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Abstract 

Osteoarthritis (OA) affects 1 in 10 Canadians and is a leading cause of mobility disability 

worldwide. This condition is characterized by cartilage degeneration, subchondral bone 

damage and inflammation of the synovium, resulting in pain and joint failure. No treatments 

exist to stop the progression of this disease, and its underlying molecular mechanisms remain 

largely unknown. We previously identified the peroxisome proliferator activated receptor 

(PPAR) nuclear receptor pathway as altered in OA cartilage. In-vitro studies identified 

PPARδ as a promoter of catabolic activity in chondrocytes, providing the foundation for my 

overarching hypothesis that PPARδ inhibition is protective in OA. 

I commenced my thesis by generating Ppard cartilage-specific knockout mice to investigate 

the role of this gene in skeletal development. I evaluated the anatomy, morphology, and 

cellular organization of the skeleton, long bones and growth plate through histological 

techniques and concluded that there were no congenital abnormalities predisposing these 

mice to OA. I next compared the progression of disease severity between Ppard KO mice 

and WT controls after destabilization of medial meniscus surgery to induce post-traumatic 

osteoarthritis (PTOA). After histopathological assessment, I found that mice lacking PPARδ 

were significantly protected from cartilage damage and displayed decreased cartilage matrix 

breakdown in lesioned areas.  

Subsequently, I evaluated pharmacological inhibition of PPARδ in PTOA in rats. I 

discovered that PPARδ inhibitors prevent behavioural modifications associated with OA 

development and pain. However, their effects on structural progression of OA remains 

inconclusive and more stringent quantitative methods are needed to assess these differences.  
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Lastly, I examined global gene expression through microarray analysis of chondrocytes 

treated with a PPARδ agonist. I discovered that genes induced were primarily involved in 

lipid metabolism, which translated into functional changes in lipid metabolism, such as 

significantly decreased cellular triglycerides. Mediators of oxidative stress were also 

identified, and Txnip, an inhibitor of anti-oxidant thioredoxin, was significantly elevated in 

response to PPARδ activation. Immunohistochemistry revealed increased TXNIP staining in 

OA cartilage, but substantially less in cartilage of Ppard KO mice.  

Overall, these data demonstrate a novel role for PPARδ in Osteoarthritis. My data support 

my hypothesis that PPARδ inhibition is protective in OA. 

 

Keywords: Peroxisome Proliferator Activated Receptor delta, Osteoarthritis, Articular 

Cartilage, Joint Homeostasis, Transgenic Mice, Skeleton, Synovial Joint 
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Epigraph 

I am among those that think science has great beauty. A scientist in 
[her] laboratory is not only a technician, [she] is also a child confronting 
natural phenomena that will impress [her] as if they were fairy tales.” -

Marie Curie 
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Chapter 1  

1 Introduction 

The severity and impact of musculoskeletal disease is tremendous. As the number one 

cause of ‘years lost to disability’ worldwide, they detrimentally influence both the 

morbidity and mortality of those afflicted[1].  Osteoarthritis (OA) is the most prevalent 

joint disease worldwide, affecting 10% of men and 18% of women over the age of 60[2]. 

Although commonly thought of as a disease of aging, approximately half of all 

individuals diagnosed with arthritis are working age adults[3].  OA places a substantial 

economic burden on countries, annually accounting for approximately $190 billion in 

North American direct and indirect health care costs or between 1.0 and 2.5% of the 

gross domestic product in developed countries[2, 4]. However, we currently have no 

effective treatment to alter the course of disease progression. This condition can affect 

one or more synovial joints but most commonly the knees, hips, hands and facet joints of 

the spine, and the principal symptom of this disease is pain[5, 6]. In this chapter we 

examine the synovial joint, with a special focus on articular cartilage and the crucial link 

between form and function in joint health and the pathogenesis of OA. 

1.1 The Synovial Joint 

Joints facilitate movement and flexibility through interaction between two or more 

skeletal elements[7]. Synovial joints are comprised of two opposing long bones, the ends 

of which are covered in articular cartilage. The bones provide structure and strength 

while the cartilage is responsible for receiving and dissipating loads associated with 
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weight-bearing. The joint is enclosed by a fibrous capsule, the joint capsule, which is 

lined by synovium. Synovium is the defining feature of the literally monikered synovial 

joint; it produces synovial fluid which enables frictionless movement, and also helps 

deliver nutrients and remove waste from the cartilage[8, 9]. Supporting structures include 

ligaments which confer stability and maintain proper alignment, and muscles which 

enable movement. Additionally, some joints have menisci, fibrocartilaginous pads, which 

further contribute to shock absorption[10]. Together these tissues act synchronously to 

stabilize the joint, distribute loads and permit frictionless movement. An example of a 

healthy synovial joint is shown in Figure 1-1.  
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Figure 1-1 Synovial joint in health and OA 

The synovial joint is comprised of opposing long bones, the ends of which are covered in 

articular cartilage. The cartilage and bone act in concert to receive and dissipate loads 

associated with movement and weight bearing. The joint is enclosed by the joint capsule 

and lined with a semipermeable membrane; the synovium. The synovium produces 

synovial fluid which fills the joint cavity, lubricating the joint. Ligaments and 

musculature confer stability, and ensure joint alignment. Figure courtesy of Dr. M. Pest. 
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1.2 Cartilage 

Cartilage is a dense connective tissue, whose function is varied and dependent on its 

composition, mechanical and biochemical environment[11]. The relative proportion and 

organization of collagen fibers that form its extracellular matrix determine whether it is 

elastic, hyaline or fibrocartilage. Elastic cartilage is characterized by collagen 1 and, as 

the name suggests, elastin fibers. This type of cartilage is commonly found in the ear, and 

epiglottis. Fibrocartilage is also predominantly composed of collagen 1, and this type of 

cartilage is located in the intervertebral discs of the spine as well as in the menisci of 

many synovial joints[12]. Comparatively, hyaline cartilage is principally composed of 

collagen 2 and is found in growth plate and articulating surfaces of long bones[13].  

1.2.1 Articular Cartilage Composition 

Articular cartilage is a type of hyaline cartilage located at the articulating surfaces of long 

bones in synovial joints. It is both avascular and aneural, and functions to provide a 

frictionless, shock-absorbing surface to aid mobility and load bearing[14-16]. 

Chondrocytes are the sole cell type of hyaline cartilage, originating from mesenchymal 

stem cells. They vary in size and shape and distribution depending on the region of 

cartilage they are located in. Although they make up only 2% of cartilage in human 

articular cartilage, they function to produce and maintain the health of cartilage by 

regulating extracellular matrix (ECM) turnover[11, 17]. The ECM of cartilage is 

comprised of a fluid and a macromolecular component. A specialized matrix comprised 

predominantly of collagen and of aggregate proteoglycans forms the framework 

responsible for the structural integrity of the tissue. Other molecules such as lipids, 
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phospholipids, glycoproteins and non-collagen ECM proteins are present in smaller 

amounts. The fluid component of the ECM consists of water, cations and gases and small 

electrolytes. In fact, 70-80% of the mass of human articular cartilage is water[18-20].  

Aggrecan is the principal proteoglycan in cartilage, and is made up of a core protein with 

glycosaminoglycan (GAG) side-chains. In aggrecan, these sidechains are chondroitin 

sulfate (majority) and keratan sulfate (minority). Perlecan, decorin and biglycan are 

additional proteoglycans found in the cartilage matrix[21]. The GAG sidechains are 

negatively charged, and this attribute is what enables the most distinguishing 

characteristic of cartilage; its unique ability to attract and trap water[22]. In articular 

cartilage, aggrecan, hyaluronic acid (HA) and link protein form non-covalently associated 

large aggregate complexes which exponentially enhance this attribute[19, 23]. Collagen 2 

is the predominant collagen in cartilage and forms the filamentous ultrastructure of the 

ECM. The organization and distribution of Collagen 2 throughout the matrix is 

responsible for the tensile stiffness and for restricting tissue deformity when swelling 

proteoglycan aggregates trap water. Other collagens in articular cartilage include type IX 

and type XI which are associated with collagen II fibrils [24, 25]. 

1.2.2 Zonal and Regional Organization of Cartilage 

Articular cartilage can be divided into four zones. Each of the zones has differentially 

organized cells, proteoglycans and collagen fibrils that influence its specific function. 

The zones of cartilage include: 1) superficial zone; 2) middle zone; 3) deep zone; 4) 

calcified cartilage, as depicted in Figure 1-2. Chondrocytes of the superficial zone (SZ) 

that borders the synovial space are flattened, with tightly packed collagen fibrils that are  
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oriented tangential to the surface. As the thinnest zone, the SZ has the lowest 

concentration of proteoglycans, and the highest concentration of water[11, 16]. Mid Zone 

(MZ) chondrocytes are more spherical, and as depth progresses from the mid zone (MZ) 

to the deep zone (DZ) the concentration of proteoglycan increases. Cartilage cells in the 

deep zone synthesize the most proteoglycans and are arranged in columns[26]. Collagen 

fibrils in the MZ are uniformly dispersed and randomly oriented, and become thicker and 

perpendicularly arranged to the joint surface in the DZ[27]. The tidemark, a histologically 

visible line, forms the boundary between the uncalcified and calcified cartilage. It is here 

that collagen bundles form an interlocking network that strongly anchors the overlying 

uncalcified cartilage to the calcified cartilage below[19, 28]. 

Articular cartilage ECM is also regionally organized. While zones are stratified based on 

depth from surface, regional organization is determined by distance from the 

chondrocyte. The region in closest proximity to the chondrocyte is the pericellular matrix, 

which fully envelopes the chondrocyte forming a unit called a chondron. The chondron is 

very dense in proteoglycans, contains non-collagenous proteins and contributes to signal 

transduction in response to mechanical stimulation[11, 16, 17].  The territorial matrix 

surrounds individual chondrons, clusters or columns of chondrons, forming a basketlike 

network of fibrils, and is thought to help protect chondrocytes from deformations 

associated with loading. Lastly, the interterritorial matrix is the largest and farthest away 

from the chondrocyte and consists of a network of collagen fibrils that confers tensile 

strength to the cartilage[29]. 
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Figure 1-2 Zonal organization of articular cartilage 

Articular cartilage is organized into four zones with distinct organization, composition 

and function. 1) The SZ possesses the greatest water content and collagen 2 fibril density. 

Collagen fibrils are oriented tangentially, and proteoglycan density is lowest. 

Chondrocytes are small and flattened. 2) The MZ has less water content than the 

superficial zone and collagen 2, but has greater proteoglycan density than the SZ. 

Collagen fibers are heterogeneously dispersed and randomly oriented. Chondrocytes are 

spherical. 3) The DZ has greatest proteoglycan content, but the lowest water 

concentration and collagen content. Collagen fibers are radially oriented and are thickest 

here. Chondrocytes are oriented in clusters, and have larger volumes. 4) The calcified 

cartilage is closest to the bone and separated from the DZ by the tidemark. 
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1.2.3 Biomechanical Properties of Cartilage 

It has been established that each chondrocyte produces the matrix surrounding itself, and 

thus creates its own microenvironment. In turn, the cell is trapped by the matrix; the very 

environment it has established[17]. This can be beneficial as the surrounding matrix 

shields the cell from forces which act to deform the shape of the cartilage during weight-

bearing and movement (as discussed above). Consequentially, there is very little direct 

cell to cell communication in healthy articular cartilage. On the other hand, chondrocytes 

are extremely interactive with their microenvironment and respond to growth factors, 

mechanical loads, piezoelectric forces, hydrostatic pressure and, as we will discuss later, 

lipids[30].  

Although cartilage is 70-85% water, the distribution of this water content varies 

according to the depth of cartilage. The fluid content is the greatest for the upper 25% of 

cartilage and drops as depth increases[31]. The composition and zonal organization of the 

cartilage is essential to its role distributing stresses associated with load bearing. When a 

force is applied, cartilage on opposing sides of the joint are pushed towards each other 

and this initial force causes a rapid and immediate increase in fluid pressure in the 

joint[32]. The increase in fluid pressure squeezes the fluid out of the contact area in the 

solid matrix[33]. However, frictional resistance against this flow is very high and 

permeability of the cartilage is low. As fluid is forced out of the matrix, it becomes less 

porous, thereby decreasing permeability and preventing water leaving from deeper 

regions of the cartilage[11, 34].  Additionally, areas of cartilage adjacent to the contact 

stress are also pressurized, while the subchondral bone underneath the cartilage is 
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impervious to fluid flow[31, 35]. The combination of these properties limit the extent of 

deformation of the cartilage and is the reason why cartilage is capable of withstanding 

substantial loads.  

1.2.4 Biochemical and Metabolic Properties of Cartilage 

The composition and porous structure of articular cartilage is not only important for 

loading, but also necessary to facilitate nutrient transport because cartilage lacks 

innervation from blood and lymphatic vessels. Thus chondrocytes must either receive 

nutrients from the synovial fluid or from diffusion from the subchondral bone below[36, 

37]. Although adult articular cartilage is relatively metabolically inactive and the turnover 

rate for matrix components is quite low, matrix synthesis is an energy intensive process 

and chondrocytes rely heavily on energy stores and ATP production[38, 39]. Anaerobic 

glycolysis is primarily used by the cell since oxygen levels are low due to the lack of 

blood supply, and up to 80% of glucose is metabolized to lactate[40]. The chondrocyte 

expresses both GLUT1 (Glucose transporter 1) and GLUT3 (Glucose transporter 3) 

transporters to facilitate the movement of glucose into the cell, and lactic acid 

transporters MCT4 (monocarboxylate 4) and MCT 1 (monocarboxylate 1) to efflux lactic 

acid from the cell[41-43]. There is evidence that the TCA cycle is used, and that 

oxidative phosphorylation occurs, but this accounts for less than 10% of normal 

chondrocyte energy metabolism[40, 43]. 
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1.2.5 Molecular Regulation of Extracellular Matrix Turnover 

In healthy cartilage, a balance between ECM synthesis and degradation maintains 

homeostasis. The half life of aggrecan is approximately 24 years while the half life of 

collagen II is more than 100 years in articular cartilage; thus, turnover of matrix is 

exceptionally slow[44]. Genes encoding matrix proteins such Aggrecan (Acan) and 

Collagen 2 (Col2a1) are directly regulated by the cartilage ‘master’ transcription factor 

Sex- determining- region-Y Box 9 (Sox9). Other cartilage matrix components such as 

biglycan, decorin, cartilage oligomatrix protein, and matrilins also exhibit very low 

turnover. Genes encoding proteases that degrade the matrix such as Matrix 

Metalloproteinases (Mmps), as well as A Disintegrin and Metalloproteinase with 

Thrompospondin Motifs 4, 5 (Adamts4, Adamts5), are active at low levels to break down  

damaged collagen II and aggrecan, respectively[45].  

1.3 Bone 

One might say it is humerus that the bone performs so many functions including the 

protection of vital organs, locomotion through transmission of loads and serving as an 

anchor for muscle attachment, the maintenance of systemic calcium and phosphate 

mineral homeostasis, as well as a providing the environment for hematopoietic and 

mesenchymal stem cells[46, 47]. Bone cells, like cartilage cells, synthesize an ECM 

whose organization is paramount to its function. It can be divided into organic and 

inorganic components. Collagen 1 is the principal component of the organic portion, and 

it is organized in parallel layers which confer both tensile strength and flexibility. The 

collagen fibrils act as a framework for the hydroxyapatite crystals [Ca10(PO4)6(OH)2], 
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that form the inorganic portion of bone and pack tightly around this framework to provide 

structural support against compressive loading[48].  

ECM maintenance in bone is regulated by osteoblasts and osteoclasts. Osteoblasts, or 

bone forming cells, are responsible for the synthesis of matrix constituents such as 

Collagen 1, non-collagenous proteins (such as osteocalcin, biglycan, bone sialoprotein 

etc.), and the osteoid that eventually becomes mineralized to form the calcified bone 

matrix[49, 50]. Like cartilage cells they are derived from mesenchymal stem cells, and 

differentiation to this lineage is regulated by runt-related transcription factor, Runx2. A 

portion of the osteoblasts become trapped within the osteoid, and are then called 

osteocytes. These cells still function to produce necessary proteins and signal to recruit 

osteoclasts when the matrix is damaged, or bone remodeling is required[51]. Osteoclasts 

are cells that resorb bone matrix and subsequently recruit osteoblasts to ensure structural 

integrity of the structure. They are derived from mononuclear cells. Unlike cartilage, 

bone matrix has a higher turnover rate[52]. 

1.3.1 The role of subchondral bone in the synovial joint 

The primary roles of subchondral bone within the joint is to dissipate the load and 

distribute the strain associated with weight bearing, thus protecting articular cartilage 

against damage caused by excessive loading. It also functions to provide nutrients to the 

overlying cartilage by diffusion through the calcified cartilage matrix. The subchondral 

bone region is highly vascularized and innervated, and helps supply cartilage with 

oxygen, water and glucose[53].  



12 

 

The articular cartilage, which is zonally organized, becomes more stiff as the uncalcified 

cartilage transitions to calcified cartilage and then subchondral bone. While many 

collagen 2 fibrils lock the uncalcified cartilage to the calcified layer beneath, there are no 

such connections between the calcified cartilage and underlying bone[54]. Therefore, to 

adequately transmit shear forces, the calcified cartilage has a jagged boundary in which it 

fits into the subchondral bone like a “jigsaw puzzle” in order to lock in into place. In fact, 

the majority of force transmitted through the joint is absorbed by the subchondral bone, 

even though healthy articular cartilage can withstand 2.5-5 times the peak deformation 

caused by walking (which is roughly equal to several times one’s body weight)[53, 55, 

56]. Accordingly, bone and cartilage must work in unison to enable frictionless 

movement and transmit loads effectively. 

1.4 Synovium and Synovial Fluid 

The joint capsule acts as a barrier from the rest of the body by encapsulating the joint. 

The interior of the joint capsule is lined with synovium; a selectively permeable 

membrane that filters blood plasma to form an ultra-filtrate[57]. This filtrate is combined 

with lubricating molecules such as lubricin and hyaluronan to form synovial fluid (SF).  

Superficial zone chondrocytes produce lubricin, while synoviocytes (highly metabolically 

active cells lining the synovium) produce both lubricin and hyaluronan[15, 58]. SF is a 

viscous fluid, and its primary role is as a lubricant in the joint to enable frictionless 

movement with minimal wear to other joint tissues[9, 36, 57-59]. It also facilitates the 

exchange of nutrients and wastes between the cartilage, synovium and plasma, and 
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contains soluble molecules such as growth factors, and cytokines to mediate 

communication between different cell populations within the joint[59]. 

1.5 Supporting Structures of the Joint 

Muscle and ligaments are also integral components of the joint and serve to confer 

stability and maintain joint alignment during ambulation. Appropriate skeletal muscle 

contraction and nerve control is necessary to perform accurate and controlled 

movement[60, 61]. Ligaments are responsible for joint alignment which ensures forces 

are distributed correctly over the joint surface[62]. Some joints have menisci, 

fibrocartilaginous pads composed of meniscal cells, an ECM which is mostly type I 

collagen, and water which makes up 70% of the structure by weight. Menisci play a 

crucial role in shock absorption within the knee, wrist, jaw and collar bone joints[63].  

