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Abstract 

Fruit juice-drug interactions (FJDIs) involving non-metabolized oral medications result in 

decreased drug exposure that may lead to reduced therapeutic efficacy. The effect is thought 

to be mediated by inhibition of the intestinal drug transporters organic anion transporting 

polypeptide 1A2 and 2B1 (OATP1A2 and OATP2B1) by fruit juice constituents, however 

the exact mechanisms remain controversial. We tested the hypothesis that fruit juices limit 

the absorption of fexofenadine through interactions with specific intestinal transporters. In 

vitro transport and fruit juice inhibition studies using fexofenadine, a medication involved in 

FJDIs, revealed that in addition to previously implicated transporters, organic cation 

transporter 1 (OCT1) and organic solute transporter alpha/beta (OSTα/β) are potential novel 

targets of fruit juice components. Pharmacokinetic interaction studies in wild-type and 

mOatp2b1 knockout mice demonstrated that mOatp2b1 is not involved in fexofenadine 

absorption or FJDIs in vivo. These findings provide new insights into the mechanism of 

FJDIs. 
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1.1 Adverse Drug Events 

Patient safety during drug treatment has become a top priority for health care systems 

worldwide. Adverse drug events (ADEs), defined as unwanted effects due to the use or 

misuse of medications, are an important cause of patient harm and suboptimal therapy 

(Baker et al., 2004; Nebeker et al., 2004). Alarmingly, ADEs happen virtually on a daily 

basis in hospitals and the community (Nebeker et al., 2004). Such events may result in 

increased doctor visits, longer hospital stays, reduced quality of life and even death 

(Baker et al., 2004). Lazarous et al., (1998) reported that approximately 6.7% of all 

hospitalized patients experience a serious adverse drug reaction. Of particular concern is 

that these reactions have risen to become the fourth leading cause of death (Lazarou et 

al., 1998). Not only do ADEs pose additional patient health risks and impede effective 

disease management, they also constitute a substantial economic burden on the Canadian 

health care system. During the 2010-2011 period, 1 in 200 seniors was hospitalized for an 

adverse drug reaction (https://www.cihi.ca/en). In 2008 alone, it was estimated that ADEs 

occurring in hospitals cost approximately $5.6 billion (Hohl et al., 2011). It should be 

noted that a staggering 37-51% of ADEs are avoidable (Baker et al., 2004).  

1.2 Drug Interactions 

A major cause of ADEs are drug interactions which are common and in many cases, 

preventable (Roughead et al., 2010). Drug interactions can be defined as changes in the 

effect of an administered drug when it is taken together with another drug or dietary 

substance or with specific disease states (http://www.fda.gov). This occurrence can result 

in increased or decreased therapeutic activity of a medication, or lead to unanticipated 

side effects (http://www.fda.gov). While it is often considered that drug interactions can 
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cause harm, it is necessary to consider that in some therapeutic contexts, drug interactions 

are intended. The true incidence of unintended drug interactions in the population is 

difficult to quantify. Some reasons for the lack of such statistics include the notion that 

only 1 in 20 ADEs are ever reported and that ADEs are less commonly captured in non-

institutional settings (Hazell and Shakir, 2006). Importantly, ADEs that result in loss of 

drug efficacy such as certain fruit juice-drug interactions, which form the subject of this 

thesis, are rarely identified and reported.  

1.2.1 Pharmacokinetic and Pharmacodynamic Mechanisms of 
Drug Interactions  

Pharmacokinetics is the study of drug concentrations in various body compartments as a 

function of time. This area of pharmacology also examines how the body processes a 

medication. Consequently, pharmacokinetic drug interactions can be defined as those 

which occur when an illness or co-consumed substance alters drug disposition by 

changing a drug’s absorption into circulation, its distribution into tissues, its metabolism 

by enzymes into polar compounds, or its excretion out of the body, generally via urine or 

feces (Buxton and Benet, 2011). Drug interactions of this nature will ultimately affect the 

concentration or duration of medications at their site of action and the associated 

therapeutic or toxic responses.  

Pharmacodynamics on the other hand, links drug concentration at the site of action with 

the degree of therapeutic effect elicited (Blumenthal and Garrison, 2011). This branch of 

pharmacology is focused on the cellular targets of medications, commonly, receptors 

(Blumenthal and Garrison, 2011). Therefore, pharmacodynamic drug interactions 

typically arise when another substance or pre-existing disorder alters the receptor 
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signalling pathway affected by the drug, resulting in synergistic, antagonistic or novel 

responses. Generally, greater clinical effects of drugs are associated with increasing drug 

concentrations at the target site. 

1.2.2 Types and Clinical Consequences of Drug Interactions 

Drug interactions can compromise the safe and effective use of medicinal agents. There 

are 4 main types of drug interactions, namely, drug-drug, herb-drug, disease-drug and 

food-drug interactions (http://www.fda.gov). Examples of each category and the clinical 

consequences associated are found in Table 1.1. Despite the fact that the many 

mechanisms are well-characterized, in clinical practice, it is often difficult to recognize 

potential drug interactions, making them hard to avoid. The prevalence of polypharmacy 

and individuals presenting with comorbidities, especially in the elderly patient 

population, mean that drug-drug and disease-drug interactions occur frequently (Maher et 

al., 2014). It therefore becomes easy to miss possible interactions when prescribing 

medications. Indeed, a recent population-based study estimated that 15% of older adults 

are at risk for a major drug-drug interaction (Qato et al., 2016). Furthermore, herbs, other 

natural products and dietary supplements are regularly used but are often considered safe 

and frequently overlooked as substances that may impact drug activity (Hussain, 2011). 

As such, patients fail to mention these products to their physicians and similarly, 

physicians often do not consider these remedies as possible contraindications to 

prescription medications. Co-ingestion of oral medications with food is commonly used 

as a tool to improve patient adherence to drug therapy, but at the potential risk of 

increasing the probability of food-drug interactions (Marek and Antle, 2008). Because 

diets are complex and have only recently been considered as mediators of drug 
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interactions, the mechanisms underlying most food-drug effects have not been fully 

explored. A better understanding of the mechanisms mediating food-drug interactions can 

aid in the implementation of practical strategies to avoid ADEs and improve 

pharmacotherapy management. The focus of this thesis is on food-drug interactions, in 

particular those involving fruit juices. 
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Table 1.1 Examples of clinically relevant drug interactions. 

 

 

 

 

 

 

 

 

 

 

Type of Drug 
Interaction Drug 

Interacting 
Substance/Disease 

Clinical 
Consequence Reference 

Drug-Drug  Warfarin Amiodarone Increase 
bleeding risk 

Heimark et al. 
(1992) 

Disease-Drug  Methotrexate Chronic kidney 
disease 

Neutropenia Ellman and 
Ginsberg 
(1990); 
Chatham et al. 
(2000) 

Herb-Drug  Cyclosporine St. John’s Wort Organ 
transplant 
rejection 

Ruschitzka et 
al. (2000); 
Breidenbach et 
al. (2000) 

Food-Drug  Felodipine Grapefruit juice Hypotension Bailey et al. 
(1989); Bailey 
et al. (1991) 
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1.3 Fruit Juice-Drug Interaction (FJDI) 

1.3.1 Discovery 

One third of Canadians drink fruit juices on a daily basis (http://www.statcan.gc.ca). This 

statistic is concerning from a therapeutic point of view as fruit juices are now well-

documented components of the diet that are involved in food-drug interactions. The 

effect was serendipitously discovered by Bailey et al. (1989) during an interaction study 

between ethanol and felodipine, an oral antihypertensive, in which grapefruit juice (GFJ) 

was used to mask the flavor of ethanol. Interestingly, the co-ingestion of GFJ with 

felodipine in both the control and experimental groups resulted in a clinically significant 

rise in plasma drug levels in comparison to previously reported values (Bailey et al., 

1989). This prompted a follow-up study where volunteers were administered felodipine 

with and without GFJ (Bailey et al., 1991). In this study, co-administration with the fruit 

juice led to a 3-fold increase in the area under the plasma drug concentration vs. time 

curve (AUC), a reflection of systemic drug exposure, which was presumed to result from 

increased felodipine oral bioavailability rather than reduced systemic clearance (Bailey et 

al., 1991). Oral bioavailability refers to the fraction of an orally administered dose that 

makes it into systemic circulation unchanged, following absorption across the 

gastrointestinal wall and metabolism by gut and hepatic enzymes, to become 

therapeutically available. The dramatic rise in plasma felodipine levels led to an 

exacerbation of its clinical effect (greater drop in diastolic blood pressure) and increased 

the incidence of adverse side effects (more frequent headaches) (Bailey et al., 1991). 

1.3.2 Drug Metabolizing Enzyme-Mediated Mechanisms 

Since the initial discovery, the effect of GFJ on the pharmacokinetics of numerous other 
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drugs have been evaluated. Clinically relevant interactions have been identified across 

numerous drug classes including calcium channel blockers, protease inhibitors, statins 

and immunosuppressants such as nifedipine, saquinavir, atorvastatin and cyclosporine, 

respectively (Bailey et al., 1991; Ducharme et al., 1995; James, 1995; Yee et al., 1995; 

Reddy et al., 2011).  

Many GFJ-drug interactions involve medications that are substrates of cytochrome P450 

3A4 (CYP3A4), an enzyme responsible for the intestinal and hepatic oxidative 

metabolism of xenobiotic compounds. In most cases, increased drug bioavailability with 

GFJ co-consumption was only seen when the therapeutic compound was given orally, but 

not intravenously. Furthermore, the time required for the plasma drug concentration to 

decline by one half, the half life (t1/2), is generally not affected by grapefruit juice intake. 

Together, these findings suggested that GFJ caused specific inhibition of CYP3A4 that 

occurred at the level of the intestine. Moreover, it would appear that GFJ does not have 

an inhibitory effect on the metabolic activity of hepatic CYP3A4 as reflected by the lack 

of change to t1/2 and systemic clearance. 

In support of this mechanism, Lown et al. (1997) demonstrated using small bowel 

biopsies that GFJ ingestion for 6 days resulted in a 62% decrease in enterocyte CYP3A4 

protein concentration. The effect was observed as early as 4 hours post juice 

administration (Lown et al., 1997). Interestingly, CYP3A4 messenger ribonucleic acid 

(mRNA) levels in intestinal epithelial cells were unchanged with GFJ consumption 

(Lown et al., 1997). Thus, GFJ appeared to impact the enzyme post-transcriptionally, 

through a mechanism involving rapid CYP3A4 protein degradation. Studies by Edwards 

et al. (1996) and Schmiedlin-Ren et al. (1997) reinforced this idea by showing that 
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specific components of GFJ known as furanocoumarins are mechanism-based 

inactivators of CYP3A4 in vitro. A key GFJ furanocoumarin, bergamottin, was found to 

be metabolized to 6’7-dihydroxybergamottin (DHB), a suicide inhibitor of intestinal 

CYP3A4 (Lin et al., 2012). Duration of the GFJ effect was dependent on the de novo 

synthesis rate of the CYP3A4 enzyme and the natural turnover of intestinal enterocytes. 

The intestinal specificity of this metabolic interaction was confirmed in a study that 

showed hepatic CYP3A4 activity, as determined by erythromycin breath tests, was 

unaffected by GFJ (Lown et al., 1997). This finding implies that liver exposure to GFJ 

furanocoumarins is limited. 

1.3.3 Non-Metabolic FJDIs 

With subsequent studies, it has become increasingly evident that fruit juice-mediated 

effects on drug disposition cannot be attributed solely to inhibition of metabolism. The 

pharmacokinetics of numerous minimally-metabolized drugs have also shown to be 

influenced by GFJ co-ingestion (Table 1.2). Intriguingly, reductions in oral 

bioavailability and plasma concentrations are seen for some non-metabolized drugs when 

taken with GFJ which contrasts with increased systemic drug concentrations for 

CYP3A4-metabolized medications. The duration of GFJ effects was another difference 

observed for interactions with non-metabolized drugs. Due to the requirement for de novo 

CYP3A4 synthesis after GFJ exposure, the bioavailability of metabolized drugs 

administered is significantly impacted up to 26 hours post juice intake (Lundahl et al., 

1995; Greenblatt et al., 2003). However, with non-metabolized medications, the effect of 

GFJ on drug disposition dissipated within 2-4 hours after juice administration (Glaeser et 

al., 2007). Furthermore, apple juice (AJ) and orange juice (OJ) elicit minimal changes to 



 

10 

the pharmacokinetics of CYP3A4 substrate drugs. On the other hand, these juices reduce 

the systemic exposure of minimally-metabolized therapeutic agents to a degree similar to 

that observed with GFJ (Dresser et al., 2002). Therefore, it would appear that there are 

drug metabolizing enzyme-independent mechanisms involved in certain FJDIs, perhaps 

related to modulation of membrane drug transport. Moreover, the specific constituents in 

fruit juices that affect the pharmacokinetics of non-metabolized drugs may differ from the 

furanocoumarins implicated in metabolic GFJ interactions. 
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Table 1.2 Clinical effects of grapefruit juice (GFJ) and apple juice (AJ) on oral drug 
bioavailability that cannot be explained by changes in drug metabolism. 

*Effect was significant between 0-24 hours post drug administration. Effect was not 
significant between 0-48 hours post drug administration.  

 

Drug Juice 

Effect on Oral 
Bioavailability 
(Compared to Water) Reference 

Antihistamine    
    Fexofenadine GFJ Decrease Banfield et al. 

(2002); Dresser et al. 
(2002); Dresser et al. 
(2005); Bailey et al. 
(2007); Glaeser et al. 
(2007); Won et al. 
(2013) 

     AJ Decrease Dresser et al. (2002); 
Imanaga et al. 
(2011); Akamine et 
al. (2014) 

Cardiovascular Drugs    
    Acebutolol GFJ Decrease Lilja et al. (2005b) 
    Aliskiren GFJ Decrease Tapaninen et al. 

(2010); Rebello et 
al. (2012) 

 AJ Decrease Tapaninen et al. 
(2011) 

    Atenolol AJ Decrease Jeon et al. (2013) 
    Celiprolol GFJ Decrease Lilja et al. (2003); 

Ieiri et al. (2012) 
    Digoxin GFJ Increase* Becquemont et al. 

(2001) 
    Talinolol GFJ Decrease Schwarz et al. 

(2005) 
Chemotherapy Drug    
    Etoposide GFJ Decrease Reif et al. (2002) 
Hormone    
    Levothyroxine GFJ Decrease Lilja et al. (2005a) 
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1.4 Fexofenadine, a Prototypical Non-Metabolized 
Drug That is Subject to FJDIs 

Fexofenadine, commonly known by its trade name Allegra, is a second generation H1 

histamine receptor antagonist used for the treatment of seasonal allergies and chronic 

hives (Smith and Gums, 2009). Available as oral fexofenadine hydrochloride tablets, the 

typical doses for adults are 60 mg twice daily or 180 mg once daily 

(http://products.sanofi.ca). Following oral administration, fexofenadine exists as a 

zwitterion during transit through the small and large bowel (Chen, 2007) (Figure 1.1). 

Indeed, it is categorized as a Class III drug under the Food and Drug Administration 

biopharmaceutical classification system, meaning that it has high water solubility and low 

membrane permeability. Hence, oral fexofenadine absorption from the gut lumen is 

presumed to be mediated not by passive diffusion but by the opposing activities of 

intestinal uptake and efflux transporters located in the apical membrane of the gut 

mucosa (Chen, 2007). The antihistamine is absorbed relatively quickly into circulation as 

the time needed to reach peak plasma concentration (Tmax) occurs between 1-3 hours after 

administration (Smith and Gums, 2009). Fexofenadine undergoes minimal breakdown by 

metabolic enzymes such as CYP3A4 and is mainly eliminated unchanged in the urine 

(10%) and feces (80%) (Smith and Gums, 2009). Bioavailability has been estimated to be 

approximately 33% for the oral dose (Smith and Gums, 2009). As fexofenadine 

experiences negligible metabolism, the oral bioavailability, tissue distribution and 

clearance is largely dependent on the activity of drug transporters in the gut, liver and 

kidney. For this reason, fexofenadine has been administered to study subjects as a “probe 

drug” to assess the in vivo transport activity of solute carrier proteins (Flynn et al., 2011). 
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Figure 1.1 Chemical structure of fexofenadine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

-



 

14 

1.5 Role of Intestinal Transporters in Fexofenadine and 
Other FJDIs 

In 2002, Dresser et al. demonstrated the first example of a FJDI whose mechanism was 

independent of CYP enzymes. In that seminal report, fexofenadine was co-administered 

with 1.2 L of GFJ, AJ or water over 3 hours to a cohort of healthy volunteers. 

