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Abstract 

Current methods of accurate soft tissue injections in small animals are prone to many 

sources of error. Although efforts have been made to improve the accuracy of needle deliveries, 

none of the efforts have provided accurate soft tissue references. An MR image-guided robot was 

designed to function inside the bore of a 9.4T MR scanner to accurately deliver needles to locations 

within the mouse brain. The robot was designed to have no noticeable negative effects on the image 

quality and was localized in the MR images through the use of an MR image visible fiducial. The 

robot was mechanically calibrated and subsequently validated in an image-guided phantom 

experiment, where the mean needle targeting accuracy and needle trajectory accuracy were 

calculated to be 178 ± 54µm and 0.27 ± 0.65º, respectively. Finally, the device successfully 

demonstrated an image-guided needle targeting procedure in situ. 

Key Words 

image-guided intervention, medical robotics, needle delivery, ultra-high field strength magnetic 

resonance imaging, in-bore, preclinical, minimally invasive 
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Chapter 1 

1  Introduction  
1.1  Preclinical Studies 

Preclinical testing and validation is an essential step in the development of new and 

improved medical treatments. Products ranging from pharmaceutics to surgical devices must 

endure demanding pre-clinical testing to prove their validity for human trials. According to the 

World Health Organization, the global pharmaceutical market value is $300 billion per year and is 

continuously rising, with companies investing two-thirds of their revenue on research and 

development. Mice account for over 60% of the animals used for experimental purposes in the 

European Union (EU) in 20111. Assuming that the proportions of animal classes are similar 

between the EU and the United States of America (USA), there are at least 8.6 million mice used 

for experimental purposes annually in the USA alone2. Mice are an ideal testing model since their 

genetic and biological characteristics are similar to humans, but also because they are inexpensive 

to purchase, feed and house, and require little space to store.  

Genetically modified mice have played an extensive role in preclinical research of human 

diseases since 75% of mice genes are orthologous in humans and can be genetically engineered to 

carry genes to model human diseases3. The two most common genetically modified mice are 

knockout mice and transgenic mice. Knockout mice are engineered by deactivating specific genes, 

while transgenic mice have specific genes replaced with another gene to characterize the effects of 

the specific genes on preclinical experiments. Knockout and transgenic mice are used in the 

research of virtually every disease, such as a variety of cancers4,5, and neurodegenerative diseases 

such as Alzheimer’s disease (AD)6,7 and amyotrophic lateral sclerosis (ALS)6,8, to name a few. 
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Mice in the pharmaceutical market are a prime patient model for determining the market 

readiness of a drug. Preclinical drug toxicology experimentation in mice is generally conducted 

over a 6-12 month period to determine long-term toxicology effects, while a lifetime exposure 

study in mice provides the carcinogenic effects of the drug9. Drugs that were successful in treating 

knockout mice were correlated to selling well in the market10. Although knockout and transgenic 

mice are invaluable to the development of disease and disorder treatment, they cost up to a thousand 

times more than standard lab mice. 

1.2  Preclinical Medical Imaging 

The field of preclinical medical imaging plays a significant role in the quantification of 

preclinical study results, and has nurtured the development of new fields of preclinical imaging 

research. The development of new and improved imaging modalities benefits both the medical 

industry with advanced imaging technologies for diagnosis while benefitting the preclinical 

industry with high-quality research tools. The most common non-invasive small animal imaging 

modalities are high-frequency ultrasound (HFU), micro-computed tomography (micro-CT) and 

magnetic resonance imaging (MRI), while there is also research interest in micro-photoacoustic 

tomography (micro-PAT), micro-positron emission tomography (micro-PET) and micro-single 

photon emission computer tomography (micro-SPECT). 

The current generation of high-frequency ultrasound scanners are compact, ergonomic and 

capable of real-time high resolution 2D imaging at up to 400 frames per second11, and can be 

equipped with 3D array probes, making HFU a versatile tool for small animal researchers. While 

most imaging modalities, such as micro-CT and MRI, are not portable, ultrasound machines are 

portable and the transducers are easily manipulated by the user, facilitating the acquisition of 

images. This is especially useful when performing manual percutaneous interventions. HFU 

scanners are relatively inexpensive compared to other imaging modalities, and therefore more 
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accessible to researchers. The disadvantages of ultrasound imaging in general is the inability to 

image through bone and gases (air in the lungs), vulnerability to a wide variety of image artifacts 

and poor contrast resolution, while HFU, more specifically, is limited to shallow penetration depths. 

For example, a frequency of 50MHz can achieve an imaging resolution in the axial and lateral 

directions of 20µm and 100µm respectively; however, the maximum penetration depth at that 

resolution would be about 8-9mm12. 

The development of micro-CT scanners has yielded amazing benefits for preclinical 

imaging, with applications in orthopedic and vascular research. Current small animal micro-CT 

scanners possess 3D imaging capabilities at an isotropic voxel size of 150µm withinn a matter of 

seconds13. The desired imaging resolution directly increases the scan time, and since more X-rays 

projections are required to form the image, radiation exposure is higher in longer scans. Long scans 

are therefore commonly used for specimen imaging and can achieve an isotropic voxel size of 

30µm using geometric magnification14. Micro-CT image contrast is dependent on the attenuation 

of X-rays, which requires imaging samples to be electron dense or have high atomic number 

elements; therefore, micro-CT imaging is better suited for preclinical orthopedic imaging research. 

Although inherent soft tissue contrast resolution in micro-CT is poor, contrast aided imaging of 

vascular structures is an effective technique to visualize the cardiovascular system, especially tumor 

vasculature. 

Magnetic resonance imaging (MRI) has emerged as a powerful diagnostic tool and has 

been continuously improved since its inception. The chief benefit of MRI is the capability of high-

resolution 3D imaging with high-soft tissue contrast. These imaging capabilities are beneficial to 

preclinical neuroimaging research since the living brain can be studied in more detail than ever 

before, which opens the opportunity for new studies to produce new information on mechanisms 

in healthy, disease and disordered brains. Current research aims at improving image quality and 

overall patient care by developing new techniques for a variety of applications to more accurately 



4 

 

quantify MR image data. The development of ultra-high magnetic field strength superconducting 

magnets has led to increases in sensitivity, contrast, and imaging resolution, which facilitate the 

improvement and development of imaging techniques, such as high resolution imaging15, perfusion 

and functional imaging (fMRI)15,16 and spectroscopy15. These MR imaging techniques are key in 

observing and analyzing the development and treatment of animal models with brain diseases; for 

example neurodegenerative diseases like AD and ALS. 

1.3  Preclinical Interventions 

Preclinical interventions are an essential part of preclinical testing for new medical 

technologies, as it is often the first time that these technologies are tested in in vivo subjects. The 

complexity of preclinical interventions ranges from relatively simple tail vein injection, to complex 

mouse hip replacements and lung transplants17. This dissertation will focus on local needle 

interventions in mice. 

1.3.1 Minimally Invasive Interventions 

Many common interventional procedures in humans typically requiring surgical exposure 

have been redesigned for minimal invasiveness through surgical planning techniques and tools; 

such as laparoscopic appendectomy, nephrectomy, hearth valve replacements. The fundamental 

ideology behind minimally invasive interventions is that less trauma during surgery results in faster 

healing and lower risk of morbidity18,19. The same is true in preclinical models, such as mice. Many 

research techniques require invasive surgical exposure of the injection site in order to perform local 

injections of drugs or cells in specific organs or tumors. This highly invasive surgical procedure 

induces trauma in the mouse resulting in pain and distress, and in turn result in the impact of 

uncontrolled factors in the study, such as morbidity and mortality20,21. The high dependency on the 

preclinical surgeon for unaided manual injection accuracy adds to the potential for human error in 

the study. Since the goal of preclinical studies is a controlled and repetitive mouse model, the 
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induction of trauma on a test subject is an undesired dependent variable, as the trauma is a result of 

conducting the experiment and not a part of the mechanism under study. 

Stereotaxy is a widely used technique for guiding brain interventions in both humans and 

animals. Stereotactic interventions are limited to intracranial procedures since the target 

coordinates are derived from skull geometries paired with mouse brain atlas coordinates. Although 

stereotaxic instruments can deliver mechanical positioning accuracies anywhere from 100µm to 

1µm, the relevant accuracy is dependent on the quality of the reference atlas. As discussed in 

Section 1.1, genetically modified mice have proven to be a vital tool in preclinical research; 

however, the wide variety of strains have a wide variety of neuroanatomical differences, including 

brain proportions, which in-turn decreases considerably the stereotaxic accuracy22–24.  With 

neuroanatomical proportion differences and scaling functions based on mouse size, it is difficult to 

determine accuracy of stereotaxic targeting25. Other limitations of mouse brain atlases include lack 

of detailed neonatal atlases, the potential for inaccuracy during tissue sectioning and fixation of 

brain pathology slices, and the limited number of slice orientations available, which increases the 

difficulty of designing oblique needle paths to avoid damaging sensitive neuroanatomical 

structures25. Recently, pre-operative MR and micro-CT images have been combined with pathology 

slices to create more accurate reference atlases26.  

Pre-operative images are often used as reference for planning minimally invasive 

interventions in humans. A common example in humans is the use of pre-operative MR and CT 

images for stereotactic brain surgery, with intraoperative fluoroscopic imaging. The images are 

used to safely plan the optimal path through the brain to reach the target, as opposed to relying on 

the outdated method of using brain atlases, which are based off approximate anatomical locations 

and are not patient specific.  
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1.3.2 Intraoperative Image-Guided Preclinical 

Interventions 

Non-invasive intraoperative image-guidance is a fundamental tool that has enabled the 

success of minimally invasive surgeries. The numerous benefits of minimally invasive surgeries 

include eliminating the need for surgical exposure of the target, reducing the risk of morbidity, as 

well as the length of recovery, and in turn decreasing hospital costs. Visualization through 

intraoperative image-guidance of the target and surrounding anatomy allows surgeons to ensure 

surgical accuracy through immediate image verification. After the patient is closed, post-operative 

imaging of a surgical site is performed to verify that the surgery was successful. In some cases, the 

images determine that the surgery was not completely successful and the patient requires a second 

intervention. The capability of postoperative, pre-closing, imaging of the surgical target allows the 

surgeon to ensure the procedure was successful during the surgery, reducing the likelihood of 

another surgery. Ultrasound is arguably the most commonly used non-invasive imaging modality 

for interventional image-guidance since ultrasound systems are relatively inexpensive compared to 

a micro CT or MR scanner.  

Free-hand ultrasound guided injections are often performed in mice since it is convenient 

to hold the ultrasound probe in one hand and insert needle with other hand while using the US 

image as real-time position reference21,27. Micro-CT and MR image-guided preclinical 

interventions are more challenging than ultrasound guided procedures due to spatial constraints of 

the imaging modalities. Although the imaging field of view (FoV) is accessible by hand in some 

micro-CT scanners, the user cannot insert a needle under image-guidance due to ionizing radiation 

exposure, hence micro-CT scanners are often equipped with a lead shielded housing. The FoV in 

the preclinical MR scanners is practically inaccessible since it can be located up to a meter into the 

MR scanner’s bore, and the gradient inserts for mouse imaging have a bore diameter from 90mm28 

to 120mm (9.4T MR scanner at Robarts Research Institute). For  human applications, intraoperative 
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MRI (iMRI) scanners were developed to allow neurosurgeons direct access to the patient’s head29. 

The first iMRI systems, like the open “double doughnut” magnet system used a low main magnetic 

field strength, limiting the imaging resolution but allowed surgeon access to the patient from above 

and from the sides29. Although the ‘double doughnut’ MR scanner design would accommodate the 

presence of a preclinical surgeon for MR image-guided interventions, the scanner’s low magnetic 

field design would be incapable of high-resolution imaging, along with other imaging features. 

Even if it were possible to perform a manual MR image-guided injection in small animals, some 

sort of alignment/stereotactic mechanism would be required since the target is so small, and the 

10µm needle tip diameter is extremely fragile and could unintentionally break off in the mouse 

with minimal torque applied to the needle while inserted. 

Overall, the current line of high-resolution imaging modalities cannot be modified for 

manual image-guided interventions without consequence. The spatial constraints and presence of 

ionizing radiation in micro-CT hinders the potential for manual interventions with intraoperative 

image-guidance, while the redesign of preclinical MR scanners to better accommodate image-

guided interventions would undo the technological advancements towards ultra-high magnetic field 

strength imaging. Therefore, image guided interventions using micro-CT or MRI require an 

alternative solution, such as robotic interventions. 

1.3.3 Intraoperative Image-Guided Preclinical Robotic 

Interventions 

It is clear that the development and use of robotics has transformed many industries, a 

prime example being the manufacturing industry. Robots are reliable, accurate, low maintenance 

and can generally perform the same tasks as trained workers more efficiently, without a loss in 

quality. Fatigue and working conditions are not of concern to robots as the electric motors actuating 

the robots can run for thousands of hours. The design of a robot can be tailored to a specific task or 
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procedure. Surgical robots are especially suitable for minimally invasive image-guided 

interventions since the size of the end-effector and end-effector manipulator can be minimized, 

resulting in less crowded surgical area and a more dexterous end-effector. Depending on the 

application, the dexterity of the end-effector manipulator’s design could incorporate more or fewer 

DoFs and range of motion than a surgeon is capable of providing. 

Image-guided robotics not only boast benefits of image-guidance and minimally invasive 

interventions, robotic devices also reduce the intervention’s sensitivity to human error. Hospital 

error during surgical procedures in the operating room accounts for between 40-50% of all reported 

cases30. To reduce the potential for human error, the neuroArm MR image-guided robotic surgical 

device used for human brain surgeries employs the use of software to create “no go zones”.  These 

zones delineated in the MR images as delicate areas of the brain, causing the software to prevent 

the motors from moving the robot’s arms to those positions31. Robotic surgical devices can be 

designed with extremely fine position encoding, resulting in finer end-effector motion than is 

capable by a skilled surgeon32. As discussed in Section 1.3.2, image-guided interventions increase 

surgical accuracy, therefore, the combination of these two image-guidance and robotic surgical tool 

manipulation ought to considerably improve surgical accuracy, and greatly benefit the overall 

clinical outcome.  

Preclinical research has already been impacted by the use of image-guided robotics used 

for HFU and micro-CT image-guided needle deliveries in mice13,33,34. A robotically manipulated 

linkage with motorized needle insertion was designed and validated for HFU image-guided needle 

delivery and a needle positioning accuracy of <100µm and a total registration accuracy (TRE) of 

145µm under HFU guidance35. This same device was adapted to perform out-of-bore intraoperative 

image-guided injections, since the robot is too large to fit inside the micro-CT scanner bore and the 

mouse is unable to be imaged during the needle delivery procedure. The micro-CT version achieved 
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a stated TRE of 198 ± 18µm35. The most advanced version of a micro-CT image-guided robot used 

a six DoF  robot  to perform in-bore needle insertions into mice with an accuracy of 149 ± 41µm13.  

