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Abstract
 

 We investigated the application of stable isotope analysis of proboscidean remains 

(collagen in bone/dentin/cementum and structural carbonate in enamel bioapatite) for genus-level 

identification of isolated specimens, assessment of geographic origins, and testing for nutritional 

stress. Mammoths (Mammuthus sp.) tended to have higher δ
15

Ncol and lower δ
13

Ccol than 

mastodons (Mammut americanum), but differences were not significant in every location. 

Determining the genus of isolated specimens may be possible for locations and time periods with 

good isotopic baselines, but environmental changes can confound interpretations. For example, 

an Alberta proboscidean with a δ
15

Ncol of +1.4‰ (characteristic of mastodons) ultimately proved 

to be a mammoth. Its surprisingly low nitrogen isotope composition is attributable to the recently 

deglaciated environment it inhabited. We provided a baseline for isotopic assessment of 

geographic origins of isolated proboscideans in Western Canada. Bioapatite δ
13

Csc and δ
18

Osc can 

be used to distinguish specimens from Alberta, Klondike, Old Crow, Herschel Island, and further 

south (e.g., Arizona, Great Lakes). Finally, we found that an Alberta mammoth with 

morphological evidence of nutritional stress experienced a change in diet, environment, or 

physiology prior to death, but its isotopic compositions did not suggest a link to hypothesized 

starvation (catabolism of proteins or reliance on lipids).  

 

Keywords: 

Isotopes; mammoth; mastodon; collagen; carbonate 
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Introduction 

 

 Stable isotope compositions of fossil vertebrate remains can be used to reconstruct the 

behaviour (e.g., diet, migration), physiology (e.g., starvation) and paleoenvironmental context 

(e.g., vegetation, temperature, aridity, pCO2, and canopy cover) of extinct organisms (Clementz, 

2012; Hatch, 2012; Koch, 1998; Koch et al., 1994; Kohn and Cerling, 2002; West et al., 2006). 

Stable isotope compositions are also commonly used to identify or verify the origins of various 

modern substances (e.g., Chesson et al., 2010a, b), and can also be useful for inferring the 

geographical origins of humans or animals in ancient landscapes (e.g., Dupras and Schwarcz, 

2001; Knudson and Price, 2007; White et al., 1998).  

In this paper, we explore the use of δ
13

C (collagen and bioapatite), δ
15

N (collagen), and 

δ
18

O (structural carbonate in bioapatite) of extinct proboscideans for genus-level identification of 

isolated remains, determination of location of origin, and investigation of health status, using 

specimens from Western Canada (Alberta, British Columbia, and Yukon). We ask: (1) Are there 

consistent differences in the isotopic compositions of mammoths and mastodons in each 

location? (2) Can skeletal fragments of proboscideans that lack morphologically diagnostic 

features be assigned to genus (Mammuthus vs. Mammut) based on isotopic compositions? (3) 

Are there consistent differences in isotopic compositions of proboscidean fossils across 

geographic locations (Alberta, British Columbia, and Yukon – including Old Crow, Klondike, 

and Herschel Island), which could allow location-of-origin determination for isolated specimens 

from museum collections? (4) Do the isotopic compositions of an abnormal mammoth tooth 

support a hypothesis of nutritional stress prior to death?  
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To date, studies that have used stable isotope compositions to investigate proboscidean 

paleobiology in western Canada have focused on food web and climatic reconstruction (Fox-

Dobbs et al., 2008; Matheus et al., 2003a, b; Schwartz-Narbonne et al., 2015; Szpak et al., 2010) 

or nursing/weaning behaviour (Metcalfe et al., 2010) within the Yukon Territory. At a 

fundamental level, our intent is to provide baseline isotopic data for Pleistocene proboscideans 

from western Canada. All subsequent paleobiological research questions require an 

understanding of the variation in isotopic compositions within these taxa across time and space.  

 

Mammoth and Mastodon Ecology 

The Mammutidae and Elephantidae diverged at the end of the Oligocene or the beginning 

of the Miocene, ca. 27-23 Ma (Agenbroad, 2005). Morphologically, the most obvious difference 

between mastodons (Mammut americanum) and mammoths (Mammuthus spp.) is their dentition, 

which is adapted to browsing in the former, and grazing in the latter. Mastodon remains are 

typically associated with relatively wet, forested regions, such as that present in the Great Lakes 

region during the terminal Pleistocene (Dreimanis, 1967, 1968; Haynes, 1991; McAndrews and 

Jackson, 1988; Newsom and Mihlbachler, 2006; Saunders, 1996; Yansa and Adams, 2012). 

Studies of mastodon tooth enamel isotopic compositions, microwear, and gut/fecal contents 

support a browsing adaptation (Green et al., 2005; Koch et al., 1998; Lepper et al., 1991; 

MacFadden and Cerling, 1996; Newsom and Mihlbachler, 2006), although mastodon diets did 

include some grasses (Gobetz and Bozarth, 2001; Koch et al., 1998) and mastodons were able to 

adapt to significant temporal changes in vegetation within the Great Lakes region (Metcalfe and 

Longstaffe, 2014). Woolly mammoths (Mammuthus primigenius) were associated with open 

steppe-tundra environments (Guthrie, 2001; Haynes, 1991) and their southern cousins, the 
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Columbian mammoths (Mammuthus columbi), were most common in temperate grasslands 

(Agenbroad, 2005). Mammoths were predominantly grazers, as shown by their tooth enamel 

isotopic compositions, gut contents, fecal remains, and phyoliths in dental calculus, though they 

also consumed woody plants, mosses, and a variety of shrubs and forbs  (Cummings and Albert, 

2007; Feranec, 2004; Guthrie, 2001; Haynes, 1991; Hoppe, 2004; Koch et al., 1998; Mead et al., 

1986; van Geel et al., 2008). Both mammoths and mastodons were widespread in North America 

during the late Pleistocene (~125 to 10 ka), occupying most of the regions south of the 

continental glaciers, as well as Beringia during relatively warm and wet interglacials 

(Agenbroad, 2005; Harington, 1990; Zazula et al., 2014). Despite their different dietary 

adaptations and dentitions, isolated or fragmentary postcranial elements of mammoths and 

mastodons are difficult to distinguish. An independent identification method for these genera 

would be useful and would permit re-evaluation of specimens previously restricted to higher-

level taxonomic identification. 

 

Taxonomic Identification using Stable Isotopes 

 Previous research has shown that some animal taxa have distinct isotopic compositions 

relative to others. If isotopic differences among taxa are relatively consistent at a given location 

and/or during a given time period, they might be useful for taxonomic identification of skeletal 

elements that cannot be identified on the basis of discrete morphological or morphometric data. 

This approach was applied by Thewissen et al. (2001), who used carbon isotopes in bioapatite to 

support identification of Eocene fossils as cetacean versus artiodactyl or anthracobunid, and by 

Clementz et al. (2009), who used δ
13

C (collagen and bioapatite) to identify fragmentary 

archaeological bone samples as sea cow, baleen whale, or sperm whale. While ancient DNA or 
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ZooMS (“collagen fingerprinting”) analyses would provide more definitive independent 

identification methods (e.g., Buckley et al., 2014; Buckley and Kansa, 2011; Debruyne et al., 

2008; Enk et al., 2011; Poinar et al., 1998), isotopic analysis could potentially provide an easier 

and less expensive methodology that can also be used to address additional paleobiological 

questions. 

In regions with both C3 and C4 plants, which have very distinct carbon isotope 

compositions, δ
13

C can be used to distinguish between browsers (such as mastodons) and grazers 

(such as mammoths) (e.g., Baumann and Crowley, 2015; Koch et al., 1998). Since cold northern 

regions lack C4 plants, δ
13

C is less useful for identification in these locations, although small 

differences among herbivore taxa can result from differing plant (part) selection, climate or 

(micro)habitat, and animal physiology (e.g., Bocherens, 2003). In general, mammoths tend to 

have higher δ
15

N (and sometimes lower δ
13

Ccol) than coexisting herbivores (Bocherens, 2003; 

Bocherens et al., 1994; Fox-Dobbs et al., 2008; Iacumin et al., 2000; Koch, 1991; Kuitems et al., 

2012; Metcalfe et al., 2013). Schwartz-Narbonne et al. (2015) demonstrated that the high δ
15

N of 

the woolly mammoth resulted from a distinct habitat or diet rather than physiology. Mammoths 

and mastodons may also have distinct isotopic compositions if they drank from different water 

sources, as shown for southwestern Ontario and western New York (Metcalfe et al., 2013). These 

results suggest that an isotopic approach has potential for distinguishing between mammoths and 

mastodons in C3-dominated environments. 