Interestingly, concomitant ingestion of either fruit juice reduced plasma drug exposure to 

23-33% of that with water (Dresser et al., 2002). Fexofenadine renal clearance and t1/2 

were not affected by the fruit juices, suggesting minimal impact of juices on excretory 

organs such as the liver and kidney and localizing the interaction to the site of drug 

absorption (Dresser et al., 2002). A similar finding was reported by Banfield and 

colleagues (2002) when they administered fexofenadine to subjects who consumed 240 

mL of double-strength GFJ, 3 times daily for 2 days prior to, during and 2 hours after 

drug administration. Given the unusual amount of GFJ consumed in these early studies, 

the clinical relevance of the GFJ-fexofenadine interaction was demonstrated in a 

subsequent study involving co-administration of drug with a more reasonable volume 

(300 mL) of GFJ (Dresser et al., 2005). 

As eluded to previously, the effect of GFJ on plasma fexofenadine exposure was short-

lived as no reduction in AUC was observed when GFJ was administered 4 hours prior to 

fexofenadine intake (Glaeser et al., 2007). Additionally, unlike enzyme-mediated FJDIs, 

other components of fruit juices known as flavonoids, not furanocoumarins, were 

considered probable players of this interaction (will be discussed in further detail in 

Section 1.9). This was compellingly demonstrated when naringin, a major flavonoid 

found in GFJ, was orally administered at concentrations equivalent (1200 µM, 300 mL) 
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to that found in GFJ, together with fexofenadine, plasma drug levels were reduced 

significantly but not to the same extent as with GFJ (Bailey et al., 2007). Furthermore, 

modified GFJ lacking furanocoumarins (commercially produced to minimize metabolic 

drug interactions) elicited the same change to fexofenadine AUC as regular GFJ (Won et 

al., 2013).   

Since these initial reports with fexofenadine, other non-metabolized medications across 

several drug classes have been shown to be affected by fruit juices (Table 1.2). 

Generally, there is decreased systemic drug exposure for these oral medications when 

given with juices. Such interactions are expected to result in reduced clinical effects, 

subjecting patients to suboptimal disease treatment and/or management.  

Given the common pharmacokinetic effect of fruit juices on the oral absorption of many 

non-metabolized drugs, it is generally considered that the mechanism of these food-drug 

interactions involves modulation of intestinal drug transporters. Indeed, a number of 

intestinal drug transporters that are responsible for facilitating or impeding drug 

absorption have become proposed targets for fruit juice-drug interactions. At present 

however, the exact transporters involved and the molecular mechanisms still remain 

unclear owing to the lack of compelling data from in vitro and preclinical models that are 

all consistent with the clinical observations. Ideally, the mechanisms for clinical FJDIs 

for non-metabolized drugs will be firmly established by in vitro studies that demonstrate 

that the affected drug is a transport substrate of a membrane transporter known to be 

expressed in the human intestine.  Furthermore, in vitro studies should show that drug 

transport by these membrane proteins is inhibited or stimulated by fruit juices and their 

specific constituents. In conjunction with in vitro studies, mechanisms for FJDIs will be 
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persuasively established in experiments with animal models, including transporter 

knockout (KO) mice, that will shed additional in vivo insights to explain the clinical 

problem. 

1.6 Intestinal Apical Uptake Transporters 

1.6.1 Potential Mechanistic Role in FJDI 

The oral absorption of hydrophilic and charged drugs such as fexofenadine are less likely 

to result from passive diffusion mechanisms but are largely dependent on the actions of 

drug transporters localized on the apical (luminal) and basolateral membranes of 

intestinal enterocytes. Vectorial movement of fexofenadine across the enterocyte would 

require uptake transport on the apical membrane coupled with efflux transport on the 

basolateral membrane for entry into the portal circulation. Inhibition of uptake 

transporters located on the apical membrane of intestinal epithelial cells is the leading 

mechanism that would be consistent with the observed reduction of fexofenadine 

bioavailability by juices. A number of drug uptake transporters are expressed on the 

enterocyte apical membrane including those in the organic anion transporting polypeptide 

(OATP), organic cation transporter (OCT, OCTN), peptide transporter (PEPT), bile acid 

and heme transporter families of solute carriers (Figure 1.2). A few of these transporters 

are already known to facilitate fexofenadine cellular uptake in vitro, however the entire 

complement of relevant intestinal transporters has not been established. Moreover, in 

vitro studies have demonstrated that some of these transporters are inhibited by fruit 

juices or their constituents. 
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Figure 1.2 Potential intestinal uptake transporters involved in fruit juice-drug interactions 

in humans and in mice. *Confirmed and ?controversial localization to the apical 

membrane of enterocytes. 
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1.6.2 Organic Anion-Transporting Polypeptides (OATPs) 

Organic anion-transporting polypeptides (OATPs) are a superfamily of integral 

membrane uptake transporters belonging to the solute carrier organic anion (SLCO) gene 

superfamily (Hagenbuch and Meier, 2003). They are responsible for the sodium-

independent cellular influx of a wide spectrum of cationic, neutral and anionic 

compounds (Hagenbuch and Meier, 2003). These solute carriers facilitate the movement 

of endogenous molecules including bilirubin, bile acids, prostaglandins, thyroid and 

steroid hormones throughout the body (Tirona and Kim, 2014). Moreover, OATPs have 

been shown to transport several clinically relevant xenobiotics including antihistamines, 

beta blockers, statins and antidiabetic agents (Dresser et al., 2002; Satoh et al., 2005; Ho 

et al., 2006; Ieiri et al., 2012). OATP transport activity typically favors a low pH 

environment and is mediated by exchange with intracellular compounds such as 

bicarbonate and glutathione (Nozawa et al., 2004; Meier-Abt et al., 2005; Leuthold et al., 

2009; Eechoute et al., 2011). Some OATPs are ubiquitously expressed while others are 

tissue-selective (Tirona and Kim, 2014). Additionally, OATP cellular expression is 

commonly polarized to either the apical or basolateral membranes, depending on the 

tissue epithelium (Tirona and Kim, 2014). Notably, OATP1A2 and OATP2B1 are two 

isoforms found in the luminal membrane of human small bowel epithelial cells 

(Kobayashi et al., 2003; Glaeser et al., 2007). Numerous substrate drugs, such as 

fexofenadine are thought to rely on the transport activity of these two OATPs for 

absorption (Tamai and Nakanishi, 2013). For these reasons, OATP1A2 and OATP2B1 

have been the principal suspect transporters involved in FJDIs.  
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1.6.2.1 OATP1A2 

With the first clinical demonstration of the fruit juice-fexofenadine interaction, 

OATP1A2 was proposed to be the primary culprit (Dresser et al., 2002). In support of 

this claim, in vitro studies performed by Dresser et al. (2002) reconfirmed that 

fexofenadine was a substrate of OATP1A2 (Cvetkovic et al., 1999). Importantly, GFJ, AJ 

and the juice flavonoids naringin and hesperidin, at relevant concentrations, limited 

uptake of the antihistamine by OATP1A2 in cellular models (Dresser et al., 2002; Bailey 

et al., 2007). Remarkably however, it was not known in 2002 whether OATP1A2 is 

expressed in the intestine. In a follow-up study by the same research group, the mRNA 

expression of various transporters was determined in human duodenal biopsies. 

OATP1A2 transcript, among other uptake transport proteins, was detected consistently in 

small bowel mucosa (Glaeser et al., 2007). Subsequent immunohistochemical and 

immunofluorescent staining supported OATP1A2 localization to the apical membrane of 

enterocytes (Glaeser et al., 2007). Its prominent role in the fruit juice interaction was 

further emphasized after an in vitro screen of transport proteins identified OATP1A2 as 

the only intestinally-expressed uptake transporter capable of mediating significant 

fexofenadine cellular influx (Glaeser et al., 2007). Moreover, in line with the short-lived 

effect of GFJ on fexofenadine plasma concentration, intestinal OATP1A2 mRNA and 

protein levels were not affected by juice exposure (Glaeser et al., 2007). 

Although these findings had strongly implicated OATP1A2 in FJDIs, its mechanistic role 

in vivo remains highly debated, as controversy surrounds whether the transporter is 

expressed in the small intestine at all. While numerous research groups have detected 

levels of OATP1A2 mRNA and protein in the gut (Su et al., 2004; Ballestero et al., 2006; 
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Glaeser et al., 2007; Maubon et al., 2007), there is equal evidence demonstrating limited 

or absent expression of both transcript and protein at the site of fexofenadine absorption 

(Nishimura and Naito, 2005; Hilgendorf et al., 2007; Meier et al., 2007; Eechoute et al., 

2011; Drozdzik et al., 2014). Therefore, current focus has shifted to another OATP 

isoform as the main facilitator of the fruit juice-fexofenadine effect.  

1.6.2.2 OATP2B1 

There has been increasing support for the role of OATP2B1 in transporter-mediated 

FJDIs. Unlike OATP1A2, its expression in the small intestine is well documented and 

undisputed, as high levels of both mRNA and protein have been consistently reported in 

the literature (Kobayashi et al., 2003; Nishimura and Naito, 2005; Meier et al., 2007; 

Drozdzik et al., 2014). Although Glaeser et al. (2007) detected OATP2B1 mRNA 

transcript in duodenal biopsies, their original in vitro evaluation did not demonstrate 

fexofenadine transport by this solute carrier. Since then however, there have been several 

accounts of OATP2B1-mediated fexofenadine uptake in other cellular models, 

solidifying fexofenadine as a now well-accepted substrate of the transporter (Nozawa et 

al., 2004; Imanaga et al., 2011; Shirasaka et al., 2011; Shirasaka et al., 2013b; Akamine 

et al., 2014; Akamine, 2015). Similar to OATP1A2, fexofenadine co-incubation with GFJ 

and AJ significantly reduced its cellular influx by OATP2B1 in vitro (Imanaga et al., 

2011; Shirasaka et al., 2013b). While flavonoid inhibition of OATP2B1 transport activity 

of various drugs have been demonstrated, specific attenuation of fexofenadine transport 

by these fruit juice components has not yet been reported in OATP2B1 cellular 

expression systems (Shirasaka et al., 2013a).  
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In contrast to OATP1A2, there is some in vivo support for the role of OATP2B1 in 

FJDIs. The SLCO2B1 c.1457C>T genetic polymorphism is associated with reduced 

OATP2B1 transport function in vitro (Nozawa et al., 2002). Interestingly, individuals 

harboring this allele displayed lower fexofenadine plasma exposure than wild-type (WT) 

volunteers (Imanaga et al., 2011). Moreover, although AJ diminished fexofenadine AUC 

in both WT and c.1457C>T allele carriers, the effect was less pronounced in those 

carrying SLCO2B1 variant alleles (Imanaga et al., 2011). Therefore, it would appear that 

fexofenadine is an in vivo substrate of OATP2B1 and that AJ may act on this drug 

transporter as a functional inhibitor.   

1.6.2.3 Mouse Orthologs of OATPs 

There are 4 mouse orthologs of human OATP1A2, namely mOatp1a1, mOatp1a4, 

mOatp1a5 and mOatp1a6 (van de Steeg et al., 2010). Interestingly, these 4 transporters 

have low to undetectable mRNA expression along the gastrointestinal tract (Cheng et al., 

2005; Fu et al., 2016). Unfortunately, substrate specificities of individual mOatp1a 

transporters have not been well characterized, particularly with respect to fexofenadine. 

Additionally, in vitro effects of fruit juices on mOatp1a transporters have never been 

reported.   

In contrast to OATP1A2, OATP2B1 is highly conserved between species as a single 

orthologous isoform. Approximately 77% of the protein sequence is shared between the 

human and the mouse ortholog (Lan et al., 2009). Importantly, mouse Oatp2b1 

(mOatp2b1) mRNA has been detected at high levels in the small bowel of mice, 

suggesting analogous expression to the human transporter, but protein expression has not 

been confirmed experimentally (Cheng et al., 2005; Fu et al., 2016). It is currently known 
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whether fexofenadine is a substrate for mOatp2b1 or if it can be inhibited by fruit juices. 

1.6.3 Organic Cation Transporters (OCTs) 

Organic cation transporter 1 (OCT1), an isoform of the polyspecific transporter proteins 

of solute carrier family 22 (SLC22A1), is an uptake protein responsible for the cellular 

influx of cationic compounds such as endogenous acetylcholine (Mimura et al., 2015). 

Notably, it transports numerous drug substrates including antidiabetic and antiviral 

medications (Jonker et al., 2003). This solute carrier was originally localized to the 

basolateral membrane of intestinal epithelial cells (Muller et al., 2005). However, more 

recent findings have provided evidence to support the expression of OCT1 in the apical 

membrane of human enterocytes (Han et al., 2013). In vitro studies have shown the 

inhibition of OCT1 transport activity by AJ flavonoids, quercetin and phloretin (Mimura 

et al., 2015). However, fexofenadine appears to be a very weak transporter substrate of 

OCT1 in vitro (Glaeser et al., 2007). 

OCT3 is another isoform found on the apical membrane of enterocytes (Muller et al., 

2005). Similarly, it mediates the absorption of organic cations and has a wide spectrum of 

xenobiotic drug substrates. It is not known whether fexofenadine is a substrate of OCT3 

or if fruit juices affect transport activity. 

1.6.3.1 Mouse Orthologs of OCTs 

The mouse ortholog of OCT1 has been localized to the apical membrane of the small 

intestine (Han et al., 2013). Mouse Oct1 (mOct1) and human OCT1 possess similar 

substrate specificity. For example, metformin, an antidiabetic drug and 

tetraethylammonium, an experimental compound, are substrates of both transporters 
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(Lozano et al., 2013). The mRNA transcript of the mouse ortholog of OCT3 (mOct3) has 

been measured at significant levels in the small intestine of mice but its polarized 

expression in enterocytes remains unknown (Fu et al., 2016). Fexofenadine transport by 

mOct1 and mOct3 and inhibition by fruit juices have not been previously reported.  

1.6.4 Other Apical Uptake Transporters 

Organic cation/carnitine transporters 1 and 2 (OCTN1 and OCTN2) may also be involved 

in FJDIs. They are located in the luminal membrane of intestinal epithelial cells (Lahjouji 

et al., 2001; Sugiura et al., 2010). An important endogenous substrate of OCTN 

transporters is carnitine, an amino acid derivative involved in lipid metabolism (Lahjouji 

et al., 2001). OCTNs also have several drug substrates such as verapamil and 

doxorubicin, antihypertensive and chemotherapeutic medications, respectively (Pochini 

et al., 2013). Finally, peptide transporter 1 (PEPT1), apical sodium-dependent bile acid 

transporter (ASBT) and heme carrier protein 1 (HCP1; SLC46A1) are uptake transporters 

found in the luminal membrane of the gut epithelia (Ziegler et al., 2002; Shayeghi et al., 

2005; Balakrishnan and Polli, 2006). Due to the localization of these transporters, they 

may also play a role in FJDIs. However, fexofenadine transport ability and the effect of 

fruit juices these carrier proteins have not been studied.  

The mouse orthologs of OCTN1, OCTN2, PEPT1, ASBT and HCP1 are mOctn1, 

mOctn2, mPepT1, mAsbt and mHcp1, respectively. Similarly, they are located in the 

luminal membrane of mouse enterocytes (Hakansson et al., 2002; Shayeghi et al., 2005; 

Kato et al., 2006; Chen et al., 2010; Sugiura et al., 2010). Again, fexofenadine transport 

by these proteins and the effect of fruit juices on their activity are unknown. 
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1.7 Intestinal Apical Efflux Transporters 

1.7.1 Potential Mechanistic Role in FJDI 

Other possible explanations for FJDIs include transport stimulation or gene expression 

induction of efflux transporters located on the apical membrane of enterocytes (Figure 

1.3). Drugs that traverse the apical membrane of intestinal epithelial cells are pumped 

back out into the gut lumen by these transporters, limiting absorption. Increased activity 

of efflux transporters would further impede drug absorption and reduce systemic 

exposure.  
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Figure 1.3 Potential intestinal efflux transporters involved in fruit juice-drug interactions 

in humans and in mice. *Confirmed localization to the apical or basolateral membrane of 

enterocytes. 
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1.7.2 P-Glycoprotein (P-gp) 

P-glycoprotein (P-gp), also known as multidrug resistance protein 1 (MDR1), is a 

member of the adenosine triphosphate (ATP)-binding cassette superfamily of membrane-

bound efflux transporters (Lin and Yamazaki, 2003). It is recognized for mediating the 

cellular exclusion of numerous xenobiotic compounds including but certainly not limited 

to, digoxin, a cardiac glycoside, cyclosporine, an immunosuppressant and pertinently, 

fexofenadine, an antihistamine (Cvetkovic et al., 1999; Lin and Yamazaki, 2003). P-gp is 

expressed in a polarized manner in the epithelial cells of numerous tissues. For example, 

it is found in the blood side of brain capillary endothelial cells and apical membrane of 

kidney proximal tubule epithelial cells (Lin and Yamazaki, 2003). Importantly, this efflux 

transporter is localized to the brush boarder of enterocytes, allowing it to limit the 

intestinal absorption of substrate oral medications (Thiebaut et al., 1987; Glaeser et al., 

2007). Indeed, co-administration of P-gp inhibitor drugs such as ketoconazole, 

itraconazole and lopinavir/ritonavir increases the plasma concentrations of fexofenadine 

in humans (Yasui-Furukori et al., 2005; Shimizu et al., 2006; Uno et al., 2006). 