As discussed in Section 1.2, micro-CT imaging has unique advantages in terms of fast, 

high-resolution, imaging; however, there are many benefits of non-invasive medical imaging with 

high-soft tissue contrast for experimental validation. Preclinical ultra-high field strength MR 

scanners also boast many unique imaging techniques, in part due to the high-spatial resolution. The 

MR image-guided human surgical robotics field has had numerous efforts to develop MR image-

guided surgical robotic tools to improve on a variety of surgical procedures ranging from prostate 

ablation36 to stereotactic based glioma resection32. The field of image-guided robotic interventions 

for micro-CT scanners has had many more developments than the field of preclinical MRI, with 

only a few published efforts. E. Wilson et al. developed an out-of-bore, 3 linear DoF, 7T MR image-

guided robotic device to perform brain biopsies in mice with a targeting accuracy of 1mm37.  

 Penetration of the blood brain barrier (BBB) is the sole natural transport path between the 

systemic blood flow and the cerebrospinal fluid (CSF). The BBB is formed by brain endothelial 

cells that filter out certain substances while carrying blood to the cerebrospinal tissue. For over a 

decade, studies have proven that the use of focused ultrasound (FUS) applied to blood flow 

immersed with microbubbles can disrupt the BBB and temporarily allow the passage of larger 

molecules38. Studies have determined the appropriate frequency and pulse pattern, in conjunction 

with ultrasound microbubble-contrast agent, to allow larger molecules to pass the BBB with 

negligible side effects. This principle led to the development of an MR image-guided FUS device 

for BBB disruption in rodent brain models where an MR compatible FUS probe is controlled to 

emit the FUS pulses to a specific area of the brain.  
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1.4 Drawbacks of Current Preclinical 

Robotic Systems 

Considering the development of the field of preclinical medical imaging, there have been 

relatively few attempts to develop an MR image-guided robot for preclinical needle delivery. As 

medical imaging technology and quality improve, researchers will require devices with higher 

accuracy to perform interventions in small animals. This effect has been observed in human 

surgeries with the MR image-guided stereotactic neurosurgical robot, neuroArm. Preclinical 

researchers perform a wide variety of injections on small animals as part of preclinical testing of 

drugs and disease treatments, many of which are performed in soft tissues, which are optimally 

imaged by MRI.  

The HFU image-guided robot discussed in Section 1.3.3 provides many advantages to 

minimally invasive needle insertion since HFU machines are readily available, easy to use and 

impose minimal spatial constraints.  Limitations of these systems lie mainly in the nature of the 

imaging modalities’ inability to provide high-contrast resolution and shallow scan depth of <1cm 

at high frequencies. In certain applications, such as intracranial injections, the HFU transducer 

requires space on the mouse’s head, limiting the insertion site area and trajectory possibilities 

during needle insertion. The in-bore micro-CT image-guided robot developed by Bax et al achieved 

high functionality and robustness for needle delivery. A limitation of this device is that it is 

equipped with a metal needle, which can cause CT image artifacts, hence reducing the quality of 

the images acquired with the inserted needle. As with the HFU robot, the main limitation of this 

system is the inability to visualize soft tissues throughout the procedures, which is useful for target 

selection, needle tip targeting verification and the ability to perform MRI specific imaging 

techniques. This micro-CT image-guided robotic device is also considerably larger than the 

preclinical MR scanner bore and is not MR compatible in terms of materials and electronics.  
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The out-of-bore MR image-guided robot developed my Emmanuel et al was intended for 

tissue biopsy, and has a very low mean targeting accuracy of approximately 1/5th of what is 

considered acceptable for performing biopsies on specific regions of the brain using high resolution 

image guidance of structures including small tumors39. Another limitation of this device is its 

inability to perform the biopsy inside the MR scanner bore where it would be able to image the 

inserted needle and discern whether the needle tip is at the tumor site. This device is also limited to 

vertical needle trajectories, implying that a new burr hole is required for every new biopsy, unless 

the target is close to the initial biopsy needle axis. The linearly constrained needle trajectory inhibits 

the angulation of the needle, which is useful when avoiding sensitive areas of the brain25. This 

device employs a combination of image and mechanical registration, in which a point selected in 

the MR images defines the origin of the MR coordinate system while relying on mechanical 

alignment of the coordinate system axes. The simplicity of this registration method most likely is 

reflected in the device’s low targeting accuracy, especially considering that this device has a 

relatively simple design, incorporating the positioning error of only three linear DoFs, as opposed 

to other devices with upwards of six DoFs (including rotational DoFs).  

As previously discussed, the FUS BBB disruption device for preclinical MR image-

guidance shows promising results as a minimally invasive method of allowing high molecular 

weight molecules to pass through the BBB to regions of the brain. The major benefit of this 

procedure is that it is non-invasive, requiring simply a caudal vein injection of ultrasound contrast 

microbubbles accompanied by the agent that is intended to cross the BBB, virtually eliminating the 

impact of trauma on the experimental rodent model. This technology has a promising future but is 

currently lacking some fundamental capabilities. This device uses a focused ultrasound beam, 

which has a full width at half maximum impact volume of 1.2 × 1.2 × 6.6 ± 0.1mm³, meaning that 

injected agent is able to disperse into many regions of the brain28. The robotic positioning accuracy 

of 0.5mm means that the impact volume could miss up to almost 50% of the intended target volume. 
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A substantial amount of drugs, cells or other agents needs to be systemically injected to treat 

neurological diseases and disorders since most of the injected material is removed by the renal 

system, resulting in a suboptimal concentration of the material in the CSF; local injection assures 

the delivery of therapeutic material at a regulated concentration40. There is an increase in the 

vulnerability of the brain to unwelcome material since there is no specific mechanism that selects 

what can, or cannot, pass through the BBB using this technique, leading to potential misinterpreted 

experimental results, or other more serious effects on the small animal. The applications of this 

technique are also limited to brain therapies. For this technology to transfer into humans at its 

current state of development, the patient requires a partial craniotomy since ultrasound does not 

transmit well through the human skull, unlike thin mouse skulls. 

1.5  Magnetic Resonance Imaging 

The most important advantage that MRI possesses over CT imaging is safety. CT scanners 

are incapable of being completely harmless since the inherent imaging property involves the use of 

ionizing radiation. Therefore, patient safety in the use of CT imaging involves decreasing the 

radiation dose per scan. The major drawback of MR imaging is due to the long scan times. Over 

time, technological advances may permit the development of highly sensitive antennas, requiring 

fewer averages and therefore faster scans.  

Although many metal implants are non-ferromagnetic, such as dental implants, hip and 

knee replacements and electronic implants like pacemaker and cochlear implants, they still pose 

imaging artifact issues41,42. MRI sequence improvements have aided in reducing artifacts caused 

by scanning patients with metal implants, but this issue is not completely solved43,44. With perpetual 

improvements of MRI over the past few decades, across various applications, it is evident that is 

still untapped potential. 
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1.6  Preclinical Applications  

An ultra-high field strength MR image-guided robot would serve as a useful tool to overcome 

preclinical needle targeting errors in soft tissues. An example of a preclinical procedure requiring 

the use of accurate MR image-guided needle delivery robot is in the study of cerebral vasospasm 

in subarachnoid hemorrhage. Controlled vasospasms can be induced by performing autologous 

blood injections into the cisterna magna to help identify and mechanisms contributing to vascular 

pathology linked with subarachnoid hemorrhage. Current methods require the dissection of the 

occipital muscles from the occipital bone to expose the atlanto-occipital membrane, which is then 

punctured by a needle to inject the autologous blood at the cisterna magna45,46. These injection are 

technically demanding and laborious, and also induce trauma on the mice46. An MR image-guided 

robotic device should serve to remove the tedious surgical process and provide high targeting 

accuracy. Alternatively, while current methods evaluate pathology slices 24 hours after the 

procedure, performing the procedure under MR image-guidance would provide the researcher with 

various vascular imaging techniques which could help quantify the injection, as well as the 

immediate effects of the study46. 

There are currently preclinical research experiments that require high needle targeting 

accuracies than the conventional stereotactic methods. A study currently being performed by a 

group in our brain research lab involves the use of stereotactic injections into a specific area of the 

hippocampus. The stereotactic arrangement’s accuracy is not high enough to perform accurate and 

repeatable injections, and therefore, the majority of the injections are not being performed at the 

desired target. This is an ideal case where an MR image-guided robotic device would serve to 

enhance the needle targeting accuracy for a preclinical study. 

Another preclinical application for an MR image-guided needle delivery device involves 

monitoring the interstitial fluid pressure in mouse tumor using the wick-in-needle technique, as 
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preformed using the micro-CT compatible device developed by Bax et al13. However, since micro-

CT has low soft tissue contrast, the tumors require contrast to visualize the target tumor, unlike 

MRI, since it has superior soft tissue contrast. 

1.7  Preclinical Robot Workflow 

1.7.1 Preclinical Image-Guided Robot Design 

Unlike conventional surgeries where the surgeon uses ergonomic, handheld, tools to 

enhance their dexterity and range of motion, medical robots are generally purpose built, allowing 

developers to create custom robotic designs, catering to the specific surgeries. A common feature 

among surgical robotic design is the use of a remote center of motion (RCM), which uses a 

mechanical linkage to pivot an end-effector about a fixed point in space called the “fulcrum”. 

Mechanically, the fulcrum is the point in space where the axes of the four arm links coincide (see 

illustration in Fig. 3(a) in Section 2.2.1.2). Depending on the robotic application, the design of the 

RCM device can be active or passive. Thus, a controlled RCM can be induced through software so 

that the robot’s arms pivot the end-effector about the RCM (active), or by using a mechanical 

linkage design that inherently pivots about an RCM (passive). In surgical applications, the active 

RCM of the end-effector that enters the patient’s body can be located at its entry point into the 

body, actively ensuring that the motion of the robotic arms and end-effector does not move relative 

to the surgical entry point, therefore minimizing the surgical entry incision and hence patient 

trauma. This principle was similarly applied in the development of the preclinical micro-CT image-

guided device by Waspe et al which used a passive RCM linkage with a position controlled needle 

driver47. A passive RCM linkage is calibrated so that the needle trajectory passes through the RCM; 

however, error is introduced by inserting the needle passed through the calibrated RCM since the 

needle angle error begins contributing to the targeting accuracy of the procedure. 
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A key detail that defines the image-guided device is whether it is an in-bore or out-of-bore 

device and how the device will be positioned relative to the scanner during the procedure. Most 

micro-CT scanners have a motorized animal “couch” used to insert and retract the small animal 

from the micro-CT scanner’s bore. The “couch” is an ideal mechanism for the robotic integration 

as it allows for easy pre-interventional setup and also accommodates the design of a robot where 

the entire device does not need to fit inside the imaging bore. Preclinical MR scanners generally 

have a gradient coil bore diameter of <120mm with the imaging FoV located up to 1 meter into the 

bore, whereas the micro-CT FoV begins only a few centimeters into the bore. With the FoV at a 

much further distance into the bore of preclinical MR scanners compared to micro-CT scanners, it 

is not ideal to use an out-of-bore based MR image-guided robot since it would require the end-

effector to be mounted on the end of a long arm to reach the FoV. Such a long arm would likely 

introduce error in the targeting accuracy and require a substantial amount of power to manipulate 

if it were unsupported. Unlike human MR scanners, preclinical MR scanners do not have a 

motorized patient bed, which raises particular difficulties regarding device integration. The imaging 

bores in micro-CT and preclinical MR scanners are spatially limited and become more limited with 

the introduction of a robotic manipulator. The current hand-held preclinical surgical tools are 

intended to be held by human hands, and they are therefore designed to be relatively large in order 

to accommodate the natural dexterity of the surgeon. It is likely necessary to redesign the end-

effectors to conform with the spatial requirements of the image-guided robotic device, in terms of 

shrinking and eliminating features that only benefit human use. 

It is vital that an image-guided robotic device has limited effect on the modality’s image 

quality. If the device is intended for real-time image guidance (in-bore device), then the materials 

present in the imaging FoV cannot have an effect on the image quality, such as image artifacts 

introduced by imaging metal components in ultrasound, micro-CT and MRI. Apart from designing 

a robot that can physically fit inside the bore of a micro-CT scanner and prevent robot induced 
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image artifacts, there are no major factors that can affect micro-CT image-guided procedures. The 

design of in-bore MR image-guided devices have to overcome additional constraints.  

Conventional electric motors like DC stepper motors, cannot be used in the magnetic 

environment since they operate based on induced magnetic fields. This has led engineers to test 

alternative actuation methods for MR compatible robots for human procedures, including 

pneumatic, hydraulic and piezoelectric stepper motors, leading to successful results48–52. Although 

components for pneumatic and hydraulic actuation can be made from MR compatible materials and 

can exert large forces, their positional accuracy is too low, >1 mm, for preclinical applications 

requiring micron accuracy48,50. Piezoelectric motors are much more compact than pneumatic or 

hydraulic actuators and are capable of sub-nanometer step resolution. Unlike DC stepper motors, 

piezoelectric stepper motors use piezoelectric ceramic element resonance to microscopically step 

the motor’s output shaft. These motors come in compact linear and rotary configurations, are 

backlash free, and have an intrinsic holding force equal to the maximum output force, even while 

the motors are not powered. The piezoelectric motors are predominantly composed of metal and 

hence need to be kept at a certain distance away from the MR scanner’s FoV in order to prevent 

magnetic field distortion, resulting in image distortion and therefore position localization error. 

Device electronics can be sensitive to radio-frequency pulses emitted by the MR scanner 

and need to be properly shielded to prevent the induction of noise in the motor and encoder signals. 

Another important electronic design consideration is the effect of the signal from the system 

electronics on the MRI system, which uses radiofrequency (RF) emissions from the imaged sample 

for spatial encoding. Most clinical research MR scanners have low-pass filters built into the wall 

between the control room and the MR suite to filter outside RF signals from the device electronics, 

which could interfere with the resonance frequency of the MR scanner.  
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1.7.2 Mechanical Calibration 

Proper calibration of any robotic device is an important step to ensure its accuracy and 

repeatability. The method of calibration is dependent on the robot design. Many surgical robot 

designs employ the use of a passive RCM linkage, where the end-effector (in this case a needle) 

pivots about the spherical linkage’s RCM. Since the end-effector pivots about the RCM, this 

linkage design decouples the motion of the linkage arms from the positional accuracy of the needle. 

Thus, in a properly calibrated passive spherical linkage, the needle tip position does not change, 

regardless of the change in position of the needle arms.  

