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Abstract 

Conventional wastewater treatment techniques - utilizing microorganisms to remove organics 

and nutrients (i.e. nitrogen and phosphorus) from a water stream and partially incorporate them 

into their cell structure - struggle to adapt with increased urbanization due to land and 

infrastructure requirements. The circulating fluidized-bed bioreactor (CFBBR) was developed as 

a way to provide biological treatment in an urbanized area by cultivating high-density bacteria 

on an inert media. The technology operates as a pre-anoxic nitrification/denitrification 

wastewater treatment process. The system is initially loaded with media, providing a platform 

for microbial growth. Internal recycle streams in the system provide the energy to fluidize the 

media – increasing mass transfer and accelerating microbial growth and pollutant removal rates. 

A pilot-scale CFBBR unit operated in Guangzhou, China, at an organic loading rate of 0.50 kg 

COD/day and a nitrogen loading rate of 0.075 kg N/day, was able to achieve a 93% reduction in 

carbon and an 88% reduction in nitrogen.  

 

In addition, an innovative sensor network was constructed from open source hardware to 

monitor and adjust dissolved oxygen (DO) levels inside a 15 L lab-scale partial nitrification 

fluidized-bed. The treatment strategy for this biological process was to create reactor conditions 

that favour nitrifying bacteria that convert ammonia to nitrite, called ammonia oxidizing 

bacteria (AOB), over nitrifying bacteria that convert nitrite to nitrate, called nitrite oxidizing 

bacteria (NOB). The CFBBR, by virtue of its unique abilities to control biofilm thickness and 

accordingly biological solids retention time, offers significant advantages over other emerging 

nitrogen removal processes.  
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The control system was designed to automatically adjust the air flow to the bioreactor to 

maintain a DO level of approximately 1 mg/L, conditions that favour AOBs activity over NOBs. 

The unit operated continuously for 40 days as the bioreactor was fed with 200 mg/L of synthetic 

ammonia wastewater (devoid of carbon) to a maximum nitrogen loading rate of 6 g NH4-N/day. 

The control system was able to maintain an ambient DO level of 1.30 mg/L. At this loading rate, 

the effluent nitrate concentration was approximately 5% of the influent feed – indicating low 

NOB populations in the reactor. 

Keywords   

Wastewater, Biological Nutrient Removal, Nitrification, Denitrification, Circulating 

Fluidized-bed, Bioreactor, Partial Nitrification, Bacteria, Attached Growth, Fluidization, 

Open Hardware, Arduino 
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Chapter 1 

Introduction 

1.1 Rationale 

The preservation of a clean water supply is critical to protect the wellbeing of our species. Laws 

and regulations passed in every developed country ensure that the water that is returned to the 

environment, referred to as “wastewater”, is also of a certain quality and stipulates the removal 

of contaminants. Contaminants in municipal wastewater are broadly characterised as either 

suspended or dissolved pollutants, predominantly the by-products of human defecation and 

urination. High concentrations of these contaminants entering a receiving water body can result 

in toxic conditions for wildlife, dissolved oxygen depletion, and excessive algae growth10, 11. 

Municipal sewer networks, consisting of pipes and pumps, deliver wastewater to treatment 

facilities to remove pollutants in the water before sending it back into the environment. This 

process can be broken down into three treatment stages: physical treatment, biological 

treatment, and disinfection10, 11.  

Physical water treatment processes filter and screen the water to remove hair, toilet paper, 

food waste and other solid debris from the stream. The removal of contaminants smaller than 2 

microns is the focus of the remaining processes, disinfection and biological treatment. Bacteria 

and other microorganisms are removed in the disinfection process, commonly done through 

either the addition of chemicals (i.e. chlorine, ozone) or using a UV lamp to denature the 

organisms’ proteins10, 11.  
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Conversely, biological treatment utilizes microorganisms in order to remove water-soluble 

organics, and nutrients (i.e. nitrogen, phosphorus). The engineering strategy of a biological 

nutrient removal treatment process is to target dissolved pollutants that contain carbon, 

phosphorus, and nitrogen and partially incorporate them into the cell structure of the 

microorganism10, 11. 

In Canada, the discharge of water from municipal wastewater treatment plants to the 

environment is regulated at both federal and provincial levels4. Federally, Regulation [6 36 

(2)(4)(b)] in the Wastewater Systems Effluent Regulations under the Fisheries Act4 outlines the 

effluent water quality parameters wastewater treatment plants must achieve before discharging 

into the environment. Table 1.1 summarizes the monthly average effluent deleterious substance 

concentrations as outlined under the national and selected provincial regulations, while Table 

1.2 lists effluent regulations from selected countries. 

While biological treatment processes have been used for over a 100 years, the infrastructure 

and building footprint involved in treating the water are no longer suitable for densely 

populated areas. The circulating fluidized bed bioreactor was developed as a way to provide 

biological treatment in an urbanized atmosphere. The basic difference between this system and 

a conventional treatment system is that microorganisms attach themselves to small particles - 

like sand, small rocks or bits of plastic – and, using fluidization technology, are suspended inside 

the reactor. Because the bacteria are grown on the particles, they can get much larger, nearly 

100 times, than in conventional systems. This feature of the technology allows the size of the 

bioreactor to be significantly reduced14. 
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Location Carbon Nitrogen 

Canada4 25 mg CBOD/ L 1.25 mg (NH4-N) /L 

Ontario9 25 ~ 30 mg BOD5/L < 1.0 mg (NH4-N)/L 

British Columbia3 10 ~ 40 mg BOD5/L 20 mg (TN)/L 

Alberta2 25 mg COD/L Assessed on a Site Specific Basis 

Manitoba7 25 mg CBOD/L 15 mg (TN)/L 

Quebec6 25 mg CBOD/L 1.25 mg (unionized NH3-N)/L 

Atlantic Provinces8 25 mg CBOD/L 1.25 mg (unionized NH3-N)/L 

 

COD:  Chemical Oxygen Demand – the amount of compounds in the water that can be oxidized. 

CBOD:  Carbonaceous Biological Oxygen Demand – the amount of carbon in the water that can be biological degraded. 

BOD5:  Biological Oxygen Demand – the amount of compounds in the water that can be biologically degraded in a 5-days timeframe. 

TN:  Total Nitrogen – the total amount of nitrogen in the water sample. 

NH4-N:  Nitrogen in the form of ammonium 

Unionized NH3-N:  Nitrogen in the form of unionized ammonia – ammonia in the water with the exception of ammonium ion.  

 

Table 1.1 Canadian Federal and Selected Provincial Wastewater Effluent Monthly Average Substance Concentrations 
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Table 1.2: Selected International Monthly Average Wastewater Effluent Deleterious Substance Concentrations 

Country Carbon Nitrogen 

United States of America12 30 mg BOD5/L < 15 mg (TN)/L 

China5 20 mg BOD5/L 20 mg (TN)/L 

Australia 13 10 mg BOD5/L 10 ~ 15 mg (TN)/L 

France1 25 mg BOD5/L 10 ~ 15 mg (TN)/L 

Germany1 25 ~ 40 mg BOD5/L < 20 mg (TN)/L 

Netherlands1 20 mg BOD5/L 10 ~ 15 mg (TN)/L 

Austria1 15 ~ 25 BOD5/L 5 ~ 10 mg (NH4-N)/L 

United Kingdom1 25 BOD5/L 10 ~ 15 mg (TN)/L 

 
BOD5:  Biological Oxygen Demand – the amount of compounds in the water that can be biologically degraded in a 5-days timeframe. 

TN:  Total Nitrogen – the total amount of nitrogen in the water sample. 

NH4-N:  Nitrogen in the form of ammonium 
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1.2 Status and Problem 

CFBBR systems have been operated as both lab and pilot scale units to treat municipal 

wastewater. These systems were able to achieve high BOD, COD, TSS, and TN removal 

while simultaneously producing much lower residual bio-solids compared to 

conventional systems. Over the course of these projects, studies have been conducted 

on: contaminant loading rates, microbial populations in the biofilm, the effect of 

fluidization on biofilm development, and the impact of various municipal and industrial 

wastewater treatment techniques employing aerobic and anoxic bioreactor conditions. 

Research into the effectiveness of this treatment system is on-going. The primary areas 

of interest are focused on scale-up performance assessment, alternative carrier media 

with the ultimate goal of reducing fluidization energy, and the development of 

real-time process control and automation systems to monitor and adjust process 

conditions to alleviate operator duties. 

 

1.3 Objective 

The thesis has the following goals: 

• Investigating the performance of the circulating fluidized-bed bioreactor as a 

biological nutrient removal treatment process in pilot and mobile scale 

operations 
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• Investigate innovative methods to monitor and control biological nutrient 

removal in a partial nitrification fluidized-bed 

 

1.4 Scope of the Thesis 

This thesis focuses on the operation and automation of biological nutrient removal 

processes in fluidized-beds. Chapter 2 provides a literature review of the biochemistry 

and technology of biological nutrient removal as well as basic applications of circulating 

fluidized beds in wastewater treatment. Chapter 3 discusses the operation and 

performance of the CFBBRs in municipal wastewater treatment. Chapter 4 focuses on 

the development of online monitoring and control techniques - leveraging open source 

hardware – to measure and modify bioreactor conditions in a PNFBR. 

 

1.5 Role in Research 

The work presented in this thesis was directed under the supervision of Dr. George 

Nakhla and Dr. Jesse Zhu. Research conducted on mobile CFBBR operations was a 

collaborative effort between colleagues of Western University: Dr. Ahmed ElDaysti, 

Zhenqi Wang, and Kai Li. Research conducted on pilot CFBBR operations was a 

collaboration between the Western team and the team from Guangzhou Institute of 

Energy Conversion in Guangzhou, China: Dr. Haibin Li, Dr. Zengli Zhao, Dr. Xiaobo Wang, 

Huiqiong Zhong, Xiaoqin He, and Anqi Liu. Research conducted on the PNFBR control 
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system was an individual effort - with many thanks to Kyle Fricke, Nick Wang, Mark Cai, 

and the Western Engineering Electronics Shop team: Ken Strong, Ron Struke, Eugen 

Porter, and Trent Steensma. 
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Chapter 2 

Literature Review 

2.1 Organics and Nutrients in Wastewater 

2.1.1 Organics  

Carbon compounds in water samples are commonly measured as total chemical oxygen demand 

(TCOD), which indicates the equivalent amount of oxygen required to remove the carbon from 

the water by oxidation to CO2. Organic matter that can be biologically degraded by 

microorganisms is referred to as biochemical oxygen demand (BOD) and is classified as either 

soluble or particulate forms. The soluble fraction of the BOD is comprised of smaller molecules 

that can be quickly incorporated into the microbial biomass17. Particulate BOD must first be 

converted to a soluble form by extracellular enzymes, translating into slower removal rates than 

the soluble forms. The readily biodegradable fraction of the BOD is assumed to be soluble, while 

the slowly biodegradable portion is considered particulate. When all of the organic waste matter 

is removed, the cells undergo endogenous respiration, whereby the cells consume their own 

tissue to obtain energy17.  

Some portions of the COD are nonbiodegradable and pass through a biological treatment 

process unaffected. The percentage of domestic wastewater that can be biologically degraded is 

typically between 60 to 80%17, 22. Table 2.1 illustrates the typical forms and concentrations of 

carbon in raw municipal wastewater and Figure 2.1 illustrates the fractionation of the carbon17,.
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Table 2.1: Typical Forms and Concentrations of Carbon in Raw Municipal Wastewater25  

 

 

 

 

 

 

 

 

 

 

  

Total COD

BOD

Readily Biodegradable 
(soluble)

Complex VFA

Slowly Biodegradable 
(Particulate)

Colloidal Particulate

Nonbiodegradable 
COD

Nonbiodegradable 
(soluble)

Nonbiodegradable 
(particulate)

Figure 2.1: Fractionation of Carbon in Wastewater 

Contaminant Units Low Strength Medium Strength High Strength 

Biological Oxygen Demand* mg/L 110 190 350 

Total Organic Carbon mg/L 80 140 260 

Chemical Oxygen Demand mg/L 250 430 800 

*BOD measured after 5 days and adjusted to 20 oC 
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2.1.2 Nitrogen 

Like carbon, nitrogen takes on a variety of forms in wastewater, as well as a variety of other 

trace forms not mentioned in the regulations in Table 1.1. For simplicity, nitrogen in wastewater 

can be categorized into three general types: ammonia nitrogen, inorganic/soluble nitrogen and 

organic nitrogen. Table 2.2 summarizes the most common forms of nitrogen in each of the 

categories17. 

Table 2.2: Most Common Forms of Nitrogen in Wastewater17 

The majority of nitrogen enters municipal wastewater treatment facilities as ammonia and 

organic nitrogen, often lumped together and measured as Total Kjeldah Nitrogen (TKN). Roughly 

60 ~ 70% of the TKN entering a wastewater treatment facility enters as NH4-N22. Figure 2.2 

shows the fractionation of nitrogen in wastewater. 

 

 

Form of Nitrogen Compounds 

Organic Nitrogen • Nitrogen contained in the cells of 

microorganisms or protein and amino acids 

Ammonia Nitrogen • Ammonia (NH3) 

• Ammonium (NH4
+) 

Inorganic/Soluble Nitrogen • Nitrite (NO2
-) 

• Nitrate (NO3
-) 
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Organic nitrogen in domestic wastewater originates from amino acids and proteins. As with 

carbon and illustrated in Figure 2.2, organic nitrogen can be further classified as biodegradable 

or nonbiodegradable, each having soluble and particulate forms. Soluble biodegradable portions 

of organic nitrogen are readily available to the microorganisms, while particulate biodegradable 

fractions must first undergo a hydrolysis reaction before it is available to the microorganisms. 

Nonbiodegradable organic nitrogen accounts for roughly 6% of the nondegradable VSS as COD 

in raw wastewater entering a wastewater treatment facility17, 22. Particulate nonbiodegradable 

organic nitrogen can be removed in the settling process after an activated sludge treatment and 

leave the facility in the waste activated sludge (WAS). Soluble nonbiodegradable organic 

 

Total Nitrogen

TKN

Ammonia Nitrogen 
(NH4

+)
Organic Nitrogen

Biodegradable

Soluble Particulate

Nonbiodegradable

Soluble Particulate

Inorganic/Soluble Nitrogen

Nitrate (NO3-) Nitrite (NO2
-)

Figure 2.2: Fractionation of Nitrogen in Wastewater17 
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Figure 2.3: Eutrophication in a Decommissioned Aeration Tank, Taken Summer 2013 at the 
Adelaide Pollution Control Centre in London, Ontario, Canada 

nitrogen, on the other hand, is much more difficult to remove through conventional treatment 

techniques as it cannot be consumed by microorganism and it cannot be settled out of the 

water stream. Hence, soluble nonbiodegradable nitrogen is inevitably found in the effluent of 

biological treatment processes; however, its concentration is comparatively small from the total 

influent TKN (roughly 3%), having a typical concentration between17 1 ~ 2 mg-N/L. 

 

2.1.3 Environment & Health Impacts of Untreated Municipal Wastewater 

High effluent nitrogen concentrations from water treatment plants can have devastating effects 

on the environment, such as eutrophication and methemoglobinemia11.  

Nitrogen is a necessary nutrient for the growth of aquatic and terrestrial plant life and is an 

essential fertilizer. The presence of high levels of nitrogen in waterways can stimulate the rapid 

growth of aquatic plants and microorganisms, such as algae. This process is referred to as 

eutrophication. The increased presence of plants and microorganisms in a receiving water body 

deprives the water of dissolved oxygen, increases the turbidity of the water, and decreases its 

suitability for reuse. Eutrophication has devastating environmental repercussions that can 

destroy whole water bodies aquatic and wildlife11. Figure 2.3 is a picture of an old aeration tank 

in which eutrophication is taking place. 
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Methemoglobinemia is a disorder that predominantly affects infants who consume water 

containing high levels of nitrate ions. When a child consumes the nitrate-contaminated water, 

the nitrate compound is converted to nitrite in the infant’s digestive tract and transported 

throughout their body. A portion of these nitrite ions make their way to the host’s circulatory 

system. Once here, the nitrite ions bond to iron in the blood cells, which prevents the cells from 

obtaining oxygen. The deprivation of oxygen throughout the child’s body causes their skin to 

turn blue and major organs begin to lose functionality. A prolonged insufficient oxygen supply to 

the brain can cause paralysis and can eventually lead to death11. 

 

2.2 Nutrient Removal 

2.2.1 Organic Carbon Removal 

The principal bacterial populations involved in wastewater treatment are categorized as either 

heterotrophic or autotrophic communities. Heterotrophic bacteria use organic carbon 

compounds as an energy source and in cell synthesis. The heterotrophic bacteria can be broadly 

grouped into three classifications, as seen in Table 2.3. The grouping here is related to the 

groups interaction with dissolved oxygen in the water17. Typical biochemical conversions of 

organics to carbon dioxide gas can be seen in Equations22 2.1 to 2.3. 
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Group Characteristics Carbon 

Source 

Electron 

Donor 

Electron 

Acceptor 

Products 

Aerobic 

Heterotrophs 

Cultures that require oxygen in 

order to live and multiply 

Organic 

Compounds 

Organic 

Compounds 

O2 CO2, H2O 

Anaerobic 

Heterotrophs 

Cultures that live and multiply 

in the absence of oxygen 

Organic 

Compounds 

Organic 

Compounds 

Organic 

Compounds 

Volatile Fatty Acids 

Facultative 

Heterotrophs 

Cultures that use oxygen when 

available but are also able to 

grow in its absence 

Organic 

Compounds 

Organic 

Compounds 

NO2
-, NO3

- N2, CO2, H2O 

 

Table 2.3: Grouping of Heterotrophic Bacteria in Biological Nutrient Removal17  

 

 

 

 

 

 

 

Equation 2.1: Aerobic Heterotrophic Bacteria Reaction with Glucose as Carbon Substrate22 

 C6H12O6 + 6 O2  →  6 CO2 + 6 H2O 

0.04 C6H12O6 + 0.2 NO3
− +  0.2 H+  →  0.25 CO2 +  0.1 N2  + 0.35 H2O 

0.33 C6H12O6 + HCO3
−  →  CO2 + H2O + CH3COO− 

Equation 2.3: Faculative Heterotrophic Bacteria Reaction with Glucose as Carbon Substrate22 

Equation 2.2: Anaerobic Heterotrophic Bacteria Reaction With Glucose as Carbon Source22 
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2.2.2 Nitrogen Removal: Nitrification 

The biological conversions of nitrogen in wastewater are commonly done in two processes: 

nitrification and denitrification10.  

The process of nitrification is performed in two-steps. In each step, different nitrifying bacterial 

groups biologically oxidize specific forms of nitrogen. The first step involves the oxidation of 

ammonia to nitrite, performed by ammonia oxidizing bacteria (AOB). The second step is the 

further biological oxidation of nitrite to nitrate, performed by nitrite oxidizing bacteria (NOB). 

The chemical reactions for ammonium oxidation and nitrite oxidization can be found in 

Equations 2.4 and 2.5, respectively17. 

Equation 2.4: Oxidation of Ammonium to Nitrite by Ammonia Oxidizing Bacteria17 

 

Equation 2.5: Oxidation of Nitrite to Nitrate by Nitrite Oxidizing Bacteria17 

 

The oxidation of ammonia and nitrite is performed by a variety of microorganisms (see Table 

2.4) but is predominantly performed by two genera of nitrifying bacteria: Nitrosomonas, which 

is an ammonium oxidizing bacteria; and, Nitrobacter, a nitrite oxidizing bacteria. Each of these 

bacteria uses an inorganic carbon form, like carbon dioxide, as their carbon source. For each 

mole of carbon that is assimilated into cellular matter requires 30 moles of ammonium or 100 

moles of nitrite17. Because of these large quantities of substrates (ammonium and nitrite) 

required to assimilate the carbon source, nitrifying bacteria have a relatively low production 

rate22.  

NH4
+ + 1.5 O2 → NO2

− + 2 H+ + H2O + energy 

NO2
− + 0.5 O2 → NO3

− + energy 
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Energy Substrate Oxidizing Product Genera of Nitrifying 

Bacteria 

NH4
+ NO2

- Nitrosomonas 

Nitrosococcus 

Nitrosolobus 

Nitrosospira 

NO2
- NO3

- Nitrobacter 

Nitrococcus 

Nitrospira 

 

 

 

Table 2.4: Genera of Most Common Nitrifying Bacteria11 

 

 

 

 

 

 

 

 

 

Nitrifying bacteria are not present in the intestinal tract of humans. Therefore, nitrifying bacteria 

are not usually abundant in raw domestic wastewater. However, at high inflow and infiltration 

(I/I), increased concentrations of both microbial communities many enter treatment facilities 

because of their large presence in soil (the bacteria are UV sensitive, so they are most common 

under the soil’s surface)17.    
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Table 2.5: Basic Physiological and Structural Features of Nitrosomonas and Nitrobacter11  

` 

 

 

 

 

 

 

 

 

 

 

 

 

 

The overall biochemical conversion of ammonia to nitrate and consumption of carbon dioxide to 

produce new cells results in the production of acids, as seen in Equation 2.6.  

Equation 2.6: Overall Biochemical Conversion of Ammonia to Nitrate with Cell Production17 

NH4
+  +  1.863 O2 +  0.098 CO2  → 0.0196 C5H7NO2 + 0.98 NO3

− +  0.0941 H2O + 𝟏𝟏.𝟗𝟗𝟗𝟗 𝐇𝐇+ 

 Nitrosomonas (AOB) Nitrobacter (NOB) 

Carbon Source Inorganic (CO2) Inorganic (CO2) 

Cell Shape Coccus Bacillus 

Cell Size (um) 0.5 ~ 1.5 0.5 ~ 1.0 

Oxygen Requirement Strict Aerobe Strict Aerobe 

pH Growth Range 5.8 ~ 8.5 6.5 ~ 8.5 

Reproduction Method Binary Fission Budding 

Generation Time (h) 8 ~ 36 12 ~ 60 

Temperature Growth Range 

(oC) 

5 ~ 40 15 ~ 30 

Sludge Yield (mg VSS/mg N 

day) 

0.33 0.083 

Maximum Specific Growth 

Rate (day-1) 

1.03 0.77 ~ 1.03 

Half Maximum 

Concentration (mg N/L)  

1.5 2.7 

Decay Coefficient (day-1) 0.26 0.15 
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pH Impact on Nitrification 

4.0 ~ 4.9 Nitrifying bacteria present but pH inhibited 

5.0 ~ 6.7  Slow nitrification 

6.7 ~ 7.2  Nitrification rate increases 

7.2 ~ 8.0 Nitrification rate is constant (optimal) 

7.5 ~ 8.5 Slight decrease in nitrification rate 

 

The equivalent alkalinity that must be supplied as calcium carbonate (CaCO3) to neutralize the 

acid production is 7.07 g per g nitrogen. Insufficient alkalinity will result in a pH decrease in the 

water. Optimal pH ranges for nitrification are from 7.2 to 8. At pH’s below 7.2, the nitrification 

rate decreases steadily11. At pH’s below 5, the nitrification process is totally inhibited. The 

effects of pH on nitrification are summarized in Table 2.6. 

Table 2.6: pH Effects on Nitrification11  

 

 

 

 

 

 

Equation 2.7 also demonstrates that oxygen is another important operational parameter to 

monitor, with 4.25 g of oxygen utilized per g of ammonia-nitrogen removed. 

Equation 2.7: Overall Biochemical Conversion of Ammonia to Nitrate with Cell Production 

 

 

The amount of oxygen required for the overall biochemical process is slightly less than the 

theoretical amount required for the oxidation of ammonia to nitrate, 4.25 g of O2 in the overall 

NH4
+  +  𝟏𝟏.𝟖𝟖𝟖𝟖𝟖𝟖 𝐎𝐎𝟐𝟐 +  0.098 CO2  → 0.0196 C5H7NO2 + 0.98 NO3

− +  0.0941 H2O + 1.98 H+ 
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conversion including biomass production versus 4.57 g of O2 required for ammonia oxidation17, 

because of a small quantity of oxygen produced by the autotrophic bacteria during respiration in 

cell synthesis17. Step oxidation reactions and cell synthesis are shown in Equations 2.8 to 2.11. 