 

Location-of-Origin Determination using Stable Isotopes  

The use of stable isotope compositions to evaluate location of origin also has precedents 

in the literature. Stable C, N, O, and H isotope analyses have been extensively utilized to 
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determine the location of origin of modern commercial animal products, including milk 

(Chesson et al., 2010a; Rossmann et al., 1998), cheese (Camin et al., 2012), honey (Chesson et 

al., 2011), and wool (Hedges et al., 2005). Isotopic compositions have been used to identify the 

location of origin and life history of human remains (e.g., Corr et al., 2008; Dupras and 

Schwarcz, 2001; Knudson and Price, 2007; Sharp et al., 2003; White et al., 1998; White et al., 

2004), and are increasingly also used to aid in the identification and characterization of forensic 

remains (Cerling et al., 2003; Ehleringer et al., 2008; Fraser and Meier-Augenstein, 2007; Mays 

et al., 2011; Meier-Augenstein et al., 2013; O'Brien and Wooller, 2007).  

Stable isotope methods for identifying location of origin of animal products and human 

remains are based on differences in diet and physiology (for δ
13

C and δ
15

N) (DeNiro and Epstein, 

1978, 1981; Koch et al., 1994), and geographical variations in drinking water (for δ
18

O and δ
2
H) 

(Bowen et al., 2005; Bowen and Wilkinson, 2002; Dansgaard, 1964; Ehleringer et al., 2008; 

Rozanski et al., 1993). In C3-dominated environments such as western Canada, regional 

differences in climate (e.g., temperature, rainfall) and environment (e.g., canopy cover, soil 

salinity, water availability, nutrient content) can cause small variations in the δ
13

C of C3 plants, 

which are passed on to consumers (Arens et al., 2000; Drucker et al., 2008; Kohn, 2010; Murphy 

and Bowman, 2009; Tieszen, 1991; Van Der Merwe and Medina, 1991). Herbivores occupying 

different ecological niches may also select plants or plant parts with different δ
13

C values (e.g., 

Brooks et al., 1997; Tieszen, 1991), leading to different tissue δ
13

C. Temporal variations in the 

proportion and isotopic composition of atmospheric CO2, or in any of the factors described 

above, can also affect plant and consumer δ
13

C (Arens et al., 2000; Long et al., 2005; Schmitt et 

al., 2012). In the present study, we expect that differences in δ
13

C among regions will be small 

(e.g., around 1-3‰), with higher δ
13

C in more arid locations (Kohn, 2010; Stewart et al., 1995). 
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 The largest variations in nitrogen isotope compositions of animals result from trophic 

differences (higher δ
15

N at higher trophic levels), which also affect juveniles consuming their 

mothers’ milk (e.g., Fuller et al., 2006; Jenkins et al., 2001; Metcalfe et al., 2010; Minagawa and 

Wada, 1984; Rountrey et al., 2007). Herbivores can also have different δ
15

N values because of 

environmental conditions (e.g., low rainfall amounts and high temperatures are related to high 

δ
15

N in plants), plant selectivity (e.g., plants with mycorrhizal associations tend to have lower 

δ
15

N), or physiology (e.g., nutritional stress can increase animal δ
15

N) (e.g., Amundson et al., 

2003; Craine et al., 2009; Drucker et al., 2010; Hartman, 2011; Szpak, 2014; Szpak et al., 2010). 

If regional differences are observed in the present study, we expect that samples from wetter 

locations and/or those with less-developed soils (e.g., recently deglaciated landscapes) will have 

lower δ
15

N values. The magnitude of differences in δ
15

N among regions in the present study is 

likely to be around 7‰ or less, based on previous isotopic studies of large mammals in 

glacial/postglacial Europe (Hedges et al., 2004; Richards and Hedges, 2003; Stevens and 

Hedges, 2004).    

 Oxygen isotope compositions of meteoric water decrease with increasing latitude, 

altitude, and distance from the sea, as a result of variations in temperature, rainfall amount, and 

the movement of air masses (Dansgaard, 1964; Rozanski et al., 1993; West et al., 2006). For 

example, modern mean annual meteoric water δ
18

O values are approximately 3.5‰ lower in the 

Klondike region (Mayo, Yukon) than in Edmonton (Alberta) (IAEA/WMO, 2010). Geographic 

variations in modern meteoric water δ
18

O are well-documented in global isoscape maps (Bowen, 

2010; Bowen et al., 2005; Bowen and Wilkinson, 2002; West et al., 2006). Drinking water δ
18

O 

values are passed on to large-bodied obligate drinkers such as proboscideans, but interpretation 

of ancient animal δ
18

O can be complicated by climate change, mobility, and non-meteoric water 
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sources (e.g., ancient groundwater or glacial meltwater) (Ayliffe et al., 1992; Bryant and 

Froelich, 1995; Kohn, 1996; Kohn et al., 1996; Levin et al., 2006; Longinelli, 1984). Thus, if 

isotopic analyses are used to infer location of origin, it is important to establish local baselines 

for the ancient ecosystems and taxa of interest. Generally, we expect that samples from higher-

latitude locations like Klondike and Old Crow will have lower δ
18

O values than samples from 

lower-latitude or coastal locations like Alberta and British Columbia.  

Based on the variations described above, an isotopic approach could be used to 

investigate the geographic origins of museum specimens. For example, Metcalfe et al. (2013) 

established a baseline for mammoth and mastodon isotopic compositions in Ontario, and 

examined three proboscidean specimens that lacked contextual records. A mastodon tooth they 

examined had isotopic compositions consistent with an origin in southwestern Ontario, whereas 

two mammoth teeth were extreme outliers. The authors determined that one mammoth likely 

lived during an interglacial period or in a more southern location, and the other was likely from 

Klondike, Yukon Territory. In some cases, a similar isotopic approach could also be used to 

investigate migration: if depositional contexts are secure and environmental change or 

microhabitat differences are deemed unlikely (e.g., because the same taxa are analyzed), outlying 

isotopic compositions can indicate migration from distant locations (Hobson and Koehler, 2015; 

Hoppe, 2004; Keenleyside et al., 2011; Toyne et al., 2014; Webb et al., 2013).  

  

Nutritional Stress: Isotopic Indicators 

The isotopic effects of nutritional stress are generally difficult to distinguish from other 

factors such as diet, climate, or geographic origins, and the relationship between food stress and 

isotopic compositions is not always straightforward, particularly among different species (Hatch, 
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2012; McCue and Pollock, 2008; Reitsema, 2013). Nevertheless, starvation, leading to 

catabolism of body tissues, commonly leads to an increase in δ
15

N of <+1 to +2‰ and either no 

change or a ≤1‰ increase in δ
13

C (Hatch, 2012; McCue and Pollock, 2008; Reitsema, 2013). 

Thus, in special circumstances it may be possible to use isotopic compositions of skeletal 

remains to investigate health (e.g., Olsen et al., 2014). Fossil specimens that record 

morphological signals of poor health provide an ideal opportunity to evaluate the link between 

isotopic compositions and nutritional stress.    

 

Materials and Methods 

 

Samples 

Samples of proboscidean skeletal remains (bone, tusk dentin, and molar enamel, dentin, 

and cementum) from known geographic localities were obtained from museum collections from 

British Columbia, Alberta, and Yukon (Table 1, Fig. 1). Only adult teeth and bones were 

selected, to avoid isotopic variations resulting from nursing (Metcalfe et al., 2010; Rountrey et 

al., 2007). Most specimens were identified as mammoth or mastodon based on morphology, but 

a few were identifiable only as proboscidean. The latter were sampled as case studies for 

taxonomic identification. All samples were selected opportunistically, to avoid damage to 

museum specimens. Several grams of bone, tooth, and dentin were removed from each specimen 

using a Dremel tool and/or by manual breakage. Since relatively large amounts of “bulk” bone 

and dentin (~0.5 to 1.5 g) were used for collagen extraction, and because bone does not grow 

incrementally, collagen samples represent an average of many seasons of growth. There is some 

potential for seasonal bias in enamel samples, since enamel grows incrementally and smaller 
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samples are required for analysis. To minimize bias, we sampled pieces of enamel that 

represented the entire enamel thickness (~1-2 mm) and typically ~10 mm or greater of tooth 

height, homogenizing the samples for each individual. Growth rate estimates for both mammoth 

and mastodon molar enamel indicate that more than 1 year is required for the full thickness of 

the enamel to develop (Metcalfe and Longstaffe, 2012, 2014). Growth in the occlusal-basal 

direction of mammoth and modern elephant teeth occurs at a rate of 13 to 22 mm/a, with the 

faster rates only occurring near the occlusal surface (Dirks et al., 2012; Metcalfe and Longstaffe, 

2012; Uno et al., 2013). Occlusal-basal growth rates for mastodon enamel are slower, with a 

maximum rate of 12 mm/a near the occlusal surface and a minimum of 2 mm/a near the cervix 

(Metcalfe and Longstaffe, 2014). Thus, our enamel sampling method averaged seasonal 

variations in both directions of tooth growth. 