1.6 Etiology of Osteoarthritis 

OA is a heterogenous, multifactorial condition that can affect multiple joints, and the 

severity of pain and loss of function are variable between patients[64, 65]. It is the 

leading cause of mobility disability worldwide[66, 67]. It is characterized by the 

progressive breakdown of articular cartilage, subchondral bone changes, and synovial 

hyperplasia.  OA primarily targets weight-bearing joints and can make even routine self-

care tasks extremely difficult. The molecular mechanisms responsible for this condition 

are not well understood and therefore no treatments exist to halt or delay the progression 

of the disease. The exact etiology of OA is unknown, but factors which promote the 

progression of this condition have been and continue to be extensively studied. 
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1.6.1 Classification  

Osteoarthritis is conventionally classified as primary or secondary OA. Primary OA is 

idiopathic, and stems from no discernible cause. It is commonly referred to as age 

associated OA, and rarely occurs in individuals less than 40 years of age[68]. Secondary 

OA develops is attributable to a specific cause. This includes joint trauma, hereditary, 

metabolic, mechanical reasons as well as diseases that affect joint alignment or 

biochemical tissue composition[69].  In many cases, individuals with primary OA have 

some genetic susceptibility or predisposition to it, and there is no clear distinction 

between the two[70]. 

1.6.2 Risk Factors 

Risk factors that increase the probability of developing OA are described below and 

shown in Figure 1-3. It should be noted that these risk factors are not mutually exclusive, 

and that individuals can possess more than one risk factor. It has also been demonstrated 

that the progression of OA varies significantly between individuals; some joints remain 

radiographically stable while others deteriorate rapidly. 

1.6.2.1 Age and Gender 

Age is the strongest, most predictive risk factor for OA affecting the hip, knee, and 

hands[71-74]. The effects of other factors such as obesity, ligament laxity, sarcopenia, 

and impaired proprioception are compounded with age, and may contribute to increased 

load or abnormal loading of the joint[75]. Aging decreases reparative responses in the  
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Figure 1-3 Risk factors for osteoarthritis 

Risk factors which increase individuals’ susceptibility to OA are shown above. Age, 

female gender, hereditary factors, joint injury, obesity (metabolic factors), and overuse 

(mechanical factors) all increase likelihood of OA development. 
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joint, and joint injury can be especially detrimental with older patients demonstrating 

progressive changes more quickly[76, 77]. 

The incidence of polyarticular, hand and knee OA is increased in females, and so are 

symptoms of OA such as pain, and decreased physical function[75, 78, 79]. Interestingly, 

women also have increased rates of cartilage loss and structural OA progression though 

reasons for this remain inconclusive[80]. 

1.6.2.2 Hereditary Factors 

Hereditary factors represent another unmodifiable risk factor for OA progression. There 

are multiple genes that have been implicated in OA susceptibility, and their 

predisposition in combination with environmental factors cannot be ignored. Twin 

studies have shown that heritability of hand, knee and hip OA to be 40-60% in 

women[81, 82]. Mutations in genes associated with rare skeletal malformation disorders 

contribute to the pathogenesis of OA, through anatomical changes in joint shape or tissue 

integrity which influence joint mechanics[83]. Current studies suggest that because OA is 

genetically heterogeneous, each individual common gene variant only contributes 

modestly to the risk of developing OA[84]. The most consistent and reproducible genetic 

association with OA development has been Gdf5 (growth and differentiation factor 5), a 

member of the TGF-β superfamily[85-87]. This gene is involved in ECM signaling, and 

plays an essential role in development, maintenance and repair of bone, and cartilage[88]. 
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1.6.2.3 Metabolic Factors 

Metabolic OA, has recently been defined as a type of secondary OA. It was long believed 

that obesity contributed to the progression of OA only through mechanical overload in 

the joint. This concept has since been poignantly opposed through stringently peer-

reviewed articles such as “Metabolic factors in osteoarthritis: obese people do not walk 

on their hands”[89]. Presently, it is the second most frequent subtype of OA, and can 

arise from several systemic changes contributing to the pathogenesis of this disease[90, 

91]. Epidemiologically, obesity and adiposity are associated with increased rate of knee 

cartilage volume loss, and the risk of primary knee and hip joint replacement due to OA 

is correlated with fat mass[92, 93]. Adipokines such as leptin are upregulated in 

osteoarthritic cartilage and osteophytes from OA patients[94]. Increased levels of 

products of lipid peroxidation have also been found in joints of OA patients, while levels 

of total fatty acids and arachidonic acid are significantly elevated in OA and correlated 

with histological severity of disease[95-97]. Several prominent studies suggest that 

weight loss, specifically fat loss, greatly improves symptoms in patients[98, 99]. 

1.6.2.4 Anatomical and Mechanical Factors 

Morphology affects how the tissues of the joint accept and distribute load. Consequently, 

a loss of joint congruity can influence susceptibility to OA[100]. Impingement of the hip 

joint, malalignment of the femur and tibia of the knee resulting in ‘bow-legged’ or 

‘knock-kneed’ phenotypes (varus and valgus, respectively), and differential lower limb 

lengths can all increase OA susceptibility[101-104].  Mechanical factors influencing the 

likelihood of OA development include excessive use of the joint, and overloading of the 
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joint, while unloading the joint (such as bed rest) can also lead to atrophy of joint 

tissues[105-107]. 

1.6.2.5 Joint Trauma 

Post-traumatic OA affects 12% of North American OA patients[108], and arises from an 

initial insult to the joint, such as sports injuries, falls, or any condition that destabilizes 

the joint architecture[83, 109, 110]. Most often this involves torn or damaged ligaments 

or menisci; 40% of men, and 50% of women under the age of 40 who had an ACL injury 

developed post-traumatic OA[62, 111]. Other injuries include intraarticular fractures and 

micro-fractures of the subchondral bone[77].  Joint trauma not only induces deleterious 

changes through altered mechanics, but also increased inflammation, and inappropriate 

reparative responses which can lead to further joint damage[77]. 

1.7 Diagnosis 

Pain is most often the reason why individuals seek medical attention, and the 

combination of pain frequency (days of the month) with structural changes assessed 

through radiography are most commonly used to diagnose OA[112-114]. Radiographic 

structural pathology includes joint space narrowing, presence of osteophytes, subchondral 

bone cysts and abnormal joint congruity[115]. Patients may also present with joint 

stiffness, ligament laxity, and synovial inflammation or distention[116]. More recently, 

MRI has been used in research settings due to its ability to clearly distinguish between 

cartilage, menisci and ligaments in contrast to radiographs which cannot differentiate 

between non-ossified tissues[117]. It enables a three dimensional comprehensive view of 
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the joint, and the patient is not subjected to ionizing radiation. However, the clinician 

may perform scoring through WORMS (whole-organ MRI scoring), a comprehensive 

semi-quantitative system that assigns pathological scores to each of the joint tissues[118]. 

While this presents a good alternative to traditional radiography, further validation and 

refinement of the scoring system is needed. Currently, there are no established, validated 

biomarkers predictive of OA but biomarkers indicative of ECM breakdown such as 

(CTX-II, Col2-1, C2C and C2M) may be used as objective tools to evaluate the efficacy 

of interventions[119].  

1.8 Treatment 

There are no current treatments available to ‘cure’ osteoarthritis, or alter the course of 

disease progression. Current therapy modalities treat symptoms such as pain and 

inflammation; they can be classified as life-style centric, medical or surgical. Lifestyle 

interventions include patient education, diet, weight-loss and physical therapy[120]. 

Formerly recommended therapies such as glucosamine and chondroitin sulfate 

supplements, arthroscopies and debridement are advised against as clinical trials have not 

demonstrated benefits[120]. Medical symptomatic relief options include 

viscosupplementation, steroids, analgesics and non-steroidal anti-inflammatory drugs 

(NSAIDs) but this is often not enough, and chronic pain is one of the reasons that most 

patients choose to undergo end-stage joint replacement surgery[5, 121].  End-stage OA is 

treated through prosthetic joint replacement surgery that carries inherent medical risks, 

and patients may need multiple joint replacements and subsequent rehabilitation over the 
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course of their lifetime[122-127]. Moreover, all these approaches are directed at 

symptom management and do not address underlying causes. 

1.9 Pathophysiology of Osteoarthritis 

Osteoarthritis develops when tissue integrity of one or more joint structures is 

compromised. Each of these structures is integral to the whole joint, and a failure of one 

will result in failure of the entire joint (Figure 1-1). 

1.9.1 Pain 

Pain can be categorized as either physiological or pathological pain. Physiological pain is 

acute, presents a normal response to a stimulus (mechanical, thermal, chemical), and 

occurs at a threshold where the stimulus can become physiologically harmful[128]. For 

example; eliciting a withdrawal response for touching a hot stove. Pathological pain, 

commonly referred to as chronic pain, stems from damage to the nervous system or as an 

inflammatory response subsequent to a significant tissue injury. This type of pain can 

occur in the absence of any stimulus, can be amplified in severity or duration, and the 

threshold for eliciting pain is decreased to the point where normally non-painful stimuli 

elicit a pain response (allodynia)[128]. OA pain can be characterized as pathologic pain. 

It is important to note that a significant proportion of individuals that have radiographic 

joint damage do not experience pain and are considered asymptomatic[129]. Although 

cartilage breakdown may be one of the first steps in OA progression, this tissue is both 

aneural and incapable of generating pain directly[130]. The joint capsule, synovium, 

ligaments, subchondral bone and surrounding muscle are all richly innervated; in addition 
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to post-ganglionic sympathetic efferent fibers, they also have a number of sensory 

afferent fibers (proprioceptive and nociceptive)[131]. Thus, nociceptive input from the 

joint can be processed through central and peripheral pathways.  

 

Under pathological conditions such as OA, inflammatory mediators are released into the 

joint and sensitize the nociceptors to mechanical stimuli so they are more likely to 

respond to any stimulus[132]. Cytokines including IL-1β are expressed in peripheral 

blood leukocytes and are associated with increased pain and OA progression[132]. 

Persistent inflammation can also trigger hyper-excitability, an exaggerated response to 

previously innocuous stimuli. Joint neurons can also exhibit primary and secondary 

hyperalgesia, increased responses to stimuli applied to regions close to the joint (for 

example periarticular muscle) and at a distance from the joint (such as in the lower limb 

muscles)[133, 134]. Other cytokines such as TNF-α and IL-6 are elevated during these 

stages and work as pro-nociceptive mediators by directly acting on nociceptive neurons 

that express receptors for these cytokines[135]. Imaging studies of the knee joint have 

shown a correlation between pain, inflammation in the synovium and changes in 

subchondral bone in symptomatic OA, indicating these tissues are reactive and 

responsive in pain pathogenesis[136, 137].  

 

Continued pathological neuronal input such as in advanced OA, can lead to central 

sensitization, changes within the brain and spinal cord that affect the properties of 

sensory neurons wherein they elicit a pain response for non-provoking stimuli.  These 

patients report pain widespread from the site of OA, and demonstrate lower pain 
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thresholds for the entire leg[138, 139].  

 

Nerve growth factor (NGF) is a neuropeptide necessary for the development and 

continued functionality of nociceptors[140]. At sites of inflammation several cell types 

including the chondrocytes and synovial cells produce NGF that has been shown to 

induce hyperalgesia in vivo[141-143]. In humans with moderate to late stage OA, 

injections of Tenazumab (a monoclonal antibody against NGF), provided prolonged pain 

relief and improved function. However, some patients presented with osteonecrosis and 

required total joint replacements[144]. 

1.9.2 Supporting Structures 

Muscle weakness can act as both a risk factor for osteoarthritis (described earlier) but 

also as a consequence of OA. From a pathological perspective, OA can affect muscles 

through hyperalgesia due to central sensitization[145]. Disuse atrophy is common in 

many joints including the hips, knees and ankles[146-150]. It can reduce motor neuron 

excitability, decreasing voluntary muscle activation and proprioception. This reduces 

stability around the joint as well as ability to execute movement[151].  

Menisci from OA patients display morphological changes such as calcium deposition, 

fibrillations, tears and scar tissue[152]. Macroscopic changes have been investigated in 

lapine menisci where the ECM has fine fibrillations, cyst like cavities, and irregular 

proteoglycan staining, as well as a loss of cellular organization, with clusters of cells is 

common [153, 154]. Advanced stages of meniscus degeneration stain intensely and 

positively for the aggrecan breakdown product NITGE[155]. 
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1.9.3 Synovium 

Synovitis is a common feature throughout OA with different types of synovitis associated 

with disease progression. Hyperplasia of the synovial lining is characteristic of early OA, 

while later stages are mainly characterized by capsular fibrosis and accumulation of 

breakdown products of bone and cartilage in the SF[156].  Later stages of radiographic 

OA are also associated with a greater presence of synovitis, with 83% of patients with 

late stage OA presenting with synovitis, versus 38% of those with early OA[157]. OA 

synoviocytes produce less lubricin, and hyaluronan so the composition and viscosity of 

SF is affected along with the joints ability to execute frictionless movement[158, 159]. 

Inflammation and hyperplasia also adversely affect the permeability of the synovial 

membrane which then permits hyaluronan to escape the joint[160].   

Injury to the joint, increased permeability, and damage to the cartilage ECM also activate 

the complement system that responds by formation of the membrane attack complex 

(MAC) on chondrocytes. MAC is comprised of complement effectors C5b-9, and 

formation can result in chondrocyte death or production of matrix degrading 

enzymes[161]. Elevated levels of complement proteins are found in synovial fluid of OA 

patients[162]. ECM damage also increases the expression of TLRs (toll-like receptors) in 

the synovium. Toll-like receptors can stimulate NFkB activation which in turn stimulates 

the production of cytokines and chemokines[163]. These inflammatory mediators then 

perpetuate the feedback loop with cartilage and synovium. 
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1.9.4 Subchondral Bone 

During the course of OA, the composition and structure of the cortical subchondral bone 

plate and the underlying trabecular bone changes, directly affecting the ability of the bone 

to support load and indirectly affecting the overlying articular cartilage[164]. Trabecular 

bone volume increases by approximately 20%, and there is an increase in bone turnover. 

However, the newly formed bone is hypomineralized so it does not confer the same 

stiffness[165-167].  

In concert with changes in composition, bony spurs called osteophytes are formed at joint 

margins. The osteophytes are a hallmark feature of OA and can even be observed prior to 

join space narrowing radiographically[168]. Osteophytes are derived from mesenchymal 

stem cells in the periosteum or the synovial membrane[168]. TGF-β and BMP2 (Bone 

Morphogenetic Protein 2) are anabolic factors believed to be key mediators in the 

formation of osteophytes; under their influence, precursor cells first differentiate into 

chondrocytes, deposit an ECM, undergo hypertrophy and orchestrate bone 

formation[169]. Functionally, osteophytes contribute to pain and limit joint 

mobility[170]. 

The tidemark, known as the demarcation between uncalcified and calcified cartilage 

(Figure 1-2), advances during OA and moves further into the uncalcified cartilage[171]. 

This thins the overlying articular cartilage. It is believed that proangiogenic factors are 

released from DZ chondrocytes undergoing hypertrophy and recruit factors to initiate 

local remodeling.[171, 172]. This contributes to increased stiffness in the articular 

cartilage, and decreases its ability to deform and distribute load[173]. Microfractures can 
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also occur in the zone of calcified cartilage or subchondral trabeculae. The cracks formed 

by these fractures enables the influx of synovial fluid into the zone of calcified cartilage 

and subchondral bone and formation of bone cysts[174]. Bone marrow lesions can also 

form during the pathogenesis of OA, and the location of these lesions corresponds to 

focal articular cartilage defects[175]. When the articular cartilage is completely eroded, a 

loss of joint congruity occurs concurrently with fracturing of the subchondral bone plate 

and sclerosis which in turn can cause the bone to collapse, further offsetting 

congruity[176]. 

1.10 Cartilage in Osteoarthritis 
Adult articular cartilage is a relatively quiescent tissue maintaining ECM homeostasis, 

but in OA this balance is disrupted with a shift towards tissue catabolism[177]. During 

the pathogenesis of OA, cartilage becomes progressively fibrillated and eroded, 

destroying its ability to receive and dissipate loads and rendering it functionally inept. 

Although the etiology of what initiates these events remains unknown, initial responses to 

OA involve upregulation of genes involved in matrix breakdown by chondrocytes, likely 

in order to remodel the damaged ECM. IL-1β and TNF-α are upregulated and increase 

the synthesis of matrix metalloproteinases (1,3 and 13) which are primarily collagenases, 

but also capable of cleaving aggrecan[64, 178]. These inflammatory mediators also act to 

decrease the expression of TIMP (tissue inhibitor of metalloproteinases) proteins. On the 

other hand, upregulation of anabolic genes such as those encoding TGF-β, BMPs, IGF-1 

(Insulin like growth factor 1), and FGFs (Fibroblast Growth Factor) promotes synthesis 

of extracellular matrix. However, there is greater tissue catabolism than anabolism, and 
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this changes the properties of the ECM. The chondrocytes are sensitive to their 

microenvironment. In response to this environment, they can differentiate to a 

hypertrophic phenotype, dedifferentiate to a fibroblast-like cell type, and undergo 

apoptosis[179]. Cellular disorganization is also observed with chondrocyte clustering as a 

result of cell proliferation[65, 180]. 

Possible mechanisms to initiate these changes in chondrocytes include increases in ROS 

(reactive oxidative species) in chondrocytes which can result in mitochondrial 

dysfunction and reduced autophagy [181]. Additionally, the accumulation of cartilage 

matrix proteins that have been modified by oxidative stress in the endoplasmic reticulum 

and golgi apparatus can also decreased ECM synthesis, and cell death[18, 182, 183].  

Oxidative stress and ageing can also increase the accumulation of advanced glycation 

end-products (AGEs) in cartilage. Crosslinking of Collagen 2 by these products can 

increase the stiffness of the cartilage, changing its functional properties[184]. 

Furthermore, elevated levels of ROS and ageing can trigger cellular senescence which 

can trigger a DNA damage response, influencing the cell to stop proliferating and 

increase expression of proinflammatory cytokines and degradative enzymes[185, 186]. 

Phenotypically, the upregulation of anabolic factors can result in the formation of 

osteophytes as the cartilage incorrectly attempts to repair itself. The increase in 

degradative enzymes, particularly ADAM-TS 4,5 and MMP-13, results in the breakdown 

of aggrecan and Collagen 2 and degeneration of the ECM[187-189]. Aggrecan 

breakdown precedes Collagen 2 breakdown in OA, and further exacerbates it[190]. 

Decreased levels of functional aggrecan results in failure of the remaining cartilage to 

accept loads properly, making it even more vulnerable to structural damage.  Cartilage 
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ECM fragments, such as those of fibronectin, can induce the expression of MMPs in 

chondrocytes, further perpetuating cartilage degradation[191].  In addition, cartilage 

detritus can activate TLRs and the complement system in the synovium which, causing 

the release of more inflammatory mediators and degradative enzymes[68, 156]. TLRs 

identified in chondrocyte can also be activated by endogenous products of cellular stress 

or matrix breakdown, and it has been observed that TLR-2 and 4 signals can mediate 

catabolic responses by increasing the expression of MMPs in mouse cartilage[161, 192]. 

In particular, aggrecan breakdown product 32-mer, can act as a ligand for TLR-2. 

However, despite accumulation of knowledge of specific molecular and cellular events 

involved in OA, we still lack many parts of the complete picture, for example on gene 

regulator mechanisms connecting external stimuli to chondrocyte responses.  The nuclear 

receptor family could play a crucial role in this context. 