Moreover in humans, inducing intestinal P-gp expression by treatment with the herbal 

medication, St. John’s Wort, reduced the bioavailability of fexofenadine (Dresser et al., 

2003). Due to its broad substrate specificity and clear importance in modulating intestinal 

drug absorption, the involvement of P-gp in FJDIs must be considered.   

Several in vitro studies examining the effect of GFJ and its components on P-gp transport 

have led to contradictory findings. For instance, while Soldner et al. (1999) found 

stimulation of P-gp transport by GFJ, Takanaga et al. (1998), Honda et al. (2004) and de 

Castro et al. (2007) all demonstrated inhibition of P-gp activity by GFJ and/or its 
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components. Various other groups have also proposed concentration- and exposure time-

dependent effects of fruit juices on P-gp mediated efflux (Mitsunaga et al., 2000; 

Panchagnula et al., 2005). At present, the evidence favors the inhibitory action of juices 

on this efflux transporter.   

In the case that P-gp function was impaired clinically, significant efflux transport 

inhibition would have led to a rise in plasma fexofenadine exposure. Since oral 

bioavailability is attenuated in the fruit juice-fexofenadine interaction, it is commonly 

thought that inhibition of uptake transporters contributes more significantly to 

fexofenadine plasma drug levels than inhibition of intestinal efflux transport. In support 

of this idea, in vitro studies have shown that the GFJ flavonoid, naringin was a more 

potent inhibitor of intestinal uptake transporters than P-gp (Dolton et al., 2012). 

Furthermore, Dresser et al. (2002) found that while 5% GFJ and AJ significantly 

inhibited OATP transport activity, P-gp mediated efflux activity was not altered in 

cellular expression models.  

1.7.2.1 Mouse Orthologs of P-gp 

There are 2 mouse orthologs of human P-gp, namely Mdr1a and Mdr1b. Both 

transporters are found in the liver and kidney, while Mdr1a is distinctly expressed in the 

luminal membrane of small bowel epithelial cells (Panwala et al., 1998; Lin and 

Yamazaki, 2003). Thus, in terms of intestinal absorption, Mdr1a plays a larger role in 

drug disposition than Mdr1b. Little information exists on the in vitro transport activity of 

Mdr1a. However, in vivo studies in Mdr1a KO mice suggest that fexofenadine is a 

substrate of the efflux transporter (Cvetkovic et al., 1999; Tahara et al., 2005). Again, the 

effect of fruit juices on Mdr1a function is unknown.   
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1.7.3 Other Apical Efflux Transporters 

Other apically-localized intestinal efflux transporters exist and their roles in FJDIs should 

be investigated. One notable example is the intestinal brush boarder solute carrier, 

multidrug resistance-associated protein 2 (MRP2) (Fromm et al., 2000). Fexofenadine is 

a substrate of this solute carrier in vitro (Ming et al., 2011). Moreover, much like P-gp, 

GFJ has been shown to inhibit MRP2 transport activity in cellular models (Honda et al., 

2004). Finally, components of GFJ and AJ have also been shown to inhibit the transport 

activity of another apical efflux transporter, breast cancer resistance protein (BCRP), in 

vitro (Fleisher et al., 2015). However, fexofenadine does not appear to be a good 

substrate of BCRP as no significant difference in fexofenadine pharmacokinetics was 

observed in individuals with a BCRP functional polymorphism (Akamine et al., 2010).  

Significant levels of mouse MRP2 (mMrp2) mRNA transcript along the small intestine 

have been reported (Fu et al., 2016). The efflux transporter is also expressed in the bile 

canalicular membrane of hepatocytes (Kikuchi et al., 2002). Therefore, MRP2 is 

considered a key transporter mediating the excretion of xenobiotics into bile and 

subsequent elimination in feces. Although its role in the intestinal absorption of 

fexofenadine has not been elucidated, the antihistamine appears to be an in vivo substrate 

of the transporter based on altered biliary excretion of the drug in mMrp2 KO mice (Tian 

et al., 2008). Mouse BCRP (mBcrp) has been confirmed to the apical membrane of gut 

epithelial cells (Shimizu et al., 2011). Similar to the human ortholog, fexofenadine does 

not appear to be a substrate of mBcrp in vivo (Tian et al., 2008). The impact of fruit 

juices on the transport activities of mMrp2 and mBcrp is not known.   
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1.8 Intestinal Basolateral Efflux Transporters 

1.8.1 Potential Mechanistic Role in FJDI 

Fruit juice inhibition of efflux transporters found on the basolateral membrane of 

intestinal epithelial cells could also lead to decreased drug exposure (Figure 1.3). These 

transporters are responsible for moving intracellular compounds across the basolateral 

membrane of enterocytes, into circulation. Inhibition of efflux transporters would prevent 

this final step in intestinal absorption. 

1.8.2 Organic Solute Transporters Alpha and Beta (OSTα/β) 

Organic solute transporters alpha and beta (OSTα/β) form a heteromeric efflux structure 

located in the basolateral membranes of human hepatocytes, kidney proximal tubule cells 

and importantly, enterocytes (Ballatori et al., 2005). The primary endogenous substrates 

of OSTα/β are bile acids, which require this transporter for efficient enterohepatic 

recirculation (Seward et al., 2003). Following cellular influx, typically accomplished by 

apically expressed uptake transporters such as ASBT, OSTα/β mediates absorption of 

bile acids by moving intracellular compounds across the basolateral membrane of 

enterocytes (Seward et al., 2003). OSTα/β is a bidirectional transporter that facilitates 

movement of its substrates down their concentration gradients (Ballatori et al., 2005). 

Due to their important role in intestinal bile acid reabsorption, it remains conceivable that 

OSTα/β is involved in fexofenadine absorption. Therefore, if fexofenadine is a substrate, 

the effect of fruit juices on OSTα/β function should be investigated.  
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1.8.2.1 Mouse Orthologs of OSTα/β 

The mouse orthologs of OSTα and OSTβ (mOstα and mOstβ) are located in the 

basolateral membrane of mouse small bowel epithelia (Ballatori et al., 2005). Again, 

fexofenadine transport and fruit juice effect on mOstα/β have never been examined.  

1.8.3 Other Basolateral Efflux Transporters 

MRP3 is another efflux transporter expressed in the basolateral membrane of gut 

epithelial cells. The mRNA transcripts of this carrier molecule and its mouse ortholog, 

mMrp3, are readily detected along the small intestine (Taipalensuu et al., 2001; Rost et 

al., 2002). Fexofenadine is a substrate of both MRP3 and mMrp3, as determined by in 

vitro and in vivo studies, respectively (Matsushima et al., 2008; Ming et al., 2011). 

Currently, the effect of fruit juices on MRP3 and mMrp3 activities is not known.  

1.9 Grapefruit Juice and Apple Juice Components That 
May Be Responsible for FJDIs 

In the original report by Dresser and colleagues (2002), AJ co-administration produced a 

slightly greater reduction in fexofenadine plasma concentration than GFJ. Similarly for 

the minimally-metabolized renin inhibitor drug, aliskiren, AJ co-ingestion led to a more 

significant drop in oral bioavailability than with GFJ (Tapaninen et al., 2010; Tapaninen 

et al., 2011). Differences in the magnitudes of effect among fruit juices on drug 

absorption may relate to the concentrations of juice components and their interactions 

with gut drug transporters. Flavonoids are plant secondary metabolites that have been 

identified as the probable fruit juice constituents responsible for pharmacokinetic drug 

interactions that involve non-metabolized medications (Bailey et al., 2007; Shirasaka et 

al., 2013a). These phytochemicals provide pigmentation, protect against ultraviolet 
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damage, participate in growth regulation and act as chemical defenses against plant 

pathogens (Yao et al., 2004; Petrussa et al., 2013). As components of our diet, flavonoids 

are considered natural antioxidants with protective roles in cancer, cardiovascular 

disease, metabolic disorders and allergies (Yao et al., 2004).  

With over 5000 identified flavonoids, the polyphenolic compounds are characterized by 

their 15 carbon backbone (C6-C3-C6) (Yao et al., 2004) (Figure 1.4). They can be further 

subdivided into the pertinent classes flavanone, flavonol and dihydrochalcone. 

Naringenin and its glycosylated forms naringin (naringenin 7-O-neohesperidoside) and 

narirutin (naringenin 7-O-rutinoside) and hesperitin and its glycosylated forms hesperidin 

(hesperetin 7-O-rutinoside) and neohesperidin (hesperetin 7-O-neohesperidoside) are 

common flavanones found in citrus fruits (Ross et al., 2000; Yao et al., 2004). The 

flavonols quercetin and kaempferol and the dihydrochalcones phloretin and its 

glycosylated form phloridzin (phloretin-2'-O-glucoside) are found in onions, broccoli and 

apples (Yao et al., 2004; Shao et al., 2008). 

Concentrations of flavonoids are variable between different fruit juices and brands.  For 

example, naringin, narirutin and hesperidin are highly concentrated in GFJ but not AJ, 

while phloridzin, hesperitin and quercetin are readily detected in AJ but not GFJ (Ross et 

al., 2000; Shirasaka et al., 2013a). Between juice brands, flavonoid concentrations are 

affected by the source of the fruit and the techniques used to process and prepare the juice 

(Yao et al., 2004). The predominant flavonoids are found at micromolar to millimolar 

concentrations in fruit juices (Zhang, 2007).  
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There have been two fexofenadine pharmacokinetic studies in humans involving co-

administered flavonoids. In one study, relevant doses of naringin caused a reduction in 

fexofenadine oral absorption with a magnitude of effect about half that found for GFJ 

(Bailey et al., 2007). This finding suggests an important role for naringin in the 

fexofenadine-GFJ interaction. In the other study, when subjects were co-treated with 

quercetin (500 mg), surprisingly they experienced greater plasma fexofenadine 

concentrations suggesting that this flavonol does not play a decisive role in the 

fexofenadine-AJ interaction (Kim et al., 2009). 

In vitro, GFJ, AJ and the specific flavonoids naringin and hesperidin have inhibitory 

effects on OATP1A2 activity (Dresser et al., 2002; Bailey et al., 2007). In OATP2B1-

expressing cells in culture, transport activity was inhibited by AJ and GFJ (Shirasaka et 

al., 2013b). Additionally, the flavonoids naringin, naringenin, hesperidin, hesperetin, 

phloridzin, phloretin, quercetin and kaempferol all demonstrated inhibitory effects on in 

vitro OATP2B1 transport activity (Shirasaka et al., 2013a). For OCT1 mediated 

transport, AJ flavonoids quercetin and phloridzin but not the GFJ flavonoid naringin 

attenuated activity in vitro (Mandery et al., 2012; Mimura et al., 2015). Overall, variable 

flavonoid profiles may explain the in vitro discrepancies between AJ- and GFJ-drug 

interactions and suggest that their affects on the oral absorption of drugs may differ.  

It should be noted that furanocoumarins, a class of phytochemicals found distinctly in 

GFJ, are thought to be responsible for drug metabolizing enzyme-mediated FJDIs (Guo 

and Yamazoe, 2004). However, major furanocoumarins bergamottin and its metabolite 

DHB do not elicit inhibitory effects on OATP mediated transport in vitro (Bailey et al., 

2007; Shirasaka et al., 2013a).  
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Figure 1.4 Common flavonoids found in grapefruit juice and apple juice. 
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1.10 Preclinical Fruit Juice-Fexofenadine Studies 

Animal models may provide additional insights to elucidate the in vivo mechanisms of 

FJDIs. Fexofenadine pharmacokinetics have been reported in rodent, porcine and primate 

models (Cvetkovic et al., 1999; Tahara et al., 2005; Petri et al., 2006; Ogasawara et al., 

2007; van de Steeg et al., 2010). In rats and monkeys, co-administration with P-gp 

inhibitors including cyclosporine A and ketoconazole, increased the bioavailability of 

oral fexofenadine, a result consistent with human studies (Ogasawara et al., 2007; Ujie et 

al., 2008). In P-gp KO mice (Mdr1a-/- and Mdr1a/b-/-), there was 4-5 times greater 

fexofenadine plasma levels than WT mice after oral administration (Cvetkovic et al., 

1999; Tahara et al., 2005). In WT mice, oral fexofenadine bioavailability is only 2.38% 

and much less than that measured in humans (33%) (Tahara et al., 2005; Smith and 

Gums, 2009). These findings suggest that the expression and activity of mouse orthologs 

of P-gp play more substantial roles in limiting intestinal fexofenadine absorption than 

human P-gp. As mentioned previously, there are 4 mouse orthologs of human OATP1A2, 

namely mOatp1a1, mOatp1a4, mOatp1a5 and mOatp1a6 (van de Steeg et al. 2010). 

Another difference exists for liver-specific human OATP1B1 and OATP1B3 transporters 

which have a single mouse ortholog, mOatp1b2. These species differences have 

prompted the development of an Oatp1a/1b cluster KO mouse model which is deficient 

in all mOatp1a transporters as well as mOatp1b2. Interestingly, intestinal fexofenadine 

absorption in the Oatp1a/1b cluster KO mice was not significantly different than WT 

mice (van de Steeg et al., 2010). This result, suggests minimal roles are played by 

intestinal mouse Oatp1a transporters in oral fexofenadine absorption. 

Interestingly, there is only a single reported study investigating the fruit juice-
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fexofenadine pharmacokinetic interaction in preclinical species. In 2005, Kamath and 

colleagues showed in Sprague-Dawley rats that fexofenadine co-ingestion with AJ (28 

mL/kg) resulted in a 28% reduction in oral drug exposure. While the direction of effect 

on fexofenadine bioavailability in rats was consistent with that seen in humans, there was 

a greater drop in AUC (78% reduction) with comparably less AJ volume (approximately 

17mL/kg) in the clinical study (Dresser et al., 2002). Nevertheless, this finding suggests 

that the rat model can recapitulate the human fruit juice-fexofenadine interaction.   

The mouse may be a convenient preclinical model to further study the mechanisms of 

FJDIs. Surprisingly, this model has never been reported previously as a tool to establish 

the intestinal drug transporters involved. In this regard, it would be interesting to test 

whether fruit juice-fexofenadine interactions occur in WT mice and compare effects to 

mice with genetic deficiencies in intestinal fexofenadine transport proteins.  Given that 

intestinal Mdr1a acts more significantly in mice than humans to limit oral drug 

absorption, a fruit juice-fexofenadine study in Mdr1a-/- mice may unmask the roles of 

intestinal uptake transporters in the food-drug effect by eliminating dominant efflux 

mechanisms.  Studies in the Oatp1a/1b cluster KO mouse model have already indicated a 

limited role for intestinal mOatp1a transporters in the bioavailability of fexofenadine.  It 

is possible that another intestinal mouse Oatp, namely, mOatp2b1, contributes to 

fexofenadine absorption. Our laboratory has recently developed a novel mOatp2b1 KO 

(Oatp2b1-/-) mouse model. With this mouse model, it may be possible to convincingly 

demonstrate or rule out an in vivo role for mOatp2b1 in fruit juice-fexofenadine 

interactions. 
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2.1 Statement of the Problem and Overall Hypothesis 

Canada’s Food Guide endorses the consumption of fruit juice as a means to help meet the 

daily-recommended intake of fruits and vegetables (http://www.hc-sc.gc.ca). Indeed, fruit 

juices have become a common component of diet. However, in recent years, there has 

been a growing appreciation that fruit juices interact with drugs in a manner that raises 

serious concerns for patient safety. Particularly troublesome are fruit juice interactions 

involving medications metabolized by CYP3A4, that result in marked elevations in 

plasma drug concentrations and increased risk of drug toxicity. Less appreciated is the 

fact that non-metabolized medications also interact with fruit juices, but in these cases the 

outcome is a reduction in plasma drug concentrations and potential loss of efficacy. The 

mechanisms underlying fruit juice interactions with non-metabolized drugs remain poorly 

understood. In recent years, attention has been directed towards roles of intestinal drug 

transporters in this food-drug effect. In this regard, OATP1A2 and OATP2B1, have 

become the primary suspect mediators of FJDIs, despite that in vitro studies are not 

entirely consistent with the clinical effect. This raises the possibility that there exist other, 

yet to be discovered transporters involved.  Moreover, essentially all support for specific 

mechanisms of clinical fruit juice interactions with non-metabolized drugs have been 

obtained from in vitro studies. Convincing in vivo studies that support proposed 

mechanisms are currently lacking.   

The overall hypothesis is that GFJ and AJ limit the absorption of fexofenadine 

through their interactions with specific intestinal transporters.  