A common method of calibration used in the development of some RCM based micro-CT 

image-guided needle delivery robots involves the use of a camera to photograph the needle through 

a set of predetermined positions in two perpendicular planes, repeated along each of the rotational 

axes. Needle axis and tip segmentation performed on the images determines the needle targeting 

error and in-plane needle angle error. This calibration method is relatively simple but only 

applicable if the end-effector is located in front of the device and the camera’s viewing angle is 

unobstructed by other parts of the device53.  

An alternative method of mechanical calibration involves the use of a coordinate measuring 

machine (CMM), which uses a highly accurate mechanical probe to measure physical geometry. 

These machines are often used to measure machined parts as a method of quality control but can 

also be used to calibrate mechanical devices by adding temporary tooling balls to the end-effector54. 

The position of the tooling ball centroids, and hence the end-effector, are measured by the probe 

over a number of positions and compared to the kinematic predictions. 

1.7.3 Robot Registration 

Registration referrers to the transformation of a point in one coordinate system into another. 

For image-guided interventions, in order to use an imaging modality as reference to guide a robotic 
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medical device, the relative positions of the imaging system and the robotic device must be known. 

Depending on the physical features of the imaging modality, a mechanical or image registration 

method can be implemented to localize the robot relative to the image coordinates. Ideally, image 

guided robotic devices would be mechanically fixed/coupled with the imaging modality, allowing 

the immediate commencement of the procedure. Mechanical registration can be difficult to develop 

since there can be bed reattachment errors and most clinical scanners are not designed to 

accommodate image guided robotic devices34. Image based device registration is often performed 

by identifying the position of known fiducial geometries of the robot in images, and relating those 

positions to the imaging modality’s coordinate system.  

The fiducial selection should be done carefully since the localization of the fiducial in the 

images directly relates to the overall accuracy of the device. The device’s coordinate system can 

be defined by a minimum of three fiducial points from the images. Since micro-CT images are 

formed through X-ray attenuation, a fiducial can be made from radio-opaque material for high 

fiducial contrast. In micro-CT, this simply requires one 3D image acquisition of the fiducial located 

at a known position on the device. The quantification of consistent geometric accuracy of a micro-

CT scanner used for position localization is also important due to inter-scanner variability.  

Fiducial localization in MR is more complex since position localization is dependent on 

the magnetic field homogeneity, which is sensitive to the introduction of foreign materials in the 

magnetic field, and therefore variable. A study performed by Cepek et al compared the effects of 

geometric distortion of the static magnetic field on the fiducial localization error of three passive 

fiducial designs55. This study concludes that the use of a “cross shaped” fiducial composed of water, 

for higher contrast, can be imaged so that fiducial localization is insensitive to both slice select and 

in-plane error. This method requires image sets of the fiducial acquired in two perpendicular planes 

with one of the axes oriented perpendicularly to the slice select planes. These two image sets need 

to be re-acquired but with the frequency encoding directions swapped in order to eliminate the in-
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plane error due to magnetic field inhomogeneities. The “cross-fiducial” registration method is ideal 

since it has a simple fiducial design with a robust localization technique. The drawback of this 

registration, and MRI in general, is that MR images take a long time to acquire compared to micro-

CT images. For example, a 3D image of an entire mouse with an isotropic voxel size ~150 µm can 

be acquired in ~16 seconds with a GE eXplore micro-CT scanner, while a 3D image with an 

isotropic voxel size of 150 µm of only a mouse brain requires a 30 minute acquisition with a 9.4T 

Agilent preclinical MR scanner13. Therefore, a quick method of device registration would be 

beneficial to the integration of MR image-guided devices into preclinical and clinical settings. 

1.8  Technical Objectives 

The objective of this research is to advance the quality of preclinical needle deliveries in 

soft tissue by providing a reliable and accurate robotic tool, guided by ultra-high field strength MR 

images. The device must be able to deliver needles to the targets throughout the volume of the 

mouse brain, at a mean targeting of <200µm in order to accurately target the smallest clinically 

relevant pathologies, and angulate the needle with a mean trajectory accuracy of <1º to avoid 

sensitive structures. The entire device must be small enough to be placed inside the MR scanner’s 

bore and its mechanical and electrical components must have a limited effect on the geometric 

accuracy and quality of the MR images. The device must be user friendly and make the procedure 

more efficient than the current manual methods. Proof-of-concept must be validated through device 

to MR registration, characterization of positioning errors and to demonstrate capabilities in 

phantom and in-situ experiments. 
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1.9  Outline of Thesis  

1.9.1 Chapter 2: The Design of an Ultra-High Field 

Strength MR Image-Guided Robotic Needle 

Delivery Device for In-Bore Small Animal 

Interventions 

This chapter describes the robotic design methodology based on the unique constrains of 

the MR environment. The robot’s mechanical design is tailored to preserve the scanner’s magnetic 

field homogeneity, function within the spatial constraints of the MR scanner’s bore, maximize the 

targeting volume and needle trajectory range of motion and employ high-precision design features. 

Custom electronics were designed to communicate with the large number of encoders used to 

control the motor positions and control the robot based on the derived kinematic equations. Finally, 

a passive robot to MR registration method insensitive to magnetic field inhomogeneity is described 

using an MR visible fiducial imbedded in the robot’s mouse bed. 

1.9.2 Chapter 3: Experimental Methods and Results in 

the Development of an Ultra-High Field Strength 

MR Image-Guided Robotic Needle Delivery 

Device for In-Bore Small Animal Interventions 

This chapter describes the methods employed to develop and validate an MR image-guided 

robotic needle delivery device for small animals. The mechanical device calibration and in-air 

needle targeting accuracy was determined through CMM measurements. The device was used to 

deliver needles to virtual targets in phantom tissue to determine the total accuracy of the device 
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using MR images. Finally, an experiment was conducted to validate the device’s capabilities in a 

realistic experimental situation by inserting a needle into the mouse brain. 
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Chapter 2 

2 The Design of an Ultra-High Field 

Strength MR Image-Guided 

Robotic Needle Delivery Device 

for In-Bore Small Animal 

Interventions 

2.1  Introduction 

Many pre-clinical research techniques require accurate local injections of cells, drugs, 

genes or contrast agents to specified targets in small animals, such as mice21,56–61. Previous success 

has been demonstrated with micro-CT13,34 and ultrasound image-guided robotic devices33, designed 

to accurately deliver needles to specific sites in mice, however, there has not been a complete 

solution for accurate needle delivery in the bore of an MR scanner. 

Pre-clinical minimally invasive interventional procedures performed on rodents offer 

major advantages over invasive surgical techniques in terms of the effect of trauma to the mouse, 

and the effect of trauma on its immune system, which risks compromising the experimental 

outcome20. Many research practices require accurate, minimally invasive, local injections to 

specific sites in mice, for example: cancer therapies in the brain56, mammary gland57 and pancreas58; 

stem cell therapies in the heart21 and spinal cord59, as well as gene therapy in the thymus gland60 

and spinal cord61, to name a few. Manual subcutaneous implantation of cells (xenograft) is a 
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common method for researchers to grow cells in vivo which does not require highly accurate needle 

targeting. However, a minimally invasive orthotopic xenograft injection, requiring cells from a 

specific organ to be accurately transplanted into the same organ of another species, provides a better 

representation of the original microenvironment, but requires high accuracy needle targeting in 

tissues. Therefore, this procedure requires an accurate injection to the desired site in the organ. Our 

research institute has a highly developed small animal brain-imaging group; therefore, in these 

works we focus on brain injections in mice. 

Intravenous bolus injections in mice are commonly performed via the caudal vein; 

however, the BBB limits access of some compounds to the central nervous system (CNS) using 

this injection site62,63. Due to this and other limitations, many pre-clinical research studies require 

accurate injection of cells, drugs or contrast agent into precise locations in the brains of mice24,64–

66. Currently, these injections are performed using a stereotactic device with an atlas for reference, 

or a blind injection by hand with only external anatomical reference such as skull features. Either 

of these techniques can result in the inaccurate placement of needles due to human error, and may 

require multiple attempts for a successful insertion. These inaccurate insertions may result in failed 

experiments and fatality for the mice. If the injection is successful, an MR image may be used to 

monitor the effects of the injection on local tissues or the distribution/migration of the contrast 

agent throughout the brain, which is optimally observed immediately after injection. Due to the 

time it takes to prepare the mouse for imaging, and performing the MR imaging pre-scanning 

procedures, the concentration of contrast agent in the blood may be reduced by an unacceptable 

amount before imaging67. To help circumvent this issue, mice are often sacrificed after injection so 

that injected dyes or contrast agents will remain in their system for imaging68,69. However, 

sacrificing these mice inhibits the observation of the long term effects of the experiments, and can 

also be expensive if the mice have genetic variations, especially if the sacrifice fails to yield 

acceptable imaging results and needs to be repeated. 
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The field of image-guided robotic needle delivery in pre-clinical animal models has grown 

over the past decade. Robotically assisted micro-CT image guided out-of-bore34 and in-bore13 

needle placement devices with <200µm mean accuracy have been successfully tested on mice. 

Despite this success, the level of soft tissue contrast achievable with MRI is not possible with CT, 

making MRI the preferred image modality for needle guidance in certain studies where soft tissue 

is being imaged (e.g., those requiring intracranial injections).29 The most advanced previous work 

focused on out-of-bore image guided percutaneous biopsy via a MRI-guided robotically assisted 

system guided by Bruker BioSpin 7T MR scanner images, which achieved a needle tip placement 

accuracy within 1mm in phantom experiments.37 Apart from the low needle targeting accuracy and 

the fact that the system is currently only used for biopsy, and not injections, the major drawback to 

this system is the inability of immediate imaging after needle insertion, since the biopsy is 

performed outside of the bore, which would allow quantification of in vivo accuracy and effects of 

the procedure. Another disadvantage is that the needle can only be oriented vertically, requiring a 

new burr hole (manually drilled hole in the mouse’s skull) for additional biopsies along other 

insertion axes, hence increasing the invasiveness of the procedure, and making insertions to 

multiple non-vertically aligned targets cumbersome to perform. 

The ability to automatically deliver needles to multiple targets with the use of an accurately 

calibrated robotically actuated needle delivery robot through one burr hole in the skull inflicts less 

trauma on the mouse and eases the preparation workflow. Thus, a purpose of our robot is to improve 

mouse preparation workflow by reducing the number of burr holes needed to complete the 

injections. In addition, our goal is to deliver a needle while the mouse is inside the bore of an ultra-

high field strength MR scanner, thereby allowing researchers to perform serial needle insertions 

accurately and efficiently, with the ability to observe the inserted needle tip location and evaluate 

the immediate effects of the injection.  
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Ultra-high field strength pre-clinical MRI scanners (e.g., 9.4T systems) consist of long and 

narrow bores (~2m long and 12cm in diameter for our 9.4T system) with the imaging FoV 

inaccessible by the human arm for manual injections under MRI-guidance. Due to this limitation 

and the requirement for substantially greater accuracy and repeatability than achievable with 

manual insertion, a robotic system must be designed to fit in the MRI scanner bore and perform 

needle insertions and injections into a mouse brain with a targeting accuracy of <200µm to target 

the smallest biologically relevant targets such as vessels70 or tumors,71 and a trajectory accuracy of 

<1º to avoid damaging surrounding features in the brain and minimize the required size of burr 

hole. In addition, brain images in live mice are generally acquired at a resolution between 150-

200µm (150µm isotropic voxel size for 3D imaging and 200 × 200µm² in 2D with 500 µm slice 

thickness), and therefore the robot should be able to accurately deliver a needle to a specific voxel. 

Higher resolution brain images can be acquired, but the imaging time increases linearly as the voxel 

volume decreases since more averages are needed in order to form an image with enough signal. 

Conventional electric motors present a major challenge in the development of MRI-guided 

interventional robots since they operate using a generated magnetic field, which would be 

detrimental to the image quality if they were introduced into the MR scanner’s bore. To circumvent 

this issue, MR compatible robotic devices have generally been actuated using pneumatics48,49,72,73, 

since conventional electric motors are not compatible with the magnetic environment. More 

recently, due to advancements in piezoelectric material technology, small MR compatible 

piezoelectric motors have become a practical actuation method by combining sub-nanometer step 

size with a relatively high holding force while unpowered. In human studies, piezoelectric motors 

were used to successfully actuate the intraoperative MRI-guided NeuroArm robot for neurosurgical 

procedures. Based on their advantages and proven capability in the magnetic environment, 

piezoelectric motor actuation was used in the development of an ultra-high-field MR-compatible 

image-guided needle delivery robot for minimally invasive procedures in mice. 
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This chapter describes our development of a six DoF ultra-high field strength MR image-

guided, in-bore, minimally invasive robotic system used to place needles accurately and precisely 

into targets in a mouse brain. The needle target and trajectory are determined from the MR images 

and output to the mechatronic system to deliver the needle accurately. The robot’s accuracy and 

precision was quantified using three separate tests, each accounting for sources of error. The open-

air accuracy was characterized and the needle targeting and trajectory were further evaluated 

through image-guided needle targeting procedures in brain mimicking phantom tissue, and finally, 

an image-guided needle targeting procedure was performed in situ to demonstrate the utility of the 

system for ultra-high field strength MR image-guided neurosurgical procedures in mice. 

2.2 Robotic Design Methodology 

Many robot design iterations were performed and evaluated to yield this final design. The 

major mechanical design constraints stemming from the in-bore MR environment include MR 

compatibility, the spatial constraints of the MR scanner’s bore and positional accuracy of the robot. 

2.2.1  MR Compatibility and Actuation Methods 

A common issue regarding MR compatible robotics involves the use of metal parts which 

degrade the MR image quality if the metal parts are too close to the imaging FoV. MR compatible 

robots must therefore be designed predominantly from plastic and composites which significantly 

reduces the strength of the entire robot. Piezoelectric motors provide the high positional resolution 

required for this robot and although their power is relatively weak compared to DC motors, 

mechanical features can be designed to minimize the required motor output force. 

Robots are commonly actuated using DC stepper motors, however, these DC motors are 

often made from ferromagnetic materials and use magnetism to produce mechanical power. If 

introduced into the MR environment, the magnetic field of the MR scanner would act on the DC 

stepper motors and pull it into the MR scanner’s bore, which would be catastrophic for the scanner, 
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the robot and the mouse. Pneumatic and hydraulic actuators are also used in MR compatible devices 

since their components can be manufactured from non-ferromagnetic metals an plastics. These 

actuators can provide high output forces, however, their positional accuracies are much too low 

(>1mm). Non-magnetic piezoelectric motors are offered in linear and rotary configurations, are 

simple to use, have an intrinsic holding force equivalent to the motor’s output, and provide high 

resolution actuation making them ideal for MR compatible devices. The two major design 

constraints to overcome when dealing with piezoelectric motors involves their non-ferromagnetic 

metallic design, which can distort the scanner’s magnetic field and therefore the images if the motor 

is too close to the imaging FoV, as well as the low output force which may require an intermediate 

mechanical mechanism to reduce the output force required from the motors. The piezoelectric 

motors used for this robot were also selected due to their compact design, and provide sufficient 

speed to move the robot’s DoFs over their RoM within a few seconds. 

