International Journal for Computational Civil and Structural Engineering, 20(2) 132-140(2024)
DOI:10.22337/2587-9618-2024-20-2-132-140

CALIBRATION OF THE NONLOCAL DYNAMIC
DEFORMATION MODEL OF A FLEXURAL BEAM BASED ON
NUMERICAL EXPERIMENT RESULTS

Viadimir N. Sidorov %, Elena S. Badina "*3, Roman O. Tsarev

' Moscow State University of Civil Engineering, Moscow, RUSSIA
2Russian University of Transport (MIIT), Moscow, RUSSIA
3 Institute of Applied Mechanics of Russian Academy of Sciences, Moscow, RUSSIA

Abstract: In this paper, the problem of numerical modeling of the dynamic behavior of bending beams made of
the materials with a developed internal structure is considered. The simulation is performed taking into account
the non-local elastic properties of the material in time. According to the principals of nonlocal mechanics, it is
assumed that elastic forces in a structure depend on the entire history of its deformation, and not only on the
instantaneous deformed state. The proposed dynamic deformation model is proposed as an alternative to detailed
three-dimensional models. The nonlocal dynamic deformation model is integrated into the algorithm of the FEA
method to make it applicable to solving applied engineering problems. The numerical implementation of the
model is performed in Python. A technique for selecting the scale parameter of a non-local model based on
experimental data using the least squares method and the dichotomy method has also been developed and
implemented. To identify the possibility of extrapolation of the scale parameter values determined according to
the developed methodology, a series of numerical experiments were conducted, on the basis of which scale
parameters for beams of different lengths were obtained and the stability of the nonlocal model was eval uated.
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AHHOTanMsi: B Hacrosmield paboTe paccMaTpuBaeTcsl 3ajada YHCICHHOTO MOJCIHPOBAHMS JAWHAMHUYECKOTO
MOBEICHUsT M3TMOaeMbIX OajloK, BBIMOJHEHHBIX W3 MaTepHalioB C pa3sBUTOW BHYTpPEHHEH CTPYKTYpOH.
MojenupoBaHue BBIIOJIHEHO C YYETOM HEJIOKaJIbHBIX BO BPEMEHM YIPYTUX CBOHCTB MaTepuana. CoryiacHo
MOJIOKEHHUSAM HEJIOKAJIbHOM MEXAHUKU MPEeAINojaraercs, 4To YNpyrue CUibl B KOHCTPYKIMU 3aBUCSIT OT BCEH
ucropuu e€ e)OpMUpPOBaHHs, & HE TOJIBKO OT MCHOBEHHOTO Jie(hopMHpOBaHHOTO cocTosiHus. [IpeacraBieHHast
MOJIeTIb JTUHAMHYECKOro ae(hOPMUPOBAHUS MPEAJIaraeTcsi B Ka4eCTBE aJbTEPHATHBBI MOJPOOHBIM TPEXMEPHBIM
MmozemsiM. HenmokanbHast Moaenb IUHAMHUYECKOTO Ae(OPMUPOBAHUS HHTETPUPOBAHA B aITOPUTM METOJA
KOHEYHBIX 3JIEMEHTOB, 4TOOBI CAENaTh €& MPUMEHUMOM AJsl PElIeHWs NPHUKIAJHBIX HMHKEHEPHBIX 3ajad.
UYucrieHHas peanu3anysi MOJAEIN BBIOJIHEHA Ha si3bike Python. Takxke paspaborana m peann3oBaHa METOANKA
nojbopa MacmTabHOTO TMapamMeTpa HEJIOKAIBHOH MOJENM Ha OCHOBAHWM SKCIEPHUMEHTAIBHBIX JAHHBIX C
INPUMEHEHUEM METOJAd HAUMEHBIINX KBaJpaTOB M METOJa AUXOTOMHUH. /[l BBISBIEHUS BO3MOXKHOCTH
SKCTPAIOJSIIMK  ONPEICIEHHBIX 10 pa3padoTaHHON METOAMKE 3HaueHM MacmTaOHOro mapamerpa, Oblia
MIPOBE/ICHA CEPHsl YMCICHHBIX AKCIIEPUMEHTOB, HA OCHOBE KOTOPBIX OBLIM MOJYYEHbl MacIITaOHbIC MapaMeTphl
Juist 0QJIOK Pa3HOMW JUTMHBI M IIPOBE/ICHA OIIEHKA YCTOWYHBOCTH HEJIOKATbHOW MOJIEIIH.