As numerous oral medications on the market today rely on intestinal transport proteins 

for absorption, individuals taking substrate drugs, which include commonly prescribed 
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cardiovascular medications, may inadvertently be at risk for reduced drug efficacy due to 

FJDIs. Understanding the molecular mechanisms behind fruit juice-non-metabolized drug 

interactions will provide a basis for implementation of safer and more effective 

pharmacotherapy, reducing the incidence of preventable ADEs and improving therapeutic 

outcomes. Furthermore, potential fruit juice-drug interactions can be specifically 

investigated for drugs in development prior to market release, allowing for more rational 

drug design that minimizes the incidence of suboptimal therapy.  

2.2 Specific Aim 1 

To determine candidate intestinal transporters and their mouse orthologs 

involved in the fruit juice-fexofenadine interaction. 

While OATP1A2 and OATP2B1 have been proposed as key players of this food-drug 

effect, the entire spectrum of intestinal transporters involved has not been fully 

elucidated. Furthermore, current studies have largely focused on apically expressed 

membrane proteins and have failed to consider the involvement of transporters located on 

basolateral membrane of intestinal epithelial cells. Due to its physiochemical properties 

and minimal breakdown by metabolic enzymes, fexofenadine serves as a prototypical 

probe drug for transporter function. As such, the antihistamine was used throughout this 

thesis for the study of enzyme independent-FJDIs. Additionally, GFJ and AJ have been 

demonstrated to elicit both similar and differing in vivo effects on oral drug 

bioavailability and in vitro modulation of drug transporter function, possibly due to their 

distinct flavonoid compositions. Therefore, we sought to identify human intestinal 

transporters involved in the GFJ and AJ-fexofenadine interaction. Moreover, we aimed to 
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characterize the transport function of their murine orthologs as a prelude to in vivo 

pharmacokinetic studies in mice. 

We hypothesize that in addition to the previously suspected transporters, OATP1A2 

and OATP2B1, other intestinal transport proteins involved in the fruit juice-

fexofenadine interaction exist.  

To test this hypothesis, we performed an in vitro screen of a panel of intestinal 

transporters and their murine orthologs for fexofenadine transport using a cellular 

expression system. The flavonoid profiles of GFJ and AJ were measured and the effect of 

each fruit juice on identified human and mouse fexofenadine transport proteins were 

subsequently evaluated by in vitro fexofenadine transport inhibition studies. We expected 

to find novel fexofenadine transporters that may be involved in the FJDI and that GFJ 

and AJ would elicit fruit juice-specific effects on transporter activity.  

2.3 Specific Aim 2 

To establish whether the mouse can serve as an in vivo model for the fruit juice-

fexofenadine interaction and to investigate the role of mOatp2b1 in this food-

drug effect in vivo. 

While clinical studies have localized the FJDI to the site of absorption and in vitro studies 

have implicated several intestinal transporters in the effect, there remains some 

disconnect between current findings and a paucity of supportive evidence from 

preclinical models. Interestingly, there have been no reports to date which have evaluated 

mice as a preclinical model for FJDIs. Moreover, while many drug transporter knockout 

mouse models exist, surprisingly they have not yet been used to gain a better 
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understanding of the in vivo roles of proposed transport proteins involved in FJDIs. 

Therefore, we aimed to first characterize the mouse as an in vivo model of FJDIs. With 

the recent development of a novel Oatp2b1-/- mouse model, the in vivo role of mOatp2b1 

in FJDIs was evaluated.  

We hypothesize that mice will faithfully recapitulate the human fruit juice-

fexofenadine interaction. Furthermore, the FJDI will be mediated through 

inhibition of mOatp2b1 by GFJ in vivo.  

To test this hypothesis, we conducted fruit juice-fexofenadine pharmacokinetic 

interaction studies in WT and Oatp2b1-/- mice. We expected that fruit juice co-

administration would result in a reduction in fexofenadine oral bioavailability in WT 

mice.  It was also expected that the plasma levels of fexofenadine would be lower in 

Oatp2b1-/- mice in comparison to WT mice. We also reasoned that a reduction in 

systemic fexofenadine levels would occur in WT but not in KO mice with fruit juice co-

ingestion. 
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3.1 Materials 

[3H]-Fexofenadine (78Ci/mmol, 99.7% radiochemical purity) was custom synthesized by 

Quotient Bioresearch (Fordham, Cambridgeshire, UK) by non-specific labeling. 

Unlabeled fexofenadine, fexofenadine-d6 and phloridzin were purchased from Toronto 

Research Chemicals (Toronto, ON). Concentrated (4x) GFJ (Minute Maid, 100% 

Grapefruit Juice Frozen Concentrate) and concentrated (4x) AJ (No Name, Apple Juice, 

Frozen Concentrate) were acquired from Walmart (London, ON). The same GFJ and AJ 

stocks were used for all fruit juice experiments. All other chemicals, unless otherwise 

stated, were obtained from Sigma-Aldrich (St. Louis, MO).  

3.2 Transporter Expression Plasmids 

OATP1A2, OATP2B1, OCT1, OCT2, OCT3, ASBT, PEPT1, HCP1, P-gp and BCRP 

expression plasmids were generated as previously described (Cvetkovic et al., 1999; Kim 

et al., 2001; Tirona et al., 2003; Ho et al., 2006; Urquhart et al., 2008; Urquhart et al., 

2010; Posada et al., 2015). Constructs for OCTN1, OCTN2, MRP2, OSTα, OSTβ, 

mOatp1a1, mOatp1a4, mOatp1a6, mOatp2b1, mOct3, mOstα and mOstβ were developed 

in the Personalized Medicine Lab, London Health Sciences Centre – University Hospital 

(unpublished data). mOct1 complementary deoxyribonucleic acid (cDNA) was amplified 

from a mouse small intestine cDNA library (BioChain Institute, Inc.; Newark, CA) using 

primers 5'-GGGCGCACCATGCCCACGTTCGACCAGGCA-3' (forward) and 5'-

ACAGGGGCCTCAGACATCAGAAGTAGAAAC-3' (reverse) by polymerase chain 

reaction (PCR) with Expand Long Template Polymerase Chain Reaction System (Roche 

Applied Science; Indianapolis, IN). The resulting amplicon was cloned into 

pcDNA3.1/V5-His-TOPO expression plasmid (Invitrogen; Burlington, ON). 
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3.3 Cell Culture 

Human cervical adenocarcinoma (HeLa) cells were purchased from American Type 

Culture Collection (Manassas, VA). Cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) (Thermo Fisher Scientific; Grand Island, NY) supplemented with 10% 

fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin and 2 mM L-

glutamine (Invitrogen), at 37°C, 5% CO2.  

3.4 Transport and Inhibition Studies 

3.4.1 Transient Transfection 

HeLa cells were grown on 12-well plates (seeding density of 2.5 x 105 cells/well) at 

37°C, 5% CO2. After 48 hours, cells were transfected by blank expression plasmids 

(control) (Invitrogen) or expression plasmids containing transporter cDNA inserts using 

Lipofectamine 3000 (Invitrogen) according to manufacturer’s instructions. In brief, 

plasmid expression vectors were incubated with Lipofectamine 3000 and P3000 reagents 

in Opti-MEM, a reduced serum media (Invitrogen), for 15 minutes (min) at room 

temperature (RT). The DNA-lipid mixture (1 µg DNA/well) was then added to the 

culture medium. Cells were incubated for 16 hours at 37°C, 5% CO2 prior to transport 

experiments.  

3.4.2 Transport Study 

Transport studies were conducted to identify human and mouse fexofenadine transporters 

according to methods described previously (Cvetkovic et al., 1999). [3H]-Fexofenadine 

and the unlabeled drug (0.1 µM) were dissolved in phosphate buffered saline (PBS) 

(Roche Applied Science) when evaluating OATP2B1 and mOatp2b1 transport or Krebs-
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Henseleit buffer (KHB) (1.2 mM MgSO4•7H2O, 0.96 mM KH2PO4, 4.83 mM KCl, 118 

mM NaCl, 1.53 mM CaCl2•2H2O, 23.8 mM NaHCO3, 12.5 mM 4-[2-hydroxyethyl]-1-

piperazineethanesulfonic acid [HEPES], 5 mM glucose in water) for all other transporters 

at pH 6 with the exception of human and mouse OCT and OCTN transporters where pH 

7.5 was used. The drug dose (400 µL) was applied to cultured cells for 30 min at 37°C, 

5% CO2. Thereafter, cells were washed three times rapidly with ice-cold PBS. To 

quantify cellular drug accumulation, cells were lysed using 1 mL of 1% sodium dodecyl 

sulfate (SDS) in water (v/v) and intracellular radioactivity was measured by liquid 

scintillation spectrometry (Tri-Carb 3900TR; Perkin Elmer; Waltham, MA). To evaluate 

OATP2B1- and mOatp2b1- mediated fexofenadine uptake, unlabeled fexofenadine (100 

µM) was dissolved in PBS at pH 6 and applied to culture cells for 30 min. Cells were 

subsequently washed with ice-cold PBS and lysed using 400 µL of acetonitrile spiked 

with internal standard (fexofenadine-d6, 10 ng/mL). Intracellular fexofenadine was 

measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (described 

in Section 3.5).  

3.4.3 Inhibition Study 

Inhibition studies were conducted to evaluate the in vitro effects of fruit juices on 

transporter mediated fexofenadine uptake. Concentrated (4x) GFJ and AJ were diluted to 

normal strength (1x) with KHB. [3H]-Fexofenadine and unlabeled fexofenadine (0.1 µM) 

were dissolved in 5% normal strength GFJ or AJ in KHB (v/v) and exposed to cultured 

cells for 30 min. Juice and control dose solutions were all adjusted to pH 6. Under these 

conditions, 5% GFJ and 5% AJ are sufficient to elicit inhibitory effects on drug transport 

while avoiding cytotoxicity (Dresser et al., 2002). After incubation with the drug dose, 
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cells were washed, lysed and intracellular radioactivity was quantified by liquid 

scintillation spectrometry. To examine the effect of GFJ on OATP2B1 and mOatp2b1 

mediated fexofenadine transport, unlabeled fexofenadine (100 µM) was dissolved in 5% 

GFJ in PBS (v/v) at pH 6 and incubated with the expression systems for 30 min. Cells 

were washed, lysed and intracellular fexofenadine was quantified by LC-MS/MS.  

3.5 Fexofenadine LC-MS/MS Quantification 

3.5.1 Sample Preparation 

Cell lysates (in acetonitrile spiked with internal standard) from transport and inhibition 

studies were centrifuged for 10 min at 13,500 rpm in a microcentrifuge. An aliquot of the 

resulting supernatant (40 µL) was diluted with 160 µL of 0.1% formic acid in water (v/v). 

Standard curve samples were created by adding increasing concentrations of 

fexofenadine diluted in water which were subsequently processed in a similar fashion as 

cell lysate samples. 

Plasma samples (5 µL) were spiked with internal standard (fexofenadine-d6, 5 µL, 200 

ng/mL), precipitated with acetonitrile (15 µL) and centrifuged for 10 min at 13,500 rpm. 

The resulting supernatant (20 µL) was diluted with 125 µL of 0.1% formic acid in water 

(v/v). Standard curve samples were created by spiking fexofenadine into blank human 

ethylenediaminetetraacetic acid��EDTA) plasma (Bioreclamation IVT; Baltimore, MD) 

for subsequent processing similar to plasma samples.  

3.5.2 LC-MS/MS Conditions 

Analytes were separated by liquid chromatography (Agilent 1200; Agilent; San Clara, 

CA) using Hypersil Gold reversed-phase column (50 × 3 mm, 5 µm particle size; Thermo 



 

46 

Fisher Scientific) following sample injection (50 µL for cell lysate samples and 75 µL for 

plasma samples). A mobile phase of 0.1% v/v formic acid in water (A) and acetonitrile 

(B) was used, with an elution gradient of 20% B from 0-1 min, 20-95% B from 1.0-4.5 

min, 95% B from 4.50-5.25 min, 95-20% B from 5.25-5.80 min and 20% B from 5.8-6.0 

min, for a run time of 6 min and flow rate of 0.5 mL/min. The heated electrospray 

ionization source of the triple quadrupole mass spectrometer (Thermo TSQ Vantage; 

Thermo Fisher Scientific) was operated in positive mode (3500 V, 350oC) with collision 

energy set at 25 V. Additional ionization source conditions used were as follows: 40 

arbitrary units for sheath gas pressure, 15 arbitrary units for auxiliary gas pressure and 

350°C for capillary temperature. Selected reaction monitoring for fexofenadine and 

fexofenadine-d6 was performed using mass transitions 502.2 → 466.5 m/z and 508.2 → 

472.5 m/z, respectively. Both solutes had chromatographic retention time of 3.2 min. 

Standard curves were linear over the concentration ranges of 2.5-100 ng/mL for cell 

lysates and 2-100 ng/mL for plasma samples.   

3.6 Flavonoid LC-MS/MS Quantification  

3.6.1 Sample Preparation 

Concentrated (4x) GFJ and AJ (100 µL) and plasma samples (50 µL) were precipitated 

1:3 (v/v) with 50% acetonitrile in methanol (v/v) and centrifuged for 10 min at 13,500 

rpm. The resulting supernatant (100 µL from fruit juices and 50 µL from plasma) was 

diluted 1:2 (v/v) in 0.1% formic acid in water (v/v). Flavonoid standard curves were 

created for juice and plasma in 0.1% formic acid in water (v/v) and blank control plasma 

(Bioreclamation IVT), respectively.  
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3.6.2 LC-MS/MS Conditions 

Naringin, narirutin, hesperidin, neohesperidin, phloretin, quercetin and kaempferol 

concentrations were analyzed by ultra-high pressure liquid chromatography-tandem mass 

spectrometry (UHPLC-MS/MS), consisting of an Agilent 1290 liquid chromatography 

system (Agilent) and Thermo TSQ Quantum Ultra triple quadrupole mass spectrometer 

(Thermo Fisher Scientific). Analytes were separated on a Kinetex reversed-phase column 

(50 × 3 mm, 5 µm particle size; Phenomenex, Torrence, CA) following sample injection 

(5 µL). A mobile phase of 0.1% v/v formic acid in water (A) and 50% v/v acetonitrile in 

methanol (B) was used, with an elution gradient of 25% B from 0.0-1.5 min, 25-95% B 

from 1.5-7.0 min, 95-25% B from 7-9 min and 25% B from 9.0-9.5 min, for a run time of 

9.5 min and flow rate of 0.5 mL/min. Mass spectrometer ionization conditions used were 

as follows: 15 arbitrary units for sheath gas pressure, 5 arbitrary units for auxiliary gas 

pressure and 300°C for capillary temperature. Naringin, narirutin, hesperidin, 

neohesperidin, phloretin, quercetin and kaempferol were subjected to collision energies 

of 17, 17, 19, 19, 17, 28 and 31 V, respectively for detection in positive mode using mass 

transitions 581.2 → 273.0 m/z, 581.2 → 273.0 m/z, 611.2 → 303.0 m/z, 611.2 → 303.0 

m/z, 275.1 → 107.1 m/z, 303.1 → 229.1 m/z and 287.1 → 153.1 m/z, respectively with 

solute retention times of 1.95, 1.65, 2.10, 2.42, 2.61, 2.42 and 3.31 min, respectively.  

Naringenin, hesperetin and phloridzin concentrations were analyzed separately by LC-

MS/MS instrumentation and source conditions as described in Section 3.5.2.  A mobile 

phase of 0.1% v/v formic acid in water (A) and 50% v/v acetonitrile in methanol (B) was 

used, with an elution gradient of 25% B from 0.0-1.5 min, 25-95% B from 1.5-6.0 min, 

95% B from 6.0-7.0 min, 95-25% B from 7.0-8.0 min and 25% B from 8.0-8.5 min, for a 
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run time of 8.5 min and flow rate of 0.5 mL/min. Naringenin, hesperetin and phloridzin 

were subjected to collision energies of 21, 27 and 18 V and detected in negative mode 

using mass transitions 272.2 → 151.0 m/z, 301.1 → 164.1 m/z and 435.2 → 273.2 m/z 

with chromatographic retention times of 4.40, 4.53 and 3.64 min, respectively  

Standard curves for flavonoids in juice were linear over the ranges of 60-300, 40-200, 10-

50, 20-100, 0.02-0.10, 0.6-3.0, 0.02-0.10, 0.01-0.1, 0.2-1.0 and 2-10 µg/mL for naringin, 

narirutin, hesperidin, neohesperidin, phloretin, quercetin, kaempferol, naringenin, 

hesperetin and phloridzin, respectively. The lower limits of quantification in plasma were 

6, 4, 1, 2, 0.006, 0.06, 0.006, 0.004, 0.02 and 0.2 µg/mL for naringin, narirutin, 

hesperidin, neohesperidin, phloretin, quercetin, kaempferol, naringenin, hesperetin and 

phloridzin, respectively.  

