape, proliferation, and migration [68]. Integrin αvβ3 would be an interesting target 

to pursue considering it is expressed in most ovarian cancer cells [54] and SPON1 

specifically blocks integrin αvβ3 in HUVECs [30]. Furthermore, it has been reported that 

interaction of αvβ3 with its ligand vitronectin promotes adhesion, proliferation, and 

motility of ovarian cancer cells [54]; blocking αvβ3 integrin function inhibits vitronectin-

induced migration of ovarian cancer cells [69]. Although the precise mechanism of tumor 

progression promoted by αvβ3 remains inconclusive, various studies support a role for 

αvβ3 in ECM-induced phenotypic changes of ovarian cancer cells [54]. Therefore, it is 

reasonable to postulate that SPON1 may be acting through integrin αvβ3 to exert its 

effects on EOC cells, specifically, binding of SPON1 to αvβ3 integrin may decrease 

integrin αvβ3/vitronectin-mediated ovarian cancer cell adhesion and growth. 

4.4.4 Examples of molecules known to inhibit biological properties 
of EOC cells 

Many ECM components enhance adhesion, proliferation, migration and invasion 

of ovarian cancer cells. For example, collagen, laminin and fibronectin have previously 

been shown to enhance all of these biological properties in both HEY and OVCAR3 cell 

lines [58]. There are relatively far fewer examples in the literature of proteins that inhibit 

these functions in ovarian carcinomas, which make our observations of SPON1’s 

function in EOC cells all the more intriguing. Some examples from the literature include 

TSP-1, SPARC, ADAM15 and S1P.  

Thrompbospondin-1 (TSP-1), like SPON1, is also a member of the 

thrombospondin superfamily, and is an adhesive glycoprotein and a potent inhibitor of 

tumour growth, migration, invasion and angiogenesis [70]. The therapeutic use of TSP-1 

has been a topic of research for many years because studies have shown that TSP-1 and 

its mimetic molecules can inhibit the growth of tumours of melanoma, pancreatic, lung 

and ovarian origin [71-73].  
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Secreted protein acidic and rich in cysteine (SPARC) is a secreted glycoprotein 

that interacts with various ECM macromolecules. SPARC is involved in the regulation of 

cell adhesion, proliferation, and migration, as well as in processes requiring ECM 

turnover such as tumor progression. The mechanism through which SPARC modulates 

cancer progression is complex and depends on tumor cell type and the surrounding 

microenvironment. SPARC has anti-proliferative and pro-apoptotic functions in ovarian 

cancer, and has also been shown to abolish ovarian carcinoma cell adhesion by inhibiting 

integrin-mediated cell adhesion to extracellular matrix proteins. [74]  

ADAM15 is known to inhibit various biological functions in ovarian cancer. The 

ADAM proteins, a family of transmembrane and secreted glycoproteins, have diverse 

functions that include cell adhesion, cell fate determination, migration and intracellular 

signalling [75]. Double immunostaining has shown that ADAM15 and αvβ3 have a similar 

distribution pattern on the surface of ovarian cancer cells [75]. When ADAM15 is 

overexpressed in ovarian cancer cells it binds to integrin αvβ3 thereby decreasing integrin 

αvβ3/vitronectin-mediated ovarian cancer cell growth, adhesion and motility [75].  

Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule that inhibits the 

growth and survival of ovarian cancer cells. S1P has an inhibitory effect on cell 

attachment and cell adhesion; S1P inhibits cell attachment to the surface of uncoated 

culture dishes as well as dishes pre-coated with laminin, collagens I and IV and 

fibronectin [76]. Interestingly, Hong et al. suggest that the inhibitory effect of S1P on cell 

growth is preceded by its inhibitory effect on cell attachment or cell adhesion. 

4.4.5 Does SPON1 have an oncogenic or tumour suppressive role 
in ovarian cancer progression? 

Further in vitro and in vivo studies are required to determine whether SPON1 has 

an oncogenic or tumour suppressive role in ovarian cancer tumour progression. Survival 

analyses have suggested that SPON1 is a negative prognostic indicator [32]; therefore the 

SPON1-induced decrease in cell adhesion we observe may increase cell detachment at 

the primary tumour and thereby promote dissemination and tumour progression. 

However, we have also shown that SPON1 decreases EOC cell viability and 
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proliferation, suggesting it may be suppressing tumour growth. Therefore the reduced cell 

adhesion may inhibit cell attachment at secondary sites in the peritoneal cavity and 

reduce tumour progression.  

The SPON1-induced decrease in adhesion, viability and proliferation I have 

observed in vitro can be explored further in vivo using the SPON1-/- mouse, which is 

viable and develops normally to adulthood [26]. Following implantation of ovarian 

cancer cells in the SPON1-/- mouse, tumour burden can be assessed by comparing tumour 

weight, ascites volume, and number of metastases to tissues within the peritoneal cavity.  

4.4.6 Future Directions 

Beyond the future experiments we have already proposed, further investigations 

into the acellular fraction of ascites and the potential role of SPON1 in tumour 

angiogenesis will help create a more comprehensive picture of SPON1’s role in ovarian 

cancer. 

Over one-third of ovarian cancer patients present with large amounts of ascites at 

the time of diagnosis [77]. Ascites accumulates when fluid production in the peritoneal 

cavity exceeds fluid reabsorption [78]. Ascites is composed of a cellular fraction 

containing ovarian cancer cells, lymphocytes, and mesothelial cells and an acellular 

fraction consisting of angiogenic and growth factors, bioactive lipids, cytokines and ECM 

components [77]. All of these factors have been shown to promote cell growth, survival 

and/or invasion. Clinical observations have revealed that the presence of ascites 

correlates with more extensive tumour spread [78]. In vitro studies have shown that the 

acellular fraction of ascites can affect proliferation, apoptosis, migration and invasion of 

EOC cell lines; both positive and inhibitory regulators of tumour progression can be 

present in the acellular fraction [77, 79]. In our study, we detected endogenous SPON1 in 

lysates generated from five EOC cell lines and eight primary ascites-derived samples, as 

well as conditioned medium from all EOC cells (Figure 4-2). Future studies could focus 

on examining the acellular fraction of ascites to confirm that EOC cells are secreting 

SPON1 in vivo.  
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It would also be beneficial to determine whether SPON1 regulates angiogenesis 

during ovarian cancer progression. Angiogenesis is the development of new blood vessels 

from the preexisting vasculature. This process is a key factor in the progression of cancer 

and has been shown to strongly correlate with risk of invasion and metastasis. A balance 

of pro- and anti-angiogenic factors controls angiogenesis. During tumour progression and 

metastasis there is a disruption in this balance that favours angiogenesis [80]. The unique 

method of ovarian cancer metastasis, by shedding of EOC single cells or small clusters 

from the primary tumour into the peritoneal cavity where they establish secondary lesions 

on abdominal organs, is one of the reasons ovarian cancer is difficult to treat. Unlike 

many epithelial cancers the initial dissemination of EOC rarely involves the vasculature; 

however, the vasculature is often involved in advanced stages of ovarian carcinomas [10]. 

Though SPON1 may either have a pro- or anti-angiogenic effect, there is evidence in the 

literature to support an inhibitory role for angiogenesis in ovarian cancer [30]. Future 

investigations could utilize established in vitro angiogenesis models, such as growing 

HUVEC cells in supernatant from EOC cells and establishing whether the presence of 

SPON1 impacts the formation of complex tube network, a hallmark of angiogenesis [81].  

