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INTRODUCTION 
 
The active use of composite materials to 
address various production challenges requires 
new approaches to describe their behavior 
under dynamic loads. To achieve sufficient 
accuracy in numerical calculations, detailed 
three-dimensional finite element models are 
often employed, allowing for a reasonably 
accurate representation of materials with 
complex internal structures. However, such 
models are resource-intensive and laborious to 
analyze. 
To optimize the calculation and design 
process, there arises a need to employ one-
dimensional rod element models which are 
constructed on the base of specific 
mathematical hypotheses. Such hypotheses 
become necessary as classical viscoelastic 
models, proposed, for instance, in the works 
of W. Kelvin [1], J. Maxwell [2], J. Rayleigh 
[3], and Voigt [4], do not always accurately 
describe the behavior of materials with 
intricate internal structures. 
As an alternative to classical models ones 
based on the principals of nonlocal mechanics 
can be used. Among such models the nonlocal 
elasticity model proposed in article [5], the 
model of nonlocal damping in space [6], and 
model [7] that combines the nonlocality of 
elastic and damping properties can be 
mentioned. The continuous spatial nonlocal 
damping model is described in article [8], 
while the nonlocal temporal internal friction 
model, based on the finite element method, is 
presented in article [9]. Article [10] discussed 
various damping mechanisms for a quasi-
isotropic pultruded composite beam, 
including: viscous damping; internal damping 
dependent on strain rate; spatial hysteresis; 
and temporal hysteresis. Additionally, the 
article examines various combinations of 
these mechanisms [11]. 
In this work a proposed model is based on the 
assumption of the material's nonlocality in its 
elastic properties over time.  
 

DYNAMIC MODEL OF BENDING BEAM 
DEFORMATION WITH CONSIDERING 
NON-LOCAL IN TIME ELASTIC 
PROPERTIES OF THE MATERIAL 
 
The non-local model for dynamic deformation 
has been integrated into the finite element 
method algorithm. This approach allows using 
of the model in applied analyses of structures 
with the relatively complicated geometry. In the 
finite element method algorithm, the equation of 
motion is formulated in matrix form and is 
expressed in displacements [12]: 
 

( ) + ( ) + ( ) = ( ) (1) 
 
Here:   is the stiffness matrix,  is the mass 
matrix,  is the damping matrix, ( ) is the 
vector of external force influences, ( ) is the 
displacement vector. 
When accounting for non-local material 
properties, it is assumed that the elastic forces 
within the system at the considered time 
moment t depend not only upon the 
instantaneous value of displacement ( ), but 
also upon the displacement values at prior time 
instances . Moreover, the impact of time points 
on each other weakens proportionally with 
increasing time gap [13]. To formulate a model 
for the deformation of a beam element 
considering material memory, let us express 
equation (1) in the subsequent manner: 
 

( ) + ( ) + 

+ ( ) ( ) = ( ) (2) 

Here, the stiffness matrix K is superimposed 
with the kernel of the non-local elasticity 
operator R(t- ) or influence function. This 
function characterizes the attenuation of the 
influence of displacements at previous time 
instances  on the elastic forces at the current 
moment t, while ensuring adherence to the 
normalization condition. 
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Abstract: In this paper, the problem of numerical modeling of the dynamic behavior of bending beams made of 
the materials with a developed internal structure is considered. The simulation is performed taking into account 
the non-local elastic properties of the material in time. According to the principals of nonlocal mechanics, it is 
assumed that elastic forces in a structure depend on the entire history of its deformation, and not only on the 
instantaneous deformed state. The proposed dynamic deformation model is proposed as an alternative to detailed 
three-dimensional models. The nonlocal dynamic deformation model is integrated into the algorithm of the FEA 
method to make it applicable to solving applied engineering problems. The numerical implementation of the 
model is performed in Python. A technique for selecting the scale parameter of a non-local model based on 
experimental data using the least squares method and the dichotomy method has also been developed and 
implemented. To identify the possibility of extrapolation of the scale parameter values determined according to 
the developed methodology, a series of numerical experiments were conducted, on the basis of which scale 
parameters for beams of different lengths were obtained and the stability of the nonlocal model was evaluated. 
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accuracy in numerical calculations, detailed 
three-dimensional finite element models are 
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model of nonlocal damping in space [6], and 
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damping model is described in article [8], 
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model, based on the finite element method, is 
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dependent on strain rate; spatial hysteresis; 
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article examines various combinations of 
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direction equal to 17.2 GPa. The beam, in its 
cross-sectional profile, is a rectangle with a 
height of 0.3 meters and a width of 0.2 meters. 
The material's relative damping coefficient is set 
at 0.042. The beam is subjected to an instantly 
applied and uniformly distributed load with an 
intensity of -10 kN/m. At the first step, with i = 
1, the initial conditions are set as  

 

 
Figure 2. Graphs of the vertical displacement of 
the central node of the beam obtained for three 

calculation scenarios with different scale 
parameters 

 
Analyzing the presented graphs, it can be 
observed that decreasing the parameter  
(increasing the degree of non-locality) leads to 
an increase in the amplitude of oscillations. 

