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Abstract 

The conventional coating of pharmaceutical pellets is achieved by liquid-based coating 

techniques using a fluidized bed or a pan coater. However, many restrictions and 

drawbacks such as long processing time and large energy consumption exist in the above 

method. Dry powder coating technique is a novel solventless coating technique that is 

able to mitigate the problems of liquid-based coating. In this study, a newly invented 

coating apparatus called rotary fluidized bed (RFB), was applied for the coating of 

pharmaceutical pellets by a dry powder coating process. The RFB has a unique structure 

where the hot fluidizing air is further aided by the rotation to ensure a uniform coating. 

Results of SEM micrographs indicated the piroxicam pellets formed continuous and 

dense coating film in the RFB. In-vitro drug release tests confirmed that the dry powder 

coated pellets successfully achieved immediate release, sustained release and delayed 

release with Eudragit® EPO, Eudragit® RS/RL and Acryl-EZE, respectively. The optimal 

operation conditions were as follows: curing temperature 2 h, curing temperature 50 oC, 

RFB rotating speed ~20 rpm, liquid plasticizer spraying rate ~0.25 g/min and fluidizing 

air flowrate ~35 L/min. The RFB demonstrated a comparable film formation quality and 

coating efficiency with the pan coater, while superior to the fluidized bed. For the more 

difficult-to-coat micronized pellets (0.1-0.3mm), the RFB presented better applicable 

potential than the other two apparatus. In conclusion, the RFB is a promising dry powder 

coating apparatus for pharmaceutical pellets coating. 

Keywords: pellets coating, dry powder coating, rotary fluidized bed, drug release, fast 

release, sustained release, delayed release, Eudragit® EPO, Eudragit® RS/RL, Acryl-EZE 
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1.                     Chapter 1 
Introduction 

1.1. Pharmaceutical coating 

In the pharmaceutical coating industry, the coating of solid dosage forms are applied for 

different purposes such as immediate release, sustained release and delayed release. 

Among then, immediate release is essentially aimed at taste masking, easy identification 

by the color of coating, protection of the active pharmaceutical ingredient (API) from 

damage by the environment and so on. Sustained release allows the API to release over 

an extended period of time that prolongs the therapeutic effect. Delayed release is to 

release the API at a time instead of release immediately after oral administration. All the 

above-mentioned purposes can be achieved with different coating materials. 

Among the present coating techniques, liquid-based coating is the most common one for 

coating of both large dosage forms such as tablets and small dosage forms such as pellets. 

The liquid-based coating consists of organic solvent coating and aqueous coating. The 

coating materials are dissolved/dispersed in the organic solvent/water, followed by being 

sprayed onto the surface of the solid dosage forms, and a continuous coating film is 

achieved with the evaporation of the organic solvent/water. Conventional Pellets coating 

is usually accomplished by a fluidized bed or a pan coater.  

However, the liquid-based coating of pellets has many restrictions and drawbacks. As for 

organic solvent coating, the usage of the organic solvent may come with toxicity and 

inflammability, which definitely brings potential hazards. For aqueous coating, it is not 

appropriate for the moisture sensitive API. Besides that, the pellets tend to agglomerate 

easily due to their relatively large specific area and small particle size, which leads to a 

non-ideal coating. Moreover, both the organic solvent coating and aqueous coating 

require large amounts of hot fluidizing air to maintain the constant temperature of the 
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coating system, and to evaporate the organic solvent and water. These not only result in 

energy consumption but also long processing time. 

To overcome the above-mentioned problems, a lot of endeavor has been done to improve 

the technique of pellet coating. Many solventless coating techniques have been designed 

to avoid the use of organic solvent and water, which significantly overcome the major 

drawbacks of the liquid-based coating. Dry powder coating is one of the novel solventless 

coating techniques that have drawn great attention in the pharmaceutical industry. The 

dry powder coating of small dosage forms such as pellets and particles can be applied in a 

rotating pan coater and a fluidized bed coater. The coated pellets have been shown to 

achieve immediate release, sustained release and delayed release successfully. However, 

limitations still exist with these two apparatuses. For the fluidized bed, a large amount of 

hot fluidizing air is required to maintain stable fluidization of pellets and constant 

temperature in the system. The agglomeration is an inevitable problem that usually 

happens in a fluidized bed system. In terms of the rotating pan coater, when the solid 

dosage forms have a relatively small size and weight, it is difficult to handle. 

A novel apparatus called rotary fluidized bed (RFB) has been designed for the 

pharmaceutical pellets coating using dry powder coating technique. The RFB has a 

unique structure that introduces a small amount of fluidizing air in the coating system. 

The fluidizing air can efficiently work together with a rotation action to prevent the 

agglomeration of the pellets during the coating process. In comparison to the organic 

solvent coating, it is more environmentally friendly since no toxic organic solvent is 

required. In addition, the processing time and the temperature can be reduced 

dramatically in contrast to the aqueous coating. This project is aiming to investigate pellet 

coating using the RFB with dry powder coating technique. 
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1.2. Objectives 

The main objective of this project is to investigate the application of the RFB in pellets 

coating using dry powder coating technique, including the following parts: 

Firstly, to realize immediate release, sustained release and delayed release with the dry 

powder coated piroxicam pellets using Eudragit® EPO, Eudragit® RS/RL and Acryl-EZE 

as the coating materials, respetively. 

Secondly, to optimize the process conditions of pellets coating in regarding to curing time, 

curing temprature, RFB rotating speed, plasticizer spraying flowrate and fluidizing air 

flowrate. 

Finally, to compare the operation conditions and the performance of the coated pellets in 

the RFB with the other two typical coating apparatus, the rotating pan coater and the 

traditional fluidized bed. 



 4 

2.                     Chapter 2 
Literature Review 

2.1. Types of drug release 

Drug release profiles can be divided into the following types: immediate release, delayed 

release and sustained release. Different release types have their unique release profile. 

Figure 2.1 shows the typical drug release profiles of the three release types. The 

modifications of the drug usually aim at the stability and safety improvement as well as 

the therapeutic profile and efficiency enhancement. 

2.1.1. Immediate release 

This type of release is commonly applied in pharmaceutical coating industry today, and is 

aiming at a rapid dissolution of drug after oral administration, which means to get the 

active pharmaceutical ingredient (API) into the blood stream and take action to the site as 

quickly as possible. Usually, the fast release coated drug release to 100% within 30 min. 

Reasons for immediate release coating are as follows: unpleasant taste or odor masking, 

easy identification, drug protection, etc. Water-soluble polymers are usually served as the 

Figure 2.1 Different types of drug release profiles 
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coating materials in the immediate release coating. 

2.1.2. Sustained release 

Sustained release, which is also called extended release, refers to the system that allows 

drug to be released over an extended period of time to achieve prolonged therapeutic 

effect after oral administration[1]. Based on the different goals of drug delivery, the 

length of the sustained release time varies from 8-10 hours to 24 hours. Usually, this type 

of coating is achieved by the coating of water-insoluble polymers. 

The most obvious characterizations of this type are: first of all, the plasma concentration 

can be maintained at a therapeutic range in the blood, which reduces the irritation in the 

gastrointestinal tract and avoid the side effect of the drug. Second, the dosing frequency 

can be decreased from dosing immediate release drug several times a day to only once a 

day by dosing sustained release drug. 

2.1.3. Delayed release 

The definition of delayed release is the system formulated to release the active 

pharmaceutical ingredient (API) at a time instead of release immediately after oral 

administration[1]. The disintegration site of delayed release coated solid dosage forms 

can be a specific region of the intestinal tract. The drug is considered to stay in the 

stomach for about 2 h and pass to intestinal tract after the first 2 h. The coating polymers 

that are used for reaching the above aim will dissolve as the pH changes, which means 

the API will begin to release when the solid dosage forms move from the low-pH 

environment (stomach) to the high-pH environment (intestinal tract). And once the 

dosage forms reach the high-pH environment, the release profile is similar to the 

immediate release.  

The coating of delayed release is required due to the following reasons: firstly, to prevent 

the drug from irritating the stomach; secondly, to protect the API from degradation under 
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the low pH environment of the stomach; finally, to target the drug absorption to a place 

along the intestinal tract beyond the stomach. 

2.2. Controlled Drug Release Mechanism 

The controlled drug release mechanism of the previous mentioned three typical drug 

release types can be divided into two systems, diffusion controlled drug release system 

and erosion/degradation controlled drug release system. The mechanism was introduced 

by Wnek and Bowlin detailedly[1]. 

2.2.1. Diffusion-controlled drug release system 

Diffusion is defined as the action of drug molecules when stimulated by the change of 

external environment[2]. Diffusion-controlled drug release systems can be classified into 

two kinds: matrix system (monolithic system) and reservoir system (core-shell system). 

In matrix system that is also called monolithic system, the API composes with a polymer 

to form a matrix structure, and this special structure will react as a swelling phenomenon. 

The swelling phenomenon is a uniform expansion of the composite matrix, which leads 

to the appearance of opening pores that occupied the whole structure. The size of the 

opening pores has to be much greater than the API molecule so that the diffusion can take 

place. The diffusion of the drug from the polymer controls the release rate. As the release 

time increases, the drug release rate decreases. 

In the reservoir system that is also named core-shell system, the drug core is encapsulated 

in a polymer membrane, and is released driven by the difference between the drug and 

the surrounding environment[3]. Because the reservoir is coated with a permeable 

polymer, when worked with water, the drug can diffuse through the membrane; 

meanwhile, the outside water can swell the reservoir structure. Therefore, it is obviously 

that the swelling phenomenon is not as uniform as the matrix structure dose. Also, the 

pore size of the reservoir structure has to be greater than the drug molecule for the 
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purpose of effective diffusion. Furthermore, the diffusion drug release is dominated by 

the rate of the diffusion through a water-insoluble barrier. 

2.2.2. Degradation/ Erosion-controlled drug release system 

In degradation/erosion controlled drug release system, basically, the drug and polymer 

are combined either in the physical form or chemical form. In the physical form, the drug 

is encapsulated in the polymer matrix, and releases in response to the erosion of the 

polymer mass. In the chemical form, the drug attached to the chains of polymer, which 

generates chemical bond between the drug and the polymer. When the chemical bond 

breaks, the drug release starts. 

Furthermore, the drug degradation can be classified into two categories depended on the 

drug erosion location, which are bulk erosion and surface erosion[4]. In bulk erosion, as 

the solution penetrates throughout the entire polymer matrix, the polymer composite will 

degrade uniformly, which means the volume of the polymer composite remains constant 

while the density decreases. On the contrary, when it comes to surface erosion, usually, 

the polymer used in the matrix is hydrophobic, and thus the erosion will firstly take place 

on the surface when interface with solution. Obviously, for the case of surface erosion, 

the density of the polymer matrix remains constant while the volume decreases. 
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2.3. Coating materials 

As mentioned above, the coating film, depending on the special aspects of use, works 

either for protection or functional control. Reasons for applying coating are: taste 

masking, light and moisture protection, appearance improvement, mechanical resistance 

enhancement and drug release modification. Generally, the most commonly used 

materials in the coating of solid dosage forms are semi-synthetic copolymers of cellulose 

derivatives and synthetic methacrylate polymers. By changing the functional groups or 

mechanical properties of the polymers, the coating film is able to modulate different 

types of drug release profiles[2]. 

2.3.1. Polymers for immediate release 

The coating polymers aiming at immediate release are mostly water-soluble polymers, 

which are able to dissolve immediately to guarantee fast release without postponement. 

Today, most common employed immediate release polymers are cellulose ethers such as 

hydroxypropyl methylcellulose (HPMC, shown in Figure 2.2), and methacrylate-based 

polymer developed by Evonik (trade name: Eudragit® E). 

Figure 2.2 Hydroxypropyl methylcellulose molecular structure 
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HPMC has a very good solubility not only in water but also in organic solvent and is 

commonly used from the coating of early days. Furthermore, apart from of being the 

immediate release polymer, HPMC can also work as porogenic agent in the sustained 

release formulations[1]. 

Eudragit® E, as shown in Figure 2.3, is a cationic copolymer, which is comprised of 

dimethyl-laminoethyl methacrylate, butyl methacrylate and methyl methacrylate with a 

ratio of 2:1:1. Eudragit® E has three forms of availabilities, which are named as Eudragit® 

E100 (granules), Eudragit® E12, 5 (organic solution) and Eudragit® EPO (powder), 

respectively. This type of polymer is able to dissolve in gastric solutions up to pH5.5, 

which implies that it is insoluble in saliva, but will dissolve in stomach rapidly[3]. 

2.3.2. Polymers for sustained release 

As mentioned above, polymers employed in sustained release (extended release) are 

usually insoluble in water and independent from pH along the gastrointestinal tract, 

which effectively increase the therapeutic effect and compliance of patient[4]. Commonly 

used polymers for such purposes are ethyl cellulose (EC, shown in Figure 2.4) and 

Eudragit® RL and Eudragit® RS (shown in Figure 2.5) developed by Evonik. 

Figure 2.3 Eudragit® E monomer structure 
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EC, also named Aquacoat ECD and Ethocel in industry, is permeable in water in the 

environment of GI tract, which assures the control of release rate. During the coating 

process, liquid plasticizers are required for EC in order to form a coating film due to its 

high glass transition temperature (Tg=133oC) [4]. 

Eudragit® RL and Eudragit® RS (shown in Figure 2.5) are comprised of ethyl acrylate, 

methyl methacrylate and a small amount of methacrylic acid ester with quaternary 

ammonium groups (trimethyl-ammonioethyl methacrylate chloride) that serves as salts to 

assure the permeability of the coating film. Those quaternary ammonium groups will be 

ionized when contact with solution. This will lead to the swelling and opening pores of 

the coating film. The only difference between the two polymers is the content of 

quaternary ammonium groups. In Eudragit® RL, the molar ratio between the quaternary 

Figure 2.5 Ethyl cellulose molecular structure 

Figure 2.4 Chemical structure of Eudragit® RL and Eudragit® RS 
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ammonium groups to neutral methacrylic acid ester groups is 1:20, while this ratio is 1:40 

of Eudragit® RS. Obviously, Eudragit® RL has double content of quaternary ammonium 

groups compared to Eudragit® RS and thus has a higher permeability. Different drug 

release rates can be obtained through adjusting the thickness of the coating film and 

changing the ratio of the two polymers in the formulation[5]. 

2.3.3. Polymers for delayed release 

Polymers employed in delayed (enteric) coating are equipped with the ability of 

protecting the API from being damaged in the acid environment of gastrointestinal (GI) 

tract. Meanwhile, these polymers have to dissolve easily when travelling to the small 

intestine that has higher pH value. Similarly to immediate release, the most common 

polymers served for delayed release coating are cellulose-based and methacrylate-based 

polymers. 

In the early age of delayed release coating, shellac was one of the earliest natural 

polymers to meet this requirement[6]. Later on, cellulose acetate phthalate (CAP, shown 

in Figure 2.6), a synthetic cellulose-based polymer has become a popular semi-synthetic 

enteric coating material since it has a good performance of acid resistance and high 

solubility in intestine environment of pH 6.0 to 6.4[7].  

Figure 2.6 Cellulose acetate phthalate molecular structure 
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At present, Evonik, a German company focused on specialty chemicals, has developed 

several polymers for the enteric coating. The polymers are either in the form of organic 

solution or powder. Among the above-mentioned products, Eudragit® L100-55, 

Eudragit® L100 and Eudragit ® S100 (shown in Figure 2.7) are three powder form 

polymers that perform differently in the dissolution property based on the pH value� 

Eudragit® L100-55, also known as Acryl-EZE MP, is applied for the first section of the 

small intestine-duodenum, and is able to dissolve in the media with pH above 5.5. 

Eudragit® L 100 is aiming at delivery the drug to the middle part of small intestine- 

jejunum, and thus is soluble in pH higher than 6.0. Eudragit® S is used for targeting the 

drug to the last part of the small intestine, i.e. ileum, and dissolves in pH above 7.0. 

Particularly, in terms of the molecular structure of the enteric polymers, most of them 

contain carboxylic acid groups, which assure the strong protection of the API under low 

pH circumstance.  