4.4.7 Limitations of study 

We were unable to use a loss-of-function approach to establish a requirement of 

SPON1 for the phenotypic changes to EOC cells we have demonstrated by a gain-of-

function approach. This was not due to omission or lack of effort. Firstly, we attempted to 

reduce SPON1 levels using an siRNA approach. Another member of our laboratory also 

had previously attempted to optimize the knockdown of SPON1 in granulosa cell lines 

using a number of different protocols, culturing conditions, primer sets and transfection 

reagents, without success. Nevertheless, due to the variability between cell types and cell 

lines, we attempted to optimize the conditions for knockdown of SPON1 in OVCAR3, 

OVCAR8 and HEY cell lines. The most success we had with this approach was a 45% 

and 40% reduction of SPON1 protein in HEY and OVCAR8 cells, respectively, that 

lasted only 24 h before SPON1 levels began to increase, and eventually were nearly 

restored to pre-knockdown levels.  
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We also attempted to block SPON1 function using anti-SPON1 antibodies, 

without success. The four antibodies we tested successfully detect SPON1 using Western 

blot analysis; therefore it is possible that either these antibodies are only able to bind to 

the denatured SPON1 protein following SDS-PAGE or are simply unable to act as 

functional blocking antibodies. Interestingly, the lower dose of the Abcam antibody (1 

µg/ml) showed promise because we observed a slight decrease in cell adhesion with weak 

trypsinization compared to control cells; however the reduction in adhesion failed to 

reach statistical significance. Higher doses of this antibody caused the cells to take on a 

rounded morphology and detach in clusters following weak trypsinization. Therefore, we 

were unable to use a loss-of-function approach to further support the results and 

conclusions of our study. 

4.4.8 Conclusions 

This is the first study to determine cellular functions of SPON1 in ovarian 

carcinomas. We have shown for the first time that SPON1 decreases the adhesion, 

viability and proliferation of ovarian cancer cells. We have also demonstrated that 

SPON1 is endogenously expressed in, and secreted by, established ovarian cancer cell 

lines and primary human epithelial ovarian cancer cells. Further investigations are 

necessary to determine whether SPON1 plays an oncogenic, tumour suppressive or 

dichotomous role in ovarian cancer development and metastasis, and whether it may 

serve as a potential treatment target for the progression of ovarian cancer. 
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Figure S4-11: SPON1 affects EOC cell adhesion in a dose-dependent manner. 

HEY (A), OVCAR8 (B) and OVCAR3 (C) cells were treated with vehicle, 1 µg/ml 

recombinant human SPON1 or 5 µg/ml recombinant human SPON1 at the time of 

seeding. After 48 h the cells were detached first with 0.06% trypsin. Any adherent cells 

remaining were then detached with 0.25% trypsin. Cells from each pool were then 

counted. The proportion of cells detached by 0.06% trypsin is shown. Cells remained 

attached when incubated with 1 µg/ml SPON1 after weak trypsinization compared to 

controls. Treatment with 5 µg/ml SPON1 significantly increased the proportion of total 

cells that detached with weak trypsinization compared to vehicle. The data represent the 

mean ± SD of triplicate measurements. *p<0.05 as determined by one-way ANOVA 

followed by Tukey’s post-hoc test.  
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Figure S4-12: SPON1 does not affect the adhesion of OVCAR5 and OVCA429 cell 

lines. 

OVCAR5 (A) and OVCA429 (B) cells were treated with vehicle, 5 µg/ml carrier-free 

recombinant human SPON1 or 10 µg/ml carrier-free recombinant human SPON1 at the 

time of seeding. After 48 h the cells were detached first with 0.06% trypsin (OVCAR5 

incubated for 2 min, OVCA429 for 1 min in 0.06% trypsin). Any adherent cells 

remaining were then detached with 0.25% trypsin. Cells from each pool were then 

counted. The proportion of cells detached by 0.06% trypsin is shown. Treatment with 

SPON1 did not have an affect on the proportion of total cells that detach with weak 

trypsinization compared to vehicle. The data represent the mean ± SD of triplicate 

measurements from two independent experiments. Differences in cell detachment 

between vehicle and SPON1 treatments were analyzed by one-way ANOVA with 

Tukey’s test. 
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Figure S4-13: Ovarian cancer cell migration is not affected by SPON1. 

EOC cell lines were treated at the time of seeding in the upper chamber of transwell 

inserts with 5 µg/ml recombinant human SPON1 or left untreated. Cells were allowed to 

migrate across the transwell membrane towards 5 µg/ml recombinant human SPON1 in 

0.5% FBS or 10% FBS. EOC cell migration was not effected by the presence of SPON1. 

Effect of treatment determined by one-way ANOVA. Treatments (Top of insert/ Bottom 

of insert): (1) 0.5% FBS/ 0.5% FBS; (2) 0.5% FBS/ 10% FBS; (3) 0.5% FBS/ 0.5% 

FBS+5 µg/ml SPON1; (4) 0.5% FBS+5 µg/ml SPON1/ 10% FBS; (5) 0.5% FBS+5 µg/ml 

SPON1/ 10% FBS+5 µg/ml SPON1. 
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Figure S4-14: SPON1 does not affect the chemotaxis of HEY cells. 

The ibidi µ-Slide Chemotaxis2D system was used to determine whether SPON1 acts as a 

chemoattractant or chemorepellant. HEY cells were seeded in the observation chamber of 

the slide and the bottom chamber was filled with 0.5% FBS. The top chamber was filled 

with (A) 0.5% FBS, (B) 10% FBS or (C) 0.5% FBS+10 µg/ml recombinant human 

SPON1. Cells were allowed to migrate over 24 h. Images were captured at 0 h, 6 h and 

24 h. The experiment was repeated three times and representative images are shown. 

HEY cells migrated randomly indicating SPON1 does not affect their chemotaxis.  
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Figure S4-15: SPON1 does not affect the viability of OVCAR5 and OVCA429 

ovarian cancer cell lines. 

Cell viability was assessed in OVCAR5 (A) and OVCA429 (B) cells by MTS assay in 

the presence or absence of SPON1. Cells were cultured in BSA vehicle (black bars) or 

5 µg/mL human recombinant SPON1 (grey bars). Each bar represents the mean ± SD of 

triplicate measurements. Each assay is representative of three independent experiments. 

SPON1 does not significantly affect the viability of these EOC cell lines. Two-way 

ANOVA with Tukey’s test was performed. 
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Figure S4-16: The effect of serial dilutions of recombinant human SPON1 on the 

viability of EOC cell lines. 

Cell viability was assessed in HEY (A), OVCAR8 (B) and OVCAR3 (C) cells by MTS 

assay. Cells were cultured in BSA (vehicle) or serial dilutions of human recombinant 

SPON1 (1 µg/mL, 5 µg/mL or 10 µg/mL). Each bar represents the mean ± SD of 

triplicate measurements. The viability of EOC cells was not affected by 1 µg/mL SPON1 

treatment. HEY cell viability was significantly decreased with 5 µg/mL and 10 µg/mL 

SPON1 treatment, but a dose response relationship does not exist because there was not a 

significant difference in HEY cell viability between 5 µg/mL and 10 µg/mL SPON1. The 

viability of OVCAR3 and OVCAR8 cells was not affected by SPON1 treatment.   
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Figure S4-17: Replenishing recombinant human SPON1 treatment daily does not 

increase the effect of exogenous SPON1 on viability of EOC cell lines. 

Cell viability was assessed in HEY (A), OVCAR8 (B) and OVCAR3 (C) cells by MTS 

assay. Cells were cultured with BSA (vehicle) or 5 µg/mL human recombinant SPON1, 

and treatments were replenished daily. The effect on viability of EOC cell lines was the 

same whether cells were treated with a single dose of recombinant SPON1 (Figure 4-7) 

or when recombinant SPON1 was replenished daily. Two-way ANOVA with Tukey’s 

test was performed (**p<0.01). 