Knruesble ciaoBa: HenokanpHas MCXaHHKa, HCJIOKAJIbHOC I[CMH(l)I/IpOBaHI/IC, YUCJIIEHHOC MOACIINPOBAHUE,
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INTRODUCTION

The active use of composite materials to
address various production challenges requires
new approaches to describe their behavior
under dynamic loads. To achieve sufficient
accuracy in numerical calculations, detailed
three-dimensional finite element models are
often employed, allowing for a reasonably
accurate representation of materials with
complex internal structures. However, such
models are resource-intensive and laborious to
analyze.

To optimize the calculation and design
process, there arises a need to employ one-
dimensional rod element models which are
constructed on the Dbase of specific
mathematical hypotheses. Such hypotheses
become necessary as classical viscoelastic
models, proposed, for instance, in the works
of W. Kelvin [1], J. Maxwell [2], J. Rayleigh
[3], and Voigt [4], do not always accurately
describe the behavior of materials with
intricate internal structures.

As an alternative to classical models ones
based on the principals of nonlocal mechanics
can be used. Among such models the nonlocal
elasticity model proposed in article [5], the
model of nonlocal damping in space [6], and
model [7] that combines the nonlocality of
elastic and damping properties can be
mentioned. The continuous spatial nonlocal
damping model is described in article [8],
while the nonlocal temporal internal friction
model, based on the finite element method, is
presented in article [9]. Article [10] discussed
various damping mechanisms for a quasi-
isotropic ~ pultruded  composite = beam,
including: viscous damping; internal damping
dependent on strain rate; spatial hysteresis;
and temporal hysteresis. Additionally, the
article examines various combinations of
these mechanisms [11].

In this work a proposed model is based on the
assumption of the material's nonlocality in its
elastic properties over time.
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DYNAMIC MODEL OF BENDING BEAM
DEFORMATION WITH CONSIDERING
NON-LOCAL IN TIME ELASTIC
PROPERTIES OF THE MATERIAL

The non-local model for dynamic deformation
has been integrated into the finite element
method algorithm. This approach allows using
of the model in applied analyses of structures
with the relatively complicated geometry. In the
finite element method algorithm, the equation of
motion is formulated in matrix form and is
expressed in displacements [12]:

M-Vt)+D-V()+K-V(t) =F(t) (1)

Here: K is the stiffness matrix, M is the mass
matrix, D is the damping matrix, F(t)is the
vector of external force influences, V(t) is the
displacement vector.

When accounting for non-local material
properties, it is assumed that the elastic forces
within the system at the considered time
moment ¢ depend not only upon the
instantaneous value of displacement V(t), but
also upon the displacement values at prior time
instances 1. Moreover, the impact of time points
on each other weakens proportionally with
increasing time gap [13]. To formulate a model
for the deformation of a beam element
considering material memory, let us express
equation (1) in the subsequent manner:

M-V(t)+D- V() +

1K f Rt — 1) V(©)d = F(©) 2)
0

Here, the stiffness matrix K is superimposed
with the kernel of the non-local elasticity
operator R(t-t) or influence function. This
function characterizes the attenuation of the
influence of displacements at previous time
instances T on the elastic forces at the current
moment ¢, while ensuring adherence to the
normalization condition.
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For the memory function modeling, kernels of
various types can be used [6]. In the present
study, the non-local operator kernels employ the
error function, which takes the form when
condition (3) is satisfied:

2
R(t —1) = \/_% o~ (t-1)? @

Like for all non-local models, in this case, a
defining characteristic is the scale parameter 7,
which determines the nonlocality in the elastic
properties of the material over time. Figure 1
illustrates how this parameter influences the
shape of the kernel.
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Figure 1. Graphs showing the effect of the
parameter 1 on the nonlocality of the model

To solve the equation of motion, an implicit
scheme (Newmark's method) [14] was
employed. In this case, the velocities and
accelerations of the finite element model nodes
are represented as:

Vier = Vi
, At
Vier = F(VHl —V;=V,-At) -,

Vi+1 =
)

Here: V; is the vertical displacement of a node at
a time t;, V; is the speed of the node at a given

timet; , V; is the node acceleration at a point in
timet;, At is the time step

134

Vladimir N. Sidorov, Elena. S. Badina, Roman O. Tsarev

Since, in the case of employing an implicit
scheme, the memory function is imposed on the
entire deformation process starting from the
moment t;,, the discrete analog of the integral
kernel has been divided into two parts [15]: a -
the weighting coefficient associated with Vi1, B
- the sum of all other weights:

