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ABSTRACT  

Foam glass lightweight aggregate (LWA) derived from mixed waste and recycled glass has great potential for use as 

an alternative material for several applications in building and other industrial applications. Despite the significant 

superior features of the current product, there is still room for further research to improve the structural performance 

of newly developed foam glass and foam glass-ceramics produced from waste and recycled materials. Improvements 

may be achieved through controlling microstructures and the distributions of pore sizes and shapes, altering chemical 

and phase compositions, creating reinforced structures by the inclusion of other fibrous materials as well as adding 

colour to the foam glass and glass-ceramics. One commercially used foam glass gravel has been selected and was the 

subject of a wide range of tests to determine its physical and mechanical properties and to compare them to 

conventional products in the industry. Results obtained from percent crushed particle content, abrasion resistance and 

freezing and thawing resistance testing are presented and analysed. Methods for improving foam properties and 

expanding its usefulness in engineering applications are proposed; adjusting the microstructure characteristics and 

changing the chemical and phase composition were found to be effective. A deeper examination of the microstructure 

by microscopy (SEM or TEM) further revealed the promising features of the evaluated material as a new versatile 

construction material. In addition, inclusion of colouring oxides in foam formulation was examined as an innovative 

way for increasing mechanical strength in a colourful product. 
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1. INTRODUCTION 

Foam glass is generally composed of 98% recycled glass. It is considered one of the best solid isolation materials with 

a number of unique properties. The material comes in various shapes and sizes (aggregates, blocks and granules) and 

has found many different application areas in building and construction industries. Horpibulusk et al. (2014) discusses 

how lightweight fill materials are increasingly being used in civil engineering applications such as backfills, slope 

stability, embankment fills, pavement and pipe bedding. Arulrajah et al. (2015) discusses how the applications of 

lightweight fill materials are fairly broad but the main intent of this material is to significantly reduce the weight of 

fills, thereby mitigating excessive settlements and bearing failures. Due to their porous structures, they are lightweight 

and have distinctive properties such as fire retardant and noise insulating characteristics. Janetti et al. (2015) discusses 

that foam glass is best used as thermal insulation of building foundation and cellar plates, as backfilling of voids or 

overflows in structural engineering or as cost-effective insulation for long-scale thermal energy stores. 
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In the past, the shortage of recycled glass linked with a high production cost confined foam glass usage to specific 

applications such as underground piping jackets or tank and vessel insulation covers. However, recent advances in 

manufacturing technology and the abundance of used glass supplies have made it possible for foam glass to become 

a more economically viable commodity. Increased health-consciousness amongst the general public as well as the 

need to eliminate the devastating environmental hazards caused by organic and polymeric wastes have prompted the 

increased use of glass containers in food and beverage industries. Moreover, rapid technological advancements in 

electronics industry have generated even more glass wastes due to a large number of discarded computer and TV 

monitors. As a result, there has been an increase in research on how to use contaminated recycled glasses for the 

production of foam glass. Mugoni et al. (2015) has investigated the use of recycled florescent lamps to produce foam 

glass as an interesting way for waste prevention and waste management, developing new products with commercial 

potential. Konig et al. (2015) investigates the excellent potential of cathode ray tube (CRT) panel glass foamed with 

carbon and MnO2 for the production of foam glass with improved heat-insulating ability. 

 

The use of recycled and waste glass in foam glass production has many environmental benefits. Foam glasses are 

generally classified as green products, as they contribute to considerably lower CO2 emissions and less environmental 

pollution in the process of foam glass production compared to any other industrial process which incorporates recycled 

glass as a feeding constituent.  