2.2.2  In-Bore vs. Out-of-Bore Robot  

The robot was designed to be used with the Agilent 9.4T MR scanner which has a bore 

hole diameter of 12cm, with the imaging FoV at roughly 1m into the bore (the bore hole is ~1.5m 

above the ground. Initial design concepts included an out-of-bore robot, made up of a large 

moveable base with a long cantilevered arm used to insert needles into the mouse that was on a 

mouse bed at the imaging FoV. The difficulties posed with this design involve the long cantilevered 

arm, which would be subjected to a large moment under its own weight, causing bending and 

deflection of the cantilevered arm. This is more problematic considering the cantilevered arm 

would be made from plastic or composites, making it even more unstable. The deformation would 

directly impact the inaccuracy of the robot. In addition, an out-of-bore design prevents the RF 

shielding door from closing and shielding the bore hole, which would allow RF noise to enter the 

bore and could introduce noise into the MR images. Therefore, an in-bore robot would provide 
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more benefits than an out-of-bore robot, including smaller components and a smaller simple design, 

targeting accuracy, as well as RF shielding. 

2.2.3  Robotic Design Orientation 

Previous image-guided needle delivery robots had few, if any, spatial constraints. The 

image-guided robot developed by Waspe et al. was designed to be guided by ultrasound images, 

which does not pose any restrictions on the size of the robot. This robot was later used for micro-

CT image-guided needle deliveries; however, the procedures were performed outside of the 

imaging bore since the robot was too large to perform the needle insertion in-bore. A micro-CT 

image guided robot was developed by Bax et al. to perform needle deliveries inside the micro-CT 

scanner’s bore, however, only the needle manipulator linkage enters the imaging bore.   

Both the ultrasound and micro-CT image-guided devices discussed use an RCM based 

needle manipulator, to angulate and insert the needle, while an XYZ-stage is used to translate the 

needle manipulator. These devices utilize six DoFs to perform the needle insertions, which is the 

minimum number of DoFs needed to perform needle deliveries to various targets in 3D, at various 

trajectories with independent needle insertion control. 

The first CAD model prototypes of the in-bore MR image-guided robot used a similar 

design to the ultrasound and micro-CT image guided robots where the needle manipulator was 

mounted onto an XYZ-stage and the mouse was on a mouse bed that was connect to the base of the 

robot and where it’s brain is at the MR scanner’s isocenter. In this case, the robot and the mouse 

bed were mounted on a common base plate with an MR visible fiducial located in the mouse bed. 

The needle manipulator is too high when its mounted on top of the XYZ stage and is unable to 

reach the mouse brain, and the XYZ-stage can only be designed to be so small. An alternative 

design was considered where the needle manipulator linkage was cantilevered off of the XYZ-

stage, however, the weight of the needle manipulator, needle driver and motors would create a 
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moment that would make the robot more prone to bending and deformation. Another issue with 

using the XYZ-stage to control the position of a cantelevered needle manipulator is that the Z-stage 

needs to be able to lift the X- and Y-stages, as well as the needle manipulator, which would require 

substantial amount of force from the Z-stage motors to lift a long cantilevered arm. These issues 

were resolved by separating the XYZ-stage and the needle manipulator by mounting them on a 

common base plate; where the XYZ-stage is used to move the mouse bed, along with the MR 

visible fiducial which is embedded into the mouse bed, in three linear DoFs, while the needle 

manipulator is on the opposite side of the mouse, facing the XYZ-stage (see Fig. 1). Using the 

XYZ-stage to position the mouse requires a cantilevered mouse bed with a step down, which is 

designed to lower the position the mouse since the XYZ-stage is too tall to use as a mouse bed.  

2.2.4  Needle Manipulator Design Methodology  

An RCM is a desired feature in the design of the needle manipulator since it can be used 

to decouple the needle tip position from the needle angle. The ultrasound image-guided device 

discussed employs a 2D four-bar linkage mechanism to angulate the needle forwards and 

backwards, while the entire four bar linkage mechanism is rotated to angulate the needle side to 

side. The simplicity of this four-bar linkage design is beneficial to the overall needle targeting 

accuracy since there are fewer sources of mechanical error, such as additive tolerance errors. One 

of the difficulties of using this design for an MR compatible robot involves the close proximity of 

the metal four-bar linkage motor to the imaging FoV. The motor could be moved further away from 

the imaging FoV, using a belt to drive the linkage, however, this would require the motor to be 

mounted to an extension of the four-bar linkage base to allow it to tilt side to side with the four-bar 

linkage. The major issue with this design is that a large torque is required by the motor to tilt the 

weight of the four-bar linkage components that need to be rotated when the needle is tilted side to 

side, which would be too high for the relatively weak MR compatible piezoelectric motors. An 

alternative needle manipulator design using a spherical four bar linkage, like the one used in the 
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micro-CT image-guided robot previously discussed. This linkage design also requires two motors, 

however, the required torque to rotate the entire linkage is split between two motors, and in 

addition, the motors can control the linkage arms from a fixed position at a distance, through a pair 

of concentric shafts (see Fig. 3b). The spherical linkage design has a more limited range of motion 

than the 2D four-bar linkage, however, since the needle manipulator was removed from the XYZ-

stage, the size of the spherical linkage can be maximized in order to utilize the full diameter of the 

MR scanner’s bore. In addition, the bend in each arm joint was designed to be 70°, which allows 

the robot to provide the desired RoM of up to 45° from the vertical in all directions. If the needle 

manipulator were to be moved inside the mouse bed using the XYZ-stage as in previous designs, 

the spherical would need to be smaller as to not collide with the scanner’s bore when being moved 

side to side or up by the XYZ-stage. A smaller spherical linkage also limits the range of needle 

angulation as well as the needle insertion depth. 

2.2.5  Needle Driver Design Methodology 

As previously discussed, the MR scanner’s magnetic field is distorted by the presence of 

metal, including non-ferromagnetic metals such as aluminum, brass, titanium and tungsten. Since 

the needle driver is positioned directly above the imaging FoV, the use of the non-magnetic linear 

piezoelectric motors to insert and retract the needle would likely distort the magnetic field. The 

alternative actuation methods are hydraulic and pneumatic. Pneumatic actuation was avoided due 

to the need for an air compressor, vacuum, and a valve control system. Hydraulic actuation was 

selected for its relative simplicity since it was intended to be manually actuated using a syringe. 

Conventional hydraulic design uses two hydraulic chambers to move the hydraulic piston forwards 

and backwards with the full input force. Due to spatial constraints, a single chamber hydraulic 

actuator was integrated into the robot design, with the limitation being that the needle driver would 

rely on vacuum suction from the retraction of the syringe to retract the needle after the injection is 

performed. Furthermore, the needle driver’s position must be known to ensure that the needle driver 



31 

 

is actuated to the desired depth to coincide with the RCM. This was overcome by designing hard 

stop which restricted the needle driver’s range of motion to two positions: inserted and retracted. 

2.2.6  Needle Selection 

Mice are commonly injected using thin metal needles, however the presence of metal near 

the imaging FoV would likely induce image artifacts, affecting the image quality. Glass 

micropipettes seemed to be the most promising alternative to metal needles since glass is much 

stronger and less pliable than plastic. Conversely, glass is more brittle than plastic indicating that 

non-axial forces applied to the needle may cause it to bend/deflect and break. Needle deflection is 

common in beveled metal needles because the bevel acts as a rudder to steer the relatively flexible 

needle off of its intended trajectory. Glass micropipettes can have a diameter of roughly 1mm and 

can have a conical tip with a needle tip opening of around 10 microns in diameter. This conical tip 

would have very little contribution to needle deflection since it is symmetric, unlike the beveled 

metal needles. 

2.2.7  Mouse Bed Manipulator Design Methodology  

The mouse bed manipulator uses a set of three mechanical stages to move the mouse bed 

in three linear degrees of freedom. The mouse bed design uses a wedge mechanism which creates 

vertical motion by passing a wedge beneath another wedge that is constrained to moving in the 

vertical direction. To properly support the load distribution, each degree of freedom should use a 

pair of linear bearings. Non-magnetic linear slide bearings are commercially available, but come at 

an enormous financial cost, thus the search and development of an alternative linear rail bearing 

design was pursued. A simple rail bearing design using precision ground tungsten rods and 

precision ceramic ball bearings was used in this design, but at a fraction of the cost of non-magnetic 

slide rails. The design uses four tungsten rods to essentially form a cage around the ceramic ball 

bearings. One pair of tungsten rods are constrained, allowing one pair of rails to roll over the 
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ceramic ball bearings. Set screws are used to apply pressure to a titanium plate which is placed 

behind a pair of the rails to pre-load the bearing in order to remove any non-axial play in the bearing. 

Precision ground tungsten rods were used because of their smooth precision finish, which reduces 

friction, and tungsten is also harder than other non-ferromagnetic metals, and should prevent 

wearing. Ceramic ball bearings were used for their hardness and high spherical accuracy, which 

should provide accurate linear motion, and the smooth polished finish should also reduce friction. 

A linear stage was machined and tested to ensure the amount of friction induced by preloading the 

bearings.  

The efforts made to reduce the weight lifted by the Z-stage were valuable, and even with 

the use of a wedge which reduced the required motor force by 43%, the Z-stage still required two 

motors to exert enough force to overcome the weight and linear bearing friction of the parts it was 

lifting.  

2.2.8  Mouse Bed Design Methodology 

The mouse bed is where the mouse is placed after being prepped for the injection 

procedure, and is moved in three linear degrees of freedom by the mouse bed manipulator. The 

Agilent 9.4T MR scanner does not have a body RF coil and due to spatial limitations, a custom RF 

coil was designed to be mounted on the mouse bed and fit tight around the mouse’s head. The 

volume bounded by the RF coil defines the imaging FoV, which must encompass the mouse brain 

as well as the MR visible fiducial. The fiducial is made from a solid piece of plastic and therefore 

must be positioned within the RF coil volume without interfering with needle trajectories. The 

fiducial was therefore designed to be embedded into the mouse bed to ensure that it would not 

interfere with the mouse head position or large angle needle trajectories. 
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2.3  MR Image Guided Needle Delivery 

Robot Design 

The small animal needle delivery robot consists of three main mechanical components (see 

Fig. 1): (1) the needle driver, (2) the spherical linkage, and (3) the XYZ-stage. The hydraulic needle 

driver inserts and retracts the needle tip to a fixed point in space, about which it is pivoted by the 

spherical linkage. The XYZ-stage moves the mouse bed until the desired needle target in the mouse 

brain is coincident with the fixed point in space about which the spherical linkage pivots, allowing 

the needle to be inserted to the target. All of these assemblies are fixed to a common base plate that 

is entirely inserted into the MR scanner’s bore. 

 

FIG. 1. CAD model rendering of the robot with the four main components labeled. 

2.3.1 Needle Driver Design  

Hydraulic actuation was selected to control the needle insertion and retraction during 

injection procedures. The needle driver is made up of a piston, which is actuated inside the 

hydraulic enclosure by the acting hydraulic fluid - water in our application. A needle guide and 

needle clamping mechanism are integrated into the piston design to align and fix the orientation of 
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the MR compatible glass needle (TIP10XV119, World Precision Instruments, Inc., Saratosa, FL) 

to the piston, in order to extend and retract the needle tip. The piston design also incorporates a 

precisely machined end-stop on the underside of the clamping mechanism, which allows for the 

needle length to be accurately calibrated to intersect with the RCM, which is explained in the 

following section (see Fig. 2).  

 

FIG. 2. A cross-section CAD model view of the hydraulic needle manipulator (a) retracted and (b) extended 

to each hard-stop. The needle tip is retracted into the hydraulic housing for clearance (a) while the linkage 

and mouse bed manipulator are being manipulated to prevent damage to the needle, and (b) the needle is then 

extended to the RCM during the needle delivery procedure. 

The alternate approach of using MR compatible piezoelectric motors and optical encoders 

were not used for the needle driving system since they would be in close proximity to the imaging 

FoV, and the metallic components would cause image artifacts (metal induced artifacts in MR 

images is discussed later). The hydraulic system was therefore machined from polyethetherketone 

(PEEK) plastic instead of metal. PEEK was selected as the material of choice since it is one of the 

strongest non-composite plastics available. For simplicity, the hydraulic actuation was designed to 

be manually actuated using a syringe for this study and is intended to be automated in future. The 

syringe actuated hydraulic can easily output the necessary force to insert and retract the needle in 

tissues as well as allow the user to control the speed of the needle insertion and retraction.  
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2.3.2 Needle Manipulator Linkage Design 

The hydraulic needle driver assembly is mounted on the end of the needle manipulator 

linkage and is used to control the trajectory of the needle.  

The needle manipulator linkage employs a spherical four-bar linkage, which features a 

remote center-of-motion (RCM), about which the linkage joints pivot. The linkage consists of two 

controlled arms and two passive arms (see Fig. 3(a)). The needle driver is mounted in the joint 

between the two passive arms, where the protruding length of the needle is calibrated so when the 

hydraulic piston is extended to the end-stop, the needle tip is coincident with the RCM (see Figs. 

2(b) and 3(a)). Mounting the hydraulic needle driver in the joint between the passive arms allows 

the linkage to manipulate the trajectory of the hydraulic needle driver to an angle of up to 45° from 

vertical and 360° about the vertical needle position, while maintaining the extended needle tip 

position at the RCM (see Fig. 3(c)). The needle’s large angular range of motion (RoM) allows the 

robot to reach targets that have an obstructed line of sight. 
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FIG. 3. A CAD model view of the spherical linkage system. (a) Linkage orientation and hydraulic needle 

driver mounting position within the mutual joint of the passive arms. Dotted lines illustrate the joint axes and 

the needle axis converging at the RCM. (b) Cross-section CAD model view from underneath the robot to 

visualize the concentric shafts that link the controlled linkage arms to the gears that are driven by the rotary 

stepper motor pinion gears (the motors and pinons are cut out of this cross-sectional view). The blue and 

green cross-section represents the components that drive the motion of the right and left controlled arms, 

respectively. (c) A CAD model of spherical linkage positioning the needle at a 45º angle (apart from c)v)) at 

various trajectory angles to illustrate the linkage’s RoM. 
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The controlled arms are mounted on long concentric shafts (Fig. 3(a)) to allow for 

independent control of each of the controlled linkage arms at a distance from the FoV, to avoid 

generating artifacts in the MR images due to the presence of the metallic motor. The MR compatible 

rotary piezoelectric stepper motors (LR5012D-00B10, PiezoMotor, Uppsala, Sweden) have a 

<0.057° step angle and output torque of 55mNm, and their angular position is tracked using MR 

compatible, incremental, rotary optical encoders (RIK4-2C 29/1000 C03 9.0M Z, RS 29/16/1000, 

Numerik Jena, Jena, Germany) at a resolution of 0.18°. An anti-backlash preloaded gear is mounted 

on the far end of each of the two concentric shafts (see Fig. 3(b)) and each of the two anti-backlash 

gears are meshed with a pinion driven by a piezoelectric motor to gear-down the motor’s output. 

