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Abstract 

Landfilling has been relegated to containing waste and hoping for minimal environmental 

impact. However, landfills produce harmful leachate and landfill gas that require treatment. 

To speed up the landfill biodegradation process, aerating the landfill to promote aerobic 

biodegradation has been implemented successfully. However, the conversion from a 

traditional anaerobic landfill to an aerobic landfill is to this point, not well researched. A 

3-dimensional dynamic mathematical model was developed that depicts the conversion of 

a landfill from an anaerobic to an aerobic operation. The results of the model (CO2 volume 

fraction and temperature), agreed with data from published work. The model solved for the 

liquid and gaseous pressures/velocities, gas composition, anaerobic/aerobic biomass 

concentrations and temperature; all were solved with respect to space and time. Landfill 

leachate requires treatment before release and landfill gas requires purification (removal of 

CO2) before it can be used as a fuel. A hybrid sorption (absorption and adsorption/ion 

exchange) system was developed to treat leachate and purify landfill gas in the same 

column. The absorption results showed that leachate could remove more carbon dioxide 

from the landfill gas than pure water, due to its slight basicity. The adsorption/ion exchange 

results showed that lead could be removed from model leachate but not below Ontario 

discharge guidelines with the length of the column used (50-55 cm zeolite bed height). 

Keywords 

Anaerobic landfill, aerobic landfill, landfill gas, leachate, bioreactor landfill, finite element 
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Chapter 1  

1 Introduction 

The disposal of solid waste in landfills has led to an unsustainable use of land. Landfilling 

has been historically limited to the dry-tomb method. This method involves dumping the 

waste on a large piece of land and once full, entombing the waste. By definition, the more 

waste, the more land is required. There are more issues than simply the large use of land. 

As the name suggests, this method is predicated on the municipal solid waste (MSW) in 

the landfill remaining dry. This is done by covering the waste in a landfill cover or cap. 

The purpose of the cap is to prevent water infiltration and to contain any gases that are 

produced. In theory, a perfectly dry landfill, will produce no gas. A dry landfill will have 

very limited microbial activity, producing little to no landfill gas (LFG). However, the cap 

is designed assuming that moisture will intrude, causing microbial activity, producing 

LFG, requiring the cap to contain the LFG. Moisture will penetrate the landfill cover and 

also produce leachate (made when constituents are leached out of the MSW by the 

moisture). This leachate can contain harmful constituents depending on what is present in 

the MSW. 

The LFG that is produced in a dry-tomb landfill contains mainly carbon dioxide and 

methane1–3, two harmful greenhouse gases (GHGs). Due to the slow biodegradation, the 

LFG will be produced for many decades4. Another consequence of the slow 

biodegradation, is the harmful leachate that is produced for extended periods of time. To 

try and solve both the LFG and leachate problems, research has led to the development of 

bioreactor landfills. The traditional paradigm is to disallow moisture from entering to 

prevent microbial activity. In a bioreactor landfill, moisture is injected into the landfill in 

the form of leachate; this provides moisture and nutrients to the bacteria5. The addition of 

leachate facilitates the speedy biodegradation of the waste. 

There are three types of bioreactor landfills: anaerobic, aerobic and semi-aerobic. 

Anaerobic bioreactor landfills inject only leachate and use anaerobic bacteria to biodegrade 
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the waste. Oftentimes, due to the increased production, LFG, which is mainly methane and 

carbon dioxide, is extracted for use. Eventually, the production will decrease and the 

extraction is not economically viable. Aerobic bioreactor landfills inject leachate and air. 

The air promotes the growth of aerobic bacteria. Aerobic LFG does not have fuel value as 

the major constituent is CO2, but causes less GHG pollution. Aerobic bioreactor landfills 

are also characterized by a faster biodegradation rate than anaerobic bioreactor landfills1. 

Aerobic bioreactor landfills can be costly due to the energy required to run the air 

compressors. Semi-aerobic bioreactor landfills do not use compressors to inject air. Instead 

the air is allowed to enter through the leachate collection system. 

1.1 Background 

All three phases of the landfill (landfill waste, leachate and landfill gas) are studied in this 

work. Treating one phase, has consequences on the other phases. For example, 

biodegrading the waste in shorter time, decreases the volume of harmful leachate present. 

Also, less gas is produced. 