3.7 Animals 

Adult, male mice were used in all experiments to limit age- and sex-dependent variation 

in intestinal drug transporter expression (Cheng et al., 2005). Oatp2b1-/- mice 

(Slco2b1tm1a(KOMP)Wtsi) were generated in collaboration with the Knockout Mouse Project 

at UC Davis (manuscript in preparation). In this mouse model, a gene trap cassette was 

inserted into the Slco2b1 gene in Intron 3 of C57BL/6J mice by homologous 

recombination in embryonic stem cells to produce global knockdown of Oatp2b1 gene 

expression. Preliminary investigations indicate that Oatp2b1-/- mice are viable, fertile and 

produce litters of normal size.  Serum biochemistry and histological analysis of Oatp2b1-

/- mice are unremarkable. C57BL/6 mice (WT background strain of Oatp2b1-/- mice) were 

obtained from Jackson Laboratories (Bar Harbor, MA). Mdr1a-/- mice (Crl/CF1-
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Abcb1amds) and its corresponding WT strain, CF-1 mice, were purchased from Charles 

River Laboratories, Inc. (Wilmington, MA). C57BL/6 and Oatp2b1-/- mice were 

maintained in a barrier, sterilized, temperature controlled, animal facility, following a 12-

hour light/dark cycle. CF-1 and Mdr1a-/- mice were housed in a conventional, 

temperature controlled, animal facility, following a 12-hour light/dark cycle. Standard 

chow diet and water were available to all mice ad libitum. 

3.8 Mouse Pharmacokinetic Study 

To determine the in vivo effect of fruit juices on fexofenadine exposure, pharmacokinetic 

studies were conducted in adult, 10-19 week old C57BL/6, Oatp2b1-/-, CF-1 and Mdr1a-/- 

mice. Animals were fasted for 4 hours prior to drug administration. Mice were 

administered fexofenadine (1 mg/kg) dissolved in 200 µL of PBS (pH equivalent to GFJ 

and AJ), 4x concentrated GFJ or 4x concentrated AJ, by oral gavage. Blood (30 µL) was 

sampled from the saphenous vein at 5, 15, 30 min and 1, 2 and 3 hours post drug 

administration and stored in heparinized microcentrifuge tubes. Following the 1-hour 

blood sampling, subcutaneous saline (1 mL) was administered as fluid replacement. Mice 

were euthanized by isoflurane at the 3 hours and a final blood sample (500 µL) was 

collected by cardiac puncture. Blood samples were centrifuged at 5000g for 10 min, 4oC. 

Plasma (200 µL from final time point, 10 µL from all other time points) was obtained and 

stored at -80oC until fexofenadine and flavonoid levels were measured by LC-MS/MS. 

This animal study protocol (No. 2014-012) was approved by Western University’s 

Animal Use Subcommittee (London, ON). 
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3.9 Pharmacokinetic Analysis 

Plasma fexofenadine concentration-time curves were generated. Area under the plasma 

concentration-time curve from 0 to 3 hours (AUC0-3) was calculated by the linear 

trapezoidal method. Peak plasma concentration (Cmax) and time to reach peak plasma 

concentration (Tmax) were determined directly from the data obtained.   

3.10 Mouse Intestinal Permeability Study 

To explore the possibility of intestinal mucosa damage by GFJ, an intestinal permeability 

test was performed in adult, 10 week old WT (CF-1) and Mdr1a-/- mice. Following a 

protocol described by Johnson et al. (2015), mice were fasted for 6 hours then 

administered fluorescein isothiocyanate labelled dextran (FITC-dextran, 4 kDa), at 600 

mg/kg dissolved in either 200 µL of PBS or 4x concentrated GFJ by oral gavage. At 1-

hour post administration, 130 µL of blood was collected from the saphenous vein and 

centrifuged at 12,000 g for 3 min. Plasma was collected and diluted 1:2 (v/v) in PBS. 

FITC-dextran concentration in plasma, an indicator of paracellular absorption, was 

measured by fluorescence spectroscopy (excitation at 485nm, emission at 535nm) on a 

Luminoskan Ascent instrument (Thermo Fisher Scientific). FITC-dextran doses, blood 

and plasma samples were protected from light exposure. Mice were returned to the 

conventional animal facility for recovery following the experiment.  

3.11 Statistics 

Unpaired, two-tailed, Student’s t-test or one-way or two-way analysis of variance 

(ANOVA) with Bonferroni’s multiple comparisons test were used to determine statistical 
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differences between groups. Statistical significant was deemed at a P value of <0.05. All 

statistical analysis was conducted using GraphPad Prism Version 6.0f (La Jolla, CA). 

 

 

 

 



 

52 

 

 

 

 

 

 

4 4 Results 

 

 

 

 

 

 

 

 

 

 

 



 

53 

4.1 Fexofenadine is a Substrate of Multiple Intestinal 
Transporters and their Mouse Orthologs 

Clinical studies have suggested that fruit juices limit intestinal fexofenadine absorption, a 

process mediated by enterocyte uptake and efflux transporters (Banfield et al., 2002; 

Dresser et al., 2002; Glaeser et al., 2007). While the antihistamine is a well described in 

vitro substrate of OATP1A2, OATP2B1 and P-gp, (Cvetkovic et al., 1999; Dresser et al., 

2002; Nozawa et al., 2004), the entire complement of intestinal transport proteins 

involved in its absorption has not been fully elucidated. Additionally, there have been no 

reports demonstrating transport by mouse orthologs of the human fexofenadine 

transporters. Species differences in drug transporter substrate specificity may impact the 

use of mouse as a relevant model to understand mechanisms of FJDIs. Therefore, we 

conducted transport experiments using a HeLa cell expression system to identify 

additional candidate in vivo human and mouse fexofenadine transporters.  

4.1.1 Identification of Fexofenadine Uptake Transporters  

We performed transient transfection of a variety of intestinal transporters in cultured 

HeLa cells to screen for novel fexofenadine transporters. Transfection and functional 

heterologous expression were validated for mOatp1a1, mOatp1a4, mOatp1a6, OATP2B1, 

mOatp2b1 and mOct1 by demonstrating transport of known substrates and plasma 

membrane localization by immunofluorescence microscopy (for mOatp2b1 only) 

(Appendix A: Transfection Validation, Supplementary Figures 1 and 2). For uptake 

membrane proteins, the degree of intracellular fexofenadine accumulation after 30 min 

drug exposure was used as a measure of transport activity. Fexofenadine uptake was then 

reported as a percent of uptake by blank vector control transfected cells. While additional 
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replicates were required for statistical analysis (n = 2), fexofenadine uptake by cells 

expressing OATP1A2 was 2.6-fold higher than control cells transfected with blank vector 

control plasmid, in accordance with previous reports (Dresser et al., 2002). Likewise, the 

mouse orthologs, mOatp1a1 and mOatp1a4 significantly transported fexofenadine, albeit 

to a lesser efficiency than OATP1A2 (19% and 41% greater than control, respectively, 

P<0.0001). However, mOatp1a6 exhibited negligible drug uptake, suggesting substrate 

specificity differences between mouse Oatp1a transporters (Figure 4.1 A). Although 

OATP2B1 has previously been described as a fexofenadine transport protein, in our in 

vitro expression system, the antihistamine did not appear to be a substrate of the human 

transporter as intracellular drug levels were comparable between OATP2B1 expressing 

cells and control cells (Figure 4.1 B) (Nozawa et al., 2004; Imanaga et al., 2011; 

Shirasaka et al., 2011; Shirasaka et al., 2013b; Akamine et al., 2014; Akamine, 2015). On 

the other hand, uptake of the antihistamine by the mouse ortholog, mOatp2b1, was 22% 

higher than control (P<0.0001) (Figure 4.1 B). Interestingly, fexofenadine was a 

substrate of both OCT1 and mOct1, as they showed significantly greater cellular drug 

accumulation when compared to their respective controls (19% and 76% higher than 

control, P<0.001 and P<0.0001, respectively). Other human OCT and OCTN family of 

transporters, as well as ASBT, PEPT1 and HCP1 did not appear to transport the 

antihistamine. While these findings do not definitively rule out the contribution of these 

transporters in mediating intestinal fexofenadine absorption, it suggests limited roles 

played by these membrane proteins (Figure 4.1 C, D and E). Overall, the current 

findings would suggest that if expressed in the intestinal apical membrane, fexofenadine 

absorption may be mediated by OATP1A2 and OCT1 in humans and mOatp1a1, 
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mOatp1a4, mOatp2b1 and mOct1 in mice.  



 

 

 

 

 

 

Figure 4.1. Fexofenadine transport by HeLa cells expressing human intestinal uptake 

transporters and their mouse orthologs. HeLa cells transiently transfected with human or 

human and mouse orthologs of (A) OATP1A2, (B) OATP2B1, (C) OCTs, (D) OCTNs 

and (E) other uptake transporters were evaluated for intracellular accumulation of [3H]-

fexofenadine (0.1 µM for A, C, D and E) or unlabeled fexofenadine (100 µM for B) at 

pH 6 (A, B and E) or pH 7.5 (C and D) following a 30-minute incubation period. Data are 

expressed as percent of vector control, mean ± SEM, n = 1 for OCTN1 OCTN2, OCT2, 

ASBT, PEPT1 and HCP1, n = 2 for OATP1A2 and mOct3 and n ≥ 3 for controls and all 

other transporters. Student’s t-test was conducted, where ***P<0.001 and ****P<0.0001 

represent significant differences from vector control.  
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Figure 4.1 Fexofenadine transport by HeLa cells expressing human intestinal 

uptaketransporters and their mouse orthologs. 
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4.1.2 Identification of a Novel Fexofenadine Basolateral Efflux 
Transporter 

OSTα/β is a bidirectional transporter that facilitates substrate movement down their 

chemical gradient and is implicated in basolateral bile acid efflux by enterocytes 

(Ballatori et al., 2005). In vitro, exposing OSTα/β expressing cells to extracellular 

fexofenadine prompts cellular uptake of the drug. Interestingly, intracellular fexofenadine 

retention was 45% (P<0.0001) higher than vector control in OSTα/β transfected cells 

(Figure 4.2). Analogous to its human ortholog, the antihistamine appeared to be a 

substrate of mOstα/β. However, strong conclusions cannot be drawn from this result and 

no statistical analysis was performed as mOstα/β transport experiments were conducted 

on two occasions (n = 2) with technical replicates. Overall, it would appear that 

fexofenadine is a convincing, novel in vitro substrate of OSTα/β and probable, novel in 

vitro substrate of mOstα/β, suggesting that these transporters may play a role in the 

intestinal absorption of fexofenadine.  
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Figure 4.2 Fexofenadine transport by HeLa cells expressing human intestinal basolateral 

efflux transporter and its mouse ortholog. HeLa cells transiently transfected with 

basolaterally localized OSTα/β and mOstα/β were evaluated for intracellular 

accumulation of [3H]-fexofenadine (0.1 µM) at pH 6 following a 30-minute incubation 

period. Data are expressed as percent of vector control, mean ± SEM (n = 2 for mOstα/β 

and n ≥ 4 for controls and OSTα/β). Student’s t-test was conducted, where ****P<0.0001 

represent a significant difference from vector control. 
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4.2 Flavonoid Profiles of GFJ and AJ 

Flavonoids have been proposed as the fruit juice components responsible for causing 

transporter dependent FJDIs. GFJ and AJ possess different flavonoid compositions that 

may explain the greater reduction in oral drug bioavailability observed with AJ co-

administration when compared to GFJ (Dresser et al., 2002; Tapaninen et al., 2010; 

Tapaninen et al., 2011). Furthermore, individual flavonoids have been shown to elicit 

unique in vivo effects on fexofenadine exposure and in vitro effects on transporter 

activity (Bailey et al., 2007; Kim et al., 2009; Mandery et al., 2012; Shirasaka et al., 

2013b; Mimura et al., 2015). To ensure that the fruit juices used in our experiments 

contained the expected chemical components and in consideration of fruit juice-specific 

effects, the concentrations of major flavonoids in 4x concentrated GFJ and AJ were 

measured by LC-MS/MS.  

Similar to what has been reported in the literature, naringin, narirutin, neohesperidin and 

hesperidin were the most concentrated flavonoids in GFJ while phloridzin was the 

predominant flavonoid in AJ (Shirasaka et al., 2013a). These results highlight the fact 

that the major flavonoid constituents differ between GFJ and AJ. As expected, 

naringenin, the aglycone of both naringin and narirutin was not a significant component 

in GFJ. Although quercetin was expected to be a major flavonoid in AJ, greater levels of 

this fruit juice component was detected in GFJ (Yao et al., 2004; Shirasaka et al., 2013a; 

Mimura et al., 2015). Furthermore, we expected prominent levels of hesperitin in AJ, 

however, its glycosylated forms hesperidin and neohesperidin were found at significantly 

greater concentrations (Shirasaka et al., 2013a). In general, flavonoid concentrations in 

the 4x concentrated GFJ and AJ were higher than those reported in the literature for 



 

60 

normal strength fruit juices (Table 4.1). Together, these findings indicated that the GFJ 

and AJ used in our experiments contained the proposed flavonoid mediators of fruit juice 

interactions at high concentrations. Furthermore, their unique flavonoid profiles may 

explain differences in the in vitro and in vivo fruit juice specific effects on drug transport.  
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Table 4.1 Flavonoid concentrations in 4x concentrated grapefruit juice (GFJ) and 4x  
concentrated apple juice (AJ) used in experiments and literature reports. 

Data are presented as mean ± SEM. Literature values are presented for 1x concentrated GFJ and AJ and 

obtained from Gliszczynska-Swiglo and Tyrakowska (2003), Mullen et al. (2007), Zhang (2007), Godycki-

Cwirko et al. (2010) and Shirasaka et al. (2013a). 

 

 

 

 

 

 

 

 

 

 

 

 Concentration (µM) 
Flavonoid GFJ  

(n = 6) 
GFJ in 

Literature 
AJ  

(n = 7) 
AJ in 

Literature 
Naringin 2540 ± 80 140 - 1640 Not detectable 0 - 0.001 
Narirutin  874 ± 41 45 - 210 Not detectable 0 
Naringenin 0.44 ± 0.03 0 - 450 Not detectable 0.001 
Hesperidin 99.0 ± 5.0 25 - 50 3.4 ± 0.2 0 - 0.2 
Neohesperidin 412 ± 18 5 - 20 2.0 ± 0.5  0 
Hesperitin 0.28 ± 0.01 0.6 0.13 ± 0.03 1.5 
Quercetin 24.8 ± 1.4 0.005 - 30 0.2 ± 0.06 0.5-3 
Kaempferol 5.80 ± 0.24 0.02 0.02 ± 0.003 0-0.7 
Phloridzin 1.1 ± 0.2 0.005 106 ± 5.2 17-100 
Phloretin Not detectable 0.001 1.56 ± 0.05 0.2 
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4.3 Effects of GFJ and AJ on Human and Mouse 
Fexofenadine Transporters  

Having identified candidate human intestinal fexofenadine transporters and their mouse 

orthologs (Section 4.1), we next sought to determine the in vitro effects of GFJ and AJ on 

their transport activities. HeLa cells, transiently expressing transporters were exposed to 

fexofenadine dissolved in control medium, 5% normal strength GFJ or 5% normal 

strength AJ and intracellular drug accumulation was measured 30 min after drug 

administration. Fexofenadine uptake was reported as a percent of uptake relative to blank 

vector control transfected cells, exposed to control medium.  

There was strong fruit juice inhibition of fexofenadine uptake by OATP1A2 expressing 

cells as intracellular drug levels was reduced by 63% (GFJ) and 54% (AJ) upon juice 

exposure. This finding agreed with the report by Dresser et al. (2002). Similarly, GFJ and 

AJ significantly inhibited mOatp1a1 mediated fexofenadine cellular accumulation by 

18% (P<0.001) and 12% (P<0.05) respectively. For mOatp1a4, there was a juice specific 

effect on fexofenadine transport evidenced by an effect of GFJ (28% reduction in drug 

uptake, P<0.0001) but not AJ on cellular drug accumulation (Figure 4.3 A).  

In experiments with OATP2B1, we found that GFJ decreased fexofenadine cellular 

retention in both vector control and OATP2B1 expressing cells. Again, we did not 

observe OATP2B1-specific transport of fexofenadine. Uptake difference (difference in 

the intracellular accumulation of fexofenadine between cells exposed to control medium 

and GFJ treatment within the same expression system) was not significantly different 

between vector control and OATP2B1 transfected cells. Together, these findings suggest 

that the effect of GFJ on the two expression systems is caused by GFJ inhibition of 
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endogenous, HeLa cell, fexofenadine transporters and not a result of fruit juice inhibition 

of transfected OATP2B1. In contrast to the human transporter, we found that transfection 

of mOatp2b1 stimulated fexofenadine cellular accumulation. GFJ also reduced drug 

uptake into mOatp2b1 expressing cells (P<0.0001). Interestingly, the uptake difference 

calculated from the mOatp2b1 expression system was significantly greater than vector 

control (P<0.05). These findings imply that in addition to endogenous transporters, 

components of GFJ inhibit fexofenadine uptake by mOatp2b1 (Figure 4.3 B).  