One specimen, AB5 (RAM P90.7.1) allowed a unique investigation into the influence of 

nutritional stress on the isotopic compositions of an extinct megaherbivore. This specimen is a 

morphologically-normal upper-left M6 with a malformed, supernumerary M7 united to it by 

hypercementosis (Fig. 2). According to Burns et al. (2003:83): 

“The Villeneuve mammoth [AB5 / RAM P90.7.1] was clearly in great pain due to a 

conspicuous bulging of the buccal alveolus, and it may be argued that it was the ultimate 

cause of death…. Normal chewing action was eventually rendered impossible. The 

secondary occlusal facet on the buccal edge of the molar suggests that the mammoth 

made an effort to avoid the painful passing of the muscle across the bulge… and the 

animal likely died of malnutrition shortly after cutting the new facet, at age 46 to 48 

years, unable to process sufficient graze to survive.” 
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To examine temporal changes in the collagen δ
13

C and δ
15

N of this unique specimen, six distinct 

subsamples were obtained: (1) dentin from the anterior M6, near the occlusal surface, (2) 

cementum from the anterior M6, near the occlusal surface, (3) M6 root (mostly dentin), (4) 

cementum joining the M6 and M7, (5) M7 crown cementum, and (6) M7 root (mostly dentin). 

These subsamples represent different formation times (Appendix S1), and could provide insight 

into isotopic changes in the mammoth – due to nutritional stress or other causes – prior to death.  

 

Collagen 

Bone, dentin (crown, root, tusk), and cementum were used for collagen analysis. 

Collagen extraction was modified from Longin (1971), and included demineralization with 0.25-

0.5 M HCl (at room temperature), rinsing to neutrality, humic removal with 0.1 M NaOH (at 

room temperature), rinsing to neutrality, and solubilization in 10
–3

 M HCl at 75-90⁰C. Carbon 

and nitrogen isotope ratios were obtained using a Costech elemental combustion system 

(ECS4010) coupled to a Thermo-Finnigan Delta
Plus

XL stable isotope ratio mass spectrometer 

(IRMS) operated in continuous-flow mode. The δ
13

Ccol values were calibrated to VPDB using 

ANU-Sucrose (IAEA-CH-6) and NBS-22 (accepted values = –10.50‰ and –30.03‰, 

respectively), yielding the accepted value of +1.95‰ for NBS-19 (Coplen, 1994; Coplen et al., 

2006). The δ
15

Ncol values were calibrated relative to AIR using IAEA N-1 and IAEA N-2 

(accepted values = +0.4 and +20.3‰, respectively). Carbon and nitrogen contents were also 

calibrated using the accepted values for the above standards. An internal keratin standard was 

included in each analytical session to monitor accuracy and precision (mean ± 1 SD: δ
13

C 

measured = –24.03 ± 0.06‰ (n=77), accepted = –24.04‰; δ
15

Ncol measured = +6.29 ± 0.10‰ 

(n=77), accepted = +6.36‰). The average difference between duplicate analyses of collagen 
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samples was 0.06‰ for δ
13

C and 0.11‰ for δ
15

Ncol (n=16). For six individuals, collagen was 

extracted from multiple tissues (e.g., bone, dentin, cementum) from the same individual. The 

means of all measurements obtained for each individual are presented in Table 2. The differences 

between tissues from the same individuals ranged from 0.3 to 0.7‰ for δ
13

Ccol and 0.6 to 1.5‰ 

for δ
15

Ncol (Table 3, Table S1).  

 

Bioapatite 

 Only enamel was used for bioapatite analysis, because it is much more resistant to 

alteration than bone (Ayliffe et al., 1994). Pieces of enamel were mechanically cleaned of 

adhering dirt, dentin and cementum, sonicated in distilled water 2-3 times (minimum), and 

examined under an optical microscope prior to being ground to a powder using a mortar and 

pestle. Aliquots of enamel powder were treated with ~2.5% NaOCl at room temperature for ~21 

hours, rinsed five times with de-ionized water, reacted with 0.1M acetic acid for 4 hours, rinsed 

as above, and freeze-dried (Garvie-Lok et al., 2004; Koch et al., 1997). Carbon and oxygen 

isotope compositions were obtained using a MultiPrep automated sampling device (reaction with 

ortho-phosphoric acid at 90⁰C) coupled with a VG Optima IRMS in dual-inlet mode. The δ
13

C 

values were calibrated relative to VPDB using NBS-19 (+1.95‰) and Suprapur (–35.28‰), and 

the δ
18

O values were calibrated relative to VSMOW using NBS-19 (+28.6‰) and NBS-18 

(+7.2‰). Accuracy and precision were assessed using standards not included in the calibration 

curve: NBS-18 (δ
13

C measured = –4.94 ± 0.10 ‰, n=16, accepted = –5.01‰), internal laboratory 

standard WS-1 calcite (δ
13

C measured = +0.76 ± 0.15‰, n=5, accepted = +0.76‰; δ
18

O 

measured = +26.36 ± 0.18‰, n=5, accepted = +26.23‰), and Suprapur (δ
18

O measured = 

+13.15 ± 0.12‰, n=15, accepted = +13.25‰). The average difference between duplicate 
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analyses of enamel samples was 0.07‰ for δ
13

C and 0.19‰ for δ
18

O (n=6). Carbonate contents 

were determined using a calibration curve based on the reading of a pressure transducer in the 

mass spectrometer and the known carbonate contents of calcite standards. Replicate 

measurements of tooth enamel CO3 contents were within 0.4% on average (range of offsets = 0.1 

to 0.9%). 

 

Statistics 

 For isotopic comparisons of mammoths and mastodons within a region (Alberta, 

Klondike, or Old Crow), an F-test was used to determine whether variances of the two groups 

were equal, followed by a t-test assuming either equal or unequal variance, as appropriate. For 

isotopic comparisons among locations (Alberta, Klondike, Old Crow, Herschel Island, and 

British Columbia), a Kruskall-Wallis non-parametric analysis of variance was used to determine 

whether there were differences among groups, and a Dunn’s multiple comparison test was used 

to determine which groups differed. For comparisons among locations, British Columbia (BC) 

and Herschel Island proboscideans specimens that were not identified to genus were compared 

separately to mammoths and mastodons from other locations. If the unknowns had isotopic 

compositions more similar to either mammoths or mastodons from the other locations, a case 

could be made for their inclusion in that genus. An alpha of 0.05 was used for all statistical tests. 

 

Results 

 

Diagenesis 
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The C/N ratios, carbon and nitrogen contents, and extraction yields indicate that the 

collagen samples were well-preserved (Table 2) (Ambrose, 1990; DeNiro, 1985; van Klinken, 

1999). Three samples [dentin from AB5 (P90.7.1), AB11 (P00.2.1), and AB6 (P94.4.3)] had C 

and N contents (ca. 25-30% and 10%, respectively) that were slightly lower than is usual for 

well-preserved collagen, but their C/N ratios were normal. Powder X-ray diffraction (pXRD) 

analysis of the collagen showed that inorganic salts (brushite and halite) were present in these 

(but not other) samples. Since brushite and halite contain no carbon or nitrogen, the low C and N 

contents were likely caused by the presence of these salts. We note that a variation in the 

collagen extraction procedure for these samples (i.e., demineralization of large intact chunks of 

dentin rather than small pieces) rather than poor preservation was likely responsible for the 

formation of the salts, since the salts only formed in samples extracted using the former method. 

Based on the results above, the δ
13

Ccol and δ
15

Ncol results obtained for these specimens are 

included in the discussion below. 

The carbonate contents of enamel samples (4.9 ± 0.8%, Table 2) are similar to those of 

mature enamel (2.7 to 5.0%) (Hillson, 1996). Fourier-transform infrared spectroscopy and pXRD 

analysis of selected pretreated samples indicated no secondary mineral contamination. Thin 

section analysis of one enamel specimen (AB6 / P94.4.3) revealed clearly visible incremental 

growth features (e.g., Striae of Retzius, cross-striations). All indicators suggest good preservation 

of enamel bioapatite. 

 

Taxonomic Identification (Mammoth vs. Mastodon) 
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The mean mammoth δ
15

Ncol was higher than that of mastodons in all regions (Table 2, 

Fig. 3). The difference was significant for Klondike (mean δ
15

Ncol = +7.5 vs +4.2‰; t = 7.8, df = 

24, p<0.001) and Old Crow (mean δ
15

Ncol = +9.1 vs +3.1‰; t = 9.9, df = 13, p<0.001) but not for 

Alberta (mean δ
15

Ncol = +7.6 vs +4.7‰; t=1.7, df = 5, p=0.15). The mean mammoth δ
13

Ccol was 

lower than that of mastodons in all regions, but the difference was only significant for Old Crow 

(mean δ
13

Ccol = –21.4 vs –20.1‰; t = 6.6, df = 13, p<0.001). Neither δ
13

Csc nor δ
18

Osc differed 

for mammoths and mastodons (note: only Alberta and Klondike had sufficient samples for 

comparison). 