2.3.4. Plasticizers 

In the pharmaceutical coating industry, polymers applied for coating usually form brittle 

films, and thus fail to modulate the desired drug release profiles[8]. With the addition of 

plasticizers, the above-mentioned problem can be improved� Usually, plasticizers are 

water-insoluble materials with low molecular weight (200-1000) and high boiling point at 

Figure 2.7 Chemical structure of A) Eudragit® L 100-55, 
 B) Eudragit® L 100 C) Eudragit ® S 100 
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room temperature[9]. Among the polymers, triethyl citrate (TEC) and polyethylene 

glycol 400 (PEG400) are two typical plasticizers that are widely used in the 

pharmaceutical coating industry. Particularly, TEC is a suitable plasticizer for Eudragit® 

RL and Eudragit® RS, and PEG400 is appropriate for Eudragit® EPO and 

Acryl-EZE[10-12]. 

Plasticizers are functionalized by incorporating themselves between/in the polymer 

chains, increasing the free volume, so as to decrease the glass transition temperature (Tg) 

of the polymers, improve the film flexibility and control the drug release[12-14]. By 

applying a suitable amount of plasticizer, the plasticizer will first stay on the surface of 

the solid dosage forms before being absorbed, which actually enhance the capillary force 

between the coating polymers and the surface of the solid dosage forms. Therefore, the 

coating efficiency is enhanced[15, 16]. Moreover, in electrostatic dry coating technique, 

plasticizers also play an important role in increasing the electrical conductivity, 

improving the deposition of the coating materials on the solid dosage forms[10, 11, 17].  

The selection of an appropriate plasticizer for a certain coating polymer is of great 

importance in the coating process. Key factors are as follows: one is the spreading 

behavior of the plasticizer, and the other is the application amount and the compatibility 

between the plasticizer and coating polymer. Specifically, the spreading behavior can be 

characterized by measuring the contact angle of the plasticizer on the coating film and 

estimating the surface energy of the coating polymer. Viscosity data can give potential 

information of the plasticizing activity[18]. Moreover, the solubility of the coating 

polymer in the plasticizer can help to meet the requirement of a good compatibility[9, 19]. 

The applied amount of the plasticizers is another key factor in order to form a continuous 

coating film[20]. Excessive amount of plasticizer may cause sticking problems while not 

enough amount may lead to brittle coating film. As a result of this, looking for 

the suitable amount of plasticizer becomes a critical condition for a coating process[8, 21].  



 14 

2.4. Solvent-based coating processes 

In modern pharmaceutical coating processes, the solvent-based coating methods are 

widely used, which includes sugar coating, organic solvent coating and aqueous coating. 

The sugar coating was first invented in the 19th century[1]. After several decades, the 

organic solvent coating technique appeared in 1930s and began to take place of the sugar 

coating in 1950s. Aqueous film coating then replaced part of organic solvent coating 

owing to its more environmental-friendly properties[22]. 

2.4.1. Sugar coating 

The main principle of sugar coating is masking the bitter flavor of the drug, and 

sacharose is one of the commonly used sugars in this coating method. The process 

consists of four basic steps: sealing, subcoating, syruping and polishing.  

Sugar coating has many restrictions and drawbacks. One major disadvantage is its long 

processing time. Under some conditions, it can take up to 5 days to finish the sugar 

coating process. What’s more, difficulties in the standardization of coating procedures 

and the strict demand of high-level operators also indicate the complexity of the 

operating conditions. Another disadvantage is the possibility of the breedly bacteria and 

mold. This happens not only during the storage period, but also in each coating 

procedure[1]. 

2.4.2. Organic solvent coating 

The appearance of organic solvent coating decreases the long processing time 

dramatically and overcomes the difficulty in complex operations compared to sugar 

coating. Actually, this technique came out in 1930 but not commercialized until 1954 by 

Abbott Laboratories. Figure 2.8 shows the schematic of organic solvent film coating 

process, wherein the coating materials are dissolved in the organic solvent to form a 

solution� The solution is sprayed through a nozzle onto the solid dosage forms. Heat is 
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required in the following curing procedure to evaporate the organic solvent and the 

coating materials will form a continuous coating film. 

The organic solvent film coating provides a better and more precise control of the coating 

process thanks to the development of the coating apparatus. As a result of this, the 

reproducibility of the process and the uniformity of the product from different batch are 

efficiently increased. In addition, not only large solid dosage forms such as tablets but 

also small solid dosage forms such as pellets can be coated by this technique (Details of 

pellets coating with organic solvent coating technique will be introduced in Chapter 2.3.4). 

However, several restrictions and drawbacks still exist in this method. Firstly, the 

concentration of the coating polymers in the organic solvent is usually dilute, thus it takes 

really long processing times to reach an ideal coating thickness and coating level. Also, it 

is not available for coating materials with high viscosity as the nozzle is easily blocked. 

In addition, the organic solvents may be toxic and inflammable, which brings potential 

hazards during the evaporation step. The cost of after-treatment and recovery of the 

organic solvent are both very expensive. Moreover, because the organic solvent is 

removed through evaporation, the solvent residual may have a chance to remain in the 

coating, which indicates a potential safety danger. [1, 22]. Therefore, for some 

water-soluble polymers, aqueous film coating begins to take the place of organic solvent 

film coating[23]. 

Figure 2.8 schematic of organic solvent coating 
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2.4.3. Aqueous coating 

The aqueous coating method successfully eliminates the usage of organic solvent, which 

is a great improvement of this method. The aqueous coating method has a similar coating 

procedure as the organic solvent coating method. The aqueous dispersion that contains 

the coating materials is sprayed onto the solid dosage forms and curing for a certain 

period of time to form a coating film, heat is provided continuously during the curing 

step[23]. The film formation mechanism of aqueous coating is different from the organic 

solvent coating. The coating materials, instead of dissolving in the aqueous phase, 

disperse in water to form a suspension or solution. As shown in Figure 2.9, the film 

formation essentially can be divided into three stages. Firstly, the aqueous dispersion 

deposits on the surface of the solid dosage forms after being sprayed. Then, as the water 

evaporates during the curing step, the polymer particles begin to compact together and 

followed by the particle deformation in the second stage. Finally, as the water evaporates 

continuously, the particles diffuse and coalesce with each other and form a continuous 

coating film.  

 

Whereas, some restrictions still exist in the aqueous film coating method. One of the 

major limitations is the huge energy required to evaporate the water during the process 

Figure 2.9 Film formation mechanism of aqueous coating 
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since water has a higher boiling point than the organic solvent. Another disadvantage is 

that the processing time is much longer than the organic solvent coating method due to 

the relatively high vaporization latent heat of water. Both of the above-mentioned 

drawbacks increase the coating cost and the energy consumption of the process. 

Furthermore, some coating polymers may not well-dispersed in water and can cause 

nozzle blockage, and thus only organic solvent film coating can be applied to these 

materials. Moisture is another key factor that plays an important role in the coating 

process. If the API is moisture sensitive, the remaining moisture in the coating film can 

cause stability and storage problems[24]. In summary, not only for aqueous coating, but 

also organic solvent coating, the balance between the applying solvent (either water or 

organic solvent) and its evaporation is the main restriction of these two kinds of coating 

methods[25]. 

2.4.4. Pellet coating with organic solvent/aqueous coating techniques 

Coating of small dosage forms such as pellets with the organic solvent coating method or 

aqueous coating method is most commonly achieved by the fluidized bed, which 

basically includes three types of solution spraying locations, top-spray, side-spray and 

bottom spray[26]. The bottom-spray is reached by the Wurster apparatus invented by 

Wurster in 1966[27]. Today, it is one of the most common units of coating equipment for 

pellet coating in the pharmaceutical coating industry. The schematic of Wurster fluidized 

bed is shown in Figure 2.10[28]. The Wurster fluidized bed consists of a 

solution-spraying nozzle located at the bottom, a distributor plate and a Wurster tube that 

is placed in the center of the column. During processing, the pellets are fluidized and 

coated with the coating material sprayed from the bottom spray nozzle. Furthermore, the 

unique structure leads the fluidized pellets to circulated between the Wurster tube and the 

outside column, which ensures a uniform and continuous coating film. Moreover, 

Hampel has came up with a continuous pellets coating by the addition of a separation 

tube with the Wurster fluidized bed with organic solvent coating technique[29]. 
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Drawbacks of this technique are obvious. Large amount of hot fluidizing air is required in 

this apparatus not only to maintain the fluidization of the pellets, but also necessary to 

keep a constant temperature of the system for moisture evaporation. This increases the 

energy consumption as well as the operation cost dramatically. Furthermore, long 

processing time is required to achieve an ideal coating level due to the restriction of the 

solvent coating method.  

 

  

Figure 2.10 Schematic of Wurster fluidized bed coating equipment 
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Apart from the Wurster fluidized bed, another apparatus for coating of small dosage 

forms using aqueous coating method is a rotating fluidized bed coater generated by 

Satoru Watano[30]. In Satoru’s study, the rotating fluidized bed was aimed at coating 

fine particles (Geldart Group C powder) with the HPLC aqueous solution. The schematic 

of the rotating fluidized bed is shown in Figure 2.11. The rotating fluidized bed mainly 

contains a rotatable cylinder covered with meshes, a plenum chamber and a filter placed 

in the center part of the cylinder. During the coating process, the aqueous solution was 

sprayed through the nozzle located on the central filter, and the particles were fluidized 

with the help of the strong centrifugal force. However, a large amount of hot fluidizing 

air is still required in this apparatus in order to maintain the fluidization of the particles 

and evaporate the moisture, which dramatically increases the energy consumption. Long 

processing time was required due to the nature drawbacks of aqueous coating. 

Figure 2.11 Schematic of the rotating fluidized bed coater 
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2.5. Solventless coating processes 

As solvent-based coating has some inevitable drawbacks, today, pharmaceutical coating 

processes tend to come up with some solvent-free coating techniques, which completely 

avoid the use of organic solvent and water. Solventless coating reduces the processing 

time and cost of solvent evaporation significantly. Also, the expense of the solvent 

follow-up disposal can be decreased dramatically.[25, 31] Typical solventless coating 

techniques basically include compression coating, holt-melt coating, supercritical fluid 

coating, photocurable coating and dry powder coating. Particularly, dry powder coating is 

a novel solventless coating technique that has drawn great attention in the pharmaceutical 

coating industry. Dry powder coating includes several coating techniques such as 

electrostatic-infrared powder coating, infrared-heat powder coating, plasticizer powder 

coating, etc. Detailed introduction of dry powder coating will be introduced in Chapter 

2.5. 

2.5.1. Compression coating 

Compression coating, also named press coating, is mainly applied for the coating of 

tablets. It is comprised of a drug core and an outer shell. The drug core is enclosed in the 

outer shell and thus different drug release patterns can be modulated by the selection of 

inner drug cores and outer layer materials. Also, the outer shell has great influence on the 

mechanical strength and stability of the coated tablets[32]. 

Conventionally, the compression coating process is accomplished by firstly compressing 

the drug core, and followed by compressing the outer layer materials around the drug 

core. A major problem related with the technique is the location of the inner drug core. 

The drug delivery performance of the coated tablet is not desirable assuming that the 

location of the drug core is not in the center[33]. This problem was solved by Ozeki et al. 

who designed a one-step-dry-coated tablet manufacturing method (OSDRC system). This 

method has been successfully applied to modify delayed release, and the API release time 
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and release profile can be controlled by adjusting the thickness of the outer layer [32, 34, 

35]. Hariharan and Gupta reported a similar process, in which a modified three-layer 

tablet press was used and the drug core and coated tablets are made simultaneously[36]. 

Tahra et al. found that HPMC was suitable for sustained release using compression 

coating method[37]. Cellulose derivatives, for example, hydroxypropylmethylcellulose 

(HPMC), hydroxyethlcellulose (HEC) and hydroxypropylcellulose (HPC) are appropriate 

polymers for the outer layer materials to modify controlled release and sustained release 

in compression coating[32]. 

Compression coating has some unique features. Firstly, it is able to modulate controlled 

release and sustained release, and particularly, it allows the drug core to be coated with 

some incompatible coating polymers. Moreover, it also available for the coating of those 

tablets that contain two kinds of APIs with different target area[25]. However, the 

compression coating has some drawbacks as well. One of the major limitations is the 

large coating thickness. The drug loading is limited due to the thick outer layer. It also 

restricted by the compressibility of the coating materials. Moreover, for the small dosage 

forms, such as pellets, that have quite small drug loading and volume, the compression 

coating technique is not suitable and efficient when applying to this kind of substrates. 
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2.5.2. Hot-melt coating 

In hot-melt coating process, as its name indicates, the coating material is applied in the 

molten state on the substrate and followed by a cooling solidification step, in which no 

solvent is required. This technique has been researched for stability improvement, taste 

masking and sustained release[31]. The release performance of the coated drug is 

determined by the coating material and is influenced by several factors such as pH, heat 

contact with digestive enzymes during diffusion, penetration behaviors, etc.[38]. 

In general, the process of hot-melt coating can be divided into four stages: warming up of 

equipment, preheating of substrate, melting and spreading of the coating material and 

finally cooling and congealing of the coating[39]. A schematic of the hot-melt coating 

process is shown in Figure 2.12. The equipment is a modification of conventional 

fluidized bed coater, and consists of a coating material molten system, an insulated 

nozzle for the spraying of coating agent and a modified fluidized bed[40]. When 

Figure 2.12 Schematic of the hot-melt coating process[40] 
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processing, the coating agent is introduced at a high temperature (around 150 oC) 

constantly. As a result, the hot-melt coating materials must be equipped with low melting 

points, stable physical and chemical properties, good flowability and sprayability[38]. 

Commonly used coating materials in hot-melt coating technique are usually derived from 

natural animal and plant sources, such as partially hydrogenated soybean oil, partially 

hydrogenated palm oil, partially hydrogenated cottonseed oil and partially hydrogenated 

castor oil, paraffin wax, to name a few[31, 38-40]. 

In summary, hot melt coating is useful for coating of small dosage forms such as small 

granules, pellets and particles. Moreover, coating polymers with low melting point is 

suitable to be applied in this method and the process can be accomplished within a short 

time. However, many APIs of the drug cores cannot sustain under high temperatures 

because they are very easy to decompose or damage. In addition, the selection of coating 

materials is very limited. Many commonly used pharmaceutical coating materials usually 

have high melting point, and dilution is required if applying with the hot-melt coating 

technique. Therefore, the hot melt coating still has some restrictions to achieve high 

quality coatings. 

2.5.3. Photocurable coating 

The photocurable coating method is mainly based on a free-radical polymerization 

reaction. Wherein, the functional groups in the photocurable materials react due to the 

illumination of an UV/visible light source and achieve a crosslinking reaction. The 

process can be finished within a short time[41]. The photocurable coating system 

contains three key components: an UV/visible light source, functionalized liquid 

monomers/prepolymers as the photocurable materials and photoinitiator or/and photo 

sensitizer[42]. Depending on the monomers/prepolymer and the photoinitiator applied, 

the polymerization reaction generated by the light could be free radical, cationic or 

anionic mechanisms[43]. During the polymerization reaction, the functionalized liquid 
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monomers/prepolymers transform from the liquid state to the coating film. The most 

widely applied photocurable coating materials is acrylate-functional pre-polymers[44]. 

Wang and Bogner were the first who applied the solventless photocurable coating 

technique to pharmaceutical area. They coated nonpareil beads with silicone polymer 

derivatives[45]. Later on, Bose and Bogner extended the technique to modifying 

immediate and sustained drug release profiles[46]. The release profiles are modulated by 

the adjustment of the coating materials, the layer numbers and the coating thickness. The 

film formation of the coating relies on the concentration of the 

photo-initiator/photosensitizer, the intensity of the light source and the illumination time 

of the light[47]. 

In summary, the photocruable coating method is a chemical reaction-based technique and 

is suitable for APIs that are sensitive to high temperature. Both tablet coating and pellet 

coating can be achieved with this technique. Moreover, the processing time is quite short 

compared to liquid-based coating techniques. On the contrary, for light sensitive drugs, 

this coating method is not a good choice. The UV photocurable polymers are still not 

generally recognized as safe (GRAS listed)[25]. Therefore, the application of this 

technique to the pharmaceutical field still needs further exploration. 

2.5.4. Supercritical fluid coating 

Supercritical fluid coating is another novel solventless coating technique. The definition 

of supercritical state is a state that the temperature and pressure of a substance are above 

its critical temperature and critical pressure. Under this state, the phase state between 

liquid and gas is not obvious, which indicates that it can act like gas or behave like liquid. 