1.11 Nuclear Receptors 
Nuclear receptors are transcription factors that are regulated by lipophilic small molecule 

ligands, where upon ligand binding they regulate the transcription of their target 

genes[193]. They are comprised of an NH2 terminal domain which houses the ligand 

independent transcriptional activator, AF-1 (Activating Function 1). The DNA binding 

domain (DBD) which contains two highly conserved zinc-finger motifs that recognize 

and bind to specific sequences of DNA termed hormone response elements. The hinge 

region connects the DBD with the LBD (ligand binding domain), and the LBD consists 

of folded alpha helices that contain AF-2 (Activating Function-2) which is responsible for 

ligand dependent transcriptional effects. When a ligand binds to the LBD it induces a 

conformational change which results in the recruitment of co-activators, dissociation of 
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co-repressors promoting transcription of target genes. Nuclear receptors can be divided 

into 4 classes[194]. Class I nuclear receptors exist as homodimers and are usually found 

in the cytosol bound to heat shock proteins. Upon ligand binding they dissociate from 

these proteins and translocate to the nucleus where they bind to the hormone response 

elements that are inverted repeat sequences. Class I nuclear receptors are typically steroid 

hormones such the estrogen, androgen, glucocorticoid and progesterone receptors. Class 

II receptors are typically found in the nucleus bound to the DNA, they usually exist as 

heterodimers (with RXR, Retinoid X Receptor) and bind to direct repeat sequences such 

as the Peroxisome Proliferator Activated Receptors (PPARs), Liver X Receptor (LXR), 

Farnesoid X Receptor (FXR), Retinoic Acid Receptor(RAR), and Vitamin D 

Receptor(VDR). Class III nuclear receptors also exist as homodimers but bind direct 

repeat sequences such as RXR,  and Class IV exist as monomers that bind half sites such 

as Steroidogenic Factor-1 Receptor (SF1R)[195]. 

Many of the Class II receptors are responsible for mediating lipid homeostasis including 

metabolism, storage, transport and elimination of lipids. They are activated by ligands 

such as fatty acids (PPARs), oxysterols (LXR), bile acids (FXR) and xenobiotics 

(SXR/PXR and CAR). Activation of these receptors often results in a feedforward 

positive regulation loop, since it occurs from low-affinity binding that happens at 

physiological concentrations influenced by dietary intake[196]. 

Currently 49 nuclear receptors have been identified in the human genome, and 31 of 

these are expressed in articular cartilage. Further, 23 of these are dysregulated in 

osteoarthritic cartilage[197]. However, only a few of these have been studied. 
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1.11.1 PPARs 

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor 

super family, with fatty acids and fatty acid-derived molecules functioning as naturally 

occurring ligands[198]. This is of particular interest to us due to emerging evidence 

linking obesity to osteoarthritis, in a subtype of primary OA known as metabolic OA[90]. 

Subchondral bone ischemia, compromised nutrient exchange, and oxidative stress have 

all been implicated as mechanisms for the initiation and progression of this subtype of 

OA. Furthermore, synthetic agonists and antagonists specific for PPARs have been 

developed for therapeutic reasons, and nuclear receptors have been indicated as a strong 

potential target for OA therapy[199]. PPARs heterodimerize with the Retinoid X 

Receptor (RXR) allowing for recruitment of co-activators or co-repressors to occur[200], 

and ligand binding to PPARs can either activate or repress target gene transcription, 

depending on the specific target gene and cellular context. PPARs also have a low level 

of basal or constitutive activity (Figure 1-4). Of the three subtypes [alpha, delta, gamma], 

PPARδ (also historically known as PPARβ) has the broadest expression pattern and 

functions in lipid and glucose metabolism, cell differentiation, proliferation, apoptosis 

and immune regulation. In skeletal muscle, it specifically activates pathways involved in 

remodeling with response to exercise[201]. While PPARα and PPARγ act as anti-

inflammatory factors, and could thereby confer protection from OA, PPARδ does not 

seem to share these anti-inflammatory attributes[202-205] Current studies on PPARγ 

indicate abnormal skeletal development in cartilage-specific knockout mice, as well as 

spontaneous osteoarthritis development in adult cartilage-specific knockout mice, 

indicating a role for PPAR proteins in controlling chondrocyte behavior[203, 206]. 
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Additionally, several studies on lipid metabolism illustrate how PPAR subtypes can have 

antagonistic and complementary action[207-210]. Thus a role of PPARδ in OA, and in 

particular in promotion of OA, is plausible, and supported by our own studies described 

below.  
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Figure 1-4 Nuclear receptor PPARδ 

In chondrocytes, endogenous fatty acids function as a ligand to activate PPARδ. In its 

inactive state, it remains bound to the nucleus with RXR. Upon ligand binding, it changes 

conformation, to its active form thereby enabling transcription of its gene targets. 
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1.12 Overall Objectives and Hypothesis 
Although OA affects all joint tissues, cartilage breakdown is a hallmark feature of OA 

and an irreversible process. PPARδ was initially identified as a possible target for OA 

therapy in several of our genome-wide gene expression studies[211-213]. Previously, we 

have shown that chondrocytes treated with the PPARδ agonist GW501516 respond with 

an increase in gene expression of several proteases involved in OA, including several 

ADAMTS and MMP genes[214]. Known target genes of PPARδ such as Lpl, Angpl4, 

and Pdk4 were also induced, confirming functionality of both PPARδ and GW501516 in 

chondrocytes.  

These data suggest that activation of PPARδ in chondrocytes promotes ECM degradation 

through increased expression of catabolic proteases. We have also demonstrated that 

PPARδ promotes fatty acid oxidation in chondrocytes[214], and there is potential that the 

dysregulation of lipid metabolism plays an important role in the initiation and progression 

of cartilage degeneration in OA[95]. Based on this data indicating that PPARδ promotes 

cartilage breakdown, the overarching hypothesis for my thesis is that inhibiting PPARδ 

will stop or delay cartilage breakdown in OA. 

1.12.1 Objective #1 

To characterize the role of PPARδ in Osteoarthritis, in-vivo, by generating cartilage-

specific Ppard knockout mice and examining them in a surgical model of OA. 
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1.12.1.1 Rationale #1 

Based on our in vitro data demonstrating catabolic effects of PPARδ activation, we asked 

whether inactivation of the Ppard gene would protect from cartilage degeneration in 

osteoarthritis. Mouse models are commonly used to study OA because they allow for 

genetic manipulations, and provide an efficient timeline using surgical models, enabling 

greater sample sizes[215]. Destabilization of the medial meniscus (DMM) is the most 

accepted surgical OA model in mice and use of genetically modified mice avoids 

potential complications from non-specific effects of pharmacological compounds[208, 

216, 217].  

1.12.1.2 Hypothesis #1 

Cartilage specific depletion of PPARδ will slow progression of post-traumatic OA. 

1.12.2 Objective #2 

 To determine the effects of pharmacological PPARδ inhibition in post-traumatic OA. 

1.12.2.1 Rationale #2 

The PPARδ agonist GW501516 induces protease expression and proteoglycan loss in-

vitro, and cartilage specific depletion of PPARδ in mice results in delayed progression of 

OA when compared to wild-type mice in a surgical model[214]. Yet, the effect of 

pharmacological inhibition of PPARδ in mediating response to injury (post-traumatic 

OA) has yet to be elucidated. While the genetic model has provided a strong foundation 

of information to characterize this gene’s role in the progression of OA, a 
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pharmacological approach is necessary to investigate whether the inhibition of PPARδ 

could be a feasible therapeutic target for OA in human patients.  

1.12.2.2 Hypothesis #2 

Pharmacological inhibition of PPARδ will protect against post-traumatic Osteoarthritis. 

1.12.3 Objective #3 

To elucidate novel target genes for PPARδ in chondrocytes. 

1.12.3.1 Rationale #3 

Our preliminary results suggest that PPARδ is important in the promotion of OA, but the 

underlying mechanisms remain unknown. Since PPARδ is a transcription factor, it most 

likely works by regulating the expression of target genes.To understand PPARδ’s mode 

of action, and identify additional targets for OA therapy, it is imperative that we first 

identify its target genes. 

1.12.3.2 Hypothesis #3 

PPARδ alters chondrocyte behavior by regulating gene expression. 
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Chapter 2  

2 PPARδ promotes the progression of post-traumatic 
osteoarthritis in a mouse model 

This chapter has been reproduced from Ratneswaran A, LeBlanc EA, Walser E, Welch I, 

Borradaile N, and Beier F. PPARδ promotes the progression of post-traumatic 

osteoarthritis in a mouse model. Arthritis Rheumatol. (2):454-64, 2015. 

2.1 Abstract 
Objective: Osteoarthritis (OA) is a serious and common disease of the entire joint, 

characterized by the degeneration of articular cartilage, subchondral bone changes, 

osteophyte formation and synovial hyperplasia. Currently, there are no pharmaceutical 

treatments to slow, stop or reverse disease progression, resulting in greatly reduced 

quality of life for OA patients and the need for joint replacement surgeries in many cases. 

The lack of available treatments for OA is partially due to our incomplete understanding 

of the molecular mechanisms promoting disease initiation and progression. Here we 

identify the nuclear receptor PPARδ as a promoter of cartilage degeneration in a mouse 

model of post-traumatic (e.g. injury-induced) OA. 

Methods: Mouse primary chondrocytes and knee explants were treated with 

pharmacological agonist of PPARδ (GW501516) to evaluate changes in gene expression 

(qPCR), histology (Safranin-O, immunohistochemistry), and matrix glycosaminoglycan 

breakdown (DMMB assay) consistent with OA, and potential recovery. In-vivo, PPARδ 

was specifically deleted in the cartilage of mice. Mutant and control mice aged 20 weeks 

were compared 8 weeks after a destabilization of medial meniscus (DMM) surgery. 
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Histopathological scoring (OARSI) and immunohistochemistry for known markers of OA 

were performed.  

Results: In vitro, PPARδ activation by the agonist GW501516 results in increased 

expression of several proteases implicated in cartilage matrix breakdown. GW501516 

also induces aggrecan degradation and release in a knee joint explant culture system. In-

vivo, cartilage specific Ppard knockout mice do not display any abnormalities of skeletal 

growth or development, but show marked protection in the DMM model of post-

traumatic OA (compared to control littermates). OARSI scoring and 

immunohistochemistry for cartilage matrix breakdown products confirm strong 

protection of the mutant mice from DMM-induced cartilage degeneration.  

Conclusion: These data demonstrate a catabolic role of endogenous PPARδ in post-

traumatic OA and suggest that pharmacological inhibition of PPARδ is a promising 

therapeutic strategy. 

Keywords: PPARδ, cartilage, osteoarthritis, knock-out mouse, destabilization of medial 

meniscus 

 

2.2 Introduction 
Osteoarthritis (OA) affects more than 150 million individuals worldwide and is 

predicted to rise in prevalence due to increasing life expectancies. OA severely influences 

the independence and quality of life of those afflicted; 14% of OA patients experience 

pain severe enough to significantly limit activities[1, 2]. Economically, OA accounts for 
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upwards of 190 billion dollar in North American direct and indirect health care costs 

annually, yet we have no current treatment modalities to prevent or delay its 

progression[3, 4].  

In recent years, the view of OA has shifted from what was fundamentally seen as a 

disease of “wear and tear” to the realization that OA is an active process marked by 

cartilage attrition, catalyzed by the induction of proteases targeting principal extracellular 

matrix components of cartilage. The responsible proteases, in particular 

metalloproteinases and ADAM-TS enzymes, target the major components of the cartilage 

extracellular matrix, type II collagen and aggrecan, respectively[5, 6]. Dysregulation of 

cartilage homeostasis results in chondrocyte proliferation, hypertrophy, and cell death, 

concurrent with articular cartilage fibrillation, erosion, subchondral bone thickening and a 

loss of joint congruity[7].  Ensuing functional consequences include joint pain, stiffness 

and loss of mobility[8].  However, previously published studies using human tissue 

obtained from end-stage OA have yielded little insight into the etiology of this disease[9-

11]. Thus it is essential to understand the molecular mechanisms underlying this 

condition throughout the disease process, in order to develop novel treatment approaches 

targeting core processes involved in cartilage remodeling and destruction. 

Another recent development has been the classification of metabolic Osteoarthritis, which 

encompasses the contributing roles of hypertension, dyslipidemia, hyperglycemia, and 

obesity in the development of OA[12].  Subchondral bone ischemia, compromised 

nutrient exchange, and oxidative stress have all been implicated as mechanisms for the 

initiation and progression of this subtype of OA.  In fact, a significant proportion of 

proteins related to lipid metabolism have been identified in proteomic analyses of 
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osteoarthritic cartilage and isolated chondrocytes[13].  Among these proteins are PPARs 

(Peroxisome Proliferator Activated Receptors), members of the nuclear receptor super 

family that are activated by lipid ligands.  Of the three subtypes (alpha, gamma, delta), 

PPARδ is most widely expressed and functions in lipid and glucose catabolism, cell 

proliferation, apoptosis and immune regulation.  In skeletal muscle, it specifically 

activates pathways involved in remodeling with response to exercise[14].  PPARδ has 

been detected in growth plate chondrocytes, and has been shown to be activated by the 

cytosolic Vitamin A metabolite retinoic acid[15, 16]. Vitamin A derivatives have been 

associated with the development of OA[17], suggesting that inhibition of PPARδ could 

constitute a novel approach for treatment of OA. In this study, we examined the effects of 

PPARδ activation in chondrocytes in vitro and the consequences of specifically deleting 

the encoding gene (Ppard) in cartilage of mice. Our data show that PPARδ activation 

promotes catabolic processes in cartilage and that its inhibition indeed protects from post-

traumatic OA in mice. 

2.3 Methods 

2.3.1 Primary Cell Culture and Isolation 

Chondrocytes were isolated from embryonic day 15.5 CD1 mice (Charles River 

Laboratories) as described[18] and placed in culture medium with 1% FBS at a density of 

1x105 per well. Cells were treated with the PPARδ agonist GW501516 at concentrations 

of 0.01 µM - 1 µM for 48 hours. Dimethyl sulfoxide (DMSO) treated cells served as 

vehicle control. 
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2.3.2 Palmitate-Oxidation Assay 

Primary chondrocytes were treated as above. Palmitate oxidation was assessed as 

previously described[19]. Radioactivity in the aqueous fraction of media and cell lysates 

was measured using a Beckman Coulter LS6500 Multipurpose Scintillation Counter.  

Total aqueous radioactivity, representing conversion of 3H-palmitate to 3H2O, was 

normalized to total protein.  

2.3.3 MTT assay 

Primary mouse chondrocytes plated at a density of 10,000 cells per well (96 well Falcon 

plate) were treated as above for 48 hours. Cell numbers were examined via MTT Assay 

as described[20], using a Cell Proliferation Kit (Roche Applied Science).  

2.3.4 RNA extraction and Real-Time Polymerase Chain Reaction  

Total RNA was isolated from cells using RNeasy kit (Quiagen). Real-Time Polymerase 

Chain Reaction (PCR) was performed using One-Step RT qPCR Master Mix kit and 

TaqMan Gene Expression Assays (Applied Biosystems) with 40 cycles on the ABI Prism 

7900 HT sequence detector (PrismElmer Life Sciences). Probes were purchased from 

Life Technologies for Mmp2 (Mm00439498_m1), Mmp3 (Mm00440295_m1), Mmp13 

(Mm00439491_m1), Adamts2 (Mm00805170_m1), Adamts5 (Mm00478620_m1), 

Adamts7 (Mm01239067_m1), Adamts12 (Mm00615603_m1), Acan (Mm00545794_m1), 

Col2a1 (Mm01309565_m1), Sox9 (Mm00448840_m1), Gapdh (Mm99999915_g1). Gene 

expression was normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh). 

Relative gene expression was calculated using the delta-delta Ct method[21], as 
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described[22, 23]. 

2.3.5 Explant Culture 

Knee joints from 10-week-old male CD1 wild-type mice (Charles River Laboratories) 

were isolated and placed in organ culture medium overnight. Knee joints were treated 

every 48 hours for 6 days with GW501516 (0.01 µM - 10 µM) or DMSO (10 µM) as 

vehicle control. Following organ culture, explants were fixed in 4% paraformaldehyde for 

24 hours. 

2.3.6 Dye Binding Assay 

Dimethylmethylene blue (DMMB) dye binding assay was performed on media collected 

from knee joint explant cultures. Knee joints were cultured with 1 µM of GW501516 or 

vehicle control DMSO (see above). After culture, epiphyses were isolated and cartilage 

was extracted and digested overnight according to[24]  DMMB assay was performed 

with chondroitin sulfate as a standard, and absorbance was measured on a Tecan Safire 

Fluorescence, Absorbance and Luminescence Reader  at a wavelength of 595nm with a 

reference wavelength of 655nm. Aggrecan released into the medium was normalized to 

total aggrecan present in each sample.[24].  

2.3.7 Tibia organ culture  

Tibias from E15.5 wild-type CD1 mice were treated every 48 hours for 6 days with 

DMSO (control, 1µM), GW501516 (0.01 µM - 10 µM), GSK3787 (1 µM), or 

combination treatment (1 µM GW501516 + 1 µM  GSK3787). Tibias were measured at 

the beginning and end of culture using an eyepiece in a Leica EC3 stereomicroscope. 
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Following organ culture, tibias were fixed in 95% paraformaldehyde for 24 hours, 

followed by paraffin embedding and sectioning[25, 26]. 

2.3.8 Animals and Surgery 

All animal experiments were approved by the Animal Use Subcommittee at The 

University of Western Ontario and conducted in accordance with the guidelines from the 

Canadian Council on Animal Care. Cartilage-specific Ppard KO mice were generated by 

breeding mice carrying the Cre-Recombinase gene under the control of the collagen II 

promoter[22, 23, 25, 26] to Ppardfl/fl mice (obtained from The Jackson Laboratory)[27]. 

Male mice were used for all of the subsequent experiments. Mice were harvested for 

analysis of skeletal development by staining whole mouse skeletons with Alcian 

Blue/Alizarian Red, as described[28, 29], or for preparation of paraffin sections. DMM or 

Sham surgery was performed by Dr. Ian Welch on 20 week old cartilage specific Ppard 

knockout mice and control littermates, as described[30, 31].  DMM- and sham-operated 

mice were harvested 8 weeks post-surgery for analysis. 

2.3.9 Histopathology of the Knee 

Knees were dissected, fixed in 4% Paraformaldehyde, decalcified in 

Ethylenediaminetetraacetic_acid (EDTA) and embedded in paraffin. Frontal sections 

were cut at the Molecular Pathology Facility[28] and stained with Safranin-O/Fast Green 

as previously described[32]. Serial sections were graded by three blinded observers 

according to the OARSI histopathological scale[33], on the four quadrants of the knee. 
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2.3.10 Immunohistochemistry (IHC) 

IHC was performed on frontal sections of paraffin embedded knees, slides with no 

primary antibody added were used as controls. Collagen 2 goat anti-human antibody was 

purchased from Santa Cruz Biotechnology (sc-774). Rabbit anti-human aggrecan (peptide 

CGGVDIPEN ovalbumin conjugate MMP cleavage site), Rabbit anti-human aggrecan 

(peptide CGGNITEGE ovalbumin conjugate ADAMTS 4/5 cleavage site) and Rabbit 

anti-cleaved collagen II (CGP-Hyp-GPQG ovalbumin conjugate human collagenase C1, 

2C) were used as primary antibodies[34-36]. 