 

Foam glass can be widely used in many applications such as basement walls, foundations, floors and roofs, terrace 

and garden covers, rooftops and parking areas (Ayadi et al., 2010). Other possible city infrastructure construction 

usages are in parks and yard areas, pedestrian and bicycle paths, railway embankments, sports fields and many other 

applications, which introduces substantial savings in cost energy and maintenance. During the past few years, there 

have been many studies on using recycled glass as aggregates in lightweight concrete (Limbachiya et al., 2011; Shi et 

al., 2007; Bumanis et al., 2013). Not only does the excellent water permeability of the foam glass aggregates allow 

proper drainage of water from the road surface seeping through small cracks, but also it reduces susceptibility to 

freezing and thawing phenomena such as ice lenses. The improved drainage capacity provides for a shallower road 

preparation depth. Compared to natural aggregates, foam glass requires less depth of road preparation, dirt removal 

and aggregate replacement. 

 

Current research work focuses on examining the engineering properties of two manufactured foam glass aggregates 

delivered by Foamyna Canada Inc. and tested at the Centre for Pavement and Transportation Technology (CPATT) 

of University of Waterloo. Additionally, the engineering properties of the newly developed foam glass aggregate 

known as LWA will also be assessed and discussed. The chemical and physical properties of the foam glass were 

improved by controlling the material microstructure characteristics, and novel approaches were investigated to modify 

the pore sizes and shapes and develop more uniform pores with controlled sizes. The incorporation of colouring agents 

has created a range of coloured foam glass with ideal properties and increased strength for use in various road 

construction applications. The features and significant benefits of this new material could still be increased to a very 

high level compared to similar materials, by creating a new controlled microstructure which may be reinforced by the 

presence of other fibrous and nano-scale material. The market for porous, lightweight, cost-effective and 

environmentally friendly material such as foam glass and glass-ceramics, in different colors, shapes and sizes, having 

innovative and improved chemical, physical and mechanical properties is becoming extremely important. This will 

make them ideal materials for future use in both buildings and road construction. 

2. 2. EXPERIMENTAL PROCEDURES 

2.1 Physical Characterization of LWA 

CPATT has been supplied with quantities of two distinct foam glass LWA materials, designated as LWA-A and LWA-

B.  Both materials were produced by melting down recycled glass and mixing it with air and with trace quantities of 

chemical additives to form a highly porous, rigid foamed glass product with a bulk and absolute density substantially 

lower than that of water.  For the purposes of the physical properties testing, the engineering assessment to date has 

included Grain Size Analysis, Crushed Particle Content, Flat and Elongated Particle Content, Abrasion Resistance 

Testing and Freezing and Thawing Resistance Testing.  
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Visual examination showed that both materials possess a highly vesicular structure. By relative comparison between 

the two materials, LWA-A appears darker grey in colour, while possessing smaller or finer voids than LWA-B and 

having the lower apparent density in hand specimens.  Material LWA-B appears a uniform light grey in colour, with 

larger or coarser voids in its matrix and appearing denser in hand specimens than LWA-A.  Both materials appear to 

be quite brittle and prone to damage in handling, necessitating the use of hand sieving for grain size analysis in lieu 

of mechanical sieving.  A visual comparison of LWA-A and LWA-B can be seen below in Figure 1. 

Figure 1: Comparison of visual appearance between LWA-A (left) and LWA-B (right) 

 

Grain size distribution testing and analysis was performed on materials LWA-A and LWA-B based on MTO 

laboratory standard LS-602, Method of Test for Sieve Analysis of Aggregates.  In total, six samples of a minimum of 

10 kg each were obtained and analyzed, including three samples each of LWA-A and LWA-B. As both materials are 

coarse aggregates, no sieving was performed on material passing the 4.75mm sieve. LWA-A and LWA-B were both 

found to have broadly similar grain size distributions.  In both cases, all of the material passed the 75mm sieve, with 

the 63mm sieve being the largest size upon which any material was retained.  For both materials, across all samples, 

less than 10% of the aggregate by mass passed through the 19.0mm sieve.  LWA-A had more material on average 

passing the 4.75mm sieve at an average of 3.7% by mass, while LWA-B averaged 2.6% passing the 4.75mm sieve.  

Both materials can thus be summarized as relatively coarse aggregates. Figures 2 and 3 illustrate the grain size 

distribution for material LWA-A and LWA-B. 