The δ
13

Ccol and δ
15

Ncol of BC proboscideans (unidentified to genus) were intermediate 

between those of mammoths and mastodons from other locations, and did not differ significantly 

from any other group. Herschel Island unknown proboscideans (unidentified to genus) had 

significantly different δ
13

Ccol and/or δ
15

Ncol from Yukon mastodons (Old Crow and Klondike) 

(Kruskall-Wallis and Dunn’s tests, p<0.05 and p<0.001, for δ
13

Ccol and δ
15

Ncol, respectively) but 

did not differ significantly from Yukon mammoths.  

 

Location of Origin 

 

Collagen Analyses 

 Because mammoths and mastodons had significantly different δ
15

Ncol and δ
13

Ccol in Old 

Crow and Klondike, statistical analyses considered the taxa separately for these locations. 

Mammoth, mastodon, and unknown proboscidean collagen data from Alberta were combined 

because they did not have significantly different means. BC and Herschel Island samples that 
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were not identified to genus were included as separate groups in the statistical analyses, and 

compared to both mammoths and mastodons from other regions, as described above.  

For mastodons, there were no significant differences among locations for δ
13

Ccol or 

δ
15

Ncol. For mammoths, there were clear differences among locations for δ
13

Ccol (Kruskall-Wallis 

test, p<0.001). Dunn’s multiple comparison tests showed that differences in mammoth δ
13

Ccol 

existed between Alberta and Old Crow (means of –20.5 vs. –21.4‰), Alberta and Herschel 

Island (means of –20.5 vs. –21.6‰), and Klondike and Old Crow (means of –20.7 vs. –21.4‰). 

The Kruskall-Wallis test suggested differences for mammoth δ
15

Ncol in different locations 

(p<0.05), but Dunn’s multiple comparison tests showed no differences among groups. To be 

conservative, we assume this contradictory result indicates no reliable significant differences. 

 

Bioapatite Carbonate Analyses 

Bioapatite isotopic compositions for mammoths and mastodons did not differ 

significantly in any of the regions studied, and were combined within each region in the 

following comparisons. Results for tooth enamel are available only for Alberta, Klondike, Old 

Crow, and Herschel Island. The Kruskall-Wallis test showed significant differences among 

locations for δ
13

Csc and δ
18

Osc (p<0.001 in both cases). Dunn’s multiple comparison tests showed 

that differences for δ
13

Csc existed between Old Crow and Klondike (means of  –9.9 vs. –11.5‰), 

and Old Crow and Herschel Island (means of –9.9 vs. –13.7‰), whereas differences for δ
18

O 

existed between Alberta and Old Crow (means of +14.2 vs. +10.7‰), and Alberta and Klondike 

(means of +14.2 vs. +11.0‰). 

 

Health Status 
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 Two of the AB5 (P90.7.1) mammoth subsamples lacked collagen (M6-M7 cementum and 

M7 root), but data were obtained for the remaining four subsamples (Table 3). Overall, AB5 had 

the second-highest mean δ
15

Ncol and the lowest δ
13

Ccol of any Alberta proboscidean (Table 2). 

The δ
13

Ccol values of all AB5 subsamples were similar, with a range of only 0.4‰ (Table 3). The 

δ
15

Ncol values of the three M6 subsamples were very similar, but that of the M7 was considerably 

lower (by 1.2 to 1.5 ‰) (Table 3). Enamel was obtained only from the M6 crown. Its δ
13

Csc was 

the lowest of any Alberta proboscidean, but its δ
18

O was not an outlier (Table 2).  

 

Discussion  

 

Taxonomic Identification 

The data suggest that δ
15

Ncol might be useful for assigning preliminary taxonomic 

designations (mammoth vs. mastodon) to isolated postcranial remains. Differences in mammoth 

and mastodon δ
15

Ncol were generally large, as shown previously for other regions (e.g., France et 

al., 2007; Koch, 1991; Metcalfe et al., 2013), and there were no significant differences among 

locations in the δ
15

Ncol of either mammoths or mastodons. 

 

Case Study 1: Alberta (individual specimens) 

The unidentified proboscidean bones from Alberta had a range for δ
15

Ncol that exceeded 

the range for the securely-designated mammoths and mastodons from the same region (Table 2, 

Fig. 3). Despite the lack of statistical significance for the Alberta mammoth vs. mastodon δ
15

Ncol 

comparison, we might reasonably hypothesize taxonomic designations for the unknown 
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proboscidean bones with the highest and lowest δ
15

Ncol values. We therefore hypothesized that 

AB3 (P95.1.427) (+10.9‰) and AB7 (P91.11.9) (+9.0‰) were mammoth, and AB12 (P96.12.1) 

(+1.4‰) was mastodon.  

 To test our isotopically-derived taxonomic prediction for AB12 (P96.12.1), which had the 

lowest δ
15

Ncol of any specimen in the present study, we submitted a segment of unprocessed bone 

(a remainder of the same piece used for isotopic analysis) for ancient DNA analysis. Contrary to 

expectations, the DNA results suggested that the bone belongs to Mammuthus (Jake Enk and 

Hendrik Poinar, personal communication, Jan. 30, 2014). To our knowledge, such a low δ
15

Ncol 

has never been previously reported for Mammuthus. Interestingly, AB12 (P96.12.1) was the only 

post-glacial specimen from Alberta (directly dated to 10,743 ± 100 
14

C a BP, BGS 2131) (Burns, 

2010), and was recovered further south than the other Alberta individuals analyzed in this study 

(Table 1, Fig. 1). Thus, it may have inhabited a very different environment than the other (more 

northern, glacial-aged) specimens. The very low δ
15

Ncol of AB12 (P96.12.1), as well as the 

greater variability in Alberta mammoth δ
15

Ncol in general (SD = 2.4 for Alberta vs. 1.2 and 1.1‰ 

for Klondike and Old Crow, respectively) is likely related to Alberta’s geographical position at 

the point of convergence of the Cordilleran and Laurentide Ice Sheets, whose waxing and 

waning would have had significant effects on the local nitrogen cycle. Both the Alberta and 

Yukon proboscidean remains were from time-averaged deposits, but only Alberta was repeatedly 

covered by glacial ice. The so-called ice-free corridor in Alberta not only facilitated gene flow 

between southern and northern faunal populations (Burns, 1996; Shapiro et al., 2004; Wilson, 

1996), but also underwent significant environmental transformations as the ice sheets advanced 

and receded (Beaudoin and Oetelaar, 2003; Jass et al., 2011), drastically altering the soil-plant 

nitrogen cycle. Plants and animals in recently deglaciated areas tend to have low δ
15

N as a result 
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of low temperatures, soil immaturity (low nitrogen availability), plant type, and mycorrhizal 

associations (Drucker et al., 2003; Drucker et al., 2012; Drucker et al., 2011; Hobbie et al., 1999; 

Hobbie et al., 2000; Szpak, 2014). The first proboscideans to enter Alberta after deglaciation 

(e.g., AB12 / P96.12.1) would therefore be expected to have had low δ
15

N values. In contrast, the 

Yukon locations were never covered by glacial ice and may not have experienced such dramatic 

environmental shifts, though we note that very low δ
15

N values have been observed for 

herbivores in unglaciated northwestern Europe during the Last Glacial Maximum (Dyke et al., 

2002; Gautney and Holliday, 2015; Hedges et al., 2004; Richards and Hedges, 2003; Stevens and 

Hedges, 2004). 

 Recent research supports the idea that the environmental niches of various proboscidean 

taxa were broader than traditionally envisioned (Baumann and Crowley, 2015; Metcalfe and 

Longstaffe, 2014; Saunders et al., 2010). The example of AB12 (P96.12.1) demonstrates that 

mammoths in Alberta occupied a range of environments, and suggests that taxonomic 

designations based on stable isotope analyses should ideally be attempted for specimens from 

known locations and time periods, where baseline isotopic compositions for the taxa in question 

have already been determined. 

Case Study 2: British Columbia and Herschel Island (groups of specimens) 

Unfortunately, the paleontological record is incomplete and it is sometimes not possible 

to develop baseline isotopic data for all taxa at any given location, such as British Columbia and 

Herschel Island. BC proboscideans had δ
13

Ccol and δ
15

Ncol that were intermediate between those 

of mammoths and mastodons from other locations, and therefore did not differ significantly from 

either taxon. Although it is possible that the BC group includes both mammoths and mastodons, 

the very small range of δ
15

Ncol for BC specimens (difference of 1.1‰ between maximum and 
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minimum values) suggests, rather, that the animals were all of the same taxon. In support of this 

inference, ancient DNA analysis of BC1 (EH2009.008.0001), BC2 (EH1994.003.0041), BC4, 

and BC5 (EH1994.003.0040) showed that nine genus-discriminating sites within two species-

delineable regions of the mitochondrial genome of these individuals matched those of 

Mammuthus (Jake Enk and Hendrik Poinar, personal communication, Jan. 30, 2014). 

Herschel Island specimens not identified to genus had δ
13

Ccol and δ
15

Ncol that differed 

significantly from Old Crow and Klondike mastodons, but were indistinguishable from Old 

Crow or Klondike mammoths. This suggests that the specimens from Herschel Island were 

predominantly Mammuthus, an interpretation consistent with the preponderance of mammoth 

remains, and rarity of mastodon remains, in Alaska and Yukon (Harington, 2003; Zazula et al., 

2014).  