Equation 2.8: Ammonia Oxidation to Nitrite 

 

Equation 2.9: Nitrite Oxidation to Nitrate 

 

Equation 2.10: Biomass Synthesis and Respiration17 

 

Equation 2.11: Total Nitrification Reaction Converting Ammonia to Nitrate17 

 

Table 2.7: Summary of Theoretical Oxygen Consumed during Nitrification 

 

 

 

 

 

Biochemical Reaction O2 Consumed 

(g) 

1 g NH4
+-N 1 g NO2

--N 3.43 

1 g NO2
--N 1 g NO3

--N 1.14 

1 g NH4
+-N  1 g NO3

--N 4.57 

 

NH4
+ + 1.5 O2 → NO2

− + 2 H+ + H2O 

NO2
− + 0.5 O2 → NO3

− 

4CO2 + HCO3
− + NH4

+ +  H2O →  C5H7O2N + 5O2 

NH4
+  +  1.863 O2 +  0.098 CO2  → 0.0196 C5H7NO2 + 0.98 NO3

− +  0.0941 H2O + 1.98 H+ 
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Optimal oxygen concentrations should be maintained above 2 mg/L in order to ensure complete 

oxidation of ammonia to nitrate. Due to the cost of aeration, requiring compressors to generate 

sufficient force to over come the hydrostatic pressure of the water to push air into the 

bioreactor, it is also important to monitor for high oxygen levels to ensure that the process 

remains economical.  

Table 2.8: DO Concentration Effects on Nitrification11  

 

 

 

 

 

The temperature of the biological reaction is usually not controlled because of increased 

operating costs to the treatment plant, but it is an important operating parameter to monitor. 

Like most microorganisms, the optimal temperature range for nitrifying bacteria is 

approximately 30 oC. Above a temperature of 45 oC and below a temperature of 5 oC, the 

nitrification process is thermally inhibited3. Table 2.9 summarizes the effect of temperature on 

the nitrification process. 

 

 

 

DO Concentration Nitrification Achieved 

<0.5 mg/L No Nitrification 

0.5 ~ 1.9 mg/L Minimal Nitrification 

2.0 ~ 2.9 mg/L Sufficient Nitrification 

3.0 mg/L Maximum Economical Nitrification 
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Temperature (oC) Nitrification 

> 45 Nitrification ceases 

28 ~ 32 Optimal temperature range 

16 Approximately 50% of nitrification rate at 30 oC 

10 Significant reduction in rate, approximately 20% of rate at 30 oC 

< 5 Nitrification ceases 

 

Table 2.9: Temperature Effects on Nitrification3 

 

 

 

 

 

An important operational parameter in biological nutrient removal processes is the ratio 

between the abundance of food in the system compared to the concentration of 

microorganisms in the system. In nitrification operations it is important to maintain a low food 

to microorganism ratio (F/M) for an extended periods of time to allow for the bacteria to 

sufficiently grow. In the case of ammonium as the food source and the mixed liquor volatile 

suspended solids (MLVSS) as a measure of the microorganisms, a ratio of 0.5 kg food to kg 

microorganism per day should not be exceeded in order to ensure that nitrification can still 

proceed11.  Figure 2.4 illustrates the relationship between F/M ratio and the nitrification 

process17. 
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2.2.3 Nitrogen Removal: Denitrification 

The second conventional biological nutrient removal technique for nitrogen is denitrification. 

Denitrification is the process in which nitrate ions and organic matter are converted into 

nitrogen gas. The important difference between nitrification and denitrification is that 

nitrification does not remove nitrogen from wastewater; rather, it merely transforms organic 

nitrogen and ammonia into another soluble, nitrate. Denitrification, on the other hand, converts 

nitrate and nitrite into insoluble nitrogen gas17. The most common reaction for denitrification is 

performed in two steps and can be found in Equations 2.12 and 2.13, respectively. 

 

Equation 2.12: Denitrification of Nitrate to Nitrogen Gas10 

 

 

Equation 2.13: Denitrification of Nitrite to Nitrogen Gas10 

 

 

The principal bacteria involved in this process are facultative anaerobes, which means that the 

majority of the bacteria involved in denitrification are capable of respiration under aerobic 

conditions or anaerobic conditions, preferring the former over the latter10. The significance of 

this feature of denitrifying bacteria means that the denitrification process complements an 

aerobic nitrification process placed upstream or internal recycle loops. It also means that the 

NO3
− + cBOD → NO2

− + CO2 + H2O 

NO2
− + cBOD → N2 + CO2 + OH− ∓ H2O 
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process potentially occurs anywhere there are anoxic conditions, like dead zones in an aeration 

tank, causing operational problems10. Table 2.10 summarizes some of the most common 

bacteria genera involved in denitrification. 

Table 2.10: Genera of Selected Denitrifying Bacteria11  

 

 

 

 

 

 

 

 

If methanol is used as a carbon source, the denitrification oxidation reaction can be written as 

follows17. 

Equation 2.14: Denitrification Oxidation Reaction with Methanol as Carbon Source17 

 

 

For every mol of nitrate consumed, 1 mol of alkalinity is produced. Put another way, for every 

gram of nitrate consumed by the organisms, 3.57 grams of alkalinity as CaCO3 is produced. This 

NO3
− + 1.8 CH3OH + H+ → 0.065 C5H7O2N + 0.47 N2 + 0.76 CO2 + 2.44 H2O 

Acetobacter 

Arthrobacter 

Bacillus 

Denitrobacillus 

Enterobacter 

Escherichia 

Flavobacterium 

Halobacterium 

Kingella 

Methanonas 

Moraxella 

Neisseria 

Paracoccus 

Pseuodomonas 

Rhizobium 

Xanthomonas 
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Parameter Concentration Notes 

pH 6.5 ~ 8.5 Optimal range between 7.0 ~ 7.5 

Temperature >5 oC Below this temp, the bacteria are inhibited 

Dissolved Oxygen <0.2 mg/L Above this concentration, O2 becomes the favourable 

electron acceptor 

SRT  3 to 6 day Same range as SRTs for aerobic systems 

ORP* -50 ~ 50 mV Above this value, aerobic conditions. Below this 

value, anaerobic conditions. 

 

symbiotically affects processes employing both nitrification and denitrification operations 

because half of the alkalinity required for nitrification can be supplied by a denitrification 

process (7.14 g of CaCO3 required for nitrification and 3.57 g of CaCO3 are produced in 

denitrification)17.  

Table 2.11: Operational Factors Influencing Denitrification10  

 

 

 

 

 

 

 

*ORP – Oxidation Reduction Potential – measure of the strength of oxidizers and reducers in a 

solution. 
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2.3 Conventional Biological Nutrient Removal Reactors 

2.3.1 Suspended Growth 

Suspended growth operations utilize microorganisms that are free-floating within the waste 

stream. When applied on domestic wastewater, this treatment technique is predominately an 

aerobic treatment, however, to enhance organic and nutrient removal, a combination of anoxic 

treatment and aerobic treatment strategies could also be used17. Aerobic treatment essentially 

consists of oxidizing organic and ammonia to carbon dioxide and nitrate, respectively, while 

anoxic treatment is the oxidization of organics and nitrate to carbon dioxide and nitrogen gas. 

 

2.3.2 Activated Sludge Process (w/Enhanced Nitrogen Removal) 

The activated sludge process is the most commonly used biological technique in wastewater 

treatment. The unit is essentially an aerated tank in which the water flows from one end to the 

other. The term “activated” in the description refers to the injection of oxygen to the process, 

allowing the bacteria to remove organic waste8. Air can be supplied to the reactors in a variety 

of ways, but are most commonly aerated using air diffusers that are installed at the bottom of 

the reactor. This feature of the design provides an efficient way of supplying air to the bacteria 

and also provides a source of mixing, keeping the reactor homogeneously mixed. At long sludge 

age and hydraulic times, the process effluent becomes nitrified which allows nitrification to take 

place. In sections of the system where there’s insufficient oxygen supply, denitrification, the 

conversion of soluble nitrates and organics into nitrogen gas, can occur17. Primary effluent is 

mixed with return activated sludge (RAS) to form a mixed liquor of suspended solids (MLSS), 
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typically between 2000 to 3000 mg/L of suspended solids. Because a large portion of the 

biomass is recycled, the mean cell residence time, or sludge retention time, is decoupled from 

the hydraulic retention time. This means that water spends a shorter amount of time in the 

system, typically between 4 to 6 hours, than the microorganisms, typically between 3 to 18 days 

for complete nitrification, subject to temperature17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Process Flow of the Activated Sludge Process  

Table 2.12: Activated Sludge Operation3, 24  

Operational Parameters Nitrification/Denitrification 

Bacteria Nitrosococcus / Nitrospira 

Temperature (oC) >10 

pH 6.5 ~ 8.0 / 6.0 ~ 8.0 

Dissolved Oxygen (mg/L) 0.5 ~ 2 / 0 

Loading Rates (mg TKN(g 

MLVSS.h)-1) 

1.0 ~ 4.5 

HRT (h) >5 

SRT (d) >7 / 1 ~ 2.5 

F/M (kg BOD5(kg MLVSS.day)-1) 0.10 (De only) 
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2.3.3 Various Activated Sludge Configurations 

To enhance nutrient removal, a wide range of activated sludge biological nutrient removal 

configurations have been adopted. While there are many variations of this type of treatment 

strategy, they can be generally grouped as pre-anoxic, post-anoxic, or some combination of the 

two3. 

Processes with high inorganic nitrogen concentrations or high organic carbon concentrations 

typically use a pre-anoxic treatment strategy. In the pre-anoxic configuration, the anoxic section 

of the treatment train supersedes the aeration tank, as seen in Figure 2.6. Nitrate produced 

from the aerobic zone is recycled to the anoxic section so that influent BOD and the recycled 

nitrates can be biologically converted to CO2 and N2 gas. The recycling of the nitrates from the 

aerobic section can be done exclusively through secondary clarification RAS recycle, but is more 

commonly done using an internal recycle from the aerobic tank8.  

 

 

 

 

 

Figure 2.6: Process Flow of Pre-Anoxic Treatment 
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The operation of post-anoxic treatment for activated sludge means that an aerobic process 

precedes the anoxic treatment tank. These setups are typically operated to reduce the 

population of bacteria following the aeration tank and to reduce the total nitrogen 

concentration to meet effluent regulations. Because the majority of BOD has been removed in 

the aerobic section, the electron donor that creates the demand for nitrate is the organic matter 

in the bacteria from endogenous respiration. In some operations an external carbon source, 

commonly methanol, must be added to the nitrified influent before entering the anoxic reactor. 

Sufficient hydraulic retention time and sludge retention time are also required to assure good 

floc settling and thickening characteristics. After the stream exists the anoxic tank, it is followed 

by a short aeration time (5 to 10 minutes) to release the nitrogen gas bubbles from the mixed 

liquor to decrease settling time in the final clarifier and increase suspended solids removal17. 

 

 

 

 

 

Figure 2.7: Process Flow of Post-Anoxic Treatment 
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2.3.4 Advantages & Limitations of the Activated Sludge Process 

The activated sludge process is a very robust system and is comparatively easy to operate. There 

is a low level of technology involved in this process, which reduces the need for advanced 

automation and reduces the overall cost of the system. In addition to removing nitrogen from 

waste streams, activated sludge processes are also capable of removing high levels of organics, 

independent of either nitrification or denitrification (see simulation results in Appendix A). To 

maintain high conversion rates, these reactors are often over aerated to ensure a sufficient 

supply of oxygen. The equipment used in a typical activated sludge process is not especially 

sophisticated and lacks real time measurements of nitrogen concentrations, relying heavily on 

lab results to get critical operational information. The average system has a large footprint and 

infrastructure requirements, which makes them undesirable for remote communities and 

densely populated urban areas.  

 

2.3.5 Attached Growth 

Attached-growth systems use a medium to provide an inert surface on which to retain and 

cultivate high concentrations of bacteria. The operating principle of these units is to flow the 

wastewater over the surface holding the bacteria for treatment22. 

A “biofilm” is the term given to the development of a biological cluster of a variety of bacteria 

held on a fixed surface by producing sticky, three-dimensional structures using extracellular 

polymeric substances to adhere to the surface. Biofilms vary in size and thickness depending on 
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different environmental conditions but typically undergoes three stages of development: 

attachment, growth, and dispersal9. 

 

 

 

 

 

 

Initial attachment occurs when water containing suspended bacteria land and adhere on an 

inert platform and begin growing. This is known as the conditioning layer9. The cells that 

comprise the conditioning film attach quickly to surfaces that are hydrophobic, nonpolar, and 

high surface roughness, such as plastics. Irreversible attachment occurs once the 

microorganisms start producing sticky extracellular polymeric substance to hold the colony on 

the inert platform9. The extracellular polymeric substances that hold the bacteria in place are 

usually comprised of a wide variety of glycoproteins, glycolipids, and proteins. Biopolymers in 

the extracellular polymeric substance are highly hydrated and form a matrix that holds the 

biofilm together and retains water. At this time, the bacteria are firmly anchored to the media 

until the final stage of growth9. 

 

With sufficient substrate supply, the biofilm enters the maturation stage where they rapidly 

reproduce, and grow into complex three dimensions. Some biofilms can grow to be several 

centimeters thick and can include a variety of bacteria specimens. Operating conditions in 

Figure 2.8: Illustration of Biofilm Development on an Inert Surface9 
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attached growth systems are adjusted to maintain conditions to keep bacteria in the maturation 

phase; this is because the bacteria remove contaminants in the shortest amount time in this 

phase of their life cycle9. 

 

The final stage of development is dispersal, or the destruction of the biofilm. The dispersal 

process can be a passive mechanism in which the bacteria inside die off or the biofilm reaches a 

critical mass and bursts, releasing suspended bacteria into the wastewater to start the biofilm 

process over again. Alternatively, the dispersal process can be an active process that is 

controlled by the shear force applied to the surface of the media. The latter process can also be 

used to control the thickness of the biofilm being developed in the maturation phase, extending 

its duration and subsequently leading to faster contaminant conversion rates9.  

 

2.4 Low Carbon to Ammonia Concentrations in Wastewater 

Wastewater streams with low concentrations of carbon and high concentrations of ammonia 

can be problematic for conventional treatment using nitrification and denitrification processes. 

Without a source of readily biodegradable carbon, denitrification will not occur, making it 

difficult to reach total nitrogen effluent discharge regulations. External carbon sources maybe 

added to supplement the carbon deficiency, usually as pure compounds, to facilitate nutrient 

removal22.  

A wide range of carbon sources can be utilized to meet the COD needs for denitrification. 

Commonly used sources of external carbon sources include: methanol, ethanol, acetic acid, 

acetate and glycerol. The selection of the supplemental carbon source used in denitrification 

depends on several factors, including: cost, safety, material availability, ease of use, as well as 
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 Methanol Ethanol 56% Acetic 

Acid 

30% Sodium 

Acetate 

Glycerol 

COD (mg/L) 1,200,000 1,650,000 577,000 222,480 1,016,000 

Bulk Density 

(kg/m3) 

790 790 1090 1175 1190 

Yield (g COD/ 

g COD) 

0.41 0.55 0.53 0.53 0.55 

Total COD/N 4.82 6.36 6.09 6.09 6.36 

Total Dose (kg 

substrate/ kg 

NO3-N) 

0.48 0.46 1.19 3.09 0.77 

 

kinetic and yield dynamics17. Table 2.13 summarizes the product characterization for selected 

external carbon sources. 

 

Table 2.13: Product Characterization for Selected External Carbon Sources20 

 

 

 

 

 

 

 

 

 

Equation 2.15 shows the denitrification process using methanol as a substrate. Complete 

denitrification (removal of all available nitrite or nitrate) occurs when the ratio between cBOD 

and the nitrogen ions is 3:1. Having a ratio of 3:2 causes a nitrate/nitrite breakthrough. To avoid 

this, most operations keep the cBOD to nitrite/nitrate ion ratio10 at a 3:1.21. Table 2.14 shows 

the required concentration of methanol needed to perform denitrification. 
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NH4
+ + NO2

− → N2 + 2H2O 

Nitrogen Ion Methanol Required 

per mg/L of Nitrogen 

Ion 

Cells Produced Nitrogen in Cells 

Produced 

NO2
- 1.5 mg/L 0.3 mg 0.04 mg 

NO3
- 2.5 mg/L 0.5 mg 0.06 mg 

 

Equation 2.15: Denitrification using Methanol17 

 

 

Table 2.14: Required Methanol Concentration for Denitrification11  

 

 

 

 

 

2.5 Alternative Microbial Pathway: Anammox Process 

2.5.1 Biochemistry of Anammox Process 

An alternate microbial pathway in the biological nitrogen cycle was discovered and confirmed in 

the late 20th century called the ANaerobic AMMonium Oxidation (ANAMMOX) process15. In this 

process, anammox bacteria anoxically convert ammonium to nitrogen gas directly by using 

nitrite as an electron acceptor. Nitrite plays a further role in the anammox process as it is used 

as an electron donor in biomass generation. Equations 2.16, 2.17, & 2.18 show the energy 

production, cell generation and overall anammox reactions, respectively23. 

Equation 2.16: Energy Generation of Anammox Bacteria23 

NO3
− + 1.8CH3OH + H+ → 0.065C5H7O2N + 0.47N2 + 0.76CO2 + 2.44H2O 
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HCO3
− + 2.3 NO2

− + 1.97 H+ → 0.8 H2O +  1.3 NO3
− + new cells 

Equation 2.17: Biomass Generation of Anammox Bacteria23 

 

 

Equation 2.18: Overall Biochemical Reaction for Anammox Bacteria23 

   

In most wastewater operations, there is not a sufficient supply of nitrite ions in the influent 

waste stream. To provide the necessary concentration of nitrite for the anammox bacteria, the 

stream is partially oxidized to convert some of the ammonia into nitrite, called partial 

nitrification. The object of this process is to convert roughly 50% of the ammonium into nitrite 

while preventing further oxidation of the nitrite to nitrate. To accomplish this, pH, DO, and 

temperature must be carefully controlled to promote the growth of ammonia oxidizing bacteria 

while preventing the growth of nitrite oxidizing bacteria. This step can be done as a 

pretreatment in separate reactor or can be done in the same reactor by carefully controlling the 

conditions in the tank23. 

If the partial nitrification step is taken into account, the anammox can be written as Equation 

2.19. 

Equation 2.19: Anammox Reaction with Partial Nitrification 

 

Comparing the stoichiometric amount of oxygen required in this reaction (0.85 mol of O2 to 1 

mol of NH4
+) and the amount of oxygen needed in nitrification (2 mol of O2 to 1 mol of NH4

+) 

NH4
+ + 0.85 O2 → 0.44 N2 + 0.14 NO3

− + 1.43 H2O + 1.14 H+ 

NH4
+ + 1.32 NO2

− + 0.066 HCO3
− + 0.13 H+ → 1.02 N2 + 0.26 NO3

− + 2.03 H2O + new cells 
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Species of Anammox Bacteria 

Candidatus Kuenenia 

Candidatus Brocadia 

Candidatus Scalindua 

Candidatus Jettenia 

Candidatus Anammoxoglobus 

 

Parameter Range Unit 

Temperature 35 ~ 43 oC 

pH 6.7 ~ 8  

Dissolved Oxygen <0.5 mg/L 

Food: Microorganism ~0.3 g NO2
-/g VSS.d 

Loading Rate <1.5 kg N/m3.d 

HRT >2 h 

 

demonstrates a 57% reduction (0.85/2.0) of the amount of oxygen needed to remove the 

ammonium. And with aeration accounting for roughly 40% of a wastewater treatment plant’s 

total operating costs, there’s a significant cost saving potential. The other important feature of 

this equation is the absence of an organic carbon source needed to convert the soluble nitrogen 

into nitrogen gas, as is the case for denitrification.  

 

Table 2.15: Types of Anammox Bacteria23  

 

 

 

 

 

 

Table 2.16: Operating Conditions for Anammox Processes23  
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Table 22. Comparing Kinetic Parameters for Anammox Bacteria and Ammonia Oxidizing 

Bacteria23  

 

 

 

 

 

 

 

 

 

2.5.2 Inhibition of the Anammox Process by Nitrogenous Compounds 

Although the anammox bacteria consume ammonia and nitrite concentrations under anoxic 

conditions, high concentrations of either nitrogen source in the reactor can result in the 

production of free ammonia or nitrous acid, which are toxic to the bacteria. More strikingly, 

nitrite, its own substrate, can be toxic even at low concentrations inside the reactor. Table 2.23 

summarizes the nitrogen compounds and concentrations that are toxic to the anammox 

bacteria. It should be noted that these are reactor concentrations rather than influent 

concentrations1, 15. 

Parameter Anammox AOB Unit 

Biomass Yield 0.08 0.07 ~ 0.09 mol/mol N 

Aerobic Rate 0 200 ~ 600 umol/min 

Anaerobic Rate 15 ~ 80 2 umol/min 

Growth Time 0.003 0.04 1/h 

Doubling Time 10.6 0.73 days 

Ks NH4
+ <5 5 ~ 2600 uM 

Ks NO2
- <5 0 uM 

Ks O2 0 10 ~ 50 uM 
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Table 2.23: Inhibitory Nitrogen Compounds and Concentrations1, 15, 23 

 

 

 

 

 

 

 

 

 

Table 2.24: Effects of Nitrite Inhibition on Anammox15  

 

 

 

 

 

 

Nitrogen Compound Concentration Effect on Anammox Bacteria 

Free Ammonia 150 mg-N/L 90% decrease in activity 

Free Nitrous Acid 0.117 mg-N/L Effects occur at pH lower than 

7.1 (Above this pH, the 

predominant inhibitor is ionized 

nitrite) 

Nitrite 50 mg-N/L Impairs metabolism 

180 mg-N/L Growth is reversibly inhibited 

above this concentration 

250 mg-N/L Irreversibly toxic 

 

Seeding Sludge 

(Anammox Species) 

Temp 

(oC) 

Influent 

pH 

HRT (h) Operation 

Mode 

Nitrite 

(mg/L) 

FNA 

(ug/L) 

Effect 

Anammox Sludge 37 7.2 3 Continuous >280 29.5 Inhibition 

Denitrifying Flocculent 

Sludge 

35 6.8 15.3 Continuous 390  -85% activity 

Anammox Granular 

Sludge 

35 6.8 14.2 Continuous 280 77.7 -12% activity 

Anammox Biofilm 35 6.8 ~ 7.0 1.5 ~ 8 Batch 224 5.8 -50% activity 
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2.5.3 Inhibition of Anammox Process by Carbon and Other Compounds 

Anammox bacteria are chemoautotrophs, which means they use inorganic carbon dioxide as 

their carbon source. This feature of the bacteria means they aren’t able to degrade organic 

compounds. In fact, anammox bacteria are extremely sensitive to even low concentrations of 

most organic compounds. Because of their low tolerance of organics, anammox processes are 

limited to use in sidestream processing. Table 2.26 outlines various effects of organic loadings 

on the anammox activity. Two mechanisms have been proposed to explain this phenomenon (1) 

out competition by the faster growing heterotrophs in the system (2) substrate diversity, 

preferring to use organic compounds as its substrate rather than ammonium and nitrite23.  

 

Table 2.26: Anammox Inhibition by Organic12 

 

 

 

 

 

 

 

Reactor Organic Matter Concentration Effect 

Anaerobic Glucose 0.5 ~ 3 mmol/L No Effect 

UASB COD >300 mmol/L 

112 mg/L 

Anammox Inactive 

-98% activity 

FBR Glucose 1 mmol/L No effect 

SBR Methanol 0.5 mmol/L Complete inhibition 
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Inhibitor Inoculation 

Sludge 

Reactors Concentration 

(mmol/L) 

Effect 

Phosphate Candidatus 

Kuenenia 

 

Anammox 

(Suspended) 

Anammox 

(Biofilm) 

20 

 

20 

 

-50% activity 

 

-20% activity 

Sulfide Candidatus 

Kuenenia 

 

Anammox 1 ~ 5 

>5 

-60% activity 

Inactive 

Salinity Candidatus 

Kuenenia 

 

SBR 

 

 

RBC 

5 

 

13.5 

30 

Slight decrease in 

activity 

IC50* 

-95% activity 

 

 

Table 2.27: Other Inhibitory Chemicals and their Effect on the Bacteria15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 Anammox Bioreactors 

2.6.1 Suspended SBR (DEMON) 

DEMON reactors are used to treat anaerobic or dewatered centrate containing high levels of 

NH4
+. The system consists of one unit and is operated in a three-phase batch cycle. In the first 
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NH4
+ + 0.85 O2 → 0.44 N2 + 0.14 NO3

− + 1.43 H2O + 1.14 H+ 

stage, centrate from a dewatering process fills the reactor26. During the filling cycle, the water is 

aerated and converts part of the ammonium into nitrite. Acid that is formed as a result of this 

partial nitrification subsequently causes a drop in the pH of the reactor. After a drop in pH by 

0.1, sufficient nitrite has been produced.  

In the next step, the air supply to the reactor is closed. The anammox bacteria in the system 

take nitrite and the remaining ammonium and anoxically convert them into nitrogen gas. During 

this process, the pH slowly begins to rises again. After the pH has risen 0.1, the aeration is 

restarted and the cycle continues. 

After 6 hours, the mixing and aeration is turned off to allow the bacteria to settle. After 

sufficient settling time (approximately 1 hour), the process supernatant is discharged from the 

reactor while the bacteria are retained in the reactor. The entire process then starts over 

again26. 