 

Figure 2: Grain size distribution for material LWA-A 
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Figure 3: Grain size distribution for material LWA-B 

 

Percent crushed particle testing and analysis was performed on three samples each of materials LWA-A and LWA-B 

in accordance with MTO laboratory standard LS-607, Method of Test for Determination of Percent Crushed Particles 

in Processed Coarse Aggregate. The percent content of crushed particles was determined solely by examining material 

from the fraction passing the 26.5mm sieve and retained upon the 19.0mm sieve. For material LWA-A, the three 

samples were found to have crushed particle contents of 99.4%, 99.3% and 99.7% on a mass basis, for an overall 

average of 99.5% crushed particles.  For material LWA-B, all three samples taken consisted of 100% crushed particles.  

For both materials, this compares favourably to Ontario Provincial Standard Specification (OPSS) 1010, which 

governs requirements for granular fill materials in use in pavements in Ontario.  OPSS 1010 prescribes a minimum of 

50% crushed particles by mass for Granular S class materials, 60% crushed particles for Granular A and Granular M, 

and 100% crushed particles for Granular B Type II and Granular O. 

 

Percent flat and elongated particle content testing and analysis was performed on three samples each of materials 

LWA-A and LWA-B in accordance with MTO laboratory standard LS-608, Method of Test for Determination of 

Percent Flat and Elongated Particles in Coarse Aggregate.  One modification was made to the LS-608 procedure.  The 

mass amount examined for each test was reduced from 3000g to 1500g for the fraction passing the 37.5mm sieve and 

retained upon the 26.5mm sieve, and from 2000g to 1000g for the fraction passing the 26.5mm sieve and retained 

upon the 19.0mm sieve.  This change was followed as the original specified mass amounts would have corresponded 

to a much greater volume of particles of the lightweight aggregates than would be the case for a natural aggregate. For 

material LWA-A, the three samples were each found to have flat and elongated particle contents of 0.2% by mass, for 

an overall average of 0.2%.  For material LWA-B, the three samples were found to have flat and elongated particle 

contents of 0.1%, 0.1% and less than 0.1% by mass for an overall average of 0.1%. 

 

Abrasion resistance testing was conducted on the two materials using a Micro-Deval apparatus.  The Micro-Deval 

testing was based on MTO laboratory standard LS-618, Method of Test for the Resistance of Coarse Aggregate to 

Degradation by Abrasion in the Micro-Deval Apparatus, with a number of modifications to compensate for the low 

density of the LWA materials. Grading A was selected from LS-618 as both LWA materials are coarse aggregates 

with a nominal maximum size which is much greater than 16.0 mm (for Grading B) or 13.2 mm (for Grading C). For 

LWA-A, percent losses during Micro-Deval tests were 4.6%, 3.7% and 9.2% for an overall average percent loss of 

5.9%.  For LWA-B, percent losses were 1.8%, 3.2% and 4.4% for an overall average percent loss of 3.1%.  This is 

within tolerances established by OPSS 1010, which specifies maximum coarse aggregate abrasion percentage losses 

by mass of 21% for Granular O, 25% for Granular A, Granular M and Granular S, and 30% for Granular B (Types I, 

II and III) and for Select Subgrade Material (SSM). 

 

Freezing and thawing resistance testing was conducted on materials LWA-A and LWA-B based on MTO laboratory 

standard LS-614, Method of Test for Freezing and Thawing of Coarse Aggregate. The freeze-thaw test was conducted 

on particles from both LWA materials in the size fractions ranging from 37.5mm to 26.5mm and from 26.5mm to 

19.0mm. As the LS-614 specification does not cover lightweight aggregates, European Standard BS EN 13055-2 
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Annex B specifies a procedure for testing of freezing and thawing resistance of lightweight aggregates, whereby a 

sample volume of 1500mL is required for freeze-thaw cyclic testing on materials which have a maximum aggregate 

size of 16mm to 32mm. For material LWA-A, percentage losses for each sample were found to be 0.5%, 0.2% and 

0.1% by mass, for an overall average of 0.3%.  For material LWA-B, percentage losses for each sample were found 

to be 0.01%, 0.1% and 1.4% by mass, for an overall average of 0.5%.  Again, this compares favourably to the OPSS 

1010 standard, which specifies a maximum unconfined freeze-thaw percentage loss of 15% for Granular O, with no 

limits stated for other classes of granular materials. 