 
 

DETERMINATION OF THE NON-LOCAL 
PARAMETER BASED ON THE RESULTS 
OF THE NUMERICAL EXPERIMENT. 
 
In order to apply the non-local material model 
in practical calculations, it is necessary to 
determine the value of the non-local parameter. 
For this purpose, in the current study a 
calibration methodology of the non-local model 
using the least squares method was used based 
on the results of the numerical experiment [16]. 
The numerical experiment data consisted of the 
outcomes of three-dimensional finite element 
modeling of the beam. The geometrical and 
physical characteristics are the same the ones 
discussed in the previous section. The model 
was constructed using the MIDAS-Civil 
computational software, taking into account the 
orthotropic material properties. The material 

characteristics used in the modeling are 
presented in Table 1. 
 

Table 1. Characteristics of thermoactive vinyl 
ester glass-reinforced plastic Class I: 

Young's Modulus (Longitudinal), 
Elw 17.2 GPa 

Young's Modulus (Transverse), Ecw 12.2 GPa 
Poisson's Ratio (Longitudinal), lw 0.32 
Poisson's Ratio (Transverse), cw 0.15 
Density,  1900 kg/m

3
 

Damping Coefficient,  0.042 
 

As a result of the calculation, a displacement 
diagram of the mid-section of the analyzed 
beam was obtained. Subsequently, the ordinate 
values of the oscillation graph obtained in 
MIDAS-Civil were exported and used to 
determine the scale parameter of the non-local 
model with an algorithm that was implemented 
with Python. 
The numerical method employed to search for 
the minimum value of the sum of squared 
deviations between experimental data and 
numerical results was the bisection method. 
The resulting diagrams are presented in Fig. 3 
and Fig. 4. In comparison with the classical 
local deformation model (fig. 3), the calibrated 
non-local bending beam model (fig. 4) gives 
better alignment with the results of the 
numerical experiment. 

 

 
Figure 3. Comparison of numerical experiment 
results with one-dimensional modeling results 

using a model approximating the classical local 
Kelvin-Voigt model 

( ) = 1 (3) 

 
For the memory function modeling, kernels of 
various types can be used [6]. In the present 
study, the non-local operator kernels employ the 
error function, which takes the form when 
condition (3) is satisfied: 
 

( ) =
2

( )  (4) 

 
Like for all non-local models, in this case, a 
defining characteristic is the scale parameter , 
which determines the nonlocality in the elastic 
properties of the material over time. Figure 1 
illustrates how this parameter influences the 
shape of the kernel. 
 

 
Figure 1. Graphs showing the effect of the 

parameter  on the nonlocality of the model 
 
To solve the equation of motion, an implicit 
scheme (Newmark's method) [14] was 
employed. In this case, the velocities and 
accelerations of the finite element model nodes 
are represented as: 
 

= ;   

   =   (5) 
 
Here: is the vertical displacement of a node at 
a time ,  is the speed of the node at a given 
time  ,  is the node acceleration at a point in 
time , is the time step

Since, in the case of employing an implicit 
scheme, the memory function is imposed on the 
entire deformation process starting from the 
moment , the discrete analog of the integral 
kernel has been divided into two parts [15]: - 
the weighting coefficient associated with i+1,  
- the sum of all other weights: 
 

=
2

( ) ;

=
2

    

(6) 

 
Then, the expression (1) can be presented as: 
 

+

( ) + + =    (7) 
 
After all transformations, the computational 
scheme takes the form: 
 

= + M + +

,  (8) 
 
here: 
 

= + + ,     = , =

+ (9)
 
 
ASSESSMENT OF THE INFLUENCE OF 
THE SCALE PARAMETER ON THE 
NATURE OF THE OSCILLATORY 
PROCESS. 
 
For further improvement of the model, it is 
necessary to determine how the variation of the 
scale parameter affects the nature of the 
vibrations. In the implementation of this model 
using the MATLAB software, a 12-meter beam 
clamped at both ends was considered. The 
material chosen for the beam is a thermoactive 
vinyl ester glass-reinforced plastic of Class I, 
with a Young's modulus in the longitudinal 
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direction equal to 17.2 GPa. The beam, in its 
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values of the oscillation graph obtained in 
MIDAS-Civil were exported and used to 
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model with an algorithm that was implemented 
with Python. 
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sufficient accuracy. According to Table 2, the 
scaling parameter for a 10-
52.9 1/s, and the viscosity coefficient ratio for a 
12-meter beam relative to a 10-meter beam is 
0.69. Therefore, by multiplying these values, the 
approximate scaling parameter for a 12-meter 
beam can be determined, which in this example 

 root mean 
square error for the results obtained using the 
calculated scaling parameter will be 0.0051  
(Fig. 6). 
 