In addition, at the point close to critical state, a small change in pressure or temperature 

may result in great variation in physical and chemical properties[48].  
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The process can be accomplished by the following steps: firstly, to dissolve the coating 

agent in the supercritical fluid (supercritical carbon dioxide), then to disperse the coating 

materials in the medium, finally to achieve the coating by a rapid expansion of the 

supercritical solutions[49]. One of the common processes of supercritical fluid coating in 

pharmaceutical field is rapid expansion of supercritical solutions (RESS), as shown in 

Figure 2.13[49-51]. The most commonly used supercritical solution is supercritical 

carbon dioxide. Since it has relatively low critical temperature (31.1 oC) and critical 

pressure (72bar), its supercritical state is able to be achieved near room temperature. In 

supercritical state, carbon dioxide has liquid-like density and dissolubility, and gas-like 

diffusivity. Therefore, carbon dioxide is a suitable choice for supercritical state[52]. 

All in all, the supercritical fluid coating is beneficial to small dosage forms coating, such 

as pellets and glass beads[50, 51, 53, 54]. In addition, the coating process can be 

completed within a short time owing to the quickl elimination of the supercritical fluid. 

Whereas, this technique still has some restrictions. Firstly, most coating materials have a 

relatively low solubility in the supercritical fluid, which limit the properties of the coating 

materials. Secondly, the drug core should remain insoluble during the whole coating 

Figure 2.13 Schematic of rapid expansion of supercritical solutions (RESS) process 
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process. Finally, the cost of the equipment is relatively high. Since the supercritical fluid 

in this process is in a high-pressure state, some special equipment that meets this demand 

needs to be investigated when applied in pharmaceutical industry[25]. 

2.6. Dry powder coating 

Dry powder coating belongs to solventless coating, and can be divided into several 

coating techniques, including electrostatic-infrared powder coating, infrared-heat powder 

coating, plasticizer powder coating and electrostatic-heat-plasticizer (PEH) powder 

coating. This novel coating technique has began to draw great attention from the 

pharmaceutical industry owing to its unique characteristics such as short processing time, 

high coating efficiency, and low energy consumption, to name a few. 

2.6.1. Electrostatic-Infrared powder coating 

Electrostatic-Infrared powder coating was first applied in automobile and paint coating 

industries and then ‘transplanted’ to pharmaceutical coating industry in the last several 

decades. In this technique, the coating materials, carried by air, are charged by a high 

voltage (up to 100kV/200µA) electrostatic spray gun, and disperse to the surface of the 

grounded substrates. After the electrostatic adhesion, the powders are melted to form a 

strong coating film under the exposure of IR radiation that serves as a heat source[55]. 

The efficiency of the powder adhesion on the grounded solid dosage forms is relatively 

high. This is because the electrons of the charged coating particles will release to the 

ground when in contact with the grounded solid dosage forms immediately, which won’t 

have any resistance on the deposition of the next feed coating particles. 

The coating materials and the solid dosage forms are required to be conductive. 

Particularly, the drug core must have a resistivity under 109Ωm for the purpose of 

grounding while in contact with those charged coating powders. Various methods have 

been applied to increase the conductivity of the drug core. One efficient way is to spray 
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some water on the drug core to bring moisture onto the surface, which can help to 

decrease the resistivity. Another method is modifying the substrate with the help of 

excipients such as quaternary ammonium compounds and ionic salts. These excipients 

increase the conductivity through the absorption of the moisture in the air, and can 

generate a gel layer that is electrically conductive[55]. 

The coating materials usually have a size that ranges from 30 to 100µm, and sometimes 

contains more than one component. This can avoid agglomeration so that the particles act 

the same. A similar particle size of the coating materials means a better deposition on the 

surface of the solid dosage forms and the distribution behaves more uniformly[56]. 

Compared to solvent-based coating, the film thickness of electrostatic powder coating is 

thicker, sometimes maybe twice that over solvent-based coating. Moreover, the resistivity 

of the coating materials has a great influence on the control of the film thickness. Usually, 

low resistivity (108Ωm) indicates a poor deposition due to the loss of charge. In contrast, 

high resistivity (1012Ωm) may lead to back ionization, which also limits the powder 

deposition and coating thickness[57]. After the spraying process, the coating powder 

forms a uniform film through exposure under IR radiation. The temperature of the drug 

core is around 80 oC, and 120oC of the coating materials[56]. 

Phoqus, an oral drug delivery and development pharmaceutical company, has 

commercialized electrostatic-infrared powder coating technique[58-61]. In their process, 

the deposition of the coating powder is under accurate control and the two sides of the 

solid dosage forms can be coated with different formulations. 

In conclusion, the electrostatic-infrared powder coating is a novel technique in the 

pharmaceutical industry. A uniform coating film can be achieved through this method 

within a short processing time. Furthermore, for water-sensitive drugs, this technique is a 

suitable choice. Moreover, this method has been applied to both the coating of large 

dosage forms and small dosage forms such as fine particles (details will be given in 
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Chapter 2.5.5)[62]. However, some limitations still exist in this technique. Infrared heat 

is necessary during the film formation process, which means this is not applicable for 

heat-sensitive drugs. In addition, despite the processing time being short, the time 

required for cleaning of the apparatus is relative long, which makes the process more 

complicated. 

2.6.2. Plasticizer powder coating 

Plasticizer powder coating was first reported by Obara et al[16]. The basic principle of 

this technique is to feed coating materials and liquid plasticizers simultaneously from two 

different feeders, and followed by a curing step to achieve a continuous coating film 

(shown in Figure 2.14[54]). Particularly, the curing temperature must be greater than the 

glass transition temperature (Tg) of the coating materials. 

During the coating process, the plasticizers increase the free volume by incorporating 

themselves between the polymers chains and thus result in the decrease of Tg, sometimes 

dramatically[12-14]. As the coating temperature can be decreased with the help of the 

plasticizer, the API is protected efficiently from being damaged[54, 63, 64]. Plasticizers, 

after being sprayed onto the surface of the solid dosage forms, can contribute to the 

adhesion between the coating particles and the solid dosage forms. It is beneficial for the 

film formation due to the improvement of viscous flow and particle deformation[65]. 

Furthermore, capillary forces will generate before the plasticizer immerse into the solid 

dosage forms, therefore, the deformation in the interstitial capillary system and the film 

Figure 2.14 Schematic of plasticizer powder coating 
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formation can be improved as well[16, 65]. 

Common used liquid plasticizers are triethyl citrate (TEC), polyethylene glycol 400 

(PEG400), acetylated monoglyceride (AMG), etc. Particularly, for a certain coating 

polymer, a limited choice of the plasticizers can decrease its Tg efficiently. 

So far, many research groups have applied the plasticizer powder coating technique to 

modulate fast release, sustained release and controlled release[16, 63-67]. The coating 

substrates can be either large solid dosage forms like tablets or small ones like pellets and 

particles. Usually, coating of tablets is processed in a rotating pan coater, and coating of 

pellets and particles are in a Wurster fluidized bed because small solid dosage forms tend 

to agglomerate easily due to the strong interactions and large specific surface areas. 

(Details of small dosage forms coating with the plasticizer powder coating technique will 

be introduced in Chapter 2.5.5.) 

The major advantage of the plasticizer powder coating technique is the short processing 

time compared with solvent-based coating methods. In contrast, this technique still face 

challenges in some aspects. One is that the amount of plasticizers applied in the process is 

difficult to control. Surplus plasticizers may cause sticky effect and agglomeration of the 

solid dosage forms, whereas, not enough amount may result in a thin coating film and un 

uniform coating material deposition[54]. Thus, balance between the amount of plasticizer 

and prevention from agglomeration plays a critical role in the plasticizer powder coating 

technique. 

2.6.3. Infrared-Heat powder coating 

Infrared-Heat powder coating was first studied by Cerea et al. and was designed for the 

coating of tablets. In this technique, heat is the binding force that helps the formation of 

the coating film and is provided by an infrared (IR) light source[68]. Plasticizers are not 

required in this method. For polymers with low Tg such as Eudragit® EPO (Tg=53 oC), the 
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coating process is simple: spreading the coating material on to the tablets and curing 

under the illumination of the IR light source. When referred to high Tg polymers like 

Eudragit® RL (Tg=62 oC), Eudragit® RS (Tg=59 oC) and Eudragit® L 100-55 (Tg=127 oC), 

a pre-plasticization step is required, in which the coating polymer is combined with 

plasticizers through a hot melt extrusion process[17]. 

Advantages of the infrared-heat powder coating method included the elimination of 

plasticizers for those low Tg polymers, and the reduction of the plasticizer amount of high 

Tg polymers thanks to the pre-plasticization. However, the coating film accomplished by 

this technique is not smooth and uniform, and the thickness is large although the 

functional drug delivery is reached successfully. Furthermore, since the application of 

heat powder coating on tablets was successful, the coating of small solid dosage forms 

such as pellets with this method still requires further study. 

2.6.4. Plasticizer-electrostatic-heat powder coating 

Plasticizer-electrostatic-heat powder coating technique (PEH-Coating) is a novel 

pharmaceutical coating technique developed by Zhu et al[69]. As the name referred, this 

technique combines the application of plasticizer, electrostatic deposition and the heat 

together in one coating system. The liquid plasticizers help to decrease the glass 

transition temperature (Tg) of the coating materials, generate a capillary force and 

increase the electrical conductivity of the solid dosage forms. Moreover, the electrostatic 

spraying gun charges the coating particles with negative electrons and work together with 

the grounded rotating coating pan, which improves the powder adhesion on the solid 

dosage forms effectively. After the charged particles attach on the solid dosage forms, the 

electrons will release to ground due to the electrical conductivity of the solid dosage 

forms and the grounded pan coater, thus the next layer of the charged coating particles 

can easily deposit on the surface of the solid dosage forms again.  



 31 

The PEH-Coating technique is achieved in a rotating pan coater. As shown in Figure 2.15, 

four major parts are included in this coating apparatus, a liquid plasticizer spraying 

system, a coating material feeder, an electrostatic spraying gun that can generate 

electrons together with coating materials and a grounded rotating coating pan that is 

temperature controllable. The overall coating process includes the following steps: firstly, 

the solid dosage forms are preheated in the rotating pan coater at a pre-determined 

temperature; secondly, a given amount of plasticizer is sprayed onto the solid dosage 

forms and immediately followed by the electrostatic spraying of the coating materials at a 

given amount; finally, the pellets are cured at a pre-determined temperature and time to 

form a continuous, smooth and strong coating film.  

This technique has been applied to the coating of both large solid dosage forms such as 

tablets and small solid dosage forms such as pellets and successfully modified immediate 

release, sustained release and delayed release with relevant coating materials[10-12, 70]. 

Advantages of the PEH-Coating technique are clearly illustrated. It avoids the usage of 

the organic solvent and the water, which avoids the potential hazards of the organic 

solvent and shortens the processing time effectively. The coating process can be 

shortened to 2-3 hours. Also, since no fluidizing air is required in this technique, the 

energy consumption is reduced dramatically compared to the conventional 

Figure 2.15 Schematic of PEH-Coating system. (A) Liquid plasticizer spraying system,  
(B) Rotatable coating pan, (C) Electrostatic spraying gun, (D) Coating material feeder 
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pharmaceutical coating fluidized bed coater that need large amount of hot fluidizing air to 

evaporate the liquid. In contrast, the restrictions of this technique still exist. The coating 

of those solid dosage forms with less electrical conductivity is not appropriate in this 

coating system. Moreover, the rotating pan coater in this technique is an ‘open system’, 

as a result, this is not a good selection for the coating of solid dosage forms with a really 

small size and weight. This is because during the coating process, the rotating pan coater 

may lead to the drop of tiny pellets, and the air from the spraying gun will blow the small 

pellets away. 

2.6.5. Pellets coating with dry powder coating techniques 

As described above, many of the dry powder coating techniques are able to achieve the 

coating of small solid dosage forms such as pellets and fine particles. The commonly 

used apparatus in dry powder coating techniques are spout-fluidized bed (Figure 2.16, 

applied in electrostatic-infrared powder coating), Wurster fluidized bed (Figure 2.10, 

applied in plasticizer powder coating) and rotating pan coater (Figure 2.15, applied in 

PEH powder coating).  

Figure 2.16 Schematic of the electrostatic spout-fluidized bed system[62] 
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The electrostatic-infrared coating technique has also been applied to the coating of small 

dosage forms such as fine particles with a spout-fluidized bed apparatus[62]. The 

schematic of the electrostatic spout-fluidized bed system is shown in Figure 2.16. The 

process was operated under a diluted and fast circulating condition in the spout-fluidized 

bed. Specifically, the particles were fluidized by the warm fluidizing air and were 

plasticized by the plasticizer nozzle located at the bottom of the column, meanwhile, the 

coating powders were charged with electrons by a corona gun and attached to the 

plasticized particles. Then the coated particles were transported from the spout-fluidized 

bed to a stationary system and followed with a curing step under the IR lamp at a 

predetermined temperature. Delayed release was successfully modified by the 

hydroxypropyl methylcellulose acetate succinate (HPMCAS) in this system. The 

advantages of this system with electrostatic-infrared dry powder coating technique are: 

firstly, it can avoid the agglomeration of the fine particles in the coating process 

effectively; secondly, it is suitable for the coating of fine particles even with a particle 

size less than 1mm. However, drawbacks of this technique still exist. Due to the 

characteristic of the fluidized bed, large amount of hot fluidizing air is required in this 

system, which increases the energy consumption as well as the operation cost. In addition, 

although the coating step in the spout-fluidized bed can be operated quickly, the curing 

step takes up to12 hours to achieve an ideal coating film. 

Coating of small dosage forms using the plasticizer powder coating technique was 

available in a Wurster fluidized bed (Figure 2.10), which was investigated by Bodmeier 

research group[63, 64, 71]. In their study, the nonpareil pellets with a size of 0.71-0.85 

mm were employed and coated with different coating materials to modify immediate 

release, sustained release and delayed release. During the coating process, the spraying of 

plasticizer and the feeding of coating materials were induced separately in a Wurster 

fluidized bed, and after the adhesion of the coating materials, the pellets were unloaded 

and transported to a curing step for another 2 h to 24 h under the predetermined 
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temperature. Obviously, pellet coating in a Wurster fluidized bed with the plasticizer 

powder coating technique decreases the adhesion between the coated pellets efficiently. 

The processing time can be shorten within several hours depended on the required curing 

time of the coating materials. A large amount of hot fluidizing air is required in this 

system due to the limitation of a Wurster fluidized bed, which increases the energy 

consumption and operating cost. 

The coating of small pellets with the PEH powder coating technique was achieved in a 

rotating coating pan (Figure 2.15). The coated pellets were able to modulate immediate 

release, sustained release and delayed release with relevant coating materials 

successfully[12]. Details of this coating system can be found in Chapter 2.5.4. 
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3.                     Chapter 3 
Materials and Methods 

3.1. Materials 

3.1.1. Powders 
Eudragit® EPO, Eudragit® RS, Eudragit® RL, Eudragit® L100-55 and Colloidal silicon 

dioxide (AEROSIL® 200 Pharma) were provided by Evonik Degussa Corporation 

(Germany). Eudragit® EPO was used as the fast release coating polymer, and Eudragit® 

RS, Eudragit® RL were used as the sustained release coating polymers. Acryl-EZE was 

donated by Colorcon, Inc. (US). Acryl-EZE was used as the delayed release coating 

polymer and contains Eudragit® L100-55 developed by Colorcon, Inc. Talc powder was 

purchased from Mallinckrodt Baker Inc. (Canada). Colloidal silicon dioxide and talc 

powders were served as the anti-adherent agent to facilitate the coating process. 

3.1.2. Plasticizers 

Polyethylene glycol 400 (PEG 400) was purchased from EMD Chemicals Inc. (Ontario 

Canada). Triethyl citrate (TEC) was purchased from Caledon Laboratories Ltd. (Ontario 

Canada). The selections of liquid plasticizers were based on their performance of 

reducing the glass transition temperature (Tg) of the coating polymers. PEG 400 was 

selected as the liquid plasticizer for both Eudragit® EPO and Acryl-EZE. TEC was 

chosen as the liquid plasticizer for Eudragit® RS and Eudragit® RL[12]. 