Since the diameter of the gear is twice that of the pinion, the step resolution of each arm is doubled 

to 0.09° per step, and the effective output torque from the motors is doubled as well, to 110mNm. 

The linkage does not need to be counterbalanced since the stepper motors possess an intrinsic 

holding torque, even when unpowered. This intrinsic holding torque allows the motors to be turned 

off while maintaining the position of each degree-of-freedom. There is no electrical transmission 

from the motor driver to the motor when the motor is not moving. This is important in the MR 

environment because electrical signals travelling through wires near the scanner’s FoV can cause 

image noise and other artifacts.  

The inverse kinematics equations were derived to calculate the encoder positions for any 

desired needle trajectory using Napier’s principle, as seen in Equations 1-6. The kinematic diagram 

of the linkage arm is illustrated in Figure 4. 
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FIG. 4.  3D kinematic diagram of the spherical linkage with labelled kinematic variables. The segments A-B 

and A-D represent the controlled right and left linkage arms, respectively, while the segment B-C and D-C 

represent the passive right and left linkage arms, respectively. Each linkage arm has an angle of 70º (7π/18 

radians). The needle is represented by the segment C-O, which has length r. The angle between the Z-axis 

and the needle trajectory is represented by ε, while the angle between the X-axis and the needle trajectory is 

represented by ψ. The angle between the passive and controlled arms is represented by γ (symmetric on the 

right and left side due to linkage geometry). The angle between the X-Z plane (APO) and the needle trajectory 

plane (CPO) is represented by θ. Therefore, the angle between the controlled arms, represented by 2λ, and 

the angle between the X-Z plane and the ACO plane, denoted by σ, can be determined through inverse 

kinematic calculations. The corresponding linkage joint axes between Figure 3(a) and Figure 4 are Axis 1 

and the A-O (X-axis), Axis 2 and B-O, Axis 3 and D-O, and Axis 4 and C-O.  

The right and left controlled arm angles are computed as a function of the needle trajectory, 

defined by the angles ε and θ through the inverse kinematics equations: 

𝜓 = cos−1(sin(𝜀) ∙ cos(𝜃))                                                   (1) 
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𝜑𝑅𝑖𝑔ℎ𝑡 𝐴𝑟𝑚 = 𝜎 + 𝜆                                                         (5) 

𝜑𝐿𝑒𝑓𝑡 𝐴𝑟𝑚 = 𝜎 − 𝜆                                                          (6) 

 Although this motorized spherical linkage provides controlled angulation of the needle 

about a fixed point, the capability of moving the RCM to multiple targets within a 3D volume is 

needed. This capability was provided by a separate linear three DoF XYZ-stage.  

2.3.3  Mouse Bed Manipulator Design 

The mouse bed manipulator consists of a three DoF linear stage with a cantilevered mouse 

bed oriented underneath the RCM linkage to maneuver the desired target inside the mouse brain to 

the RCM. The mouse bed manipulator can move ± 12.5mm in the X- and Y-direction (along the 

length of the bore and side to side, respectively) and ± 6.25mm in the Z direction (up and down), 

which is a sufficient working volume to target the entire mouse brain. The linear bearings of each 

linear stage are a custom-made ball-bar bearing design, in which four precision ground tungsten 

rods enclose a set of low diametric tolerance ceramic balls bearings. The linear bearings are 

preloaded from the side using a titanium plate to ensure even distribution of the preload along the 

titanium rods, intended to constrain the non-axial motion of the bearing. The X- and Y-stages are 

each composed of two sets of these bar-ball linear bearings and are actuated by MR compatible 

linear piezoelectric stepper motors (LL1011C-101A0A00, PiezoMotor, Uppsala, Sweden) at a 

<1μm step size, and the linear position is tracked using MR compatible linear optical encoders (LIA 

20-C001 30Z/9M, MV 61 - 10BP 00060, Numerik Jena, Jena, Germany) at a resolution of 5μm. 

Similar to the rotary stepper motors, the linear stepper motors have a 7N holding force while 

unpowered. The Z-stage utilizes a feature where a triangular wedge forced to slide under a second 

triangular wedge that is constrained in all directions but the Z-axis. This 30º wedge feature was 

integrated into the Z-stage design to reduce the force required by the motors to lift the components 

by about 42% (assuming no effects of friction), which made it possible for the Z-stage to lift the 
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top wedge, Y- and X-stages, and the mouse bed using the combined force of two linear piezoelectric 

stepper motors. Due to the spatial constraints of the 9.4T MR scanner’s 120mm diameter bore, the 

Z-stage was placed on the bottom with the Y-stage on top of it, positioning the Y-stage at the bore’s 

widest point (see Fig. 5). The Y- and Z- stage DoFs were maximized since this robot has potential 

for other applications which require a larger range of motion. 

 

FIG. 5. A CAD model of the mouse bed attached to the XYZ-stage (a) illustrating the three controlled DoFs 

and (b) the Z-component of the mouse bed’s wedge shim, depicting how it lifts the mouse bed (b)i-iii. 

Due to the confined space in the MR scanner bore, the mouse bed could not be mounted 

on the top of the XYZ-stage; therefore, a cantilevered mouse bed was designed to hold the mouse’s 

brain at the magnet’s isocenter, underneath the RCM linkage (Fig 5(b)). Finite Element Analysis 

(FEA) provided an estimate of the deflection of the cantilevered mouse bed from the force of the 

needle insertion. The analysis incorporates a vertically applied force to simulate the highest vertical 

load on the mouse bed. The force value of 3 mN used in the FEA is representative of a 200 µm flat 

punch probe insertion into the olfactory bulb,74 resulting in an estimated maximum displacement 

of ~0.3 micron (see Appendix 1 for the FEA results). The force estimate used in the FEA in the 

worst case scenario is expected to be much larger than the force required by the glass needles to 

penetrate mouse brain tissue in this study since the glass needles have a conical needle tip shape 

with a 10 µm tip. Therefore, the cantilever mouse bed deflection due to the load applied during 

needle insertion is expected to be negligible. 
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Before being placed in the MR scanner for a brain scan, live mice are usually fixed into 

position and anesthetized using a bite bar to pull the snout into the end of the anesthetic delivery 

tube, while the body is taped to the mouse bed. Due to long scan times, live mice require a constant 

supply of anesthetic gas. The version of the mouse bed used in this study is not equipped with a 

bite bar or drug delivery tube, but the design allows space for these features to be included for in 

vivo experiments. Our 9.4T MR scanner is not equipped with a mouse bed, therefore the robot is 

pushed into the bore to a known length, which places the RCM close to the isocenter, and the mouse 

bed manipulator can then move the mouse brain to the isocenter. 

2.4  Mechatronic System Design 

Our needle delivery robot is controlled using a custom made controller, which is composed 

of four PIC® microprocessors (DSPIC33FJ128MC802-I/SO, Microchip, Chandler, AZ) arranged 

in a master/slave configuration. The Numerik Jena optical encoders output a differential sine-cosine 

signal that is subtracted through a differential amplifier (MAX492, Maxim Integrated, San Jose, 

CA) and then sent to the salve microprocessor that corresponds with one of that encoder’s DoFs. 

The encoder’s differential signal is designed to eliminate signal noise picked up by the encoder 

wires. The salve microprocessors control the motor positions based on the interpretation of the 

encoder’s position feedback. The encoding information is relayed to the master microprocessor, 

which communicates with the computer. The desired orientation of the needle and position of the 

mouse bed manipulator are input into the control software module (written in MATLAB), which 

then uses a serial peripheral interface bus to communicate the desired position of each DoF to the 

controller’s master microprocessor. Each slave microprocessor control switches on their respective 

motor drivers (PMCM21 Hand-held driver, PiezoMotor, Uppsala, Sweden) to control the motors. 

The controller system is constantly monitoring the position of each DoF and the motors activate at 

any time in order to reposition the motors to the set position, hence ensuring consistent positional 

accuracy.  
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2.5  9.4T MR Scanner  

Our robotic device was designed for use in our Agilent 9.4T MRI system (9.4-Tesla 31cm 

bore Agilent animal MR imager with 120cm inner diameter 400mT/m gradient insert, Agilent, 

Santa Clara, United States of America) for small animals. The MR scanner’s 120mm gradient coil 

bore-hole diameter is spatially limiting for robotic access, with the isocenter at ~90cm from the 

entry of the bore, hence increasing the complexity of the robotic design. The scanner can acquire 

3D images with a spatial resolution down to 75 µm, however, scanning at such a high resolution 

takes hours to complete. High resolution scans are difficult to perform on live mice since respiratory 

motion can cause the fixed mouse head to move up to 30 µm. Since this is a research scanner, there 

is no built in body receiver coil, hence a custom surface coil is required, which inevitably reduces 

the amount of needle trajectories. 

2.5.1  Radio Frequency Receiver Coil 

A two-channel radiofrequency (RF) surface head coil was custom designed and fitted to 

the mouse bed (see Fig 6(a)). The thicknesses of the RF coil supports are minimized in order to 

maximize the clearance for the needle. The RF coil frame was 3D printed using fused deposition 

modeling (FDM) of polycarbonate; this material is commonly used in prototype RF coils since it 

has negligible MR signal, and hence no effects on the quality of the MR image. An MR visible 

cross-shaped fiducial embedded in the end of the mouse bed, directly under the mouse’s head (see 

Figure 6(b)), is used to register the robot coordinates to the MR coordinates. 
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FIG. 6. (a) A picture of the two-channel surface RF coil. The RF coil frame was 3D printed using fused 

deposition modeling (FDM) of polycarbonate. (b) A Solidworks model render of the mouse bed and coil, 

with cross-fiducial water volume and mouse brain’s approximate position (i) without the cross-fiducial Delrin 

housing or mouse body model, and ii) with a transparent cross-fiducial Delrin plastic housing and mouse 

body model.   

2.6   Robot to MR Registration 

The term “robot to MR registration” refers to the process of determining the position of the 

robot relative to the MR coordinates. A commonly used registration method employs the use of 

MR visible materials arranged in specific geometries that are clearly identifiable in the MR images. 

Through image processing and geometric calculations, the position of the fiducial can be 

determined in the MR images, as well as the position of other robotic components, such as the 

RCM.  

2.6.1 Cross-Fiducial Design 

Our registration approach incorporates a “cross” shaped fiducial55 (from now on referred 

to as cross-fiducial), which has a simple, low profile, design that allows it to be easily embedded 

in the mouse bed, underneath where the mouse’s head rests (see Fig. 6(b)i). The cross-fiducial 

consists of two 4.38mm diameter perpendicular intersecting holes drilled through a piece of Delrin 

plastic, forming the shape of a cross. The holes are filled with water to provide contrast in the MR 
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images. The RF coil was designed to cover the mouse’s head and the cross-fiducial in order to 

acquire a strong enough signal from the fiducial to be able to easily localize the fiducial in the MR 

images, and to calculate the position of the fiducial in the MR scanner’s coordinate system. 

Magnetic field inhomogeneities are mainly the result of static magnetic field imperfections and 

magnetic field imperfections induced by the introduction of materials into the FoV, such as a 

robotic device. Through imaging techniques of the fiducial at specific orientations inside the MR 

scanner’s bore, this localization fiducial design is insensitive to the effects of magnetic field 

inhomogeneity. 

2.6.2 MR to Robot Registration Process 

Acquiring 2D axial and sagittal proton density gradient echo images of the cross-fiducial 

oriented approximately perpendicular to the imaging planes results in images displaying a bright 

circle, where the center of the circle represents a point along one of the cross-fiducial cylinder’s 

axes (TR = 5.76 ms, TE = 2.79 ms, flip angle = 11º, FoV = 32.00 × 32.00 mm², matrix, size = 160 

× 160, 51 slices, 0.50 mm slice thickness, 12 averages, acquisition time = 9:24 min). A fiducial 

cylinder’s axis can be determined by locating the centroids of two circles in parallel MR images. 

Ideally, these images are as far apart as possible, on either side of the cross-fiducial intersection, in 

order to minimize the effect of the centroid localization error on the fiducial axis trajectory. Since 

the axes are unlikely to intersect, the closest point between the two axes becomes the location of 

the coordinate system origin. The two axes of the robot coordinate system are likely not perfectly 

perpendicular either, therefore, to extract a 3D Cartesian coordinate system from the two axes, the 

cross product of the fiducial axis perpendicular to the bore length and the fiducial axis parallel to 

the bore length yields the robot’s Z-axis, the cross product of the fiducial axis parallel to the bore 

length and the Z-axis yields the Y-axis, and the Z-axis crossed with Y-axis yields the X-axis.  

A semi-automated registration method developed in MATLAB uses pixel intensity 

masking to remove signal intensity variations from the fiducial, and locates the centroid of a circle 
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with a known radius of 4.38mm (~22 pixels in diameter using image parameters described above) 

using a built in circular Hough transform function75. 

MR scanners shim the magnetic field to compensate for inhomogeneities, however 

magnetic field inhomogeneities can be caused by the introduction of foreign MR compatible 

material into the homogenous magnetic field. A method of compensating for in-plane magnetic 

field inhomogeneities is applied to the position localization of the cross-fiducial. By acquiring two 

of the same cross-sectional image sets of the fiducial with all things being equal, using the same 

pulse sequence with the frequency encoding directions reversed, the resultant average position of 

the fiducial in the frequency encoding direction corresponds to the true fiducial position in the MR 

scanner.76 A benefit to the design of the cross-fiducial is that the cylinder axes of the cross-fiducials 

are in line with the MR coordinate system, hence slice select error caused by magnetic field 

inhomogeneities in registration images is also be negligible. 