2.4 Results 

2.4.1 PPARδ induces the expression of enzymes involved in 
proteoglycan breakdown 

GW501516 is a very specific, synthetic agonist of PPARδ[37]. Since PPARδ is an 

important regulatory gene in lipid metabolism in a number of tissues[38], and 

dysregulation of lipid metabolism has been implicated in OA, we first examined whether 

chondrocytes can respond to GW501516 by changes in lipid metabolism. To examine the 

extent of fatty-acid oxidation in primary mouse chondrocytes in response to GW501516 

treatment, a palmitate-oxidation assay was performed. A significant increase in fatty acid 

oxidation was observed upon GW501516 treatment, independent of agonist concentration 

(Figure 1A). This effect implies that chondrocytes express functional PPARδ and that 

oxidative lipid metabolism was fully induced at even the lowest concentration of drug 

treatment. MTT assays demonstrated that PPARδ activation did not alter cell number and 

therefore was not toxic to chondrocytes, even at the highest concentration (Fig. 2-1B). 
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In order to determine the effects GW501516 on gene expression in chondrocytes, 

quantitative RT-PCR (qPCR) was performed on RNA isolated from primary mouse 

cartilage cells treated with vehicle or various concentrations of GW501516. We first 

examined the effects of GW501516 on markers of extracellular matrix (ECM) synthesis 

and breakdown. PPARδ activation significantly increased the expression of genes 

encoding Matrix Metalloproteinases 2 and 3 (Mmp2, Mmp3) as well as A Disintegrin and 

Metalloproteinase with Thrombospondin Motifs 2, 5, 7, and 12 (Adamts2, 5, 7, 12) 

(Figure 2-1C-F and Suppl. Fig. 1A,B). This indicates that PPARδ induces expression of 

enzymes with the ability to cleave both the collagen and aggrecan components of the 

ECM. In contrast, no significant changes were observed for transcript levels of Mmp13, 

aggrecan and collagen II (Suppl. Fig. 1 C-E). Interestingly, the expression of Sox9, the 

key transcriptional regulator of collagen II and aggrecan genes, was slightly but 

significantly decreased with increasing concentrations of agonist (Suppl. Fig. 1F).  

We therefore investigated ECM turnover ex vivo using cultured knee explants.  Cultures 

were treated with GW501516 at 0.01, 0.1, 1, and 10 µM concentrations and stained with 

Safranin-O/Fast-Green. Loss of ECM glycosaminoglycans was observed with increasing 

concentrations of agonist treatment, consistent with aggrecanase activity (Figure 2-2A). 

Immunohistochemistry staining with neo-epitope antibodies confirmed degradation of 

aggrecan in the ECM (Fig. 2-2B) with 1µM agonist treatment compared to DMSO 

controls. Dimethylmethylene blue (DMMB) dye binding assays were also performed on 

knee explants cultured with GW501516 (1µM) or vehicle control (DMSO). Sulfated 

glycosaminoglycan released into the media was significantly greater for treated compared 

to untreated controls (Fig 2-2C).  In contrast, staining with antibodies for collagen II or 
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collagen II breakdown products showed no effect of PPARδ activation (Suppl. Fig. 2A,B, 

7). In agreement with the absence of detectable collagen II degradation, Picrosirius red 

staining for fibrillar collagen did not show major differences between treatments (Fig. 2-

2D). This is not unexpected as aggrecan loss precedes collagen loss during OA[39, 40]. 

Furthermore, the mechanical stimulation required for the breakdown of fibrillar collagen 

was not present in our culture system[41]. 
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Figure 2-1 PPARδ activation affects metabolism and gene expression in 

chondrocytes 

Primary mouse chondrocytes were incubated with DMSO or various doses of the 

PPARδ agonist GW501516 for 48 hours. A) PPARδ agonist treatment increased 

fatty acid oxidation in culture. Significant increases in β-oxidation were observed at 

all treatment concentrations. B) MTT assays demonstrate that GW501516 does not 

alter cell number, indicating greater concentrations are not toxic and observed 

results are not due to cell death. C) Relative Mmp2 gene expression is significantly 

increased at 0.1µm concentration of GW501516. D) Mmp3 gene expression is 

significantly upregulated at 0.1µM and 1µM concentrations of PPARδ agonist 

treatment. E) Adamts2 relative gene expression is increased at 0.1µM of GW501516 

treatment. F) PPARδ agonist treatment significantly elevates Adamts5 gene 

expression at 0.1µm and 1µM.  (N≥3, *p≤0.05, data represented are mean± SEM) 
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Figure 2-2 Induction of proteoglycan degradation by  PPARδ agonism 

Adult mouse knee joints were incubated with DMSO (vehicle) or increasing 

concentrations of the PPARδ agonist GW501516 for 6 days (N = 3). A) Paraffin 

sections were stained with Safranin O (for cartilage glycosaminoglycans) or a neo-

epitope antibody for MMP13-cleaved aggrecan; B. Immunohistochemistry for 

cartilage explants used 1µM of GW501516 and DMSO vehicle control. C) A 

DMMB assay was performed to quantify sulfated glycosaminoglycan release into the 

media, (N=5). Picrosirius Red was also performed (fibrillar collagen; D). Safranin O 

staining (red) is reduced upon GW501516 treatment, while aggrecan neo-epitope 

staining (brown; indicated by red arrows) is increased. DMMB assay confirmed a 

significant difference between 1µM GW501516 treatment and DMSO controls. 

These results indicate increased glycosaminoglycan and proteoglycan breakdown in 

response to PPARδ activation. In contrast, Picrosirius Red staining (red) does not 

change dramatically. (N≥3) 
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2.4.2 Cartilage-specific PPARδ knockout mice display no 
developmental phenotype 

In light of these promising in vitro results, we initiated in vivo studies in order to 

determine whether PPARδ inhibition could be a valuable approach for OA therapy. We 

crossed Pppardfl/fl mice[27] with a strain expressing Cre recombinase under control of the 

collagen II promoter[28, 29, 42, 43]. We first assessed the developmental phenotype of 

cartilage-specific Ppard KO mice. Alcian Blue/Alizarin Red staining performed on 

skeletal preparations of postnatal day 10 (P10) and P21 control and Ppard knockout 

littermates (Figure 2-3A,D) demonstrated normal skeletal growth and morphology in 

mutant mice. Safranin-O staining was performed on paraffin sections on femurs from P10 

and P21 KO mice and wild-type littermates (without Cre) in order to assess growth plate 

development (Figure 2-3B,C,E,F). Measurement of the length of the proliferative zone, 

hypertrophic zone and total growth plate indicated normal phenotypes of mutant growth 

plates compared to wild-type mice. This was confirmed by normal morphology and tissue 

architecture of the mutant growth plates.  
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Figure 2-3 Cartilage-specific Ppard KO mice show no developmental phenotype 

A) Alcian Blue/ Alizarin Red Stains of P10 control and KO mice reveal no differences in 

skeletal size or morphology. B) Safranin-O staining of p10 proximal femoral growth 

plates reveal no differences in morphology in the resting, proliferative or hypertrophic 

zones. C) Measurements of these zones indicate similar skeletal development between 

genotypes at P10. D) Alcian Blue/ Alizarin Red staining of the mandible, arm, pelvic 

girdle and lower leg reveal no differences in growth or mineralization between 

genotypes at age P21. E) Safranin-O staining of P21 proximal femoral growth plates 

reveals no differences between WT and control mice. F) Measurements of absolute 

length indicate similar absolute length of resting, proliferative and hypertrophic zones at 

age P21. (N≥5) 
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In addition, to test the effects of GW501516 on skeletal growth, embryonic day 15.5 

(E15.5) tibias were isolated from wild-type CD1-mice and treated with the same 

concentrations of GW501516 as above for six days. There was no difference between 

treated and non-treated bones, as documented by measurement of tibia growth over the 

culture period and by Alcian Blue/Alizarin Red staining (Suppl. Fig. 3).  Finally, isolated 

wild-type E15.5 tibias were cultured in the same system with the PPARδ inhibitor 

GSK3787 or both the agonist and inhibitor together, in order to evaluate how PPARδ 

inhibition affects skeletal development. Similar to the in vivo results, there was no 

difference between treated, non-treated, or combination treated bones in mineralized bone 

length, absolute bone length (Suppl. Figure 3), or the length of growth plate zones and the 

total growth plate (Suppl. Figure 4). Thus, there is no obvious developmental phenotype 

in our mutant mice that would interfere with the analyses of OA pathology, and inhibiting 

PPARδ pharmacologically did not interfere with regular bone growth. 

2.4.3 PPARδ mutant mice display chondroprotection after surgical 
induction of Osteoarthritis 

At 20 weeks of age, cartilage-specific Ppard mutant mice and wild-type control 

littermates underwent a destabilization of medial meniscus (DMM) surgery [30] to induce 

OA, and sham surgery as control. Studies of baseline mice (without surgery) at this age 

show no difference in articular cartilage health and morphology between genotypes 

(Suppl. Fig. 5). 8 weeks post-surgery, mice were harvested and histopathological analyses 

were performed to determine the effects of Ppard inactivation on OA development and 

progression.  Eight serial frontal knee sections per mouse were assessed semi-



68 

 

quantitatively by three blinded scorers according to OARSI recommendations[33]. The 

OARSI method uses a combination of severity, breadth and depth of damaged surface to 

assign a score ranging from 0-6. The four quadrants of the knee were assessed both 

separately and cumulatively. Wild-type mice showed significant damage after DMM 

surgery, as expected, in particular on the medial side of the knee (in both femoral condyle 

and tibial plateau; Figure 2-4 A,B,C). Remarkably, mutant mice showed a much lower 

OARSI score after DMM surgery than their wild-type control littermates (Figure 2-4 

A,B,C). Damage in the KO DMM mice was restricted to focal glycosaminoglycan loss 

(Fig.2-4C), and OARSI scores were similar to those observed in sham-operated mice, as 

well as baseline control (no-surgery) mice. Cartilage degeneration was also assessed per 

animal (cumulative joint score) where results indicate a significant difference between 

WT DMM mice on one hand and KO DMM, sham-operated and control mice on the 

other hand (Figure 2-4D,E). As expected, lateral compartments showed very little 

damage and no significant differences between all groups (Suppl. Fig. 6). These results 

clearly demonstrate the chondroprotective role of Ppard inactivation in the DMM model 

and suggests that inhibition of PPARδ is a potential therapeutic strategy in 

OA.Immunohistochemistry was performed to elucidate downstream mechanisms of 

PPARδ inhibition (Fig. 2-5), with no-primary antibody controls (Suppl. Fig 7) Known 

markers of cartilage breakdown, e.g. MMP-cleaved aggrecan, ADAM-TS 4/5-cleaved 

Aggrecan, and  
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Figure 

Wild-type (WT) and littermate control cartilage-specific Ppard KO mice underwent 

DMM or sham surgery. 8 weeks after surgery, paraffin sections of joints were examined 

by Safranin O and OARSI scoring.  Cartilage Damage in the Medial Femoral Condyle 

(MFC) was assessed by three blinded observers according to the OARSI 

recommendations. A)The MFC of WT DMM mice had significantly more damage than 

those of KO DMM, or sham-operated mice. B) Cartilage Damage in the Medial Tibial 

Plateau (MTP) was significantly greater for WT DMM mice than any other group. The 

MTP was greatest affected quadrant of the knee. Ppard KO mice were protected from 

surgical induction of OA. C) Whole Joint OA was assessed from the cumulative scores 

of each quadrant. KO DMM and both sham-operated groups presented with minimal 

damage, whereas WT DMM mice developed the most damage. D) Representative 

Safranin O-stained sections from the medial compartment show cartilage degeneration 

in WT mice after DMM surgery, while KO mice only show focal loss of Safranin O 

staining. E) Representative Safranin O-stained sections from the total knee joint.  (N=5 

DMM/sham, *p≤0.05) 

 

Figure 2-4 Cartilage-specific Ppard KO mice are protected from DMM-induced OA 
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Figure 2-5 Cartilage-specific Ppard KO mice are protected from DMM-induced 

ECM degradation 

WT and cartilage-specific Ppard KO mice underwent DMM or sham surgery. 8 weeks 

after surgery, mice were sacrificed, and joints were examined by IHC staining of 

paraffin sections. IHC indicates a strong presence of aggrecan and collagen breakdown 

products after DMM surgery. WT DMM mice display more intense staining for ADAM-

TS4/5 and MMP13-cleaved aggrecan and collagen II in cartilage than all other groups. 

(N=5 per group) 
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MMP-cleaved collagen II were assessed using staining with neoepitope antibodies. WT 

DMM stained sections demonstrated intense staining for all three of these neoepitopes 

relative to sham-operated controls. In agreement with the OARSI scores, KO DMM mice 

showed much less neoepitope staining in cartilage. We can infer from these results that 

cartilage-specific Ppard KO mice are protected from ECM degradation in the DMM 

model of post-traumatic OA. 

2.4.4 Discussion 

Our study provides the first examination of the role of PPARδ in the pathogenesis of OA 

and provides insights to the underlying molecular mechanisms that regulate this disease.  

Through our in-vitro, ex-vivo and in-vivo models we have demonstrated the degenerative 

properties of PPARδ agonism in cartilage. 

Our in-vitro studies have established that PPARδ signaling in primary murine 

chondrocytes causes upregulation of genes capable of proteolytic activity on the cartilage 

ECM. Our ex-vivo experiments have validated these findings, with explants displaying 

glycosaminoglycan and aggrecan loss after treatment with GW501516. In addition, 

explants treated with the same agonist demonstrated significant glycosaminoglycan 

release into the media. This further illustrates the detrimental activity of PPARδ agonism 

on the cartilage ECM, especially glycosaminoglycans and proteoglycans. Alternatively, 

the PPARδ inverse agonist GSK3787 does not adversely affect skeletal growth or 

development in cultured embryonic tibiae. While these data suggest that PPARδ agonism 
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contributes to the pathological processes that drive OA, they also identify PPARδ 

inhibition as a potential therapeutic approach. 

Our in-vivo study demonstrates that inactivation of PPARδ specifically in cartilage 

confers significant protection from the progression of cartilage degeneration in the DMM 

model of post-traumatic OA.  Our study also demonstrates that inactivation of PPARδ 

results in decreased matrix breakdown products as the cartilage matrix remains relatively 

intact despite surgical induction of OA. Interestingly, our in vitro qPCR data did not 

show any induction of Mmp13 transcript levels by GW501516, but we observed strong 

reduction in MMP-generated cleavage products in our mutant mice after DMM surgery. 

One possible reason for this apparent discrepancy is that MMP13 activity is regulated at 

multiple levels, not only transcriptionally. For example, MMP3 (which is induced at the 

mRNA level by GW501516) activates MMP13 through proteolytic cleavage[44], 

possibly resulting in greater MMP13 activity despite constant Mmp13 mRNA levels. 

Additionally, increased collagen II neoepitope staining could result from MMP-2 

cleavage. MMP-2 is a collagenase, and was shown to be significantly increased after 

treatment with GW501516, indicating a potential alternative pathway for collagen II 

breakdown.  Our in-vitro data for qPCR shows a decrease in gene expression for certain 

catabolic markers (Mmp2, Adamts2, Adamts5, Adamts7, Adamts12) at 1 µM relative to 

the 0.1 µM treatment with GW501516. We cannot completely exclude that this is due to 

off-target effects of the drug at higher concentrations, but these effects could also reflect 

different sensitivity of different PPARδ target genes to the agonist. For example, only 

high doses of agonist suppress Sox9 mRNA levels; it is possible that these high doses are 

required for induction of specific target genes responsible for repressing the transcription 
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of Sox9 and possible some of the protease genes. Different levels of sensitivity to the 

agonist are also suggested by comparisons of the responses of metabolic target genes to 

the protease genes (discussed below).   

PPARδ is an orphan nuclear receptor that heterodimerizes with Retinoid X Receptor 

(RXR) inside the nucleus[45]. While all of the PPARs have lipids functioning as 

activating ligands, the same ligand can exert opposite effects on different nuclear 

receptors. For example, retinoic acid in the cytosol of keratinocytes has been shown to 

bind to both the Retinoic Acid Receptor and/or PPARδ, depending on which cytoplasmic 

transporter that it commits to. This determines whether the cell ultimately undergoes 

growth arrest or proliferation[16, 31]. Our recent studies on another PPAR subtype, 

PPARγ, indicate abnormal skeletal development in cartilage-specific knockout mice, as 

well as spontaneous osteoarthritis development in adult cartilage-specific knockout 

mice[46, 47]. Thus, PPARγ and δ potentially have opposing roles in OA development, 

with PPARγ acting in a protective and PPARδ in a degenerative manner. Several studies 

conducted in lipid metabolism illustrate how PPAR subtypes can have antagonistic and 

complementary actions[48-51], similar to our observations.  

We have also demonstrated that PPARδ promotes fatty acid oxidation in chondrocytes, 

and there is potential that the dysregulation of lipid metabolism plays an important role in 

the initiation and progression of cartilage degeneration in OA[52, 53]. In our study we 

noted that the concentration of PPARδ agonist needed to stimulate fatty acid oxidation is 

ten times lower than the concentration needed to promote catabolic enzyme activity. This 

suggests that PPAR protease genes are less sensitive to low levels of PPARδ activation 
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than lipid metabolism genes. As described earlier, our findings remain consistent with 

other studies,[48, 54] suggesting a significant amount of fatty acid oxidation upon 

PPARδ agonist treatment. In kidney cortical tubules and bovine articular endothelial 

cells, increased presence and activity of fatty acid oxidation enzymes is associated with 

greater oxidative phosphorylation and net reactive oxygen species (ROS) production[55, 

56]. Additionally, ROS have been implicated in the development of OA[57-59]. 

Consequently, this ability of PPARδ to induce ROS production could explain, at least in 

part, the opposite roles of PPARδ and PPARγ in osteoarthritis. It will be interesting to 

determine in the future whether altered lipid metabolism contributes to the function of 

PPARδ in OA, or whether direct induction of protease expression in response to robust 

PPARδ activation is required for cartilage destruction. The multi-factorial nature of OA 

and the different contributors to its development – such as mechanics, metabolism, age, 

and gender - give rise to a multitude of genes that may influence its progression and 

networks of molecules that determine its pathogenesis[9]. 