For organic cation transporters, it would appear that GFJ but not AJ attenuated influx of 

the antihistamine mediated by OCT1 (18% reduction) and mOct1 (20% reduction) 

(Figure 4.3 C). With OSTα/β, GFJ inhibited fexofenadine transport activity by 21%, but 

interestingly AJ had no effect on OSTα/β-mediated drug accumulation (Figure 4.3 D). 

Additional experimental replications are required to confirm these results. With mOstα/β, 

neither fruit juice appeared to inhibit the transporter (Figure 4.3 D). However, this 

experiment was performed once and therefore the (lack of) effect of fruit juices on 

fexofenadine transport by mOstα/β requires further confirmation.  

Taken together, these in vitro transporter inhibition results implicate the probable 

involvement of OATP1A2, OCT1 and OSTα/β in the fruit juice-fexofenadine interaction 

in humans. Furthermore, while GFJ appeared to inhibit all three transporters, AJ only 

inhibited OATP1A2, demonstrating juice-type specific effects. With respect to mouse 

transporters, the current in vitro data predicts that mOatp1a1, mOatp1a4, mOatp2b1 and 

mOct1 could be potential players in a fruit juice-fexofenadine interaction if these proteins 

are indeed expressed in the mouse enterocytes. 



 

 

 

 

 

Figure 4.3. Fruit juice inhibition of fexofenadine transport by HeLa cells expressing 

human intestinal fexofenadine transporters and their mouse orthologs. HeLa cells 

transiently transfected with human and mouse orthologs of (A) OATP1A2, (B) 

OATP2B1, (C) OCTs and (D) OSTα/β were evaluated for intracellular accumulation of 

[3H]-fexofenadine (0.1 µM for A, C and D) or cold fexofenadine (100 µM for B) in 

control medium, 5% grapefruit juice (GFJ) in vehicle or 5% apple juice (AJ) in vehicle, 

at pH 6 (A, B and D) or pH 7.5 (C) following a 30-minute incubation period. Data are 

expressed as percent of vector control cells exposed to control medium, mean ± SEM, n = 

1 for GFJ and AJ treated OATP1A2 and mOstα/β, n = 2 for KHB treated mOstα/β, GFJ 

and AJ treated OCT1, OSTα/β and mOct1 and n ≥ 3 for controls and all other 

transporters/conditions. One-way ANOVA was conducted where *P<0.05, **P<0.01, 

***P<0.001 and ****P<0.0001 represent significant differences from vehicle treated 

cells within the same expression system. 
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Figure 4.3 Fruit juice inhibition of fexofenadine transport by HeLa cells expressing 

human intestinal fexofenadine transporters and their mouse orthologs. 
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4.4 Effect of GFJ Co-Administration on Fexofenadine 
Pharmacokinetics in WT and Oatp2b1-/- Mice 

In humans, fexofenadine co-ingestion with GFJ dramatically drops plasma drug exposure 

(by up to 67%) with minimal changes to t1/2 and clearance (Dresser et al., 2002). Lately, 

there has been much attention focused on intestinal OATP2B1 as the primary transporter 

mediator of this food-drug effect. Unfortunately, we were unable to demonstrate 

facilitation of fexofenadine uptake by this transporter in vitro. However, we had a unique 

opportunity to study the in vivo role of mOatp2b1 with the recent development of a 

transporter KO mouse in our laboratory. We have found mOatp2b1-mediated 

fexofenadine transport, which was inhibited by fruit juices in vitro. Furthermore, mRNA 

expression of the transporter in the mouse small intestine is well documented (Cheng et 

al., 2005; Fu et al., 2016) (Appendix C: Expression of Fexofenadine Transporters in 

Mouse Small Intestine, Supplementary Figure 4). Therefore, we investigated the in 

vivo role of mOatp2b1 in the fruit juice-fexofenadine interaction using WT (C57BL/6) 

and Oatp2b1-/- mice. A pharmacokinetic study was conducted whereby fexofenadine 

(1mg/kg) was co-administered with 200 µL (volume equivalent to 500 mL or two glasses 

of fluid ingestion in humans) of PBS (control) or 4x concentrated GFJ (used to magnify 

the fruit juice effect) by oral gavage and plasma drug levels were measured at set 

intervals post drug intake.  

Fexofenadine was rapidly absorbed into circulation in both PBS treated WT and Oatp2b1-

/- mice, with Tmax occurring within the first 15-30 min post drug administration, implying 

early absorption of the drug across the proximal small bowel (Figure 4.4). Interestingly, 

there was a lack of significant differences between Tmax, Cmax and AUC0-3 between WT 



 

66 

and Oatp2b1-/- mice suggesting a limited role played by mOatp2b1 in fexofenadine 

disposition (Table 4.2). Moreover, in contradiction to clinical findings, GFJ co-

administration did not lead to a significant change in fexofenadine disposition in WT 

mice as Tmax, Cmax, and AUC0-3 were not statistically different between PBS control and 

GFJ groups (Table 4.2). However, there was a trend toward decreased fexofenadine 

plasma concentrations at 15 min post drug administration in GFJ treated WT mice in 

comparison to PBS control treated WT mice (P = 0.08) (Figure 4.4). In Oatp2b1-/- mice, 

GFJ co-ingestion did not significantly alter fexofenadine pharmacokinetics (Table 4.2). 

Taken together, these results indicate that mOatp2b1 does not play a significant role in 

fexofenadine disposition nor is it responsible for GFJ interaction in the mouse in vivo. 

Importantly, the WT (C57BL/6) mouse does not recapitulate the clinical GFJ-

fexofenadine pharmacokinetic interaction, indicating that it is an inadequate model of the 

human condition.  
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Figure 4.4 Role of mOatp2b1 in fexofenadine disposition following grapefruit juice 

(GFJ) co-ingestion. Mean ± SEM plasma concentration-time curves of fexofenadine (1 

mg/kg) after oral administration with 200 µL phosphate-buffered saline (PBS) or 4x 

concentrated GFJ in wild-type (WT) (n = 7 for PBS and n = 5 for GFJ) and Oatp2b1-/- (n 

= 4 for PBS and n = 4 for GFJ) mice. 
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Table 4.2 Plasma pharmacokinetic parameters of fexofenadine (1 mg/kg) after oral 
administration with 200 µL phosphate-buffered saline (PBS) or 4x 
concentrated grapefruit juice (GFJ) in wild-type (WT) and Oatp2b1-/- mice. 

Data are presented as mean ± SEM. AUC0-3 is area under the plasma drug concentration-time curve from 

0 to 3 hours. Cmax is peak plasma drug concentration. Tmax is time to reach peak plasma drug 
concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 WT (C57BL/6)  Oatp2b1-/- 
Parameters PBS (n = 7) GFJ (n = 5) PBS (n = 4) GFJ (n = 4) 

AUC0-3 (ng�h/mL) 22.4 ± 2.10 21.6 ± 3.52 24.1 ± 4.44 22.7 ± 3.22 
Cmax (ng/mL) 18.0 ± 3.00 11.5 ± 1.00 18.4 ± 8.00 15.3 ± 3.03 

Tmax (h) 0.37 ± 0.16 0.82 ± 0.18 0.23 ± 0.10 0.60 ± 0.47 
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4.5 Effects of GFJ and AJ Co-Administration on 
Fexofenadine Pharmacokinetics in WT and Mdr1a-/- 
mice 

High Mdr1a efflux activity may be substantially more limiting to intestinal fexofenadine 

absorption in mice than in humans (Cvetkovic et al., 1999; Tahara et al., 2005; Smith and 

Gums 2009). This notion could explain the low oral fexofenadine bioavailability of less 

than 3% in mice a value much lower than that found in humans (33%) (Cvetkovic et al., 

1999; Tahara et al., 2005; Smith and Gums, 2009). Indeed, in the Mdr1a-/- mouse model, 

plasma fexofenadine levels have been previously reported to be 4-5 times higher than 

WT mice (Cvetkovic et al., 1999; Tahara et al., 2005). We therefore hypothesized that in 

normal WT mice, high Mdr1a efflux activity may mask the impact of inhibition of 

fexofenadine uptake transport by fruit juices. We anticipated that by eliminating 

significant efflux transport, the effects of fruit juice on oral fexofenadine bioavailability 

may be exaggerated and thus more evident than that observed in WT mice. To that end, 

we investigated the effect of GFJ and AJ on fexofenadine pharmacokinetics in WT and 

Mdr1a-/- mice. 

Mdr1a-/- mice exhibited a 2.75-fold increase in plasma fexofenadine exposure compared 

to WT mice when the drug was administered in PBS control vehicle (P<0.01), a result 

that is in agreement with previous reports (Cvetkovic et al., 1999) (Figure 4.5). This 

finding confirms the dominant role of P-gp in determining fexofenadine bioavailability in 

rodents. Concomitant ingestion of GFJ or AJ with fexofenadine did not significantly alter 

the AUC0-3, Cmax or Tmax in WT (CF-1) mice. Similarly, no difference in any 

pharmacokinetic parameter was observed in Mdr1a-/- mice following either juice intake 

(Figure 4.5) (Table 4.3). Overall, it appears that while Mdr1a is a major determinant of 
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fexofenadine bioavailability in vivo, the absence of its expression did not unmask a latent 

fexofenadine-fruit juice interaction to recapitulate the human situation. Current mouse 

models remain poorly reflective of the clinical fexofenadine-fruit juice interaction. 
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Figure 4.5 Role of Mdr1a in fexofenadine disposition following fruit juice co-ingestion. 

Mean ± SEM plasma concentration-time curves of fexofenadine (1 mg/kg) after oral 

administration with 200 µL phosphate-buffered saline (PBS), (A) 4x concentrated 

grapefruit juice (GFJ) or (B) 4x concentrated apple juice (AJ) in wild-type (WT) (n = 7 

for PBS, n = 7 for GFJ and n = 8 for AJ) and Mdr1a-/- (n = 9 for PBS, n = 7 for GFJ and n 

= 7 for AJ) mice. 

0 1 2 3
0

10

20

30

Time (hours)

Fe
xo

fe
na

di
ne

 C
on

ce
nt

ra
tio

n 
(n

g/
m

L)

WT + PBS

WT + GFJ

Mdr1a-/- + PBS

Mdr1a-/- + GFJ

0 1 2 3
0

5

10

15

20

25

Time (hours)

Fe
xo

fe
na

di
ne

 C
on

ce
nt

ra
tio

n 
(n

g/
m

L) WT + PBS
WT + AJ

Mdr1a-/- + PBS
Mdr1a-/- + AJ

A

B



 

72 

Table 4.3 Plasma pharmacokinetic parameters of fexofenadine (1 mg/kg) after oral administration with 200 µL phosphate-buffered 
saline (PBS), 4x concentrated grapefruit juice (GFJ) or 4x concentrated apple juice (AJ) in wild-type (WT) and Mdr1a-/- 

mice. 
 WT (CF-1) 

 

Mdr1a-/- 
Parameters PBS (n = 7) GFJ (n = 7) AJ (n = 8) PBS (n = 9) GFJ (n = 7) AJ (n = 7) 

AUC0-3 (ng�h/mL) 16.2 ± 3.51 14.5 ± 3.39 16.6 ± 2.44 43.6 ± 6.71** 52.2 ± 3.42 33.3 ± 6.84 
Cmax (ng/mL) 12.4 ± 3.46 7.55 ± 1.84 9.68 ± 1.61 19.8 ± 2.78 23.7 ± 1.46 17.5 ± 3.16 

Tmax (h) 0.66 ± 0.16 1.32 ± 0.26 1.08 ±  0.35 1.56 ± 0.33 1.72 ± 0.36 1.23 ± 0.37 
Data are presented as mean ± SEM. AUC0-3 is area under the plasma drug concentration-time curve from 0 to 3 hours. Cmax is peak plasma drug concentration. 
Tmax is time to reach peak plasma drug concentration. 
             **P<0.01 represents a significant difference from PBS treated WT mice.   
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4.6 GFJ Does Not Compromise Intestinal Mucosa 
Integrity 

The lack of observable changes to fexofenadine plasma concentrations upon fruit juice 

co-administration in mice, which differs from that observed in humans, may have 

resulted due to a potential impact of fruit juices on intestinal mucosa integrity. Intestinal 

epithelial cells form a protective barrier against the external environment through the use 

of tight junctions (Assimakopoulos et al., 2011). It is considered that drugs such as 

fexofenadine can only enter the systemic circulation through transcellular uptake via 

solute carriers in the apical and basolateral enterocyte membranes (Han et al., 2013). 

However, xenobiotics, dietary factors, enzymes and stress are factors that may disrupt 

intestinal tight junctions (Assimakopoulos et al., 2011). Damaged mucosal integrity 

increases intestinal permeability, leading to potential paracellular uptake of fexofenadine, 

a process independent of transport proteins. As such, a reduction in plasma drug levels 

due to inhibition of uptake transporters or induction of efflux transporters may be 

overcome and masked by increased bioavailability due to paracellular absorption.  

To explore the possibility that fruit juices caused intestinal mucosa damage, an intestinal 

permeability test was performed in WT and Mdr1a-/- mice. Here, the cell-impermeable 

compound, FITC-dextran, was orally administered to mice and differences in plasma 

concentrations served as an indicator of altered intestinal paracellular transport. No 

significant difference was observed in plasma FITC-dextran concentrations between PBS 

control and GFJ treatments in WT mice (Figure 4.6). Likewise, GFJ did not significantly 

affect FITC-dextran plasma levels in Mdr1a-/- mice. Furthermore, plasma FITC-dextran 

concentrations were not significantly different between WT and Mdr1a-/- mice (Figure 
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4.6). These results suggest that the administered GFJ does not alter intestinal tight 

junctions. Furthermore, the plasma fexofenadine exposure differences that were observed 

between WT and Mdr1a-/- mice were not related to differences in intestinal paracellular 

permeability.  
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Figure 4.6 Effect of grapefruit juice (GFJ) on intestinal permeability. Mean ± SEM 

plasma concentration of FITC-dextran (600 mg/kg) after oral administration with 200 µL 

phosphate-buffered saline (PBS) or 4x concentrated GFJ in wild-type (WT) (n = 4 for 

PBS and n = 4 for GFJ) and Mdr1a-/- (n = 3 for PBS and n = 4 for GFJ) mice. 
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4.7 Flavonoids are Minimally Absorbed in Mice 

In humans, the site of the fruit juice-fexofenadine interaction has been localized to the 

intestine, as fruit juices do not change fexofenadine t1/2 or clearance. This implies that 

fruit juice flavonoids do not affect the activity of transport proteins in excretory organs 

such as the kidney and liver. Furthermore, it suggests that fruit juice flavonoids do not 

enter the circulation at appreciable levels to influence fexofenadine elimination pathways. 

To determine if this is in fact the case, we attempted to measure the concentrations of 

administered flavonoids after GFJ and AJ consumption in the mouse fexofenadine 

pharmacokinetics studies at the final time point plasma sample (3 hours post juice 

administration).  

We were unable to detect any flavonoids (naringen, narirutin, naringenin, hesperidin, 

neohesperidin, hersperitin, quercetin, kaempferol, phloridzin and phloretin) in mouse 

plasma. Therefore, orally administered flavonoids are not likely present at sufficient 

circulating concentrations to modulate the activity of transport proteins in the kidney and 

liver. In mice, the fruit juice flavonoids would appear to impact fexofenadine 

pharmacokinetics only in the gut.  
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5.1 Summary of Main Findings 

Although several intestinal drug transporters are proposed mediators of FJDIs involving 

non-metabolized drugs such as fexofenadine, the exact transport proteins involved in vivo 

and the mechanistic basis of the effect remains unclear. Our working hypothesis is that 

GFJ and AJ limit the absorption of fexofenadine through their interactions with specific 

intestinal transporters.  

In Aim 1, we evaluated candidate gut transporters and their mouse orthologs involved in 

the fruit juice-fexofenadine interaction. Here, we hypothesized that in addition to the 

previously suspected transporters, OATP1A2 and OATP2B1, other intestinal transport 

proteins involved in this food-drug effect exist. Using in vitro transporter screens, we 

confirmed that OATP1A2 and OCT1 are intestinal fexofenadine transporters (Cvetkovic 

et al., 1999; Dresser et al., 2002; Glaeser et al., 2007; Ming et al., 2011). However, we 

did not find OATP2B1 to be a fexofenadine transporter, contrary to findings by other 

investigators. Furthermore, we demonstrated that not only was OATP1A2 transport of 

fexofenadine subject to fruit juice inhibition as previously reported, but also potentially 

affected was OCT1, suggesting that this transporter may be a new player in FJDIs. One 

of our most important findings was the identification of OSTα/β as a novel potential 

contributor to the fruit juice-fexofenadine interaction as we showed for the first time that 

it transports fexofenadine and is likely inhibited by GFJ in vitro. In support of studies 

aimed to assess the mouse as a model for FJDIs, we have described for the first time that 

mOatp1a1, mOatp1a4, mOatp2b1, mOct1 and mOstα/β, murine orthologs of human 

intestinally expressed fexofenadine transporters, are also functional fexofenadine solute 

carriers that are subject to fruit juice inhibition to varying degrees. Interestingly, 
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mOatp2b1, mOct1, mOstα and mOstβ, but not mOatp1a1 and mOatp1a4 mRNAs are 

expressed in the small bowel of mice (Cheng et al., 2005; Fu et al., 2016). Together, 

these findings predicted that mOatp2b1 and mOct1 could contribute to fexofenadine 

absorption in mice, while minimizing the potential roles for mOatp1a1 and mOatp1a4. In 

vitro, GFJ inhibited all identified fexofenadine transporters, whereas AJ was only able to 

elicit inhibitory effects on OATP1A2. This differential fruit juice effect may be explained 

by the unique flavonoid composition of each juice that we characterized by LC-MS/MS. 