 

 

216 

 

Figure S4-18: siRNA-mediated knockdown of SPON1 was not achieved. 

Western blot performed for SPON1 as indicated on HEY (A), OVCAR8 (B) and 

OVCAR3 (C) cells 48 and 72 h after transfection. β-actin was used as a loading control. 

Lanes: (1) 48 h No treatment (NT); (2) 48h 10nM siRNA 1; (3) 48h 10nM siRNA 2; (4) 

48h 10nM siRNA 3; (5) 72 h NT; (6) 72h 10nM siRNA 1; (7) 72h 10nM siRNA 2; (8) 

72h 10nM siRNA 3. Densitometric quantification was carried out using ImageJ software, 

and calculating SPON1 expression relative to β-actin control. The NT controls (Lane 1 

and Lane 5) were considered as 100% SPON1 expression and all values were normalized 

to these values (Lanes 2-4 were normalized to Lane 1, Lanes 6-8 were normalized to 

Lane 5). 
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Figure S4-19: Anti-SPON1 antibodies did not block SPON1 function. 

A) Cell viability was assessed using the MTS assay. Four antibodies generated against 

SPON1 (1 µg/mL and 10 µg/mL) were co-incubated with HEY cells in an attempt to 

block endogenous SPON1 function. Co-incubation with the antibodies did not increase 

cell viability, which indicated SPON1 function was not blocked. Two-way ANOVA with 

Tukey’s Test was performed (*p<0.05). 

B) HEY cells were co-incubated with anti-SPON1 antibodies – ab40797 and 3 Santa 

Cruz antibodies combined (SCC) ± 5 µg/ml recombinant human SPON1. After 48 h the 

cells were detached first with 0.06% trypsin and any adherent cells remaining were then 

detached with 0.25% trypsin. Cells from each pool were then counted. The proportion of 

cells detached by 0.06% trypsin is shown. Co-culture with anti-SPON1 antibodies did not 

block SPON1 function. The data represent the mean ± SD of triplicate measurements. 

One-way ANOVA with Tukey’s Test was performed (*p<0.05) 
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Figure S4-20: Phospho-kinase array in control and SPON1-treated EOC cells. 

HEY (A) and OVCAR3 (B) cells were incubated for 15 min with 250 µg/ml BSA 

(vehicle control) or 5 µg/ml SPON1. Total protein lysates were incubated with 

membranes containing capture antibodies (spotted in duplicate) against kinase 

phosphorylation sites (R&D Systems). The membranes were then incubated with 

biotinylated detection antibodies, streptavidin-HRP, and proteins were detected using 

chemiluminescence. Densitometric quantifications were done using ImageJ software, 

data are presented in the graphs as a mean pixel density (n = 2 spots). Spots: 1) ERK1/2 

(T202/Y204, T185/ Y187); 2) GSK-3α/β (S21/S9); 3) Akt 1/2/3 (S472); 4) Chk-2 (T68); 

5) PRAS40 (T246); 6) p53 (S392); 7) p53 (S46); 8) p53 (S15); 9) WNK1 (T60).  

 



 

 

219 

Chapter 5 

 Discussion 5

5.1 Summary of findings 

The ECM plays an active and complex role in regulating cell growth, survival, 

motility, polarity and differentiation. It also provides the structural foundation required 

for tissue function and regulates the availability of growth factors and cytokines. The 

studies within this thesis examined the expression of several ECM components within the 

ovary of the ERβ-knockout mouse (βERKO) and the role of the ECM protein, Spondin 1, 

in the progression of epithelial ovarian cancer (EOC). 

Microarray analysis performed by Dr. Deroo indicates that ECM expression is 

disrupted in βERKO GCs [1] and may contribute to the attenuated folliculogenesis 

observed in βERKO ovaries. To further investigate these observations (Chapter 2), I used 

qPCR and immunofluorescence (IF) assays to characterize the ovarian expression and 

localization of two ECM proteins that had been identified as differentially expressed in 

ERβ-null GCs, namely Collagen 11A1 (Col11a1) and Nidogen 2 (Nid2) [1]. I found that 

expression of both Collagen11a1 and Nid2 is significantly higher in βERKO ovaries than 

in wildtype ovaries as early as PND 13, and this heightened expression continues through 

PND 23–29 into adulthood. Similarly, I examined the expression and localization of the 

ECM proteins Collagen IV (Col4a1), Nidogen 1 (Nid1) and Laminin (Lama1), which had 

not been identified by the original microarray, but are well-known mouse ovarian ECM 

proteins. Collagen IV, Nidogen 2 and Laminin were also more highly expressed in the 

βERKO ovary than in wildtype. This data suggests that ERβ represses the expression of 

several ECM proteins in the mouse ovary. In addition, given that dysregulation was 

observed as early as PND 13, my data also indicates that granulosa cell (GC) gene 

expression is regulated by ERβ prior to puberty—an unexpected and novel finding.  

In Chapter 3, I investigated a potential mechanism by which ERβ may be acting 

as a transcriptional repressor in GCs. I used transient transfection assays to show that the 

bHLH transcription factor, TCF21, regulates estradiol-dependent transcriptional activity 
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in an ER isoform-specific manner, and represses ERβ, but not ERα-driven 

transactivation. TCF21 represses ERβ-mediated transcription of a 3x-ERE reporter in 

several cell lines, as well as three naturally occurring estrogen responsive promoters 

(pS2, C3 and Lf). This repression does not require TCF21 heterodimerization with E12. 

Lastly, the bHLH transcription factor Mist1 does not repress ERβ-mediated transcription 

of the 3x-ERE reporter, suggesting that not all bHLH proteins repress ERβ-mediated 

transcription. Despite our best efforts we were unable to show that TCF21 forms a 

complex with ERβ in vivo. Therefore, we turned our focus to another ERβ-dependent 

ECM protein identified in Dr. Deroo’s microarray, SPON1, and its potential role in 

ovarian cancer progression. 

SPON1 is highly overexpressed in ovarian cancer and has recently been identified 

as a promising ovarian cancer marker, particularly for high-grade serous EOC. Therefore, 

in Chapter 4, I examined whether SPON1 affects key ovarian cancer cell functions in 

immortalized EOC cell lines and in human primary ascites-derived ovarian cancer cells. I 

confirmed by Western blot that SPON1 is expressed and secreted by both immortalized 

ovarian cancer cell lines and primary ascites-derived ovarian cancer cells. Although I was 

unable to silence SPON1 expression in EOC cell lines using siRNA or functional 

blocking with antibodies, I performed several functional assays to assess whether 

treatment of EOC cells with recombinant SPON1 affects specific cellular processes. My 

data demonstrated that SPON1 significantly reduced EOC cell adhesion, viability and 

proliferation; however, it did not affect cell migration. Finally, using a non-adherent 

culture system I examined whether SPON1 affects EOC spheroid formation and 

subsequent reattachment to adherent tissue culture plastic. Treatment of EOC cells with 

recombinant SPON1 prior to spheroid formation did not impact the formation or 

reattachment of spheroids. However, treatment of spheroids with recombinant SPON1 

following transfer to adherent tissue culture plastic did increase the cell dispersion area of 

spheroids that had re-attached. These data suggest that SPON1 regulates a subset of 

functions of ovarian cancer cells.  

In summary, my thesis work has shown that ECM proteins are aberrantly 

overexpressed in the βERKO mouse ovary, as well as high-grade serous EOC. The 
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expression of the ECM proteins investigated herein is ERβ-dependent. This body of work 

contributes to our understanding of the role ECM proteins have in ovarian development 

and ovarian cancer progression. 