1.1.1 Landfill waste treatment 

Anaerobic landfills can be categorized into two categories: dry-tomb landfills and 

anaerobic bioreactor landfills. Dry-tomb landfills entomb the waste to try and mitigate any 

environmental hazards and limit biodegradation. However, this approach is deeply flawed 

because dry-tomb landfills have been known to cause environmental problems6 due to the 

leachate and GHGs produced. The advantage of this approach is the relative low cost 

compared to other landfilling methods. Anaerobic bioreactor landfills promote 

biodegradation. Anaerobic biodegradation produces mainly carbon dioxide and methane. 

The gas is exploited by purification and used as fuel and the waste biodegradation is 

accelerated. 

Aerobic landfills use aerobic bacteria to biodegrade the waste. The bacteria are supplied 

with oxygen via air injection wells connected to air compressors. Aerobic biodegradation 

produces carbon dioxide and water as the main products7,8. Anaerobic biodegradation 
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produces mainly carbon dioxide and methane. Methane is 25 times more potent a GHG 

than carbon dioxide, trapping 25 times the energy9. Aerobic landfills biodegrade waste at 

a faster rate, allowing more waste containment and in some cases, land reuse10. However, 

there is a significant operational cost required to run the air compressors continuously. 

Semi-aerobic landfills are somewhere in between anaerobic and aerobic landfills. Aerobic 

bacteria still biodegrade the waste but instead of air compressors supplying the air, air flows 

through the leachate collection pipes and diffuses through the waste. This significantly 

reduces the operational cost associated with the air compressors. Semi-aerobic landfills are 

not as efficient at biodegradation when compared to aerobic landfills but are much more 

efficient than anaerobic landfills11. 

1.1.2 Leachate treatment 

Leachate is the wastewater produced when water (e.g. from rain) infiltrates the landfill and 

leaches out components from the waste12. Leachate is a complex mixture made up of 

various components (e.g. organics, inorganics, heavy metals) which is variable depending 

on the contents of the waste13. The variability and complex nature of leachate is what makes 

treatment difficult and expensive. 

Treatment typically requires multiple steps to remove the various harmful constituents. For 

example, in young leachate (characterized by high biodegradability) biological treatment 

can be employed to reduce the organic components. Biological treatment methods include: 

anaerobic, aerobic and anammox treatments. Once biological treatment is no longer viable 

(due to low biodegradability), physio-chemical treatment methods must be employed. 

The physico-chemical treatment method is specific depending on what is being removed. 

Physico-chemical treatment methods include: adsorption, chemical oxidation, 

coagulation/flocculation and membrane processes. Physico-chemical treatments are more 

expensive when compared to biological treatments and are employed after biological 

treatments. Physico-chemical treatments are used to remove components that cannot be 

removed using biodegradation. For example, adsorption is used to remove heavy metals. 
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Chemical oxidation is used to remove non-biodegradable materials. 

Coagulation/flocculation is also used to remove non-biodegradable materials. Membrane 

processes can be used for the removal of particles, microorganisms, organic molecules and 

other fine pollutants11. 

1.1.3 Landfill gas treatments 

LFG is the gas produced when bacteria biodegrade components of MSW and produce gas 

as a byproduct. The composition of the gas depends on the type of bacteria that are 

biodegrading the waste. Anaerobic bacteria produce mainly carbon dioxide and methane 

and aerobic bacteria produce mainly carbon dioxide and water. Other trace gases are also 

produced. These trace gases include volatile organic compounds (VOCs), non-methane 

organic compounds (NMOCs), hydrogen sulfide and ammonia11. 

Anaerobic LFG is typically flared, wasting the energy by burning the methane. Anaerobic 

LFG can be purified by removing the carbon dioxide and used in many applications such 

as power generation. It takes years to install and commission an aerobic landfill operation. 

In that time, the anaerobic LFG can be extracted and used for fuel. The air compressors 

required in the aerobic system require lots of electricity and some of the cost can be 

recuperated by using the LFG. Treatment/purification of LFG can be done using 

adsorption, absorption, membrane processes or cryogenic treatment. The selection of 

treatment/purification technique depends on the purity of methane required and the 

flowrate of gas. Treatment methods for LFG include adsorption, absorption, membrane 

separation and cryogenic separation. For example, pressure swing adsorption produces 

high purity methane but requires a high operational financial expenditure and is only 

feasible for large gas flowrates. Absorption (using amines) also produces high purity 

methane but requires high capital financial expenditure due to all of the units required. 
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1.2 Modelling methodology 

1.2.1 Methodology 

The modelling used for the landfill was based on conservation and balance principles. 