 

Location of Origin 

 

Bioapatite δ
13

Csc and δ
18

Osc could be useful for determining locations of origin, as they 

are quite distinct among several locations (Fig. 4). The oxygen isotope compositions of Old 

Crow and Klondike specimens are lower than those of Alberta specimens, as expected based on 

latitudinal variations in meteoric water δ
18

O (Dansgaard, 1964; Rozanski et al., 1993). Contrary 

to latitude-based expectations, the highest-latitude location (Herschel Island) had relatively high 

δ
18

Osc values. This is likely a result of Herschel’s close proximity to the sea, where local 

evaporation of seawater would result in precipitation with a relatively high δ
18

O (Dansgaard, 

1964; Rozanski et al., 1993). The similarity in δ
18

Osc for Old Crow and Klondike specimens is 

unexpected since they are at different latitudes, but could reflect different atmospheric moisture 
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or surface water source regions, and/or temporal differences among the specimens. The carbon 

isotope compositions of the Herschel Island specimens are strikingly low, which may reflect 

significantly greater water availability in proximity to the coast (Kohn, 2010). Likewise, the 

highest δ
13

C values in Old Crow may indicate that the driest conditions were present in that 

location.  

 Regardless of the causes of variation, the data presented here provide a baseline for 

investigating the origins of museum specimens lacking collection data. Alberta specimens can 

clearly be distinguished from Yukon specimens using δ
13

Csc and δ
18

Osc (Fig. 4). Specimens from 

different regions of Yukon (Klondike, Old Crow, Herschel Island) may also be distinguishable 

using a combination of δ
18

Osc and δ
13

Csc (and possibly δ
13

Ccol), though there is some overlap 

between Old Crow and Klondike specimens (Fig. 4). Further, because of the predictable change 

in meteoric water δ
18

O with latitude, δ
18

Osc could be used to distinguish between regions 

included in the present study and areas further south. For example, mammoths and mastodons 

from Ontario and western New York had δ
18

Osc values between ~ +19 and +23‰ (Metcalfe et 

al., 2013), and mammoths from Arizona had δ
18

Osc values between ~ +22 and +28‰ (Metcalfe 

et al., 2011), in contrast to values of ~ +10 to +15‰ presented here (all locations combined). Of 

course, temporal differences among regions can complicate such comparisons, since animals 

living in colder intervals would have lower δ
18

Osc than those living in warmer intervals, all else 

being equal (Ayliffe et al., 1992; Koch, 1998). 

Unlike the situation presented here, mammoth and mastodon δ
18

O values may not be the 

same in every location. For example, in the Great Lakes region there was no overlap between 

δ
18

Osc of mammoths and mastodons (Metcalfe et al., 2013). This demonstrates the need for 

baseline studies in the particular areas and time periods of interest, to determine the range of 
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values and degree of overlap among taxa. Only after these are established can comparisons with 

other regions and inferences about geographic origins be made. 

Since knowing the proboscidean taxon was deemed unnecessary for δ
13

Csc and δ
18

Osc 

comparisons, these proxies could be applied to isolated postcranial elements that lack taxonomic 

designation. However, bone bioapatite is much more susceptible to diagenetic alteration of its 

isotopic composition, and its analysis (not attempted here) is not recommended (Ayliffe et al., 

1994; Koch et al., 1997). 

Collagen isotopic compositions were not useful for distinguishing location of origin for 

mastodons, and were of limited use for mammoths. Although the δ
13

Ccol of mammoths in several 

locations differed significantly, the magnitude of the differences was very small (~ 1‰ or less). 

Compared to these differences among means, variability within a single location was relatively 

large (~ 1-2‰). As such, it would not be possible to match an isolated specimen to any particular 

location based on δ
13

Ccol alone. However, δ
13

Ccol and/or ∆
13

Csc-col (the difference between δ
13

Csc 

and δ
13

Ccol, which can be calculated for specimens with isotopic data for both collagen and 

bioapatite) might provide secondary lines of evidence for location of origin in certain cases. For 

example, Old Crow mammoths had ∆
13

Csc-col values between 10.1 and 13.1‰, whereas 

mammoths and mastodons from other locations had ∆
13

Csc-col between 8.0 and 10.1‰.  

 

Health Status 

 

The abnormal M6/M7 (AB5 / P90.7.1) mammoth specimen provides a clear example of a 

skeletal anomaly that directly impacted the health of the individual, and a unique opportunity for 

investigating the links between isotopic compositions and nutritional stress in an individual 
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extinct animal. The subsamples of the AB5 specimen likely developed in the following order: (1) 

anterior M6 dentin, (2) anterior M6 cementum, (3) M6 root dentin, (4) M7 crown cementum, (5) 

cementum between the M6 and M7, (6) M7 root dentin (Appendix S1) (Haynes, 1991; Hillson, 

2005; Laws, 1966; Maschenko, 2002; Metcalfe et al., 2010). Unfortunately the two latest-

developing subsamples lacked collagen, depriving us of data that would have represented the 

time closest to death. The fact that the M6 root and M7 crown had very distinct δ
15

Ncol values 

suggests that they formed at different times, with the M7 forming after the M6 was fully 

developed (Appendix S1). This is in agreement with Burns et al.’s (2003:82) inference that “the 

M6 was fully erupted when the M7 was forced into place.” The lack of space for the M7 caused 

the still-developing lamellae to deform as they impacted against the fully-formed M6. Based on 

this evidence, in combination with elephant tooth development times and the estimated age-at-

death for this specimen, we can surmise that the M7 formed primarily during the last 4-5 years of 

the animal’s life (Appendix S1). It is currently not possible to make a more precise estimate of 

how much time elapsed between formation of the M7 crown cementum (our latest-developing 

sample that yielded results) and the animal’s death (Appendix S1). 

 The δ
15

Ncol values of AB5 (P90.7.1) are relatively high, as expected for nutritional stress 

leading to the catabolism of body tissues, which tends to cause increases of <+1 to +2‰ (Hatch, 

2012; McCue and Pollock, 2008; Reitsema, 2013). However, contrary to expectations for 

starvation later in life, the M7 had a lower δ
15

Ncol than the M6 tissues (Table 3). This suggests 

that body proteins were not being catabolized late in life, during the development of the M7 

crown. Nutritional stress leading to reliance on body fats (which would not affect δ
15

N) remains 

a possibility (Hatch, 2012). It is also possible, however, that the relatively high δ
15

N values 

reflect the environment in which the animal was living, and are unrelated to nutritional stress. 

Page 24 of 53

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25 

 

The low δ
13

C values of AB5 (P90.7.1) relative to other Alberta mammoths also do not 

support expectations for severe starvation and fasting (which tend to have either no effect on 

tissue δ
13

C, or cause a slight increase) (Hatch, 2012; McCue and Pollock, 2008). Although the 

low δ
13

C values could reflect increased fat metabolism (Bocherens, 2003; Bocherens et al., 1996; 

Hatch, 2012; Polischuk et al., 2001), there is no difference in the δ
13

Ccol of the M6 root and M7 

crown, suggesting no change in the last several years prior to death. Together, the differences in 

δ
13

C and δ
15

N among subsamples of AB5 suggest a change in diet, environment, or physiology 

in the years leading up to death, but there is no isotopic evidence for starvation (neither 

catabolism of body tissues, nor increased reliance on body fats). We emphasize that our data 

represent some period within approximately 4-5 years of death, but not necessarily the final 

months/years of the animal’s life.  

 

Conclusions 

 

Stable isotopes can be of use in designating isolated proboscidean skeletal remains as 

mammoth or mastodon, but such designations remain tentative in the absence of morphological 

or molecular data. Mammoths tend to have higher δ
15

Ncol and lower δ
13

Ccol than mastodons, but 

the specific range of isotopic compositions differs among geographic locations and time periods, 

and may not be significantly different in every region. Mammoths, in particular, can have a very 

large range of δ
15

N values, as shown for specimens from Alberta. Ideally, taxonomic 

designations based on stable isotopes should only be attempted for specimens from known 

locations and time periods, where baseline (preferably non-overlapping) isotopic compositions 

for the taxa in question have been determined previously.  
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We have shown that extraordinary exceptions to general trends in taxonomic differences 

can exist (i.e., a mammoth with a δ
15

Ncol of +1.4‰). This extremely low value may be typical for 

fauna inhabiting recently-deglaciated late Pleistocene landscapes of Alberta. Further research 

into the isotopic compositions of plants and animals present at that time and location would be 

useful to support this hypothesis. This example shows that isotopic analyses may be useful in 

determining outliers that may be selected for additional research (e.g., DNA, morphology) and 

may inspire broader research questions. These data also demonstrate the environmental 

adaptability of Mammuthus. 