3.1.3. Piroxicam pellets 

Piroxicam pellets and microcrystalline cellulose (MCC) pellets were provided by 

Gaocheng Biotech Health CO., Ltd. (China). The particle size of the piroxicam pellets 

and MCC pellets are 0.9 -1.10 mm and 0.1-0.3 mm, respectively. 
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3.2. Particle size reduction and analysis 

Particle size reduction is necessary for the coating powders (Eudragit® RS and Eudragit® 

RL) in order to achieve uniform film coating before preparing the coating formulations. 

A blade grind mill was employed as the particle size reduction apparatus, and an 

ultrasonic sieving (HK Technologies Ultrasonics Rugby, United Kingdom) was applied 

to select the powders with ideal particle size. 

The particle size of powders was validated by a particle size analyzer (TSI Corporation, 

Model 3603, Shoreview, MN, USA) after the particle size reduction. The volume mean 

diameter D[4,3] was used as the average particle size. The calculation equation is as 

follows: 
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The particle size tests were replicated three times. The average particle size of coating 

powders was shown in Table 3.1. 

 

Table 3.1 Particle size of coating powders and additives 

Coating powder Average particle size, D[4,3] (µm) 

Eudragit® EPO 13.3 

Eudragit® RS 47.7 

Eudragit® RL 40.8 

Acryl-EZE 20.5 

Talc 28.9 
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3.3. Glass transition temperature 

Differential scanning calorimetry (DSC) analysis (Mettler Toledo, DSC822, Mississauga, 

Canada) was employed to study the glass transition temperature of both raw coating 

materials and coating materials with liquid plasticizers. The tests were investigated under 

different weight ratios between the plasticizers and coating materials. The samples (10 

mg) were heated at the rate of 2 oC /min under a nitrogen atmosphere with the range from 

20 oC to 200 oC. For each sample, the test was replicated twice[11]. The DSC results are 

shown in Table 3.2, Table 3.3 and Table 3.4. 

 
Table 3.2 Glass transition temperature of Eudragit® EPO 

Plasticizer (PEG 400) ratio  
(%w/w, based on polymer) 

Tg (oC) of Eudragit® EPO 

0 53.1 

10 38.8 

25 31.1 

 
 

Table 3.3 Glass transition temperature of Eudragit® RS and Eudragit® RL 

Plasticizer (TEC) ratio  
(%w/w, based on polymer) 

Tg (oC) of Eudragit® RS Tg (oC) of Eudragit® RL 

0 62 59 

15 45 46.5 

30 36 38 

45 25 26 
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Table 3.4 Glass transition temperature of Acryl-EZE 

Plasticizer (PEG 400) ratio  
(%w/w, based on polymer) 

  Tg (oC) of Acryl-EZE 

0 127 

10 102 

25 87 

50 75 

100 55 

 

3.4. Characterization using scanning electron micrographs 
(SEM) 

The surface morphology of the coated pellets was investigated by the scanning electron 

microscopy (SEM). An EMITECH K550 sputter coater (Emitech Ltd., Ashford, UK) was 

employed to sputter coat the pellets samples. After sputter coated, the pellets samples 

were observed under a scanning electron microscope at 5.0 kV (SEM, Hitachi S-2600N, 

Ontario, Canada). 

3.5. In-vitro drug release testing 

In-vitro drug release profiles of the coated pellets were tested by the United States 

Pharmacopeia (USP) apparatus (Apparatus 2, paddle; Huanghai Rcz-6c2, Shanghai, 

China). Six samples with 100mg coated pellets were conducted for the three different 

polymers coated pellets. For Eudragit® EPO coated pellets, the drug release media was 

900 mL of 0.1 N HCl solution under the temperature of 37 oC and the rotation speed of 

the paddle was 100 rpm. For Eudragit® RS and Eudragit® RL coated pellets, the drug 

release media was also 900 mL of pH 7.2 phosphate buffer solution under the 

temperature of 37 oC and the rotation speed of the paddle was 50 rpm. For Acryl-EZE 
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coated pellets, the release media was 750 mL of 0.1 N HCl solution during the first 2h 

and 1000 mL of pH 6.8 phosphate buffer solution (by the addition of 250 mL of 0.2 M 

tribasic sodium phosphate solution into the above 750 mL 0.1 N HCl solution) for 

another 2h, and the rotation speed of the paddle was 100 rpm. Samples were collected by 

a 10 mL syringe at predetermined intervals and followed by the replacement of same 

amount (10 mL) of fresh release media. The samples, after being filtered, were assayed 

using an 8453 UV-Visible Spectrophotometer (Agilent Technologies, Mississauga, 

Canada) at a wavelength of 334 nm for pH 1.2 HCl solution (0.1 N), 354 nm for pH 7.2 

phosphate buffer solution and 353 nm for pH 6.8 phosphate buffer solution. 
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3.5.1. Standard curve 

The drug release standard curves of piroxicam at the wavelength of 334 nm, 354 nm and 

353 nm are shown in Figure 3.1, Figure 3.2 and Figure 3.3, respectively. The curves are 

served for the calculation of unknown concentrations of piroxicam samples collected 

from the in-vitro drug release testing.   

Figure 3.1 Standard curve of piroxicam (wavelength=334 nm)  
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Figure 3.2 Standard curve of piroxicam (wavelength=354 nm) 
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Figure 3.3 Standard curve of piroxicam (wavelength=353 nm) 
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3.5.2. UV-Vis spectrophotometer validation 

After the creation of the standard curve of piroxicam, precision test, accuracy (recovery) 

test and stability test are required for the acceptability validation of the application of 

UV-vis spectrophotometer that is used for the measurement and analysis of the drug 

release from piroxicam pellets. For the release media of pH 1.2 HCl solution (0.1 N), a 

buffer solution containing piroxicam was scanned by the UV-vis spectrophotometer to 

ensure a maximum absorbency wavelength at 334 nm. For the release media of pH 7.2 

phosphate buffer solution, the wavelength is at 354 nm. And for the release media of pH 

6.8 phosphate buffer solution, the wavelength is at 353 nm. After the confirmation of the 

maximum absorbency wavelength of different release media with known concentration, 

the three-mentioned test (precision test, accuracy (recovery) test, stability test) were 

required for each of the release medium. 

Precision tests 

Three solution samples with a known concentration of piroxicam (not to exceed the 

maximum absorbency concentration of the standard curve) were prepared, and then 

scanned a defined amount of each sample. The standard of the precision test depends on 

the standard error between the three samples that are collected from the UV-vis 

spectrophotometer output. If the standard error is smaller than 1%, the precision test is 

successful. The equation for the calculation of standard error is: 

Standard Error = Standard deviation of sample
Mean drug release concentration

 <  1%  
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Accuracy (recovery) tests 

Three solution samples of different known piroxicam concentration were prepared. The 

concentrations of three samples are low, medium and high. Then scanned a defined 

amount of each sample was scanned. The definition of the accuracy test is the difference 

between the true value and the mean experimental value of the release data within a 

confidence interval. The accuracy test is required for each of the three concentration 

samples. The three tests will give an overall accuracy of the UV-vis spectrophotometer. 

The calculation equation of percentage difference is: 

Percentage Difference = 
(True value-Mean experimental value)

True value
 * 100%  

Stability tests 

For stability test, a solution sample of known piroxicam concentration (not exceed the 

maximum absorbency concentration of the standard curve) was prepared. Then the 

solution sample was put into one chamber of the dissolution test apparatus and the 

temperature of the system was 37 oC. Samples were collected with a 10 mL syringe at 

predetermined intervals (0 hr, 1 hr, 2 hrs, 6 hrs, 12 hrs) and scanned. Sample of 0 hr was 

regarded as the basis. If the experimental value of the samples through 12 hours, 

compared to the 0 hr basis, remained constant within a very tiny error, the accuracy test 

can be regarded as a success. 
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4.                     Chapter 4 
Apparatus and Experimental Procedure 

4.1.  An innovative rotary fluidized bed equipment for pellets 
dry powder coating 

Rotary fluidized bed (RFB) coating system 

A new apparatus called Rotary Fluidized Bed (RFB) was designed by our research group 

for the coating of small dosage forms with dry powder coating technique. The apparatus 

structure originated from the fluidized bed that facilitated fine powder fluidizing[72] 

Figure 4.1 shows the schematic of this rotary fluidized bed that is seen horizontally along 

with the rotating axis. Wherein, the rotating part of the RFB is a cylindrical tank 

(diameter =12 cm, depth= 10 cm) lying horizontally. The cover of the cylindrical tank 

can be removed for the loading of the solid dosage forms. There is an open hole (2 cm) 

located in the center of the cover that serves as the inlets of the coating materials and 

plasticizers. Particularly, the cylindrical tank consists of two layers. The outside layer is 

made of acrylic and the inner side is covered with porous material (mesh). There are six 

chambers located between the two layers. During processing, a fluidizing air is blown in 

through three of the six chambers and the other three chambers serves as outlets. When 

rotating, the six chambers serve as inlets and outlets alternately. The rotation speed of the 

tank can be controlled. In addition, fluidizing air is introduced in to the rotating tank 

during the coating process. The air enters through the backside of the rotating tank, then 

circulates in the tank and flows out again from its backside. The temperature of the 

coating system is controlled by the fluidizing air. Figure 4.2 shows the schematic of the 

RFB coating system that is comprised of four major parts, the coating materials feeder, 

the liquid plasticizer spraying system, the RFB and the fluidizing air heating and 

introducing system. 
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The rotary fluidized bed (RFB) is an innovative apparatus for dry powder coating of 

small solid dosage forms such as pellets and particles. Advantages of the RFB are as 

follows. Firstly, compared to conventional solvent-based coating methods, the processing 

temperature is greatly decreased. Taking the Acryl-EZE coated pellets as an example, the 

processing temperature (curing temperature) using dry powder coating with RFB is 50 oC 

while it is always higher than 50 oC of conventional solvent-based coating. Secondly, 

processing time can be decreased to only 2-3 hours. For conventional solvent-based 

coating it usually takes up to 10-20 hours to reach the same coating level. The flow rate 

of fluidizing air in the RFB is less than that of liquid-based coating in fluidized bed coater. 

In addition, the inner side of the rotating tank is covered with porous material (mesh), 

which can release the moisture efficiently. Furthermore, the combination of rotation and 

fluidizing air successfully avoids agglomerations of pellets. Also, the fluidizing air is able 

Figure 4.1 Schematic of rotary fluidized bed 



 47 

to blow the unattached coating powder away from the surface of the pellets, which can 

improve the smoothness of the pellet coated surface.  

 

Experimental procedure and operating conditions 

The experimental procedure of coating pellets using dry powder coating technique with 

RFB comprises five main steps: coating material formulation preparation, pellets and 

equipment preheating, liquid plasticizer spray, coating materials feeding and finally 

curing step. 

The first step, preparation of coating material formulation, was to combine the coating 

polymers (Eudragit® EPO, Eudragit® RS, Eudragit® RL and Acryl-EZE) with additives 

(talc, colloidal silicon dioxide and pigment) into a homogeneous formulation. The ratio 

between the coating polymers and additives depended on the weight. 

The second step was preheating of the equipment and pellets. In this step, 40g piroxicam 

Figure 4.2 Schematic of the RFB system:(A) Coating materials feeder,  
(B) Liquid plasticizer spraying system, (C) Rotary fluidized bed,  

(D) Fluidizing air heating and introducing system 
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pellets were loaded into the rotating cylindrical tank and fluidizing air was introduced 

with a given temperature to warm up the equipment and pellets. The rotating speed of the 

RFB was based on the given process conditions. 

Once the temperature of the pellets achieved the given temperature, the liquid plasticizer 

was sprayed and immediately followed by the feeding of coating materials. Before 

spraying liquid plasticizers, the rotation of the RFB was set to a relatively high speed that 

was about 70 rpm. This is because when spraying liquid plasticizers, pellets tend to 

agglomerate and become sticky, thus an increase in the rotating speed can avoid the 

agglomeration effectively. The fluidizing air was stopped before the spraying step in 

order to avoid the blow-away of coating materials. Liquid plasticizer was sprayed onto 

the pellets at a given flowrate from an atomizing nozzle. The spraying time was about 30 

to 40 seconds based on the different coating polymers. It was followed immediately by a 

coating material feeding step. Whereby, a given amount of coating materials (usually 

1-1.5 g) was delivered into the cylindrical tank. Usually, the plasticizer spray step and 

coating materials feed step was repeated several times until enough coating materials 

were deposited on the pellets and an ideal coating level was achieved. A waiting period 

(usually 10-20 mins) was required before the next amount of plasticizer and coating 

materials were feed. During the wait time, the fluidized air was re-introduced at the same 

processing temperature. 

The final step of the coating process is the curing of coating materials that helps to form a 

uniform and stable coating film. The curing step began after the final spraying of liquid 

plasticizers and feeding of coating materials. In this step, the rotating speed and the 

curing time depended on the process parameters. 
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The coating level (%) of the coated pellets was defined as the weight gain of coated 

pellets over the weight of uncoated pellets, as shown in the following equation: 

Coating level (%) = weight of coated pellets - weight of uncoated pellets 
weight of uncoated pellets

 * 100%  

4.2. Rotating pan coater 

Rotating pan coater system 

A rotating pan coater system, which was designed by our research group, was introduced 

for the coating of pellets with dry powder coating method. A schematic of the rotating 

pan coater system was shown in Figure 4.3. It consists of four main parts, a liquid 

plasticizer spraying system that includes an atomizing nozzle and a metering pump, a 

coating materials feeder, a rotating coating pan (with a diameter of 12.8 cm and a depth 

of 12.8 cm) and a coating materials spraying gun. The rotating speed of the coating pan 

and its processing temperature is controllable. 

 

  

Figure 4.3 Schematic of the rotating pan coater system:  
(A) Liquid plasticizer spraying system, (B) Coating pan,  

(C) Coating material spraying gun, (D) Coating materials feeder 
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Experimental procedure 

The experimental procedure using the rotating pan coater is similar to the RFB, which 

also contains five main steps, including coating material formulation preparation, pellets 

and equipment preheating, liquid plasticizer spray, coating materials feeding and finally 

curing step.  

The first step, preparation of coating material formulation, was the same as it was in the 

RFB procedure. Then, the piroxicam pellets (70g) was placed in the rotating pan coater 

and preheated to a predetermined temperature that depended on the coating polymers. 

When preheating, the rotating speed was relatively slow. 

Next was to spray the liquid plasticizer and feed the coating materials. Prior to the above 

two steps, the rotating speed was adjusted to a relatively high rate for the purpose of 

avoiding the pellets from agglomeration when applying the liquid plasticizer. Then, a 

given amount of liquid plasticizer was sprayed onto the pellets from an atomizing nozzle, 

followed by feeding of a given amount of coating materials right away. This step was 

usually repeated several times until enough coating materials were deposited on the 

pellets and an ideal coating level was achieved. Particularly, a waiting period (usually 

10-20 mins) was required before the next amount of plasticizer and coating materials 

were feed. 

When enough coating materials were attached onto the pellets, the curing step started. 

The rotating speed was readjusted to a slow rate (10-20 rpm) in order to reach a stable 

and uniform coating film. This step usually took about 2 hours and the processing 

temperature was maintained constantly at a given value. 
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4.3. Traditional fluidized bed 

Top-spray fluidized bed system 

A traditional fluidized bed (column diameter=5 cm, expansion chamber diameter= 7.8cm, 

column height=20 cm, overall height=36 cm,) was used for dry powder coating small 

solid dosage forms. Schematic of the top-spray fluidized bed was shown in Figure 4.4. 

The pellets and coating materials were loaded in the fluidized bed above the distributor 

prior to a fluidization introduce. There was an atomizing nozzle placed in the middle of 

the fluidized bed that served for liquid plasticizer spraying. Fluidized air was induced 

from the bottom of the bed and the temperature of the system was also controlled by the 

introduced fluidizing air. 

  

Figure 4.4 Schematic of top-spray fluidized bed 
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Experimental procedure 

The experimental procedure of using top-spray fluidized bed was comprised of 

preparation of coating material formulation, pellets and equipment preheating, loading of 

coating materials, liquid plasticizer spray and curing step. 