2.2 Material Formulation and Test Samples 

The materials considered for the preparation of coloured and non-coloured foam gravel LWA are listed below. It 

should be noted that apart from the additives, the main materials have molecular structures similar to glass which 

develops a more uniform cellular pattern in the final product. 

  

● Mixed recycle container glass; 

● Waste flat glass; 

● Dumped CRTs from TVs and computer monitors; 

● Frits and glazes (transparent and opaque); 

● Foaming agents such as silicon carbide (SiC); 

● Steel industry slag; 

● Colour oxides and ceramic pigments; 

● Other additives such as clays 

 

Using different combinations of the above materials, foam glass samples are produced and assessed for their final 

quality in accordance with the area of intended applications. 

 

The first step in the sample preparation process is to pulverize all the ingredients in the formula prior to weighing and 

mixing. The mixture is prepared in accordance to a given recipe. It is then ground in ball mills to reach D90<200 mesh 

in particle size. It is sieved and milled repeatedly so that all particles are under 75 microns (µm). The binding agent is 

added and the mixture is formed using an appropriate forming apparatus. Finally the foams are fired under a specific 

thermal cycle to achieve the required stability and uniformity. 

2.2.1 Methods 

Two methods of both direct and indirect types were employed. In the direct method, ingredients are used without 

being processed prior to mixing stage, whereas in the indirect method, waste materials of a non-glassy nature are 

selected and processed to acquire a glassy structure before being used in the formulation. The latter technique allows 

for the creation of additional favourable characteristics. Choosing the proper method depends on the type of wastes 

used in the foam formulation. 

2.2.2 Results 

Wastes from ceramic frit manufacturing plants can universally be used as the basic element in making foam glass. 

Any kind of melted frit with an amorphous structure will be useful in this process. The main advantage of frits over 

other materials for use as the base element in foam production is its basic molecular structure which provides more 

suitable physical and chemical properties. As in any other industrial product, chemical and physical characteristics of 

different frits can vary. It is therefore recommended to consider these properties and modify the frit in accordance 

with the final foam requirements. In addition, foam characteristics can be conveniently controlled by changing frit 

percentage in the formulation. Important parameters including density, mechanical strength, thermal conductance, 

flammability, coefficient of thermal expansion and chemical strength can be adjusted for any application requirement. 

This makes waste frits an ideal ingredient in the formulation recipe. 

 

The microstructure variations in foams can be studied by Scanning Electron Microscopy (SEM). Figures 4, 5, 6 and 

7 demonstrate the capabilities of SEM in evaluating and thus controlling the end results. Figures 4 and 5 show a 

scanning electron microscope image of the homogeneous microstructure of foam glass with approximate uniform 

cellular shape and sizes obtained by using waste of ceramic frits and glazes under a firing condition of 800°C and 30 

minutes of firing cycle. Figures 6 and 7 are SEM images of the damaged microstructure of foam glass obtained by 
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using waste of ceramic frits and glazes produced under a firing condition of 900°C and 30 minutes of firing cycle. As 

shown, the increase in the firing temperature from 800°C to 900°C destroys the cellular structure of the foam glass. 