 Our results also demonstrate that stable isotope analysis can be helpful in assigning 

geographical provenance to isolated museum samples that lack collection data. Bioapatite δ
13

Csc 

and δ
18

Osc are most useful for determining locations of origin, and could be used to distinguish 

proboscideans from Alberta, Old Crow, Klondike, Herschel Island, and locations further south 

(e.g., Arizona and the Great Lakes). Collagen δ
13

C could provide a secondary line of evidence 

for determining the location of origin of mammoths, but δ
15

Ncol was not useful for this 

application. The isotopic data we have provided can be used as a baseline for future studies of 

specimens lacking provenance, and are particularly useful since the Yukon is the most prolific 

source of proboscidean fossils in Canada. It is highly probable that many skeletal remains 

without provenance in local museum collections are from Yukon, and isotopic determination of 

their location of origin may be possible. Furthermore, the isotopic baseline we have provided 

could be used to support inferences of migration, but only if climate-related variations can be 

ruled out.  

 The AB5 (P90.7.1) mammoth possessed a dental anomaly that caused impaired chewing, 

which was hypothesized to have caused nutritional stress and ultimately the animal’s death 
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(Burns et al., 2003). Our data indicate that in the years prior to its death, the animal experienced 

a change in diet, environment, or physiology – but not one consistent with nutritional stress. This 

does not necessarily contradict the interpretation that this animal starved to death (Burns et al., 

2003), since the precise amount of time that elapsed between the formation of the analyzed 

tissues and death remains unknown. 
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Table 1  Geographic and temporal context and sampling information for specimens used in this study.

LSIS # Source Museum # Taxon Area Site Tissues Bone element Tooth Date (
14
C a BP) Lab # Ref

British Columbia

BC1 RBCM EH2009.008.0001 Proboscidea Vanc. Island Island View Beach T tusk

BC2 RBCM EH1994.003.0041 Proboscidea Vanc. Island Cordova Bay T* tusk 1

BC3-1 RBCM EH1994.003.0039 Proboscidea Vanc. Island Cordova Bay T tusk 1

BC4 UWO Proboscidea Northern BC T tusk

BC5 RBCM EH1994.003.0040 Proboscidea Vanc. Island Cordova Bay B humerus 17,000 ± 240 GSC-2829 1

Alberta

AB1 RAM P97.11.1B Mammuthus Edmonton Riverview Pit B, D, C, E mandibular symphysis LLM6 43,300 ± 3000 2

AB2 RAM P94.1.698 Mammuthus Edmonton Consolidated Concrete Pit 48 D, C, E URM5 >37,700 AA84996 2, 3

AB3 RAM P94.1.427 Proboscidea Edmonton Consolidated Concrete Pit 48 B left innominate 2, 3

AB4 RAM P94.16.1B Mammut Edmonton Apex Galloway Pit B, D, E mandible (ascending ramus) LRM5 3

AB5 RAM P90.7.1 Mammuthus Villeneuve Alberta Conceret Products Ltd. D, C, E ULM6+M7 4

AB6 RAM P94.4.3 Mammuthus Villeneuve Consolidated Concrete Pit 46 D, C*, E LLM6 3

AB7 RAM P91.11.9 Proboscidea Villeneuve Consolidated Concrete Pit 46 B cortical 3

AB8 RAM P94.4.1 Proboscidea Villeneuve Consolidated Concrete Pit 46 B right scapula 3

AB9 RAM P94.4.2 Mammuthus Villeneuve Consolidated Concrete Pit 46 C* URM6 3

AB10 RAM P97.7.1 Mammut Villeneuve Consolidated Concrete Pit 46 D, E LLM6 >41,100 AA84997 3

AB11 RAM P00.2.1 Mammuthus Bezanson Smoky River D, C, E LRM4/M5 40,000 ± 3500 AA84979

AB12 RAM P96.12.1 Proboscidea Cochrane Burnco Pit B humerus (deltoid tuberosity) 10,743 ± 100 BGS 2141 5

Yukon

YT1 YG 291.1 Mammuthus Old Crow Old Crow River RD, E LRM6 >41,100 AA84987 6

YT2 YG 122.2 Mammuthus Old Crow CRH 94 RD, E ULM6 >41,100 AA84992 6

YT3 YG 173.5 Mammuthus Old Crow Ch'ijee's Bluff D, E U M6 6

YT4 YG 285.1 Mammuthus Old Crow OCR, REM 78-1 B, E LRM6 >39,100 AA85002 6

YT5 YG 60.2 Mammuthus Old Crow OCR, Bluffs-R bank RD, E LRM5/M6 6

YT6 YG 57.1 Mammuthus Old Crow OCR, Bluffs-R bank C, E LRM6 6

YT7 YG 325.22 Mammuthus Old Crow HH-68-10 B, E ULM6 >40,100 AA84984 6

YT8 YG 357.1 Mammut Old Crow Old Crow River D, E M5/M6 >41,100 AA84995

YT9 YG 284.4 Mammuthus Old Crow CRH 11 C, E ULM6 6

YT10 YG 252.2 Mammuthus Old Crow CRH 20 RD, E LLM6 >40,000 AA85001 6

YT11 YG 173.1 Mammuthus Old Crow Ch'ijee's Bluff RD, C, E U M6 6

YT24 YG 78.1 Mammuthus Klondike Last Chance Creek RD, E M6 >48,800 UCIAMS41491 7

YT25 YG 2.16 Mammuthus Klondike Hester Creek C, E adult

YT26 YG 2.14 Mammuthus Klondike Hester Creek C, E adult 35,500 ± 2000 AA84986

YT27 YG 29.248 Mammuthus Klondike Hunker Creek B mandible 43,500 ± 1900 UCIAMS41493 7

YT28a,b YG 6.51, 6.49 Mammuthus Klondike Gold Run Creek B, E mandible LLM6,LRM6 17,950 ± 120 Beta 70099

YT29 YG 358.1 Mammuthus Klondike B, E mandible M6

YT30 YG 302.26 Mammuthus Klondike Skookum Gulch B, E mandible M5/M6 >39,200 AA84983

YT31 YG 2.4 Mammuthus Klondike Hester Creek B, E mandible M6? 27,380 ± 730 AA85000

YT32 YG 84.1 Mammuthus Klondike Hunker Creek C, E adult

YT33 YG 159.83 Mammut Klondike Quartz Creek B fibula

YT34 YG 43.2 Mammut Klondike Upper Gold Run RD, E M6 >49,200 UCIAMS75320 8

YT35 YG 26.1 Mammut Klondike Gold Run Creek RD, E M6 >50,300; >51,700 UCIAMS 78705, 78704 8

YT36 YG 50.1 Mammut Klondike Thistle Creek RD, E M5? >41,100 AA84994

YT37 YG 139.5 Mammut Klondike Unknown? B, E mandible M6 >41,100 AA84985

YT38 YG 33.3 Mammut Herschel Simpson Point B cuboid  >45 130 Beta 189291 9

YT39 YG 68.2 Mammuthus Herschel Simpson Point D, E fragment

YT40 YG 68.4 Mammuthus Herschel Simpson Point C, E fragment >35,900 AA84988

YT41 YG 154.2 Proboscidea Herschel South Shore T tusk

YT42 YG 12.9 Proboscidea Herschel Simpson Point T tusk 34,100 ± 1,700 AA84999

YT43 YG 206.29 Proboscidea Herschel Simpson Point T tusk

YT44 YG 33.7 Proboscidea Herschel Simpson Point T tusk

YT45 YG 68.1 Proboscidea Herschel Simpson Point T tusk >39,400 AA84982

YT46 YG 271.93 Mammuthus Herschel Simpson Point B thoracic vertebra

YT47 YG 2.7 Mammuthus Klondike Hester Creek B fibula 27,540 ± 270 UCIAMS 41488 7

YT48 YG 133.21 Mammuthus Klondike Whitman Gulch B right tibia 34,180 ± 590 UCIAMS41489 7

YT49 YG 5.46 Mammuthus Klondike Hunker Creek B rib 22,430 ± 140 UCIAMS41487 7

YT50 YG 219.3 Mammuthus Stewart River Ash Bend B long bone fragments

YT51 YG 317.51 Mammuthus Old Crow CRH 11 T tusk MIS5, ~140,000

LSIS #: Sample ID used for Laboratory for Stable Isotope Science analyses, and referred to in this study

Source of skeletal materials: RBCM = Royal British Columbia Museum, RAM = Royal Alberta Museum, YG = Yukon Government, CMN = Canadian Museum of Nature. 

Tissues: T = tusk, B = bone, D = dentin (crown), RD = root dentin, C = cementum, E = enamel

Radiocarbon dates in bold were obtained as part of the present study

* Insufficient collagen preservation; no data
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Table 2. The isotopic compositions of collagen (various tissues) and structural carbonate in bioapatite (enamel) for

mammoths, mastodons, and unknown proboscideans analyzed in this study and by Zazula et al. (2014).