2n 2 2
aQ=—" e_n (ti+1_ti) . At-
\/E )
L 2 )
g = Atz_n e~ (ti=tj-1)
j=1 \/E

Then, the expression (1) can be presented as:

2 . . 1
M| (Vier = Vi = V- 8t) = V| + D~
Vier = V) +K-B+K-a=Fy (7)

After all transformations, the computational
scheme takes the form:

Q'Vi+1:Fi+1+M'Vl+Q1'VL+Qz'Vi_K'

B, (8)

here:
=2M+—D+K- =2ZM, Q=
Q - Atzz Af Q, Ql - At QZ -
FM-I_ED 9)

ASSESSMENT OF THE INFLUENCE OF
THE SCALE PARAMETER ON THE
NATURE OF THE OSCILLATORY
PROCESS.

For further improvement of the model, it is
necessary to determine how the variation of the
scale parameter affects the nature of the
vibrations. In the implementation of this model
using the MATLAB software, a 12-meter beam
clamped at both ends was considered. The
material chosen for the beam is a thermoactive
vinyl ester glass-reinforced plastic of Class I,
with a Young's modulus in the longitudinal
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direction equal to 17.2 GPa. The beam, in its
cross-sectional profile, is a rectangle with a
height of 0.3 meters and a width of 0.2 meters.
The material's relative damping coefficient is set
at 0.042. The beam is subjected to an instantly
applied and uniformly distributed load with an
intensity of -10 kN/m. At the first step, with 1 =
1, the initial conditions are set as Vo = 0.

Displacement in the middle of the beam

0.00

****** n =40
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Figure 2. Graphs of the vertical displacement of
the central node of the beam obtained for three
calculation scenarios with different scale
parameters

Analyzing the presented graphs, it can be
observed that decreasing the parameter n
(increasing the degree of non-locality) leads to
an increase in the amplitude of oscillations.

DETERMINATION OF THE NON-LOCAL
PARAMETER BASED ON THE RESULTS
OF THE NUMERICAL EXPERIMENT.

In order to apply the non-local material model
in practical calculations, it is necessary to
determine the value of the non-local parameter.
For this purpose, in the current study a
calibration methodology of the non-local model
using the least squares method was used based
on the results of the numerical experiment [16].
The numerical experiment data consisted of the
outcomes of three-dimensional finite element
modeling of the beam. The geometrical and
physical characteristics are the same the ones
discussed in the previous section. The model
was constructed using the MIDAS-Civil
computational software, taking into account the
orthotropic material properties. The material
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characteristics
presented in Table 1.

used in the modeling are

Table 1. Characteristics of thermoactive vinyl
ester glass-reinforced plastic Class I:

Young's Modulus (Longitudinal),

g wlus - (Longitudinal). |17 5 Gp
Iw

Young's Modulus (Transverse), E_ | 12.2 GPa

Poisson's Ratio (Longitudinal), | 0.32

Poisson's Ratio (Transverse), p_ 0.15

Density, p 1900 kg/m’

Damping Coefficient, y 0.042

As a result of the calculation, a displacement
diagram of the mid-section of the analyzed
beam was obtained. Subsequently, the ordinate
values of the oscillation graph obtained in
MIDAS-Civil were exported and used to
determine the scale parameter of the non-local
model with an algorithm that was implemented
with Python.

The numerical method employed to search for
the minimum value of the sum of squared
deviations between experimental data and
numerical results was the bisection method.

The resulting diagrams are presented in Fig. 3
and Fig. 4. In comparison with the classical
local deformation model (fig. 3), the calibrated
non-local bending beam model (fig. 4) gives
better alignment with the results of the
numerical experiment.

Displacement in the middle of the beam
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— Local Kelvin-Voigt model

~0.027 ---- 3D Model
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-0.12
Y

T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Figure 3. Comparison of numerical experiment
results with one-dimensional modeling results
using a model approximating the classical local
Kelvin-Voigt model

135
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Figure 4. Comparison of numerical experiment
results with one-dimensional modeling results
using the calibrated time-nonlocal deformation
model with the utilization of the error function
kernel

As a result of calibration, the value of the scale
parameter has been obtained n = 38.34 1/s. The
root mean square error is 0.0034 m.