OA has extensive physiological, psychological and functional ramifications, and 

decreases mobility and increases the dependency of affected patients[60]. Our results 

indicating that cartilage-specific Ppard knockout mice are protected from OA may have 

tremendous potential for the treatment of OA through the identification of PPARδ as a 

new therapeutic target.  
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2.6 Supplementary Figures 

 

Figure 2-6, Supplementary Figure 1: PPARδ agonism induces catabolic gene 

expression 

  

A,B) Relative expression of ADAMTS-7 and ADAMTS-12 is significantly increased at 

0.1uM treatment with GW501516. C) Relative Expression of  MMP13 remains 

unchanged. D,E) Gene regulation of principal ECM components  Aggrecan, and 

Collagen II is not significantly altered after treatment. E) qPCR analyses demonstrates 

that Sox9 gene expression is slightly yet significantly decreased by GW501516 

treatment (N=3, *p<0.05) 
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Figure 2-7, Supplementary Figure 2: No changes in Collagen 2 content of joint 

explants treated with PPARδ agonist 

Immunohistochemistry (IHC) for Collagen 2 on 10 week knee organ culture explants 

treated for 6 days with PPARd agonist GW501516 indicate no change in Collagen 2 or 

Collagen 2 breakdown product staining. A) IHC reveals no staining difference between 

vehicle controls (DMSO) or agonist treated explants for type-2 Collagen. B) IHC staining 

reveals no difference between controls or treated Collagen-2 neoepitopes in the matrix of 

cultured knee explants. 
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Figure 2-8, Supplementary Figure 3: Bone length and mineralization remains 

constant after PPARδ agonist and inhibitor treatment 

E15.5 tibias isolated from wild-type CD1 mice were cultured for 6 days with 

GW501516, GSK3787 (PPARδ inhibitor), GW501516+GSK3787, or DMS0 at 1µM 

concentrations. Measurements were taken immediately after dissection and before 

fixation. A) Alcian blue (cartilage)/Alizarin Red (bone) staining of tibias revealed no 

morphological differences between treatments. B) There was no change in length of 

the mineralized section of bones between treatments. C) No change in absolute length 

of bones was observed after treatment. N=3 



79 

 

 

 

 

Figure 2-9, Supplementary Figure 4: E15.5 mouse tibia organ cultures reveal no 

effects of pharmacological PPARδ manipulation 

E15.5 mouse tibias were isolated and cultured with 1µM agonist (GW501516), inhibitor 

(GSK3787), both, or vehicle (DMSO).  A) Measurements of the proliferative, 

hypertrophic, and total growth plate of the proximal tibia indicate no difference in zone 

length between treatments. B) Safranin-O/Fast Green Staining of tibias demonstrate 

normal growth plate morphology. The resting-proliferative borders are indicated with 

green arrows, while the proliferative- hypertrophic borders are indicated with red arrows. 

(N≥3) 
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Figure 2-10, Supplementary Figure 5: Assessment of knee cartilage at baseline 

Representative Safranin-O images of medial, lateral and whole-joints from 20 week-old 

base-line naïve mice show healthy articular cartilage with regular proteoglycan staining. 

(N≥3) Cumulative OARSI scores from all four quadrants indicate no difference in 

cartilage health between WT and PPARd KO mice. 
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Figure 2-11, Supplementary Figure 6: OARSI scoring does not indicate differences 

in lateral compartments of the knee after DMM surgery 

A) Safranin-O stained joints reveal little proteoglycan loss or articular cartilage damage 

across genotypes and surgical conditions in the lateral femoral condyle and lateral tibial 

plateau 8 weeks post-surgery. B,C) Cumulative OARSI scores of the Lateral Femoral 

Condyle and the Lateral Tibial Plateau indicate minimal damage to the articular surfaces 

of the lateral knee. (N=5 DMM/sham) 
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Figure 2-12, Supplementary Figure 7: No-primary antibody controls for cartilage 

knee explants and surgical trial mice 

No primary controls for Immunohistochemical staining displays no staining for MMP 

cleaved aggrecan, collagen 2, MMP cleaved collagen 2 with hematoxylin counterstain in 

explant cultures (above). No primary antibody staining for MMP cleaved aggrecan, 

ADAM-TS 4/5 cleaved aggrecan, and MMP cleaved collagen 2 displays no staining with 

methyl green counterstain in mice after surgery (below). 
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Figure 2-13, Supplementary Figure 13: Gait Analysis on mice post DMM surgery 

reveals no changes between groups 

8 weeks post-DMM surgery, both PPARδ and WT control littermates underwent gait 

analysis on the Noldus CatWalk™. Measurements were calculated as an average of 5 

runs, and normalized relative to the ipsilateral limb. There were no differences between 

either group in A) Paw Intensity, B) Stride Length, or C) Swing Speed.  
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Chapter 3  

3 Effects of pharmacological administration of PPARδ 
inhibitors on post-traumatic osteoarthritis 

These data are currently unpublished but will contribute to an original first author 

research paper to be submitted for publication. 

Ratneswaran A, Pest MA, Hamilton C, Dupuis H, Pitelka V, Chesworth B, and Beier F. 

Effects of pharmacological administration of PPARδ inhibitors on post-traumatic 

osteoarthritis. To be submitted to Arthritis and Rheumatology, 2016. 

3.1 Abstract 
Objective: Currently there are no effective drugs to alter the course of disease 

progression in Osteoarthritis (OA). Post-traumatic osteoarthritis (PTOA) is a subtype of 

OA that is initiated by joint trauma. We have previously demonstrated that genetic 

ablation of the nuclear receptor PPARδ results in protection from cartilage damage after 

induction of PTOA in a murine model. We aim to characterize whether pharmacological 

inhibition of  PPARδ is a feasible treatment to stop or delay the progression of 

osteoarthritis.  

Methods: PTOA was induced in male rats via anterior cruciate ligament transection 

(ACLT) with partial medial meniscectomy (PMMx) surgery, with SHAM surgery as 

control. PPARδ inhibitors (GSK0660, GSK3787) or vehicle control (DMSO) were 

administered daily for four weeks (6 days on, 1 day off) via subcutaneous injection at a 

dose of 1mg/kg. Behavioural outcomes were assessed through Open Field Testing and 
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Incapacitance testing. Structural progression of OA was evaluated using Toluidine Blue 

staining of paraffin sections with histopathological scoring, and polarized picrosirius red. 

Results: Rats undergoing ACLT/PMMx surgery exhibited behavioral changes (less 

movement and vertical activity) that were blocked by either PPARδ inhibitor. However, 

PPARδ inhibition did not significantly protect from progression of cartilage and 

subchondral bone damage. 

Conclusions: PPARδ inhibition positively affects functional outcomes after PTOA 

induction in rats, but our current data do not indicate efficacy to alter disease progression. 

3.2 Introduction 
Osteoarthritis (OA) is a musculoskeletal disorder that culminates with joint failure. It may 

affect one or more joints, and can stem from systemic or local factors that initiate a 

cascade of inflammatory and degradative events in one or more joint tissues, leading to 

impaired function and joint pain[1-3]. While primary age-associated OA predominantly 

affects individuals over the age of 60, post-traumatic OA (PTOA) affects younger 

individuals - usually starting under the age of 40[4]. Primary OA is characterized by the 

gradual deterioration of articular cartilage, synovitis and remodeling and 

hypomineralization of subchondral bone[5, 6]. PTOA shares many of these 

characteristics in its later stages but its initial and acute stages are markedly different.  

PTOA develops after joint trauma, particularly mechanical overload from ligament or 

meniscus injuries and results in 900,000 new cases annually in the U.S[6]. Initial impact 

from injury can cause destruction to the collagen 2 framework of the cartilage ECM, as 
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well as glycosaminoglycan loss and chondrocyte death[7, 8]. Cartilage can shear from the 

subchondral bone plate, and fractures of the articular cartilage and underlying bone can 

occur. Bone marrow edema, and hemarthrosis are also common features of PTOA[9, 10].  

In the months after the injury, there is sustained systemic inflammation through increased 

expression of inflammatory markers such as IL-6 and TNF-α in synoviocytes, and IL-1 in 

both synoviocytes and chondrocytes[11]. These inflammatory mediators can act on the 

synovium and cartilage to induce expression of matrix degrading enzymes such as the 

matrix metalloproteinases (MMPs)[12]. As a consequence of hemarthrosis and 

inflammatory cell invasion, the synovial fluid has decreased concentrations of both 

hyaluronic acid and lubricin[13, 14].  Eventually, the inflammatory response subsides but 

20-50% of any joint trauma still leads to the progression of OA[15]. PTOA can develop 

even after reconstructive surgery to repair ligaments, joint congruity and mechanics. 

Unfortunately, the age demographic of PTOA combined with the limited lifespan of 

implants renders joint replacement surgery a poor option[4, 16]. Currently, there are no 

treatments to stop the structural progression of OA and no effective chronic pain 

medications to ameliorate the burden of disability for patients experiencing this 

condition[17].  

Nuclear receptors have been suggested as attractive pharmacological targets due to their 

ability to bind ligands and regulate transcriptional activity[18]. Our previous studies have 

shown the that the nuclear receptor PPARδ promotes induction of proteases and 

destruction of articular cartilage in-vitro. We have also demonstrated that inhibition of 

PPARδ, through cartilage specific inactivation of the Ppard gene protects against 
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cartilage degeneration after surgical induction of OA through a destabilization of medial 

meniscus (DMM surgery)[19]. However, to determine whether inactivation of PPARδ 

could be a feasible treatment option for humans with PTOA, we needed to characterize if 

pharmacological inactivation of PPARδ protects against the progression of PTOA.  

In the present study, we examined the effects of pharmacological PPARδ inhibition on 

OA progression, after surgical induction of OA through anterior cruciate ligament 

transection (ACLT) and partial medial meniscectomy (PMMx). Our data showed that 

PPARδ inhibition results in improved functional outcomes 4 weeks after surgery, yet 

unaltered structural pathology. 

3.3 Methods 

3.3.1 Animals and Surgery 

All animal experiments were approved by the Animal Use Subcommittee at The 

University of Western Ontario and were conducted in accordance with the guidelines 

from the Canadian Council on Animal Care. Rats were group housed (2 rats per cage) 

preceding surgery, on a standard 12h light/dark cycle with free access to standard rat 

chow and water. Rats were separated to single housing post-surgery.  

Anterior cruciate ligament transection (ACLT) with partial medial meniscectomy 

(PMMx)  surgery or SHAM surgery was performed on the right knees of male rats 

weighing 300-350g (Charles River Laboratories, Quebec, Canada) at baseline, as 

described [20, 21]. Isofluorane (5% induction, 2% maintenance) was used as surgical 

anesthetic. Saline (9g/L NaCl, 5 mL total) was administered postoperatively for 

hydration. Buprenorphine (0.1 mg/kg x2) was administered intramuscularly as a post-
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operative analgesic, and ampicillin (10mg/kg x 2) was administered subcutaneously as a 

prophylactic antibiotic. Rats were randomly allocated to one of four groups, 

ACLTx/PMMx with vehicle control (DMSO), PPARδ inhibitor GSK3787, PPARδ 

inhibitor GSK0660, or SHAM operation (with DMSO). Rats were injected 

subcutaneously with one of the above specified treatments for 6 days a week for 4 weeks.  

Weight was measured weekly. Rats were euthanized at 4 weeks post surgery for 

preparation of paraffin sections, blood glucose and liver weight measurements, and 

subsequent histological analysis.  

3.3.2 Behavioural Testing 

Exploratory behaviour in rats was assessed by measuring spontaneous locomotor activity. 

Rats were placed in an Open Field Tester (Omnitech Electronics Inc., Columbus Ohio) 

for 30 minutes, 1 day per week in the dark. Rest, movement, ambulation and vertical 

activity time and incidence were measured as a proxy for OA pain, as described [22].   

Incapacitance testing was conducted to measure load distribution per limb. Rats were 

placed on an incapacitance tester (Linton Instruments, Norfolk, UK) and ipsilateral: 

contralateral limb load was calculated to measure change in load distribution or 

compensation after surgery as per [22]. 

3.3.3 Histopathology and Scoring 

Right knees were dissected, fixed in 4% paraformaldehyde, decalcified in Formical-4TM 

(StatLab, Baltimore, MD), bisected along their coronal plane, embedded in paraffin and 

sectioned frontally. Serial sections of 6µM width were stained with Toluidine Blue for 

glycosaminoglycan content and subsequent histopathological scoring or with Picrosirius 
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Red (0.1% Sirius red in picric acid) for staining of collagen fibril content and 

organization[23]. Polarized light microscopy was used to evaluate size and organization 

of collagen fibrils, and light intensity and tissue angle were kept identical between 

samples as per [23]. 

Toluidine Blue stained sections were evaluated by 2 blinded observers, and cartilage 

degeneration and subchondral bone damage in four quadrants of the knee were graded 

using the Osteoarthritis Research Society International (OARSI) histopathologic 

scale[24]. 

3.3.4 Statistical Analysis 

All statistics were performed in GraphPad Prism v.6.2. Blood glucose, liver weight and 

incapacitance-testing were analyzed by one-way analysis of variance (ANOVA) followed 

by Bonferroni’s multiple comparisons test. Weight change over time was analyzed using 

a one-way ANOVA with repeated measures. Open Field Testing for spontaneous 

locomotor behaviour was analyzed using a two-way repeated measures ANOVA with 

Bonferroni post-hoc test. OARSI histopathological scoring was analyzed using a Kruskal-

Wallis test followed by Dunn’s post-hoc. 

3.4 Results 

3.4.1 Rats treated with PPARδ inhibitors do not demonstrate 
systemic abnormalities  

PPARδ is a regulator of metabolism in many tissues, and to evaluate whether systemic 

delivery could cause physiological and anthropometric changes we measured weight 

change, blood glucose and liver weight. There was no difference in body weight over the  
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time-course of four weeks post-surgery between rats that received DMSO, GSK3787, 

GSK0660 or the SHAM operation (Fig 3-1). Similarly, there were no differences in blood 

glucose or liver weight between groups at 4 weeks post-surgery. 
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Figure 3-1 Anthropometric and Physiological Characteristics after PPARδ 

inhibition and surgical induction of OA 

Over the course of 4 weeks post-ACLT/PMMx or SHAM surgery, rats do not 

demonstrate differences in body weight (g) regardless of vehicle control (DMSO), 

GSK3787, or GSK0660 treatment (A). Similarly, there were no significant 

differences in blood glucose (mmol/L) or liver weight (g) four weeks post-surgery 

between any of the treatment groups (B, C). N=5 per group, data shown are 

mean±SEM. 
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3.4.2 Rats receiving PPARδ inhibitors are protected from OA-
induced behavioral changes 

To evaluate changes in behavior that were indicative of pain, rats were examined through 

Open Field Testing to measure changes in spontaneous locomotor activity. Throughout 

the course of 4 weeks, as rats developed more severe structural pathology, rats who 

underwent ACLT/PMMx and were administered DMSO significantly modified their 

behavior by resting more (Fig 3.2), and performing less vertical activity (Fig 3-2). This 

increase in pain behavior was not experienced by rats who received either PPARδ 

inhibitor, or rats who underwent the SHAM operation, suggesting that they were not 

experiencing the same level of pain.  

3.4.3 Rats receiving PPARδ inhibitors do not alter load distribution 
in hind-limbs 

In order to investigate whether there were changes in load distribution between the 

surgically operated limb and contralateral limb, Incapacitance testing was employed. As 

OA progresses, behaviour is modified to place less weight on the joint that is affected; 

accordingly 4 weeks post-surgery rats in the ACLT/PMMx group treated with DMSO 

compensated, increasing the weight on the contralateral limb and thus decreasing the 

ipsilateral:contralateral ratio (Fig 3-3). 

3.4.4 Histopathological Scoring does not indicate significant 
differences in disease progression with PPARδ inhibition 

At 4 weeks post-surgery, rats were euthanized and their joints were harvested for 

histopathologic analyses to determine the effect of PPARδ inhibition on the progression 
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of OA. Eight serial frontal sections per rat were assessed semi-quantitatively by 2 blinded 

observers using the OARSI recommendations[24].  Cartilage degeneration was scored by  
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Figure 3-2 PPARδ  inhibition prevents rats from OA pain like behavioural 

modification post-surgery 

Open Field Testing over the course of four weeks demonstrates changes in 

spontaneous locomotor activity. Rats receiving DMSO daily for four weeks post-

ACLT/PMMx (green bar) demonstrate pain invoked behavior modification such 

as increased rest time (A) and decreased vertical activity (B). These changes were 

not seen in SHAM operated rats (purple bars) or rats undergoing post-

ACLT/PMMx surgery with either PPARδ inhibitor (orange, red bars).  N=5 per 

group, data shown are mean±SEM, p≤0.05. 
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Figure 3-3 PTOA causes load redistribution in hind-limbs 

4 weeks post ACLT/PMMx surgery, rats underwent Incapacitance testing to determine 

load placed on each of the hind limbs. Rats who underwent surgical induction of OA, and 

were administered vehicle control DMSO significantly favoured their un-operated limb, 

demonstrating decreased ipsilateral: contralateral weight bearing. N=5 per group, data 

shown are mean±SEM, p≤0.05.  
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Figure 3-4 Rats receiving PPARδ  inhibitors still experience cartilage degeneration 

and subchondral bone changes 

Toluidine Blue staining on serial frontal sections indicates severe cartilage erosion in the 

medial femoral condyle and medial tibial plateau of rats treated with DMSO after surgical 

induction of OA via ACLT/PMMx. Articular cartilage collapse into subchondral bone 

and chondrogenesis is apparent. GSK0660 treated rats have observed cartilage shearing 

and focal cartilage defects as well as fractures of the tidemark and marrow changes. 

Similarly, GSK3787 treated rats experience cartilage shearing, proteoglycan loss, 

subchondral bone thickening and chondrogenesis in underlying bone. SHAM operated 

rats present with healthy cartilage, subchondral bone and menisci. 
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Figure 3-5 Semi-quantitative assessment of knee joint histopathology after surgical 

induction of PTOA 

Structural progression of OA was semi-quantitatively assessed via OARSI scoring for 

cartilage degeneration, and subchondral bone damage. DMSO (vehicle control) treated 

rats had significantly more cartilage, and subchondral bone damage in either quadrant of 

the medial side versus SHAM operated animals. N=5 per group, data shown are 

mean±SEM, p≤0.05. 
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subdividing the quadrant into thirds (outer, mid, inner) and scoring each third from 0-5, 

with 0 being no degeneration and 5 indicating severe degeneration with more than 75% 

of cartilage lost. Each of the thirds is summed, and the aggregate score is out of 15. 

Subchondral bone and calcified cartilage was also evaluated with a score of 0-5; 0 

indicating no pathology and 5 indicating severe pathology with articular cartilage 

collapse into subchondral bone and the formation of bone cysts. Rats that underwent the 

SHAM operation had healthy cartilage and subchondral bone. Rats that underwent 

ACLT/PMMx followed by treatment with vehicle control DMSO, GSK3787 or GSK0660 

experienced varying degrees of focal fibrillation, glycosaminoglycan loss, and 

subchondral bone remodeling (Fig. 3-4) This damage was most severe in the 

ACLT/PMMx DMSO group which was significantly different compared to the SHAM 

operated group in terms of cartilage degeneration and subchondral bone damage in the 

medial femoral condyle, and medial tibial plateau (Fig 3-5). This damage was not 

significant between either PPARδ inhibitor treated group and the surgically induced OA 

DMSO treated rats, or the SHAM group. These data suggest that the effects of PPARδ 

inhibition might be somewhat protective but not statistically significant within the 

experimental parameters. 

3.4.5 Picrosirius red staining indicates bone remodeling in vehicle 
control rats but not in PPARδ inhibitor treated rats 

Picrosirius red staining was performed on frontal sections from rats that underwent 

surgical induction of OA and SHAM rats. Stains were imaged under polarized light, 

where healthy articular cartilage showed mixed tones of orange with green and yellow 
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birefringence. Interestingly, the articular cartilage from the rats after surgery had largely 

orange birefringence, indicating a change in fibril organization. The subchondral bone 

had clear trabeculae. In contrast, the ALCT/PMMx vehicle controls presented with strong 

yellow and green fibers oriented in the same plane, indicating remodeling activities (Fig. 