Region LSIS # Tissue C δδδδ
13
C N δδδδ

15
N C/N Yield Lab* Tissue δδδδ

13
C δδδδ

18
O CO3

used (%) (‰) (%) (‰) (Atomic) (%) used (‰) (‰) (%)

British Columbia

Proboscidea

BC1 T 38.4 –19.9 14.2 +7.0 3.2 4.3 LSIS

BC3-1 T 42.4 –20.7 15.8 +6.9 3.1 6.3 LSIS

BC4 T 47.0 –21.3 17.4 +6.9 3.1 22.9 LSIS

BC5 B 41.3 –21.3 15.2 +5.9 3.2 11.0 LSIS

Mean 42.3 –20.8 15.7 +6.7 3.1 11.1

SD 3.6 0.7 1.3 0.5 0.0 8.3

Alberta

Proboscidea

AB3 B 42.0 –20.5 15.8 +10.9 3.1 11.0 LSIS

AB7 B 41.5 –20.4 16.3 +9.0 3.0 10.9 LSIS

AB8 B 39.9 –19.7 14.8 +4.4 3.1 7.5 LSIS

AB12 B 32.8 –21.0 12.1 +1.4 3.2 4.3 LSIS

Mean 39.0 –20.4 14.8 +6.4 3.1 8.5

SD 4.3 0.5 1.8 4.3 0.1 3.2

Mammuthus

AB1 B,C,D 40.9 –20.6 15.6 +7.8 3.1 >5.9 to 16.0 LSIS E –10.7 +14.2 4.0

AB2 C, D 36.1 –21.1 13.3 +9.7 3.2 14.4 to >15.5 AMS/LSIS E –11.4 +15.0 6.8

AB5 C, D 36.1 –21.4 13.0 +10.0 3.2 5.3 LSIS E –11.5 +13.6 4.9

AB6 D 28.0 –20.1 10.2 +5.1 3.2 >14.7 LSIS E –10.7 +15.2 5.6

AB11 C, D 34.9 –20.6 13.0 +5.5 3.1 >4.3 to 16.1 AMS/LSIS E –10.5 +13.1 5.9

Mean 35.2 –20.8 13.0 +7.6 3.2 –10.9 +14.2 5.4

SD 4.6 0.5 1.9 2.3 0.1 0.5 0.9 1.1

Mammut

AB4 B, D 40.3 –20.8 15.0 +4.5 3.1 >11.9 to 13.6 LSIS E –11.6 +14.9 3.6

AB10 D 41.1 –19.5 15.4 +5.0 3.1 12.4 AMS E –10.3 +13.5 4.0

Mean 40.7 –20.1 15.2 +4.7 3.1 –10.9 +14.2 3.8

Collagen Structural carbonate
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SD 0.6 0.9 0.3 0.4 0.0 0.9 1.0 0.3

Yukon - Klondike

Mammuthus

YT24 RD 45.7 –20.8 16.9 +8.2 3.2 20.2 LSIS E –11.7 +10.1 5.4

YT25 C 42.0 –21.2 15.5 +8.0 3.2 7.3 LSIS E –11.8 +11.4 2.8

YT26 C 43.3 –20.5 16.0 +7.4 3.2 15.3 AMS E –12.5 +12.3 5.3

YT27 B 44.4 –21.1 16.3 +7.0 3.2 13.5 LSIS

YT28 B 47.5 –20.7 18.0 +10.5 3.1 19.1 LSIS E –11.5 +9.9 5.6

YT29 B 42.0 –20.6 15.2 +7.2 3.2 12.7 LSIS E –11.47 +12.0 5.1

YT30 B 41.5 –20.3 15.6 +5.8 3.1 18.0 AMS E –12.1 +10.5 5.1

YT31 B 37.8 –20.5 14.1 +7.0 3.1 13.0 AMS

YT32 C 45.9 –20.7 16.9 +7.7 3.2 12.4 LSIS E –11.1 +11.7 5.0

YT47 B 46.8 –20.6 17.6 +6.5 3.1 16.8 LSIS

YT48 B 46.6 –20.7 17.3 +6.8 3.1 21.0 LSIS

YT49 B 45.0 –21.3 16.3 +8.7 3.2 20.6 LSIS

YT50 B 35.9 –20.8 12.9 +7.2 3.3 1.2 LSIS

Mean 43.4 –20.7 16.0 +7.5 3.2 14.7 –11.7 +11.1 4.9

SD 3.5 0.3 1.4 1.2 0.0 5.7 0.4 0.9 1.0

Mammut

YT33 B 43.2 –20.9 15.8 +6.9 3.2 18.5 LSIS

YT34 RD 45.7 –20.0 16.9 +4.5 3.2 18.4 LSIS E –11.34 +10.8 4.9

YT35 RD 42.4 –20.6 16.0 +4.4 3.1 19.9 AMS E –11.3 +10.4 4.0

YT36 RD 41.7 –21.2 15.6 +4.3 3.1 12.6 AMS E –11.3 +10.9 4.4

YT37 B 42.0 –20.6 15.0 +3.5 3.3 14.5 AMS E –10.6 +11.4 3.7
1
CMN333 D/RD 43.6 –20.6 15.4 +4.1 3.3 6.1 UCI

1
CMN33897 D/RD 42.7 –19.9 15.7 +4.9 3.2 7.6 UCI

1
CMN 8707 D/RD 42.9 –20.8 15.6 +4.3 3.2 8.4 UCI

1
CMN 11697 D/RD 42.2 –20.5 15.4 +4.6 3.2 8.5 UCI

1
CMN 42551 D/RD 42.2 –20.1 15.1 +3.0 3.4 4.0 UCI

1
CMN 42552 D/RD 39.1 –19.9 14.0 0.0 3.3 0.6 UCI

1
F:AM: 104842 ? 43.5 –21.4 15.3 +3.6 3.3 4.1 UCI

1
YG 361.9 ? 41 –20.7 14.5 +3.2 3.3 8.9 UCI

Mean 42.5 –20.6 15.4 4.2 3.2 10.2 –11.1 +10.9 4.2

SD 1.5 0.5 0.7 1.0 0.1 6.2 0.4 0.4 0.5

Yukon- Old Crow

Mammuthus
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YT1 RD 41.6 –21.4 15.6 +8.7 3.1 14.4 AMS E –11.3 +11.4 n.d.

YT2 RD 39.2 –20.9 14.6 +8.4 3.1 11.0 AMS E –8.3 +9.9 5.3

YT3 D 44.0 –21.8 16.4 +9.7 3.1 >6.7 LSIS E –10.1 +10.0 5.5

YT4 B 41.1 –21.4 15.2 +9.5 3.1 13.1 AMS E –9.7 +11.5 5.1

YT5 RD 42.9 –21.5 15.5 +9.8 3.2 11.2 LSIS E –8.4 +10.5 5.1

YT6 C 42.5 –21.7 15.2 +7.7 3.3 10.1 LSIS E –9.7 +9.8 4.6

YT7 B 42.3 –21.4 15.8 +7.6 3.1 15.7 AMS E –9.1 +10.2 5.3

YT9 C 41.4 –21.5 15.0 +8.2 3.2 7.1 LSIS E –9.9 +11.9 5.0

YT10 RD 38.9 –21.5 14.4 +9.8 3.2 11.4 AMS E –10.9 +10.7 5.3

YT11 C, RD 45.6 –215 16.7 +8.9 3.2 16.3 LSIS E –10.6 +10.5 5.1

YT51 T 37.9 –20.7 13.9 +11.3 3.2 18.6 LSIS

Mean 41.6 –21.4 15.3 +9.0 3.2 12.9 –9.8 +10.6 5.1

SD 2.3 0.3 0.8 1.1 0.0 3.4 1.0 0.7 0.3

Mammut

YT8 D 42.3 –20.6 16.0 +3.5 3.1 17.8 AMS E –11.1 +11.6 4.4
1

CMN 15352 D/RD 43.4 –19.6 14.8 +4.1 3.3 1.3 UCI
1

CMN 31898 D/RD 42.6 –19.9 15.2 +2.4 3.2 2.1 UCI
1

CMN 33066 D/RD 43.3 –20.1 15.3 +2.5 3.2 3.9 UCI

Mean 42.9 –20.1 15.3 +3.1 3.2

SD 0.5 0.4 0.5 0.8 0.1

Yukon- Herschel Island

Proboscidea

YT41 T 45.0 –22.1 16.7 +10.7 3.1 17.8 LSIS

YT42 T 42.7 –20.3 15.7 +8.2 3.2 23.3 AMS

YT43 T 42.5 –21.9 15.5 +8.0 3.2 15.1 LSIS

YT44 T 44.9 –20.7 16.4 +8.8 3.2 18.5 LSIS

YT45 T 43.6 –21.6 16.2 +15.2 3.1 21.5 AMS

Mean 43.7 –21.3 16.1 +10.2 3.2 19.2

SD 1.2 0.8 0.5 3.0 0.0 3.2

Mammuthus

YT39 D 44.4 –21.7 16.2 9.7 3.2 9.0 LSIS E –13.8 +12.2 5.0

YT40 C 42.4 –21.5 15.9 +6.8 3.1 14.1 AMS E –137 +13.3 5.5

YT46 B 41.7 –21.6 15.5 +5.5 3.1 14.8 LSIS

Mean 42.8 –21.6 15.9 +7.4 3.1 12.6 –13.7 +12.7 5.2

SD 1.4 0.1 0.3 2.2 0.0 3.2 0.1 0.8 0.4

Mammut

YT38 B 41.8 –21.8 15.1 +5.8 3.2 13.9 LSIS
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Values in bold are the means of duplicate analyses or analyses of different tissues from the same individaul (see Supplementary Table S1).