 

 

 

Figure 2.9: Operation of DEMON Process 

 

Equation 2.20: Biochemical Reaction in DEMON Process26 
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Table 2.28: DEMON Process Operating Parameters26 

 

 

 

 

 

 

 

 

This process is a highly efficient way to treat high levels of nitrogen in a reactor and achieves 

high nitrogen removal efficiencies (90% NH4
+-N, 85% TN). The unit is relatively simple to operate 

and requires very little process control (main process control signals of interest are pH and DO). 

Because the technology utilizes anammox bacteria, it requires less oxygen to remove nitrogen, 

reducing operating costs. This process is very pH intolerant (+/- 0.1) and requires diligent 

monitoring to ensure that nitrite concentrations are below 5 mg/L to avoid inhibiting the 

bacteria. Free ammonia inhibition can also occur at very low concentrations in this reactor (<10 

mg/L). Lacking real time sensing of these parameters means that critical operational information 

has to be performed by experiments. In addition, this process is not capable of handling even 

small amounts of organic carbon (<250 mg COD/L), making it only useful in sidestream 

processing. 

Operational Parameters  

Bacteria AOBs/ Anammox 

pH 7.1 ~ 7.2 

Dissolved Oxygen (mg/L) 0 ~ 0.5 

Loading Rates (kg N(m3.d)-1) 0.7 ~ 1.2 

HRT (h) 6 

Start-up (months) 2 ~ 5 

Energy Demand (kW.hr/kg N removed) 1.0 ~ 1.3 

 



 
 
 

43 

2.6.2. Attached MBBR (ANITA-Mox) 

The ANITA-Mox is a single-stage attached anammox-biofilm process that can be used to treat 

low C/N streams, such as: reject water, leachates, and dewatered centrates. The reactor used in 

the ANITA-Mox process is a Moving Bed BioReactor (MBBR). The system uses a carrier media for 

the bacteria to grow on. By adjusting the conditions in the tank to those found in Table 2.29 

promotes the growth of biofilm that is both aerobic and anoxic27, as seen in Figure 2.10. 

As with all anammox processes, these systems are highly sensitive to dissolved oxygen. 

However, an interesting feature of this system is that the AOBs and the anammox bacteria 

co-exist on the carrier media. This feature enables the bacteria to be more tolerant than 

suspended growth systems and enhances process stability7.  

The system uses advanced sensors to operate a control loop to monitor conditions in the tank. 

The dissolved oxygen levels in the tank are monitored to ensure nitrite production is maximized 

and nitrate production is minimized. Online sensors in both the influent and effluent of the 

reactor calculate the amount of NO3
—N produced versus how much NH4

+ is remaining. If this 

ratio is greater than 11%, there is excess oxygen being supplied to the tank, favouring the 

growth of nitrite oxidizing bacteria. The control loop then takes corrective measures to decrease 

the oxygen supply to the reactor (the reverse is true for a ratio of NO3
--Nprod/NH4

+rem above 

11%)27. 

 

 

 

Figure 2.10: Bacteria Biofilm in ANITA-Mox Process 
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Table 2.29: ANITA-Mox Operating Parameters7, 27  

 

 

 

 

 

 

 

 

Table 2.30: ANIT-Mox Carrier Media7, 27 

 

 

 

 

 

 

 

Operational Parameters  

Bacteria AOB/ Anammox 

pH 6 ~ 8 

Dissolved Oxygen (mg/L) < 3 

Loading Rates (kg N(m3.d)-1) 1.2 

HRT (h) < 1 

Start-up (months) 2 ~ 6 

Energy Demand (kWh/ kg NH4
+-N removed) 1.45 ~ 1.75 

 

Carrier Media Surface Area (m2/m3) 

K1 plastic carrier (AnoxKaldnes) 500 

K3 plastic carrier (AnoxKaldnes) 500 

K5 plastic carrier (AnoxKaldnes) 800 

BiofilmChip™ M (AnoxKaldnes) 1200 

MiniClip (AnoxKaldnes) 1500 
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The attached growth feature of this process enables the bacteria to be more resilient to 

inhibitory compounds than in suspended growth systems (DO <3 mg/L and NO2
—N <50 mg/L). 

The ANITA-Mox process is an ideal process for nitrogen removal with a small footprint. 

Advanced online sensors measure the nitrate and ammonium concentrations and take 

corrective actions to optimize nitrogen removal. The operation of the ANITA-Mox reactor uses 

more pumps than in the DEMON process, making it less energy efficient. While a handful of 

full-scale operations of technology are in use, it is still in the very early stages of development. 

 

2.6.3 Granular Anammox Reactor (ANAMMOX) 

The ANAMMOX reactor was the first full-scale anammox process to be constructed. The unit 

resembles an anaerobic UASB and can be seen in Figure 2.11. The unit was installed at a sludge 

treatment facility processing partially nitrified sludge digestate. Sludge digestate, now rich in 

nitrite and ammonium, enters the system from the bottom of the reactor where it encounters 

the anammox granules. Diffused nitrogen gas is also supplied at the bottom to facilitate mixing 

and provide an up-flow velocity necessary to suspend the granules. After this adjustment, gas, 

liquid and solids all begin to rise toward the top of the reactor. As this happens the conversion 

of ammonium and nitrite to nitrogen gas takes place. At the top of the reactor, a specially 

designed three-phase separator retains the granules, recycles the gas back to the bottom of the 

reactor and ejects the water from the reactor28. 

Online sensors in this system consist of temperature, conductivity, pH and DO. Daily samples 

were collected from the various sampling points in the reactor in order to measure the 

concentration of ammonia, nitrite and nitrate28.  
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Table 2.31: ANAMMOX Operating Parameters28  

  

 

 

 

 

 

 

Figure 2.11: Full Scale Anammox Reactor in Rotterdam, NL  

Operational Parameter  

Bacteria Brocadia & Keunenia 

Granule Size (mm) 0.25 ~ 0.45 

pH 7 

Dissolved Oxygen (mg/L) 0 

Loading Rates (kg N(m3.d)-1) 7.1 ~ 9.5 

HRT (h) 19.4 

Start-up (months) 6 

Energy Demand (kWh/ kg NH4
+-N removed) 1.8 ~ 2.0 

 



 
 
 

47 

The formation of granules by the bacteria allows them to have a greater tolerance to nitrite 

inhibition than the other systems (>30 mg-N/L). The unit is constructed as a vertical column with 

a length, width and height ratio of 2:3:9, respectively. This vertical design reduces the building 

footprint of the facility. The nitrogen loading in this reactor is significantly higher than in all 

other designs, due again to the resilience of anammox granules. The system operation is much 

more sophisticated than the other anammox technologies, making it difficult to operate and has 

greater energy consumption. While this system is effective at removing ammonium and nitrite, 

it is very nitrite limited (since it relies on a partial nitrification reactor upstream for its nitrite 

substrate). 

 

2.7 CFBBR Fluidization Technology 

The process of fluidization can be generally described as a system in which a fluid (liquid or gas) 

passes upward through a static solid particulate bed. Upon contact with the flowing fluid, the 

particles also begin to move upwards, at which point they are “fluidized”. The degree to which a 

solid is fluidized depends on the flowing fluid velocity, the system’s geometry and the 

characteristics of the solid. At constant particle properties and sufficiently high fluid velocities, 

the solids can be pushed out of the reactor2.  
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2.7.1 Minimum Fluidization Velocity 

The minimum fluidization velocity (MFV) represents the transition of packed-bed particles into a 

fluidized state. The MFV is dependent on several particle properties, such as shape, density and 

size. Determining the MFV of a specific particle in liquid-solid fluidized-beds is a two-step 

process, accomplished by measuring the pressure drop in the system under increasing liquid 

velocity. As liquid velocity increases, there is a corresponding pressure increase inside the 

column. This pressure increase will continue until it reaches a constant value, at which time the 

MFV can be determined16, as shown in Figure 2.12. 

 

 

 

 

 

 

Figure 2.12: Minimum Fluidization Velocity 
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2.7.2 Circulating Fluidized-beds 

To retain the solids and reintroduce the particles back to the unit, the “circulating” system was 

developed. In a circulating fluidized bed, two vessels are required. The first system is referred to 

as a “riser”. As its name suggests, the particles in this system are “rising” through the system 

and will eventually exit the vessel. The effluent from the riser is separated, commonly via 

cyclone, to retain the solids and liberate the fluids from the system. The solids then enter the 

second vessel, referred to as the downer. Fluid is also flowing in the downer, but at a 

significantly slower rate than in the riser to allow the particles to fall to the bottom of the 

reactor, hence the name “downer”. Once at the bottom of the downer, the particles are 

recycled back to the riser vessel to begin the process over again4, 5, 6.  

 

2.7.3 Fluidized-beds in Wastewater Biological Nutrient Removal 

The circulating fluidized bed bioreactor (CFBBR) is an attached growth wastewater system 

consisting predominantly of two bioreactors, an anoxic-riser and an aerobic-downer. The 

systems are loaded with solid particles to around 20% - 30% of the reactor volume. The particles 

in these reactors are not active in the treatment process; rather, they provide an inert surface 

for bacteria to grow. The liquid used to fluidize these “bioparticles” is wastewater. As water 

flows up through the bed it comes in contact with the bioparticles. The aerobic and anoxic 

treatment is made possible by controlling the DO, pH, and temperature conditions in the vessel. 

The term “circulating” is a slight modification on the general definition given above because the 

solid flow regimes in the riser and the downer operate somewhere between the slugging and 

the turbulent flow regimes. In the CFBBR, it’s the fluids, rather than the solids, that circulate 
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between the riser and the downer systems6, 16. Figure 2.13 illustrates the process flow of the 

system.  

The system operates as a pre-anoxic treatment process. Raw wastewater enters the anoxic 

treatment in the riser at the bottom of the vessel. The fluidization energy is supplied from 

recycle lines, which pull water from the top of the vessel back through the particulate bed. In 

addition to providing the fluidization energy, this also serves as a way to ensure higher waste 

removal. The riser is kept anoxic so that heterotrophic bacteria can remove organics in the raw 

waste stream. The conditions in the riser are predominantly controlled by limiting the dissolved 

oxygen concentrations in the vessel. Water exiting the anoxic-riser then enters the 

aerobic-downer unit30.  

 

 

 

 

 

 

 

 

    

Figure 2.13: Process Flow of a CFBBR 
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Operational Parameters Anoxic – Riser Aerobic – Downer 

Bacteria Heterotrophic Heterotrophic & 

Autotrophic 

Up-flow Velocity (cm/s) 1 1 

Particle Size (mm) 0.60 ~ 1.10 0.60 ~ 1.10 

pH 7 ~ 8 7 ~ 8 

Dissolved Oxygen (mg/L) 0 > 2 

HRT (h) 0.5 1.6 

Start-up (weeks) 2 2 

 

Recycle lines placed at the top of the downer pulls the riser effluent water stream from the top 

of the system to the bottom. This provides both the fluidization energy for the particles and the 

food source for the bacteria in the bed. A compressor injects air into the reactor to promote the 

growth of aerobic bacteria. The aerobic conditions allow for heterotrophic and autotrophic 

bacterial cultures, which aerobically convert organics into carbon dioxide and ammonia into 

nitrate. The water then moves to the top of the vessel where it exits the bioreactor. Because the 

downer effluent is rich in nitrate, a portion of the effluent stream is recycled back to the 

anoxic-riser to be denitrified. A solid-liquid separator sometimes follows the downer bioreactor 

to reduce suspended solids in the system’s effluent5.  

Table 2.32 CFBBR Operating Parameters5, 6  
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Chapter 3 

Biological Nutrient Removal in Circulating Fluidized-beds 

3.1 Circulating Fluidized-beds in Wastewater Treatment 

The circulating fluidized-bed bioreactor (CFBBR) is a biological nutrient removal wastewater 

treatment system that consists of two bioreactors that aerobically and anoxically remove 

nitrogen and carbon in water streams. 

The basic components of a CFBBR consists of13: 

• Two cylindrical or rectangular reactors that typically have a minimum height to diameter 

ratio of 5 to 1 

• Inert media, typically 1 mm in diameter and with a density slightly greater than that of 

water 

• Internal recycle lines that pull water from the top of the bioreactors to bottom in order 

to fluidize media, increase hydraulic retention time, and recycle nitrates for 

denitrification 

• Air diffusers to maintain aerobic conditions in nitrifying section of system  

The system operates as a pre-anoxic attached growth nitrification/denitrification wastewater 

treatment process. The system is initially loaded with media, which provides the surface area for 

microbial growth. The reactor volume of the CFBBR is significantly lower than activated sludge 

processes because of the increased biomass density, enhanced mass transfer, and improved 

biomass retention.  
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Recycled streams also fluidize the particles, which is operationally advantageous because it 

reduces mass transfer limitations, (minimizes clogging) thereby enhancing biomass growth and 

substrate utilization kinetics, as well as facilitating biofilm control1, 3-5 . 

 

 

 

 

 
  
 

 

 

 

  

3.2 Aerobic-Downer Bioreactor 

The aerobic bioreactor conditions are externally adjusted by operators to promote the growth 

of microbial communities to biologically convert organic carbon to carbon dioxide and to 

convert ammonia to nitrate, according to Equations 3.1 and 3.210-12, respectively. The 

predominant control of these conditions is dissolved oxygen. Aerobic bioreactors are supplied 

 

Figure 3.1: Process Flow Diagram of the CFBBR System 
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with compressed air that is diffused into the system to maintain a dissolved oxygen 

concentrations of >2 mg/L in the media bed. While other environmental conditions in the 

aerobic bioreactor are import to monitor, such as pH and temperature, they are not typically 

adjusted by the system’s operator. Optimal environmental conditions in aerobic BNR fluidized 

beds can be found in Table 3.12-3, 7-9. 

Equation 3.1: Aerobic Heterotrophic Conversion of Carbon to Carbon Dioxide 

 

Equation 3.2: Aerobic Autotrophic Conversion of Ammonia to Nitrate  

 

The symbiotic relationship between these microbial communities is such that the by-product of 

the heterotrophs (carbon dioxide) can be used for growth of the autotrophs. Furthermore, the 

autotrophic growth rate can be hindered by high organic load. 

 

Table 3.1: Optimal Aerobic Conditions in a CFBBR 

 

 

 

 

 

C6H12O6 + 6 O2  →  6 CO2 + 6 H2O 

NH4
+ + 2 O2  → NO3

− + 2 H+ + H2O 

Parameter Range Optimal Range 

Dissolved Oxygen 2 ~ 6 mg/L 3 ~ 4 mg/L 

pH 6.5 ~ 8 7 ~ 8 

Temperature 10 ~ 35 oC 20 ~ 30 oC 
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The fluidization energy and the degree of fluidization of the media bed are equally important 

operational parameters. The degree to which the media is suspended in the system is adjusted 

to restrict the media from leaving the column, lying somewhere between the ‘bubbling’ and 

‘slugging’ fluidization phases. Lower fluidization energy and confined media movement in the 

bioreactor has a twofold operational advantage13: 

1) Lower fluidization energy reduces the collision force (shear force) between particles, 

favouring microbial attachment over suspended biomass growth and detachment. This 

aspect of the operation helps to retain bacterial populations on the media in the reactor 

and reduces the bacteria (sludge) production rate.  

2) The enhanced biomass retention translates to a long SRT, which might be conductive to 

the growth of specific microbial communities and their adaption to toxic and difficult to 

treat contaminants. 

An internal recycle pump pulls water from the top of the reactor column to the bottom and 

through the media bed, providing the energy for fluidization. The flow rate of this recycle line is 

dependent on a number of media characteristics (Table 3.2)13: 

 Geometry of media 

 Wet media density 

 Percent of media filling the reactor, and 

 Thickness of biofilm on media 
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Ultimately, the degree of fluidization of the media, or how much the particles are suspended in 

the reactor volume, is the governing parameter to determine the internal recycle flow rate. In 

addition to liquid flow, it is possible to supplement fluidization energy using the air flow to the 

system, which can be accomplished by placing the aerators underneath the media bed7. 

The final design parameters important in the operation of the aerobic column are the influent 

water characteristics and the influent flow. The specific contaminant loading rates important to 

the aerobic treatment process are the carbon loading, expressed as (kg COD or BOD5)/day, and 

the nitrogen, expressed as (kg NH3-N)/day13. 

The duration of time that water spends in the media bed, where it is available for biochemical 

treatment, is expressed as the empty bed contact time (EBCT) and is the quotient of the 

compacted media volume by the influent flow rate13. 

The flow rate of oxygen required can then be calculated as the product of the oxygen 

concentration required to oxidize all of the water contaminants by the feed flow rate of the 

influent wastewater (Equation 3.3). Typical CFBBR operations use air, rather than pure oxygen, 

as the aeration source. The theoretical oxygen flow rate determined in Equation 3.4 can be used 

to calculate the amount of air flow rate required using the density of air, the percentage of 

oxygen in air and the oxygen transfer efficiency of the aeration device10-12.  

Media Characteristic Ranges 

Diameter of Media [0.6 ~ 1.2] mm 

Wet Media Density [1.1 ~1.8] kg/m3 

Percent of Media Filling Reactor [20 ~ 40] % 

Thickness of Biofilm on Media <200 µm 

 

Table 3.2: Typical Media Characteristics Ranges in Aerobic Section of CFBBR3, 6-9 
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O2 sup =  O2 req  ×  Qin 

Equation 3.3: Determining the Quantity of Oxygen Flow Required to Oxidize Contaminants 

 

where:   

  O2 sup: Oxygen supplied to the column (kg/h) 

  O2 req: Oxygen required based on Carbon and Nitrogen Loading (mg/L) 

 

Equation 3.4: Determining the Quantity of Air Flow Required to Oxidize Contaminants 

 

 

where:  

  Qair flow: Air flow required (L/h) 

  O2 sup: Oxygen supplied to the column (kg/h) 

  O2%: Oxygen percent in air (%) 

  ρair:  Density of air (kg/m3) 

  OTE: Oxygen transfer efficiency (%) 

 

Typical operating conditions of the aerobic reactor in the CFBBR system are available in Table 

3.3. Treatment efficiencies and effluent contaminant concentrations from both lab and pilot 

Qair flow =  
O2 sup

O2%  ×  ρair  ×  OTE
 

Qin:   Influent flow rate (m3/h) 
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 Lab CFBBR Pilot CFBBR 

Influent Flow (m3/day) 0.05 5.8 

Average Organic Loading (kg COD/m3 day) 2.61 5.3 

Average Nitrogen Loading (kg N/m3 day) 0.26 0.53 

Empty Bed Contact Time (h) 0.6 1.0 

Hydraulic Retention Time (h) 1.65 2.3 

Average Attached Biomass (mg VSS/g particle) 9.82 7.85 

Recirculation Ratio  

(Internal Recirculation Flow/Influent Flow) 

8 8.7 

 

scale CFBBR systems are presented in Table 3.4. The decrease in influent ammonia and increase 

in nitrate concentrations, with nearly all ammonia being oxidized to nitrate, indicates strong 

nitrification performance in the system. To further reduce the nitrate into nitrogen gas, a 

portion of the aerobic bioreactors effluent is sent to the anoxic column to be denitrified. 

 

Table 3.3: Operating Parameters Aerobic Bioreactors in CFBBR System2-3, 6-8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Treatment Efficiencies in Aerobic Bioreactors in CFBBR System2-3, 6-8  

  CFBBR Lab Unit CFBBR Pilot Unit 
Parameter Influent Effluent Influent Effluent 
COD 
(mg/L) 

273 ± 27 26 ± 5 225 ± 29 53 ± 11 

TN (mg/L) 31.2 ± 2 8.6 ± 1 23.8 ± 3 9.9 ± 3 
TKN (mg/L) 28.2 ± 4 1.8 ± 0.1 23.8 ± 3 3.7 ± 1 
NH3-N 
(mg/L ) 

19 ± 3 0.7 ± 0.2 22.9 ± 4 1.1 ± 0.55 

NO3-N 
(mg/L) 

0.5 ± 0.2 6.5 ± 1 <0.2 6.2 ± 2 

TSS (mg L) 144 ± 32 4 ± 2 31 ± 16 5 ± 2 
VSS (mg/L) 118 ± 21 3 ± 0.9 26 ± 11 1 ± 0.8 
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3.3 Anoxic-Riser Bioreactor 

The anoxic bioreactor is used in conjunction with the aerobic bioreactor to further reduce 

carbon and nitrogen in the influent water stream. The principle reactor parameters are virtually 

identical, with two exceptions6-8: 

1) There is no air or oxygen supplied to the system, and 

2) The biochemical reaction occurring in the anoxic system is denitrification, wherein 

organic carbon is oxidized to carbon dioxide by facultative heterotrophic bacteria using 

nitrate to as an electron acceptor (Equation 3.5) 

 

This treatment technique is not as effective at removing carbon as the aerobic bioreactor, owing 

to the slower oxidation kinetics with nitrate as compared with oxygen, so the anoxic bioreactor 

should be larger than the aerobic system for carbon removal only. Practically the denitrification 

kinetics are much faster than the aerobic nitrification kinetics and hence the anoxic riser is much 

smaller than the aerobic downer. The advantage of using the anoxic system in addition to the 

aerobic unit is that biochemical conversion produces insoluble nitrogen gas from soluble nitrate, 

thereby removing nitrogen from the stream10-12.  

Equation 3.5: Anoxic Denitrification of Organic Carbon to Carbon Dioxide and Soluble Nitrate to 

Insoluble Nitrogen Gas 

 

 

 

NO3
− + cBOD → N2 + CO2 + OH− + H2O 
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Although the anoxic system precedes the aerobic bioreactor, it is dependent on the nitrification 

reaction occurring in the aerobic bioreactor to provide the nitrates needed for denitrification. 

Typical recycle flow rates from the aerobic bioreactor to the anoxic system are between 2 to 4 

times that of the influent flow rate. Table 3.5 outlines typical operating parameters and Table 

3.6 outlines the contaminant removal efficiencies in the anoxic bioreactors2-3, 6-8. 

Table 3.5: Typical Operating Parameters in Anoxic Bioreactors Used in CFBBR2-3, 6-8 

 

 

 

 

 

 

 

 

 

Table 3.6: Typical Contaminant Removal Efficiencies in FB Anoxic Bioreactors3, 8 

 

 

 

 

 

 

 Lab CFBBR Pilot CFBBR 

Influent Flow (m3/day) 0.05 5.8 

Average Organic Loading (kg COD/m3 day) 2.61 5.3 

Average Nitrogen Loading (kg N/m3 day) 0.26 0.61 

Empty Bed Contact Time (h) 0.23 0.12 

Hydraulic Retention Time (h) 0.4 0.5 

Average Attached Biomass (mg VSS/g particle) 11.6 16.4 

Recirculation Ratio  

(Internal Recirculation Flow/Influent Flow) 
11 8 

 

  CFBBR Lab Unit CFBBR Pilot Unit 
Parameter Influent Effluent Influent Effluent 
COD 
(mg/L) 

273 ± 27 26 ± 5 225 ± 29 53 ± 11 

TN (mg/L) 31.2 ± 2 8.6 ± 1 23.8 ± 3 9.9 ± 3 
TKN (mg/L) 28.2 ± 4 1.8 ± 0.1 23.8 ± 3 3.7 ± 1 
NH3-N 
(mg/L ) 

19 ± 3 0.7 ± 0.2 22.9 ± 4 1.1 ± 0.55 

NO3-N 
(mg/L) 

0.5 ± 0.2 6.5 ± 1 <0.2 6.2 ± 2 

TSS (mg L) 144 ± 32 4 ± 2 31 ± 16 5 ± 2 
VSS (mg/L) 118 ± 21 3 ± 0.9 26 ± 11 1 ± 0.8 
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In addition to the synergetic effects of using the aerobic by-products in the anoxic unit to 

perform denitrification, a by-product of the anoxic column is alkalinity, which helps to facilitate 

nitrification in the aerobic system. Hence, the term ‘circulating’ differs from standard 

fluidization terminology, which describes the movement of media between two reactor systems. 

Instead, in CFBBRs, it is the liquid, rather than the solids, that circulate through the system.  

3.3.1 Analytical Methods 

Influent and effluent samples were constantly collected and analyzed for various water 

quality parameters such as total suspended solids (TSS), volatile suspended solids (VSS), 

total chemical oxygen demand (TCOD), soluble chemical oxygen demand (sCOD), 5-day 

biological oxygen demand (BOD5), ammonia-nitrogen (NH3-N), nitrite-nitrogen (NO2-N), 

nitrate-nitrogen (NO3-N), and alkalinity.  

 

TSS, VSS, BOD5 were analyzed according to the Standard Methods19. TCOD, sCOD, NH3-N, 

NO2-N, and NO3-N were measured using HACH methods and testing kits20. Alkalinity was 

measured by titration with 0.02 N H2SO4 in accordance with the Standard Method No. 