3-6).  

3.5 Discussion 
OA is a common, debilitating problem affecting individual quality of life and places an 

enormous economic burden on health and social services[25]. PTOA comprises 12% of 

OA cases and follows a distinct pathogenesis with immediate and acute phases of the 

disease largely contributing to irreversible joint damage[4, 6]. Arguably, early 

interventions have tremendous potential to limit or delay damage. 

Our study examines whether inhibition of the nuclear receptor PPARδ can delay the onset 

or progression of OA after surgical induction of PTOA through ACLT/PMMx. We 

discovered that systemic treatment of rats with PPARδ inhibitors demonstrate a supressed 

behavioral response, and maintenance of normal function over the course of four weeks. 

In a previous paper published by our group, we demonstrate functional deficits in vertical 

activity and rest time after ACLT/PMMx[22]. Our study replicated this finding; vehicle 

control rats after surgery had decreased vertical activity and increased rest time 

(decreased movement time).  
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Figure 3-6 Examination of Collagen fibre structure and organization 

Picrosirius red staining under polarized light reveals changes in subchondral bone 

organization and structure. Strong yellow and green birefringent band in ACLT/PMMx 

DMSO group indicates change in collagen fibril organization and bone structure. (N=5 

per group).  
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We also showed inhibitor treated rats and SHAM rats do not, further cementing improved 

functional outcomes with PPARδ inhibition. Together these data suggest that PPARδ 

inhibition protects from pain caused by surgical induction of PTOA. 

Joint pain in OA has a complex pathophysiology; chronic pain can result in mechanical 

allodynia where even innocuous stimuli can elicit a pain response[26]. It can also result in 

hyperalgesia, where stimuli distant to the joint can cause pain[27]. We first considered 

whether the pain could be correlated with structural protection from the progression of 

OA. Indeed, the severity of cartilage degeneration and subchondral bone damage 

appeared less advanced in the PPARδ inhibitor treated animals, but it did also not did not 

confer significant protection according to semi-quantitative histopathological assessment. 

Our group has previously demonstrated that PPARδ agonism results in the induction of 

matrix degrading enzymes, significant upregulation of fatty-acid oxidation and inhibitors 

of anti-oxidants in chondrocytes [Ratneswaran et al, submitted]. These data indicate that 

inhibition of PPARδ could protect cartilage and possibly bone by reducing aberrant beta-

oxidation and oxidative stress. It is therefore likely that some of the pain relief that we 

observe is correlated with attenuated structural pathology. 

However, it is important to note that structural progression is not always associated with 

joint pain in OA. A number of individuals with established radiographic disease are 

asymptomatic for pain[28]. It is also probable that PPARδ acts directly on the nervous 

system to influence pain behaviour. PPARδ is the most highly expressed PPAR protein in 

the central nervous system,  and is expressed throughout the brain, in oligodendrocytes 
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and neurons[29]. In particular, it is present in the thalamus, indicating that it may play a 

role modulating response to pain[30]. Further, COX-2 inhibitors have been shown to 

suppress PPARδ expression and have been used clinically (Rofecoxib) as NSAIDs in 

osteoarthritis to ameliorate inflammation associated pain, indicating a possible 

mechanism for the changes we see[30, 31]. 

PPARδ is broadly expressed in the body, and has roles in glucose and lipid metabolism, 

cell proliferation, apoptosis, and immune regulation[32]. Although systemic delivery of 

PPARδ inhibitors did not result in deleterious physiological changes, it was only over a 

time course of four weeks. If PPARδ inhibitors are a feasible therapeutic target for OA, 

they need to be locally delivered to the joint, and longer time courses must be evaluated. 

Additionally, we will need to evaluate the quantity of drug that reaches the cartilage. We 

will also need to to increase the N of our experiments to examine whether the observed 

trend towards structural protection by PPARδ inhibitors reaches statistical significance.  

It would also be informative to evaluate the role of PPARδ inhibition in early OA, and in 

other subtypes of OA such as metabolic OA and age-associated OA to investigate 

whether the protection conferred would be similar. Our study has elucidated the 

feasibility of PPARδ inhibition in post-traumatic OA. We have shown that PPARδ 

inhibition results in decreased pain-associated behaviour, and this may be modulated 

through delayed structural progression. The molecular mechanisms underlying OA 

remain poorly understood, and in order to deliver an effective treatment for PTOA we 

must continue to explore these mechanisms, concurrent with methods of local drug 

delivery. 
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Chapter 4  

4 Nuclear receptors regulate lipid metabolism in 
chondrocytes 

These data have been submitted to Arthritis and Rheumatology and are awaiting review. 

Ratneswaran A, Sun MMG, Dupuis H, Sawyez C, Borradaile N. and Beier F. Nuclear 

receptors regulate lipid metabolism in chondrocytes. Arthritis Rheumatol. Submitted.  

4.1 Abstract 
Objective: Failure of joint homeostasis can result in osteoarthritis (OA). Metabolic OA is 

characterized by dysregulation of lipid and cholesterol metabolism which can 

detrimentally affect cartilage. Currently, there are no available treatments to alter disease 

progression in OA, but targeting early changes in cellular behaviour has great potential. 

Recent data show that nuclear receptors contribute to the pathogenesis of OA and could 

be viable therapeutic targets, but their molecular mode of action in cartilage is 

incompletely understood. The purpose of the present study was to examine global 

changes in gene expression after treatment with agonists of four nuclear receptors 

implicated in OA (LXR, PPARδ, PPARγ and their heterodimeric partner RXR). 

Methods: Immature murine articular chondrocytes were treated with pharmacological 

agonists for LXR, PPARδ, PPARγ or RXR and underwent microarray analysis, qPCR 

and cell lipid assays to evaluate changes in gene expression, expression, and lipid profile. 

Immunohistochemical analysis was conducted to compare presence of one identified 

differentially expressed target (Txnip) in WT mice and cartilage-specific PPARδ 

knockout mice subjected to surgical destabilization of the medial meniscus (DMM). 
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Results: Nuclear Receptor agonists increased expression of several genes regulating lipid 

metabolism, but each agonist induced a differential profile of responses. LXR activation 

downregulated gene expression of proteases involved in OA, whereas RXR agonism 

decreased gene expression of ECM components, and increased gene expression of 

Mmp13. Functional assays indicate increases in cell triglyceride accumulation after 

PPARγ, LXR and RXR agonism but a decrease after PPARδ agonism. PPARδ and RXR 

both downregulate the antioxidant GSTA4, and PPARδ upregulates Txnip. WT, but not 

PPARδ-deficient mice display increased staining for Txnip after surgical induction of 

OA. 

Conclusions: These data demonstrate that nuclear receptor activation in chondrocytes 

primarily affects lipid metabolism. In the case of PPARδ this change might lead to 

increased oxidative stress, possibly contributing to OA-associated changes described 

earlier. 

Keywords: Cartilage, chondrocyte, joint, lipid metabolism, osteoarthritis, oxidative stress 

4.2 Introduction 
Joint homeostasis is an integral process determining the functional load bearing 

capabilities of the joint that are essential to ensuring mobility and preventing morbidity. 

Dysregulation of this process can result in osteoarthritis (OA), a collective of 

heterogeneous pathologies culminating in joint failure. OA presents with similar 

pathological end points but mechanisms of initiation and progression vary among 

subtypes of this disease, which is one of the leading causes of disability worldwide[1, 2].  

Its varied presentation influences whether it is symptomatic or not, and even whether it 
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can be diagnosed radiographically. Multiple tissues such as the articular cartilage, 

subchondral bone, synovium, meniscus, and fat pads are involved in this condition, and 

initiation of this disease can stem from mechanical, metabolic, or age-associated factors 

although none of these are mutually exclusive.  

The main function of cartilage is to act as a shock absorber, mediating load bearing 

through the influx and efflux of water attracted to the proteoglycan aggregates forming 

the main protein component of the extracellular matrix, and tensile strength through 

collagen fibril organization[3]. Although cartilage cells contribute to a small percentage 

of the volume of the entire joint, they are sensitive to changes that occur to changes in 

gene expression in models of OA, thus underscoring their importance in joint 

homeostasis. 

Metabolic OA has been classified as a distinct subtype of OA associated with disorders 

such as dyslipidemia, hypertension and obesity. Imbalances in systemic lipid and 

cholesterol metabolism, nutrient exchange, accumulation of advanced glycation end 

products, and increases in adipokines contribute to this condition. Changes in lipid 

metabolism, in particular, may directly affect joint homeostasis through ectopic lipid 

deposition in chondrocytes[4-7]. In fact, both chondrocyte specific cholesterol 

accumulation and high fat diet have caused increased disease severity in murine 

models[8-10]. Collectively these data suggest direct regulation of cartilage homeostasis 

by lipid metabolism.  

Nuclear Receptors are a class of proteins that are activated by small molecule ligands and 

can up or downregulate the expression of target genes through the recruitment of co-
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factors or co-repressors. They have been reported as attractive potential targets for 

pharmacological therapy because of their ability to bind synthetic or natural ligands that 

regulate transcriptional activity[11].  As such, synthetic agonists for nuclear receptors 

have been developed targeting metabolic conditions such as dyslipidemia, 

atherosclerosis, and diabetes [12, 13]. PPARs (peroxisome proliferated activated 

receptors) are typically involved in the control of lipid metabolism and activated by the 

binding of endogenous fatty acids, whereas LXR (liver X receptor) is principally 

involved in cholesterol metabolism. Recently, we have shown that cartilage-specific 

ablation of the gene encoding the nuclear receptor PPARδ has a protective effect on 

cartilage after surgical induction of OA, demonstrating that PPARδ promotes post-

traumatic OA. Conversely PPARγ and LXR are protective and necessary for normal joint 

function and skeletal development [14-17]. Interestingly, all three of these receptors act 

in heterodimers with the common partner RXR, positioning RXR at the centre of a 

complex network of nuclear receptors. All of these proteins are expressed in cartilage[16, 

18, 19]. 

In this study we have used microarray analysis paired with functional validation to 

identify gene targets of LXR, PPARγ, PPARδ and RXR in articular chondrocytes, in 

order to elucidate their potential role in OA pathogenesis. There is strong evidence 

implicating the involvement of nuclear receptors in the progression or prevention of OA, 

and here we provide insight as to how they may be involved in altering the gene 

expression profile and phenotype of mature, healthy chondrocyte cultures. We are also 

the first, to our knowledge, to quantify changes in neutral lipid and free cholesterol mass 

in chondrocytes in vitro. This information is essential in uncovering the early changes 
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that occur in chondrocytes before irreversible phenotypic changes within the joint, and is 

vital since we currently have no effective biomarkers or treatment to alter the course of 

OA progression. Our data demonstrate that changes in gene regulation after nuclear 

receptor agonist treatment primarily affect lipid metabolism, suggesting a close link 

between lipid metabolism within chondrocytes and the progression of OA.  

4.3 Methods 

4.3.1 Primary Cell Culture and Isolation 

Immature murine articular chondrocytes (IMACs) were isolated from the femoral head, 

femoral condyle, and tibial condyles of 5-6 day old CD1 mice (Charles River 

Laboratories). The tissue was then subjected to one hour (3 mg/ml) followed by 24 hour 

(0.5 mg/ml) incubations in Collagenase D diluted in Dulbecco’s Modified Eagles 

Medium supplemented with 2 mM l-glutamine, 50 U/ml penicillin and 0.05 mg/ml 

streptomycin) at 37°C under 5% CO2. The tissue fragments were then agitated and cells 

were isolated and cultured as per [20].  On the seventh day after isolation, cells were 

treated with either PPARδ agonist (GW501516), PPARγ agonist (Rosiglitazone), LXR 

agonist (GW3965), RXR agonist (SR11237), or control (DMSO) all at concentrations of 

1 µM for 72 hours. 

4.3.2 RNA extraction, purification and qPCR 

Total RNA was isolated from cells using TRIzol® (Invitrogen). Cells were first lysed in  

TRIzol® reagent, phases were separated using chloroform (20%), and supernatant was 

removed. RNA was precipitated using 100% isopropanol (0.5%) and RNA was washed 

using 70% ethanol followed by air-dry and resuspension in RNAse free water, as per 
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manufacturer’s instructions. RNA was quantified using a Nanodrop 2000 

spectrophotometer. RNA integrity was confirmed with Aligent 2100 BioAnalyzer Data 

Review Software (Wilmington, DE) at the London Regional Genomics Centre and RNA 

samples with RNA integrity number (RIN) values greater than 8 were used for 

microarray analysis.  

Real-time PCR (qPCR) was performed as per [17]. In brief, qPCR was performed using a 

One-Step RT qPCR Master Mix kit and TaqMan Gene Expression Assays (Applied 

Biosystems), with 40 cycles on an ABI Prism 7900HT sequence detector (PerkinElmer), 

or on a Bio-Rad CFX384 RT-PCR system with 15 µl reaction volumes of iQ SYBR 

Green Supermix (Biorad) with diluted cDNA equivalent to 200 ng of input RNA per 

reaction, as well as 25 µM forward and reverse primers[21]. Probes for 

Acan(Mm00545794_m1), Actb (Mm02619580_g1), Adamts4(Mm00556068_m1), 

Adamts5 (Mm00478620_m1), Angptl4(Mm00480431_m1), Col2a1 (Mm01309565_m1), 

Fabp3(Mm02342495_m1), Fabp4(Mm00445878_m1), LPL(Mm00434764_m1), Mmp2 

(Mm00439498_m1), Mmp3 (Mm00440295_m1), Mmp13(Mm00439491_m1), 

Pdk4(Mm01166879_m1), Sox9 (Mm00448840_m1) were purchased from Life 

Technologies. Gene expression was normalized relative to ActB. Relative gene 

expression was calculated using the ΔΔCt  method [22] as described [23].  Statistical 

analysis was conducted using GraphPad Prism 6.0. Values were transformed, and a one 

way analysis of variance (ANOVA) was performed followed by Tukey’s multiple 

comparisons tests.  
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4.3.3 Microarray and Data Analysis 

Total RNA (200 ng per sample) was subject to 2 rounds of amplification followed by 

labeling and hybridization to Affymetrix GeneChip® Mouse Gene 2.0 ST Array 

containing 35,240 probes at the London Regional Genomics Centre (London, Ontario, 

Canada) as described [24]. Three independent cell and RNA isolations were used for each 

treatment. Probe data was analyzed, and gene level, ANOVA p-values and fold changes 

were determined using Partek Genomics Suite v6.6. Genes with at least 1.5-fold change, 

with p<0.05 were considered significant and used for subsequent analyses. The complete 

array data set has been made publicly available through Gene Expression Omnibus 

(GEO).  The Venn diagrams were created using the online plotting tool Venny 2.0.1[25]. 

Gene Ontology biological processes were classified through GO consortium available at 

geneontology.org. Biological processes identified with more than 3 genes involved were 

included in the table. 

4.3.4 Cell Lipid Mass  

IMACs were isolated, cultured, and treated with nuclear receptor agonists as described 

above. At the 72 hour time point, cells were washed with 0.2% BSA in phosphate-

buffered saline (PBS), followed by 3 washes in PBS. Lipids were extracted using 3:2 

hexane:isopropanol solvent and pooled. Hexane:isopropanol solvents were evaporated to 

dryness under N2 and resuspended in 1.4ml of chloroform-triton (0.5% triton v/v). 

Solvent was re-evaporated, and lipids were re-solubilized in 350 µl water. Two 50 µl 

aliquots were used per sample to determine total cholesterol (TC), free cholesterol (FC), 

and triglyceride (TG) mass , spectrophotometrically as per [26]. Cholesteryl esters (CE) 

were calculated by subtracting FC from TC. Proteins were extracted using 0.2 NaOH 
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overnight incubation to digest chondrocytes and quantified using a standard BCA protein 

assay (Pierce, Thermo Fisher Scientific). All cell lipid measures reported are standardized 

to mg of cell protein. Values were normalized relative to vehicle control DMSO, and 

statistical analyses were performed using GraphPad Prism 6.0. Values were transformed, 

and a one-way analysis of variance (ANOVA) was performed followed by Tukey’s 

multiple comparisons tests. 

4.3.5 Animals and Surgery 

All animal experiments were approved by the Animal Use Subcommittee at The 

University of Western Ontario and were conducted in accordance with the guidelines 

from the Canadian Council on Animal Care. Mice were group housed (6 mice per cage) 

in colony cages, on a standard 12h light/dark cycle with free access to standard mouse 

chow, water, and running wheels. Surgical destabilization of the medial meniscus 

(DMM) or SHAM surgery was performed on 12 week old C57/bl6 male mice (N=9 per 

group), as described in [14]. Mice were euthanized at 10 weeks post-surgery for 

preparation of paraffin sections, and subsequent histological analysis. Another cohort of 

20 week old male cartilage specific Ppard knockout mice and wild-type littermate 

controls underwent DMM surgery (N=5 per group) and were harvested for histological 

analyses 8 weeks later as in [14].  Paraffin sections from these studies were employed to 

evaluate the presence of Thioredoxin Interacting Protein (Txnip). 

4.3.6 Immunohistochemistry 

Immunohistochemistry was performed on frontal sections of paraffin embedded knee 

joints as described[27]. Txnip rabbit polyclonal antibody was purchased from proteintech 

(18243-1-AP). Slides without primary antibody were used as controls, antigen retrieval 
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was performed in 0.1% Triton in H20, primary antibody was used at a concentration of 

1:300.  

4.4 Results 

4.4.1 Global changes in chondrocyte gene expression in response 
to nuclear receptor agonist treatment 

We have previously reported that treatment of articular chondrocytes with the PPARδ 

agonist GW501516 results in increased gene expression of matrix-degrading enzymes, 

and robust fatty-acid oxidation. We have also determined that treatment of embryonic 

tibiae with the LXR agonist GW3965 suppresses chondrocyte hypertrophy[14, 17]. 

Identifying which genes are responsible for these phenotypes, and how they interact with 

each other, is key to understanding signaling pathways responsible for joint homeostasis 

and the prevention of osteoarthritis. We first examined global changes in chondrocyte 

gene expression in response to 1µM treatment with LXR agonist GW3965, RXR agonist 

SR11237, PPARδ agonist GSK501516, or PPARγ agonist Rosiglitazone. RNA was 

isolated from IMACs cultured with agonists for 72 hours, then hybridized to Affymetrix 

microarrays representing the mouse genome.  