Tissue: RD = root dentin, D = crown dentin, T = tusk dentin, B = bone, C = cementum, E = enamel

* Lab in which collagen extraction was performed: LSIS (University of Western Ontario), AMS (University of Arizona), UCI (University of California, Irvine)

1 Data are from Zazula et al. (2014). Yields are >30kDa fraction of collagen.
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Table 3.  Isotopic results for collagen extracted from different areas on AB5 / P90.7.1 (mammoth M6 and M7),

in order of inferred development time (top is earliest, bottom is latest).

LSIS # Tooth Location Tissue C δδδδ
13
C N δδδδ

15
N C/N Yield Lab*

(%) (‰) (%) (‰) (Atomic) (%)

AB5 M6 anterior crown D 29.2 –21.6 10.6 +10.2 3.2 3.6 LSIS

AB5 M6 anterior crown C 41.9 –21.4 15.3 +10.4 3.2 8.6 LSIS

AB5 M6 root D 36.5 –21.2 13.2 +10.5 3.2 4.4 LSIS

AB5 M7 crown C 37.0 –21.2 13.4 +9.0 3.2 4.7 LSIS

AB5 M6-M7 between the 2 teeth C not preserved

AB5 M7 root D not preserved

AB5 mean M6, M7 all C, D 36.1 –21.4 13.1 +10.0 3.2 5.3 LSIS

 

Tissue: D = dentin, B = bone, C = cementum

* Laboratory in which collagen extraction was performed: LSIS (University of Western Ontario)

Collagen
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Table S1.  Isotopic results for collagen extracted from different tissues within the same individuals (excluding AB5).   

LSIS # Tissue C δδδδ
13
C N δδδδ

15
N C/N Yield Lab*

(%) (‰) (%) (‰) (Atomic) (%)

AB1 B 44.4 –20.8 16.7 +7.3 3.1 16.0 LSIS

AB1 C 39.7 –20.6 14.9 +8.0 3.1 >11.0 LSIS

AB1 D 38.6 –20.5 15.1 +8.2 3.0 >5.9 LSIS

AB1 mean B,C,D 40.9 –20.6 15.6 +7.8 3.1 >5.9 to 16.0 LSIS

AB2 C 42.1 –21.1 15.6 +9.9 3.1 14.4 AMS

AB2 D 30.1 –21.1 10.9 +9.5 3.2 >15.5 LSIS

AB2 mean C, D 36.1 –21.1 13.3 +9.7 3.2 14.4 to >15.5 AMS&LSIS

AB4 B 43.5 –20.9 16.3 +4.1 3.1 13.6 LSIS

AB4 D 37.1 –20.7 13.8 +4.8 3.1 >11.9 LSIS

AB4 mean B, D 40.3 –20.8 15.0 +4.5 3.1 >11.9 to 13.6 LSIS

AB11 C 43.8 –20.3 16.3 +5.9 3.1 16.1 AMS

AB11 D 25.9 –21.0 9.7 +5.1 3.1 >4.3 LSIS

AB11 mean C, D 34.9 –20.6 13.0 +5.5 3.1 >4.3 to 16.1 AMS & LSIS

YT 11 C 44.1 –21.5 15.9 +8.3 3.2 18.2 LSIS

YT 11 RD 47.2 –21.5 17.6 +9.5 3.1 14.3 LSIS

YT 11 mean C, RD 45.6 –21.5 16.7 +8.9 3.2 16.3 LSIS

Collagen
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Appendix S1. Developmental timing of the AB5 (P90.7.1) mammoth M6/M7 

 

Interpretation of the isotopic results for the AB5 (P90.7.1) mammoth depends in part on 

knowledge of mammoth tooth development, which is not yet complete. Although growth rates of 

proboscidean molar crowns and the timing of eruption and wear have been estimated (Dirks et 

al., 2012; Haynes, 1991; Laws, 1966; Maschenko, 2002; Metcalfe and Longstaffe, 2012; 

Metcalfe et al., 2010; Uno et al., 2013), we lack complete knowledge of (1) the time required for 

a full M6 or M7 to develop, (2) the relative timing (i.e., degree of overlap) of the development of 

these teeth, and (3) the amount of time that elapsed between the development of the M6/M7 and 

the AB5 (P90.7.1) mammoth’s death. These issues are explained more fully below, and 

inferences about the developmental timing of the AB5 (P90.7.1) specimen are made based on our 

best estimates for the timing of mammoth tooth development and the age-at-death of the AB5 

(P90.7.1) mammoth. 

In proboscidean teeth, lamellae (plates) are formed in sequence from anterior to posterior. 

Anterior crown dentin forms first, followed by anterior enamel and cementum (Hillson, 2005; 

Maschenko, 2002). Root formation begins after the lamellae of the crown are present, but before 

the cementum is completely formed (Maschenko, 2002). In general, as one tooth is in wear 

another is developing posterior to it, but there can be overlap in the development time of 

successive teeth (Laws, 1966). Growth of mammoth and modern elephant teeth crowns in the 

occlusal-basal direction occurs at a rate of 13 to 22 mm/a (Dirks et al., 2012; Metcalfe and 

Longstaffe, 2012; Uno et al., 2013). Dirks et al. (2012) estimated that in Mammuthus columbi it 

took about 10.6 years for an enamel plate of 180.9 mm height to develop, but this does not 

necessarily include the full mineralization time, and is an estimate for only one lamella. The full 
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development time for a single tooth also depends on the number of lamellae present, the height 

of each lamella, and the developmental timing of the crown dentin, roots, and cementum, which 

remains unknown. Since the anterior of an M6 is in wear while the posterior is still developing, it 

is not possible to physically measure the “full” tooth at any given time. The rate of development 

of the M7, which may differ from that of the M6, also remains unknown. Based on the general 

development of proboscidean teeth, we can infer the following relative timing of development 

for our subsamples: (1) anterior M6 dentin, (2) anterior M6 cementum, (3) M6 root dentin, (4) 

M7 crown cementum, (5) cementum between the M6 and M7, (6) M7 root dentin. The potential 

for overlap in the developmental timing of the M6 and M7 is discussed below. 

We lack any general knowledge of the developmental timing of M7 relative to that of 

M6, since the former is not normally present in elephant dentition. Based on the development 

and wear of elephant and mammoth teeth (Haynes, 1991; Laws, 1966), full crown formation of a 

Mammuthus M6 likely occurred occur over a period of about 17 years, between ages 26 and 43 

(Metcalfe et al., 2010). Burns et al. (2003) estimated the AB5 mammoth to be about 47-48 years 

old at the time of death. If these inferences are correct, then only about 4-5 years elapsed 

between complete formation of the M6 crown and the animal’s death. Burns et al. (2003:82) 

infer that the M7 “was undoubtedly deformed from a very early stage of its development because 

it is so thoroughly distorted… virtually all lamellae were disengaged from their neighbours and 

later cemented at odd angles.” They further argue that “the M6 was fully erupted when the M7 

was forced into place, but that the M6 functioned for some years before the M7 came to rest” 

(Burns et al., 2003:82). Thus, the morphological evidence indicates that deformation of the M7 

occurred after formation of the M6 was complete. However, the M7 lamellae may have begun to 

form either before or after the posterior/basal portions of the M6 were still developing. As 
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described in the main text, the isotopic compositions of the teeth can provide additional insight 

into this problem. Similar isotopic compositions for the two teeth would support the idea that 

there was significant overlap in their development times, whereas different isotopic compositions 

would suggest that they developed largely at different times. The latter proved to be the case: 

different δ
15

Ncol values of the M7 crown cementum and the M6 tissues (including the M6 root, 

the last part of the M6 to develop) support the hypothesis that the M6 was fully formed when the 

M7 began to develop. Thus, if all of the above inferences are correct, the isotopic data we 

obtained for the M7 thus represents some portion of the last 4-5 years of the animal’s life, 

whereas the M6 developed earlier, well in advance of the animal’s death. Unfortunately, the M7 

root and the cementum linking the two teeth, which likely represented the time closest to death, 

did not contain well-preserved collagen (see main text). Crown cementum develops after crown 

enamel and dentin, so the M7 crown cementum isotopic results could still represent a period of 

time close to death. It is currently not possible to determine whether development of the M7 

crown cementum would overlap the period of impaired chewing and acute nutritional stress 

represented by the  secondary wear facet on the M7, which apparently developed over a 

“relatively short time” (Burns et al., 2003: 83). 
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