Using this method, a complete registration acquisition requires four image sets of the cross-

fiducial: a set of 2D axial and sagittal images, and a second set with only the frequency encoding 

direction changed. Once the first image set is acquired, it is sent to the MATLAB folder where it 

can then be processed using the semi-automatic registration procedure while the next MR image 

set is being acquired, which takes less than 10 minutes per image set. Therefore, the entire 

registration procedure takes approximately 40 minutes. 2D image sets were chosen over a 3D image 

for speed, and to enable the fiducial localization correction. The MR images used to locate the 

fiducial had a large matrix size, so a much smaller matrix that is a few pixels larger than the fiducial 

cross-section would considerably reduce the registration time. The registration must be performed 

every time the robot is placed inside the MR scanner. 
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Chapter 3 

3 Experimental Methods and 

Results in the Development of an 

Ultra-High Field Strength MR 

Image-Guided Robotic Needle 

Delivery Device for In-Bore Small 

Animal Interventions 

3.1   Experimental Methods 

Methods were established to test the MR compatibility and mechanical accuracy of the 

robotic device as well as validate the device’s needle targeting and trajectory accuracy. 

3.1.1  Effects of the Robot on MR Images 

The introduction of any materials into the MR bore will have an effect on the magnetic 

field; some more than others. The distortion of the magnetic field, and consequently the images, is 

most prominent when a small amount of metal, including non-ferromagnetic metal, is present in, 

or near, the FoV. Electronics, such as motors and encoders, also emit RF signals, which can be 

obtained by the receiver coil and represented as noise in the MR images. The effects induced by 

the presence of a robotic device inside the MR scanner’s bore are important to quantify in order to 

reduce their negative effects on the image quality.  
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3.1.1.1  Robot Induced Magnetic Field Distortion 

The MR compatible Piezo LEGS Linear 6N piezoelectric motors selected to actuate the 

robot are made from non-ferromagnetic metals (primarily aluminum), therefore it is important to 

quantify the effects of the motors on the homogeneity of the MR scanner’s magnetic field. The 

linear motor was used to distort the magnetic field instead of the rotary motor since some of the 

linear motors on the XYZ-stage were much closer to the imaging FoV than the rotary motors used 

to position the spherical linkage arms. The linear motors also contain more metal by weight than 

any other component on the XYZ-stage, and should induce the most distortion.  

An accurately machined grid phantom was used to evaluate the distortions of the magnetic 

field, which is easier to visualize in the cross-sectional images of a grid phantom. The phantom was 

filled with water for high contrast between the Delrin geometries and the water filled voids. Coronal 

images were acquired of the phantom alone in the scanner, and the phantom with the motor placed 

in front of the phantom, to determine the amount of in-plane distortion caused by the motors. This 

experiment should determine the minimum distance that the robot’s motors should be placed away 

from the FoV as to not distort the images. Gradient echo images were acquired of the phantom at 

a bandwidth of 20kHz and 50kHz, which are the low receiver bandwidth frequencies used when 

imaging mice. Lower bandwidths were used during gradient echo imaging in this experiment since 

more distortion occurs at lower bandwidth.  

Coronal gradient echo images acquired without the motor present were subtracted from 

those with the motor present in order to visualize and observe the amount of distortion caused by 

the motors. The maximum observed in-plane distortion in the coronal images was at approximately 

22.5mm into the phantom, from the closest side of the motor. Therefore, using a safety factor of 2, 

the location of the motors in the robot’s design were required to be at least 45mm away from the 

edge of the closest FoV. Based on the amount of distortion caused by the linear motors, the 

comparative metal content between the linear and rotary motors, and the shortest distance between 
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a rotary motor and the nearest potential FoV (~250mm), the rotary motors should have no 

noticeable effect on the MR image quality (Note: the FoV can change depending on the position of 

the mouse bed manipulator). 

3.1.1.2 Effect of the Robot on the Noise 

The motors and encoders run at a maximum frequency of 2kHz and 5kHz respectively, 

while the MR scanner’s RF receiver system operates at a center frequency of 400.2 MHz, hence 

the robot electronics should not have an effect on the image quality. The effects of the robot 

electronics on the MR images was evaluated through a RF spectrum scan performed to determine 

the signals present in the MR scanner’s bore. The spectrum scan was performed with and without 

the robot in the 9.4T MR scanner’s bore. Spectrum scans show a few noise signals between -

165kHz and -185kHz from the center frequency while the robot was present and powered in the 

9.4T MR scanner, which were not present when the robot was not present. Since the noise 

frequency is so far away from the center frequency of this scanner, the noise will only affect the 

image quality of echo planar imaging sequences which use a high receiver bandwidth (around 

500kHz). The source of the noise is unknown.  
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FIG. 7. Spectrum scan of RF signals present in the 9.4T scanner’s FoV with the robot inside the MR 

scanner and present. A few noise signal peaks can be observed between 165kHz and 185kHz from the 

center frequency of 400.2MHz, which corresponds to 0 on the X-axis. 

 

3.1.2 Calibration and Accuracy Experiments 

A complete quantification of the robot’s mechanical error was determined by measuring 

the individual error contributions of the mouse bed manipulator and needle manipulator linkage 

using a coordinate measuring machine (CMM). An improved needle length was calibrated based 

on the CMM measurements to reduce needle targeting error of the spherical linage while the RCM 

to cross-fiducial registration calibration was performed in the 9.4T MR scanner. 

3.1.2.1  Open-Air Robotic Calibration and Accuracy Validation 

The CMM (Global Image, Brown & Sharpe, North Kingstown, RI) was used to measure 

the position of the needle and the mouse bed manipulator to determine the open-air accuracy of the 
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robot, at a volumetric measuring performance (accuracy) of 8.7µm with a repeatability of 2.9µm. 

The needle delivery robot was retrofitted with tooling balls (Fig. 8) to act as features of known size 

and geometric accuracy on the robot’s mouse bed manipulator and needle manipulator linkage for 

the CMM to measure. The positions of the spherical linkage tooling balls were measured at multiple 

needle trajectories, equally distributed along its range of motion. The vertical position of the needle 

was calibrated incrementally by trial and error using the CMM to determine the closest needle angle 

to vertical (0.048° from vertical). To determine the needle trajectory and RCM, both tooling balls 

were measured in 24 orientations; at 0°, 22.5° and 45° from the calibrated vertical position, at eight 

45° increments around the vertical needle position (Fig. 3(c) illustrates the max angles measured 

by the CMM). 

The mouse bed manipulator’s orientation was measured at various positions throughout its 

working volume. The orientations were measured in a grid pattern at increments of 6.25mm 

throughout X-Y-plane’s 25.40×25.40mm² RoM, and in five equally spaced horizontal planes, 

ranging from -6.25mm to 6.25mm along the Z-axis. Twenty-five equally spaced measurements 

resembling a grid were performed in the home plane (X-Y plane when Z = 0), while five position 

measurements were conducted for each of the other four X-Y-planes, only covering the center and 

four furthest corners of the planes. The position measurement of the center and four furthest corners 

of all five planes were re-measured to determine repeatability. 
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FIG. 8. (a) A CAD model of the robot retrofitted with tooling balls; one on the mouse bed manipulator, and 

two on the spherical linkage; one at the expected RCM and another along the needle trajectory. (b) The 

CMM probe touches five points on the tooling ball to determine the location of its centroid.  

This measurement process also served as a calibration procedure since the actual tooling 

ball position is likely to differ from the CAD model positions due to additive machining and 

assembly errors.  The linear rail bearings were designed with some clearance so the user could 

sense when the preload was being applied, and the relative amount of preload being applied to the 

bearings. Thus, as the pre-loading set screws are tightened, the outer set of rails of the linear rail 

bearing assembly are forced in the opposite direction of the set screw, resulting in a slight offset in 

the X-, Y- and Z-directions of up to 1mm (additive machining tolerances also contribute to this 

value). A similar pre-load induced offset is also present in the RCM linkage assembly due to the 

pre-loaded angular contact bearings that align the concentric arm controlling shafts and allow the 

shafts to rotate relative to one-another, however, in this case, the spherical linkage, including the 
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RCM, are shifted away from the mouse bed manipulator, along the axis of the concentric arm 

controlling shafts. 

3.1.2.2  Hydraulic Needle Driver Needle Length Calibration 

Due to additive machining errors, the designed RCM position and the RCM positions 

measured by the CMM differ. In reality, the RCM is within a spherical probability volume as 

opposed to a point. The length of the protruding needle from the extended hydraulic piston was 

designed to coincide with the RCM, however, this was not the case when the tooling ball 

representing the needle tip positon was verified by the CMM measurements. The length of the 

needle protruding from the needle driver was adjusted in order to determine the needle length that 

produced the smallest needle tip error. This improved needle tip length was incorporated into the 

design of a jig, which was used to calibrate the needle length extending from the needle driver. In 

order to calibrate the needle tip position, the needle driver is inserted into the jig and screwed into 

place, then the glass needle is inserted into the piston while retracted (see Fig. 2(a)) and pushed a 

few millimeters past the expected clamping position. The piston is then extended, advancing the 

piston until the needle tip reached the bottom of the jig, at which point the piston continues to 

advance to the hard-stop, at which point the needle clamp is tightened to fix the needle in the piston 

at the improved RCM length.  

3.1.2.3  Image Validation of Needle Accuracy in Phantoms 

Due to minor design changes and repairs to the mouse bed manipulator after the CMM 

calibration, the robot required recalibration to confirm the relative position of the RCM and the 

cross-fiducial at the mouse bed manipulator’s home position. The robot was placed in the MR 

scanner and the water filled glass needle was used to target preplanned virtual targets in a PVA 

(polyvinyl alcohol) phantom;77 10% PVA by weight and 90% water by weight, 1 freeze/thaw cycle. 

Seven different target and trajectory positions throughout the robot’s working volume were imaged 

to calculate the position of the RCM relative to the cross-fiducial.  
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Image localization of the needle tip is not an accurate method of determining its location, 

since the needle tip diameter at the tip is about 10µm. The glass needles used in these studies are 

made using a pulled glass technique, meaning that the shape of the conical needle tip is not 

consistent among production batches. Therefore, a geometric registration of the needle tip is not a 

viable localization method. Instead, coronal image sets are used to locate two points on the axis of 

the water filled needle, which appear as bright spots in the MR images. The points along the needle 

trajectory axis are localized by determining the intensity-weighted centroid of the water inside the 

glass needle 

𝑥𝐶 =
∑ 𝐼𝑖𝑥𝑖𝑖

∑ 𝐼𝑖𝑖
 , 𝑦𝐶 =

∑ 𝐼𝑗𝑦𝑗𝑗

∑ 𝐼𝑗𝑗
                                                       (7) 

where 𝑥𝑖 and 𝑦𝑗 are the pixel coordinates in the ith row and jth column, I is the pixel intensity, and 

𝑥𝐶 and 𝑦𝐶  are the coordinates of the center of signal intensity in the image. The intensity-weighted 

centroid measurement approach was used instead of the MATLAB function used for fiducial 

localization because the needle trajectory is not perpendicular to the imaging plane, resulting in a 

more oval shape in the images. This method would be prone to localization error since the circular 

Hough transform function is designed to find circular shapes in images. 

These scans were performed similarly to the scans used for the registration process 

previously described in Section 2.6.2, with the addition of coronal image sets, which were also re-

acquired with reversed frequency encoding directions. Each image set in our study was imaged 

with six averages in a FoV of 32.00×32.00mm×25.50mm³, with a voxel size of 

0.200×0.200×0.500mm³. The average position in the two coronal image sets along the reversed 

frequency encoding directions were used to determine the points on the needle axis, insensitive to 

in-plane magnetic field inhomogeneity. Apart from the vertical needle orientation, the rest of the 

need axis orientations are not perpendicular to the coronal plane, hence there is no correction for 

slice select error.  
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The fiducial axis points and needle axis points were transformed into the global MR 

coordinate system using the output transform matrix from the MR scanner system. The needle axis 

points were transformed to the robot coordinate system derived from the fiducial axes. An iterative 

approach was performed to determine the point with the smallest average distance from the needle 

trajectories, at a resolution of 1 µm. In other words, the RCM location that minimizes targeting 

error was determined. The location of the new RCM was found to be at -0.693 mm, -10.742 mm, -

0.001 mm in the X-,Y- and Z-directions, respectively, in the robot coordinate system. 

3.1.3  Total Image-Guided Needle Accuracy Validation 

in Phantom Tissue 

The complete needle targeting and insertion procedure was performed identically to the 

one described in Section 3.1.2.3 but with nine different targets and needle orientations, covering 

the robot’s working volume for mouse brain procedures. The robot was removed from the bore and 

re-inserted after each needle orientation, to ensure that the fiducial was not in the exact same positon 

or orientation inside the MR scanner’s bore during the robot registration. The shortest distance from 

each needle axis to the newly calibrated RCM, determined in Section 3.1.2.3, was computed to 

determine the total needle targeting and needle angle errors of the needle delivery procedure. 

3.1.4  In Situ Needle Delivery Accuracy Validation  

A medium sized mouse (~35g) was obtained and used as an in situ test subject to validate 

the needle targeting procedure in a small animal. The mouse was ethically euthanized according to 

institutional procedures and a craniotomy was performed to provide access to the brain. The glass 

needle was filled with water to create a large contrast between the needle and brain tissue to ensure 

that the needle can be visualized in the post-insertion images. The spherical linkage and mouse bed 

manipulator were moved to positions, which allowed the user enough room to load the mouse and 

RF coil onto the mouse bed. Double-sided tape was placed on the mouse bed while tape was placed 
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around the body and snout to help fixate the mouse. Them mouse’s head was oriented so that the 

area of exposed brain was not covered by the RF coil (see Fig. 9). The robot was placed in the MR 

scanner’s bore and advanced until the mouse’s brain was at the MR scanner’s isocenter. The 

registration procedure was conducted as described in Section 3.1.2.3. The third dorsal ventricle was 

selected as the needle target for this experiment since a mouse’s ventricles have high contrast in 

MR images and intraventricular injections are commonly performed in small animals78.  

 

FIG. 9. Picture of the robotic device with the mouse taped to the mouse bed with the RF coil placed over top 

of it. The X-stage is moved as far backwards as possible and the spherical linkage is moved away from the 

mouse bed to provide access to the mouse bed during setup. 

A target point was selected in the mouse’s ventricle and a second point was selected to 

define the needle’s trajectory in the MR images. The same voxels were also selected in the images 

with reversed frequency encoding directions. The target and trajectory coordinates were processed 

to determine the target position and needle trajectory relative to the robot, and subsequently, the 

encoder coordinates for the five DoFs. Once the robot was moved to the targeting position, a 3D 

image was acquired of the brain (steady-state free precession, TR = 7.00ms, TE = 3.50ms, flip 

angle = 30º, FoV = 19.20 × 19.20 × 19.20mm³, matrix size = 128 × 128 × 128, 150µm isotropic, 4 

averages, 4 frequencies, acquisition time = 30:35 min). The needle driver was manually actuated, 
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plunging the glass needle tip through the mouse brain and into the ventricle. 3D images of the 

mouse brain were also acquired with the glass needle in the brain and when the glass needle was 

removed from the brain. 