Overall, these results support the hypothesis that in addition to the current suspected 

OATPs, other intestinal transport proteins may be involved in this food-drug effect, 

namely OCT1 and OSTα/β.  

In Aim 2, we characterized the mouse as an in vivo model for the fruit juice-fexofenadine 

interaction and investigated the in vivo role of mOatp2b1 in this food-drug effect. It was 

hypothesized that mice would faithfully recapitulate the human fruit juice-fexofenadine 

interaction. Furthermore, the FJDI would be mediated through inhibition of mOatp2b1 by 

GFJ. However, we showed that mice do not recapitulate the human FJDI as GFJ co-

administration resulted in no change to plasma fexofenadine exposure in WT mice. 

Contradicting in vitro and gene expression findings obtained in Aim 1, studies in 

knockout mice revealed that mOatp2b1 was not a significant contributor to fexofenadine 

oral absorption and that this transporter was not involved in FJDIs in vivo. In an attempt 

to unmask fruit juice effects on uptake transporters, we eliminated the significant 

intestinal efflux activity of Mdr1a by conducting fruit juice-fexofenadine 

pharmacokinetic experiments in Mdr1a-/- mice and its corresponding background strain 

(CF-1) as control. Indeed, we found that Mdr1a is a substantial contributor to 
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fexofenadine bioavailability and plasma levels in mice (Cvetkovic et al., 1999; Tahara et 

al., 2005). However, its dominant activity in the gut did not mask the effect of fruit juices 

on uptake fexofenadine transporters as GFJ and AJ co-ingestion did not alter 

fexofenadine pharmacokinetics in Mdr1a-/- mice. Additionally, the lack of fruit juice 

effect in mice was not due to changes in intestinal paracellular permeability resulting 

from GFJ administration. Overall, the findings from the in vivo studies did not support 

the hypothesis that the mouse is a good model for FJDIs. 

5.2 The Intestine as the Site of FJDIs 

The mechanisms of FJDIs involving non-metabolized drugs have been extensively 

studied and debated over the last decade and a half. In the initial report in 2002, Dresser 

and colleagues localized this food-drug effect to the site of intestinal drug absorption as 

GFJ and AJ co-ingestion elicited no effects on fexofenadine t1/2 and renal clearance. Since 

then, this idea that FJDIs is mediated through an intestinal mechanism has become 

entrenched as subsequent clinical studies by Dresser et al., (2005), Bailey et al., (2007), 

Glaeser et al., (2007), Won et al., (2013) and Akamine et al., (2014) have all observed 

this lack of change in pharmacokinetic parameters describing of systemic drug 

elimination with fruit juice co-intake. Evidence gathered from this thesis adds further 

support for this notion. We found that in mice, flavonoids, the presumed transporter 

inhibitors in fruit juices, were not detected in plasma post juice administration. This 

suggests that these key constituents would not have the potential to act on transporters in 

the liver and kidneys, organs of drug elimination, as they are not readily absorbed into 

circulation to reach these distal sites at sufficient concentrations to affect fexofenadine 

clearance. This finding is consistent with the fact that the major fruit juice flavonoids are 
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glycosides that may be too hydrophilic to be absorbed by passive diffusion (Oteiza et al., 

2005). Therefore, interactions with transporter proteins likely occur prior to systemic 

absorption, in the intestine. The aglycone-type flavonoids in fruit juices are thought to be 

absorbed, but they are rapidly metabolized by glucuronidation during first-pass through 

the intestine and liver (Lee and Reidenberg, 1998). Since we did not measure these 

flavonoid metabolites in blood, it cannot be entirely ruled-out that some metabolized 

components of fruit juices are present in circulation to alter drug elimination in liver and 

kidney. However, it should be noted that should flavonoids or its metabolites be present 

at sufficient concentrations systemically, their effects on transport proteins would have to 

be stimulatory as opposed to their well accepted inhibitory effects, in order to cause a 

decrease in plasma drug exposure.  

While the current results have shed some new insights into the molecular basis of this 

FJDI, no clear and compelling mechanisms have yet emerged. In fact, findings presented 

by this thesis reduce support that OATP1A2 and OATP2B1 are the key transporters 

involved. Furthermore, our results have provided support for additional players in the 

fruit juice-fexofenadine interaction, namely OSTα/β and OCT1. Consequently, it 

becomes more plausible that fruit juices interact with multiple fexofenadine uptake and 

efflux transporters resulting in a complex pharmacokinetic interplay.  
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5.3 Evidence to Support or Contradict a Role for 
Specific Intestinal Transporters in Fruit Juice-
Fexofenadine Interactions  

5.3.1 OATP1A2 

5.3.1.1 Supportive Evidence 

OATP1A2 was the first proposed mediator of the fruit juice-fexofenadine interaction. 

Repeatedly, in vitro studies have shown that fexofenadine is an excellent substrate of the 

drug transporter (Cvetkovic et al., 1999; Dresser et al., 2002; Bailey et al., 2007; Glaeser 

et al., 2007; Won et al., 2013). Furthermore, influx of the antihistamine is inhibited by 

GFJ, AJ and GFJ flavonoids naringin and hesperidin in cellular OATP1A2 expression 

systems (Dresser et al., 2002; Bailey et al., 2007; Won et al., 2013). In support of its role 

in FJDIs, our findings confirmed OATP1A2-mediated fexofenadine transport and fruit 

juice inhibition in a HeLa cell model. As such, the OATP transporter is a candidate 

mediator of FJDIs owing to strong in vitro support.   

5.3.1.2 Contradictory Evidence 

In spite of convincing in vitro evidence, the in vivo role of OATP1A2 remains highly 

debated. Much of this is due to heterogeneity in reports regarding the mRNA and protein 

expression of this membrane transporter in the small intestine. Recent studies using 

highly sensitive and accurate methods such as targeted proteomics favor the absence of 

OATP1A2 protein in human small bowel (Nishimura and Naito, 2005; Hilgendorf et al., 

2007; Meier et al., 2007; Eechoute et al., 2011; Drozdzik et al., 2014). To further 

disqualify its involvement, a study found that intestinal fexofenadine oral absorption was 

not altered in Oatp1a/1b KO mice when compared to WT mice, implying minimal roles 

of mouse OATP1A2 orthologs in facilitating fexofenadine uptake from the gut (van de 
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Steeg et al., 2010). Finally, while our findings demonstrate that mOatp1a1 and mOatp1a4 

are fexofenadine transporters and are functionally inhibited by fruit juices in vitro, studies 

have repeatedly shown that they are not expressed in the mouse small intestine (Cheng et 

al., 2005; Fu et al., 2016). If these results for mouse transporters translate to humans, an 

in vivo role of OATP1A2 in FJDIs would seem unlikely.   

5.3.2 OATP2B1 

5.3.2.1 Supportive Evidence 

Recent literature reports have focused on OATP2B1 as the primary facilitator of FJDIs. 

While we were unable to demonstrate fexofenadine uptake by OATP2B1 using a HeLa 

cell expression system, similar to Glaeser et al. (2007), fexofenadine was found to be a 

transport substrate of this OATP by other research groups using the Xenopus laevis 

oocyte expression system (Nozawa et al., 2004; Imanaga et al., 2011; Shirasaka et al., 

2011; Shirasaka et al., 2013b; Akamine et al., 2014; Akamine, 2015). In other expression 

systems, GFJ and AJ dramatically inhibited fexofenadine influx by the OATP2B1 

transporter (Imanaga et al., 2011; Shirasaka et al., 2013b). There is also in vivo support 

for the role of OATP2B1 in the fruit juice-fexofenadine interaction. First, OATP2B1 is 

unquestionably expressed in the small intestine, where the food-drug effect is localized 

(Kobayashi et al., 2003; Nishimura and Naito, 2005; Meier et al., 2007; Drozdzik et al., 

2014). Second, Imanaga et al. (2011) examined the AJ-fexofenadine interaction in a 

cohort of individuals harboring the reduced function SLCO2B1 c.1457C>T genetic 

polymorphism. They found that individuals with the variant allele experienced lower 

fexofenadine exposure when the drug was taken alone and a less dramatic change to 

fexofenadine AUC when the drug was taken with AJ in comparison to individuals 
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carrying WT alleles. Taken together, it appears that fexofenadine is an in vivo substrate of 

OATP2B1 and that the AJ-fexofenadine effect is mediated in part by the inhibitory 

interaction of AJ with intestinal OATP2B1.  

5.3.2.2 Contradictory Evidence 

Despite persuasive in vitro and clinical support, our novel results reduce support for the 

mechanistic involvement of OATP2B1 in the fruit juice-fexofenadine interaction. We 

presented new findings that mOatp2b1 is an in vitro fexofenadine transporter and 

experiences inhibition by GFJ. mOatp2b1 mRNA is detected at appreciable amounts in 

the mouse small intestine (Cheng et al., 2005; Fu et al., 2016). Therefore, based on the in 

vitro findings and expression reports, we presumed that a fruit juice-drug interaction in 

the mouse model would be mediated by mOatp2b1 in vivo. Unexpectedly, fexofenadine 

exposure in Oatp2b1-/- mice was not significantly different from WT mice. Furthermore, 

GFJ co-intake did not alter fexofenadine pharmacokinetics in WT or Oatp2b1-/- mice. 

Together, we demonstrated that despite in vitro transport and inhibition results and 

reported expression data that all pointed towards the potential involvement of mOatp2b1 

in vivo, this Oatp transporter does not play a significant role in neither fexofenadine 

absorption nor the GFJ-fexofenadine interaction. The in vitro-in vivo disconnect revealed 

by our results calls into question the presumed role of OATP2B1 in clinical FJDIs.  

5.3.3 OCT1 

5.3.3.1 Supportive Evidence 

As OCT1 is localized to the apical membrane of intestinal epithelial cells, it has become a 

contender in the FJDI mechanism (Han et al., 2013). Results from our experiments 

confirmed that OCT1 mediates fexofenadine transport in vitro (Glaeser et al., 2007). 
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Furthermore, we showed for the first time that transport of the antihistamine by the 

membrane protein is likely inhibitable by GFJ in a cellular expression model. OCT1 has 

also been implicated in the atenolol–AJ interaction. Mimura et al., (2015) found that the 

beta-blocker was an OCT1 substrate and that transport could be inhibited by the AJ 

flavonoids phloretin and quercetin. In our experiments, we did not observe AJ inhibition 

of OCT1-mediated fexofenadine cellular uptake. This discrepancy can be attributed to the 

5% normal strength AJ used in our experiments which translates to nanomolar 

concentrations of phloretin and quercetin, rather than the micromolar levels used by 

Mimura and colleagues. Therefore, there is some in vitro support for OCT1 as a 

candidate mediator of FJDIs.  

5.3.3.2 Contradictory Evidence 

We found that mOct1 was an in vitro fexofenadine transporter that could be inhibited by 

GFJ. Moreover, the solute carrier is localized to the apical membrane of mouse small 

bowel epithelial cells (Han et al., 2013). Thus, it was reasonable to presume that there 

could be a GFJ-fexofenadine interaction in mice that occurs at the level of intestinal 

mOct1 (Han et al., 2013). However, no pharmacokinetic interaction was observed, 

suggesting that mOct1 does not facilitate fexofenadine absorption in mice. These results 

further highlight the many in vitro-in vivo disconnects that complicate our ability to 

establish mechanisms.  

5.3.4 OSTα/β 

5.3.4.1 Supportive Evidence 

We propose OSTα/β as a novel candidate transporter involved in fruit juice-fexofenadine 

interactions because it transports fexofenadine and is inhibited by GFJ in vitro. 
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Furthermore, its localization to the basolateral membrane of enterocytes implies that it 

may promote the vectorial movement of fexofenadine for absorption across the 

enterocyte in vivo and can potentially interact with inhibitory fruit juice components 

(Ballatori et al., 2005). 

5.3.4.2 Contradictory Evidence 

Since OSTα/β is responsible for bile acid reabsorption in the gut, it follows that this 

transporter could promote fexofenadine oral absorption (Ballatori et al., 2005). This 

possibility is somewhat weakened by the fact that OSTα/β is expressed largely in the 

ileum and therefore it would represent a pathway for the late-in-time absorption of 

fexofenadine (Ballatori et al., 2005). However, oral fexofenadine is significantly 

absorbed in the proximal (duodenum) and medial (jejunum) regions of the small intestine 

(Smith and Gums, 2009). Importantly, plasma pharmacokinetic profiles indicate that the 

fruit juice-fexofenadine interaction occurs shortly after co-administration, inconsistent 

with mechanisms involving the distal small intestine. Moreover, because OSTα/β is 

expressed on the basolateral ileocyte membrane, flavonoids require traversal of the brush 

border membrane of enterocytes to have access to the transporter. However, most fruit 

juice components have very poor membrane permeability that likely limits their ability to 

interact as sufficient levels to inhibit OSTα/β (Oteiza et al., 2005). This poor passive 

membrane permeability is evidenced by the lack of detectable flavonoids in the plasma of 

mice administered fruit juices.  On the other hand, non-glycoside flavonoids are 

membrane permeable and in fact, several gut transporters including OATP1A2, 

OATP2B1 and OCT1 can drive the cellular uptake of quercetin (Glaeser et al., 2014). 

These types of flavonoids are more likely to interact with OSTα/β. 
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5.4 Future Studies 

5.4.1 In Vivo Role for OCT1 and OSTα/β 

Our findings have implicated the involvement of two new candidate transporters, OCT1 

and OSTα/β, in the fruit juice-fexofenadine interaction. Although we have provided in 

vitro support for their roles, much like current proposed mediators, their in vivo 

contributions remain to be elucidated. Luckily, transporter KO mouse models exist for 

mOct (Oct1-/-) and mOstα (Ostα-/-) which may be used to address this knowledge gap 

(Jonker et al., 2001; Soroka et al., 2010). It is notable that because mOstα/β function as a 

heteromeric complex, KO of mOstα results in the dramatic reduction of mOstβ protein 

expression in the gastrointestinal track of mice, sufficiently eliminating mOstα/β function 

(Rao et al., 2008). Future fexofenadine pharmacokinetic interaction studies with GFJ and 

AJ should be performed in these transporter KO mice to determine their in vivo roles in 

drug absorption and the FJDI. Additionally, it may be beneficial to generate dual 

transporter KO mice, combining Mdr1a with a suspected transporter to minimize 

dominant efflux activity. 

5.4.2 Do Fruit Juices Stimulate Apical Efflux Transporter Activity in 
the Gut? 

One of the earliest proposed mechanisms for FJDIs involving intestinal transporters was 

the possibility that GFJ could “activate” P-gp (Soldner et al., 1999). Such stimulation of 

P-gp on the apical enterocyte membrane would result in reduction of oral bioavailability 

of both metabolized and non-metabolized drugs. However, this notion has since been 

dismissed as fruit juices and their associated flavonoids have mostly been found to inhibit 

P-gp (Takanaga et al., 1998; de Castro et al., 2007; Shirasaka et al., 2010). Another more 
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likely possibility is that fruit juices stimulate the activity of apically-expressed MRP2 in 

the gastrointestinal tract. We found that fexofenadine is a likely transport substrate of 

MRP2 (Appendix B: Identification of Fexofenadine Apical Efflux Transporters, 

Supplementary Figure 3) and many compounds have been found to stimulate MRP2 

activity in a species-specific manner (Lagas et al., 2009). Moreover, flavonoids and their 

metabolites are well-known substrates of MRP2 (Morris and Zhang, 2006).  Therefore 

future studies should examine whether fruit juices and their individual constituents 

stimulate the activity of apical fexofenadine efflux transporters in the gut such as MRP2. 