5.2 Potential mechanisms by which the ECM regulates 
ovarian follicle development/ growth and EOC 
progression 

The histological analysis of mammalian organs demonstrates the incredible 

complexity of cellular organization required to build and maintain normal tissues [2]. The 

disruption of this structural organization usually leads to disease and neoplastic 

transformation. Several biological functions are mediated by the interaction of ECM 

proteins with binding partners, which include other ECM components, growth factors, 

signal receptors and adhesion molecules [3, 4]. Normal tissue organization requires two 

key components: (1) organized cell-cell and cell-ECM adhesion, and (2) the 

establishment and maintenance of cell polarity. The dysregulation of these two functions 

is a hallmark of cancer. In this section of the Discussion, I will briefly introduce the key 

features of organized adhesion and polarity, and describe how these features relate to 

ovarian follicle growth and EOC progression. Finally, I will discuss how the ECM 

proteins I investigated may be affecting these two critical components of tissue 

organization. Specifically, I believe that the ECM proteins I investigated in Chapter 2 

help maintain ovarian structural integrity, whereas Spondin 1 (Chapter 4) is a 

matricellular protein that lacks a structural role but is involved in cell-matrix interactions.  

5.2.1 Adhesion 

Within tissues, cells physically interact with the ECM (cell-ECM adhesion) as 

well as neighbouring cells (cell-cell adhesion). The correct adhesion of a cell to ECM 

components determines whether the cell is in the correct location and consequently 

regulates cell survival. Cells that lose cell-cell or cell-ECM adhesion undergo apoptosis 

to restrict inappropriate cell growth [5]. Various adhesion molecules mediate cell-cell and 

cell-ECM interactions, and functional units of cell adhesion can be grouped into three 



 

 

222 

general classes: adhesion receptors, ECM proteins, and cytoplasmic membrane proteins 

[6].  

Cell adhesion receptors are typically transmembrane glycoproteins, and include 

members of the cadherin, integrin, immunoglobulin, selectin and proteoglycan 

superfamilies [6]. These receptors bind to other adhesion receptors on neighbouring cells 

or to proteins of the ECM. ECM proteins include members of the collagen, fibronectin, 

nidogen, laminin, and proteoglycan families.  

Cadherins are one of the most important and ubiquitous cell adhesion receptors 

involved in cell-cell adhesion and recognition [7]. They are associated with adherens 

junctions, which link adjacent cells, and exhibit functional adhesion activity by forming a 

complex with catenins and the actin cytoskeleton [6]. Classic members of the cadherin 

family are named for the tissue in which they were originally discovered, and include E 

(epithelial), N (neural), P (placental), and VE (vascular endothelial) cadherin [8].  

Focal adhesions are large, dynamic, integrin-containing complexes that connect 

cells to the ECM. Integrins are the major adhesion receptors within focal adhesions, and 

facilitate crosstalk between the ECM and the cell. The stimulation of integrins triggers 

intracellular signals and activates signalling proteins such as focal adhesion kinase (FAK) 

[9]. Cells adhere to the ECM via specific integrin-matrix ligand interactions.  

Several studies have demonstrated that cell-cell and cell-ECM adhesions are 

interdependent, and that modulation of extracellular factors that alter cell-ECM 

interactions can directly impact cell-cell interactions [10-12]. The interdependence of 

cell-cell and cell-ECM forces is likely disrupted by the overexpression of ECM 

components, which has implications in development and disease. 

5.2.1.1 Adhesion in folliculogenesis and its disruption in the βERKO ovary 

There are several changes to cell-cell and cell-matrix adhesions that occur during 

the functional and morphological changes of folliculogenesis; consequently both 

cadherins and integrins are involved in the maintenance and remodeling of the ovary [13, 

14]. E-cadherin and N-cadherin are expressed throughout prepubertal development in the 
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oocyte and GCs, respectively. Adherens junctions expressing N-cadherin exist between 

GCs and between GCs and the oocyte [15]. Blocking N-cadherin reduces follicle 

formation, whereas blocking E-cadherin accelerates follicle formation, suggesting the 

latter is likely involved in maintaining oocytes in nests (clusters of germ cells that break 

down to form primordial follicles) [16]. Multiple laboratories have reported the presence 

of integrins in the ovary [14, 17]; however, unlike the cadherins, the role of integrins in 

ovarian function is less clear. Integrin α6β1, for example, is likely necessary for 

maintaining a healthy, nonluteal GC phenotype [14]. Burns et al. found that several 

integrin subunits were expressed at various stages in folliculogenesis; however, their role 

in follicle growth has not been pursued [14]. The integrin subunit β3 has been detected in 

GCs, TCs and interstitial cells and it is postulated that FSH controls its expression [17].  

My data suggest that cell-cell and/or cell-ECM interactions may be disrupted in 

the βERKO ovary. The effect of overexpressed ECM components on GC adhesion and 

adhesion complexes can be examined using several techniques. One mechanism, by 

which the overexpressed ECM proteins may be affecting cell adhesion, is by 

dysregulating the expression of adherens junction and/or focal adhesion components [18-

21]. A potential preliminary experiment to determine whether cell-cell or cell-ECM 

adhesion complexes are disrupted in the βERKO mouse would be to characterize the 

expression (qPCR and Western blot) and localization (IF) of cadherins and integrins 

known to be expressed throughout folliculogenesis. Secondly, adhesion can be assessed 

with the Detachment and Adhesion Assays that I used in Chapter 4; GC cell lines can be 

treated with recombinant protein and cell adhesion measured using these established 

techniques. Alternatively, we could create transgenic mice that overexpresses Col11a1 or 

Nid2 using GC-specific promoters (CYP19A1-Cre for FSH-responsive stage, PRE-Cre 

for the luteal stage), and examine the expression of adherens junction and focal adhesion 

components.  

The potential impact that ECM proteins within the focimatrix have on GC 

adhesion is of particular interest, because unlike the follicular basal lamina, the function 

of the focimatrix remains largely unknown. Although its punctate morphology suggests it 

is does not perform typical basal lamina functions, such as filtering material or creating 
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microenvironments for enclosed cells [22], it has been postulated by Irving-Rogers et al. 

that GCs interact with the focimatrix via integrins [23]. I propose that the overexpressed 

ECM proteins in the βERKO focimatrix compete for integrin receptors [24-26]. 

Therefore, the “integrin binding competition” disrupts accurate integrin-matrix adhesions, 

thereby disrupting integrin-signaling. Of note, Nidogen 2, which was significantly 

overexpressed in the βERKO mouse focimatrix, has previously been reported to interact 

with integrin α6β1 in vitro [27], which is expressed in the mouse ovary [14] 

There is compelling evidence in the literature that in addition to biochemical 

signaling and hormonal cues, mechanical signaling from the physical environment 

regulates the development and function of the ovary [28, 29]. This regulation can occur in 

a number of ways. Firstly, the physical environment regulates follicle growth in culture 

when hormonal stimulation is constant [29, 30]. For example, the substrate on which a 

follicle is cultured (collagen, laminin or a poly-L-lysine control) affects theca cell (TC) 

development and antrum formation [28]. Secondly, a rigid, dense environment within the 

ovary maintains primordial follicles in a dormant state. As a follicle migrates towards the 

medulla of the ovary it moves into a less dense matrix, which permits follicle growth; 

therefore, the ovarian physical environment may initiate the growth of an immature, 

dormant follicle [31]. In vitro, decreasing matrix stiffness and solids concentration of 

alginate hydrogel enhances follicle growth and function, whereas a stiff environment 

hinders follicle development [30]. If the overexpressed ECM proteins in the βERKO 

ovary maintain a higher-than-normal ECM density compared to wildtype, the βERKO 

follicles would be more rigid, thus restricting follicle growth. The movement of follicles 

from a dense to a less dense environment may also be hindered by this increased matrix 

density, and consequently contribute to the premature arrest of folliculogenesis observed 

in the βERKO ovary.  