The preparation of the coating material formulation step followed the same procedure as 

the above two. Then the pellets with a weight of 70 g were loaded in the fluidized bed, 

and fluidizing air was introduced with a given flowrate and temperature to fluidize and 

preheat the pellets. When reaching the predetermined temperature, the fluidizing air was 

shut down and a given amount of coating materials was placed onto the distributor (The 

pellets were reloaded after the coating materials were settled). The next step was the 

liquid plasticizer spray, wherein the fluidizing air was introduced at a given flowrate, 

meanwhile a given amount of liquid plasticizer was sprayed from the atomizing nozzle 

located in the middle height of the column. At this moment, the liquid plasticizer, coating 

materials and the pellets contacted with each other together and the pellets were attached 

with coating materials immediately. The final step was the curing of the pellets, in which 

the fluidizing air was maintained at a constant flowrate and temperature until a uniform 

coating film was achieved. 



 53 

5.                    Chapter 5 
Dry Powder Coating of Pharmaceutical Pellets 

with the Rotary Fluidized Bed 

5.1. Immediate release coating with Eudragit® EPO 

5.1.1. Introduction 

Immediate release is aiming at a rapid dissolution of drug after oral administration, which 

can quickly get the drug into the blood stream and take action to the site immediately. 

Among the commonly used immediate release coating materials, Eudragit® EPO has a 

good performance on taste masking which is one of the reasons of immediate release 

coating. Furthermore, it has already been mentioned that Eudragit® EPO is able to 

dissolve in gastric solutions up to pH5.5. This implies it is insoluble in the saliva but will 

dissolve in stomach rapidly[3]. 

Previous work done by our research group has shown that the pellets coating with 

Eudragit® EPO by dry powder coating technique was successfully achieved by a rotating 

pan coater[12]. In this section, the RFB was employed to dry powder coating piroxicam 

pellets to modulate immediate release with Eudragit® EPO. PEG400 was selected as a 

liquid plasticizer. The effect of coating level was also investigated. The performance and 

the appearance of the Eudragit® EPO coated piroxicam pellets was checked both 

qualitatively and quantitatively based on scanning electron microscope (SEM) and 

in-vitro release testing, respectively. 

5.1.2. Effect of coating level 

The immediate release coating formulations in this chapter followed the composition 

showed in Table 5.1. The mass proportion of Eudragit® EPO was 10%, which was based 

on the previous work done by our research group. A high mass proportion of Eudragit® 
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EPO can increase the film softness and achieve a dense coating film. However, this may 

also lead to the sticky coating film and agglomeration of pellets. In addition, talc and 

colloidal silicon dioxide were served as anti-adherent agents in case of sticky film that 

may cause agglomeration during coating process. An orange dye was added to help to 

observe the film formation in an easier and clearer way. 

 
Table 5.1 Coating fomulation composition of Eudragit® EPO polymers 

Formulation Composition (wt%) 

Eudragit® EPO 10.0 

Talc 89.0 

Colloidal silicon dioxide 0.5 

Orange dye 0.5 

 

The coating level (%) of the coated pellets was defined as the weight gain of coated 

pellets over the weight of uncoated pellets, as shown in the following equation: 

Coating level (%) = weight of coated pellets - weight of uncoated pellets 
weight of uncoated pellets

 * 100%
 

In order to study the effect of coating level, the piroxicam pellets were coated at two 

coating levels, the lower coating level is 8.82% and the relatively higher coating level is 

19.9%. The scanning electron microcopy (SEM) was employed to observe the surface 

and cross section of the Eudragit® EPO coated piroxicam pellets. The SEM monographs 

of the high coating level pellets (19.9%) is shown in Figure 5.1. It can be seen that after 

curing for 120 min under a temperature of 50 oC, the coating materials has formed a 

uniform and smooth film (Figure 5.1A), wherein the boundaries between the coating 
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particles no longer exist. Figure 5.1B indicates the cross section of the coated pellets. It 

can be clearly observed that the uncoated piroxicam pellets were covered by a dense 

coating film. This proves that the Eudragit® EPO coating film performs a continuous and 

dense structure. Furthermore, from the SEM monographs, it suggests that this coating 

material is able to achieve a relatively strong and smooth coating film with the RFB. 

The effect of Eudragit® EPO coating level on the drug release profiles is shown in Figure 

5.2. The Eudragit® EPO coated piroxicam pellets were processed under a temperature of 

50 oC and cured for 120 min. As can be seen from the release profiles (Figure 5.2), both 

the coated pellets were released up to 90% within 20 min and achieved 100% within 60 

min. This indicated that no significant effect was influenced by these two coating levels. 

The reason for this is that Eudragit® EPO is a water soluble polymer and is able to 

dissolve in solutions with a pH below 5.5, so the higher coating level may only extend the 

dissolution of the coating film that is relatively short compared to the release of the drug 

core[3]. The drug release of the Eudragit® EPO coated pellets is erosion controlled. 

Figure 5.1 SEM micrographs of Eudragit® EPO coated piroxicam pellets curing at 50 oC, 
120 min, RFB rotating speed: 20 rpm, coating level of 19.9%:(A) surface, (B) Cross section 

A B 
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In solvent-based coating methods, the coating level of Eudragit® EPO coated pellets is 

generally around 20%. Herein, the pellets using RFB with dry powder coating technique 

can modulate immediate release with the same coating material at a relatively low 

coating level (8.82%). This improvement not only reduces the usage of coating materials 

but also reduces the processing time significantly. Also, the coating film achieved by the 

RFB was smooth, uniform and dense according to the SEM monographs. 

Figure 5.2 The effect of Eudragit® E PO coating level on drug release profiles. 
(Curing temperature: 50 oC, curing time: 120 min, RFB rotating speed: 20 rpm) 
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5.2. Sustained release coating with Eudragit® RS/RL 

5.2.1.  Introduction 

Sustained release is defined as a system that allows the drug to be released over an 

extended period of time to achieve prolonged therapeutic effect after oral administration. 

Eudragit® RL and Eudragit® RS are two commonly used coating materials for sustained 

release coating. Both two coating materials comprise of ethyl acrylate, methyl 

methacrylate and a small amount of methacrylic acid ester with quaternary ammonium 

groups (trimethyl-ammonioethyl methacrylate chloride) that function as salts to assure 

the permeability of the film. 

Previous study done by our research group has proved that dry powder coated piroxicam 

pellets were able to modify sustained release with the same coating materials by the 

rotating pan coater[10]. In this section, the RFB was investigated to coat piroxicam 

pellets with Eudragit® RL and Eudragit® RS to modulate sustained release, and TEC was 

a suitable liquid plasticizer for these polymers. Two main factors influencing the 

sustained release profile were studied, the effect of coating level and the ratio of 

Eudragit® RS to Eudragit® RL. The performance and the appearance of the Eudragit® 

RS/RL coated piroxicam pellets was studied both qualitatively and quantitatively based 

on scanning electron microscope (SEM) and in-vitro release testing, respectively. 

5.2.2.  Effect of coating level 

In this section, Eudragit® RS/RL (1:1) was selected to investigate the effect of coating 

level. The overall composition of the sustained release coating formulations is shown in 

Table 5.2 wherein the sum of Eudragit® RS and Eudragit® RL was 80.0%. The remaining 

20% was additives including talc and colloidal silicon dioxide and a blue dye. The talc 

and colloidal silicon dioxide served as the anti-adherent agent. The blue dye is an 

insoluble dye aiming at a better observation of film formation. The section of the mass 
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proportion of Eudragit® RS and Eudragit® RL (80%) was in accordance with previous 

study done by our research group, wherein this percentage would not cause 

agglomeration of the pellets and was high enough to form a strong coating film as well. 

 

Table 5.2 Overall coating fomulation composition of Eudragit® RS and Eudragit® RL polymers 

 

In the plasticizer powder coating technique, the plasticizers are functionalized by 

incorporating themselves between the polymers chains, which increases the free volume 

and thus the Tg can be decreased dramatically[12-14]. The film formation is achieved by 

the deformation and viscous flow of the plasticized-coating materials. The scanning 

electron microscope (SEM) was employed to observe the film formation of the coating 

materials and the effect of the coating level. Three coating levels were investigated. As 

shown in Figure 5.3, the surface and cross section of the Eudragit® RS/RL (1:1) coated 

pellets under different coating levels were observed. Obviously, as the coating level 

increased, the smoothness of the Eudragit® RS/RL coating film became more even 

(Figure 5.3A B and C). Specifically, the surface of the lowest coating level (9.23%) 

coated pellets still exhibited some ‘scaly structure’, which indicated the non-uniformity 

of the coating film. This was because the amount of coating materials was not enough to 

form a thick and dense coating film. This phenomenon was improved simply by 

increasing the coating level, which was illustrated through the coated pellets with coating 

Formulation Composition (wt%) 

Eudragit® RS and Eudragit® RL 80.0 

Talc 19.0 

Colloidal silicon dioxide 0.5 

Blue dye 0.5 
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levels of 13.13% and 17.88%. The surface of the pellets with the highest coating level 

(Figure 5.3C) showed the smoothest and most uniform coating film, where the ‘scaly 

structure’ no longer appeared and the coating materials were well cured continuously. 

The cross section SEM micrograph of pellets with the highest coating level (Figure 5.3D) 

can proved the uniform and dense coating as well. The piroxicam pellet was evenly 

covered with a constant thickness (50 µm) of coating film. As a result, it can be 

concluded that using the RFB dry powder coated piroxicam pellets with Eudragit® 

RS/RL were able to achieve a continuous and uniform coating film. With better film 

formation was obtained at a higher coating level. 

  

Figure 5.3 SEM micrographs of Eudragit® RS/RL(1:1) coated piroxicam pellets curing at 
50 oC, 120 min, RFB rotating speed 20 rpm: (A) Coating level of 9.23%, (B) Coating level 
of 13.13%, (C) Coating level of 17.88%, (D) Cross section of coating level 17.88% pellets 

A B 

C D 
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The effect of coating level on drug release profiles is illustrated in Figure 5.4, where in 

the pellets were coated with Eudragit® RS/RL (1:1) in the RFB at three different coating 

levels. It is clearly shown from the release profile that the cumulative release of drug 

decreased as the coating level increased, which corresponded to the performances of the 

SEM monographs above as well. The coated pellets with the lowest coating level (9.23%) 

showed the fastest release rate compared to the other two coating levels. It can be seen 

that 90% of drug released before 3 h and the rest drug continually released to 100% from 

3 h to 6 h. In addition, the coated pellets with coating level of 13.13% and 17.88% 

released to 85% and 59% drug after 12 h, respectively. The release profiles of these two 

coating levels behaved lineraly, which indicated the constant release rates. Theoretically, 

in terms of sustained release, the appearance of the cracking films relates to the 

Figure 5.4 The effect of Eudragit® RS/RL coating level on drug release profiles. (Eudragit® 
RS/RL (1:1), Curing temperature: 50 oC, curing time: 120 min,RFB rotary speed: 20 rpm) 
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mechanical stability of coating films and the hydrostatic pressure[73]. When the pellets 

contact with the release medium, a hydrostatic pressure will generate in the coated pellets. 

At the point that the hydrostatic pressure is over the mechanical stability of the coating 

film, the cracking happens. As a result of this, it is shown that the release profile of the 

lowest coating level (9.23%) performed a film cracking behavior, where the coating film 

cannot withstand the hydrostatic pressure generated inside the pellets. After the film 

cracking, the drug release was no longer controlled by the Eudragit® RS/RL coating film; 

instead, it was dominated by the diffusion through water. Thus, the release rate was much 

faster compared to those Eudragit® RS/RL coating film controlled release profiles 

(coating level of 13.13% and 17.88%). This indicates that for sustained release, pellets 

with low coating level has a different release mechanism from the higher coating level 

ones, wherein the former one is erosion control and the latter one is diffusion control. 

5.2.3.  Effect of ratio between Eudragit® RS and Eudragit® RL 

As has been introduced in Chapter 2.3.3, Eudragit® RS and Eudragit® RL have different 

permeability due to the amount of their quaternary ammonium groups. Since Eudragit® 

RL has double content of the function groups, it is more permeable. As a result of this, it 

can be imagined that Eudragit® RL coated pellets perform a relatively high drug release 

rate compared to Eudragit® RS. Therefore, the adjustment of the ratio between the two 

polymers would influence the control of release rate to some extent. Three formulations 

of the Eudragit® RS/RL (1:2, 1:1, 2:1, mass ratio) under two different coating levels were 

investigated by the RFB with dry powder coating technique to study the effect on 

sustained release. 

Scanning electron microscope (SEM) was employed to observe the surface of the 

different Eudragit® RS/RL ratio coated pellets with a coating level of 18%. The surface 

and cross section condition were shown in Figure 5.5. It can be seen that from Figure 

5.5A,B and C, after curing for 2 h, both the three coating formulations (Eudragit® RS/RL 
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1:2, 1:1, 2:1) formed continuous and dense coating films, where the boundaries between 

particles disappeared and the thickness of the coating film was uniform (around 50 µm). 

Moreover, it was shown in Figure 5.5D that the boundary between the uncoated 

piroxicam pellet and the Eudragit® RS/RL coating film was clearly illustrated. It also 

indicated the formation of a strong and dense Eudragit® RS/RL coating film. 

  

Figure 5.5 SEM micrographs of Eudragit® RS/RL coated piroxicam pellets curing at 50 oC, 
120 min, RFB rotary speed: 20 rpm, coating level of 18%: (A) Eudragit® RS/RL(1:2), B) 

Eudragit® RS/RL(1:1), (C) Eudragit® RS/RL(2:1), (D) Cross section of Eudragit® RS/RL(2:1) 

A B 

C D 
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The effect of the polymer ratio (Eudragit® RS/RL) on drug release profiles is shown in 

Figure 5.6 and Figure 5.7. In Figure 5.6, the dry powder coated piroxicam pellets in RFB 

with a low coating level (9.0%) demonstrated no obvious effect due to adjusting the 

polymer ratio. All of the three formulations coated pellets released to 90% within the first 

4 h and gradually reached 100% at 10 h. There was a slight tendency between the three 

release profiles. Pellets coated with Eudragit® RS/RL (1:2) had a faster release rate than 

the other two formulations, where it only took 2 h to release 90% of drug. Pellets coated 

with Eudragit® RS/RL (1:1, 2:1) released relatively slower, in which the 1:1 coated 

pellets released to 90% of the API at 3 h and the 2:1 ones took 3.25 h. Reason for this is 

that since the pellets coated with Eudragit® RS/RL (1:2) has a higher ratio of Eudragit® 

RL, the release rate, from previous work that Eudragit® RL has a high permeability and 

Figure 5.6 The effect of Eudragit® RS and Eudragit® RL ratio on drug release profiles. (Curing 
temperature: 50 oC, curing time: 120 min, RFB rotary speed: 20 rpm, coating level: 9.0%) 
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limited swellability, and was thus faster than the other two formulations with lower 

Eudragit® RL content. Moreover, the reason of the fast release within a short time (4 h) is 

the film cracking behavior. As mentioned in the above section, the coating film cannot 

withstand the hydrostatic pressure generated inside the pellets since the coating level is 

relatively low. After film cracking, the drug release was no longer controlled by the 

Eudragit® RS/RL coating film; instead, it was dominated by the diffusion through water. 

Moreover, the release rates were quite fast at the first 3 h but suddenly reduced to slow 

rates after 3 h. This was mainly attributed to the relatively low coating level (9.0%). At a 

low coating level, coating materials attached to the surface of the pellets were not enough 

to form a strong and dense coating film, which results in weak coalescence between 

polymer molecules and cracking behavior within a short time.  

The effect on drug release profiles of the polymer ratio at a higher coating level was 

shown in Figure 5.7. It was observed that for the pellets with a coating level of 18.0%, 

the drug release rate decreased dramatically as the weight ratio of Eudragit® RS increased. 

This denotes that by adjusting the ratios between the two polymers, the release profiles 

can be controlled at a wide range. Specifially, the Eudragit® RS/RL (1:2) coated pellets 

had a cumulative release of 72% after 12h, and the Eudragit® RS/RL (1:1) coated pellets 

released to 59% of drug after 12h, whereas the Eudragit® RS/RL (2:1) coated pellets only 

reached 38% of the cumulative release in the same time interval. As mentioned before, 

this was attributed to the permeability difference of Eudragit® RS and Eudragit® RL, 

where a higher content of Eudragit® RL performed the fastest release rate and a lower 

Eudragit® RL content behaved a slowest release rate. Besides, all of the three release 

profiles of the coated pellets at high coating level (18%) demonstrated proportional lines, 

which suggested the release of the drug remained at a constant rate and was controlled by 

the Eudragit® RS/RL coating film. Reason of this was that a higher coating level 

provided a thicker and more uniform coating film, which had a better control of the 

release profile. Theoretically, since the coating film was denser compared to the low 
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coating level one, the mechanical stability was strong enough to sustain the hydrostatic 

pressure generated in the coated pellets when immersed in the release media, thus the 

drug release was controlled by the coating film.  