3.2   Results 

The results from the accuracy validation experiments are displayed in Table 1 and are 

discussed in the following subsections. 

Table 1: Summary of all positional and angular error results from the various accuracy validation 

experiments outlined in Section 3.1.  

Experiment Error 
Measurement 

Method 

2.2.6.1 Open-Air Robotic Calibration and Accuracy Validation   

Total Needle Tip Position Repeatability Error 146 ± 38 µm CMM 

Needle Tip X Position 24 ± 28 µm CMM 

Needle Tip Y Position 32 ± 16 µm CMM 

Needle Tip Z Position 140 ± 21 µm CMM 

   

Total Needle Trajectory Angle Repeatability Error 0.15 ± 0.62° CMM 

   

Total Mouse Bed Position Error 31 ± 58 µm CMM 

Mouse Bed X Position 2 ± 10 µm CMM 

Mouse Bed Y Position  16 ± 19 µm CMM 

Mouse Bed Z Position 26 ± 53 µm CMM 

   

2.2.7 Total Image-Guided Needle Accuracy Validation in Phantom Tissue   

Total Robot Needle Targeting Error 178 ± 54 µm MRI 

Total Robot Needle Trajectory Angle Error 0.27 ± 0.65° MRI 

 

3.2.1  Open-Air Calibration and Accuracy Testing 

A CMM was used to iteratively calibrate the vertical needle position to an angle of 0.048º 

to the vertical. This position was assumed to be the vertical position of the needle in the kinematic 

equations, and hence the rest of the needle trajectories were based on the initial trajectory. The 

mean positional error of the RCM tooling ball was measured to be 83 ± 47 µm, with a mean 

trajectory angle error of 0.15 ± 0.62º throughout the 24 measured orientations. The length of the 

needle was virtually shortened and lengthened iteratively in the CMM data set until the standard 

deviation was minimized. The needle length required a 76 µm extension from its current length 
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based on the CMM results, which reduced the mean positional accuracy of the spherical linkage to 

146 ± 38 µm. Although this extension increased the mean needle error, it reduces the standard 

deviation which will result in more consistent needle targeting. The true location of the RCM with 

the extended needle tip was used as the calibrated RCM for future procedures. The new needle tip 

position information was used in designing the needle length calibration jig described in Section 

3.1.2.2. 

The calibrated home position of the mouse bed manipulator was determined and was 

measured at 45 different positions over its RoM, however, the mouse bed manipulator’s entire 

working volume is much larger than what is needed for mouse brain experiments, 

25.4×25.4×12.5mm³ and ~10×15×10mm³ respectively, and therefore a working volume of 

12.5×12.5×12.5mm³ is a more accurately representative of the mouse bed manipulator’s error for 

brain procedures. This cubic mouse brain working volume was used because the calibration 

positions were measured in increments of 6.25mm or less in all three directions. Therefore, the 

mean positioning error of the mouse bed manipulator throughout the working volume of the mouse 

brain is 31 ± 58µm.  

3.2.2 Needle Tip Accuracy in Phantom Tissue 

The image-guided needle targeting accuracy was determined in PVA phantom tissue. The 

water filled needle was inserted into the phantom at nine different targets and trajectories. Each 

needle trajectory was imaged to determine the trajectory of the needle from the image (see Fig. 10). 

The mean needle targeting accuracy in an MR image-guided phantom procedure was 178 ± 54µm 

with a mean trajectory angle error of 0.27 ± 0.65º. 
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FIG 10: Plot of the needle trajectories from the image-guided phantom targeting experiment. The graph on 

the right is zoomed in to illustrate the distance between the RCM and the needle trajectories. A 2D image set 

was acquired of the needle protruding from the phantom tissue at each of the nine needle trajectories. Two 

points on the needle axis were localized in the MR images and their positions transformed into robot 

coordinates. Since the mouse bed manipulator moves to align the target in the mouse brain with the fixed 

RCM, the relative needle trajectories are offset by the distance the mouse bed manipulator has had to move 

in 3D for each needle orientation.  These mouse bed manipulator’s encoder position were subtracted from 

the needle trajectory points in order to align the trajectories relative to the RCM. These trajectories were used 

to calculate the shortest distance from each trajectory to the RCM. Each needle trajectory is represented by 

black asterisks connected by a solid black line, where the black asterisks are the points along the needle axis 

localized in the MR images. The red dot at the junction of the needle trajectories is the location of the 

calibrated RCM, while the magenta asterisks, seen more clearly in the graph on the right, represent the closest 

point on each trajectory to the calibrated RCM.  

3.2.3  In Situ Preclinical Application 

A preclinical image-guided needle targeting demonstration was performed in the third 

dorsal ventricle of a mouse brain. The target inside the third dorsal along with the needle trajectory 

point was selected from 2D MR images acquired during the registration procedure. 3D images were 

acquired after the needle insertion and after the needle was removed (see Fig. 11).  
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FIG. 11. Axial slices from the 3D mouse brain images, a) before needle insertion with red oval around the 

black ventricle, b) with the needle inserted in the lateral part of the third dorsal ventricle. 

3.3   Discussion 

3.3.1  Effects of the Robot on MR Images 

Any negative effects of the robot on the MR images are likely detrimental to the success 

of this robot since the accuracy of registration and needle target/trajectory selection are directly 

related to the accuracy and quality of the MR images.  

The magnetic field distortion experiment indicated the approximate measurement of in-

plane distortion caused by the metal linear MR compatible piezoelectric motors. The incorporation 

of this design constraint ensured that the accuracy of the robot localization was not compromised 

by distorted images, which was key to the overall success of the robot. 

The fundamental principle of MR imaging is based on receiving RF signals from the 

imaging samples. Noise can easily be introduced into the MR scanner by foreign electrical 

components such as motors and encoders. The spectrum scan showed a few small unknown noise 

signal peaks between -165kHz and -185kHz from the center frequency (400.2MHz). These 

unknown signal peaks would likely introduce error into MR images acquired at a BW higher than 
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330kHz, such as echo planar imaging. which use high bandwidths around 500kHz in the 9.4T 

scanner. The noise signals will not affect the images acquired using any lower bandwidth scanning 

sequences. Although most gradient echo sequences use a much lower bandwidth than 330kHz, 

there are some that use higher bandwidths, which will be more susceptible to noise artifacts. 

The effects of the magnetic field inhomogeneity on fiducial localization were calculated 

by comparing the locations of the fiducial localization points in the first image sets with those from 

the second image set with reversed frequency encoding directions. Based on the registration images 

acquired for the robot registration during the phantom tissue experiment, the mean difference 

between the localized fiducial positions in the images with the initial and the reversed frequency 

encoding directions was 2 ± 61µm and 13 ± 54µm in the axial and sagittal planes, respectively. 

Since the mean difference in position localization is relatively small, the effects of magnetic field 

inhomogeneity on the localization accuracy were deemed to be negligible. The large standard 

deviation can be attributed to the fiducial localization error. This calculation yielded negligible 

effects, indicating that the in-plane localization error induced by magnetic field inhomogeneities 

pose negligible effects. The 9.4T MR scanner, as with most modern MR scanners, employ shims, 

which correct the scanner’s magnetic field inhomogeneities due to main magnetic field 

imperfections and due to the presence of foreign objects.  The effects of magnetic field 

inhomogeneity are also reduced when imaging at a higher bandwidth. The 2D registration images 

were acquired at a bandwidth of 40kHz, which is above average.   

3.3.2  Open-Air Calibration and Accuracy Testing 

The in-air calibration and accuracy testing using a CMM proved to be a valuable step in 

the development of this robot, especially considering that the needle tip length adjustment enabled 

an increase in the RCM accuracy of over 20%.  
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The standard deviation of the needle trajectory error at 45° was about twice as large 

compared to the average trajectory error (see Table 2). This large standard deviation was 

unexpected considering the effective step resolution of each controlled spherical linkage arm was 

0.09°. Similar to the trajectory error, the needle targeting error from the spherical linkage also 

increases substantially as the needle angle approaches 45º.  

Table 2: Table demonstrates the increase in mean targeting and trajectory errors as the needle angle increases 

relative to the vertical position. 

Needle Angle 

from Vertical 
n 

Mean Trajectory 

Angle Error 

Deviation of RCM Position Error (µm) 

X Y Z 

0° 8 0.147 ± 0.061° ± 5 ± 5 ± 15 

22.5° 8 0.085 ± 0.104° ± 19 ± 18 ± 16 

45° 8 0.522 ± 0.995° ± 47 ± 22 ± 24 

 

The causes of this error became more evident once the individual trajectory errors were 

analyzed. The spherical four bar linkage design used for this robot possesses a non-linear angular 

position relationship between the controlled arms and the needle. In other words, for each angular 

step of the controlled arms to the needle angle forward, the change in needle angle step size 

decreases, and the opposite occurs when the needle is angled backwards (see Table 3). 

Table 3: Non-linear relationship between encoder step size and needle trajectory. These needle angles and 

encoder step sizes are representative of the needle trajectory confined to a vertical plane of the needle tilting 

forwards and backwards (Figs. 3(c)iv and 3(c)vi), respectively). The required encoder positons were 

calculated based on one degree planar movements of the needle trajectory. 

Needle Angle 
Controlled Spherical 

Linkage Arm Angle 
Difference Encoder Steps 

45˚ backwards 81.33˚ 
0.22˚ 2.44 

44˚ backwards 81.11˚ 

0˚ (vertical) 68.66˚ 
0.40˚ 4.39 

1˚ forwards 68.26˚ 

44˚ forwards 30.97˚ 
2.46˚ 27.33 

45˚ forwards 28.51˚ 

 

As seen in Table 3, the needle’s angular positioning resolution is over ten times higher 

when the needle is fully angled forwards compared to when it’s angled backwards. The needle 

trajectories were calibrated relative to the vertical needle position, and is therefore it is expected 
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that the trajectory error increases as the needle travels away from the calibrated positon. Also, as 

the needle is tilted backwards, the moment arm of the applied force from the controlled linkage 

arm to the passive linkage arm decreases, in turn requiring more force to move the linkage. 

Therefore, since more force is required to overcome the small moment arm, the added force on the 

joint between the controlled and passive arms results in more friction in the joint, making it more 

difficult to move the hydraulic needle driver at these angles. This added force is also the source of 

temporary deformation of the linkage, considering all of the parts, including fasteners, are plastic. 

A combination of these effects are most likely the cause of the increase error when the needle is 

tilted backwards. Although the trajectory error’s standard deviation is higher than expected, the 

result is still within the target mean of <1º. The scenarios where the effects of higher trajectory 

error would have an effect the procedure are regarding the ability of the system to drive the needles 

through a small burr hole, without the needle interfering with the skull or RF coil, and to avoid any 

sensitive areas of the brain. In a worst case, and almost unrealistic scenario for mouse brain 

injections, if the vertical target depth was 10mm, a needle trajectory of 45º would require the needle 

to pass through about 14.14mm of brain tissue. If a needle trajectory error of 1º was added to the 

desired needle trajectory, resulting in a 46º trajectory angle, the needle would enter the brain tissue 

about 0.35mm over from the expected entry point. The effects of the maximum potential error are 

important to consider during the procedure. However, since the mouse brain targets are usually 

relatively shallow, the effects of a mean trajectory angle error of <1º should keep the needle 

trajectory within a safe distance from intersecting any sensitive/restricted areas of the brain. 

Other sources of error in this measurement method include the slight deformation of the 

device due to the relatively small applied force of 0.07N on the components being measured, as 

well as the error of the CMM itself.  
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3.3.3  Needle Targeting Accuracy in Phantom Tissue 

The needle targeting experiment in phantoms successfully yielded a calculated mean 

targeting accuracy of <200µm and a mean trajectory angle accuracy of <1º. A limitation of the 

trajectory based needle targeting accuracy measurement method remains that the actual position of 

the needle tip was not measured, but rather the shortest distance between the RCM and the needle 

trajectory was assumed to be the error. Although this targeting accuracy measurement is not perfect, 

many measures have been implemented to validate the device’s needle targeting accuracy, 

including the CMM calibration and accuracy measurements, the implementation of the needle 

length jig, and the RCM calibration with MR images. This needle targeting accuracy measurement 

method neglects the deformation of tissue, potentially resulting in the needle tip coming up short 

to the target. The effect of tissue motion on the needle targeting accuracy is expected to be relatively 

small in preclinical brain applications considering the extremely fine glass needle tip (which pierces 

tissue with ease), low density brain tissue, slow needle insertion speed, and the shallow brain 

targets. This needle targeting accuracy measurement method also neglects the effects of needle 

deflection, but since the needle tip is symmetrically pointed (conical), as opposed to a beveled 

needle tip, it is unlikely that an unbalanced lateral load will be applied to the needle upon insertion. 

The target depths are also only a few millimeters deep, so internal tissue forces are unlikely to 

deflect the needle to any meaningful degree. The needle will likely break if a foreign lateral force 

is applied to the needle, close to the needle’s tip, since it is very thin (~1mm) and because glass has 

a low tensile strength. Based on the device’s intended purpose in this application, it is unlikely that 

the needle deflection has any impact on the targeting error of this device. 

Although the fiducial localization error and needle axis localization errors contribute to the 

overall measurement of the device’s targeting error, the error patterns were consistent between the 

CMM and phantom needle targeting validation experiments. This indicates that these localization 

errors don’t have an exaggerated bias in the device’s accuracy measurements. 
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The long registration time can be a major disadvantage of using this device. In our in situ 

application, the needle target was relatively large, and therefore a voxel volume of 0.2×0.2×0.5mm³ 

provided sufficient detail to distinguish the target. Since no meaningful in-plane magnetic field 

inhomogeneities were detected, the correction method requiring two acquisition of each image set 

is unnecessary. Therefore, the registration process only needs two image sets in total (as opposed 

to 4), hence reducing the registration time by half, to ~20 minutes. This registration time can then 

be further reduced to ~10 minutes by fitting the fiducial within a tight image matrix of 40×40 pixels 

without changing the voxel size. 

3.3.4  In Situ Preclinical Application 

The device successfully demonstrated an ultra-high field strength MR image-guided in-

bore needle targeting intervention where the tip of a glass needle was guided into the third dorsal 

ventricle in a mouse brain. Image confirmation shows the water filled needle penetrating the mouse 

brain and entering the ventricle (see Fig. 11(b)). As previously mentioned, the actual needle tip 

cannot be visualized since it is about 1/15th of the voxel’s size. The ventricles in live mice are 

generally bright in the MR images, however, CSF is known to evacuate from the ventricles after a 

craniotomy in euthanized mice, resulting in much less signal from those areas.  