In summary, I predict that the higher expression of ECM components disrupts the 

maintenance of the adherens junction and focal adhesion complexes as well as matrix 

stiffness within the follicle. Aberrant expression of adhesion complex proteins may 

impact mechanical signals that are relayed to the cells by cell adhesion receptors. 

Consequently, these dysregulated mechanically induced signaling cascades may impact 
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cell form and function, ultimately leading to the arrest of follicle growth and subfertility 

observed in βERKO mice. 

5.2.1.2 Adhesion and EOC tumour progression 

Reversible changes in cell-cell and cell-matrix adhesion occur to facilitate ovarian 

tumour progression. The initial dissemination of cells from the primary tumour 

necessitates a disruption of cadherin-mediated cell-cell adhesions as well as integrin-

matrix contacts. Subsequently, tumour cells in suspension utilize cell-cell adhesions to 

form multicellular spheroids. The development of metastases involves remodeling of the 

cadherin-based adhesions as the spheroid disaggregates on the mesothelium of the 

peritoneal cavity, while the integrin-matrix adhesions anchor the cells to the mesothelium 

[32-34]. Therefore, it would be of interest to examine the role of SPON1 in mediating the 

adhesion between tumour cells, as wells as its contribution to tumour-stroma interactions. 

Furthermore, cell survival and proliferation are adhesion-dependent phenomenon in 

anchorage-dependent tumor cells, therefore the decreased viability and proliferation of 

EOC cells I have observed following treatment with recombinant SPON1 may be a result 

of decreased cell adhesion. 

The ovarian surface epithelium (OSE) is unlike the majority of epithelia because 

it generally lacks E-cadherin expression; rather its cell-cell integrity is maintained by N-

cadherin [35]. E-cadherin expression becomes more abundant during ovarian 

carcinogenesis; however, its expression is reduced at advanced stages and in ascites-

derived tumour cells. This is referred to as the “cadherin switching”, whereby N-cadherin 

and P-cadherin compensate for the loss of E-cadherin in advanced tumours and EOC 

spheroids [36]. The switch in cadherin expression is indicative of an EMT (discussed in 

Section 5.2.2). 

The ability to resist anoikis is a critical mechanism in tumour metastasis [37], and 

EOC cells in suspension within the abdominal cavity form multicellular spheroids to 

maintain cell-cell contact as part of their natural survival response [34]. Both integrins 

and cadherins facilitate this cell compaction [38]. EOC spheroids acquire E-cadherin-

mediated adhesion as a means to suppress anoikis [35], and downregulation of E-
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cadherin has been shown to decrease EOC cell viability [39]. The formation of ovarian 

cancer spheroids is also mediated by integrins, and spheroid formation is disrupted when 

cells are treated with antibodies that block α5- or β1-integrin subunits [40]. In Chapter 4, 

I found that treatment of spheroids with recombinant SPON1 after the spheroids were 

transferred from non-adherent to adherent tissue culture dishes significantly increased the 

cell dispersion area of the attaching spheroid. SPON1 is likely affecting cell adhesion 

mechanisms in this model system. In the future, it would be interesting to investigate 

whether SPON1 affects the cadherin switch by measuring the relative levels of E-

cadherin, N-cadherin and P-cadherin, following spheroid formation, as well as the 

expression of integrins involved in the disaggregation and re-attachment of spheroids. 

The potential effect of exogeneous SPON1 on the mRNA and protein expression levels 

of these adhesion components should also be examined. 

As when formed into multicellular spheroids, individual ovarian cancer cells 

express several integrins that allow them to bind ECM proteins, and many integrins have 

been shown to affect the adhesion of EOC cells [41-44]. To examine whether integrins 

and their associated signaling proteins are involved in the SPON1-mediated decrease in 

EOC cell adhesion that I observed in both ovarian cancer cell lines and EOC patient 

samples, select molecules can be investigated in future studies. FAK and αvβ3 integrin 

would be ideal preliminary targets because both are expressed in ovarian cancers (both 

promote tumour progression) [43, 45-47], and SPON1 has been shown to interact with or 

signal through them in other model systems [25, 48]. Phosphorylation of FAK promotes 

cancer cell growth; therefore, if SPON1 inhibits FAK phosphorylation (as observed in 

HUVECs [25]) it may be a mechanism by which SPON1 reduces EOC cell adhesion and 

proliferation, as I observed in Chapter 4. SPON1-induced changes in FAK 

phosphorylation can be examined by immunoblot. Additionally, FAK can be silenced 

using siRNAs, and functional assays can be performed to determine whether SPON1 is 

acting through FAK to effect cell adhesion and proliferation. 

Alternatively, SPON1 may be acting through integrin αvβ3 to exert its effects on 

EOC cell adhesion, potentially by disrupting the interaction of this integrin with 

vitronectin. Vitronectin is a ligand of integrin αvβ3, and this interaction promotes 
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adhesion, proliferation, and motility of ovarian cancer cells [43]. Blocking αvβ3 integrin 

function inhibits vitronectin-induced migration of ovarian cancer cells [47]. SPON1 has 

previously been shown to block the integrin αvβ3/vitronectin interaction in HUVECs [25]. 

Therefore, binding of SPON1 to integrin αvβ3 (over vitronectin) may decrease integrin 

αvβ3/vitronectin-mediated ovarian cancer cell adhesion and growth, thereby disrupting the 

intracellular signals regulating cell survival and progression. The expression of integrin 

αvβ3 can be blocked using neutralizing antibodies against its subunits, an approach that 

has been successfully utilized with several integrins in ovarian cancer [41]. Considering 

we were unable to successfully silence SPON1 expression with an siRNA approach, 

identifying and silencing its downstream targets will be a valuable alternative method to 

continue exploring the role of SPON1 in the metastatic progression of EOC. 

 There are many examples in the literature where a change in cell adhesion 

corresponds to a change in cell motility and invasion [41, 43, 47-51]. Therefore, it was 

surprising that the SPON1-induced decrease in adhesion did not correspond to an effect 

on EOC cell migration in trans-well assays (Chapter 4, Fig. S3). This may be a limitation 

of the technique I used. An alternative functional assay, for example the scratch-wound 

assay, may demonstrate that SPON1 affects cell motility (as suggested by the increased 

cell dispersion area following treatment of spheroids with SPON1). 

5.2.2 Cell polarity 

Cells have a defined organization, with an asymmetric distribution of proteins and 

physical features of the cell, including the cell surface, cytoskeleton and organelles. An 

internal axis of polarity is created during morphogenesis and this creates apical-basal 

polarity of the cell. Polarity is involved in the biological processes of cells and tissues 

that necessitate an asymmetrical symmetry. These processes include growth, survival, 

migration and epithelial-to-mesenchymal transitions (EMT) [52].  

The synchronized actions of three protein complexes direct the establishment and 

maintenance of apical-basal polarity: the Crumbs (Crumbs–Patj–Pals), Scribble 

(Scribble–Lgl–Dlg) and Par (Par3–Par6–aPKC) complexes [2]. Atypical protein kinase 

(aPKC) is the catalytic component of the Par complex [53]. There are two homologues of 
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aPCK, aPCKι and aPKCζ, both of which have been implicated in human cancers; aPCKι 

expression is upregulated in ovarian cancer and correlated with poor prognosis [54]. 

Polarity is achieved by the interaction of these three complexes with the structural 

components of the cytoskeleton and adherens junctions between cells. Several 

extracellular cues are required for the epithelial cells to exhibit all aspects of polarity, and 

attachment to the ECM prompts the formation of the apical-basal axis [2]. 