Figure 5.7 The effect of Eudragit® RS and Eudragit® RL ratio on drug release profiles. (Curing 
temperature: 50 oC, curing time: 120 min, RFB rotating speed: 20 rpm, coating level: 18.0%) 
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5.3. Delayed release coating with Acryl-EZE 

5.3.1. Introduction 

Delayed release refers to the system formulated to release the API at a delayed interval 

rather than release immediately after oral administration. The coating materials used for 

delayed release are pH dependent, which means they are acid resistant but, will 

decompose in solutions with high pH value. Also, delayed release is aimed at preventing 

the API from irritating the stomach, protecting the degradation of the solid dosage forms 

under the low pH environment of stomach and targeting the API absorption to a portion 

of the intestinal tract beyond the stomach. One of common used coating materials to 

modulate delayed release is Acryl-EZE. It is a full formulation coating material with the 

effective component Eudragit® L 100-55. Acryl-EZE is degradable when the pH value of 

the media is above 5.5, and thus it is applied to release the API at the first section of 

small intestine. 

Previous work done by our research group reported that the dry powder coated 

Acryl-EZE pellets achieved by rotating pan coater were able to modulate delayed release 

successfully[12]. Therefore, in this section, the RFB was employed for the coating of 

Acryl-EZE with dry powder coating technique to modulate delayed release, and PEG 400 

served as a suitable liquid plasticizer. The effect of coating level was investigated. Notice 

that the effects of curing time and curing temperature were also studied and will be 

discussed in Chapter 6.2 and 6.3 (since the curing time and curing temperature also 

related to the process conditions of the RFB and thus will be reported in Chapter 6). 

In-vitro release testing and scanning electron microscope (SEM) were employed to study 

the release profile and appearance of the Acryl-EZE coated pellets. 

5.3.2.  Effect of coating level 

As Acryl-EZE is a full-formulation coating material, blue dye was added into the 
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formulation for better observation of the film formation (shown in Table 5.3). 

Table 5.3 Coating fomulation composition of Acryl-EZE polymers 

The scanning electron microscope (SEM) micrographs were employed to observe the 

film formation of the Acryl-EZE coated pellets, as shown in Figure 5.8. Compared with 

the surface of uncoated piroxicam pellets (Figure 5.8A), the Acryl-EZE coated ones 

(Figure 5.8B) performed a uniform and smooth coating film. The uneven surface of the 

uncoated pellets no longer existed, which indicated that the piroxicam pellets were fully 

covered with a dense and continuous Acryl-EZE coating film. Also, the surface uniform 

smoothness of the high coating level (21.93%) coated pellets denoted the well curing of 

the Acryl-EZE coating materials. As a result, from the SEM micrographs, the Acryl-EZE 

dry powder coated pellets were able to achieve a smooth and dense coating film in the 

RFB. 

Formulation Composition (wt%) 

Acryl-EZE 99.5 

Blue dye 0.5 

Figure 5.8 SEM micrographs of Acryl-EZE coated piroxicam pellets curing at 
50 oC, 120 min, RFB rotating speed 20 rpm: (A) Uncoated piroxicam pellet, 

(B) Surface of coated pellets with coating level of 21.93% 

A B 
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In terms of enteric coating, the most important standard to balance whether the coating is 

qualified is the acid resistance test. It is characterized by the cumulative drug release 

percentage in 0.1N HCl media after the first 2 h. According to the United States 

Pharmacopoeia (USP) <711>, the standard of delayed release coating is obliged to be less 

than 10% of the cumulative drug release in the acid media after the first 2 h. 

 

The effect of Acryl-EZE coating level on drug release profiles was performed in Figure 

5.9, where three selected coating levels, from low to high, were investigated. As shown in 

Figure 5.9, all of the release profiles of the coated pellets showed a ‘delayed release’, in 

which little API released within the first 2 h. The lowest coating level (10.84%) 

performed an acid resistance of 16.6% cumulative release after the first 2 h, and the 

Figure 5.9 The effect of Acryl-EZE coating level on drug release profiles.  
 (Curing temperature: 50 oC, curing time: 120 min, RFB rotating speed: 20 rpm) 
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pellets with higher coating levels of 13.25% and 21.93% showed 8.5% and 6.6% 

cumulative release, respectively. Both the coated pellets of three coating levels released 

immediately after adjusting the release media from pH 1.2 to pH 6.8 through the addition 

of 0.2 M tribasic sodium phosphate solution. Therefore, the pellets with the coating level 

of 10.84% was unqualified based on the standard of USP <711>, which released more 

than 10% after 2 h in pH 1.2 acid media. It showed that the pellets with higher coating 

levels (13.25% and 21.93%) could meet the pharmaceutical standard. It was obvious that 

increasing the coating level showed better acid resistance of the coated pellets and gave 

better release profiles. This is because the amount of the coating materials attached onto 

the low coating level pellets surface, compared to pellets with higher coating levels, were 

not enough to form a uniform and continuous coating film. This may lead to weakness of 

coalescence between polymer molecules during curing procedure and reduction of the 

coating film intensity, and finally result in the cracking effect of the coating film in the 

drug release test. Similarly, for high coating level coated pellets, a strong and uniform 

coating film was obtained, which performed a good control of the delayed release 

profiles. 
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6.                    Chapter 6 
Optimization of Process Conditions 

6.1. Introduction 

As described in the previous chapter, RFB was successfully applied to the dry powder 

coating of small pellets with different coating materials (Eudragit® EPO, Eudragit® 

RS/RL and Acryl-EZE) for immediate release, sustained release and delayed release, 

respectively. This chapter reported the optimization of processing conditions in RFB. 

Several operating factors were studied regarding curing time, curing temperature, RFB 

rotating speed, liquid plasticizer spraying flowrate as well as fluidizing air flowrate. 

Acryl-EZE was selected as the example coating material to optimize the coating 

conditions. 

According to the United States Pharmacopoeia (USP) <711> standard, the delayed 

release coated pellets have to be less than 10% of the cumulative drug release in the acid 

media after the first 2 h in the in-vitro drug release tests. For the Acryl-EZE coated 

piroxicam pellets, the process conditions can be optimized based on this standard. This 

indicates that the coated pellets with a cumulative release less than 10% after the first 2 h 

can be regarded as qualified, while those with a cumulative release more than 10% after 

the first 2 h did not achieve standard request. Both in-vitro drug release testing and the 

scanning electron microscope (SEM) were employed to study the effects of the process 

conditions. 

6.2.  Effect of curing time  

In dry powder coating process where most of the coating polymers belong to 

thermoplastic polymers, film formation occurs once the deformation and viscous flow of 

the coating polymer particles happen when the curing temperature is above the glass 

transition temperature (Tg) of the coating polymers[65]. The viscosity of the coating 
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materials decreases as the temperature increases, resulting in the deformation of particles. 

The coalescence of the coating particles requires enough time to form a coating film. 

Therefore, both the curing time as well as the curing temperature results in significant 

influences on the film formation of the coating materials. 

First, the effect of curing time was shown with the three intervals (1 h, 1.5 h, 2 h) at three 

temperatures, 30 oC, 40 oC and 50 oC. SEM was employed to investigate the effect of 

curing time on film formation. As shown in Figure 6.1, the Acryl-EZE coated pellets 

curing under 50 oC illustrated that before the curing started, the individual coating 

particles were clearly seen and the boundaries between the particles were distinctly 

observed, indicating that the coating particles were non-fused and the curing did not start 

immediately after the powder deposition (Figure 6.1A). After 1 h of curing, the particles 

began to coalesce with each other and form a smooth film, while the surface of the coated 

Figure 6.1 SEM micrographs of Acryl-EZE coated piroxicam pellets curing 
at 50 oC, RFB rotating speed 20 rpm: (A) 0 h, (B) 1 h, (C) 1.5 h, (D) 2 h 

A
  

B 

C D 
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pellets were still characterized by some voids and non-fused coating particles, and the 

boundaries between the particles were still visible (Figure 6.1B). As the curing time 

increased to 1.5 h (Figure 6.1C), most of the coating particles coalesced with no visible 

particle boundaries observed, denoting that a dense coating film was formed. After 

another half hour of curing (total curing for 2 h) (Figure 6.1D), the entire pellet was 

covered with a smooth and continuous coating film and the particles were no longer observed.  

As mentioned above, the addition of the liquid plasticizer can decrease the Tg 

significantly, and when the processing temperature is above the Tg, the film formation 

can be achieved based on the deformation and viscous flow of the coating materials. The 

film formation requires a period of time to accomplish; as a consequence, increasing the 

curing time can help to strengthen the acid resistance of the coated pellets effectively 

when the curing temperature is closed to/above the Tg of the coating polymers.  

Figure 6.2 The effect of curing time on drug release profiles. (Coating material: 
Acryl-EZE, Curing temperature: 30 oC, RFB rotating speed: 20 rpm) 
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The effect of curing time on drug release profiles were studied under three temperatures. 

From the pellets coated under 30 oC (Figure 6.2), it is shown that the drug release profiles 

of the pellets with 1 h, 1.5 h and 2 h curing time performed 85 %, 70 % and 31 % 

cumulative release after the first 2 h in 0.1 N HCl pH 1.2 acid media. Obviously, this 

indicates the acid resistance of the coated pellets increased dramatically when the curing 

time was extended from 1 h to 2 h. The reason for this is that the film formation of the 

longer curing time pellets allowed better coalescence compared to the short time cured 

pellets, and thus the longer curing time coated pellets exhibited a lower cumulative drug 

release after the first 2 h. However, under the temperature of 30 oC, all coated pellets with 

three curing times were unqualified due to the high cumulative release that were above 

10%, based on the USP <711> standard. This is because the curing temperature of this 

condition was 30 oC, which didn’t reach the Tg of the coating material. Under this 

condition, the coating films of the pellets were weak and the molecules of the coating 

material were not fully coalesced with each other, and thus happened to crack when 

contacted with the release media and result in the unqualified drug release profiles. 

Figure 6.3 shows the effect of curing time on drug release profiles at the temperature of 

40 oC. Similarly, the acid resistance of the coated pellets increased as the curing time 

adjusting from 1 h to 2 h. The cumulative release of the coated pellets after the first 2 h 

with the curing time of 1 h, 1.5 h and 2 h were 28 %, 24 % and 19%, respectively. 

However, both the pellets under this condition were not qualified according to the USP 

<711> standard. 
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The effect of the curing time on drug release profiles of the Acryl-EZE coated pellets 

under 50 oC were shown in Figure 6.4. As can be seen, all of the pellets coated with the 

three curing time performed a cumulative release less than 20%. The cumulative release 

of the coated pellets after the first 2 h with the curing times of 1 h, 1.5 h and 2 h were 

15 %, 9 % and 8%, respectively. According to the USP <711> standard, the pellets with 

curing time of 1.5 h and 2 h were qualified. Clearly, increasing the curing temperature 

can give a better performance of the acid resistance under this condition. As explained 

above, this is because the curing temperature of 50 oC was very close to the Tg of the 

plasticized coating polymer, which helped the better film formation. Furthermore, the 

pellets coated under these conditions performed very ideal delayed release profiles. The 

Acryl-EZE coating film can control the release of the API accurately and further proved 

the complete film formation of the coating materials in the RFB. 

Figure 6.3 The effect of curing time on drug release profiles. (Coating material: 
Acryl-EZE, Curing temperature: 40 oC, RFB rotating speed: 20 rpm) 
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6.3.  Effect of curing temperature 

As mentioned above, in the coating process using the RFB with the plasticizer powder 

coating technique, the deformation and viscous flow of the coating polymer particles 

generates the film formation process when the curing temperature is close to/above the 

glass transition temperature (Tg) of the coating polymer[65]. Therefore, apart from the 

curing time, the curing temperature is another key factor that has significant influence on 

the film formation of the coating materials. The effect of the curing temperature was 

investigated for pellets coated at the temperature of 30 oC, 40 oC, and 50 oC curing for 2 h. 

  

Figure 6.4 The effect of curing time on drug release profiles. (Coating material: 
Acryl-EZE, Curing temperature: 50 oC, RFB rotating speed: 20 rpm) 
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The effect of curing temperature on film formation was investigated using SEM, as 

shown in Figure 6.5. Obviously, both the SEM micrographs of the coated pellets curing 

at 30 oC and 40 oC exhibited an incomplete coating film, where the coating particles were 

still visible and a small portion of the particles were non-fused (Figure 6.5A and Figure 

6.5B). When the curing temperature was increased to 50 oC that is closer to the Tg of the 

coating polymer, a uniform and continuous coating film was obtained (Figure 6.5C). 

Under the temperature of 50 oC, the coating particles were fused completely and 

coalesced with each other. There were no individual particles observed at this 

temperature. Compared to the coated pellets cured under 30 oC and 40 oC, the 50 oC one 

showed the best film formation. As mentioned above, the viscous flow and deformation 

starts when the temperature is close to/above the Tg of the coating materials, as a 

consequence, the best film formation can only be achieved when the curing temperature 

reaches the Tg of the coating materials. 

Figure 6.5 SEM micrographs of Acryl-EZE coated piroxicam pellets curing for 2 h, 
RFB rotating speed 20 rpm: (A) 30 oC, (B) 40 oC, (C) 50 oC 

A
  

B 

C 



 77 

The effect of the curing temperature on drug release of the coated pellets is shown in 

Figure 6.6. Similar to the above results shown by the SEM micrographs, the acid 

resistance of the coated pellets was improved as the curing temperatures increased from 

30 oC to 50 oC. Specifically, the cumulative release of the coated pellets after the first 2 h 

was 30 %, 19 % and 8 %, which correspond to the curing temperature of 30 oC, 40 oC and 

50 oC, respectively. According to the USP <711> standard, only the pellets with the 

curing temperature of 50 oC were qualified because its cumulative release were under 10% 

during the first 2 h in 0.1N HCl solution. The reason for this is that only when the curing 

temperature is closed to or above the Tg of the coating polymer, the deformation and 

viscous flow of the coating particles could happen. And for the pellets cured at 30 oC and 

40 oC, the curing temperatures were far away from the Tg, which resulted in the 

uncompleted film formation and unqualified acid resistance performance. 

Figure 6.6 The effect of curing temperature on drug release profiles.  
(Coating material: Acryl-EZE, Curing time: 2 h, RFB rotating speed: 20 rpm) 
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6.4.  Effect of the RFB rotating speed 

As described in Chapter 4, the RFB is equipped with a unique structure. It contains a 

rotatable cylindrical tank that consists of the inner layer and the outside layer, wherein 

the inner layer is covered with porous material (mesh) and the outer layer is made of 

acrylic. There are six chambers located between these two layers, and three of them serve 

as the inlets and outlets of the fluidizing air alternately when the cylindrical tank is 

rotating during the process. Adjusting the rotating speed of the RFB during the coating 

process may affect the inlet of the fluidizing air, the centrifugal force of the loaded pellets 

and the adhesion force between the coating materials and the pellets. All of these may 

affect the film formation of the coating process. Therefore, the control of the rotating 

speed has become one of the major factors that may have influence on the coating 

process. 

In this section, three rotating speed of the RFB were selected, including a relatively low 

speed 6 rpm, a medium speed 20 rpm and a relatively high speed 70 rpm. In fact, the 

RFB had a limitation of the rotating speed, which ranged from 6 rpm to 75 rpm. 

Moreover, when the rotating speed was above 70 rpm, a short circuit would happen. This 

means that the pellets would attach to the wall of the cylindrical tank due to the large 

centrifugal force generated from the fast rotating speed. The in-vitro drug release test was 

employed to study the effect of the RFB rotating speed. 