 
Figure 6. Comparison of numerical experiment 
results with one-dimensional modeling results 
using the time-nonlocal deformation model at 

1/s 
 

 
CONCLUSION 
 
During the present study, a non-local 
deformation model of a bending beam was 
constructed using the finite element method. 
The Newmark method was applied for the 
numerical solution of the motion equation. 
The relationship between the scale parameter 

 and the amplitude of the bending beam 
oscillations has been demonstrated. It was 
shown that an increase in the material's 
nonlocality leads to an increase in the 
amplitude of oscillations. The model has been 
supplemented with a calibration algorithm for 
the scale parameter based on experimental 
results. The developed calibration algorithm 
has been tested using numerical experiment 
data, taking into account the orthotropic 
properties of the material. In comparison with 
the classical local model, the calibrated non-
local deformation model of the bending beam 

allows for better convergence with the results 
of the numerical experiment. Additionally, a 
correlation between the viscosity coefficient 
of the model and the scale parameter has been 
identified, that allows to determine of the 
scale parameter through frequencies or 
viscosity coefficients ratio. Thus, the scale 
parameters can be determined for the beams 
of different geometry using this correlation, 
and there is no need to determine it from 
experimental data all over again. The 
correlation was obtained for the numerical 
experiment results obtained with the 
frequency dependent damping model. For the 
materials characterized by frequency 
independent damping properties, the scale 
parameter will be the constant of material. 
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Figure 4. Comparison of numerical experiment 
results with one-dimensional modeling results 
using the calibrated time-nonlocal deformation 
model with the utilization of the error function 

kernel 
 
As a result of calibration, the value of the scale 
parameter has been obtained  = 38.34 1/s. The 
root mean square error is 0.0034 m. 
 
 
EVALUATION OF THE SCALE 
PARAMETER EXTRAPOLATION 
POSSIBILITY 
 
The application of models requiring constant 
determination of the scale parameter by the 
experimental data may be impractical and can 
be extremely labor-intensive in application. 
Therefore, the question arises about the 
method for determining the scale parameter of 
a non-local model as a material constant or 
identifying dependencies that enable the 
determination of this parameter for elements 
of various geometry. 
The damping model employed in conducting 
numerical experiments within the computational 
suite Midas is frequency dependent, hence the 
viscosity coefficient depends on the geometric 
attributes of the beam. Therefore, to 
demonstrate the correlation between the 
viscosity coefficient and the scale parameter, a 
series of numerical experiments were conducted 
involving beams of varied lengths. The 
outcomes tabulated in Table 2. 
It can be seen from Table 2 that there is a 
correlation between the ratios of the viscosity 
coefficients and the ratios of the scale 
parameter. Consequently, given numerical or 

empirical data obtained for a beam of specific 
length and a non-local model calibrated by 
this data, it becomes possible to determine the 
scale parameter by values of frequency ratios 
or viscosity coefficients applicable to beams 
of different geometries but composed of the 
same material. Should damping in the material 
prove frequency-independence, the scale 
parameter for said material will inherently 
remain constant. 

 
Table 2. The results of a series of experiments 

L, 
m Pa·s 

, 
1/s 

The ratios 
of viscosity 
coefficients 

The ratios 
of scale 

parameters 
10 0,014 52.9 1,00 1.00 
11 0,017 44.8 0,83 0.85 
12 0,021 38.3 0,69 0.73 
13 0,024 34 0,59 0.64 
14 0,028 29.6 0,51 0.56 
15 0,032 26.3 0,44 0.50 
16 0,036 22.9 0,39 0.43 
17 0,041 20.6 0,35 0.39 
18 0,046 18.3 0,31 0.35 

Here L is the Beam length,  is the Viscosity coefficient, 
 is the Scale parameter 

 
For clarity the proportion between viscosity 
coefficients and the proportion between scale 
parameters is visually presented in  Figure 5.  

 

 
Figure 5. The correlation between the 

proportion of viscosity coefficients and the 
proportion of scale parameters 

 
Thus, knowing the scale parameter for a 10-
meter beam, it is possible to determine the 
scaling parameter for a 12-meter beam with 
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correlation was obtained for the numerical 
experiment results obtained with the 
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