232019.  
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3.4 Mobile CFBBR Unit 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1 Process Description 

The mobile CFBBR unit was constructed inside a standard 53’ semi-truck trailer to demonstrate 

the effectiveness of the CFBBR system at full-scale flow rates while also showcasing two unique 

features of the system that make it a promising alternative wastewater technology over 

conventional biological treatment processes: 

Figure 3.4: Mobile CFBBR Process Flow Diagram 
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1. Reduced hydraulic retention time, and 

2. Reduced bioreactor footprint 

 

The additional advantage of constructing the system in a semi-truck trailer is that it enabled the 

technology to be mobile, reducing the need for infrastructure that is normally required to send 

wastewater to a treatment facility. The CFBBR mobile unit was transported and deployed at the 

Adelaide Pollution Control Center in London, ON (Figure 3.5). 

 

 

 

 

 

 

 

 

 

 

 

The system consists of two bioreactors and operates as a pre-anoxic attached growth treatment 

process, removing dissolved carbon and nitrogen contaminants. The bioreactors were 

constructed using non-corrosive, non-transparent high-density polyethylene with a wall 

thickness of approximately 5 mm. The volume of the anoxic column measured approximately 1 

Figure 3.5 Location of CFBBR at Adelaide Pollution in London, ON 
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 Aerobic-Downer 

Column 

Anoxic-Riser 

Column 

Column Diameter (cm) 120 65 

Height of Column (m) 3.14 3.14 

Volume (m3) 3.3 1 

Hydraulic Retention Time (h) 1.5 0.5 

Height of Media (cm) 15 17 

Media Weight (kg) 550 180 

Pump Recycle Flow Rate (m3/day) 800 370 

 

m3 and the aerobic reactor volume is 3.3 m3. The media used in this system was high-density 

polyethylene particles with an average diameter between 0.6 to 0.85 mm. Table 3.7 summarizes 

the CFBBR bioreactor details and Table 3.8 summarizes the media properties. The system was 

designed to treat up to 50 m3/day of screened domestic wastewater, with the characteristics 

shown in Table 3.9. A secondary clarifier follows the bioreactors to remove suspended debris so 

that the system effluent could be used as ‘grey water’ - water not suitable for human 

consumption but acceptable for use in other applications like: gardening, flushing toilets, and 

washing cars.  

 

Table 3.7: Bioreactor Design Details in Mobile CFBBR System 
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Table 3.8: Media Characteristics in Mobile CFBBR System  

 

 

 

 

 

 

 

 

Table 3.9: Influent Wastewater Characteristics for Mobile CFBBR System 

 

 

 

 

 

3.4.2 Start-up of Mobile CFBBR System 

  

The system was initially filled with mixed liquor suspended solids (MLSS) sourced from the 

Adelaide Pollution Control Center, having the characteristics outlined in Table 3.10. A 

submerged pump was lowered into an aeration tank at the treatment center to fill the reactor 

volumes (totaling approximately 4 m3 of MLSS). Influent and effluent lines to the system were 

Particle Type HDPE 

Particle Diameter (mm) 0.725 

Dry Bulk Density (kg/m3) 810 

Wet Bulk Density (kg/m3) 1230 

Minimum Fluidization Velocity (mm/s) 0.1 

Terminal Velocity (mm/s) 7 

 

Parameter Value 

Feed Flow Rate 5 m3/day 

Organic Loading Rate 1.75 kg COD/m3 day 

Nitrogen Loading Rate 0.15 kg N/m3 day 
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closed and the bioreactors were set on an internal recycle loop (moving water from the top of 

the reactor column to the bottom) for two days. This procedure was done to promote microbial 

attachment. Aerobic and anoxic conditions were maintained by controlling the amount of air 

supplied to the bioreactors; however, no other substrate was introduced to the system at this 

time. 

 

Table 3.10: Seed Characteristics Used in the Mobile CFBBR System 

 

 

 

  

 

 

3.4.3 Operation of Mobile CFBBR System 

After the seeding phase the influent and effluent lines to the system were opened and the 

treatment process began at a target of 5 m3 (one-tenth treatment capacity). Early results of this 

operation, available in Table 3.11, showed poor nitrogen removal. 

Table 4.11: Initial Start-up of CFBBR System at 5 m3/day 

 

 

Seed 
Characteristic  

Value 

TS  3.3 mg/g 

VS  2.1 mg/g 

TSS  2,830 mg/L 

VSS  2,150 mg/L 

 

Water Parameter Influent Effluent 

COD (mg/L) 319 +/-30 123 +/-10 

NH3-N (mg/L) 38 +/- 3 14 +/- 1 

NO3-N (mg/L) 2.5 +/- 0.2 15.7 +/- 2 
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Several problems that limited operational effectiveness were identified at this time: 

1. Aerobic-anoxic recycle pump (required to deliver nitrates to the pre-anoxic column) 

needed repair.  

2. Oxygen, pH and ORP sensors connected to the system were malfunctioning 

3. No visible way to measure fluidization of the media 

4. Feed shortcutting  

5. No way to recover media from the system to measure microbial attachment 

6. No sludge removal from the clarifier, leading to the accumulation of sludge in clarifier 

 

3.4.4 Nitrate Make-up and Connection of the Aerobic-Anoxic Recycle Line 

 

Additional nitrates were chemically dosed to the system in the form of sodium nitrate, based on 

influent BOD5 concentrations, until the nitrate recycle line was repaired. Nitrate dosing 

information can be found in Table 3.12. 

 

Table 3.12: Sodium Nitrate Dosing Based on BOD5 Loading Rate 

 

 

 

 

Chemical 
Reaction 

 

COD of W.W ~350 mg/L 

Sodium 
Nitrate Dose 

50 g NaNO3 /day 

 

C10H19O3N + 10 NO3
−  → 5 N2 + 10 CO2 + 3 H2O + NH3 + 10 OH− 



 
 
 

71 

 

After the internal recycle line between the aerobic and anoxic bioreactors was repaired, the 

system performance did not recover. It was then decided to reseed the system and start again 

with healthy bacteria populations. The bioreactors were emptied and the start-up procedure 

was repeated. 

 

3.4.5 Nitrate Make-up and Connection of the Aerobic-Anoxic Recycle Line 

Online sensing is particularly important in the mobile CFBBR unit operation because the system 

is located far from Western laboratory, making critical operational information difficult to 

determine. A full list of the sensors used in the mobile CFBBR is presented in Table 3.13. The 

anoxic column was fitted with pH and ORP sensors to measure water quality parameters as well 

as pressure transducers to measure the degree of fluidization. These sensors were also present 

in the aerobic bioreactor with an additional sensor, dissolved oxygen, to ensure a nitrifying 

environment. Shortly after the reseeding process, it became apparent that the sensors in the 

system were not functioning properly and needed to be replaced. This was a difficult procedure 

to do while the system was operating because the sensors were fixed along the wall of the 

reactor, requiring the bioreactor to be drained in order to remove the malfunctioning sensors. 

Instead, handheld dissolved oxygen and pH sensors were used. While this was not the most 

convenient form of monitoring, requiring an operator to record the information by hand rather 

than an automated data logging system, it was the most economical alternative. 
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Table 3.13: Sensors Used in Mobile CFBBR System 

 

 

 

 

 

 

 

 

 

3.4.6 No Visible Way to Measure Media Fluidization 

Because the reactor bodies were constructed of non-transparent plastic material, it was difficult 

to determine the fluidization of the media bed in the reactor. Online pressure transducers were 

installed along the reactor height to indirectly measure the degree of media fluidization by 

comparing the pressure drops between two adjacent pressure sensors.  

After it was established that the sensors were malfunctioning, alternative ways for measuring 

fluidization were investigated to determine the degree of fluidization. Windows, constructed of 

transparent polyethylene, were cut into the walls of the bioreactors above the media bed height 

to give a visual sense of the extent of fluidization. Figure 3.6 shows the construction and 

installation of the fluidization windows. Clean water tests using the window did not yield 

positive results and ultimately other solutions were investigated. 

Sensor Sensor Ranges Number in 

Aerobic-Downer 

Number in 

Anoxic-Riser 

DO 0 ~ 8 mg/L 1 0 

pH 4 ~ 10 1 1 

ORP -100 ~ 400 mV 1 1 

Pressure 

Transducer 

0 ~ 10 psi 5 5 
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Figure 3.6: Fluidization Window Installation on Mobile CFBBR Unit. (Aerobic on the left, Anoxic 

on the right)  

The implemented solution was the installation of a submerged light above the media bed. This 

concept was applied after it was discovered that holding a work light against the side of the 

reactor wall during the clean water test allowed for very faint outline of the media height to be 

visible on the opposite side of the column wall (oddly enough, it was not possible using the 

window that was installed). Figure 3.7 illustrates the construction and installation of the 

fluidization light. The illumination technique in both clean and dirty water tests proved to be an 

effective way of determining the static bed height; however, when fluidization energy was 

applied, the light could not penetrate the media bed, making this method an inadequate way to 

measure the degree of fluidization. The use of the submerged light was still operationally useful 

but it was ultimately concluded that indirect measurement through instrumentation was a more 

accurate method for determining bed height. 
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Figure 3.7: Fluidization Lights in the Mobile CFBBR System 

 

3.4.7 Feed Short-Circuiting 

High nitrate concentrations in the effluent continued to be a problem after reseeding the anoxic 

bioreactor and dosing with sodium nitrate. Dissolved oxygen readings, determined from a 

handheld sensor, measured very low oxygen concentration, so anoxic conditions were 

confirmed. After draining the bioreactor, it was suggested that the feed into the column might 

short circuit from the anoxic reactor directly to the aerobic reactor, also indicated by high BOD5 

concentrations in the influent in the aerobic bioreactor. Retro fitting the feed line inside the 
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reactor was a difficult procedure because of limited physical space above the bioreactor and the 

roof of the trailer (<8 inches between the top of the anoxic column and the roof).  

 

 

3.4.8 Conclusion 

After system modifications were completed, winter temperatures made onsite wastewater 

treatment operations extremely difficult and unsafe as stagnant water froze and destroyed 

emergency safety equipment in place to protect against reactor malfunctions and system leaks. 

Unsuccessful efforts to insulate and heat the unit ultimately lead to a halt in system operation.  
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3.5 Pilot-scale CFBBR Reactor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Process Flow Diagram of GIEC Pilot-Scale CFBBR 

 

3.5.1 Process Description 

The pilot-scale CFBBR constructed in Guangzhou, China was designed to demonstrate the 

CFBBRs ability to operate as an onsite water treatment system at the Guangzhou Institute for 

Energy Conversion (GIEC). The unit was designed to treat 5 m3 of domestic wastewater per day 

from the campus cafeteria and one of the dormitories at the institute. The design parameters of 
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the pilot CFBBR system are available in Table 3.14. In the winter of 2014, I travelled to the site to 

help assist with system operation while mobile unit operations at Adelaide were halted. 

 

Table 3.14: System Details and Operating Parameters of Pilot CFBBR Unit 

 

 

 

 

 

 

 

 

 

 

3.5.2 Influent Wastewater Characteristics 

Unlike in Canada, wastewater that originates from apartment buildings in China first moves 

from the residences into a holding tank before entering the city’s sewers. The conditions in 

these holding tanks can be anaerobic, depending on the length of time that water spends in the 

tank. These prolonged anaerobic conditions result in the, production of ammonia and partial 

depletion of organics. As a result, the ammonia concentrations in the reactor influent were very 

 Downer Column Riser Column 

Volume (L) 1000 340 

Particles type Polypropylene 

composite plastic 

Polypropylene 

composite plastic 

Particles (kg) 145 60 

Particle media diameter (μm) 1390 1390 

Wet bulk density (kg/m3) 1125 1125 

Umf, minimum fluidization velocity (cm/s) 0.30 0.30 

Ut, particle terminal velocity (cm/s) 7.0 7.0 
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elevated and the organic carbon concentrations were comparatively low, as depicted in Table 

3.15. 

 

Table 3.15: Pilot CFBBR Influent Wastewater Parameters 

 

 

 

  

 

 

3.5.3 System Start-up 

The system was initially seeded with mixed liquor suspended solids (MLSS) from the Guangzhou 

Municipal Wastewater Treatment Plant, with the characteristics outlined in Table 3.16. A septic 

tank pump truck delivered the seed sludge to bioreactors, filling the reactor volumes (totalling 

approximately 1.5 m3 of MLSS).  

Table 3.16: Seed Characteristics of Pilot CFBBR Unit 

 

 

 

 

Water Parameter Value 

COD  234 mg/L  

TN  119 mg/L 

NH3-N 92 mg/L 

 

Seed 
Characteristic  

Value 

TS  4.3 mg/g 

VS  2.7 mg/g 

TSS  3680 mg/L 

VSS  2790 mg/L 
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Influent and effluent lines to the system were closed and the bioreactors were set on an internal 

recycle loop (moving water from the top of the reactor column to the bottom) for two days. 

Aerobic and anoxic conditions were maintained by controlling the amount of air supplied to the 

bioreactors; however, no other substrate was introduced to the system at this time. 

 

3.5.4 Operational Phase 1 

Operational conditions following the seeding phase are presented in Table 3.17. After a lag 

phase and overcoming various operational challenges, the system was able to achieve a high 

degree of carbon removal and had unexpectedly high nitrification rates, converting nearly all of 

ammonia to nitrate. Table 3.18 and Figures 3.9 summarize the reactor performance.  

Table 3.17: Initial reactor conditions in pilot CFBBR system 

 

 

 

 

 

 

 

 

 

Parameter Unit Value 

Influent Flow Rate L/day 270 

Downer to Riser 

Recycle Flow Rate 

L/day 200 

Riser Internal Recycle m3/day 35 

Downer Internal 

Recycle 

m3/day 165 

HRT 

  

Anoxic (h) 23 

Aerobic (h) 72 

EBCT 

  

Anoxic (h) 4.7 

Aerobic (h) 8.7 

 



 
 
 

80 

 

 

 

 

 

 

 

 

 

Figure 3.9: Carbon and Nitrogen conversions in pilot CFBBR system in Phase 1 

 

 

 

Table 3.18: Summary of Pilot CFBBR System Performance in Phase 1 

 

 

 

 

 

 

 

 

Water Parameter Influent Effluent 

COD (mg/L) 340 ± 17 91 ± 6 

TN (mg/L) 153 ± 12 61 ± 8 

NH3-N (mg/L) 120 ± 8 0.4 ± 0.7 

NO3-N (mg/L) 0.62 ± 0.8 51 ± 8 
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3.5.5 Operational Phase 2 

The high concentration of nitrates in system effluent, presented in Table 3.18, demonstrate that 

while nitrification was successfully occurring, there was insufficient denitrification at a 

nitrogen-loading rate of 0.04 kg N/day and organic biodegradable carbon loading rate of 0.054 

kg BOD5/day. The source of this problem was determined to be deficient concentrations of 

readily organic carbon in the influent wastewater stream. Glucose, in the form of ordinary table 

sugar, was added to make up the carbon deficit in the influent feed to the system. The mass of 

sugar dosing was estimated according to Equation 3.6. 

Equation 3.6: Supplemental Carbon Calculations Used to Determine Glucose Dosing 

 

 

After several days of operation with the make-up carbon source, nitrate concentrations in the 

system’s effluent sharply decreased. Table 3.19 and Figure 3.10 summarize the reactor 

performance with make-up carbon dosing. 

 

 

 

 

0.4 C6H12O6 + 0.2 NO3
− + 0.2 H+  → 0.1 N2 + 0.25 CO2 +  0.35 H2O 
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Table 3.19:  Reactor conditions in pilot CFBBR system in Phase 2 of operation 

 

 

 

 

 

 

 

Parameter Unit Value 

QInf L/d 570 

QD-R L/d 1970 

QR-R m3/d 40 

QD-D m3/d 145 

QC g/d 225 

L/d 2.8 

CC g/L 80.0 

HRT Anoxic (h) 9.8 

Aerobic (h) 29.2 

EBCT Anoxic (h) 2.0 

Aerobic (h) 4.5 

 

Figure 3.10: Carbon and Nitrogen Conversions in Pilot CFBBR System in Phase 2  
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Table 3.20: Summary of Pilot CFBBR System Performance in Phase 2 

 

 

 

 

 

 

 

3.5.6 Conclusion 

In summary, the pilot CFBBR system demonstrated its effectiveness as a compact, on-site water 

treatment technology capable of nitrifying high strength ammonia domestic wastewater. 

Further, with make-up organic carbon the system can sufficiently denitrify to reduce total 

nitrogen effluent concentrations of the system to meet Chinese municipal effluent discharge 

regulations of <50 mg COD/L and <20 mg TN/L.    

 

 

 

 

 

 

Water Parameter Influent Effluent 

COD (mg/L) 705 ± 35 47 ± 15 

TN (mg/L) 132 ± 20 16 ± 4 

NH3-N (mg/L) 110 ± 16 0.4 ± 0.4 

NO3-N (mg/L) 0.4 ± 0.8 13 ± 5 
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Chapter 4 

Online Monitoring and Control of Biological Nutrient Removal 

Processes in Fluidized-beds 

4.1 Automation of Wastewater Treatment Plants 

The engineering strategy in biological nutrient removal process is to utilize microorganisms to 

remove organics and nutrients (i.e. nitrogen and phosphorus) from a wastewater stream and 

partially incorporate them into the cell structure of the microorganisms11 . The variability of 

contaminant concentrations in the water stream make it necessary to adjust certain bioreactor 

conditions to maintain optimum process efficiency and stability. Computer systems, leveraging 

water parameter sensors, allow for automated monitoring and modification of reactor 

conditions, such as: substrate concentrations, temperature, pH, and fluid flow rates7, 11. Online 

sensors provide continuous measurement of bioreactor conditions. Once calibrated, these 

sensors provide real-time information on a given water parameter, which would otherwise 

involve the time-consuming process of grab sampling, shipment to laboratory, and analytical 

measurements to assess the health of the microbial community. Table 4.1 outlines various 

online sensors used in biological wastewater treatment.  
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Table 4.1: Selected Online Sensors used in Biological Nutrient Removal  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.1 Dissolved Oxygen Sensors: 

Dissolved oxygen is a parameter used to measure the amount of free oxygen dissolved in water, 

usually expressed in milligrams per liter (mg/L). Oxygen is water-soluble and the quantity of 

dissolved oxygen in water is in a state of dynamic flux as a result of the equilibrium conditions, 

which is dependent on the water’s temperature and pressure15. Dissolved oxygen 

concentrations are typically monitored in systems where aeration equipment is used, such as 

Online Sensor Average Price Wastewater Process 

Application 

Temperature $50 All Biological Systems 

pH $350 All Biological Systems 

Dissolved Oxygen $550 Aerobic 

Conductivity $350 Emerging Treatment Processes 

Flow Meters $400 All Biological Systems 

Chemical Oxygen Demand $10,000  Anoxic Systems 

Ammonia $15,000 Aerobic Systems 

Nitrate $10,000 Aerobic and Anoxic 

Nitrite $10,000 Anammox and Anoxic 

Phosphorus $25,000 Aerobic 
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aeration tanks. Maintaining sufficient dissolved oxygen levels in biological nutrient removal 

processes is necessary for the health of the aerobic bacteria, which biochemically convert 

organic and inorganic contaminants to carbon dioxide, nitrogen gas, water, and promote 

microbial growth. The process of supplying air or pure oxygen to a biological wastewater 

process is often the most expensive operating cost of the entire treatment plant; so, monitoring 

and adjusting the amount in the process to optimize the concentration to keep the 

microorganism population healthy and to reduce operating cost of the treatment plant15.  

There are two typical types of dissolved oxygen sensors. The most common and simplest type of 

sensor is a membrane sensor, which consists of three parts: a gas permeable membrane, 

electrolyte solution and a measuring cell, which can be either an electrode or a pressure 

sensor15. 

The basic operation of this type of sensor relies on the diffusion of dissolved oxygen through the 

membrane. Oxygen gas in the wastewater passes through the membrane and diffuses into the 

electrolyte solution. This diffusion process continues while the concentration of oxygen is 

unequal which makes the gas molecules migrate to the side of the membrane with the lowest 

concentration. At equilibrium, when there is no net change in diffusion through the membrane, 

the concentration of oxygen in the electrolyte is equal to the concentration of the oxygen in the 

wastewater. The oxygen loaded electrolyte solution is then transported to the measuring cell15. 

In the case of electrode, the cell measures an electric current change between the two 

electrodes that is proportional to the dissolved oxygen concentration. The measuring cell is 

generally a galvanic measuring cell15. 
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Galvanic measuring cells operate similar to a battery, using anode and cathode electrodes made 

of dissimilar metals and immersed in an electrolyte solution. An electrochemical reaction occurs 

when oxygen in the electrolyte comes in contact with the electrodes. At the cathode, there is an 

oxidation reaction in which oxygen is reduced to hydroxide and liberates four electrons. The 

electrons that are released in the process causes a current to flow through the electrolyte. The 

magnitude of this flowing current flowing is linearly proportional to the oxygen concentration 

dissolved in the electrolyte solution15. 

The cathode in a galvanic cell needs to be a noble metal, silver or gold, for the cathode potential 

to reduce the oxygen molecules. Anodes are typically created from base metals: lead, iron, 

copper, zinc or copper. Ideal anode attributes should have good stability and limited tendency 

toward passivation. The electrolyte solution needs to be selected in order to effectively 

transport the electrons in the cell but also to avoid rapid destruction of the anode. A common 

electrolyte solution is usually potassium hydroxide. Membrane oxygen sensors are typically 

accurate to within 0.10% of true dissolved oxygen concentrations15.  

There are some inherent limitations in a galvanic membrane oxygen sensor. One limitation in 

the cell is that it depends on the oxygen reduction to generate a voltage measurement, thus 

making the unit susceptible to contamination of the electrode and electrolyte. If a contaminant 

passes through the membrane, it will cause the cell potential to shift, leading to a false oxygen 

level reading. Another limitation of this technology is that the cell’s output is linearly 

proportional to the concentration of dissolved oxygen: at low oxygen concentrations there is a 

potential for errors because the signal-to-noise ratio is low. Finally, because the electrolyte 

consumes the anode, the cell will need to be periodically replaced15. 
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Luminescent dissolved oxygen (LDO) sensors are a passive measurement technique. The sensor 

tip is covered with a luminescent material. A light-emitting diode (LED), commonly blue in colour 

but can also be green, strikes the luminescent material on the sensor, which excites the 

luminescent material. As the material relaxes, a red-light is released, which is detected by a 

photo diode. High concentrations of dissolved oxygen in the water release low levels red light 

and low concentrations of dissolved oxygen release high levels red light, as measured by the 

photo-diode. The sensor also has an internal calibration function that doesn’t require the sensor 

to be removed from the liquid sample. A red LED of known luminescent value is attached near 

the tip of the sensor and measured by the photo diode. This measured value of red light is 

compared with the previous readings of the LED’s luminescent to create a measurement 

coefficient, ensuring accurate sensor readings. An LDO sensor eliminates the need for the 

electrochemical components used in the aforementioned sensors, which reduces the 

maintenance and calibration of the sensor. LDO sensors are typically accurate to within +/- 0.1 

mg/L when dissolved oxygen concentrations are below 1 mg O2/L and +/- 0.2 mg/L when the 

dissolved oxygen concentrations are above 1 mg O2/L15. 

 

 
 

4.1.2 Conventional Control Hardware Used in BNR Systems 

There are four components to a control system: a controller, various process inputs, process 

equipment, and control strategy. The basic architecture of these systems has the controller 

receive commands from inputs to adjust process equipment according to a selected control 

algorithm. Modern industrial control systems typically use Program Logic Controllers (PLCs) as 
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the control platform that act as a hub for connections of sensors and process equipment. The 

hardware of these systems is generally SCADA, Modbus, and some type of networking switch to 

transmit data. These systems have on-site and remote Human Machine Interfaces (HMIs) which 

allow operators to interact with the system to monitor system performance and adjust control 

algorithms. The units are capable of receiving information as either analog or digital signals to 

interpret process conditions (sensor feedback, buttons pressed, etc.). These systems are often 

expensive (>$5,000)15, so their use in most university level research is not economical. Further, 

these ‘out-of-box’ systems require highly skilled technicians to construct and configure – 

increasing the units cost15.   

 

4.1.3 Open Source Hardware 

Open source hardware, or open hardware, is a legal term defining technology without any 

proprietary restrictions placed on it. Under this framework, users are given full access to 

schematics, blueprints, and logic designs of the technology: enabling a user to create, modify, 

manufacture, or distribute the hardware2, 9.  