The effect of the RFB rotating speed was illustrated by the drug release profiles of the 

Acryl-EZE coated pellets, as shown in Figure 6.7. It is obviously that the drug release 

profile of the coated pellets with a rotating speed of 20 rpm exhibited the lowest 

cumulative release (8%) after the first 2 h in the 0.1 N HCl media. The pellets with a high 

rotating speed (70 rpm) showed a slightly higher cumulative release (13%) after the first 

2 h. Compared to the two higher rotating speeds, the pellets with a rotating speed of 6 

rpm had the highest cumulative release value (29%). According to the USP <711> drug 
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release standard of delayed release, only the 20 rpm one was qualified, and the pellets 

with 70 rpm rotating speed was slightly higher than the standard. This is because under 

the low rotating speed (6 rpm), the relatively slow movement of the pellets was not 

beneficial to the formation of a uniform and smooth coating film. The coating materials 

may attach to each other before deposit on the surface of the pellets and the coating 

efficiency decreased. A relatively high rotating speed may generate strong centrifugal 

force of the pellets and the coating particles, and also lead to the strong tumbling of the 

pellets. This will result in the attachment of both the pellets and the coating particles on 

the wall. Moreover, as the adhesion of the coating particles may block the pores of the 

porous mesh, it could be difficult for the moisture to exit which may lead to the sticky 

coating film and bad performance on the drug release profiles. 

Figure 6.7 The effect of RFB rotating speed on drug release profiles.  
(Coating material: Acryl-EZE, Curing temperature: 50 oC,Curing time: 2 h,) 
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As a consequence, the rotating speed of the RFB should be maintained at an appropriate 

range (around 20 rpm) where the pellets in the RFB are coated under moderate 

conditions.  

6.5. Plasticizer spraying flowrate 

As mentioned in Chapter 2.3.5, in plasticizer powder coating technique, the plasticizers 

addition can help to solve the problem of the brittle coating film generated from pure 

coating polymers. In the coating process in the RFB, plasticizers are functionalized by 

incorporating themselves between the polymers chains and increase the free volume, thus 

the Tg of the coating materials can be decreased dramatically[12-14]. Moreover, 

plasticizers also function as increasing the capillary force between the coating polymers 

and the surface of the pellets, which enhance the powder adhesion on the pellet surface 

and eventually increase the efficiency of coating process[12-14]. A suitable selection of a 

plasticizer and a accurate addition amount thus become two critical points. Since the 

suitable plasticizer (PEG 400) for Acryl-EZE has already been investigated by our 

research group, the appropriate amount of the liquid plasticizer in the RFB coating 

process requires further investigation. 

The plasticizer addition amount is based on the spray time and flowrate. The spray time 

has to be matched with the coating material feed amount and plasticizer flowrate, and 

thus the latter factor is a key point that decides the success of the coating process in the 

RFB. This is because firstly, small spraying flowrate leads to a poor powder adhesion 

effect and further film formation is uncompleted. It will produce a brittle, discontinuous 

coating film and fails in the in-vitro drug release test. In contrast, large flowrate means 

excessive amount of liquid plasticizers addition immediately and may lead to a sticky 

problem. As a result, it is of great importance to find an appropriate spraying flowrate 

that can generate a uniform and strong coating film as well as avoid the sticking problem. 
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Acryl-EZE was selected as the coating material and PEG 400 was a suitable liquid 

plasticizer of this polymer as mentioned before. The loading of the piroxicam pellets was 

40 g/batch. As shown in Figure 6.8, three spraying flowrates of the liquid plasticizer were 

selected, including a relatively low one 0.15 g/min, a medium one 0.25 g/min and a 

relatively high one 1 g/min (spraying time was 30-40 s every time before the coating 

material feeding each time). Obviously, the pellets coated with a spraying flowrate of 

0.15 g/min showed a non-uniform coating film, where the color of the coated pellets was 

not uniform, some were almost white while others were blue (Figure 6.8A). The coated 

pellets with a medium spraying flowrates (0.25 g/min) exhibited a relatively uniform 

appearance of the coating film (Figure 6.8,B). The coated pellets with the relatively high 

plasticizer spraying flowrate (1 g/min) had the deepest blue color compared to the 

previous two (Figure 6.8,C). Also, it can be clearly seen that some pellets were attached 

Figure 6.8 Photos of Acryl-EZE coated piroxicam pellets curing for 2 h, 50 oC, 
RFB rotating speed 20 rpm: (A) 0.15 g/min, (B) 0.25 g/min, (C) 1.0 g/min  

A
  

B 

C 
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to each other and generated ‘twins’, which indicated the sticky problem of the coating 

film due to the excessive amount of the liquid plasticizer. 

Moreover, the in-vitro drug release test of the Acryl-EZE coated pellets at the plasticizer 

spraying rates of 0.15 g/min and 1 g/min were failed. This is because the low spraying 

flowrate leads to a small amount of plasticizer on the pellets surface thus further decrease 

poor powder deposition effect, and thus the coating film was brittle and thin. And the 

high spraying flowrate leads to the ‘twins’ effect, which may result in the break that 

appears at the edge between the ‘twins’ when immersed into the drug release media. 

From the above results, the most suitable spraying rate of the liquid plasticizer in the RFB 

dry powder coating process is around 0.25 g/min. At this spraying flowrate, the coating 

film performed continuous, smooth and dense appearance and the drug release test in 

Chapter 5.3 were qualified. Moreover for the other two kinds of coating materials 

(Eudragit® EPO, Eudragit® RS/RL), this was also the appropriate plasticizer spraying rate 

and the drug release profiles showed good performance to modulate immediate release, 

and sustained release as well. 

 

6.6. Fluidizing air flowrate�

As described in Chapter 4.1.1, the fluidizing air is introduced into the RFB during 

processing. It not only helps the mixing of the coated pellets and the coating materials, 

but also works as the temperature controller in the RFB coating system. Thus, the 

fluidizing air is an essential part of the RFB coating system. Specifically, the flowrate of 

the fluidizing air introduced in the cylindrical tank is important during the whole process, 

which means that it has to be controlled at an appropriate flowrate, neither too small nor 

too large. 
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During the experiment, it has been found that a small flowrate may lead to long 

preheating time as well as poor control of the temperature in the RFB, and the pellets 

tended to be sticky since the small fluidizing air was not sufficient to ‘separate’ the 

‘twins’. In contrast, a large flowrate may blow away the coating materials before they 

deposited on the surface of the pellets and failed to form a strong coating film. It also 

resulted in a thin coating film and a low coating efficiency of the coating process. The 

following equation can be employed to calculate the actual flowrate of the inlet fluidizing 

air of the RFB, where the subscript ‘actual’ refers to the actual operating conditions, and 

the subscript ‘reading’ refers to the value read from the flowmeter and pressure gage. 

Qactual = Qreading 
PreadingTactual

PactualTreading
 

From the experiment, the actual flowrate (Qactual L/min) of the inlet fluidizing air was 

around 35 L/min, which was the most appropriate flowrate employed during the coating 

process. 
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7.                     Chapter 7�
Comparison of Rotary Fluidized Bed, Rotating Pan Coater 

and Traditional Fluidized Bed 

7.1. Introduction 

In this chapter, the performance of RFB is compared with two typical pharmaceutical 

coating apparatus, a rotating pan coater and a traditional fluidized bed (top-spray. The dry 

powder coating technique was employed to investigate the comparison among the three. 

The comparison was examined in the following two aspects, process conditions and 

coating results. 

7.2. Process conditions 

Acryl-EZE and PEG 400 were selected as the coating material and liquid plasticizer to 

investigate the comparison of process conditions between the RFB, a rotating pan coater 

and a traditional fluidized bed. The process conditions include pellets loading amount, 

coating materials feeding amount, plasticizer flowrate, curing temperature, curing time, 

fluidizing air flowrate, ideal coating level, coating level and coating efficiency, as shown 

in Table 7.1. The equations to calculate the target coating level, coating level and coating 

efficiency are as follows: 

Ideal coating level (%) = coating materials feeding amount
weight of uncoated pellets

*  100%  

Coating level (%) = weight of coated pellets-weight of uncoated pellets
weight of uncoated pellets

*  100%  

Coating efficiency (%) = coating level
ideal coating level

*  100%
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Table 7.1 Comparison of process condition 

 Rotary fluidized 
bed 

Rotating pan 
coater 

Traditional 
fluidized bed 

Pellets loading amount (g) 40 70 70 

Coating materials feeding amount (g) 6.5 12 12 

Plasticizer flowrate (g/min) 0.25 0.88 1 

Curing time (h) 2 2 2 

Curing temperature (oC) 50 50 40 

Fluidizing air flowrate (L/min) 35 - 155 

Ideal coating level (%) 16.3 16.7 16.7 

Coating level (%) 9 11 6 

Coating efficiency (%) 55 66 36 

 

It was shown that the RFB has the smallest pellets loading amount (40g). In the rotating 

pan coater and traditional fluidized bed, the loading amount is 70g. Coating material 

feeding amount and plasticizer flowrate depended on the powder deposition condition 

during the coating process and the pellets loading amount. In addition, the curing 

temperature of traditional fluidized bed (40 oC) was lower than the other two (50 oC), and 

this is because the large fluidizing air (155 L/min) introduced in the tradition fluidized 

bed limits its heating ability and accurate control of the temperature. Moreover, the 

coating efficiency of the pellets coated in the three coating systems indicates the 

deposition amount of coating materials on the pellets surface, which further influenced 

the film formation. Specifically, when the ideal coating levels were the same and the 
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pellets were coated under similar conditions among the three apparatus, the rotating pan 

coater had the largest coating efficiency (66%), the RFB ranked in the middle (55%) and 

the traditional fluidized bed had the smallest coating efficiency (36%). This was mainly 

related to the flowrate of the fluidizing air in the systems. Since there was no fluidizing 

air in the rotating pan coater system, the coating materials stayed in the rotating pan 

coater and continuously attached to the pellets, therefore it had the highest coating 

efficiency. While for the RFB and traditional fluidized bed, the introduced fluidizing air 

may have a chance to blow away the coating materials that already attached or not 

deposited on the pellets surface, which may result in a less amount of powder deposition 

on the pellets and thus lead to a lower coating efficiency. Since the traditional fluidized 

bed had a larger flowrate of fluidizing air, the relating pellets exhibited the lowest coating 

efficiency. This also indicates the worst usage of the feeding coating materials. 

The energy consumption can be analyzed in a macroscopic view. During the coating 

process in the three systems, the usage of the fluidizing air and the heating system 

consumed the most energy compared to the rotation power. Since the RFB and the 

traditional fluidized bed both required fluidizing air to fluidize the pellets and maintain 

the temperature of the system while the rotating pan coater had no fluidizing air, it can be 

concluded that the rotating pan coater had the least energy consumption, and the RFB 

ranks the second, and finally the traditional fluidized bed since it required the largest 

amount of fluidizing air during the process. 

As a result, in terms of the process conditions, the RFB and rotating pan coater are more 

suitable for the coating of pellets with dry powder coating technique in contrast to the 

traditional fluidized bed. The RFB has a smaller loading amount compared to the other 

two systems; however, enlarging the scale of the RFB can improve the handling ability. 

And the coating efficiency of RFB is not very high, but this can be improved by the 

addition of a recycling part that can collect the coating materials blown away by the 
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fluidizing air. The addition of recycling part can also improve the powder deposition on 

the pellets surface and thus increases the coating efficiency. In addition, the rotating pan 

coater performs a relatively large loading amount and a high coating efficiency, which 

indicates that it is suitable for coating of small pellets. However, the traditional fluidized 

bed showed a non-ideal temperature control of the curing temperature and a really low 

coating efficiency compared to the other two. Therefore, it does not have accurate 

temperature control ability and may require longer time to achieve the same coating level 

coated pellets than the RFB and the rotating pan coater. 

7.3. Results of coating�

In this section, the coating performance of RFB is compared with the rotating pan coater 

and the traditional fluidized bed regarding the coating of 0.9-1.1mm piroxicam pellets 

and 0.1-0.3 mm micronized microcrystalline cellulose (MCC) pellets. Scanning electron 

microscope (SEM) was employed to observe the surface of the coated MCC pellets. 

7.3.1. Coating of piroxicam pellets 

The piroxicam pellets were coated in the RFB, the rotating pan coater and the traditional 

fluidized bed followed with the process conditions shown in Table 7.1. The coating 

material was Acryl-EZE and PEG 400 was the plasticizer. 

The SEM micrographs of the coated pellets were exhibited in Figure 7.1, which indicated 

the film formation in the three systems. It can be seen that the pellets coated in the RFB 

and the rotating pan coater (Figure 7.1A and Figure 7.1B) showed a quite smooth and 

uniform coating film. The coating particles were fused to form a complete and continuous 

film with no boundaries of the particles observed. Compared to the above two coating 

systems, the pellets coated in the traditional fluidized bed (Figure 7.1C) did not show a 

smooth coating film after curing for 2 h. The surface of the coated pellets was still 

characterized by some voids and the individual particles existed with their boundaries 
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visible. Reason of this is that according to Table 7.1, the coating level and coating 

efficacy of the traditional fluidized bed coated pellets was relatively low. The deposition 

amount of the coating materials was relatively less and the thickness of the coating film 

was not enough to cover the pellets and form a uniform and continuous coating film. Also, 

since the fluidizing air introduced in the traditional fluidized bed had a large flowrate, the 

strong fluidizing air may have a chance to damage the surface of the pellets and this also 

caused the non-ideal film formation during the curing process. In contrast, the fluidizing 

air in the RFB was quite small and mild that would not affect the film formation, and the 

rotating pan coater had no fluidizing air, thus the surfaces of the pellets coated with these 

two coating systems performed a more uniform and smoother coating film.  

Based on the results above, the RFB presented comparable film formation quality with 

the rotating pan coater while being superior to the traditional fluidized bed. 

Figure 7.1 SEM micrographs of Acryl-EZE coated piroxicam pellets curing for 2 h: 
(A) RFB, (B) Rotating pan coater, (C) Traditional fluidized bed 

A
  

C 

B 



 89 

7.3.2. Coating of micronized microcrystalline cellulose (MCC) pellets 

Today, the application of the coating of small solid dosage forms with a micronized size 

has become one of the popular research projects since it is very widely applied in 

pharmaceutical industry. For instance, some research groups are working on coating 

micronized pellets coating that are encapsulated in the capsule. This can help to control 

the action site of the API more accurately. However, since the micronized pellets have a 

large specific surface area and tend to agglomerate easily, the coating process is very 

difficult to achieve. 

In this section, the three coating apparatus were attempted to coat the micronized MCC 

pellets (D=0.1-0.3mm) using dry powder coating technique. Compared to the piroxicam 

pellets whose size is 0.9-1.1mm, the tiny MCC pellets not only have a small size but also 

show a relatively light weight, which makes its behavior more like powders. The tiny 

MCC pellets are equipped with a really high specific surface area. The coating of them 

becomes more difficult since they are easy to get sticky and need much more coating 

material feeding times to avoid the sticky effect as well as longer curing time to achieve a 

uniform coating film compared to the larger pellets. 

During the experiment, it was found that compared to the RFB and the traditional 

fluidized bed, the rotating pan coater has an open system, which means that the coating 

pan is not covered with a lid during the coating process. The tiny MCC pellets were easy 

to be blown away by the air generated from the plasticizer-spraying nozzle, and the 

pellets also dropped out all the time due to the rotation of the coating pan. These 

observation suggested that the rotating pan coater was not suitable for the coating of tiny 

pellets not only owing to the open system of the pan coater but also due to the light 

weight of the tiny pellets. The RFB and the traditional fluidized bed performed better in 

the coating of tiny MCC pellets. During the process, the RFB coated pellets were not 

easy to get sticky and agglomerated with each other. This is due to the fluidizing air 
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introduced in the system. The introduced fluidizing air helped the tiny pellets generate 

‘gasless fluidized state’ with the help of the wall friction that came from the rotation. It 

dramatically contributed to the mixing between the coating materials and the tiny pellets 

and further improved the uniformity of the coated pellets.  

The traditional fluidized bed also exhibited a good fluidization state with the strong 

fluidizing air, and the tiny pellets, during the coating process, did not show a strong 

sticky phenomenon apart from the wall part that near the plasticizer spraying nozzle. The 

reason for this is that the diameter of the plasticizer sprayed from the nozzle was larger 

than the size of the column of the fluidized bed, and this may lead to wetness of the wall 

near the outlet of the nozzle. This phenomenon more or less lowers the coating efficiency 

since the wet wall may be adhered to by a small portion of the pellets. 