EVALUATION OF THE SCALE
PARAMETER EXTRAPOLATION
POSSIBILITY

The application of models requiring constant
determination of the scale parameter by the
experimental data may be impractical and can
be extremely labor-intensive in application.
Therefore, the question arises about the
method for determining the scale parameter of
a non-local model as a material constant or
identifying dependencies that enable the
determination of this parameter for elements
of various geometry.

The damping model employed in conducting
numerical experiments within the computational
suite Midas is frequency dependent, hence the
viscosity coefficient depends on the geometric
attributes of the beam. Therefore, to
demonstrate the correlation between the
viscosity coefficient and the scale parameter, a
series of numerical experiments were conducted
involving beams of varied lengths. The
outcomes tabulated in Table 2.

It can be seen from Table 2 that there is a
correlation between the ratios of the viscosity
coefficients and the ratios of the scale
parameter. Consequently, given numerical or
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empirical data obtained for a beam of specific
length and a non-local model calibrated by
this data, it becomes possible to determine the
scale parameter by values of frequency ratios
or viscosity coefficients applicable to beams
of different geometries but composed of the
same material. Should damping in the material
prove frequency-independence, the scale
parameter for said material will inherently
remain constant.

Table 2. The results of a series of experiments

The ratios The ratios

L, X T of viscosity of scale
m | Pas /s

coefficients | parameters
10 | 0,014 | 52.9 1,00 1.00
110,017 | 44.8 0,83 0.85
12 | 0,021 | 38.3 0,69 0.73
130,024 | 34 0,59 0.64
14 |1 0,028 | 29.6 0,51 0.56
150,032 | 26.3 0,44 0.50
16 | 0,036 | 22.9 0,39 0.43
17 | 0,041 | 20.6 0,35 0.39
18 | 0,046 | 18.3 0,31 0.35

Here L is the Beam length, y is the Viscosity coefficient,
n is the Scale parameter

For clarity the proportion between viscosity
coefficients and the proportion between scale
parameters is visually presented in Figure 5.

1.0 4

—— The proportion of viscosity coefficients
---- The proportion of scale parameters

0.8 1

0.6 1

0.4 4

0.2 A

0.0 T T T T T T T
10 11 12 13 14 15 16 17 18

Beam length, m

Figure 5. The correlation between the
proportion of viscosity coefficients and the
proportion of scale parameters

Thus, knowing the scale parameter for a 10-
meter beam, it is possible to determine the
scaling parameter for a 12-meter beam with
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sufficient accuracy. According to Table 2, the
scaling parameter for a 10-meter beam is n =
52.9 1/s, and the viscosity coefficient ratio for a
12-meter beam relative to a 10-meter beam is
0.69. Therefore, by multiplying these values, the
approximate scaling parameter for a 12-meter
beam can be determined, which in this example
will be n = 36.50 1/s. The obtained root mean
square error for the results obtained using the
calculated scaling parameter will be 0.0051 m

(Fig. 6).

Displacement in the middle of the beam
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Figure 6. Comparison of numerical experiment

results with one-dimensional modeling results

using the time-nonlocal deformation model at

the calculated scaling parameter n = 36.50 1/s

CONCLUSION

During the present study, a non-local
deformation model of a bending beam was
constructed using the finite element method.
The Newmark method was applied for the
numerical solution of the motion equation.
The relationship between the scale parameter
n and the amplitude of the bending beam
oscillations has been demonstrated. It was
shown that an increase in the material's
nonlocality leads to an increase in the
amplitude of oscillations. The model has been
supplemented with a calibration algorithm for
the scale parameter based on experimental
results. The developed calibration algorithm
has been tested using numerical experiment
data, taking into account the orthotropic
properties of the material. In comparison with
the classical local model, the calibrated non-
local deformation model of the bending beam

Volume 20, Issue 2, 2024

allows for better convergence with the results
of the numerical experiment. Additionally, a
correlation between the viscosity coefficient
of the model and the scale parameter has been
identified, that allows to determine of the
scale parameter through frequencies or
viscosity coefficients ratio. Thus, the scale
parameters can be determined for the beams
of different geometry using this correlation,
and there is no need to determine it from
experimental data all over again. The
correlation was obtained for the numerical
experiment results obtained with the
frequency dependent damping model. For the
materials  characterized by  frequency
independent damping properties, the scale
parameter will be the constant of material.
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