The dynamic nature of information technology (software/hardware) is a reflection of the fact 

that the free exchange of ideas is the best way to achieve excellence. The prejudice against open 

source IT confuses the distinction between industrial and academic activity. The vibrancy of the 

university setting is well served by participating in open source technology. Of course, as we 

move into the private sector - the economic imperative takes precedence over the pursuit of 

excellence.   
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The most successful example of open source hardware is the Arduino board2. The Arduino board 

is a programmable microcontroller, like a mini computer, capable of taking physical inputs from 

a variety of sources (switches, buttons, sensors, etc.) and controlling outputs (recording 

information, controlling motors, etc.).  Table 4.2 compares some technical aspects of selected 

Arduino boards. In addition to the hardware, Arduino also provides a programming environment 

(Arduino IDE) in which users can write and upload commands to the Arduino hardware. The 

ability to program the microcontroller can be particularly useful when applied to research as it 

provides a low-cost and customizable platform to monitor and control processes. Additionally, 

sometimes the scale of laboratory testing does not permit the use of commercial sensors that 

are developed primarily for full-scale applications. 

Table 4.2: Selected Arduino Board Specification Comparison2 

 

 

 

 

 

  

Name Processor Analog 
In/Out 

Digital 
IO/PWM 

Operating 
Voltage 

(V) 

CPU 
Speed 
(MHz) 

Flash 
Memory 

(kB) 

Uno ATmega328 6/0 14/6 5 16 32 

Nano ATmega168 8/0 14/6 5 16 16 

Micro ATmega32u4 12/0 20/6 5 16 32 

Mega 
2560 

ATmega2560 16/0 54/15 5 16 256 

Due AT91SAM3X8E 12/2 54/12 3.3 84 512 
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4.2 Objective of Work 

The objective of the following work was to utilize open source hardware to develop low-cost 

sensor networks for use in wastewater treatment processes, i.e. - fluidized beds bioreactors. 

These sensors were initially used to monitor bioreactor conditions in a circulating fluidized bed 

system, were then modified, and ultimately used to monitor and control bioreactor conditions 

in a partial nitrification fluidized bed unit.  

 

4.3 Online Monitoring System in the Pilot CFBBR 

4.3.1 Operation of Pilot CFBBR System 

The pilot-scale CFBBR was constructed in Guangzhou, China and was designed to demonstrate 

the system operating as an onsite biological system to treat domestic wastewater originating 

from a cafeteria and a dormitory on the Guangzhou Institute for Energy Conversion (GIEC) 

campus. The system consists of two bioreactors and operates as a pre-anoxic attached growth 

nitrification/denitrification water treatment process.  

 

 

 

 

 

Figure 4.1: Process Flow Diagram of Pilot CFBBR and Sensor Locations 
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4.3.2 Sensor Network in Pilot CFBBR System 

The sensor network developed for this system was designed to measure and record dissolved 

oxygen and pH concentrations at various points in each bioreactor. Table 4.3 lists the electrical 

components of the system. The sensors were connected to independent Arduino Uno boards for 

each bioreactor. LCD screens, connected to each of the Unos, displayed real time data of the 

dissolved oxygen and pH levels in each bioreactor for operational convenience. Sensor readings 

sent via serial communication to a single board computer, the Raspberry Pi B+, running a Python 

program. The data was then sorted, time stamped, and written to a csv file. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Sensor Network Components used in the Guangzhou Pilot CFBBR Unit 

Reactor Component Component 
Number 

Purpose 

Anoxic 

pH sensor 1 Measure pH conditions in the bioreactor 

pH circuit 2 Relay pH reading to the microcontroller 

DO sensor (x2) 3 Measure dissolved oxygen concentration in 
bioreactor 

DO circuit (x2) 4 Relay oxygen measurement in bioreactor to 
microcontroller 

Arduino Uno R3 5 Collect and send sensor readings to PC and displays 

20x4 LCD Screen 6 
Display pH and DO values from the Arduino and 

display it to operator for real-time condition 

    

Aerobic 

pH sensor 7 Measure pH conditions in the bioreactor 

pH circuit 8 Relay pH reading to the microcontroller 

DO sensor (x2) 9 
Measure dissolve oxygen concentration in 

bioreactor 

DO circuit (x2) 10 
Relay oxygen measurement in bioreactor to 

microcontroller 

Arduino Uno R3 11 Collect and send sensor readings to PC and displays 

20x4 LCD Screen 12 
Display pH and DO values from the Arduino and 

display it to operator for real-time condition 
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Figure 4.2: (a) Bread Board Schematic Pilot CFBBR Sensor Network (b) Schematic of 
circuit of a single Arduino board (circuits were identical) 
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Figure 4.2 (c):  Photo of Pilot CFBBR Sensor Network 
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4.3.3 Oxygen Sensor Code 

The function of the oxygen sensor is to read dissolved oxygen concentration inside the 

bioreactor. The oxygen sensor reads this concentration as an electrical potential, generated by 

the interaction between the dissolved oxygen in the fluid and the sensors electrode, that must 

be translated into a voltage range that the Arduino can understand (between 0 and 5 volts). 

Since the potential generated at the sensor electrode is three orders of magnitude smaller than 

the operating voltage of the Arduino (sensor electrode potential ranges between 0 to 5 mV) if 

the sensor were connected directly to the Arduino board, as shown in Figure 4.3, the analog 

input voltage to the board would be insufficient to give accurate sensor readings. To increase 

the sensor electrical potential readings, an operational amplifier (“op-amp”) is used to boost the 

signal to the Arduino’s analog input but adjusting the voltage gain in the op-amp chip, Figure 

4.4. 
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Figure 4.3: Direct Connection of Oxygen Sensor to Arduino Board 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Dissolved Oxygen Sensor and Op-Amp Circuit to Arduino Board 
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4.3.4 Oxygen Sensor Calibration 

Two points were used to calibrate sensor readings: zero dissolved oxygen and oxygen saturation 

in air at room temperature. These two values, their equivalent electrical potentials, the analog 

sensor readings, and a calibration coefficient were used to linearly interpolate the equivalent 

dissolved oxygen concentration in the bioreactor, Equation 4.1[Appendix C – Code 1]. 

 

Equation 4.1: Calibration of Oxygen Sensor 

 

 

where:   

 DObioreactor:  Dissolved oxygen in bioreactor (mg DO/L) 

 calCo:  Calibration coefficient (mg DO/L) 

 Vbioreactor: Voltage reading coming from sensor in bioreactor (mV) 

 VzeroDO:  Voltage recorded from sensor in zero DO solution (mV) 

 Vroom temp DO: Voltage recorded from sensor in air (mV)  

 

The calibration of the DIY dissolved oxygen sensor was done according to the ASCE method for 

determining oxygen transfer in clean water16. Sodium sulfite (NaHSO3) was added to a 1 L 

deionized water sample to deoxygenate the water. The dosing of sodium sulfite was 7.88 mg/L 

DObioreactor = calCo 
Vbioreactor − VzeroDO

Vroom temp DO − VzeroDO
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of NaHSO3 for every 1.0 mg/L of DO in the water sample16. The objective of test was to measure 

dissolved oxygen concentrations after the sodium sulfite was added to the water and measure 

the response of DO and voltage readings on the DIY arduino sensor with that of DO readings on 

a Hach LDO LBOD 101. Table 4.3(a) details parameters measured in the test and Table 4.3 (b) 

details the cost of the units. Results of the clean water test are shown in Figure 4.5.  

Table 4.3 (a): Calibration of DIY DO Sensor 

 

 

 

Table 4.3 (b): Total Cost of Sensors 

 

 

 

 

 

 

 

 

 

Parameter Value 
Volume of Water Sample 1 L 
Water Temperature 23 oC 
Room Temperature 22 oC 
Initial DO  7.20 mg/L 
NaHSO3 Dosing 60 mg 
 

Sensor Cost 
DIY Arduino DO Probe $250 
Hach LDO Probe $2570 
 

 

y = 2.7361x - 0.3709
R² = 0.9999

y = 2.7512x - 0.3662
R² = 0.9998
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 Figure 4.5: Results of Clean Water DO Probe Calibration 
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The results of the calibration test demonstrated two key findings: 1) the assumption that 

dissolved oxygen and voltage have a linear relationship was valid, and 2) the DIY sensor and the 

Hach LDO sensor were within 99% of each other.    

 

4.3.5 Oxygen Sensor Readings 

To enhance sensor reliability, several sensor readings were taken every second. The average 

value and standard deviation of this data were used to create a second array. The moving 

average of the second array elements were then displayed on the LCD screen and recorded via 

serial communication. 

 

4.3.6 pH Sensor Code 

The pH sensor coding logic was done similar to the dissolved oxygen sensor logic, consisting of: 

calibration, sensor readings, and data display. However, the pH circuit logic is different from the 

oxygen sensor. In the pH circuit, the sensor readings are compared against a reference voltage 

to obtain an analog voltage input. The reference voltage in this circuit is selected to be the 

middle of the voltage range of the Arduino (2.5 volts). Incoming analog sensor readings then 

have two possibilities: 1) they are less than the reference voltage, or 2) they are greater than the 

reference voltage. Voltages less than the reference voltage indicated increased chemical 

reactions on the cathode, which chemically translates as more electron donation. This 

phenomenon occurs for acidic solutions (below pH 7). The reverse scenario also holds - for pH’s 

greater than 7 there is increased electrical potential as more reaction occurs at the anode.  
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Figure 4.5: pH Circuit Connected to Arduino Code 
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4.3.7 pH Sensor Code 

A three-point calibration method was coded to adjust pH readings taken by the sensor. Standard 

pH solutions (4, 7, and 10) were used to determine the corresponding pH of the solution. Linear 

interpretation using these calibrated values and incoming sensor voltages allowed for the 

determination of the pH of the bioreactor fluid. Sensor readings were also analyzed using the 

two array method mentioned for dissolved oxygen. 

4.3.8 Data Logging Using Python Program on Raspberry Pi 

The serial information of the sensor readings on the Arduino Boards were then sent to the 

Raspberry Pi running a python program to collect the incoming serial information. This was 

possible because the raspberry pi was connected to the Arduino boards using USB cables.  

The python program had three functions: 

1. Establish which Arduino board and what sensor was sending data 

2. Collect and organize the incoming data  

3. Record this information into a csv file 

 

The first step was to determine the unique address of the USB port that the individual Arduino 

boards were connected to on the Raspberry Pi. After this was established, a loop was created to 

continually check for serial information coming from the USB ports. Information on the unique 

board and what sensor was relaying the information was done using serial flags in the Arduino 
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code. Boolean logic checked for specific flags to indicate which board and which sensor was 

supplying the information. Finally, an hourly average of each sensor reading was taken and 

written out to a CSV file [Appendix C – Code 2].  

 

4.4 Modifications to Oxygen and pH Sensors 

After the installation of this system, two problems were quickly identified: noise in sensor 

reading and unfriendly user interface. 

4.4.1 Noisy Sensor Readings 

When Arduino boards were connected to other PC systems (laptops or desktops), or connected 

directly to an outlet, there was no significant sensor noise. However, when connected to the 

raspberry pi, the sensors would measure between 1 to 10 noisy readings per minute. Attempts 

to resolve this issue were two-fold: through software coding and through circuit modification. 

 

4.4.2 Software Adjustments to Mitigate Sensor Noise 

The attempt to use code to reduce noise was done by using larger arrays of sensor readings in 

an attempt to try to statistically eliminate the noise. This method proved moderately effective 

to reduce sensor noise; however, the increased number of sensor readings increased the 

duration of time it took to measure readings. This made system adjustments to rapid changes in 

oxygen concentrations or pH levels take longer to be detected and potentially ignored by the 

system.  
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4.4.3 Hardware Adjustments to Mitigate Sensor Noise 

Attempts to solve the noise through circuit modification included: 

- USB cables with noise cancelling iron cores 

- USB cable modification  

- Sending sensor values using i2C lines on Arduino boards and Raspberry Pi 

 

These alterations to the circuit did reduce the frequency of noisy sensor readings, however, they 

were not able to completely eliminate noise.  

 

4.4.4 Poor User Experience of System 

Although the system had small LCD screens to take readings, there was no convenient 

human-machine interface (HMI) or other physical way of interaction between users and the 

device (i.e. no buttons or switches in the sensor network). This made it difficult for operators to 

quickly adjust parameters without having to modify the computer code or communicate with 

the system through serial commands. 
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4.5 Online Monitoring and Control System in Lab-scale Partial 

Nitrification Fluidized-bed BioReactor (PNFBR) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Process Flow Diagram of Lab-scale PNFBR 

 

4.5.1 Partial Nitrification Process Description 

Wastewater streams with low carbon to nitrogen ratios can be problematic to meet total 

effluent nitrogen discharge regulations because of insufficient organic carbon required to 
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biochemically denitrify nitrates and nitrites to nitrogen gas. Alternative biological pathways, 

such as the anammox process, offer an alternative to this scenario as they do not require a 

carbon source to anoxically convert soluble nitrogen to nitrogen gas (Equation 4.1). The 

difficulty in operating this type of process is that soluble nitrogen substrate used in the 

biochemical reaction, nitrite, is scarcely found in raw domestic wastewater. However, nitrite is 

an intermediate chemical species produced as part of the nitrification process, wherein 

ammonia oxidizing bacteria (AOB) aerobically convert ammonia to nitrite (Equation 4.2). In 

typical nitrification, this intermediate step is followed by the aerobic conversion of the nitrites 

to nitrates by nitrite oxidizing bacteria (NOB), as seen in Equation 4.36,8,10,11.  

 

Equation 4.1: Biochemical Reaction in the Anammox Process 

 

 

Equation 4.2:  Ammonia Oxidation to Nitrite by AOBs 

 

Equation 4.3: Nitrite Oxidation to Nitrate by NOBs 

 

Therefore, the goal of partial nitrification wastewater treatment is to create conditions in the 

bioreactor that promote the growth of AOB populations to produce high concentrations of 

nitrites in bioreactor’s effluent by suppressing further biological conversions of the nitrite to 

HCO3
− + 2.3NO2

− → 0.8H2O + 0.2H+ + 2.1NO3
− + new cells 

0.38 NH4
+ + 0.25 O2 +  0.2 CO2 +  0.25 HCO3

− →  0.33 NO2
− +  0.33 H+ +  0.28 H2O + new cells 

1.05 NO2
− + 0.25 O2 +  0.2 CO2 +  0.25 HCO3

− →  NO3
− + 0.05 H2O +  new cells 
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 Parameter Value Unit 

Reactor Volume 15 L 

DO 1 mg/L 

pH 7.5 ~ 8  

Temperature 40 oC 

HRT 12 h 

Q 30 L/d 

QR 2 L/min 

Particles 20% Reactor 
Volume 

HDPE 

Particle Diameter 0.725 mm 

Wet Bulk Density 1230 kg/m3 

Concentration of Feed 100 mg NH4-N/L 

Alkalinity/ NH4-N ratio 4.5 mg CaCO3/L 

 

nitrate. The predominant way this is accomplished is by adjusting bioreactor conditions to limit 

oxygen supplied to the system but can also be done by adjusting temperature or using high 

ammonia loading rates.  

The Partial Nitrification Fluidized-bed BioReactor (PNFBR) was designed as a lab-scale concept to 

treat synthetic wastewater devoid of carbon and ammonia concentrations greater than 100 mg 

NH4-N/L. The system operated at approximately 40 oC with the average DO concentration 

around 1 mg/L and a pH of 8. Reactor design details are available in Table 4.4. The intension of 

this unit is to produce a bioreactor effluent that is directly suitable for an anammox treatment 

process, where the full nitrification of ammonia to nitrate is suppressed and ammonia to nitrite 

molar conversion is approximately 1 : 1. 

Table 4.4: PNFBR Operating Parameters 
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Component 
Number 

Component Function 

1 Dissolved Oxygen Sensor (x2) Read dissolved oxygen concentrations at 
various locations in the bioreactor 

2 Dissolved Oxygen Circuits (x2) Amplify and relay dissolved oxygen reading to 
the Arduino Mega 

3 pH Sensor Read pH levels in the bioreactor 

4 pH Circuit Amplify and relay pH reading to the Arduino 
Uno 

5 pH Calibration Buttons (x3) Calibration for pH 4, 7, & 10 

6 Arduino Mega Main component in network – i2C “Master” 

7 Arduino Uno (x2) One used in pH circuit, the other used in 
servo-air control circuit 

8 RTC “Real time clock” – to keep constant time for 
data logging sensor readings 

9 LCD 16x2 (x2) Display bioreactor conditions to operator 

10 MicroSD Data Logger Record bioreactor data in a CSV file 

11 Air Flow Meter Used to increase or decrease air supplied to the 
bioreactor 

12 Servo Rotating the servo either increased or 
decreased the air being supplied to the column 

(depending on the rotation direction) 

13 Servo Adjustment Buttons (x2) Manually adjust servo up or down 

 

4.5.2 Sensor Network in PNFBR System 

The sensor network, like the one developed in Guangzhou, was designed to measure and record 

dissolved oxygen and pH concentrations at various points in the bioreactor. In addition, to 

ensure the suppression of NOB bacteria, this sensor network also attempted to control the 

dissolved oxygen concentration in the bioreactor. Table 4.5 lists the components of the system. 

The total cost of the system was approximately $1,400 [Appendix B]. 

Table 4.5: Sensor Network Components in the Partial Nitrification Fluidized-bed Bioreactor



 
 
 

110 

 

Figure 4.7 (a): Schematic of Lab Scale PNFBR Sensor Network 
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Figure 4.7 (b): Schematic of Lab Scale PNFBR Sensor Network 
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Figure 4.8: Front and Side Views of PNFBR Sensor Network 
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Addition of 100 nF and 10 uF Capacitors 
to VCC Line on Op-Amp 

Figure 4.9: Side View and Arduino Connections in PNFBR Sensor Network 

The three arduinos in the network were connected over i2C to allow them to communicate with 

one another. The motivation for this decision was an effort to eliminate noise that was 

generated by the raspberry pi, as in the pilot-scale network.  

 

4.5.3 Master Arduino – Arduino Mega 

In this network, an Arduino Mega was connected to two dissolved oxygen sensor circuits, two 

LCD screens, an MicroSD card, and acted as the “master” i2C unit in the network – where it could 

receive information and give commands to the Uno pH and Air-CTRL slaves, and the RTC.  

Few modifications were made to the sensor coding from the one developed for the pilot-scale 

system. Minor changes to the oxygen circuit were undertaken in order to further reduce sensor 

noise; capacitors were placed at all power lines to chips in the circuit in order to provide a 

constant voltage supply, extensively eliminating noise in sensor readings.  

 

 

 

 

 

 

 

 

 

Figure 4.10: Modifications to Dissolved Oxygen Sensor Circuit 
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Figure 4.10: Modifications to Dissolved Oxygen Sensor Circuit 

4.5.4 Sensor Feedback and Proportional-Only Control 

In order to control the dissolved oxygen level in the bioreactor, proportional-only process 

control logic was implemented to automatically adjust the air flow rate to the system.  

Proportional-only, or P-Only, response is a simplistic control strategy that involves a linear 

adjustment of the manipulated variable “proportional” to the difference between the desired 

level and the actual level as measured by online sensors, called the “error”. The controller bias 

(COBias) is the position of the valve the manipulated variable needs to be if there is no difference 

between the controlled variables set point and its measured value, as seen in Equation 4.412. 

 

Equation 4.4: Proportional Only Process Control Logic for Dissolved Oxygen  

 

 

where: 

MV – Manipulated Variable [ Air Flow Rate (L/min) ] 

COBias – Controller bias [ Steady-state Air Flow Rate (L/min) ] 

kc – Linear proportional gain factor (L2/mg min) 

CVSP – Set point value of the controlled variable [ Desired DO (mg/L) ] 

CVM – Measured value of the controlled variable [ Measured DO (mg/L) ] 

MV =  COBias + kc(CVSP  −  CVM) 
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P-Only controller’s add or subtract from CObias based on the size of the controller error at each 

measurement time. As the error between the set point and the measured value grows or 

shrinks, the amount added to CObias grows or shrinks proportionately.  

The bias for the PNFBR was determined as the amount of air flow required to maintain dissolved 

oxygen levels in the bioreactor to 1 mg/L (Equation Set 17, 11).  

 

Equation Set 1. Determining Dissolved Oxygen Controller Bias  

 

 

where: 

 O2 required: Amount of Oxygen Required in System (mg DO/L) 

 CNH3−No :  Influent Ammonia Concentration (mg NH3-N/L) 

 

 

 

where: 

 O2 supplied: Rate of Oxygen Supplied to System (mg DO/h) 

O2 required = 3.43 CNH3−No  

O2 supplied = O2 required  ×  Qin  
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 Qin:   Influent Wastewater Flow Rate (L/h) 

 

 

where: 

 Qair:  Air Flow Rate to the System (L Air/h) 

 O2%:  Percent of Oxygen in Air (mg DO/mg Air) 

 ρair:   Density of Air (mg Air/L) 

 OTE:  Oxygen Transfer Efficiency (%)  

CObias air flow rate for PNFBR system operating at a 30 L/day influent flow rate and an influent 

ammonia concentration of 100 mg NH3-N/L was determined to be 920 mL/min. 

 

4.5.5 Constructing i2C Hierarchy 

Inter Integrated Circuit (i2C) is a protocol that enables serial communication between arduinos 

through the sharing of common serial data lines (SDA), serial clock lines (SCL) and a common 

ground13. In this setup, components have their own unique address to send or receive data. To 

direct the information traffic between the boards, coding establishes a hierarchy amongst the 

Arduino boards – designating some boards as master and others as slaves. Under this protocol, 

there are four potential scenarios that could arise: 

- Master sends commands to slave 

Qair =
O2 supplied

O2% ×  ρair  ×  OTE
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- Slave receives commands from master 

- Master requests information from the slave 

-  Slave sends information to the master 

 

In the partial nitrification control system, the Arduino Mega is designated as the “master” and is 

used to communicate to slave unos for pH and air control as well as the real time clock. The 

initialization and establishment of the master and slaves is done in the setup function in code 

initialization. After the hierarchy is created, the master checks for each of the slave unos (see 

Code 3 & 4 in Appendix C).  

 

4.5.6 Data Display and Sensor Recording 

Data coming from the i2C communication, as well as that coming from the sensors connected 

directly to the mega, are displayed on the LCD screens connected to display the time, the pH 

reading, and the oxygen concentrations.  

 

 

 

 

 

 

Figure 4.11: LCD Display on PNFBR Sensor Network  
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Because the information from the network was centralized to the Arduino Mega through the 

use of the i2C protocol, the data recording process was simplified. Data was sent to write out to 

a MicroSD card connected using serial peripheral interface protocol. The information was 

written out as a CSV file and recorded: time, pH level, oxygen concentrations and controller 

error. 

 

4.5.7 Slave Arduino Uno – pH Circuit 

The pH sensor and circuit were connected to an arduino uno board functioning as a slave to the 

arduino mega. Like the modifications to the oxygen circuit, capacitors were placed at power 

supply lines to eliminate sensor noise.  

In addition to the pH circuit, three calibration buttons were wired and coded to allow easy 

calibration of the sensor using pH solutions 4, 7, and 10. To reduce button debounce effects, 

several checks were coded to ensure that buttons were indeed activated (Appendix C – Code 5). 

Using the i2C protocol, the master mega requests the pH reading from the slave pH uno, 

activating the requestEvent function. In order to send the information from the uno to the 

master mega the pH reading needed to be sent byte by byte. This was accomplished by first 

converting the pH reading to a string, then to a character array, then sending each single 

character using Wire.write command. These bytes were collected by the mega, recombined to a 

string, and converted into a float number. 
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4.5.7 Slave Arduino Uno – pH Circuit 

The final Arduino board in the sensor network was designed to control the oxygen levels in the 

bioreactor based on oxygen sensor feedback. The volumetric flow rate of the air was adjusted 

by connecting a servo, an angular rotating electrical motor, attached to a flow meter on an air 

line. The angular position of the servomotor was determined and adjusted by the Arduino.  

The calibration of the servo was done by measuring the air flow response to different angular 

positions and rotation durations. Table 4.6 indicates different angular positional commands and 

the effect on servo positions. 

 

Table 4.6: Angular Position Rotation and Servo Response 

 

 

 

 

The servo was calibrated so that at each rotation approximately equalled an adjustment of 25 

mL/min on the flow meter. This depended on the angular rotation position and the duration of 

the rotation. The programming logic was written to move from a stationary position 

(servo.write(90)), to an angular rotation (servo.write(78) for 25 mL/min decrease or 

servo.write(96) for 25 mL/min increase), delay for 100 microseconds, and back to stationary 

position (Appendix C – Code 6). 