3.4   Conclusion 

The design, calibration and experimental accuracy testing of an MR image-guided robotic 

needle delivery device has been developed to successfully perform needle targeting procedures 

with a mean targeting error of <200µm and a mean trajectory error of <1º. The robot should provide 

researchers with a user friendly tool for conducting accurate and repeatable preclinical needle 

targeting procedures in soft tissues such as mouse brains. The six DoF robot was manufactured 

from MR compatible materials, predominantly plastics, and is controlled using MR compatible 

piezoelectric motors and optical encoders. The robotic design focused on minimizing the effects of 
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the robot on the image quality since the image registration process relies directly on the accuracy 

of the MR images. An MR visible fiducial was built into the robot’s mouse bed to localize the 

robot’s position and orientation in the MR images through a semi-automated registration procedure. 

The registration and kinematics are computed in MATLAB based on the needle target and 

trajectory selected in the MR images, which are transformed into the robot coordinate system from 

which the device can be positioned to conduct the needle insertion procedure. The device’s 

mechanical calibration and accuracy measurements were conducted using a CMM, reporting a 

mean open-air needle targeting and trajectory error of 146 ± 38µm and 0.15 ± 0.62º from the 

spherical linkage, respectively, and a mean mouse bed manipulator error of 31 ± 58µm. These mean 

position errors were used as the calibrated positions. An evaluation of the device’s total targeting 

error was evaluated by performing needle insertions to nine different targets at various trajectories 

throughout the device’s working volume. The accuracy of the device was measured using the 

relative position of needle trajectories to the RCM in the MR images, yielding a mean needle 

targeting error of 178 ± 54µm and a mean trajectory error of 0.27 ± 0.65º. Finally, the device 

successfully demonstrated an image-guided needle targeting procedure in situ. 
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Chapter 4 

4  Summary and Future Work 

4.1  Summary 

4.1.1 Chapter 2: The Design of an Ultra-High Field 

Strength MR Image-Guided Robotic Needle 

Delivery Device for In-Bore Small Animal 

Interventions 

A six DoF robotic device was designed, developed and tested to perform needle 

interventions in small animals under ultra-high field strength MR image-guidance. Mechanical and 

electronic design constraints stemming from the nature of ultra-high field strength preclinical MR 

scanners resulted in the development of a unique, compact, robotic device, designed to work inside 

the MR scanner without degrading the quality of the images. The robot is composed of three main 

components: the needle driver, used to insert and retract the glass needle; the spherical linkage, 

used to manipulate the trajectory of the needle driver; and the three linear DoF mouse bed 

manipulator. The robot utilizes MR compatible piezoelectric motors to actuate five DoFs, while 

the needle driver is actuated using a miniaturized hydraulic design. The position of each DoF is 

tracked using MR compatible optical encoders. 

An MR visible cross-fiducial structure was used to locate the robot inside the MR scanner’s 

bore. The fiducial structure was integrated into the mouse bed, directly under where the mouse’s 

head rests. This fiducial shape, in conjunction with specific imaging sequences, can eliminate the 

sensitivity of the fiducial localization error due to magnetic field inhomogeneity55. A MATLAB 

program was developed to identify the cross-fiducial in the MR images, which was subsequently 
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used to calculate the location of the desired target, selected from the MR images, relative to the 

robot.  

The robot controller uses four PIC microprocessors, arranged in a master/slave 

configuration to process and communicate the encoder positions to the MATLAB program, where 

the desired encoder position is calculated and set based on the selected target and needle trajectory 

determined from the MR images. The motors actuate the robot until the desired position is reached, 

when the target coincides with the spherical linkage’s RCM, at which point the needle can be 

inserted to the target.  

4.1.2 Chapter 3: Experimental Methods and Results in 

the Development of an Ultra-High Field Strength 

MR Image-Guided Robotic Needle Delivery 

Device for In-Bore Small Animal Interventions 

A CMM was used to calibrate, and validate the open-air accuracy of the device by 

retrofitting the needle driver and mouse bed manipulator with tooling balls. The spherical linkage 

and mouse bed manipulator were moved to 24 and 45 positions, respectively, covering their RoM. 

After calibration, the spherical linkage’s open-air needle targeting and trajectory errors were 146 ± 

38µm and 0.15 ± 0.62º, respectively, and a mouse bed manipulator had a mean positioning accuracy 

of 31 ± 58µm. These mean position errors were used as the calibrated positions. 

A PVA phantom was molded and mounted to the mouse bed to simulate needle deliveries 

in mouse brain tissue. A total of nine needle insertions were performed with different targets and 

trajectories throughout the normal working volume of the device during brain targeting procedures. 

The glass needle was filled with water so it could be visible in the MR images, and therefore 

localized in the MR images to determine the device’s accuracy. The mean targeting error of the 
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device was 178 ± 54µm with a trajectory angle error of 0.27 ± 0.65º, which are within the objective 

mean errors. 

An in situ needle targeting experiment was performed to demonstrate the capabilities of 

the system to select a target and trajectory from the MR images, and accurately deliver a needle to 

the target. In this case, the device performed a needle delivery to the third dorsal ventricle of the 

mouse brain. 

4.2  Conclusion 

The field of preclinical image-guided interventional robotic devices has seen continuous 

developments, fueled by the progress and advancements of medical imaging technology and 

preclinical models. Minimally invasive image-guided interventions boast a variety of benefits, 

including minimized trauma to the mouse as target exposure is unnecessary. An MR image-guided 

needle delivery robot combines the benefits of ultra-high field strength MR imaging’s high spatial 

and contrast resolution, while the use of an MR compatible robot for needle manipulations can 

provide high resolution needle positioning to ensure safe and accurate injections. The development 

of this preclinical tool should also serve to simplify the overall preclinical injection process. A 

CMM was used to perform the robot’s mechanical calibration and open-air accuracy evaluation to 

ensure the robot is sufficiently accurate. The robot was registered to the MR coordinates using an 

MR visible fiducial. An evaluation of the device’s total targeting and trajectory errors was 

performed in phantom tissue, yielding a mean targeting error of <200µm, and a mean trajectory 

angle error of <1º. Finally, an image-guided needle targeting procedure successfully demonstrated 

in situ. 
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4.3  Future Work 

Although the proof-of-concept was successful, there are numerous refinements and 

developments that need to be implemented before this device can be used as a practical tool for a 

wide range of preclinical research techniques.  

4.3.1 Mechanical Design Improvements 

The spherical linkage and mouse bed manipulator both performed to within the expected 

standard of accuracy. As previously discussed, it is considerably more difficult to achieve the same 

targeting accuracies in plastic mechanical devices compared to those constructed from metal. The 

calibrations performed to the spherical linkage by iteratively adjusting the needle length to 

minimize needle targeting error and accurate positioning the needle vertically were important in 

reducing targeting and trajectory errors, respectively. The mouse bed manipulator’s position was 

calibrated, but there was not attempt to map and correct the error contributions for each DoF. The 

mouse bed manipulator had a mean positional repeatability of ± 15µm (25 positions measured twice 

each over the RoM of the mouse bed manipulator), indicating that the integration of a 3D map of 

the mouse bed manipulator’s error into the positioning software would be able to improve the 

device’s overall targeting accuracy. 

The most challenging aspect of the robotic design was the integration of a non-metallic, bi-

directional, needle driver. The current hydraulic design proved to have some functional issues, 

where it was occasionally unable to retract the needle, indicating that an alternate design solution 

may be required. The current needle driver design is a manually actuated using a syringe, which 

advances the needle when compressed, and retracts the needle using suction by pulling back the 

syringe. The hydraulic piston, which is coupled to the needle, contains an O-ring seal which 

prevents the hydraulic fluid from escaping from the hydraulic housing, especially while under 

higher pressures during actuation (see Fig. 2 for a cross-sectional view of the hydraulic needle 
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driver). The difficulty in this hydraulic design remains that the O-ring seals needs to be tight enough 

to keep the hydraulic fluid from escaping under pressure, but loose enough for the hydraulic 

piston/needle to be retracted by suction. Since the suction in this design is a much weaker pressure 

than hydraulic compression, the needle driver would occasionally be unable to retract the needle. 

To overcome the issue regarding actuation from suction pressure, commercial bi-directional 

hydraulic actuators are generally composed of two hydraulic cylinders acting in opposite directions, 

which allows the actuator to insert or retract the piston/needle using the same amount of controlled 

force. Designing a bi-directional hydraulic actuator for this application is difficult due to the lack 

of space. A potential solution involves replacing the hydraulic actuation with pneumatic actuation 

for the needle insertion, and a vacuum to apply suction and for needle retraction. While the 

maximum amount of suction produced by the syringe was limited by the stroke volume of the 

syringe, an external vacuum has the ability to apply an increasing amount of suction in order to 

overcome the friction within the needle driver. The pneumatic actuation could be provided through 

the same tubing currently used for hydraulic actuation, and allowing the pneumatic components be 

set up outside of the MR suite, therefore not requiring them to be MR compatible. This design 

solution would integrate well with the current robotic design, since the robot would not require a 

redesign. 

Before performing needle targeting procedures in live mice, the bite-bar and anesthetic 

tube connector assembly must be manufactured, and alterations need to be made to the mouse bed 

so the bite-bar and anesthetic tube connector assembly can be integrated onto the mouse bed. The 

bite-bar and anesthetic tube connector assembly were incorporated in the original CAD design to 

insure that there was no interference between it and the spherical linkage throughout the device’s 

RoM. 

A suggested mechanical design improvement involves the integration of a needle depth 

control feature during needle insertions. This feature poses a design challenge since the linear 
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position encoding requires the use of an electrical encoder with high accuracy, which needs to be 

located on the needle driver, and therefore too close to the FoV. However, this approach would 

likely result in image artifacts. A potential solution to track the needle insertion depth involves the 

integration of a spherical MR visible fiducial that is mounted on the proximal end of the needle, 

where it exits the piston. The position of the needle fiducial relative to the RCM can be calculated 

to determine the needle insertion depth. The disadvantage of this method is that this image based 

position tracking is not as accurate as mechanical encoding. The imaging FoV would also need to 

be enlarged, or a separate scan may need to be performed, in order to visualize the needle fiducial 

depending on the depth of the insertion, therefore prolonging the overall needle targeting procedure. 

The RF coil was designed to be placed over the mouse after the mouse was fixed to the 

mouse bed. A potential design improvement involves flipping the RF coil from its convex 

orientation to a concave orientation and integrating it directly into the mouse bed. This new 

arrangement boasts many benefits, including: improved user friendliness since the user would not 

need to place the RF coil over the mouse after fixation; improved registration time since the fiducial 

is closer to the RF coil, resulting in higher signal from the fiducial and therefore requiring fewer 

averages; and this orientation of the RF coil would not impede and needle trajectories.  

Although this study focuses on brain injections, this device was designed with a detachable 

mouse bed to accommodate the use of custom mouse beds and RF coil designs tailored to other 

local targeting procedures anywhere within the mouse’s body. Additionally, a wide variety of 

needle shaped tools can be placed in the hydraulic piston’s cannula to perform a variety of 

procedures, including pressure measurements, biopsies, electrode placements, ablation, etc. This 

robot has created the potential for numerous high-accuracy preclinical targeting applications, which 

were previously difficult with unreliable accuracies. 
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4.3.2 Controller Improvements 

4.3.2.1 Electronic Improvements 

The electronic controller developed for this robot uses a mix of prototyped and stock 

electronics. The current design is made up of various components, which need to be individually 

connected before each procedure resulting in added time to the pre-procedure setup. The stock 

piezoelectric motor drivers were finicky and some of them often required resetting after the 

controller was all assembled and connected, which can only be done by unplugging and plugging 

in the power cable. The electronic components should be integrated into a control box for 

protection, and external switches should be added to make setup easier and faster. Other minor 

improvements include replacing the small/weak wire connectors on the motor cable extensions, 

and replace them with more durable and user friendly connectors.  

4.3.2.2 Software Improvements 

The current control and registration software are functional but could be improved with a 

proper user interface to allow the user to perform all of the necessary tasks in one user friendly 

display. 

A vital software tool that needs to be implemented to improve the robot’s usability involves 

the automatic detection of “no-go” zones, in which the software will not permit the user to position 

the robot in a way in which any part of the robot could collide with any other part of the robot. It is 

an important feature to ensure that the glass needle tip is protected since it is very fragile. If the 

needle tip were to break due to unintentional contact as the needle was being inserted, the procedure 

would have to be halted, the robot would need to be removed to replace the needle and injectable 

material, and the registration procedure would need to be performed again. The effect of breaking 

a glass needle may result in a glass shard coming in contact with the exposed area of the brain or 

skull. Alternatively, the risk of a collision between the needle tip and the RF coil can be eliminated 

by implementing the “flipped” RF coil design discussed in Section 4.3.1. Other “no-go” zone 
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applications should eventually include the auto-segmentation of sensitive regions of the brain, and 

of the burr hole, to ensure that the needle trajectory is automatically constrained to passing through 

the burr hole. 

4.3.3 Registration Procedure 

The chief improvement of the registration procedure involves creating a completely 

automated registration algorithm as opposed to the current semi-automated version currently being 

used. The registration and position control software should be integrated into MR scanner’s control 

computer, allowing the software to instantly access the image files to perform the image 

registration, and eventually the “no-go” zone auto-segmentation. 

A drawback of any medical robotic device is the need for it to be recalibrated if major 

components need to be taken apart and reassembled for maintenance, part replacements or design 

additions. A useful feature of the device would be an automated calibration process where the robot 

and imaging software could be linked, allowing the robot and scanner to work in tandem to perform 

calibration imaging as the robot moves to preset positions. Since this would likely take a few hours, 

the device could be left to perform this procedure automatically overnight, when there is less 

demand for the MR scanner. 

4.4  Final Remarks 

As preclinical models and preclinical MR imaging continue to develop, the need for highly 

accurate surgical tools to perform minimally invasive local injections will increase, just as it has in 

human applications. The combination of exceptional soft tissue MR imaging and high robotic 

targeting accuracy have proven to be a powerful pair in accurately delivering needles to specific 

targets in soft tissues, and has opened opportunities for various minimally invasive MR image-

guided surgical applications. Although this device is still in development, the testing of the proof-
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of-concept device was successful and has hopefully helped pave the way for future MR image-

guided procedures to improve the standard quality of research. 
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Appendix 
 

Appendix 1 

 

The resultant displacement of the mouse bed from the Solidworks FEA Simulation shows 

a maximum needle induced deflection of 0.3µm from an applied force of 3mN. The color scale 

depicts the URES “displacement resultant” which is predominantly in the vertical direction. The 

green arrows on the left of the mouse bed represent the fixed surface, which is not visible from this 

angle, while the purple arrows represent the vertical force applied to the end of the mouse bed by 

the needle in a worst case scenario, as described in Section 2.3.3. This FEA only accounts for the 

dominant mouse bed deflection, although there are other sources of deflection in the XYZ-stage. 
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