The surface of the RFB and the traditional fluidized bed coated pellets were illustrated by 

the SEM, as shown in Figure 7.2. It is clearly shown that the RFB coated tiny pellets had 

a relatively complete and continuous coating film (Figure 7.2A), while there were still 

come non-fused particles and additives attached on the pellets surface, and the 

smoothness of the coating film was not very good due to the ‘layer by layer’ phenomenon. 

Compared to the RFB coated tiny pellets, the SEM micrographs of the traditional 

fluidized bed coated pellets (Figure 7.2B) performed a non-ideal coating film. And it was 

Figure 7.2 SEM micrographs of Acryl-EZE coated tiny MCC pellets curing for 2 h: 
(A) RFB, 50 oC, (B) Traditional fluidized bed, 40 oC 

A
  

B 



 91 

clearly illustrated that only part of the deposited coating powders were fused with voids 

characterized on the pellets surface, and the boundaries between the particles still existed, 

which indicated a non-uniform and in-complete coating film.  

The photos of the RFB dry powder coated tiny MCC pellets (Figure 7.3B) further 

indicated the coating performance. The coated pellets showed a uniform appearance with 

the even color on every pellet, and the pellets were not sticky at all. Compared to the 

uncoated tiny MCC pellets (Figure 7.3A), it can be concluded that the pellets were 

covered with a thick and continuous coating film. 

As a consequence, in terms of the performance of the coating process and film formation 

effect of the tiny MCC pellets from the SEM micrographs, the RFB has the best coating 

film with the lowest loss of the coated pellets, and the traditional fluidized bed was 

practicable for the coating, however, the film formation of the coated tiny pellets was not 

as good as the RFB coated ones. The rotating pan coater was not an appropriate selection 

due to its open system. Moreover, it can be predicted that the RFB is more suitable for 

the coating of tiny pellets even workable for the coating of powders owing to the unique 

points of closed system and the introduce of the fluidizing air. 

Figure 7.3 Photos of Acryl-EZE coated MCC pellets curing for 2 h, 50 oC:  
(A) Uncoated MCC tiny pellets, (B) RFB coated MCC tiny pellets 

A
  

B 
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8.                     Chapter 8 
Conclusions 

A newly invented pharmaceutical coating apparatus, the rotary fluidized bed (RFB), was 

applied for the pellets coating with dry powder coating technique. The RFB has a unique 

structure where the uniform pellets coating is facilitated by the introduced fluidizing air 

and a rotation behavior during the process. SEM micrographs indicated the complete film 

formation over the entire piroxicam pellets via dry powder coating. All typical drug 

release types were realized, including immediate release, sustained release and delayed 

release with the coating materials Eudragit® EPO, Eudragit® RS/RL and Acryl-EZE, 

respectively. 

For the immediate release coating with Eudragit® EPO, the coating level presented no 

influence on the drug release profiles due to the water-soluble property of Eudragit® EPO. 

The results were ideal for immediate release coating. 

For the sustained release coating with Eudragit® RS/RL, SEM micrographs indicated that 

the pellets with higher coating level demonstrated better smoothness of the coating film. 

From the in-vitro drug release tests, the cumulative release after 12 h decreased 

dramatically as the coating level increased, indicating that the pellets with higher coating 

level (17.88%) are able to sustain for a longer time (more than 12 h), since Eudragit® 

RS/RL are water insoluble polymers and the drug release rate reduced with the increasing 

coating film thickness. In addition, the mass ratio of the Eudragit® RS to Eudragit® RL 

affected the drug release as well. The pellets with a higher ratio of the polymers 

(Eudragit® RS/RL= 2:1) showed a slower release rate compared to the pellets with a 

lower ratio (Eudragit® RS/RL=1:2). This is mainly because Eudragit® RS is less 

permeable than Eudragit® RL since it has less amount of the quaternary ammonium 

groups. 
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For the Acryl-EZE coated pellets, the in-vitro drug release tests proved that the acid 

resistance of the coated pellets in the first 2 h improved as the coating level increased. 

The pellets with a coating level higher than 13.25% were qualified to achieve ‘delayed 

release’ according to the USP <711> standard where the cumulative release should be 

less than 10% after the 2 h release in acid medium. 

Optimization of process conditions in RFB with dry powder coating technique was 

investigated using Acryl-EZE as the example coating material. It was found that the RFB 

should be operated under moderate conditions. The curing temperature has to be 

maintained at 50 oC and the curing time should be no less than 2 h. This is because the 

film formation of the coating materials can only be achieved with a curing step and the 

curing temperature has to be closed to/above the Tg of the coating materials. In addition, 

the most appropriate rotating speed of the RFB was around 20 rpm. Below the 20 rpm 

range, the mixing of coating materials/pellets and the film formation were undesired. 

Above that, the strong tumbling of the pellets possibly damaged the coating film. 

Moreover, the most suitable plasticizer spraying rate and fluidizing air flowrate were 

around 0.25 g/min and 35 L/min, respectively. The last three factors (RFB rotating speed, 

plasticizer spraying rate and fluidizing air flow rate) should be matched with the pellets 

loadings and coating material feedings, and may vary with the change of the RFB size. 

The performance of the rotating pan coater and the traditional fluidized bed were studied 

in comparison with the RFB. Acryl-EZE was selected as the example coating material. 

Under similar operating conditions, the RFB demonstrated comparable coating efficiency 

with the rotating pan coater while being superior to the fluidized bed. The latter is mainly 

because the RFB required relatively small amount of fluidizing air than the traditional 

fluidized bed that would not cause considerable loss of coating materials. In addition, the 

RFB coated piroxicam pellets achieved continuous, dense and smooth coating film as 

shown by the SEM micrographs, which were the same as the rotating pan coater and 
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much better than the fluidized bed. Furthermore, the RFB presented a potential ability of 

the micronized pellets coating (0.1-0.03 mm) compared to the other two apparatus. This 

is mainly owing to its unique closed system and the mild gasless fluidization generated 

by the rotation and the introduced fluidizing air. The closed system prevents the 

micronized pellets from being blown away and the fluidizing air helps the coating 

materials form a uniform coating film.  

In summary, dry powder coating of pharmaceutical pellets with the RFB is a promising 

technique for the pharmaceutical coating industry. The coating of the pellets presented a 

continuous and dense film with fast release, sustained release, delayed release 

successfully modified. Compared to conventional aqueous coating, the operating time can 

be efficiently shortened from hours even days to only 2-3 h and the operating temperature 

is lowered as well. No organic solvent is required in contrast to the organic solvent 

coating avoiding the potential hazards of the organic solvent evaporation. 
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Appendix 

Fast release 

fast release     
coating lvl=8.82 release 

date 
coating lvl=19.9 release 

date 
20150629 20150223 

time/min cumulative 
release 

error bar time/min cumulative 
release 

error bar 

0 0 0 0 0 0 
5 84.3559 1.2562 5 71.0518 4.1387 
10 97.9008 2.5543 10 89.3393 2.4997 
15 99.4754 0.6640 15 94.0618 1.8444 
20 99.5768 1.4027 20 95.9749 1.5740 
30 99.7905 1.3686 30 97.9237 1.3850 
45 100.0000 1.9495 45 97.5296 0.2083 
90 99.6667 1.5689 60 99.5246 0.7409 
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Sustained release 

sustained release     
RS:RL=2:1 release date 20150707 release 

date 
20150707  

coating lvl=8.08% coating lvl=18.33% 
time/h cumulative 

release 
error bar time/h cumulative 

release 
error bar 

0 0 0 0 0 0 
0.50 7.9078  0.8271  2 0 0 
1 32.0333  4.1955  3.25 3.9321  1.2863  
1.50 49.4109  2.4314  4 8.6157  0.4636  
2 63.8521  1.6234  6 16.1381  2.9005  
3.25 90.6562  3.7107  8 28.2446  3.8930  
4 93.7357  2.4547  10 36.1675  4.2908  
6 98.0565  2.3934  12 37.8441  3.7238  
8 99.4165  0.8252     
10 100 2.1236E-05    
12 100 0    
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RS:RL=
1:1 

release 
date 

20150723 release 
date 

20150723  release date 20150805  

coating lvl=9.23%  coating lvl=13.13%  coating 
lvl=17.88% 

  

time/h cumulative 
release 

error bar time/h cumulative 
release 

error bar time/h cumulative 
release 

error bar 

0 0 0 0 0 0 0 0 0 
0.5 17.6045 4.9687 0.5 2.4552 0.4501 0.5 1.9567 0.4324 
1 37.7266 6.5873 1 8.7879 1.8849 1 2.9196 0.6293 
2 65.6735 4.2476 2 16.8453 1.3939 2 8.1449 2.2477 
2.5 79.3958 3.2498 4 34.8817 0.4419 3 11.4910 1.9189 
3 90.9481 7.7329 6 51.4929 1.3380 4 17.9959 1.2183 
3.5 95.6594 7.3088 8 68.3035 3.3165 6 26.5355 1.1091 
4 97.8581 3.7099 10 77.8257 1.0654 8 38.6567 0.1807 
6 100 0 12 85.2255 1.4303 10 50.0663 3.5056 
8 100 0 16 100 0 12 59.0139 3.5801 
12 100 0    24 98.6119 1.0758 
      26 100  0  
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RS:RL=
1:2 

release date 20150730 release 
date 

20150730  release date 20150805  

coating lvl=8.83%  coating lvl=13.99%  coating 
lvl=17.55% 

  

time/h cumulative 
release 

error bar time/h cumulative 
release 

error bar time/h cumulative 
release 

error bar 

0 0 0 0 0 0 0 0 0 
0.5 47.5657 8.2867 0.5 0 0 0.5 4.7158 0.4670 
1 68.1650 2.5292 1 4.5278 0.4447 1 5.5086 1.2150 
1.5 80.3657 0.3400 1.5 11.7631 1.2712 2 10.3782 0.8740 
2 88.9337 0.8378 2 17.7672 2.7193 3 17.4083 1.1148 
2.5 93.4166 1.5094 3 30.2681 3.3086 4 23.1458 0.9466 
3 96.2532 0.3538 4 39.9918 2.0175 6 35.9058 0.1536 
4 98.5059 1.3561 6 59.4250 2.0765 8 50.0904 0.8895 
6 100.0000 0.0000 8 74.5457 2.1576 10 61.6633 2.0192 
8 100 0 10 83.9905 1.7694 12 71.8944 1.6190 
10 100 0 12 90.4105 1.3409 24 99.1408 1.4882 
12 100 0 16 100 0 26 100 0 
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Delayed release 

delayed release 
coating lvl=10.84%  coating lvl=13.25%   coating 

lvl=21.93%  
  

release date 20150818 release 
date 

 20150821 release date  20150619 

time/mi
n 

average 
release 

error bar time/min average 
release 

error bar time/min average 
release 

error bar 

0 0 0 0 0 0 0 0 0 
30 5.0670 1.1071 30 1.3964 0.8294 30 2.5765 1.2455 
60 10.0001 0.5263 60 4.3002 1.4812 60 4.0477 1.3705 
90 13.8254 1.0774 90 6.5159 0.8961 90 5.3282 1.5077 
120 16.5748 0.8278 120 8.5870 0.7810 120 6.6573 1.4338 
140 92.1231 2.0936 130 92.9377 1.6242 130 94.0827 1.5077 
150 97.5977 1.6210 140 94.0250 0.8445 140 96.4472 1.3418 
180 98.1014 0.9568 150 98.5486 1.5278 150 98.0851 0.9253 
210 99.7231 0.4796 180 99.1051 1.1814 180 99.2156 0.2500 
240 100 0 210 99.4444 0.9510 210 99.5961 0.6997 
   240 100 0 240 100 0 
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Acryl-EZE, CL=14.6%, Temp=30�, speed=20rpm 
Curing Time=1h 20150925 Curing Time=1.5h 20150925 Curing 

Time=2h 
 20150924 

time/mi
n 

average 
release 

error bar time/mi
n 

average 
release 

error bar time/min average 
release 

error bar 

0 0 0 0 0 0 0 0 0 
30 41.5338 0.2949 30 35.4780 3.4935 30 17.6270 1.9756 
60 63.2480 2.7458 60 50.4859 4.0293 60 22.6161 2.9929 
90 76.0246 0.8621 90 61.9877 3.4341 90 27.3274 3.8709 
120 85.2843 1.1918 120 69.6619 2.7096 120 30.9539 4.8890 
130 92.6046 1.6760 130 90.4997 1.0241 130 93.5742 0.9248 
140 100 0 140 99.0933 1.2822 140 99.9670 0.0572 
150 100 0 150 100 0 150 100 0 
180 100 0 180 100 0 180 100 0 
210 100 0 210 100 0 210 100 0 
240 100 0 240 100 0 240 100 0 
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Acryl-EZE, CL=14%, Temp=40�, speed=20rpm 
Curing Time=1h 20151029 Curing Time=1.5h 20151029 Curing 

Time=2h 
 20150930 

time/mi
n 

average 
release 

error bar time/mi
n 

average 
release 

error bar time/min average 
release 

error bar 

0 0 0 0 0 0 0 0 0 
30 13.128 2.534 30 5.2614 0.8283 30 3.8413 1.5514 
60 19.217 2.706 60 14.4106 2.9125 60 9.8087 3.8480 
90 23.810 2.588 90 20.4025 0.2695 90 11.6674 2.0208 
120 28.580 2.034 120 24.0002 4.3767 120 19.4309 2.9384 
130 93.379 2.519 130 95.4454 0.6299 130 85.6428 4.6927 
140 97.430 0.846 140 96.5582 0.6247 140 92.4422 3.6883 
150 98.697 1.523 150 96.8588 4.4423 150 99.0368 0.3621 
180 99.677 0.560 180 100 0 180 100 0 
210 100 0 210 100 0 210 100 0 
240 100 0 240 100 0 240 100 0 
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Acryl-EZE, CL=14%, Temp=50�, Ratating speed=20rpm 
Curing Time=1h 20151028 Curing Time=1.5h 20151028 Curing 

Time=2h 
 20150821 

time/mi
n 

average 
release 

error bar time/mi
n 

average 
release 

error bar time/min average 
release 

error bar 

0 0 0 0 0 0 0 0 0 
30 0 0 30 0.4985 0.7050 30 1.3964 0.8294 
60 6.6084 0.6320 60 1.3401 0.1672 60 4.3002 1.4812 
90 11.6717 0.7558 90 7.4583 0.0985 90 6.5159 0.8961 
120 15.0641 1.6503 120 9.7111 0.3925 120 8.5870 0.7810 
130 94.9955 5.1313 130 88.4453 2.4891 130 92.9377 1.6242 
140 100 0 140 100 0 140 94.0250 0.8445 
150 100 0 150 100 0 150 98.5486 1.5278 
180 100 0 180 100 0 180 99.1051 1.1814 
210 100 0 210 100 0 210 99.4444 0.9510 
240 100 0 240 100 0 240 100 0 
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Acryl-EZE, CL=14%, Temp=50℃, Ratating speed=20rpm 
Curing Time=1h 2015102

8 
Curing Time=1.5h 20151028 Curing 

Time=2h 
	 2015082

1 
time/mi
n 

average 
release 

error bar time/mi
n 

average 
release 

error bar time/min average 
release 

error bar 

0 0 0 0 0 0 0 0 0 
30 0 0 30 0.4985 0.7050 30 1.3964 0.8294 
60 6.6084 0.6320 60 1.3401 0.1672 60 4.3002 1.4812 
90 11.6717 0.7558 90 7.4583 0.0985 90 6.5159 0.8961 
120 15.0641 1.6503 120 9.7111 0.3925 120 8.5870 0.7810 
130 94.9955 5.1313 130 88.4453 2.4891 130 92.9377 1.6242 
140 100 0 140 100 0 140 94.0250 0.8445 
150 100 0 150 100 0 150 98.5486 1.5278 
180 100 0 180 100 0 180 99.1051 1.1814 
210 100 0 210 100 0 210 99.4444 0.9510 
240 100 0 240 100 0 240 100 0 
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Acryl-EZE coating lvl=14% Temp=50� , 
curing time=2h, speed=6rpm 
Curing Time=2h 20151105 
time/min average release error bar 
0 0 0 
30 10.2753 1.5848 
60 18.0070 2.0321 
90 24.6863 2.7766 
120 29.7664 2.0080 
130 92.3820 0.2319 
140 96.8122 0.6654 
150 99.5121 0.6900 
180 100 0 
210 100 0 
240 100 0 
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