Angular Rotation Servo Direction Effect of Rotation on Flow 
Meter 

0 ~ 89 Counter Clockwise Reduction in Air Flow 

90 No Rotation No Effect 

91 ~ 180 Clockwise Increase in Air Flow 
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The servo could also be manually adjusted through the use of buttons or automatically adjusted 

based on the error reading in sensor feedback and proportional control logic. In the case of 

manual buttons, each press of buttons ran code to rotate the flow meter up or down 25 mL/min 

(depending on which button was pressed). In the automatic case, commands were sent to the 

Uno board from the Mega using the i2C protocol corresponding to how many times the servo 

needed to rotate based on sensor feedback (i.e. every 0.5 error in controller translated into a 25 

mL/min adjustment). 

 

 

 

 

 

 

 

 

 

 

 

Servo 

Air Flow 
Meter 

Figure 4.12: Servo Attached to Air Flow Meter to Control Air Supplied to PNFBR 
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4.6 PNFBR Performance and Online Measurements and Control 

 

4.6.1 PNFBR Nitrogen Conversion at Different Nitrogen Loading Rates 

The objective of this system was to have a bioreactor effluent that could be directly sent to an 

anammox bioreactor, having a nitrite to ammonia ratio of 1.32:1 wt/wt. On average, the PNFBR 

produced nitrite from ammonia at a ratio of approximately 1:1. The low concentration of 

nitrates in the reactor effluent (approximately 5% of influent ammonia concentration) indicates 

low NOB activity. The DO concentration in the bioreactor was maintained at 1.3 mg/L. While this 

is 30% higher than the desired set point (of 1 mg/L), continuous online monitoring of DO and pH 

were unaffected by sensor noise.  

 

Table 4.7: PNFBR Nitrogen Conversion at Different Nitrogen Loading Rates 

 

 

 

 

 

 

 

 

 Phase 1  

(20 Days) 

Phase 2  

(18 days) 

Influent Flow Rate (L/day) 30 30 

Bioreactor Oxygen Concentration (mg DO/L) 1.31 ± 0.20 1.29 ± 0.20 

Bioreactor pH Level  - 8.04 ± 0.04 

Influent Ammonia Concentration (mg NH4-N/L) 99 ± 5 199 ± 5 

Effluent Ammonia Concentration (mg NH4-N/L) 47 ± 15 94 ± 15 

Effluent Nitrite Concentration (mg NO2-N/L) 36 ± 15 86 ± 10 

Effluent Nitrate Concentration (mg NO3-N/L) 7.1 ± 1 9.8 ± 2 
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Figure 4.13: (a) PNFBR Nitrogen Conversion at Loading Rate of 6 g N/day (b) Phase 2 Online pH Sensor 

Readings (c) Phase 2 Online DO Sensor Readings with Air Control  

(a) 

(c) 

(b) 
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4.6.2 Results of Online pH Sensor  

pH sensor readings were taken 50 times per minute and a moving average of sensor readings 

was calculated every 5 minutes. The initial calibration of the DIY unit was done using 3 pH 

solutions (pH 4, pH 7, and pH 10). After the initial calibration, pH readings on various water 

samples were compared with sensor readings from a Cyberscan pH 11 handheld laboratory 

sensor. The DIY sensor was calibrated and cleaned twice a week using the calibration 

push-buttons on the control system. During cleaning periods, the sensor would periodically give 

above average pH readings (May 7 – Figure 4.13 (b)). The erroneous readings were corrected 

after it was discovered that the pH probe could not be submerged past its connection cable 

(even though it was stamped as fully submersible). 

 

4.6.3 Results of DO Control  

DO readings above the media bed and in the clarifier were each taken 25 times per minute and 

a moving averages of the readings was calculated every 5 minutes. To ensure sensor accuracy, 

bioreactor sensors would be periodically compared with a Hach LBDO101 handheld dissolved 

oxygen sensor. The ambient DO concentration in the bioreactor was kept constant at 1.30 mg/L. 

The discrepancy between ambient DO concentration and the desired bioreactor level of 1.0 

mg/L was largely the result of two factors: 

1. Addition of tap water (4~6 mg DO/L) to the system to make up for liquid lost due to 

evaporation 
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2. The programming logic in the control system. In order to compensate for variability in 

oxygen probe readings (membrane dissolved oxygen sensor probes typically vary about 

0.2 mg DO/L 11) air flow adjustment commands would only be sent from the 

Mega-Master to the AirControl-Uno-Slave through i2C protocol when controller error 

was great than 0.25 (translating to DO levels of 1.25 mg/L or 0.75 mg/L) [Appendix C – 

Code 3: Master i2C Initialization and Commands]. If this is considered, the control system 

was able to keep dissolved oxygen levels in range 96% of the time. \ 

 

4.7 Conclusion 

Two sensor networks were constructed using open source hardware to monitor and control 

oxygen and pH conditions in biological nutrient removal fluidized beds. A second-generation 

design, consisting of 3 microcontrollers communicating using i2C protocol, proved to be a cost 

effective method to monitor the conditions in the bioreactor and was moderately successful at 

controlling the oxygen concentration in the bioreactor. Further optimization on process control, 

system architecture, and UI would help to improve operator experience and system automation.  

 

4.8 Recommendations 

While these systems successfully monitored and controlled biological nutrient removal 

processes, improvements to accessibility, sensor reading, and process control would enhance 

the user experience and the effectiveness of the system. 
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4.7.1 Remote Access of Online System 

It was possible to use VNC to remotely access the pilot-scale sensor network through the use of 

the raspberry pi (while one a local IP network). This function was not implemented in the 

lab-scale partial nitrifying system because of the sensor noise generated by the connection 

between the Arduino and the Raspberry Pi. Further, because the VNC was broadcasting on a 

local IP, it was not possible to access the system if computers were on different networks.  

 

4.7.2 Sensor Reading Using Statistical Methods  

The method to record sensor readings in these systems involves rapid collection of data over a 

short period of time and calculating a moving average of sensor readings. While this method 

proved to be effective, sensor reading reliability could be enhanced by optimizing the number 

and frequency of sensor readings. 

 

4.7.3 Process Control 

The proportional control used in this process was very basic and oxygen concentration was 

assumed to be an independent control parameter. Alternative process control methods, such as 

PI or model predictive control, offer more effective techniques to maintain oxygen levels in the 

bioreactor. Furthermore, pH and DO are dependent and non-linear in nature. A decoupling 

between the variables as well as approximate linearization of these terms should increase the 

effectiveness of the controller. 



 
 
 

127 

4.9 References 

1. Andalib, M., Nakhla, G., & Zhu, J. (2010). Biological Nutrient Removal Using a Novel Laboratory-Scale 

Twin Fluidized-Bed Bioreactor. Chemical Engineering & Technology, 33(7), 1125-1136. doi: 

10.1002/ceat.201000079 

2. Arudino S.r.l. (2015). Retrieved from http://www.arduino.org 

3. Chowdhury, N., Nakhla, G., Sen, D., & Zhu, J. (2010). Modeling biological nutrient removal in a 

liquid-solid circulating fluidized bed bioreactor. Society of Chemical Industry, 85, 1389-1401. doi: 

10.1002/jctb.2445 

4. Dytczak, M. A., Londry, K. L., & Oleszkiewicz, J. A. (2008). Activated sludge operational regime has 

significant impact on the type of nitrifying community and its nitrification rates. Water Res, 

42(8-9), 2320-2328. doi: 10.1016/j.watres.2007.12.018 

5. Dosta, J., Gali, A., Benabdallah El-Hadj, T., Mace, S., & Mata-Alvarez, J. (2007). Operation and model 

description of a sequencing batch reactor treating reject water for biological nitrogen removal 

via nitrite. Bioresour Technol, 98(11), 2065-2075. doi: 10.1016/j.biortech.2006.04.033 

6. Jimenez, E., Gimenez, J. B., Ruano, M. V., Ferrer, J., & Serralta, J. (2011). Effect of pH and nitrite 

concentration on nitrite oxidation rate. Bioresour Technol, 102(19), 8741-8747. doi: 

10.1016/j.biortech.2011.07.092 

7. Metcalf, & Eddy. (2003). Wastewater Engineering, Treatment and Resuse (4 ed.). New York: 

McGraw-Hill. 

8. Munz, G., Lubello, C., & Oleszkiewicz, J. A. (2011). Factors affecting the growth rates of ammonium 

and nitrite oxidizing bacteria. Chemosphere, 83(5), 720-725. doi: 

10.1016/j.chemosphere.2011.01.058 

9. OSHWA. (2015). Retrieved from http://www.oshwa.org 

10. Park, Seongjun, & Bae, Wookeun. (2009). Modeling kinetics of ammonium oxidation and nitrite 

oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process 

Biochemistry, 44(6), 631-640. doi: 10.1016/j.procbio.2009.02.002 



 
 
 

128 

11. Rittmann, B., & McCarty, P. (2001). Environmental Biotechnology: Principles and Applications. New 

York: McGraw-Hill. 

12. Seborg, D., Mellichamp, D., & Edgar, T. (2011). Process Dynamics and Control (3 ed.). John Wiley & 

Sons, Inc. 

13. SparkFun Electronics. (2015). Retrieved from http://www.learn.sparkfun.com/tutorials/i2c 

14. Zhu, J., Zheng, Y., Karamanev, D., & Bassi, A. (2000). (Gas-) Liquid-Solid Circulating Fluidized Beds and 

their Potential Applications to Bioreactor Engineering. The Canadian Journal of Chemical 

Engineering, 78, 82-94.  



 
 
 

 
 

129 

Chapter 5 

Conclusions and Recommendations 

5.1 Summary and Conclusions 

5.1.1 Mobile CFBBR Unit 

• Mobile CFBBR operated for 4 months at a feed concentration of 250 mg/L COD and 40 

mg/L NH4-N at a feed flow rate of 5 m3/day 

• Operation was able to achieve 50% reduction in influent ammonia and 50% reduction in 

influent COD 

• Nitrate make-up dosing of 50 g NaNO3/day helped to reduce influent COD while nitrate 

recycle pump was under repair 

• Fluidization lights installed in the reactors helped determine static bed height and 

helped to ensure fluidization pumps were operational 

• Feed short-circuiting was resolved by modification to the feed-line 

• Lack of real-time sensing increased duties of system operates 

• Operations were ultimately halted due to winter temperatures   

5.1.2 Pilot CFBBR Unit 

• Pilot CFBBR operated for 8 months at a feed concentration of 340 mg/L COD and 120 

mg/L NH4-N at a feed flow rate of 0.5 to 1 m3/day 

• Operation was able to achieve 99% reduction in influent ammonia and 80% reduction in 

influent COD 
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• High concentrations of ammonia in the influent produced high nitrate levels in the 

aerobic effluent 

• Carbon was dosed to maintain COD to nitrogen ratio of 8:1 

• With additional carbon dosing, the system was able to meet Chinese water effluent 

regulations for TN of <20 mg/L and COD of < 50 mg/L 

 

5.1.3 PNFBR Control System 

• Control system for PNFBR unit operated continuously for 3 months, monitoring pH 

levels and adjusting DO concentrations 

• Bioreactor effluent converted approximately 45% of influent ammonia to nitrite and 5% 

to nitrite 

• Low concentration of nitrate in the effluent indicated that the NOB population in the 

reactor had very low activity 

• DO concentrations were maintained at 1.3 mg/L during the first two phases of the 

operation 

• Increases in DO levels in the system were observed during feeding times or as a result of 

additional make-up water that was used to account for water lost to evaporation 
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5.2 Recommendations 

5.2.1 Mobile CFBBR Unit 

• Development/installation electrical devices to measure fluidization of the system 

• Cut holes in roof of the unit to allow greater operator access to system 

• Installation of online sensors in the system 

• Replacement of all safety equipment in the system 

• Winterize the system to allow for year round operation 

• Alterations to clarifier to reduce floating sludge 

5.2.2 Pilot CFBBR Unit 

• Studies should be conducted on which particles best optimize biofilm growth in this 

operation 

• Process control to automate system, alleviating operators from responsibility 

• Alternative carbon sources, such as cafeteria food waste, should be investigated to 

determine an alternative economical carbon source, over table sugar 

 

5.2.3 PNFBR Control System 

• Improvements in accessibility, sensor reading, and process control would enhance 

system performance 

• Remote accessing would significantly enhance user experience. While this was 

attempted (using a raspberry pi), there was significant noise in sensor readings 
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• Sensor readings using statistical methods could be used to optimize moving average of 

sensor readings 

• Process control used in this work was very basic. Other methods, such as PI or predictive 

model control could offer enhanced automation 

• pH and DO were assumed to be linear and independent parameters. While this is not 

the case, work on decoupling these parameters would enhance system performance 
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Appendix A 

Activated Sludge Process with and without Nitrification 

Coded in VBA and Simulated in Excel: 

 

 

 

 

 

 

 

 

 

 

 

 

VBA Macro Code: 

Sub AerationTank() 

ThisWorkbook.Sheets("Sheet1").Activate 

 

'process treatment design (m^3/d) 

Q = 22464 

Cells(8, 2).Value = "Q (m3/d)" 
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Cells(8, 14).Value = "Q (m3/d)" 

Cells(8, 3).Value = Q 

Cells(8, 15).Value = Q 

Cells(34, 2).Value = "Q (m3/d)" 

Cells(34, 14).Value = "Q (m3/d)" 

Cells(34, 3).Value = Q 

Cells(34, 15).Value = Q 

 

'target BOD_e (g/m^3=mg/L) 

BODe = 30 

'target NH_4-N_e (g/m3=mg/L) 

NH4Ne = 0.5 

'target TSSe (g/m3=mg/L) 

TSSe = 15 

 

'temperature of reactor  (C) 

temp = 12 

'wastewater characteristics (g/m3=mg/L) 

BOD = 140 

sBOD = 70 

COD = 300 

sCOD = 132 

rbCOD = 80 

TSS = 70 

VSS = 60 

TKN = 35 

NH4N = 25 
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TP = 6 

Alk = 140 'alkalinity as CaCO3 

bCOD_BODratio = 1.6 

 

Cells(17, 2).Value = "Influent Wastewater Characteristics (mg/L)" 

Cells(18, 2).Value = "BOD" 

Cells(19, 2).Value = "sBOD" 

Cells(20, 2).Value = "COD" 

Cells(21, 2).Value = "sCOD" 

Cells(22, 2).Value = "rbCOD" 

Cells(23, 2).Value = "TSS" 

Cells(24, 2).Value = "VSS" 

Cells(25, 2).Value = "TKN" 

Cells(26, 2).Value = "NH4N" 

Cells(27, 2).Value = "Alk (CaCO3)" 

 

Cells(18, 3).Value = BOD 

Cells(19, 3).Value = sBOD 

Cells(20, 3).Value = COD 

Cells(21, 3).Value = sCOD 

Cells(22, 3).Value = rbCOD 

Cells(23, 3).Value = TSS 

Cells(24, 3).Value = VSS 

Cells(25, 3).Value = TKN 

Cells(26, 3).Value = NH4N 

Cells(27, 3).Value = Alk 

Cells(9, 2).Value = "BOD load (kg/d)" 
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Cells(10, 2).Value = "TKN load (kg/d)" 

 

Cells(9, 3).Value = Q * 0.001 * BOD 

Cells(10, 3).Value = Q * 0.001 * TKN 

 

 

'design assumptions 

 

'O2 transfer efficiency 

O2eff = 0.35 

'DO in the aeration basin 

DOcon = 2 '(g/m3 = mg/L) 

'liquid depth of basin (m) 

depth_tank = 4.9 

'The point of air release for the ceramic diffusers (m) 

air_release = 0.5 

'site elevation and pressure (m and kPA, respectively) 

elev = 500 

P = 95.6 

'aeration factor (alpha, beta and fouling, respectively 

alpha = 0.5 

alpha_N = 0.65 

beta = 0.95 

FF = 0.9 
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'kinetic values sheet 

ThisWorkbook.Sheets("kinetic values").Activate 

Cells(1, 1).Value = "Kinetic Information" 

 

'temp of kinetic data 

temp_kin = 20 

Cells(3, 1).Value = "reference temp (C)" 

Cells(3, 2).Value = temp_kin 

 

'heterotrophic bacteria 

Cells(5, 1).Value = "heterotrophic bacteria" 

um = 6 '(g VSS/g VSS.d) 

Ks = 20 '(g bCOD/m3) 

Y = 0.4 '(g VSS/ g bCOD) 

kd = 0.12 '(g VSS/g VSS) 

fd = 0.15 '(unitless) 

 

Cells(6, 1).Value = "um (g VSS/g VSS.d)" 

Cells(7, 1).Value = "Ks (g bCOD/m3)" 

Cells(8, 1).Value = "Y (g VSS/ g bCOD)" 

Cells(9, 1).Value = "kd (g VSS/g VSS)" 

Cells(10, 1).Value = "fd (unitless)" 

 

Cells(6, 2).Value = um 

Cells(7, 2).Value = Ks 

Cells(8, 2).Value = Y 
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Cells(9, 2).Value = kdCells(10, 2).Value = fd 

'theta values (unitless) 

Cells(12, 1).Value = "theta values" 

um_theta = 1.07 

kd_theta = 1.04 

Ks_theta = 1 

 

Cells(13, 1).Value = "um_theta" 

Cells(14, 1).Value = "kd_theta" 

Cells(15, 1).Value = "Ks_theta" 

 

Cells(13, 2).Value = um_theta 

Cells(14, 2).Value = kd_theta 

Cells(15, 2).Value = Ks_theta 

 

'Nitrification kinetic coefficients 

Cells(5, 5).Value = "nitrification" 

 

um_N = 0.75 'g VSS/g VSS.d 

K_N = 0.74 'g NH_4-N/m3 

Y_N = 0.12 'g VSS/g NH_4-N 

kd_N = 0.08 'g VSS/g VSS.d 

Ko = 0.5 'g/m^3 

 

Cells(6, 5).Value = "um_N (g VSS/g VSS.d)" 

Cells(7, 5).Value = "K_N (g bCOD/m3)" 

Cells(8, 5).Value = "Y_N(g VSS/ g bCOD)" 
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Cells(9, 5).Value = "kd_N(g VSS/g VSS)" 

Cells(10, 5).Value = "Ko (g/m3)" 

 

Cells(6, 6).Value = um_N 

Cells(7, 6).Value = K_N 

Cells(8, 6).Value = Y_N 

Cells(9, 6).Value = kd_N 

Cells(10, 6).Value = Ko 

 

'theta values for nitrification (unitless) 

Cells(12, 5).Value = "theta values" 

 

um_theta_N = 1.07 

kd_theta_N = 1.053 

Ks_theta_N = 1.04 

 

Cells(13, 5).Value = "um_theta_N" 

Cells(14, 5).Value = "kd_theta_N" 

Cells(15, 5).Value = "Ks_theta_N" 

 

Cells(13, 6).Value = um_theta_N 

Cells(14, 6).Value = kd_theta_N 

Cells(15, 6).Value = Ks_theta_N 
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ThisWorkbook.Sheets("Sheet1").Activate 

'SRT for BOD removal 

SRT = 5 '(d) 

Cells(13, 8).Value = "SRT (d)" 

Cells(13, 9).Value = SRT 

 

‘design of MLSS X_TSS concentration 

XTSS = 3000 '(g/m3 = mg/L) 

'TKN peak/average factor of safety (unitless) 

FS = 1.5 

 

'BOD removal without nitrification 

'Find bCOD 

bCOD = 1.6 * BOD '(g/m3 = mg/L) 

'Find nbCOD 

nbCOD = COD - bCOD '(g/m3 = mg/L) 

'Find effluent sCODe (assuming to be biodegradable 

sCODe = sCOD - 1.6 * sBOD '(g/m3 = mg/L) 

'Find nbVSS 

nbVSS = (1 - (1.6 * (BOD - sBOD) / (COD - sCOD))) * VSS '(g/m3 = mg/L) 

'Find iTSS 

iTSS = TSS - VSS '(g/m3 = mg/L) 
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'substrate concentration 

um = um * (um_theta) ^ (temp - temp_kin) '(g/g.d) 

kd = kd * (kd_theta) ^ (temp - temp_kin) '(g/g.d) 

S = Ks * (1 + kd * SRT) / (SRT * (um - kd) - 1) '('g bCOD/m3 = mg bCOD/L) 

 

'biomass production (heterotrophic biomass & cell debris) and nonbiodegradable from influent 

Px_VSS_hetero = (Q * Y * (bCOD - S)) / (1000 * (1 + kd * SRT)) '(kg VSS/d) 

Px_VSS_celldebris = (fd * kd * Q * Y * (bCOD - S) * SRT) / (1000 * (1 + kd * SRT)) '(kg VSS/d) 

Px_VSS_nbVSSin = Q * nbVSS * 0.001 '(kg VSS/d) 

 

'mass of VSS and TSS in the aeration basin 

Px_VSS = Px_VSS_celldebris + Px_VSS_hetero + Px_VSS_nbVSSin '(kg/d) 

Px_TSS = Px_VSS_celldebris / 0.85 + Px_VSS_hetero / 0.85 + Px_VSS_nbVSSin + Q * (TSS - VSS) * 
0.001 '(kg/d) 

 

'mass of MLVSS, function of X_VSS *V 

massVSS = Px_VSS * SRT '(kg) 

 

'mass of MLSS, function of V*X_TSS 

massTSS = Px_TSS * SRT '(kg) 

 

'volume 

V = massTSS * 1000 / XTSS '(m3) 

Cells(12, 8).Value = "V (m3)" 

Cells(12, 9).Value = V 

 

'detension/retension time 
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tau = V * 24 / Q '(h) 

 

Cells(14, 8).Value = "tau (h)" 

Cells(14, 9).Value = tau 

 

'MLVSS concentration 

VSS_frac = Px_VSS / Px_TSS 

MLVSS = VSS_frac * XTSS '(g/m3 = mg/L) 

'Food to microrganisms ratio 

F_M = (Q * BOD) / (MLVSS * V) '(kg/kg.d) 

 

Cells(15, 8).Value = "F_M (kg/kg.d)" 

Cells(15, 9).Value = F_M 

 

'BOD volumetric loading rate 

BOD_load = 0.001 * (Q * BOD) * V ^ -1 '(kg/m3.d) 

 

Cells(16, 8).Value = "BOD loading (kg/m3.d)" 

Cells(16, 9).Value = BOD_load 

 

'bCOD removed 

bCOD_rem = Q * (bCOD - S) * 0.001 '(kg/d) 

 

'Observed yield: first on TSS (g TSS/g BOD), then on VSS 

Yobs_TSS = (Px_TSS / bCOD_rem) * 1.6 

Yobs_VSS = Yobs_TSS * VSS_frac '(g VSS/g BOD) 
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'oxygen demand 

Ro = (Q * (bCOD - S) * 0.001 - 1.42 * (Px_VSS_hetero + Px_VSS_celldebris)) / 24 '(kg/h) 

 

'fine bubble aeration design 

 

'determine C_sTH 

 

'determination of the relative pressure 

Pb_Pa = Exp(-(9.81 * 28.97 * elev / (8314 * (273.15 + temp)))) 

 

Ctemp1 = 9.08 '(mg/L) 

Ctemp2 = 10.77 '(mg/L) 

C_sTH = Ctemp2 * Pb_Pa 

 

'atmospheric pressure of water at elevation and temperature 

Patm_H = Pb_Pa * 101.325 / 9.802 '(m) 

 

'oxygen concentration assuming the percent oxygen concentration is assumed to be 19% 

C_sTH = C_sTH * 0.5 * ((Patm_H + (depth_tank - air_release)) / Patm_H + 0.19 / 0.21) '(mg/L) 

 

 

'SOTR 

SpecORT = Ro * 1.024 ^ (20 - temp) * Ctemp1 / (alpha * FF * (beta * C_sTH - DOcon)) '(kg/h) 

 

'air flowrate 

air_flow = SpecORT / (O2eff * 60 * 0.2318 * 1.1633) '(m3/min) 
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'comparison table 

 

Cells(18, 7).Value = "Design Parameter" 

Cells(18, 8).Value = "BOD only" 

Cells(18, 9).Value = "BOD and Nitrification" 

 

Cells(19, 7).Value = "Sludge Production (kg/d)" 

Cells(20, 7).Value = "Observed Yield (kg VSS/kg BOD)" 

Cells(21, 7).Value = "Oxygen Required (kg/h)" 

Cells(22, 7).Value = "Air Flowrate (m3/min)" 

 

'BOD only values in comparison table 

 

Cells(19, 8).Value = MLVSS 

Cells(20, 8).Value = Yobs_VSS 

Cells(21, 8).Value = Ro 

Cells(22, 8).Value = air_flow 

 

'effluent 

Cells(9, 14).Value = "BOD load (kg/d)" 

Cells(10, 14).Value = "TKN load (kg/d)" 

 

Cells(9, 15).Value = Q * 0.001 * BOD 

Cells(10, 15).Value = Q * 0.001 * NH4N 
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'BOD removal and Nitrification 

Cells(35, 2).Value = "BOD load (kg/d)" 

Cells(36, 2).Value = "TKN load (kg/d)" 

 