Adhesion and polarity are closely interrelated; cell polarity mechanisms rely on 

the formation and maintenance of adherens junction complexes, and the activities of the 

polarity complexes are required for the maintenance of adherens junction complexes [2]. 

EMT, which occurs in normal physiological processes but has also been linked to cancer 

progression, requires the disruption of cell-cell and cell-matrix adhesions, as well as the 

loss of apical-basal polarity [52]. EMT is a process by which a polarized epithelial cell, 

which normally interacts with the basement membrane (BM), undergoes several 

biochemical changes that allow it to take on a mesenchymal phenotype, which involves 

greater motility, invasiveness, resistance to apoptosis and an increased production of 

ECM components [55]. The establishment and maintenance of both somatic and germ 

cell polarity are essential features in ovarian development and folliculogenesis [56]. 

5.2.2.1 Cell polarity and folliculogenesis 

It has previously been established that aberrant polarization of GCs can affect all 

stages of folliculogenesis, from the recruitment of primordial follicles to the atresia of 

preovulatory follicles [57]. It remains a point of contention whether GCs lose their 

polarity prior to ovulation or once they luteinize. The original theory was that GCs are 

polarized, whereas luteal cells are not [58]. Mora and colleagues, however, have recently 

suggested that GCs undergo a partial and contained EMT, which is completed at 

ovulation [15]. A transition such as this is unusual in adult tissues, because EMT usually 

occurs during development or tumour progression. In support of the concept of partial 

EMT, Irving-Rodgers and colleagues have proposed that prior to the expression of the 

focimatrix the follicular basal lamina dictates the polarity of GCs, which enables 

directional secretion, uptake of molecules, and other polarized functions [59]. Once the 

focimatrix is expressed basal lamina components are interspersed between the GCs, 
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which may reduce the polarization cue from the follicular basal lamina. The change in 

polarity may initiate the partial EMT, which is only completed after ovulation when GCs 

luteinize and lose their epithelial nature.  

 Considering that the ECM can define positional information and differentiation 

cues in tissues [52], I hypothesize that the elevated expression of ECM proteins in the 

βERKO ovary disrupts cell polarity cues within the follicle, ultimately compromising 

folliculogenesis.  

The increased expression of Col11a1 around individual βERKO GCs may 

influence the expression of adherens junction proteins, and therefore compromise 

follicular cell polarity. The pattern of expression of Col11a1, specifically, encircling 

individual GCs, very subtly resembles that of the adherens junction components N-

cadherin and β-catenin in wildtype ovaries; unlike Col11a1, N-cadherin and β-catenin do 

not encircle the GCs completely, they are are localized to one side of GCs [57]. 

Interestingly, the expression of N-cadherin and β-catenin is disrupted in another mouse 

model with compromised ovarian folliculogenesis and fertility (Wnt4mCh/mCh ; transgenic 

mouse with disrupted Wnt4 activity due to the insertion of the mCherry fluorescent 

protein), and the disrupted expression pattern of both N-cadherin and β-catenin is 

strikingly similar to that of Col11a1in the βERKO mouse ovary (completely encircling 

individual GCs) [57]. Previously published results have shown that collagens can affect 

the expression of cadherins and catenins [18, 20, 21]; therefore I postulate that the 

overexpression of Col11a1 at sites of adherens junctions disrupts the expression of 

cadherins and catenins in the mouse ovary, which dysregulates polarity. The Col11a1-

induced disruption of cadherin and catenin expression in the βERKO ovary can be 

determined by measuring gene expression in isolated GCs using qPCR. Furthermore, 

primary GC and GC cell lines can be plated on uncoated and Col11a1-coated dishes, and 

the expression of adherens junction components determined by qPCR and Western blot 

[19]. The assembly of adherens junctions can also be determined by IF [20]. If adherens 

junction complexes are dysregulated, polarity markers should then be assessed using 

similar techniques.  
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My studies have also shown that the expression of Nidogen 2 is elevated in the 

βERKO focimatrix. At present, the role of the focimatrix in follicle development remains 

unknown; however, the suggestion that it impacts polarity is worth investigating. 

Examining the role of the focimatrix in maintaining cell polarity would be difficult. 

Specifically, replicating in vitro the punctate localization of the focimatrix around the 

GCs, and thereby the polarity cues from all sides of the GCs would be challenging. 

I have carried out preliminary IF experiments to investigate cell polarity in 

βERKO and WT mouse ovaries by examining the relative expression aPKCζ in ovarian 

sections (Appendix, Figure 6-1). Previous studies have shown that aPKCζ is expressed in 

preovulatory GCs of the rat [60] and suggested aPKCζ may be involved in the regulation 

of ovulation [61]. Interestingly, I found that the localization pattern of aPKCζ differs 

between prepubertal (PND 23) βERKO and WT ovaries. In WT ovaries aPKCζ is easily 

detected in GCs closest to the BM; however, its expression is low or undetectable in GCs 

closer to the oocyte. In contrast, in βERKO ovaries I consistently observed expression of 

aPKCζ in both GCs closer to the oocyte and BM. Future studies are required to confirm 

and expand on these preliminary results. Initially, these preliminary results require 

confirmation. Subsequently, the expression of aPKCζ in the βERKO mouse ovary can be 

characterized at earlier (for example, PND 13 when we see dysregulation of ECM 

proteins) and later stages to determine when this dysregulation is occurring. If this 

disrupted aPKCζ expression persists to the antral stage, I postulate, based on the 

localization at the pre-antral stage, that βERKO cumulus and mural GCs will express 

aPKCζ, whereas only mural GCs will express aPKCζ in wildtype follicles. This disrupted 

polarity may impair cumulus cell differentiation, thereby disrupting cumulus cell-oocyte 

complex (COC) expansion, which is known to be inhibited in βERKO ovaries [62]. There 

are several techniques that could be utilized to pursue these hypotheses, including the 

development of a GC-specific aPKCζ, knockout mouse, as well as utilizing qPCR to 

compare the levels of polarity markers (e.g. aPKCζ and Par6) between isolated COC and 

mural GCs from βERKO and wildtype mice.  
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5.2.2.2 Cell polarity and ovarian cancer 

The loss of cell polarity and consequent tissue disorganization is a hallmark of 

cancer and increased malignancy [52]. Several studies have demonstrated that changes in 

the activation or expression of core cell polarity proteins are implicated in the 

development of human cancers (reviewed in [2]). Importantly, the loss of apical-basal 

cell polarity (along with the loss of cell-cell adhesion) is necessary for EMT, which is a 

key step in cancer cell migration and invasion. The loss of polarity also permits growth 

factors and receptors, which are normally compartmentalized by tight junctions in 

polarized cells, to induce aberrant autocrine cell activation [53].  

Oncogenic signaling has been shown to directly disrupt cell polarity mechanisms 

[54]. It is well-accepted in the literature that TGFβ is a major inducer of EMT, and 

TGFβ-induced EMT often coincides with a loss of E-cadherin expression [63]. TGF-β 

receptors bind directly to Par6, leading to the recruitment of aPKC and interference with 

apical-basal polarity by changing the binding partners, composition and localization of 

Par6-aPKC [64, 65]. The TGF-β-induced inactivation of the Par complex induces the 

cells to undergo EMT.  