 

                                                                  
Figure 4:Homogeneous microstructure of foam glass               Figure 5:Homogeneous microstructure of foam glass 

 

 

 

                     
Figure 6: Damaged microstructure of foam glass                   Figure 7: Damaged microstructure foam glass  

 

Foaming agents are another important parameter in the course of foam development. It is found that pure silicon 

carbide possesses superior foaming capacity which makes it one of the most suitable constituents in foam glass 

production, in particular when ceramic frits and glazes are part of the components in the formula. Experiments were 

carried out to determine the foaming capabilities and the end product features at different SiC weight values and in a 

temperature range of 800-900°C, undergoing a 30 minute heating cycle. Figures 8 and 9 show the foam structure 

produced in a sample containing 19.6% waste transparent frit compared to the standard foam glass using 2% SiC with 

the firing temperature at 800°C. Figure 10 is an image of foam glass made from ceramic frits and glazes with varying 

SiC contents. Foam configurations in different samples produced by using ceramic waste frits and with increasing SiC 

content show that as temperature increase to 850°C, a uniform foam structure is developed (Figure 10). Raising the 

temperature over 850°C has caused deformation in the microstructures of foams. 
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Figure 11: Direct method producing coloured foam glass by adding different percentages of waste ceramic frits and 

glazes to mix glass to improve colour quality 

 

Another promising feature in the present work is development of coloured foams which are expected to find a bright 

future in road and highway signs and traffic codes. The physical inclusion of ceramic pigments in the glaze 

composition yields shades with excellent quality. Therefore it can be concluded that presence of ceramic frits or glazes 

in the foam composition helps to enhance its colour quality. It should be noted that transparent frits increase the colour  

density and produce darker shades whereas the so called opaque frits have tendency to produce light pastel colours. 

Figure 11 demonstrates various coloured foams produced by direct pigment inclusion. Coloured foams such as LWA 

can have excellent applications in road industry. 

 

Raising the temperature over 850°C causes the deformation in microstructure. Foaming agents are formulated in such 

a way as to obtain maximum performance with minimum quantity. Pure silicon carbide is the main bubbling agent in 

this test and is used as foaming component with darker products. Other agents are employed to give soft colour and 

clear effects. 

3. DISCUSSION AND CONCLUSION 

Initially, physical properties testing was carried out at CPATT on the two lightweight aggregate materials, designated 

as LWA-A and LWA-B. The tests included grain size analysis, crushed particle content, flat and elongated particle 

content test, abrasion and freeze-and-thaw testing. The laboratory tests indicated that both samples have a very 

consistent and repeatable gradation with high percentage of coarse aggregate. They both have very high crushed 

particle contents and very low flat and elongated particle contents. Overall, the LWA materials showed excellent 

physical and mechanical characteristics and conform to most of the OPSS 1010 requirements for granules A, M, O or 

S. Both materials are concluded as suitable for use in pavement structures. 

 

Based on the promising initial results, more intensive research work has continued to establish techniques for 

monitoring foam capabilities at the microstructure level. It has been concluded that the physical and mechanical 

properties of the foam glass can be controlled and altered according to specific needs at the very early stages of 

composition preparation. Important mechanisms are introduced which conveniently enhance flexibility in changing 

and modifying foam characteristics. The addition of small percentage of ceramic frit to the base formulation can have 

significant influence on important qualities such as cellular structure, surface water absorption, viscosity and density. 

Other physicochemical specifications can be modified and tailored as required by adjusting the frit content in the 

mixture of raw materials, while the use of SiC as a foaming agent has been determined to be a second versatile 

controlling mechanism. Volumetric expansion, density and colour stability in foams can be altered by varying 

quantities of SiC in mixture contents. Finally, ceramic stains are confirmed as ideal substances for producing colourful 

foam glasses. Impressive coloured foams, considered as multifunctional elements, can find considerable demand in 

road and highway construction operations. 
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The fundamental research work has disclosed excellent mechanisms for customizing foam properties according to the 

sector of application. In continuation of present studies and in order to supply proper samples for the ongoing 

experimental works at UW, new foam products with modified compositions will be the subject of future research. The 

capabilities of glass foams as environmentally friendly and green substances will be further explored and developed. 

A deserving place for many varieties of foam glass is anticipated in the ever-expanding construction industry and its 

important related markets. 
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