We compiled a list of genes changed by more than 1.5 fold (refer to supplementary data 

for full list). LXR agonism significantly altered 128 genes (97 upregulated, 31 

downregulated), RXR agonism differentially regulated a total of 108 genes (67 

upregulated, 41 downregulated), PPARδ agonism induced changes in 58 genes (48 

upregulated, 10 downregulated), while PPARγ agonism changed 32 genes (29 

upregulated, 3 downregulated). The most robust and significantly upregulated and 

downregulated genes after nuclear receptor agonist treatment are shown in Figure 4-1. 
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LXR induced ATP binding cassette transporter subfamily A member 1 (Abca1), Stearoyl 

CoA desaturase 1 (Scd1), Insulin induced gene 1 (Insig1), ATP binding cassette 

transporter 
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Figure 4-1 Microarray analyses of nuclear receptor agonist effects on chondrocyte 

gene expression 

 Microarray analysis of RNA isolated from immature murine articular chondrocytes 

treated for 72 hours with 1µM LXR agonist GW3965 (A), RXR agonist SR11237 (B), 

PPARδ agonist GSK501516 (C), or PPARγ agonist Rosiglitazone (D). The most highly 

upregulated and downregulated genes are shown with fold change relative to vehicle 

control DMSO (1µM). 
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subfamily G member 1(Abcg1), Fatty acid desaturase 2 (Fads2), and downregulated 

Pleiotrophin (Ptn), Dermatopontin (Dpt), Alpha-2-macroglobulin (A2m), Thioredoxin 

interacting protein (Txnip), and Cpm (carboxypeptidase) (Fig. 1A). Activation of RXR, 

the heterodimeric partner for LXR, PPARδ and PPARγ, significantly upregulated 

Angiopoietin like 4 (Angptl4), Abca1, Fatty-acid binding protein 4 (Fabp4), Scd1 and 

Complement factor H (Cph) (Fig. 4-1B). Conversely, RXR significantly reduced 

expression of Six transmembrane epithelial antigen of prostate family member four 

(Steap4) (also known as Tumor necrosis alpha inducing protein 9), Ptn, Dpt, C1q and 

tumor necrosis factor related protein 3 (C1qtnf3) (Fig. 4-1B). PPARδ significantly 

induced Pyruvate dehydrogenase kinase isoenzyme 4 (Pdk4), Angptl4, Uncoupling 

protein 2 (Ucp2), 3-hydroxy 3-methylglutaryl CoA synthase 2, Acyl CoA thioesterase 1 

(Acot1), and significantly downregulated Protein phosphatase Mg2+/Mn2+ dependent 1K 

(Ppm1K), Glutathione S-transferase A 4 (Gsta4), Zinc finger protein 455 (Zfp455), 

Angiopoietin like 7 (Angptl7), and 3 Hydroxybutyrate dehydrogenase type 1 (Bdh1) (Fig. 

4-1C). Lastly, PPARγ agonism upregulated Fabp4, CD36 molecule (CD36), Cell death 

inducing DFFA like effector C (Cidec), Glycerol 3 Phosphate Dehydrogenase 1 (Gpd1) 

and Adiponectin C1Q and collagen domain containing (Adipoq), Carbonic anhydrase 3 

(Car3) and Lipoprotein lipase (Lpl) and downregulated predicted gene 17146 

(Gm17146), Zinc finger protein 600 (Zfp600), microRNA 186 (Mir186) (Fig. 4-1D). 
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4.4.2 Nuclear Receptors share common gene targets in 
chondrocytes 

Comparison of gene expression profiles induced by various nuclear receptor agonists 

revealed several common hits. We therefore decided to evaluate shared functional roles 

by identifying similar biological processes through Gene Ontology. Table 4-1 indicates 

the biological processes regulated by agonist treatment for each nuclear receptor, 

common processes are highlighted with the same colour. Both LXR and RXR agonism 

altered cholesterol biosynthetic processes, while LXR and PPARγ regulated triglyceride 

metabolism, and RXR and PPARγ increased metabolic processes in chondrocytes. In 

order to compare relationships between nuclear receptor agonist treatments, we created a 

Venn diagram to illustrate the number of genes induced by multiple receptors (Figure 4-

2). The two genes upregulated by all four nuclear receptor agonists were Pdk4 and 

Angptl4. Pdk4 functions as an inhibitor of the pyruvate dehydrogenase complex. Thus it 

plays a key regulatory role in shifting energy utilization from glycolytic to fatty-acid 

metabolism in the cell[28]. Angptl4 is a well known direct target of PPARs that is 

upregulated by hypoxia, and has been characterized as an adipocytokine[29]. It has also 

been identified as a potential pro-angiogenic mediator of arthritis, is involved in ECM 

remodeling, and is upregulated in the cartilage of RA and OA patients[30-32]. Since 

PPARδ has opposite effects on OA progression than PPARγ and LXR, we were also 

interested in genes showing opposite responses to the respective agonists. However, the 

only gene that was differentially regulated greater than 1.5 fold between any of the 

treatments was Txnip, which encodes the Thioredoxin interacting protein. Txnip inhibits 

Thioredoxin and contributes to ER stress, inflammasome activation, and the 

accumulation of reactive oxygen species (ROS)[33]. This gene was upregulated by 
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PPARδ agonist GW501516 and downregulated by LXR agonist GW3965 treatment. 

Based on the common genes identified, we next validated changes in the expression of 

these genes by qPCR. 
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Table 4-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biological processes regulated by nuclear receptor agonists as indicated by Gene 

Ontology (GO) Bioinformatics Analysis. Commonly regulated processes between 

treatments are indicated by the same colour. 
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Figure 4-2 Comparison of nuclear receptor agonist effects on chondrocyte gene 

expression 

Comparison of all genes regulated by the four different nuclear receptor agonist 

treatments on chondrocytes demonstrate that 2 genes are commonly regulated by all four 

nuclear receptors. 9 genes are commonly regulated by LXR, PPARδ, and RXR, while 4 

genes are commonly regulated by LXR, PPARδ and PPARγ. 3 genes are regulated by 

LXR, PPARγ, and RXR, and 2 genes are commonly regulated by PPARδ, PPARγ, and 

RXR. 
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4.4.3 LXR, RXR and PPAR agonism promote changes in genes 
involved in ECM homeostasis and chondrocyte metabolism 

Genes induced in the microarray were primarily metabolic, or involved in extracellular 

matrix component production and turnover. We chose to validate a subset of these genes 

which were shared between nuclear receptor agonist treatments. Aggrecan and Fibrillin 2 

are extracellular matrix proteins encoded by the Acan and Fbn2 genes. In concert with 

our microarray results, gene expression of Acan was significantly lower than vehicle 

control (DMSO) with RXR agonist treatment. Similarly, both LXR and RXR agonism 

significantly lowered gene expression of Fbn2 (Figure 4-3). Gene expression of Collagen 

2 (Col2a1) remained unchanged in response to any of the treatments. We also validated 

proteases that were changed by some of the nuclear receptor agonists, and accordingly 

found that gene expression of Adamts4, Mmp2 and Mmp13 were significantly reduced by 

LXR agonism. Interestingly, RXR agonism decreased gene expression of Adamts4 while 

increasing that of Mmp13 (the primary collagenase of OA), implying a preferential 

pathway for ECM remodeling and degradation.  

LXR, RXR, and PPARs are involved in the regulation of metabolism in a number of 

tissues. In a previous study we showed that chondrocytes express functional PPARδ and 

are capable of responding to GW50516 stimulation with increased fatty acid 

oxidation[14]. All four nuclear receptor agonists induced strong metabolic effects. 

Angptl4 and Pdk4, the two common genes induced by all four nuclear receptors in the 

microarray, demonstrated a similar robust upregulation in qPCR validation (Figure 4-4).  

Abca1, Cidea, Lpl and Cpt1a were significantly increased by PPARδ, LXR and RXR 

agonist treatment. Gene expression of cytoskeletal fatty-acid transporter Fabp3 was 

significantly increased by PPARδ activation, while Gsta4, a gene encoding an enzyme 
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for cellular defense against reactive electrophiles, was significantly reduced by both 

PPARδ and RXR agonism[34].  
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Figure 4-3 Effects of nuclear receptor agonist treatments on extracellular matrix 

gene expression in chondrocytes 

IMACs were incubated for 72 hours with 1µM DMSO (vehicle control), PPARδ agonist 

GW501516, PPARγ agonist Rosiglitazone, LXR agonist GW3965, or RXR agonist 

SR11237. (A) Relative gene expression of Acan gene is significantly reduced by 

treatment with the RXR agonist. (B, C) Relative gene expression of Adamts4 and Fbn2 

are significantly reduced by LXR and RXR agonist treatment. (D, E) Relative gene 

expression of matrix metalloproteinases Mmp2 and Mmp13 is decreased by LXR agonist 

treatment, while gene expression of Mmp13 is significantly elevated by RXR agonist 

treatment. (F) Col2a1 gene expression remains unchanged by all treatments.  Values 

represented are the mean ± SEM of ≥ 3 independent cell isolations. *= p<0.05. 
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Figure 4-4 Effects of nuclear receptor agonist treatment on metabolic gene 

expression in chondrocytes 

IMACs were incubated for 72 hours with 1µM DMSO (vehicle control), PPARδ agonist 

GW501516, PPARγ agonist Rosiglitazone, LXR agonist GW3965, or RXR agonist 

SR11237. (A,C,D,H) Relative gene expression of Abca1, Cidea, Cpt1a and Lpl is 

significantly increased by PPARδ, LXR and RXR treatments. (B,F) Relative gene 

expression of Angptl4 and Pdk4 is elevated by all four treatments. (E) Fabp3 gene 

expression is significantly upregulated by PPARδ agonism. (G) RXR and PPARδ 

treatment significantly decrease relative gene expression of Gsta4. Values represented are 

the mean ± SEM of ≥ 3 independent cell isolations. *p<0.05. 

 



131 

 

4.4.4 Increased expression of Thioredoxin binding protein in 
osteoarthritic cartilage 

Txnip plays an important regulatory role in mediating oxidative stress and inflammation 

in a number of tissues[33]. Txnip was the only gene differentially regulated between 

nuclear receptor agonists. LXR agonist treatment downregulated gene expression, while 

PPARδ highly induced Txnip. These patterns observed in microarray analyses were 

validated by qPCR, where PPARδ agonism significantly increased gene expression of 

Txnip while LXR agonist-treated cells demonstrated trends toward decreased gene 

expression, and RXR and PPARγ agonism showed no change (Figure 4-5a). 

Immunohistochemistry for TXNIP was performed on frontal sections of mice 8 and 10 

weeks post DMM surgery (Figure 4-5b,c). Wild-type mice 10 weeks post surgery had 

increased numbers of positively stained chondrocytes compared to mice that underwent 

SHAM surgery. To validate the effects of PPARδ on Txnip expression, we compared 

protein expression in cartilage-specific Ppard KO mice and wild-type littermates 8 weeks 

after DMM surgery. Wild-type mice demonstrated increased staining for Txnip, 

particularly in areas of osteophyte growth at joint margins, whereas both sham-operated 

control mice and KO mice after either surgery showed little to no staining. The increase 

of Txnip expression in the process of OA implies an imbalance in regulatory processes 

governing oxidative stress and inflammation, potentially linking changes in metabolism 

to osteoarthritic changes. 
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(A) IMACs were incubated for 72 hours with 1µM DMSO (vehicle control), PPARδ 

agonist GW501516, PPARγ agonist Rosiglitazone, LXR agonist GW3965, or RXR 

agonist SR11237. PPARδ treatment significantly increased gene expression of Txnip. 

Values represented are the mean ± SEM of ≥ 3 independent cell isolations. *p<0.05. (B) 

Immunohistochemistry (IHC) for Txnip demonstrates increased cellular staining in the 

cartilage of WT DMM mice 10 weeks post-surgery relative to SHAM mice. (C) IHC for 

Txnip in cartilage-specific Ppard KO mice vs WT littermate controls 8 weeks post DMM 

surgery. Ppard KO mice display less staining than WT mice with greater OA severity. 

No Primary 

Figure 4-5 Effects of nuclear receptor agonist treatment on Txnip gene expression 
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4.4.5 Changes in gene expression correspond with functional 
changes in chondrocyte lipid profile  

In light of the number of genes involved in lipid metabolism that were identified in our 

gene expression analyses, we assessed neutral lipid and cholesterol accumulation in 

chondrocytes. Using the same nuclear receptor agonist treatment protocols, we harvested 

IMACs for cellular lipid mass assays. These assays allowed us to directly quantify 

triglycerides and cholesterol in vitro. There were significant changes in cell triglycerides, 

but not total cholesterol, free cholesterol or cholesteryl esters (Figure 4-6). These data 

suggest that changes in lipid metabolism upon agonist treatment are likely related to 

lipogenesis and fatty acid oxidation, rather than cholesterol transport or accumulation. In 

particular, triglycerides were significantly decreased with PPARδ agonist treatment, and 

were significantly increased with LXR, PPARγ and RXR agonism.  These changes are 

consistent with the known effects of activation of these nuclear receptors on triglyceride 

metabolism in other cell types and suggest that PPARδ may have an opposing functional 

role in lipid metabolism in chondrocytes relative to the other nuclear receptors examined 

here[35]. 
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Figure 4-6 Quantification of cellular lipid mass 

IMACs were incubated for 72 hours with 1µM DMSO (vehicle control), PPARδ agonist 

GW501516, PPARγ agonist Rosiglitazone, LXR agonist GW3965, or RXR agonist 

SR11237.  Lipids were extracted, isolated and mass was measured 

spectrophotometrically. Proteins were isolated and quantified using BCA. Measurements 

are reported relative to mg of cell protein. (A) Cell triglycerides (µg) are significantly 

elevated by PPARγ, LXR, and RXR treatment, and are significantly decreased by PPARδ 

agonism. (B,C,D) Total cholesterol, free cholesterol, and cholesterol ester remain 

unchanged after nuclear receptor agonist treatment. Values represented are the mean ± 

SEM of ≥ 5 independent cell isolations. *p<0.05.   
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4.5 Discussion 
This is amongst the first studies to examine changes in global gene expression in 

chondrocytes after nuclear receptor agonist treatment paired with concurrent functional 

analysis. It provides compelling evidence that nuclear receptors are involved with early 

changes in cell metabolism that can influence deleterious changes in cell phenotype 

leading to the progression of OA. Nuclear receptors have been increasingly linked to the 

progression of OA. We have previously established the degenerative changes promoted 

by PPARδ agonism in cartilage, as well as the beneficial and necessary role of PPARγ in 

cartilage[14, 15]. We and others have characterized the protective role of LXR in 

osteoarthritis [17, 36, 37]. However, in order to establish how or whether these ligand-

activated receptors are feasible therapeutic targets we must examine what molecular 

changes cause the phenotypic changes characteristic of OA. 

We used IMACs treated with LXR, RXR, PPARγ or PPARδ agonists for 72 hours. 

Immature murine articular chondrocytes provide a large number of cells for analyses on 

fully differentiated primary chondrocytes while minimizing dedifferentiation [38]. 

Microarray analyses of IMACs revealed changes in metabolic and ECM genes in 

response to these agonists, changes which were largely confirmed by qPCR. Agonism of 

RXR decreased gene expression of the major ECM component aggrecan, and increased 

the expression of ECM protease Mmp13, while LXR agonism decreased the gene 

expression of proteases Adamts4, Mmp2, and Mmp13.  Of particular interest were the 

increases in expression of genes involved in lipid metabolism, since they showed greater 

induction than those regulating ECM turnover. Amongst these genes, two were induced 

by all four agonists, Pdk4 and Angptl4, suggesting that they might play central roles in 
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cartilage metabolism. Interestingly, in an earlier study we had also demonstrated 

increased expression of Pdk4 in response to dexamethasone, a ligand for the 

glucocorticoid receptor which is another member of the nuclear receptor family[39].  

Functional evaluation of lipid metabolism using cellular lipid mass assays demonstrated a 

significant decrease in triglycerides after PPARδ agonist treatment. Conversely, 

triglycerides were significantly increased with PPARγ, LXR, and RXR agonists. This is 

not surprising as PPARγ can often act antagonistically to PPARδ with regard to 

lipogenesis [40], while LXR mediates fatty acid biosynthesis through activation of genes 

such as Srebf1, Fasn, and Scd1 which corroborate our data (see supplementary)[41, 42]. 

Quantification of cell lipids in vitro is advantageous because it permits us to directly 

measure the amount of lipid being stored in chondrocytes. This enables us to assess 

differences in some aspects of lipid metabolism between treatments. In fact, it is plausible 

that the dysregulation in lipid metabolism that we observed could initiate metabolic 

changes in the cell that eventually lead to apoptosis, inflammation, or changes in cell 

behaviour such as synthesis of catabolic factors. It has been shown that there is increased 

lipid deposition in osteoarthritic cartilage, but also that increased reactive oxygen species 

(ROS) can cause lipid peroxidation, which in turn could cause oxidative stress resulting 

in degenerative changes to the matrix through oxidation of collagen II[6, 43].  

In addition to dysregulation of cell lipids, we also see significantly decreased Gsta4 

expression after PPARδ or RXR agonist treatment. The encoded enzyme Glutathione S-

transferase A 4 protects against HNE (4 Hydroxynonal)-induced damage in chondrocytes. 

HNE is an extremely reactive aldehyde produced from ROS and lipid peroxidation, and is 
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increased in synovial fluid from OA patients[42]. HNE can also post-transcriptionally 

modify Collagen 2 and MMP13 to induce degradative changes in cartilage. On the other 

hand, decreased levels of GSTA4 are present in human OA cartilage, making cartilage 

more susceptible to damage [34]. 

One gene of particular interest, Txnip (thioredoxin interacting protein) was highly 

induced by PPARδ agonism, but appeared repressed by LXR agonism, in agreement with 

the opposing effects of these nuclear receptors on OA progression. Thioredoxin is an 

important antioxidant, but binding of Txnip to thioredoxin inhibits its ability to scavenge 

for ROS[44].  In our study, we demonstrate increased gene expression of Txnip after 

PPARδ agonism in chondrocytes. We also show that cartilage-specific Ppard knockout 

mice that are protected against cartilage degeneration in OA have decreased Txnip 

staining after DMM surgery. In contrast, control mice have increased staining for Txnip 8 

and 10 weeks post-surgery when compared to SHAM-operated mice. A similar effect has 

previously been demonstrated in other tissues where silencing Txnip abrogated palmitate 

induced inflammasome activation and proapoptotic activity in retinal endothelial 

cells[45]. Additionally, Txnip has been shown to link oxidative stress and inflammation, 

and it can directly activate NF-kB and downstream inflammatory cytokines[45]. In 

chondrocytes, recent work has shown that Redd1 can form a complex with Txnip to 

regulate autophagy[46].  Taken altogether, these data help to form a cohesive picture of 

how changes in cell metabolism could influence the development of early osteoarthritis. 

Nuclear receptos appear to play a key role in these processes by regulating the expression 

of central players such as Txnip and Gsta4.  
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Current treatment strategies for OA are largely ineffective or inconclusive. It is possible 

that we are missing a critical temporal period during which chondrocyte homeostasis is 

disrupted, later leading to matrix degeneration. Recent evidence demonstrates that 

nuclear receptors are key regulators of OA pathogenesis, and the data presented here 

suggests that their primary targets are metabolic regulation. Metabolic deregulation, in 

turn, can trigger events leading to oxidative stress and inflammation, protease activation, 

and ultimately cartilage degeneration. Targeting these critical processes could be a 

promising avenue for treatments that alter disease progression. 
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Chapter 5  

5 Discussion 

5.1 Overview 
The overall objective of my thesis was to characterize the role of the nuclear receptor 

PPARδ in osteoarthritis (OA). Our laboratory first identified the PPARs as potential 

targets in OA through microarray studies comparing cartilage from rats with surgically 

induced OA to SHAM operated rats[1].  Subsequently, our group investigated PPARγ 

and demonstrated that it was necessary for cartilage homeostasis; cartilage-specific 

depletion of PPARγ either during skeletal development or in adult tissue is severely 

debilitating[2, 3]. Our laboratory next decided to investigate the role of PPARδ in-vitro, 

since these two nuclear receptors can have either opposing or complementary context-

dependent actions[4-6]. We found that PPARδ agonism by synthetic agonist GW501516 

results in significant increases in gene expression of matrix degrading proteases (Mmp 2, 

Mmp3, Adamts2, Adamts5) in mouse primary chondrocytes. Similarly, GW501516 

treatment of murine joint explants resulted in glycosaminoglycan (GAG) loss and an OA-

like phenotype. This data indicated a strong catabolic role for PPARδ in cartilage and 

provided the rationale for investigation of this target as a mediator of OA. 