SPON1 signaling mechanisms in ovarian cancer cells (and most other cells) 

remains to be elucidated. However, SPON1 has previously been shown to activate latent 

TGFβ in embryonic and osteoarthritis articular chondrocytes [66, 67]. Therefore, SPON1 

may have a role in TGFβ signaling in ovarian cancer and be indirectly involved in the 

regulation of PKCι. It would also be of interest to examine whether treatment of EOC 

cells with recombinant SPON1 or silencing SPON1 expression impacts EMT. Future 

studies could utilize qPCR to determine whether SPON1 affects the cadherin switch (E-

cadherin, N-cadherin) and examine the expression of several transcription factors 

involved in EMT (e.g. Snail, Slug, Twist and ZEB) during the formation of spheroids and 

subsequent re-attachment.  
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5.3 An early role for ERβ-regulated ECM proteins in the 
ovary 

While it is well established that estradiol acting through ERβ is required to 

augment the GC response to FSH for the formation of a preovulatory follicle, fewer 

studies exist establishing a role for estradiol in folliculogenesis, prior to the gonadotropin 

surge at puberty, and the role of ERβ prior to puberty remains largely unexplored. My 

data demonstrate that ERβ regulates gene expression in the mouse ovary much earlier 

than previously thought. Further studies are required to determine at what stage the 

expression of ECM components is disrupted and when this disruption impacts follicle 

growth.  

 I have performed preliminary IF experiments using βERKO ovaries that suggest 

Col11a1 may be overexpressed as early as PND 5 or PND 8 (Appendix, Figure 6-2), 

while the expression of Nid2 is comparable in βERKO and WT ovaries at these earlier 

ages. Oktay et al. isolated ovaries from mice on PND 5 and showed that follicle growth 

in vitro is not only affected by the presence of the ECM but also by the specific ECM 

component on which the ovary is cultured [68]. Furthermore, the production of estradiol 

is required for the optimal growth of follicles from the primordial to primary stage, and 

specifically ERβ, but not ERα, is involved in this transition [69, 70]. Therefore, ERβ-

regulated ECM composition may impact the growth of follicles from the primordial 

stage.  

  Furthermore, ERβ-regulated ECM proteins could be involved during some of the 

earliest stages of postnatal ovarian development, specifically by influencing oocyte nest 

breakdown. In mice, the majority of nest breakdown occurs between PND 2 and PND 4; 

however, small nests can be found in mice as old as PND 8 [71]. Nest breakdown and 

primordial follicle formation are inhibited by estradiol, progesterone, and the 

phytoestrogen genistein [72], and inhibition of nest breakdown can lead to the 

development of multiple oocyte follicles (MOFs) in WT mice. βERKO mice, treated 

neonatally with genistein, do not develop MOFs [73], suggesting that ERβ may be 

involved in the regulation of nest breakdown. Future studies utilizing qPCR and IF will 
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be required to assess whether ECM components are disrupted in βERKO ovaries at these 

early stages. 

5.4 TCF21-ERβ interactions: Novel findings and future 
studies 

Using a model of transient transfection of ERE-driven luciferase reporters, and 

co-transfected expression plasmids of human ERβ and TCF21, I have shown that TCF21 

represses ERβ-dependent activation of both synthetic and natural estrogen-responsive 

promoters in several cell lines (Chapter 3). Based on these data, I hypothesized that 

TCF21 and ERβ interact to form a complex in vivo. My objective was to utilize GST-

pull-down analyses and co-immunoprecipitation (Co-IP) experiments to demonstrate and 

further understand their interaction.  

 Despite our best efforts, we were unable to produce evidence of TCF21-ERβ 

interactions using Co-IP. We tested a large variety of conditions including four different 

lysis buffers, varying duration of cell lysis (20 min or 40 min), four cell lines, several 

antibodies (three anti-ERβ and two anti-TCF21 antibodies), as well as transfection of 

FLAG-ERβ and an anti-FLAG antibody. However, we were unable to show interaction, 

regardless of which protein we used for the IP. Furthermore, all antibodies caused 

technical difficulties due to inconsistent results, high background signal and non-specific 

binding. One future approach to improving this assay might involve using a different tag 

for ERβ, and using a tagged TCF21 construct. An alternative approach would be to create 

our own ERβ antibody because the lack of a reliable, commercially available ERβ 

antibody that does not cross-react with ERα is a well-known obstacle in the field [74, 75]. 

However, whether we could successfully create a specific ERβ antibody when so many 

others have failed is unknown. 

I was also unable to successfully purify GST-ERβ or GST-tagged ERβ deletion 

mutants using an established protocol [76], and future troubleshooting is required. The 

protein purification protocol will require optimization of several conditions including, but 

not limited to, buffers, temperature at which bacterial cultures are grown as well as 

incubation time, to achieve successful purification of functional proteins.  



 

 

234 

Additional studies for consideration to investigate ERβ-TCF21 interaction include 1) 

chromatin immunoprecipitation (ChIP) assays to determine whether TCF21 binds to the 

ERβ promoter (using a tagged TCF21), and 2) qPCR and Western blot analysis to assess 

whether TCF21 affects endogenous levels of ERβ mRNA and protein in granulosa cell 

lines and primary granulosa cells. Binding of TCF21 to the ERβ promoter could 

theoretically repress transcription of ERβ by either inhibiting the binding of RNA 

polymerase to the promoter or inhibiting its release from the promoter [77]. 

5.5 ERβ- and 17β-estradiol-regulated ECM components: 
An effect on ovarian cancer progression? 

Epidemiological evidence indicates that the induction and progression of ovarian 

cancer is related to estrogen exposure [78], and high estradiol levels are often observed in 

EOC patients because both OSE and EOC cells secrete estradiol [79, 80]. Several studies, 

using various model systems, have shown that estradiol treatment contributes to the 

initiation and promotion of ovarian cancer growth. For example, treatment of 

ovariectomized mice with estradiol increases tumour growth by over 400% compared to 

controls [81]. Estradiol treatment has also been shown to promote growth, migration and 

invasion of several ovarian cancer cell lines [78, 80]. Whether estradiol increases tumour 

burden in vivo and decreases survival times is unclear because of variable results in the 

literature [78, 82].  

The expression of the ER in ovarian cancer is variable. Of the four EOC subtypes, 

endometrioid ovarian cancer exhibits the highest occurrence of ER expression. Fujimura 

et al. found that although all subtypes of clinically resected ovarian adenocarcinomas 

express ERβ, ERβ expression is most often observed in endometrioid tumours (75% of 

cases), as compared to serous (41%), clear cell (39%) and mucinous (30%). ERα is 

expressed by all (100%) endometrioid tumours, 97% of serous tumours, 70% of 

mucinous and is absent (0%) in clear cell samples. As in normal ovarian development, 

the role of the two ERs differs in EOC development – high ERα levels are associated 

with a worse prognosis, whereas high ERβ levels are associated with longer survival [80]. 

ERβ expression is weak in ovarian tumour tissues compared to normal ovarian tissues, 
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likely decreasing over time with tumour progression, suggesting that ERβ has tumour-

suppressive functions and a protective role [83, 84]. 

5.5.1 Spondin 1 in ovarian caner 

The expression of Spon1 is disrupted in the βERKO ovary, suggesting it is 

regulated by ERβ [1]. There is also evidence that Spon1 is regulated by 17β-estradiol; 

when ovariectomized mice are treated with 17β-estradiol, Spon1 mRNA expression 

increases in the uterus and mammary gland [85, 86]. Since endometrioid EOC is estradiol 

responsive and has the highest occurrence of ER expression, future studies could utilize 

this subtype, in addition to serous EOC, to assess whether estradiol and/or ERβ affect the 

expression and activity of SPON1 in EOC cells. EOC cells can be treated with estradiol 

and Spon1 expression measured by qPCR.  

Repeating the functional assays used in Chapter 4 with endometrioid EOC cells 

would be intriguing because survival analyses demonstrate that SPON1 is a higher risk 

factor in endometrioid ovarian cancer, as compared to high-grade serous or all four 

subtypes combined [87]. Although this thesis focused on high-grade serous cancer, the 

most common and aggressive EOC subtype, it is possible that the other subtypes of 

ovarian cancer would be affected differently by SPON1. 