Cells(35, 3).Value = Q * 0.001 * BOD 

Cells(36, 3).Value = Q * 0.001 * TKN 

 

um_N = um_N * 1.07 ^ (temp - 20) 

K_N = K_N * 1.053 ^ (temp - 20) 

kd_N = kd_N * 1.04 ^ (temp - 20) 

un = (um_N * NH4Ne * DOcon) / ((K_N + NH4Ne) * (Ko + DOcon)) - kd_N '(g/g.d) 

 

'theoretical SRT 

SRT_theor = 1 / un '(d) 

 

'design SRT 

SRT = FS * SRT_theor '(d) 

Cells(39, 8).Value = "SRT (d)" 

Cells(39, 9).Value = SRT 

 

'determine biomass production 

S = Ks * (1 + kd * SRT) / (SRT * (um - kd) - 1) '(mg/L) 

NOx = 0.8 * TKN 

 

'biomass production (heterotrophic biomass & cell debris) and nonbiodegradable from influent 

Px_VSS_hetero = (Q * Y * (bCOD - S)) / (1000 * (1 + kd * SRT)) '(kg VSS/d) 
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Px_VSS_celldebris = (fd * kd * Q * Y * (bCOD - S) * SRT) / (1000 * (1 + kd * SRT)) '(kg VSS/d) 

Px_VSS_nbVSSin = Q * Y_N * NOx / (1000 * (1 + kd_N * SRT)) '(kg VSS/d) 

Px_bio = Px_VSS_hetero + Px_VSS_celldebris + Px_VSS_nbVSSin '(kg VSS/d) 

Px_VSS = Px_bio + Q * nbVSS * 0.001 '(kg VSS/d)Px_TSS = Px_bio / 0.85 + Q * nbVSS * 0.001 + Q 
* (TSS - VSS) * 0.001 '(kg TSS/d) 

 

'amount of nitrogen oxidized to nitrate 

NOx = TKN - NH4Ne - 0.12 * 1000 * Px_bio / Q '(g/m3 = mg/L) 

 

'mass of VSS and TSS 

massMLVSS = Px_VSS * SRT '(kg) 

massMLSS = Px_TSS * SRT '(kg) 

 

'volume of aeration basin 

V = massMLSS * 1000 / XTSS '(m3) 

Cells(38, 8).Value = "V (m3)" 

Cells(38, 9).Value = V 

 

'detention time in tank 

tau = V * 24 / Q '(h) 

Cells(40, 8).Value = "tau (h)" 

Cells(40, 9).Value = tau 

 

'fraction of VSS & MLVSS 

VSSfrac = Px_VSS / Px_TSS 

MLVSS = VSSfrac * XTSS '(g/m3) 
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‘food to microorganism ratio 

FtoM = Q * BOD / (MLVSS * V) '(g BOD/g MLVSS.d) 

Cells(41, 8).Value = "F/M (kg/kg.d))" 

Cells(41, 9).Value = FtoM 

 

'volumetric loading 

Lorg = FtoM * MLVSS / 1000 '(kg BOD/m3.d) 

Cells(42, 8).Value = "BOD loading (kg/m3.d)" 

Cells(42, 9).Value = Lorg 

 

'observed yield 

bCOD_rem = Q * (bCOD - S) * 0.001 '(kg/d) 

Yobs_TSS = Px_TSS * 1.6 / bCOD_rem '(kg TSS/kg bCOD) 

Yobs_VSS = Px_TSS / bCOD_rem * VSSfrac * 1.6 '(kg TSS/kg bCOD) 

 

'oxygen demand 

Ro = (Q * (bCOD - S) * 0.001 - 1.42 * Px_bio + 4.33 * Q * 0.001 * NOx) / 24 '(kg/h) 

 

'specific oxygen transfer rate 

SpecORT = Ro * Ctemp1 * (1.024 ^ (20 - temp)) / (alpha_N * FF * (beta * C_sTH - DOcon)) '(kg/h) 

 

'airflow 

air_flow = SpecORT / (O2eff * 60 * 0.2318 * 1.1633) '(m^3/min) 

 

'check alkalinity (alkalinity to maintain a pH of ~7 (70-80 g/m^3 as CaCO3)= influent Alk - Alk 
used + Alk to be added) 

'alkalinity used for nitrification 

alk_nit = 7.14 * NOx '(g/m^3 as CaCO_3) 
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alk_req = (80 + alk_nit - Alk) * Q * 0.001 '(kg/d as CaCO3) 

 

'alkalinity as sodium biocarbonate 

eq_CaCO3 = 50 '(g/equivalent) 

eq_NaHCO3 = 84 '(g/equivalent) 

 

NaHCO3_req = alk_req * eq_NaHCO3 / eq_CaCO3 '(kg/d as NaHCO3) 

Cells(37, 2).Value = "Alk (NaHCO3 kg/d)" 

Cells(37, 3).Value = NaHCO3_req 

 

'BOD and Nitrificaiton values in comparison table 

Cells(19, 9).Value = MLVSS 

Cells(20, 9).Value = Yobs_VSS 

Cells(21, 9).Value = Ro 

Cells(22, 9).Value = air_flow 

 

'effluent BOD 

sBODe = 3 '(g/m3) 

TSS = 10 '(g/m3) 

BOD = sBODe + TSS * 0.7 * 0.85 '(g/m3) 

 

Cells(35, 14).Value = "BOD (kg/m3)" 

Cells(35, 15).Value = BOD * 0.001 * Q 

 

Cells(36, 14).Value = "TKN (kg/m3)" 

Cells(36, 15).Value = NH4Ne * 0.001 * Q 

End Sub 
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Appendix B  

PNFBR Sensor Network Cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Unit Cost Quantity 
Total Item 

Cost 

BNC connectors $0.50 3 $1.50 

Arduino Uno R3 $29.98 2 $59.96 

USB-B Cable $2.00 1 $2.00 

Keyboard $10.00 1 $10.00 

LCD Monitor $298.00 1 $298.00 

Mouse $10.00 1 $10.00 

Servo $12.00 1 $12.00 

Air Flow Meter $15.00 3 $45.00 

Arduino Mega $45.00 1 $45.00 

TLC Microchip $2.00 3 $6.00 

16x2LCD Screen $3.00 1 $3.00 

100 ohm Resistor $5.00 1 $5.00 

1 k ohm Resistor $5.00 1 $5.00 

64 GB microSD Card $9.50 1 $9.50 

12 DC V Powersupply $20.00 1 $20.00 

5 DC V Powersupply $15.00 1 $15.00 

1 m HDMI Cable $30.00 1 $30.00 

DO sensor $198.00 3 $594.00 

pH sensor $89.00 1 $89.00 

pH Circuit $40.00 1 $40.00 

Breadboard $7.00 3 $21.00 

TOTAL COST 
  

$1,320.96 
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Appendix C 

Arduino & Python Codes Used in Sensor Networks 

 

Code1: Calibration of Dissolved Oxygen Sensor 

 

 

//DISSOLVED OXYGEN SENSOR ARDUINO CODE 

//written by: Joseph Donohue 

 

/* 

The purpose of the following code is to determine the dissolved oxygen concentration in a water 
sample using the arduino platform. 

*/ 

 

// initalizing all variables that need to be used in the program 

 

int n = 0;                         //initializing integer for loops 

int sensor_read = A0;             //input for probe that converts analog signal to a digital 
reading 

int intSensorValue = 0;          //initiate the sensor value from the arduino board (comes in 
as an integer value)  

float sensorValue = 0;          // after reading in the value from the sensor and converting it 
to a millivolt reading 

float sensorVoltAir = 4130;    // (mV) sensor reading in air 

float sensorVoltZero = 132;   // (mV) sensor reading in zero dissolved oxygen solution 
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float doMeasure = 0;         //used to print DO level (mg O2 /L)  

float calCo = 8.74;  //Calibration coefficient —> DO sat at room temp 

float sum = 0; 

float average = 0; 

 

void setup() { 

           Serial.begin(9600);  // (baud) 

} 

 

 

void loop(){ 

SensorReading = getDO(sensor_read, sensorVoltAir, sensorVoltZero, calCo); 

Serial.println(SensorReading); 

} 

 

 

void getDO(sensor_read, sensorVoltAir, sensorVoltZero, calCo){ 

 

  while (n < 20) { 

intSensorValue = analogRead(sensor_read);   // return integer value from the sensor 
(between 0 - 5 V) 

sensorValue= 5/1.024*intSensorValue;   // real sensorValue that corresponding to input 
voltage in volts.   

doMeasure = calCo*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); // linear 
interpolation to find DO measurement 

delay(1000); 

n = n + 1 ; 

sum = sum + doMeasure; 
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} 

average = sum/n; 

//clear varbs 

n = 0; 

average = 0; 

sum = 0; 

return(average); 

} 

 

Code 2: Python Data Logging Code on Raspberry Pi 

 

“”” 

The following code collects data from serial communication between two arduino boards and a 
raspberry pi running a python code 

written: Joseph Donohue 

“”” 

 

import serial 

import time 

from datetime import datetime 

 

Raddr = '/dev/tty.usbmodem411' 

Daddr = '/dev/tty.usbmodem641' 

baud = 9600 

fname = 'PilotOnlineData.csv' 

fmode = 'ab' 

n = 0 

q=0 
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RDO1 = 0.00 

RDO2 = 0.00 

DDO1 = 0.00 

DDO2 = 0.00 

RpH = 0.00 

DpH = 0.00 

 

with serial.Serial(Daddr,baud) as Dport, serial.Serial(Raddr,baud) as Rport, open(fname, fmode) 
as outf: 

    outf.write("Date,Time,RDO1 (mg/L),RDO2 (mg/L),RpH,DDO1 (mg/L),DDO2 (mg/L),DpH\n") 

    while 1<0: 

 

        if n== 0: 

            Rport.readline() 

            Dport.readline() 

            n=5 

       

        else: 

          

            DSerialCheck = Dport.readline() 

            RSerialCheck = Rport.readline() 

             

            if RSerialCheck == "RDO1\r\n": 

                RDO1 = float(Rport.readline()) 

            elif RSerialCheck == "RDO2\r\n": 

                RDO2 = float(Rport.readline()) 

            elif RSerialCheck == "RpH\r\n": 

                RpH = float(Rport.readline()) 
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            else: 

                RDO1 = "--.--" 

                RDO2 = "--.--" 

                RpH = "--.--" 

            if DSerialCheck == "DDO1\r\n": 

                DDO1 = float(Dport.readline()) 

            elif DSerialCheck == "DDO2\r\n": 

                DDO2 = float(Dport.readline()) 

            elif DSerialCheck == "DpH\r\n": 

                DpH = float(Dport.readline()) 

            else: 

                DDO1 = "--.--" 

                DDO2 = "--.--" 

                DpH = "--.--" 

            print 
"====================================================================" 

            print "\tAverage DO Reading:" 

            print 
"====================================================================" 

            print "Riser DO Sensor 1:\t\t"+str(RDO1) +" mg/L\t\t" + "Riser DO Sensor 
2:\t\t"+str(RDO2) +" mg/L"  

            print "Downer DO Sensor 1:\t"+str(DDO1) +" mg/L\t" + "Downer DO Sensor 
2:\t"+str(DDO2) +" mg/L"  

            print 
"\n====================================================================" 

            print "\tpH Reading:" 

            print 
"====================================================================" 

            print "Riser pH Sensor:\t"+str(RpH) 

            print "Downer pH Sensor:\t"+str(DpH) +"\n\n" 
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            timeLog = time.localtime() 

            timeDate = str(timeLog[2])+ "/" + str(timeLog[1]) + "/"+ str(timeLog[0]) 

            t= int(timeLog[3]) 

            t1 = int(timeLog[4]) 

            timeOut = str(t) + ":" + str(t1) 

            outf.write(timeDate+ "," + timeOut+ "," + str(RDO1) +"," + str(RDO2)+ ","+ 
str(RpH) +"," + str(DDO1)+ "," + str(DDO2) +"," + str(DpH)+"\n") 

            outf.flush() 

        q+=1 

    Dport.close() 

    Rport.close() 

 

 

Code 3: Master i2C Initialization and Commands 

 

//AirControlTestTroubleShoot 

 

/* This code was written to measure the oxygen level in a wastewater system and in a seeding 
tank. The code attempts to regulate the amount of oxygen 

being supplied to the system by controlling a servo motor on an air flow meter.*/ 

 

//Code Written by:  Joseph Donohue, MESc candidate @WesternUniversity 

 

//Libraries 

#include <Servo.h> 

#include <Wire.h> 

#include <LiquidCrystal_I2C.h> 
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#include <LiquidCrystal.h> 

#include <Average.h> 

#include <OneWire.h> 

#include <SD.h> 

#include <LCD5110_Basic.h> 

#include "ds3231.h" 

#include "rtc_ds3231.h" 

 

 

#define lcdwide 16 

#define lcdlong 2 

 

#define BUFF_MAX 128 

 

uint8_t time[8]; 

char recv[BUFF_MAX]; 

unsigned int recv_size = 0; 

unsigned long prev, interval = 5000; 

 

//pH Reading info 

float pHReading = 0; 

char pHIncoming [5]; 

 

//input for dissolved oxygen probe that converts analog signal to a digital reading 

int sensor_D1 = A0; 

int sensor_D2 = A1; 

int sensor_seed = A2; 
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//create arrays  

float D1Array [19]; 

float D2Array [19]; 

float sludgeArray [19]; 

 

//DO Sensor Information 

int intSensorValue = 0;          //initiate the sensor value from the arduino board (comes in 
as an integer value)  

float sensorValue = 0;          // after reading in the value from the sensor and converting it 
to a millivolt reading 

float sensorVoltAir = 4130;    // (mV) sensor reading in millivolts in the air 

float sensorVoltZero = 132;   // (mV) sensor reading in millivolts in a zero dissolved oxygen 
solution (Na2SO3) 

float doMeasure = 0;         //used to print DO level (mg O2 /L)  

float sumDO1 = 0;            //sum of DO1 sensor 

float sumDO2 = 0; 

float sumSeed =  0; 

float average = 0; 

float AirCTRLAverage = 0; 

float movAvSeed = 0; 

float movAvDO1 = 0; 

float movAvDO2 = 0; 

float testVal = 0; 

float testChek = 0; 

float disp = 0; 

float moveServo = 0; 

float ysp = 1; 
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//Time Variables 

int Year = 0; 

int Month = 0; 

int Day = 0; 

int Hour = 0; 

int Minute = 0; 

int HourCHK = 0; 

int DayCHK = 0; 

int firstTime = 0; 

int firstTime2 = 0; 

 

float HsumDO1 = 0; 

float HsumDO2 = 0; 

float HsumpH = 0; 

int Hcount = 0; 

 

 

//Servo Information 

Servo servo1;  // servo1 180 degree servo 

float error = 0; 

 

//LCD Information 

LiquidCrystal_I2C lcd(0x27,2,1,0,4,5,6,7); //i2c LCD 

LiquidCrystal lcd2(42,43,40,41,38,39); 

 

// variables to count loops  
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int n = 0; //number of loops 

int i = 0; 

float g = 0; 

int HCHK = 0; 

int DCHK = 0; 

 

 

//SD card output 

const int chipSelect = 53; 

 

 

void setup() {                

Serial.begin(9600);  // (baud) sets data rate in bits per second for serial data transmission 

  Wire.begin(); 

  Wire.requestFrom(1,15); 

  while(Wire.available()){ 

    char c = Wire.read(); 

    Serial.print(c);} 

  Serial.println(" "); 

   

  //RTC initialization 

DS3231_init(DS3231_INTCN); 

  memset(recv, 0, BUFF_MAX); 

 

 

  //i2c LCD initialization, rather than using serial to see what's going on 

lcd.begin(lcdwide,lcdlong); 
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  lcd.setBacklightPin(3,POSITIVE); 

  lcd.setBacklight(HIGH); 

  lcd2.begin(lcdwide, lcdlong); 

   

  //Top LCD screen connected over i2c 

  lcd.home ();                   

  lcd.setCursor(1,1); 

  lcd.print(" Initializing"); 

  delay(2000); 

 

 

//MicroSD card setup 

 

        if (!SD.begin(chipSelect)) { 

          Serial.println("Card failed, or not present"); // don't do anything more: 

          return;}     

        Serial.println("SD card initialized."); 

        lcd2.setCursor(0,0); 

        lcd2.print("Collecting Data"); 

        delay(2000); 

        lcd2.clear(); 

        lcd2.setCursor(0,0); 

        lcd2.print("    WESTERN"); 

        lcd2.setCursor(0,1); 

        lcd2.print("  ENGINEERING"); 

        delay(3000); 

        lcd2.clear(); 
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        lcd.clear(); 

        

  //LCD initialization 

  lcd2.setCursor ( 0, 1 ); 

  lcd2.print("COL:"); 

  lcd2.setCursor(5,1); 

  lcd2.print("x.xx "); 

  lcd2.print("mg/L"); 

  lcd2.setCursor ( 0, 0 ); 

  lcd2.print("SET:"); 

  lcd2.setCursor(5,0); 

  lcd2.print("x.xx "); 

  lcd2.print("mg/L"); 

  lcd.setCursor(0,1); 

  lcd.print("pH: "); 

  lcd.setCursor(7,1); 

  lcd.print("x.xx"); 

  lcd.setCursor(0,0); 

  lcd.print("time:"); 

 } 

 

void loop(){ 

  servo1.write(90); //just incase the continuous one moves 

  delay(100); 

  //This while loop collects the analog data from the sensors connected to the arduino 

  while (n < 5) { 

      char in; 
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  char buff[BUFF_MAX]; 

  //unsigned long now = millis(); 

  struct ts q; 

  delay(1000); 

  DS3231_get(&q); 

  delay(100); 

  snprintf(buff, BUFF_MAX, "%d-%02d-%02d %02d:%02d:%02d", q.year, q.mon, q.mday, 
q.hour, q.min, q.sec); 

  Serial.println(buff); 

   

  Year = q.year; 

  Month = q.mon; 

  Day = q.mday; 

  Hour = q.hour; 

  Minute = q.min; 

   

  if (HCHK == 0){ 

  Serial.println("HourCHK = Hour");   

  HourCHK = Hour; 

  HCHK = 1;} 

   

  if (DCHK = 0){ 

    DayCHK = Day; 

    DCHK = 1;} 

     

 

 

 



 
 
 

 
 

163 

 

/* 

---------------------------------------------------------------------------------------------------------- 

                        COLUMN DO SENSOR ONE (DO1) 

---------------------------------------------------------------------------------------------------------- 

*/ 

     

    intSensorValue = analogRead(sensor_D1);  // return integer value from the sensor at the 
bottom of the system 

    delay(100); 

    sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（volts）.   

    delay(100); 

    //Serial.println(sensorValue); //see what millivolt reading that corresponds to 

    doMeasure = 10.3*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); //Find 
out how much DO there is based on linearization, 10.3 is a coefficient that is unique to this 
circuit and sensor  

    //DO reading is higher in column because of increased pressure 

    //DO Coefficent in column is 6.58 

     

    //Serial.println("DO1"); 

    //Serial.println(doMeasure,2); 

  

    delay(100); 

    while (doMeasure <0 || doMeasure> 10){ 

       intSensorValue = analogRead(sensor_D1);  // return integer value from the sensor 
from the top of the system 

       delay(100); 

       sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（millivolts）.   
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       //Serial.println(sensorValue); 

       delay(100); 

       doMeasure = 10.3*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); 

       i+= 1; 

       if (i==6){break;} 

       delay(100); 

       } 

    i =0; 

    if (doMeasure < 0){doMeasure = 0;} 

     

    delay(100); 

 

    sumDO1 = sumDO1 + doMeasure; //Add up all of the readings from the Seed DO sensor. 
Will be used to calculate average later. 

    movAvDO1 = sumDO1/(n+1); 

     

    if (n<3){ 

          while (doMeasure < 0.2 || doMeasure> 10){ 

      intSensorValue = analogRead(sensor_D1);  // return integer value from the sensor from 
the top of the system 

      delay(100); 

      sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（millivolts）.   

      //Serial.println(sensorValue); 

      delay(100); 

      doMeasure = 10.3*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); 

      i +=1; 

      delay(100); 
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      Serial.println("Checking Again :("); 

      if (i == 10){ 

      break;} 

      delay(100); 

    } 

  } 

    if (n>3){ 

Serial.print("Moving Average DO1:  "); 

    testVal = abs((movAvDO1 - doMeasure)/movAvDO1); 

    if (testVal>2){ 

      sumDO1 = sumDO1-doMeasure; 

    n = n-1; 

    delay(100); 

    Serial.println("dropped measurement :(");} 

} 

    movAvDO1 = sumDO1/(n+1); 

Serial.print(movAvDO1); 

    delay(100); 

/* 

---------------------------------------------------------------------------------------------------------- 

                        COLUMN DO SENSOR TWO (DO2) 

---------------------------------------------------------------------------------------------------------- 

*/ 

    delay(400); 

    intSensorValue = analogRead(sensor_D2);  // return integer value from the sensor from 
the top of the system 

    delay(400); 
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    sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（millivolts）.   

    //Serial.println(sensorValue); 

    delay(500); 

    doMeasure = 12.13*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); //Find 
out how much DO there is based on linearization, 8.74 is a coefficient that is unique to this 
circuit and sensor  

    //Serial.println("DO2"); 

    //Serial.println(doMeasure,2); 

    delay(500); 

 

    while (doMeasure <0 || doMeasure> 10){ 

      delay(100); 

      intSensorValue = analogRead(sensor_D2);  // return integer value from the sensor from 
the top of the system 

      delay(100); 

      sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（millivolts）.  

     delay(100);  

      //Serial.println(sensorValue); 

      doMeasure = 12.13*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); 

      i += 1; 

      if (i == 6){break;} 

      delay(100); 

      } 

       

      if (doMeasure < 0){doMeasure = 0;} 

    i = 0; 
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    delay(100); 

 

    sumDO2 = sumDO2 + doMeasure; //Add up all of the readings from the Seed DO sensor. 
Will be used to calculate average later. 

    movAvSeed = sumSeed/(n+1); 

     

    if (n<3){ 

          while (doMeasure < 0.2 || doMeasure> 10){ 

      intSensorValue = analogRead(sensor_D2);  // return integer value from the sensor from 
the top of the system 

      delay(100); 

      sensorValue= 5/1.024*intSensorValue; // Real sensorValue that corresponding to input 
voltage（millivolts）.   