5.4.3 Are Unknown Fexofenadine Transporters Involved? 

We found that the clinical fruit juice-fexofenadine interaction could not be reproduced in 

mice. While disappointing, such species differences may however provide some clues to 

the FJDI mechanism. It is possible that the fruit juice-fexofenadine interaction may be 

attributed to the existence of unknown transport proteins. For instance, humans may 

possess a currently unrecognized fexofenadine transporter that is not found in mice 

through which the FJDI is mediated. It is also plausible that there exists an unknown 

fexofenadine transporter found in both humans and mice that is subject to human-specific 

inhibition by fruit juices. In light of the fact that we already find fexofenadine as a 

substrate of numerous uptake and efflux transporters located on the apical and basolateral 

membranes of intestinal epithelial cells, the possibility arises that the unknown 

transporter(s) actually represent the major pathway for oral absorption and modulation by 

fruit juices. We also showed that while GFJ significantly inhibited the activity of all 

tested fexofenadine transporters, AJ only elicited inhibitory effects on OATP1A2-

mediated drug uptake, signifying a differential effect of fruit juices in vitro. However, it 
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is well established that clinically, both GFJ and AJ are capable of mediating the FJDI, if 

not to a greater extent by AJ. This disconnect between in vitro and in vivo findings 

suggest that AJ may interact with unknown fexofenadine transporters to mediate its effect 

on drug exposure. Future studies should therefore be conducted to identify these 

unrecognized membrane proteins. For instance, a functional cloning approach which 

involves a process of RNA fractionation followed by heterologous expression and 

evaluation of fexofenadine transport activity may be used to discover novel transporters. 

Another strategy would be large scale cloning of candidate solute carriers expressed in 

the intestine based on human genome data and known cDNA sequences, followed by in 

vitro characterization of fexofenadine transport activity. Finally, a genome-wide 

association study examining individuals with unusually low and high fexofenadine levels 

is a human genetic approach to identifying unknown fexofenadine transport proteins.  

5.4.4 What are the Other Fruit Juice Constituents that Act as In 
Vivo Modulators of Fexofenadine Absorption? 

While we have some knowledge of the fruit juice constituents responsible for eliciting 

transporter mediated-FJDIs, most studies have examined the effects of single flavonoids 

on individual transport protein activity in vitro. This however, does not reflect the 

collective effect of each flavonoid on the complement of intestinal transporters in vivo. 

For instance, quercetin has been shown to inhibit the activities of OATP2B1 and OCT1 

in cellular models. However, a human pharmacokinetic study revealed that quercetin co-

administration resulted in an increase in fexofenadine exposure, a result that is opposite 

to what in vitro data would suggest. This demonstrated that although quercetin has an 

clear effect on in vitro drug transport, it does not decisively contribute to the effect in 
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vivo (Kim et al., 2009). Consequently, there is a need to better characterize the essential 

fruit juice components involved in transporter mediated FJDIs. This may be 

accomplished by conducting clinical fexofenadine pharmacokinetic interaction studies 

with individual flavonoids similar to those performed by Bailey et al. (2007) for naringin 

and Kim et al. (2009) for quercetin.  

5.5 Conclusions 
FJDIs involving non-metabolized drugs are a cause of altered drug exposure leading to a 

potential loss of therapeutic efficacy. Understandably, this food-drug effect has become a 

growing concern for its impact on optimal patient therapy and safety. While several 

transporter mediators have been proposed, the underlying mechanistic basis remains 

unclear. The overall goal of this thesis was to elucidate the specific intestinal transporters 

involved in this food-drug interaction. We found evidence for a growing complement of 

intestinal fexofenadine transporters and the effect of fruit juices on their activity in vitro. 

Moreover, we characterized mouse transporter orthologs of human intestinal 

fexofenadine transport proteins as the groundwork for targeted studies in this rodent 

model. In our experiments in mice, we found that this species does not recapitulate 

human FJDIs. Finally, while mOatp2b1 appeared to be a potential mediator of FJDIs 

based on convincing in vitro and gene expression results, we demonstrated using 

Oatp2b1-/- mice that the transporter does not contribute to the effect in vivo. Overall, 

while our results have not revealed that a single convincing mechanism exists, we have 

provided evidence to suggest complex interactions among multiple intestinal transporters 

with fruit juices is responsible for the observed pharmacokinetic interactions. We expect 

that a better understanding of the precise mechanisms behind transporter mediated-FJDIs 
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will allow for the provision of safer and more effective pharmacotherapy as well as allow 

for more rational drug design.  
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Appendix A: Transfection Validation 

 

Methods 

 Transport Study 

The success of HeLa cell transfection as determined by functional activity were evaluated 

for mOatp1a1, mOatp1a4, mOatp1a6, OATP2B1, mOatp2b1 and mOct1 using transport 

studies conducted according to methods outlined in Section 3.4.2 and by Cvetkovic et al., 

(1999). Greater uptake of well-established drug substrates, namely [3H]-estrone 3-sulfate 

(E1S) for mOatp1a1 and mOatp1a4, [3H]-taurocholic acid (TCA) for mOatp1a6, [3H]-

rosuvastatin for OATP2B1 and mOatp2b1 and [14C]-tetraethylammonium (TEA) for 

mOct1, by cells overexpressing these transporters versus control cells (transfection with 

blank expression plasmids) validated transfection and served as positive controls for 

transport function (Jonker et al., 2003; Ho et al., 2006; Gong et al., 2011; Tian et al., 

2015). In brief, the drug dose, which consisted of radiolabelled E1S, TCA, rosuvastatin or 

TEA and their unlabeled drug (100 µM) dissolved in PBS when evaluating OATP2B1 

and mOatp2b1 transport or KHB for all other transporters at pH 6 or pH 7.5 for mOct1, 

was applied to cultured cells for 30 min at 37°C, 5% CO2. Subsequently, cells were 

washed with ice-cold PBS, lysed and intracellular radioactivity was determined by liquid 

scintillation spectrometry. 

Immunofluorescence Microscopy 

Another indicator of transfection success is the appropriate localization of protein. In the 

HeLa cell model, mOatp2b1 is expected to be expressed in the plasma membrane in order 

to facilitate intracellular drug accumulation. To validate localization, HeLa cells were 
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grown on 4-well culture slides (seeding density of 2.5 x 105 cells/well) at 37°C, 5% CO2 

for 48 hours. Cells were transfected with blank expression plasmids (control) or 

expression plasmids containing mOatp2b1 cDNA (1 µg DNA/well). After 48 hours, cells 

were fixed with ice-cold 70% methanol in water (v/v) for at -20°C for 10 min. 

Subsequently, 0.3% Triton X-100 in PBS (v/v) was used to permeabilize cells at RT and 

blocking was performed using 2% bovine serum albumin in PBS (w/v) at RT for 30 min. 

Cells were exposed to a custom-made rabbit polyclonal mOatp2b1 antibody (Invitrogen) 

using a 1:200 dilution in PBS containing 0.05% v/v Tween-20 (PBST) at RT. At 1-hour 

post incubation, cells were washed using PBST and subjected to Alexa Fluor 488 anti-

rabbit secondary antibody (Invitrogen) using a 1:200 dilution in PBST at 37°C for 30 

min. Following a final wash using PBST, cells were mounted using VECTASHIELD 

Medium containing 4', 6-diamidino-2-phenylindole (DAPI) counterstain (Vector 

Laboratories; Burlington, ON) and imaged by fluorescence microscopy (Nikon Eclipse; 

Nikon Instruments Inc.; Melville, NY). 
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Results 

 
Supplementary Figure 1. Transport of well established drug substrates by HeLa cells 

expressing human and mouse intestinal uptake transporters. HeLa cells transiently 

transfected with intestinal uptake transporters were evaluated for intracellular 

accumulation of [3H]-estrone 3-sulfate (E1S), [3H]-taurocholic acid (TCA), [3H]-

rosuvastatin and [14C]-tetraethylammonium (TEA) (100 µM) at pH 6 or pH 7.5 for 

mOct1 following a 30-minute incubation period. Data are expressed as percent of vector 

control, mean ± SEM, n = 1 for mOatp1a6 and mOct1 and n = 2 for all other transporters. 
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 A       B 

 

Supplementary Figure 2. Plasma membrane localization of mOatp2b1 as demonstrated 

by immunofluorescence. HeLa cells transiently transfected with blank expression plasmid 

as control (A) or mOatp2b1 expression plasmid (B) were stained with DAPI for nuclei 

localization (blue) and Alexa Fluor 488 for mOatp2b1 localization (green).   
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Appendix B: Identification of Fexofenadine Apical Efflux 
Transporters 

 

Methods 

Transient transfection of HeLa cells was performed using Lipofectamine 3000 as 

described in Section 3.4.1.  Double transfections were performed where each efflux 

transporter was expressed with an uptake transporter or blank plasmid at a 1:4 ratio of 

uptake transporter/empty vector to efflux transporter (1 µg DNA/well total). 

Fexofenadine transport studies were conduced as outlined by Section 3.4.2.  

Results 

To examine fexofenadine transport activity by human apical efflux transporters, a dual 

overexpression system was used where each efflux transporter was expressed in the 

presence and absence of human OATP1A2. OATP1A2 was used to drive fexofenadine 

into cultured HeLa cells to allow for modulation of drug accumulation by P-gp, BCRP 

and MRP2 mediated efflux. A reduction in cellular fexofenadine levels in cells that co-

expressed both OATP1A2 and an efflux transporter when compared to cells only 

expressing OATP1A2 would indicate fexofenadine transport by the expressed efflux 

protein. We found that fexofenadine is a substrate of P-gp and MRP2 and perhaps BCRP, 

in agreement with the literature (Supplementary Figure 3) (Cvetkovic et al., 1999; 

Akamine et al., 2010; Ming et al., 2011). However, no strong conclusions can be made 

from these results and no statistical analysis was performed as the efflux transport 

experiment was conducted on one occasion (n = 1) with technical replicates.  
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Supplementary Figure 3. Fexofenadine transport by HeLa cells expressing human 

intestinal apical efflux transporters. HeLa cells transiently transfected with OATP1A2 

and/or human apically localized efflux transporters were evaluated for intracellular 

accumulation of [3H]-fexofenadine (0.1 µM) at pH 6 following a 30-minute incubation 

period. The presence (+) or absence (-) of transporter expression in HeLa cells is shown 

below and data are expressed as percent of vector control, mean ± SEM of triplicates (n = 

1). 
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Appendix C: Expression of Fexofenadine Transporters in 

Mouse Small Intestine 

 

Methods 

Liver, kidney and small intestinal mucosa (scraped from the duodenum, jejunum and 

ileum) were harvested from C57BL/6, Oatp2b1-/-, CF-1 and Mdr1a-/- mice, placed in 

TRIzol Reagent (Thermo Fisher Scientific) and stored at -20oC until RNA extraction. 

Tissues were homogenized and total RNA was isolated according to manufacturer’s 

instructions (TRIzol). cDNA was synthesized from 2 µg total RNA by MultiScribe 

Reverse Transcriptase with random hexamer primers (Thermo Fisher Scientific). SYBR 

green-based (Thermo Fisher Scientific) qPCR (Applied Biosystems ViiA 7) was 

performed using generated cDNA to determine the relative mRNA expression of mouse 

uptake and efflux transporters using primers listed in Supplementary Table 1. 

Transporter expression was normalized to 18S ribosomal RNA (TaqMan-based qPCR) 

(Thermo Fisher Scientific). Analyses were performed in triplicates per transporter per 

tissue and relative gene expression was calculated by the ΔΔCT method. 
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Supplementary Table 1. Primer sequences for qPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Forward Primer Reverse Primer 

mOatp1a1 5'-ACTCCCATAATGCCCTTGG-3’ 5’-TAATCGGGCCAACAATCTTC-3’ 

mOatp1a4 5’-CCCAGAGCTCTCCAGTTTTG-3’ 5’-TCCCATGTTGTTCTTCTGATTG-3’ 

mOatp2b1 5’-CTTCATCTCAGAACCATACC-3’ 5’-ACTGGAACAGCTGCCATTG-3’ 

mOct1 5’-GGGTGTACGACACTCCCG-3’ 5’-GCCCAAGTTCACACAGGACT-3’ 

Mdr1a 5’-CTCTTTGACTCGGGAGCAGAA-3’ 5’-CGGAAACAAGCAGCATAAGAAA-3’ 

mMrp2 5’-CTGAGTGCTTGGACCAGTGA-3’ 5’-CAAAGTCTGGGGGAGTGTGT-3’ 

mOstα 5’-TACAAGAACACCCTTTGCCC-3’ 5’-CGAGGAATCCAGAGACCAAA-3’ 

mOstβ 5’-GTATTTTCGTGCAGAAGATGCG-3’ 5’-TTTCTGTTTGCCAGGATGCTC-3’ 
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Results 

In Section 4.3, we demonstrated that several mouse orthologs of human intestinal 

transporters are functional in vitro fexofenadine transport proteins and are subject to 

inhibition by fruit juices. To understand the potential relevance of these findings to in 

vivo FJDIs, expression of these transporters in the mouse small intestine must be 

confirmed in the mouse strains used in our experiments. Therefore, by qPCR, we 

examined the mRNA expression of mouse fexofenadine transporters in mucosal 

scrapings from various sections of the small bowel of all mouse strains (CF-1, Mdr1a-/- 

[CF-1 background], C57BL/6 and Oatp2b1-/- [C57BL/6 background]) used in subsequent 

in vivo fruit juice-fexofenadine interaction experiments. Intestinal expression of 

transporters was compared to liver and kidney. Analyses were conducted in triplicate 

with one mouse tissue sample per mouse strain.  

In accordance with reports by Cheng et al. (2005) and Fu et al. (2016), the fexofenadine 

transporters mOatp1a1 and mOatp1a4 were not expressed along the small intestine of all 

4 mouse strains. Consequently, these results rule out these mouse Oatp1a transporters as 

mediators of a fruit juice-fexofenadine effect in this species. Analogous to its human 

ortholog, there was intestinal expression of mOatp2b1 in CF-1, Mdr1a-/- and C57BL/6 

mice. As expected, mOatp2b1 mRNA was not detected in the Oatp2b1-/- mouse. mOct1 

mRNA was expressed across all small intestinal sections as was recently reported by Fu 

et al. (2016) (Supplementary Figure 4).  

Mdr1a was expressed in all intestinal mucosa sections, with the exception of Mdr1a-/- 

mice as expected. mMrp2 and mOstα was detected along the small intestine across all 
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strains. Finally, with the exception of the CF-1 duodenum, mOstβ was expressed in all 

small intestinal mucosa sections in all strains of mice (Supplementary Figure 5).  

Overall, our expression results agree with the current literature. The combination of in 

vitro transport activity and inhibitory profiles by fruit juices, together with gene 

expression findings predict that mOatp2b1 and mOct1 could mediate a fruit juice-

fexofenadine interaction in mice.  
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Supplementary Figure 4. mRNA expression of fexofenadine uptake transporters in 

mouse small intestine. Gene expression of uptake transporters was measured by real-time 

PCR in liver, kidney, and mucosal scrapings of the duodenum, jejunum and ileum of CF-

1 (wild-type) and its corresponding knockout mouse Mdr1a-/- and C57BL/6 (wild-type) 

and its corresponding knockout mouse Oatp2b1-/-. Values are relative to CF-1 liver and 

data are presented as mean ± SEM of triplicates, n = 1 per strain. 
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Supplementary Figure 5. mRNA expression of fexofenadine efflux transporters in 

mouse small intestine. Gene expression of efflux transporters was measured by real-time 

PCR in liver, kidney, and mucosal scrapings of the duodenum, jejunum and ileum of CF-

1 (wild-type) and its corresponding knockout mouse Mdr1a-/- and C57BL/6 (wild-type) 

and its corresponding knockout mouse Oatp2b1-/-. Values are relative to CF-1 liver and 

data are presented as mean ± SEM of triplicates, n = 1 per strain. 
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Appendix D: Animal Use Protocol Approval 

 

 

 
 
2014-012::1: 
AUP Number: 2014-012 
AUP Title: Interaction of medications and diet in Oatp1b2 KO animals 
Yearly Renewal Date: 07/01/2015 
The YEARLY RENEWAL to Animal Use Protocol (AUP) 2014-012 has been approved, 
and will be approved for one year following the above review date. 
 

1. This AUP number must be indicated when ordering animals for this project.  
2. Animals for other projects may not be ordered under this AUP number.  
3. Purchases of animals other than through this system must be cleared through the ACVS 

office.�Health certificates will be required.  
 

REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this 
protocol, are familiar with the contents of this document. 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional safety 
standards and have received all necessary approvals. Please consult directly with your institutional 
safety officers. 
Submitted by: Kinchlea, Will D 
on behalf of the Animal Use Subcommittee 
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2014-012::1: 
AUP Number: 2014-012 
AUP Title: Interaction of medications and diet in Oatp1b2 KO animals 
Yearly Renewal Date: 07/01/2015 
The YEARLY RENEWAL to Animal Use Protocol (AUP) 2014-012 has been approved, 
and will be approved for one year following the above review date. 
 

1. This AUP number must be indicated when ordering animals for this project.  
2. Animals for other projects may not be ordered under this AUP number.  
3. Purchases of animals other than through this system must be cleared through the ACVS 

office.�Health certificates will be required.  
 

REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this 
protocol, are familiar with the contents of this document. 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional safety 
standards and have received all necessary approvals. Please consult directly with your institutional 
safety officers. 
Submitted by: Kinchlea, Will D 
on behalf of the Animal Use Subcommittee 
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