5.5.2 Collagen11A1 and Nidogen 2 in ovarian caner 

Interestingly, both Col11a1 and Nid2, which are more highly expressed in the 

βERKO ovary than in WT ovaries (Chapter 2), are elevated in serous histotypes of 

ovarian cancer [88, 89]. There is no evidence in the literature that the disrupted 

expression of these ECM components in EOC is related to ERβ or estradiol. However, it 

is intriguing that their expression is elevated in two models where ERβ expression is lost 

(βERKO ovary) or weakened (EOC). Furthermore, there is an inverse relationship 

between the expressions of COL11A1 and NID2, and ERβ in ovarian tumours – 

expressions of these ECM proteins is higher in more aggressive, late-stage serous ovarian 

tumours than in earlier stages, whereas ERβ expression decreases with tumour 

progression. Considering the ERβ-mediated repression of Col11a1 and Nid2 in the 

normal mouse ovary, it would be of interest to determine whether their expression is also 
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ERβ-dependent in EOC cells. Following the reintroduction of ERβ into EOC cells using 

an adenoviral vector, the mRNA and protein expression of COL11A1 and NID2 could be 

examined by qPCR and IF, respectively. 

5.6 Does SPON1 have a dichotomous or context-specific 
role in EOC progression? 

My data suggest that SPON1 could be either tumour promoting or tumour 

suppressive. I have shown that treatment with SPON1 decreases the viability and 

proliferation of EOC cell lines as well as primary ascites-derived tumour cells, suggesting 

that expression of SPON1 inhibits tumour growth. On the other hand, I have also shown 

that treatment with SPON1 decreases EOC cell adhesion; however, it is unclear whether 

this feature is oncogenic by promoting metastasis, or tumour suppressive, by impeding 

the anchoring of cells within the peritoneal cavity to form secondary metastases. One 

would expect that the overexpression of SPON1 in ovarian cancer tissues is oncogenic. 

since it seems unlikely that EOC cells would make and secrete a protein that only hinders 

their growth and metastasis. A possible explanation is that SPON1 has a dichotomous or 

context-specific role in ovarian cancer development.  

  The concept of proteins having a dichotomous role in cancer development has 

been described previously in several human cancers, including ovarian [90-95]. The 

activity of a protein may vary based on the tumour environment, signaling pathways 

driving tumour formation, available cellular binding partners (e.g. ECM, integrins), and 

the status of malignancy. One of the most studied examples of this dichotomy is TCF-β, 

which induces apoptosis and cell cycle arrest in normal or less transformed cells, but 

enables metastasis in advanced tumours [96]. Transforming growth factor-beta-induced 

protein (TGFBI/βig-H3) has been described as a “double-edged sword” in ovarian cancer 

because its loss promotes tumourigenesis and a more chemoresistant phenotype; 

however, in the peritoneal cavity the peritoneal cells express βig-H3 to facilitate 

metastasis [93]. Furthermore, βig-H3 induces migration and invasion of OVCAR5 and 

SKOV3 ovarian cancer cell lines, but does not affect the OVCAR3 cell line that is known 

to be less metastatic [93].  
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Therefore, the role of SPON1 in ovarian cancer progression in vivo may depend on the 

tumour microenvironment and tumour stage, and may not be defined simply as either 

tumour suppressive or tumour promoting. 

5.7 Would SPON1 make an appropriate therapeutic target 
for EOC? 

The high expression levels of SPON1 in ovarian carcinomas make it an 

appropriate ovarian cancer biomarker. Its prospect as a therapeutic target remains to be 

determined, especially considering it is unclear whether SPON1 has a tumour suppressive 

or promoting role in ovarian cancer progression.  

If SPON1 is shown to be tumour promoting, it may not be an ideal therapeutic 

target because despite the diverse functions attributed to SPON1 in the literature, the 

SPON1-/- mouse has a grossly normal phenotype, which suggests SPON1 is functionally 

redundant. Therefore, silencing SPON1 expression or activity may result in the increased 

expression of another protein(s), likely another member of the thrombospondin 

superfamily that has similar domains (Section 1.7.3 - Proteins with similar domains), 

which will compensate for the loss of SPON1 and assume its functions.  

 Alternatively, if SPON1 is tumour suppressive in certain contexts or stages of 

malignancy, it may be beneficial to promote its expression once a mechanism for its 

regulation is uncovered. For instance, if SPON1 expression is regulated by ERβ in EOC 

cells (Section 5.5.1), using an ERβ-specific agonist may serve as an effective therapeutic 

strategy. ERβ has previously been identified as a tumour suppressor in ovarian cancer in 

vitro. The overexpression of ERβ in SKOV3 cells reduces proliferation, inhibits motility 

and increases apoptosis [97]. SKOV3 cell growth is also inhibited following treatment 

with an ERβ agonist (DPN) [98]. Furthermore, the proliferation of the EOC cell line, BG-

1, is decreased following introduction of ERβ, and the expression of ERβ strongly 

inhibits the expression and activity of ERα [83].  
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5.8 Summary 

Either directly or indirectly, the ECM regulates almost all fundamental aspects of 

cell biology. The goal of this thesis was to contribute to our knowledge of its role in 

ovarian development and ovarian cancer progression. The data presented herein 

characterizes aberrantly overexpressed ECM proteins in a model of subfertility (Chapter 

2) as well as high-grade serous EOC (Chapter 4), and discusses the potential impact of 

this dysregulation. This body of work provides rationale for future investigations into the 

mechanisms by which these ECM components are regulated. The expression of the ECM 

proteins investigated is ERβ-dependent, and Chapter 3 describes a novel corepressor of 

ERβ-mediated transactivation. Understanding the unique roles of ECM components in 

these model systems may improve current therapeutic options for infertility and ovarian 

cancer. 
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Appendix: Additional Figures 

 

 

 

Figure 6- 1: PKCζ protein expression in prepubertal (PND 23) ERβ-null and 

wildtype mouse ovaries. 

Immunofluorescence with an anti-PKCζ antibody was used to detect PKCζ localization 

and expression in ovaries isolated from (a) wildtype and (b) ERβ-null mice. 200x 

magnification.  
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Figure 6- 2: Col11a1 and Nid-2 protein expression in ERβ-null and wildtype mouse 

ovaries on PND 5 and PND 8. 

Immunofluorescence with an anti-Col11a1 (A) or anti-Nid2 (B) antibody was used to 

detect Col11a1 and Nid2 localization and expression in ovaries isolated from wildtype 

(+/+) and ERβ-null (-/-) mice at PND 5 (a, b) and (c, d) PND 8. 200x magnification.  
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Figure 6- 3: Collagen 11A1 and Nidogen 2 expression in wildtype, ERβ+/- and ERβ-/- 

mouse ovaries. 

Whole cell extracts from adult wildtype (+/+), ERβ-het (+/-) and ERβ-null (-/-) mouse 

ovaries were analyzed by Western blot to detect Col11a1 and Nid-2 protein expression. 
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Figure 6- 4: Optimization of cell number and FBS% for viability assays. 

The cell number and % FBS were optimized for MTS viability assays for the five 

established cell lines. 1000, 2500 and 5000 cells/ well were tested. Two FBS 

concentrations were tested: 1% FBS and 5% FBS. OVCAR3 cells were only tested in 5% 

FBS due to their slow rate of proliferation. Optimization of conditions was performed to 

ensure that the assay signal remains within the linear range throughout the assay (an 

absorbance of ~0.5 – 1.5 at 490 nm).  
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