      //Serial.println(sensorValue); 

      delay(100); 

      doMeasure = 8.74*((sensorValue-sensorVoltZero)/(sensorVoltAir-sensorVoltZero)); 

      i +=1; 

      delay(100); 

      Serial.println("Checking Again :("); 

      if (i == 10){  

      break;} 

      delay(100); 

    } 

  } 

if (n>3){ 

      Serial.print("\tMoving Average DO2:  "); 

    testVal = abs((movAvDO2 - doMeasure)/movAvDO2); 
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    if (testVal>2){ 

      sumDO2 = sumDO2-doMeasure; 

    n = n-1; 

    delay(100); 

    Serial.println("dropped measurement :(");} 

} 

    movAvDO2 = sumDO2/(n+1); 

    Serial.print(movAvDO2); 

    Serial.print('\n'); 

delay(100); 

pHRead(); 

delay(100); 

lcd.setCursor(0,0); 

lcd.print("time: "); 

lcd.setCursor(7,0); 

lcd.print(Hour); 

lcd.print(":"); 

lcd.print(Minute); 

lcd.print(" "); 

    n = n + 1 ; //finished one cycle of the loop 

  } 

  moveServo ++; 

  int gg = random(0,50); 

  Serial.println("gg"); 

  Serial.println(gg); 

  float ran = random(0,50); 
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  Serial.println("ran"); 

  Serial.println(ran); 

   

  float dis = ran/100; 

   

  Serial.println("dis"); 

  Serial.println(dis); 

   

  if (gg> 25){ 

    g = 1.24 - dis;} 

 else { 

 g = 1.14 + dis;} 

    

Serial.println("g"); 

Serial.println(g); 

Serial.println("\nAverage DO Reading:"); 

 

  AirCTRLAverage = sumDO1/n; 

  lcd2.setCursor(5,1); 

     

  Serial.println("Average DO2"); 

  Serial.println(average,2); 

 

  delay(100); 

 

  Serial.println("----------------------------------------------------\n\n"); 
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pHRead(); 

delay(100); 

 

error = ysp – AirCTRLAverage; 

delay(100); 

delay(100); 

if(error  <= 1 && error >= 0.6){ 

  //if DO measurement is between 0 and 0.5 --> turn up 2 rotations ~50 mL/min 

  Serial.println("error between 1 and 0.6 \n Corresponding to a DO between 0 to .5"); 

  delay(100); 

    Wire.beginTransmission(1); 

    delay(100); 

    Wire.write('U'); 

    delay(100); 

    Wire.write('U'); 

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn up two rotations ~50 mL/mi"); 

    delay(100); 

  } 

   

 else if(error  < .6 && error >= 0){ 

  //if DO measurement is between 0.5 and 1 --> turn up 1 rotations ~25 mL/min 

  Serial.println("error between .5 and 0 \n Corresponding to a DO between 0.5 to 1"); 

  delay(100); 

    Wire.beginTransmission(1); 

    delay(100); 
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    Wire.write('U'); 

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn up one rotation ~25 mL/mi"); 

    delay(100); 

  } 

   

 else if(error  < 0 && error >= -0.5){ 

   

  //if DO measurement is between 1 and 1.5 --> turn down 1 rotation ~25 mL/min 

  Serial.println("error between 0 and -0.5 \n Corresponding to a DO between 1 to 1.5"); 

  delay(100); 

    Wire.beginTransmission(1); 

    delay(100); 

    Wire.write('D'); 

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn Down one rotation ~25 mL/mi"); 

    delay(100); 

  } 

   

 else if(error  < -0.5 && error >= -1){ 

   

  //if DO measurement is between 1.5 and 2 --> turn down 2 rotation ~50 mL/min 

  Serial.println("error between -0.5 and -1 \n Corresponding to a DO between 1.5 to 2"); 

  delay(100); 

    Wire.beginTransmission(1); 
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    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn Down two rotations ~50 mL/mi"); 

    delay(100); 

  }  

  

 else if(error  < -1 && error >= -1.5){ 

   

  //if DO measurement is between 2 and 2.5 --> turn down 4 rotation ~100 mL/min 

  Serial.println("error between -1 and -1.5 \n Corresponding to a DO between 2 to 2.5"); 

  delay(100); 

    Wire.beginTransmission(1); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn Down four rotations ~100 mL/mi"); 
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    delay(100); 

  }     

 else if(error  < -1.5 && error >= -9){ 

   

  //if DO measurement is between 2.5 and greater --> turn down 6 rotation ~100 mL/min 

  Serial.println("error between -1.5 and -9 \n Corresponding to a DO that is too high"); 

  delay(100); 

    Wire.beginTransmission(1); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D'); 

    delay(100); 

    Wire.write('D');     

    Wire.endTransmission(); 

    delay(100); 

    Serial.println("I told controller to turn Down six rotations ~150 mL/mi"); 

    delay(100); 

     

  }      
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if(HourCHK == Hour){ 

  Serial.println("I'm in the hour check loop"); 

  HsumDO1 = AirCTRLAverage + HsumDO1; 

  HsumDO2 = average + HsumDO2; 

  HsumpH = pHReading + HsumpH; 

  Hcount = Hcount++;} 

   

else{ 

  Serial.println("I'm in the Other loop to record the data"); 

  float hourDO1 = HsumDO1/Hcount; 

  float hourDO2 = HsumDO2/Hcount; 

  float hourpH = HsumpH/Hcount; 

  HCHK = 0; 

   

   

  File hFile = SD.open("hour.csv",FILE_WRITE); 

   

  if (hFile) { 

   

  hFile.print(Year); 

  hFile.print(" - "); 

  hFile.print(Month); 

  hFile.print(" - "); 

  hFile.print(Day); 

  hFile.print(" "); 

  hFile.print(Hour); 

  hFile.print(":"); 
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  hFile.print("00"); 

  hFile.print(", ");  

   

  hFile.print(hourDO1); 

  hFile.print(", ");  

  hFile.print(hourDO2); 

  hFile.print(","); 

  hFile.print(hourpH); 

  hFile.print("\n");    

  hFile.close(); 

   

  delay(100); 

  Serial.println("recorded in Hour SD file"); 

  delay(500); 

 

  } 

    else { 

    Serial.println("error opening hourdatalog.csv"); 

    delay(1000);} 

     

  HsumDO1 = 0; 

  HsumDO2 = 0; 

  HsumpH = 0; 

  Hcount = 1; 

} 
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delay (1000); 

 

File thisFile = SD.open("datalog.csv", FILE_WRITE); 

 

delay(100); 

 

if (thisFile) { 

   

  thisFile.print(Year); 

  thisFile.print(" - "); 

  thisFile.print(Month); 

  thisFile.print(" - "); 

  thisFile.print(Day); 

  thisFile.print(" "); 

  thisFile.print(Hour); 

  thisFile.print(":"); 

  thisFile.print(Minute); 

  thisFile.print(", ");  

   

  thisFile.print(AirCTRLAverage); 

  thisFile.print(", ");  

  thisFile.print(average); 

  thisFile.print(", ");    

  thisFile.print(error); 

  thisFile.print(","); 

  thisFile.print(pHReading); 

  thisFile.print("\n");    
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  thisFile.close(); 

   

  delay(100); 

  Serial.println("recorded in SD file"); 

  delay(500); 

 

  }   

  // if the file isn't open, pop up an error: 

  else { 

    Serial.println("error opening ColumnDatalog.csv"); 

    delay(1000); 

     

    for (int i = 0; i< 10; i++){ 

     File thisFile = SD.open("datalog.csv", FILE_WRITE); 

 

delay(100); 

 

if (thisFile) { 

  thisFile.print(AirCTRLAverage); 

  thisFile.print(", ");  

  thisFile.print(average); 

  thisFile.print(", ");    

  thisFile.print(error); 

  thisFile.print("\n");  

  thisFile.close(); 
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  delay(100); 

  Serial.println("recorded in SD file"); 

  delay(500); 

  }   

  // if the file isn't open, pop up an error: 

  else { 

    Serial.println("error opening ColumnDatalog.csv"); 

    delay(1000); 

    } 

  }  

  } 

   

  //Reset Varbs 

n = 0; 

average = 0; 

sumDO1 = 0; 

sumDO2 = 0; 

sumSeed = 0; 

error = 0; 

 

} 

 

 

 

void pHRead(){ 

pHReading = 0; 

int p = 0; 
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delay(100); 

Wire.requestFrom(3,5); 

 

while(Wire.available()){ 

 

  char c = Wire.read(); 

  pHIncoming[p] = c; 

  p ++; 

} 

 

 

pHReading = atof(&pHIncoming[0]); 

 

 

Serial.println("pH Reading:\t"); 

Serial.println(pHReading); 

 

lcd.setCursor(0,1); 

lcd.print("pH:    "); 

lcd.print(pHReading); 

lcd.print("    "); 

//lcd.print(jj); 

} 
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Code 4: Slave i2C Air Control Uno 

 

//Slave for  AirControl network 

 

/*This slave arduino controls a continuous servo attached 

to a mass flow meter connected to an air line. 

 

The basic principle here is using the master arduino mega 

to take oxygen readings and have this arduino move adjust 

the air flow accordingly 

 

written by: Joseph Donohue 

MESc (candidate) Western University, London, Ontario 

*/ 

 

#include <Wire.h> 

#include <Servo.h> 

 

Servo AirServo; 

 

const int upButton = 5; 

const int downButton = 0; 

 

int uBut = 0; 

int dBut = 0; 

int count = 0; 
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void setup(){ 

  Serial.begin(9600); 

  Wire.begin(1); 

 

  Wire.onRequest(requestEvent); 

  Wire.onReceive(receiveMasterCommand); 

   

  AirServo.attach(9); 

  AirServo.write(90); 

  

  pinMode(13, OUTPUT); 

 

  pinMode(upButton, INPUT); 

  pinMode(downButton, INPUT); 

  

  digitalWrite(13, LOW); 

   

  digitalWrite(upButton, LOW); 

  digitalWrite(downButton, LOW); 

   

   

 

    

    

     

  } 
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void loop(){ 

 

  AirServo.write(90); 

 

  Wire.onReceive(receiveMasterCommand); 

  delay(150); 

 

  uBut = digitalRead(upButton); 

  dBut = digitalRead(downButton); 

 

 

   

  if (uBut == HIGH){ 

     

      AirServo.write(96); // 96 clockwise turn to increase air 

      delay(100); // 100 duration of this action to increase air 

      AirServo.write(90); //stop turning up the air\ 

      delay(100); 

      digitalWrite(8, HIGH); 

      uBut = LOW; 

      count ++; 

      Serial.println(count); 

    } 

    

   if (dBut == HIGH){ 
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      AirServo.write(78); // 78 clockwise turn to decrease air 

      delay(100); // 100 duration of this action to decrease air 

      AirServo.write(90); //stop turning up the air 

      digitalWrite(8, LOW); 

      delay(100); 

      dBut = LOW; 

      count --; 

      Serial.println(count); 

   } 

} 

 

void requestEvent (){ 

 

  Wire.write("Servo Ready"); 

} 

 

void receiveMasterCommand (int howMany){ 

 

  while(Wire.available()){ 

   

    char c = Wire.read(); 

     

    if (c == 'D'){ 

 

      AirServo.write(78); // 78 clockwise turn to decrease air 

      delay(100); // 100 duration of this action to decrease air 

      AirServo.write(90); //stop turning up the air 
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      delay(100); 

      count --; 

      Serial.println(count); 

   } 

 

    else if (c == 'U'){ 

 

      AirServo.write(96); // 96 clockwise turn to increase air 

      delay(100); // 100 duration of this action to increase air 

      AirServo.write(90); //stop turning up the air\ 

      delay(100); 

      count ++; 

      Serial.println(count); 

    } 

} 

 

 

Code 5: Slave i2C pH Circuit 

 

/* 

LAB-SCALE PARTIAL NITRIFICATION FLUIDIZED BIOREACTOR SENSOR NETWORK 

The sensing network is composed of slvae uno with a pH sensor and sends the pH information to 
the master mega for data logging. 

The system also features 3 calibration buttons for easy calibration of pH 4, 7, and 10 

written by:    Joseph Donohue, MESc. Candidate, Western University 

contact:       joseph.p.donohue@gmail.com 

*/ 

#include <SoftwareSerial.h>       
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#include <Wire.h> 

//#include <LCD.h> 

#include <LiquidCrystal_I2C.h> 

 

/*_____________________________________________________________________________
__________________________________ 

                                      pH SENSORS INITILIZATION 

______________________________________________________________________________
_________________________________*/ 

 

 

#define rxD 4                     //define what pin rx downer is going to be. 

#define txD 5                     //define what pin tx downer is going to be. 

 

#define I2C_ADDR    0x27          // Define I2C Address where the PCF8574A is 

#define BACKLIGHT_PIN     3 

#define En_pin  2 

#define Rw_pin  1 

#define Rs_pin  0 

#define D4_pin  4 

#define D5_pin  5 

#define D6_pin  6 

#define D7_pin  7 

LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin); 

 

SoftwareSerial pHserial(rxD, txD);      //define how the soft serial port is going to work for 
downer 

char DpH_data[20];                  //we make a 20 byte character array to hold incoming 
data from the pH.  
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char computerdata[20];             //we make a 20 byte character array to hold incoming 
data from a pc/mac/other.  

byte received_from_computer=0;     //we need to know how many characters have been 
received.                                  

byte received_from_Dsensor=0;       //we need to know how many characters have been 
received. 

byte arduino_only=0;               //if you would like to operate the pH Circuit with the 
Arduino only and not use the serial monitor to send it commands set this to 1. The data will still 
come out on the serial monitor, so you can see it working.   

byte startup=0;                    //used to make sure the Arduino takes over control of 
the pH Circuit properly. 

float ph=0;                        //used to hold a floating point number that is the pH. 

float DdisppH=0; 

byte string_received=0;            //used to identify when we have received a string from 
the pH circuit. 

float testChek = 0; 

 

 

int n = 0;                            //initializing integer for loops 

int count= 0; 

float average = 0; 

 

const int Cal4 = 8; 

const int Cal7 = 9; 

const int Cal10 = 10; 

const int Reset = 11; 

 

int but1 = 0; 

int but2 = 0; 

int but3 = 0; 
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int but4 = 0; 

 

//wire - slave commands & varbs 

 

char p [5]; 

String str; 

 

 

// initializing after arduino code starts running. initializing: variables, pin modes, start using 
libraries  ***function only runs once *** 

 

void setup()  

{                

Serial.begin(9600);  // (baud) sets data rate in bits per second for serial data transmission 

pHserial.begin(9600); 

Wire.begin(3); 

  pinMode(Cal4, INPUT); 

  pinMode(Cal7, INPUT); 

  pinMode(Cal10, INPUT); 

  pinMode(Reset, INPUT);  

  digitalWrite(Cal4, LOW); 

  digitalWrite(Cal7, LOW); 

  digitalWrite(Cal10, LOW); 

  digitalWrite(Reset, LOW); 

 

 

} 
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// consecutive loops of program [respond to new inputs] 

 

void loop(){ 

  but1 = digitalRead(Cal4); 

  but2 = digitalRead(Cal7); 

  but3 = digitalRead(Cal10); 

 

while (but1 != HIGH && but2 != HIGH && but3 != HIGH){ 

/*_____________________________________________________________________________
__________________________________ 

                                      pH SENSOR READINGS 

______________________________________________________________________________
_________________________________*/ 

 

pHserial.listen(); 

if(pHserial.isListening()){        //if we see that the pH Circuit has sent a character. 

     received_from_Dsensor=pHserial.readBytesUntil(13,DpH_data,20); //we read the data 
sent from pH Circuit until we see a <CR>. We also count how many character have been 
received.   

     DpH_data[received_from_Dsensor]=0;  //we add a 0 to the spot in the array just after 
the last character we received. This will stop us from transmitting incorrect data that may have 
been left in the buffer.  

     string_received=1;     //a flag used when the Arduino is controlling the pH Circuit to let 
us know that a complete string has been received. 

 

     DdisppH = atof (DpH_data);     

     } 

 

 

if (DdisppH > 12 || DdisppH < 3){pHserial.listen(); 
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if(pHserial.isListening()){        //if we see that the pH Circuit has sent a character. 

     received_from_Dsensor=pHserial.readBytesUntil(13,DpH_data,20); //we read the data 
sent from pH Circuit until we see a <CR>. We also count how many character have been 
received.   

     DpH_data[received_from_Dsensor]=0;  //we add a 0 to the spot in the array just after 
the last character we received. This will stop us from transmitting incorrect data that may have 
been left in the buffer.  

     string_received=1;     //a flag used when the Arduino is controlling the pH Circuit to let 
us know that a complete string has been received. 

     /* 

     Serial.println(DpH_data); 

     */ 

     DdisppH = atof (DpH_data);     //lets transmit that data received from the pH Circuit to 
the serial monitor. 

     }  

 

lcd.setCursor(0,1); 

lcd.print("pH:  ");           

if(DdisppH>10){ 

lcd.print(DdisppH,2);} 

else{ 

lcd.print(DdisppH,2); 

lcd.print(" ");} 

Serial.println("pH"); 

delay(500); 

Serial.println(DdisppH,2); 

delay(10); 

Wire.onRequest(requestEvent); 

but1 = digitalRead(Cal4); 

but2 = digitalRead(Cal7); 
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but3 = digitalRead(Cal10); 

}   

Serial.println("I'm Entering Calibration Mode"); 

delay(1000); 

cal(); 

}  

 

void cal(){ 

  //Serial.println('Calibration Function'); 

  delay(100); 

  but1 = digitalRead(Cal4); 

  but2 = digitalRead(Cal7); 

  but3 = digitalRead(Cal10); 

  //but4 = digitalRead(Reset); 

   

  if (but1 == HIGH){ 

  cal_4();} 

  else if (but2 == HIGH){ 

    cal_7();} 

  else if (but3 == HIGH){ 

   cal_10();} 

else { 

   Serial.println('Nothing Selected, Please try again'); 

  }  

} 

 

void cal_4(){                       //calibrate to a pH of 4  
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  delay(10); 

  pHserial.print("cal,low,4\r"); 

  Serial.println("Cal 4 fn"); 

  delay(10); 

  pHserial.print("r\r"); 

  delay(10); 

   

  lcd.setCursor(0,1); 

  lcd.print("Cal pH 4"); 

}     

 

void cal_7(){   

//digitalWrite(indicatorLedPin7, HIGH); 

  delay(1000); 

  pHserial.print("cal,mid,7\r"); 

  delay(100); 

  Serial.println("Cal 7 fn"); 

  delay(100); 

  pHserial.print("r\r"); 

  delay(100); 

  lcd.setCursor(0,1); 

  lcd.print("Cal pH 7"); 

} 
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void cal_10(){                      //calibrate to a pH of 10.00 

  //digitalWrite(indicatorLedPin10, HIGH); 

  delay(1000); 

  pHserial.print("cal,high,10\r"); 

  Serial.println("Cal 10 fn"); 

  delay(100); 

  pHserial.print("r\r"); 

  delay(100); 

  lcd.setCursor(0,1); 

  lcd.print("Cal pH 10"); 

} 

 

void requestEvent(){ 

str = String(DdisppH); 

str.toCharArray(p,5); 

Wire.write(p); 

} 
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Appendix D: Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCOD Total chemical oxygen demand 

sCOD Soluble chemical oxygen demand 

TSS Total suspended solid 

VSS Volatile suspended solid 

COD Chemical Oxygen Demand 

BOD5 Biochemical oxygen demand  

HDPE High-density polyethylene  

SRT Sludge retention time 

HRT Hydraulic retention time 

CFBBR Circulating Fluidized-bed Bioreactor 

PNFBR Partial Nitrification Fluidized-bed Bioreactor 

i2C Inter-integrated Circuit 

RTC Real Time Clock 

  

  

  

  

  

  

  

  

  

  

http://en.wikipedia.org/wiki/High-density_polyethylene
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    University of Western Ontario, London, Ontario 
 
2009-2013  Bachelor of Engineering [cum laude], 

Chemical Engineering 
    Laurentian University, Sudbury, Ontario 
 
Awards 
 
2014   Three Minute Thesis Canadian National Competition, 1st Place 
2014   Three Minute Thesis Campus-wide Competition, 1st Place 
2014   Research Bridges, 1st Place, Western University 
2010-2013  Dean’s Honour List for Academic Excellence 
2010-2011  NSERC-USRA for Summer Research 
2009   Entrance Scholarship for Domestic Students 
 
Publications 

Watterson, J. H & Donohue, J.P., Relative Distribution of Ketamine and Norketamine in Skeletal 
Tissues Following Various Periods of Decomposition. Journal of Analytical Toxicology, 2011, 35 (7) 
452 – 458. 

Watterson, J. H, Donohue, J.P. & Betit C.C., Comparison of Relative Distribution of Ketamine and 
Norketamine in Decomposed Skeletal Tissues Following Single and Repeated Exposures. Journal 
of Analytical Toxicology, 2012, 36 (6) 429 – 433. 

 
 
Additional Skills & Interests  

- Fluent in many open-source platforms, including: Arduino, Raspberry Pi, PC-Duino and 
Intel Edison 

- Fluent in many computer-programing languages, including: C, C++, VBA, Maple, Matlab, 
Python and Java 

- Avid photographer 
- Fluent in many computer graphic programs, including: Photoshop, AutoCAD, 3ds Max, 

Final Cut Pro and Illustrator 
 


	Western University
	Scholarship@Western
	September 2015

	Process Control for Biological Nutrient Removal Processes in Fluidized Beds Treating Low Carbon to Nitrogen Municipal Wastewater
	Joseph Donohue
	Recommended Citation


	Abstract
	List of Tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4

	List of Figures
	Chapter 2
	Chapter 3
	Chapter 4

	Introduction
	1.1 Rationale
	1.2 Status and Problem
	1.3 Objective
	1.4 Scope of the Thesis
	1.5 Role in Research
	1.6 References

	Literature Review
	2.1 Organics and Nutrients in Wastewater
	2.1.1 Organics
	2.1.2 Nitrogen
	2.1.3 Environment & Health Impacts of Untreated Municipal Wastewater

	2.2 Nutrient Removal
	2.2.1 Organic Carbon Removal
	2.2.2 Nitrogen Removal: Nitrification
	2.2.3 Nitrogen Removal: Denitrification

	2.3 Conventional Biological Nutrient Removal Reactors
	2.3.1 Suspended Growth
	2.3.2 Activated Sludge Process (w/Enhanced Nitrogen Removal)
	2.3.3 Various Activated Sludge Configurations
	2.3.4 Advantages & Limitations of the Activated Sludge Process
	2.3.5 Attached Growth

	2.4 Low Carbon to Ammonia Concentrations in Wastewater
	2.5 Alternative Microbial Pathway: Anammox Process
	2.5.1 Biochemistry of Anammox Process
	2.5.2 Inhibition of the Anammox Process by Nitrogenous Compounds
	2.5.3 Inhibition of Anammox Process by Carbon and Other Compounds

	2.6 Anammox Bioreactors
	2.6.1 Suspended SBR (DEMON)
	2.6.2. Attached MBBR (ANITA-Mox)
	2.6.3 Granular Anammox Reactor (ANAMMOX)

	2.7 CFBBR Fluidization Technology
	2.7.1 Minimum Fluidization Velocity
	2.7.2 Circulating Fluidized-beds
	2.7.3 Fluidized-beds in Wastewater Biological Nutrient Removal

	2.8 References

	Biological Nutrient Removal in Circulating Fluidized-beds
	3.1 Circulating Fluidized-beds in Wastewater Treatment
	3.2 Aerobic-Downer Bioreactor
	3.3 Anoxic-Riser Bioreactor
	3.3.1 Analytical Methods

	3.4 Mobile CFBBR Unit
	3.4.1 Process Description
	3.4.2 Start-up of Mobile CFBBR System
	3.4.3 Operation of Mobile CFBBR System
	3.4.4 Nitrate Make-up and Connection of the Aerobic-Anoxic Recycle Line
	3.4.5 Nitrate Make-up and Connection of the Aerobic-Anoxic Recycle Line
	3.4.6 No Visible Way to Measure Media Fluidization
	3.4.7 Feed Short-Circuiting
	3.4.8 Conclusion

	3.5 Pilot-scale CFBBR Reactor
	3.5.1 Process Description
	3.5.2 Influent Wastewater Characteristics
	3.5.3 System Start-up
	3.5.4 Operational Phase 1
	3.5.5 Operational Phase 2
	3.5.6 Conclusion

	3.6 References

	Online Monitoring and Control of Biological Nutrient Removal Processes in Fluidized-beds
	4.1 Automation of Wastewater Treatment Plants
	4.4.1 Dissolved Oxygen Sensors:
	4.1.2 Conventional Control Hardware Used in BNR Systems
	4.1.3 Open Source Hardware

	4.2 Objective of Work
	4.3 Online Monitoring System in the Pilot CFBBR
	4.3.1 Operation of Pilot CFBBR System
	4.3.2 Sensor Network in Pilot CFBBR System
	4.3.3 Oxygen Sensor Code
	4.3.4 Oxygen Sensor Calibration
	4.3.5 Oxygen Sensor Readings
	4.3.6 pH Sensor Code
	4.3.7 pH Sensor Code
	4.3.8 Data Logging Using Python Program on Raspberry Pi

	4.4 Modifications to Oxygen and pH Sensors
	4.4.1 Noisy Sensor Readings
	4.4.2 Software Adjustments to Mitigate Sensor Noise
	4.4.3 Hardware Adjustments to Mitigate Sensor Noise
	4.4.4 Poor User Experience of System

	4.5 Online Monitoring and Control System in Lab-scale Partial Nitrification Fluidized-bed BioReactor (PNFBR)
	4.5.1 Partial Nitrification Process Description
	4.5.2 Sensor Network in PNFBR System
	4.5.3 Master Arduino – Arduino Mega
	4.5.4 Sensor Feedback and Proportional-Only Control
	4.5.5 Constructing i2C Hierarchy
	4.5.6 Data Display and Sensor Recording
	4.5.7 Slave Arduino Uno – pH Circuit
	4.5.7 Slave Arduino Uno – pH Circuit

	4.6 PNFBR Performance and Online Measurements and Control
	4.6.1 PNFBR Nitrogen Conversion at Different Nitrogen Loading Rates
	4.6.2 Results of Online pH Sensor
	4.6.3 Results of DO Control

	4.7 Conclusion
	4.8 Recommendations
	4.7.1 Remote Access of Online System
	4.7.2 Sensor Reading Using Statistical Methods
	4.7.3 Process Control

	4.9 References
	5.1 Summary and Conclusions
	5.1.1 Mobile CFBBR Unit
	5.1.2 Pilot CFBBR Unit
	5.1.3 PNFBR Control System

	5.2 Recommendations
	5.2.1 Mobile CFBBR Unit
	5.2.2 Pilot CFBBR Unit
	5.2.3 PNFBR Control System


	Appendix A
	Activated Sludge Process with and without Nitrification
	Coded in VBA and Simulated in Excel:
	VBA Macro Code:

	Appendix B
	PNFBR Sensor Network Cost

	Appendix C
	Arduino & Python Codes Used in Sensor Networks

	Appendix D: Nomenclature
	Appendix E: Joseph Donohue CV