The first study in my thesis investigates the role of PPARδ in OA. It built upon the in-

vitro work, and quantitated GAG loss in cartilage explants through a dimethylmethylene 

blue binding (DMMB) assay. This assay revealed that a significant number of GAGs are 

released from the joint after treatment with GW501516 and cemented the theory that 

PPARδ has catabolic effects in the joint. We believed that if this nuclear receptor’s 
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activity was destructive in the joint, then inhibiting it could attenuate some of these 

detrimental effects. Therefore, I generated a cartilage specific Ppard knock-out mouse to 

study the effects of PPARδ inactivation in skeletal development and osteoarthritis. Mice 

with conditional (‘floxed’) Ppard alleles (Ppardfl/fl) were bred to mice expressing Cre 

recombinase under the control of the Collagen 2 promoter. The mice were born in normal 

Mendelian ratios with no obvious defects. I examined skeletal development through 

analysis of gross skeletal morphology, and measurement of anatomical markers of the 

growth plate and long bones at time points of p0, p10, p21, and 5 months of age. These 

mice displayed no deformities in gross morphology, and had similar cellular organization 

and zonal lengths of growth plate cartilage as well as overall long bone length. As there 

were no congenital defects affecting anatomical or mechanical factors that predisposed 

these mice to OA development, we next surgically induced OA in mice at 20 weeks of 

age through a destabilization of medial meniscus surgery (DMM). This surgery is a 

widely used and accepted method for inducing secondary OA that develops gradually in 

the medial tibial plateau of mice[7-9]. 8 weeks post-surgery we compared the WT to KO 

mice through OARSI histopathology scoring and immunohistochemistry for cartilage 

breakdown products. I discovered that while WT mice had moderate-severe cartilage 

breakdown in the medial tibial plateau and medial femoral condyles of the knee, as 

expected, the Ppard KO mice showed much less damage. Cartilage was significantly 

protected from the progression of OA. This was recapitulated in my staining for cartilage 

neoepitopes, which demonstrated increased staining for these products in the lesions of 

WT mice after DMM surgery, while the KO mouse cartilage had little to no staining[10].  

I concluded that genetic PPARδ inhibition in cartilage was protective in post-trauamtic 
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OA. I suspected this protective effect was in part due to a reduction of fatty acid 

oxidation (and resulting oxidative stress) seen in our early studies, since cartilage 

primarily metabolizes energy through glycolytic pathways.   

Next, I investigated pharmacological inhibition of PPARδ in post-traumatic OA in rats. 

The genetic model provided a strong foundation for our studies, but in order for this 

evidence to be translated into a useful therapeutic strategy, we needed to find a treatment. 

I administered PPARδ inhibitors (GSK0660, GSK3787), or vehicle control DMSO after 

surgical induction of OA through anterior cruciate ligament transection (ALCT) and 

partial medial meniscectomy (PMMx). These drugs were administered daily (6 days a 

week) for four weeks. Concurrently, behavioural assessments were also conducted 

weekly on rats to evaluate behaviour modifications associated with pain. Changes in 

pain-related behaviour were observed in rats who had surgically induced OA, but no 

PPARδ drug treatment. These rats rested more and performed less vertical activity. They 

also redistributed their limb loads by compensating with the contralateral limb. All these 

changes were blocked by the PPARδ inhibitors. I also investigated structural pathology 

through toluidine blue staining paired with OARSI scoring. I discovered that rats without 

drug treatment had severe cartilage loss and substantial bone remodeling. In contrast,  rats 

who were administered PPARδ inhibitors experienced focal fibrillation, cartilage 

shearing and bone remodeling. When semi-quantitatively assessing these pathologies, 

cartilage degeneration and subchondral bone damage after surgical induction of OA was 

significantly different than SHAM operated rats in the DMSO group, while PPARδ 

inhibitor treated rats fell somewhere in the middle. It may be necessary to find other 

measures and time points to quantitate damage, or to increase the N, to elucidate whether 
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there are substantial differences between treatment groups. I concluded that PPARδ 

inhibition results in protection from pain-related behaviours after surgical induction of 

PTOA in rats, and this may be in part related to milder structural progression of OA.  

Lastly, I identified novel gene targets for PPARδ in chondrocytes. We conducted 

microarray studies paired with real-time PCR validation on immature murine articular 

chondrocytes treated with PPARδ agonist GW501516, PPARγ agonist Rosiglitazone, 

LXR agonist GW3965 and RXR agonist SR11237. These studies revealed that genes 

induced after treatment were largely metabolic in nature, primarily affecting lipid 

metabolism. Genes involved in oxidative stress and extracellular matrix turnover were 

also identified. Next, functional cellular lipid assays were performed to quantify cellular 

triglycerides, total cholesterol, free cholesterol and cholesterol esters. I observed a 

significant decrease in triglycerides after treatment with GW501516. This result, paired 

with our earlier in-vitro investigations, implied that chondrocytes were undergoing 

significant fatty-acid oxidation in response to PPARδ stimulation. It is also probable that 

this shift in metabolic pathway could cause an increase in oxidative stress; and so we 

investigated one of the genes significantly induced in our arrays, Txnip. This gene 

encodes thioredoxin interacting protein, which binds and inhibits thioredoxin - a potent 

antioxidant. We investigated the presence of this protein in OA by performing 

immunohistochemistry on knee sections from mice who underwent surgical induction of 

OA through DMM. 10 weeks post-surgery TXNIP was present and intensely stained 

damaged cartilage, whereas there was little to no staining in the SHAM operated mice. 

We also wondered whether this could be a potential mechanism underlying PPARδ ‘s 

effects in OA, so we stained Ppard KO mice and WT littermate controls 8 weeks post-
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DMM surgery with the same antibody. We found increased staining in WT mice that had 

more severe damage, with prominent staining at joint margins and in osteophytes. In 

contrast, the Ppard KO mice that were protected from OA progression had little to no 

staining. From this I concluded that early OA changes caused by PPARδ may be 

metabolic, and could be due to increased oxidative stress paired with lipid peroxidation. 

Overall, these data demonstrate a significant role for PPARδ in the promotion of OA and 

establish PPARδ inhibitors as a potential therapeutic agent for structural pathology as 

well as pain-related behaviour. 

5.2 Contributions and Significance of Findings 

5.2.1 Contributions to the Field of Osteoarthritis 

In this thesis, I characterize for the first time the role of PPARδ in OA. This was 

accomplished through cartilage specific deletion of Ppard. In Chapter 2, I present work 

where I discovered that PPARδ did not contribute significantly to joint or cartilage 

development, in contrast to Pparg which is essential for skeletal development[2]. 

Additionally, PPARδ had never previously been examined in the context of PTOA. Here, 

I demonstrate that inactivation of PPARδ in cartilage is beneficial, and chondro-

protective after surgical induction of OA by DMM. Again this is in contrast to studies 

examining cartilage-specific deletion of Pparg which induces OA; indicating that these 

nuclear receptors have differential roles in both skeletal development and OA 

progression[3].Through these studies, I establish PPARδ as a potential therapeutic target 

in OA. 
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In Chapter 3, I draw upon my findings from the previous study indicating that genetic 

PPARδ inactivation attenuates disease progression in PTOA and translate this into a 

preclinical model using pharmacological inhibitors of PPARδ, to examine whether drug 

treatment will recapitulate this protective effect. Currently there are no drugs available 

that stop or delay disease progression in OA. In this study, I employed rat model paired 

with ACLT/ PMMx surgery to induce more rapidly progressing OA. This model is 

advantageous because it permits the evaluation of pharmacological agents in a shorter 

duration of time, and is commonly used and accepted[1, 11-13]. I discovered that rats 

treated with PPARδ inhibitors do not experience the same behavioural modifications 

indicative of pain after surgical induction of OA, as untreated rats. It also appears that the 

inhibitors could confer some protective effects in both the cartilage and subchondral 

bone, but this will need to be more thoroughly quantitatively assessed. In addition to 

directly assess the role of PPARδ, this study is among the first in the world to correlate 

changes in disease progression at a structural level with functional behavioural 

modification in a rat model. We build upon our own previous data validating the methods 

of behavioural testing (spontaneous locomotor activity and incapacitance testing) with 

histopathological progression of disease[14]. We also show that there may be a 

disconnect between significant effects of our PPARδ inhibitors on pain behaviour but not 

on structural progression, similar to how a portion of patients who have radiographic 

osteoarthritis are asymptomatic for pain[15]. However, this needs to be studied in more 

depth before we can reach firm conclusions. Further we are able to show similar effects 

(at least qualitatively) in two different animal animal models, strengthening the 

foundation for PPARδ’s potential as a feasible therapeutic target. 
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Chapter 4 identifies novel gene targets in chondrocytes after treatment with the PPARδ 

agonist GW501516. These genes are highly involved in lipid metabolism, and our studies 

demonstrate that these changes in gene induction are functionally executed by 

chondrocytes. It has previously been established that chondrocytes can store lipids, and 

lipid or cholesterol abnormalities can influence the progression of OA[16-18]. 

Commonly, OA studies use Oil-Red O staining to visualize lipid deposition[19-21]. Here 

we quantitate the amount of lipids being stored and secreted by chondrocytes, in-vitro. 

This is beneficial because it allows us to form a greater understanding of the changes 

occurring at a molecular level. We measure significantly less triglycerides in 

chondrocytes after PPARδ treatment. In our earlier studies, we had observed significant 

upregulation of beta-oxidation after treatment with the same PPARδ agonist. 

Cumulatively this indicates that chondrocytes respond to PPARδ by increasing their 

energy utilization from triglycerides. This is of interest since usually energy metabolism 

in chondrocytes is thought to be largely glycolytic[22, 23].   

In this study we also observed a significant decrease in gene expression for Gsta4, the 

gene that encodes Gluthathione s-transferase A 4, in response to PPARδ activation. 

Gluthathione s-transferase A 4 protects against HNE (4 hydroxynonal) induced damage 

in chondrocytes. HNE is produced from ROS and lipid peroxidation and increased in OA.  

It can post-transcriptionally modify the ECM and activate proteases to degrade the 

matrix. It is possible that the decreased levels of Gsta4 in combination with increased 

fatty acid oxidation in response to PPARδ activation causes severe oxidative stress and 

ultimately chondrocyte dysfunction. This stress can be further enhanced by increased 

levels of Txnip, since this gene is induced by the PPARδ agonist.  Increased presence of 
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TXNIP in OA cartilage in our mice supports this model and is indicative of increased 

oxidative stress and lipid peroxidation stemming from the dysregulation of lipid 

metabolism. Recently, another group also identified TXNIP as a regulator of autophagy 

in chondrocytes[24]. It is likely that an imbalance in regulatory processes mediating 

oxidative stress and inflammation promotes the OA phenotype that we observe (Figure 5-

1). 
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Figure 5-1 Schematic of PPARδ function in OA 

PPARδ activation in chondrocytes by lipid ligands increases gene expression of Txnip, 

and results in increased production of thioredoxin interacting protein (TXNIP) which 

promotes oxidative stress by binding to anti-oxidant thioredoxin. Unregulated oxidative 

stress can cause chondrocyte dysfunction and this process may be in part responsible for 

what we observe during OA. Knee provided by Dr. M. Pest 
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5.3 Limitations of Research 

5.3.1 Limitations in In-vitro Models 

It is important to note and carefully consider the limitations in the studies described in 

this thesis. Firstly, although the immature murine articular chondrocytes (IMACs) are 

advantageous in that they allow us to investigate interventions on fully differentiated 

chondrocytes, with minimal dedifferentiation into other cell types, they are still limited in 

their ability to reproduce an in-vivo environment[25, 26]. The joint is a functional unit, 

and the cartilage, synovium and subchondral bone all communicate with each other, and 

are necessary to each other’s functions. This in-vitro system lacks that feature, as well as 

normal mechanical stimulation. Even when examining the cartilage alone, chondrocytes 

plated in monolayer are not representative of cartilage tissue with its ECM, and different 

oxygen tensions throughout the tissue. Cells that normally interact with the matrix, 

instead interact with each other in culture, which subsequently can result in altered 

signaling[27, 28]. However, some of the mechanistic studies done here are almost 

impossible to do in-vivo, requiring the use of in-vitro surrogates with an awareness of 

their limitations. 

In our array studies, we investigated one time-point; 72 hours. Genes may be 

differentially induced at earlier and later time-points. Further we only used one 

concentration of agonist for each of the nuclear receptors. While the concentration of 

1µM was effective at inducing known target genes, different concentrations could have 

had a more potent effect on downstream target genes. Additionally, microarrays are not 

specific for direct gene targets. Chromatin Immunoprecipitation with subsequent DNA 
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sequencing (ChIP seq) would be ideally used to elucidate direct targets of PPARδ when 

appropriate antibodies become available – unfortunately, the lack of ChIP grade 

antibodies is a common problem in the nuclear receptor field. 

5.3.2 Limitations of In-Vivo Models 

In-vivo models enable us to evaluate interventions and gain valuable information about 

behaviour and pathophysiology but they also have substantial limitations. In Chapter 2, I 

generated a tissue specific knockout of Ppard. The Cre-driver used in this model was 

Col-2 Cre which has since been characterized to be not completely cartilage specific with 

recombination occurring in a portion of osteoblasts and other joint cells as well[29, 30]. 

This might be a difficult problem to overcome in light of the strong evidence for 

chondrocyte-osteoblast trans-differentiation; however, the use of an inducible Cre driver 

(e.g. Agggrecan CreER) and postnatal tamoxifen injection could minimize these 

concerns[29].  

In my study investigating the progression of PTOA with systemic treatment of PPARδ 

inhibitors one of the major limitations was the method of drug delivery, which was daily 

subcutaneous injections. Firstly, we do not know how much of the drug actually reaches 

the joint tissues and how long it stays there. They must penetrate through the synovial 

membrane or subchondral bone in order to reach the cartilage. A solution to this would be 

to give the drug intraarticular, however this is complicated in a rodent because the 

injection itself could risk damaging the joint. Additionally, systemic delivery could have 

long term detrimental consequences because PPARδ is broadly expressed in a number of 

tissues where it serves to regulate metabolism[6, 31]. 
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Both of the in-vivo studies only used one-time point, whereas early and late stage OA- 

particularly PTOA are quite different[32]. While PPARδ may have one effect at one time 

point, it may not act the same way at different stages of OA, with different levels of 

inflammation and mediators present. Therefore, it would be beneficial to characterize its 

effects at different time-points from early to late stage OA. Another common factor 

between these studies, is that they both employ rodent models. While these rodent models 

are economically efficient, and enable evaluation of disease progression and interventions 

over a shorter period of time, they do not fully recapitulate the biomechanics of human 

OA, as they are quadrupeds and have a tail. Rodents have growth plates that do not fuse 

as they become skeletally mature and their size limits tissue discrimination and 

availability. Larger animal studies, though also quadrupeds with tails, may be more 

beneficial for imaging studies due to their size, and also have more tissue for biochemical 

analyses, but they are far more costly, difficult to house and manage, and do not have the 

option for genetic modification[33]. Lastly, both in-vivo models only used male animals. 

It has been well documented in human studies that the incidence of OA, progression, and 

severity are greater in post-menopausal females, implying that sex-hormones could be 

responsible for chondroprotective effects in females[34]. It has also been demonstrated 

that male mice develop the most severe OA following surgical destabilization of the 

medial meniscus, followed by orchiectomized males, ovariectomized females and then 

female mice[35]. It would therefore be more encompassing to account for the effects of 

sexual dimorphism on OA progression by investigating both sexes. 
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5.4 Future Directions 
The foundation established by this thesis can be further expanded and built upon in 

several ways, some of which can directly address the limitations discussed above.  

Molecular studies could use RNA-sequencing to form a more complete picture of what is 

happening in chondrocytes after they are treated with the PPARδ  agonist. This would 

encompass non-coding RNAs as well as alternative splicing. Executing these studies in 

multiple tissue types including synovium and osteoblasts would add to its 

comprehensiveness. Moreover, additional shorter and longer time points would add 

important information. As mentioned above, if ChIP grade antibodies to PPARδ  become 

available, this technique would ideally complement RNA-sequencing to distinguish direct 

and indirect targets.  

As described earlier, the Col-2 Cre driver used in the transgenic mouse studies was not 

specific; to evaluate the role of PPARδ  in cartilage we could instead employ an aggrecan 

Cre driver which is more specific and temporally controlled[34]. However, as OA affects 

multiple tissue types, it would be equally important to evaluate the role of this candidate 

in other joint tissues such as bone by using an osteoblast-specific Cre driver such as one 

driven by the osteocalcin promoter[35]. 

In addition to examining multiple tissue types through transgenic mouse studies, it would 

be beneficial to investigate changes in bone mineral density, and subchondral plate 

thickness through MicroCT imaging after administration of PPARδ in a model of PTOA. 

Similarly, looking at changes in the synovium, such as inflammatory markers and 

synovial membrane thickness, would be helpful to obtain a more cohesive picture of 
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disease progression and to evaluate whether PPARδ inhibition was helpful or detrimental 

in one tissue versus another. The dorsal root ganglion demonstrates changes in 

innervation and macrophage infiltration during the progression of OA, and future studies 

could include these changes in their assessment[36], especially in light of the dis-connect 

between behavioral and structural outcomes seen in chapter 3. Next steps would also 

involve assessing outcomes at different stages of OA, early vs late, as well as the use 

local delivery combined with a vehicle that promotes long-term release, so inhibitors do 

not need to be administered every day. In addition, an increase in the number of animals 

tested in our rat model (chapter 3) will be required to examine whether the trend towards 

structural benefits of the PPARδ inhibitors reflects true beneficial effects. 

The in-vivo studies described here focus on post-traumatic osteoarthritis which is only 

representative of 12% of all OA cases[37]. Further studies should investigate primary 

age-associated osteoarthritis and metabolic OA.  Some of these studies are in progress in 

our laboratory already. PPARδ is an important regulator of metabolism in many tissues, 

and has promoted changes in metabolism in our own studies. Therefore it would be 

worthwhile to evaluate the role of PPARδ in high-fat diet induced OA, and in 

combination with OA promoting fatty acids. Lastly, it would also be important to 

evaluate differences in PPARδ expression and activity in human tissue samples from 

different sub-types of OA. This would add another dimension and potentially enhance our 

rationale for the continued investigation of this target. 

In conclusion, the data shown here suggest that PPARδ is an important promoter of post-

traumatic OA, possible through induction of lipid metabolism and associated oxidative 
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stress. Future studies will need to expand on these results to determine the relative 

importance of this player in OA, and to further evaluate its potential as therapeutic target.   
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may not be ordered under this AUP number.                                  Purchases of animals other than through this system 

must be cleared through the ACVS office. Health certificates will be required. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, radiation 

safety, general laboratory safety) comply with institutional safety standards and have received all necessary approvals. 

Please consult directly with your institutional safety officers. 
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