Momentum, mass and energy are conserved during the landfill biodegradation process. 

Momentum conservation deals with the fluid flow (i.e. leachate, air and LFG flow). Mass 

conservation deals with the chemical species (i.e. nitrogen, oxygen, carbon dioxide and 

methane) and the biokinetics of anaerobic/aerobic growth/death. Energy conservation deals 

with the heat produced during biodegradation and convection during fluid flow. Figure 1-

1 illustrates an arbitrary conservation system, with property Y being conserved. Equation 

(1-1) shows the mathematical description of Figure 1-1. 

 

Figure 1-1 Conservation of property Y 
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Where iny  is the inflow rate of property Y, outy  is the outflow rate of property Y, G  is the 

generation of property Y and C  is the consumption of property Y. 

Once the model equations are developed, a suitable mathematical method to solve the 

equations is required. 

1.2.2 Finite element method 

There are numerous methods that are available to solve partial differential equations 

(PDEs). The three main methods are: finite difference method (FDM), finite volume 

method (FVM) and finite element method (FEM). Each method has advantages and 

disadvantages depending on the problem being solved. Various factors have to be taken 

into consideration before selecting a solution method. For example, a complex geometry 

eliminates the usage of FDM and favours the usage of FEM or FVM. FEM provides a 

continuous solution via interpolation whereas the FVM provides a discrete solution14. 

Modelling the landfill conversion requires many different types of physics (fluid dynamics, 

mass and heat transfer) which favours the use of FEM. FEM has been used for 

computational fluid dynamics15–18, mass transfer19–21 and heat transfer22–24 applications. 

FEM produces unambiguous, consistent and accurate approximations of source terms (e.g. 

mass source, energy source). It also produces valid approximations of second-order partial 

derivatives, as in the heat conduction equation. FEM also naturally incorporates physical 

boundary conditions. Finite element modelling consists of six steps25: 

1. Restating the PDE system as an integral statement, that is then transformed into a 

weak statement; 

2. Each integral is restated as a sum of integrals in the subdomains (mesh elements); 
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3. Local coordinates are transformed within each mesh element to calculate each 

integral; 

4. Each function and coordinate is restated as a linear combination of chosen basis 

functions within each mesh element; 

5. A discrete system is produced from the evaluation of each integral; 

6. System is solved to determine the computational solution of the original PDE 

system. 

1.3 Sorption 

Absorption and adsorption (also ion exchange) are two methods that are used to remove a 

substance (or substances) from a liquid or gaseous solution/mixture. When both methods 

are combined, this is referred to as sorption. Absorption is when the constituent to be 

removed enters a bulk phase (gas, liquid or solid) and is taken in either temporarily or 

permanently. Adsorption is when the constituent to be removed becomes bonded to the 

surface of the adsorbent. Ion exchange can be viewed as an extension of adsorption where 

the constituent trades places with an ion on the surface of an adsorbent. 

Carbon dioxide can be dissolved in water removing it from the LFG in an absorption 

system. This has been done in previous studies26,27. Absorption columns require packing 

to increase residence time to allow sufficient contact time between the solvent (liquid) and 

solute (gas to be absorbed) for absorption. Heavy metals have been removed using 

adsorption/ion exchange using natural zeolites28–31. Adsorption/ion exchange requires 

contact between the solution containing the species to be removed and the zeolite 

(adsorbent). This process is similar to the liquid flow process in an absorption column. Due 

to the similarity, the proposal is to combine the two processes (absorption and 

adsorption/ion exchange) and test the efficacy of the process in removing CO2 from the gas 

phase (LFG) and heavy metals from the liquid phase (leachate). 
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1.4 Objectives 

The objectives of this thesis work are: 

1. To develop a mathematical model that defines the transport phenomena and 

biokinetics in the conversion of a landfill operation from anaerobic to an aerobic 

bioreactor. 

2. To test the efficacy of a hybrid sorption column which combines both absorption 

and adsorption/ion exchange, to remove carbon dioxide from landfill gas and heavy 

metals (lead specifically) from landfill leachate. 

1.5 Motivation 

An accurate model that portrays the inner workings of the conversion from an anaerobic to 

aerobic bioreactor landfill can help understand the process which to this point has not been 

studied extensively. It can give an avenue for further experimental work. The main 

limitation that holds back research in the field of landfill biodegradation is the long times 

required for experimentation. Typical experiments last many months/years, testing one set 

of conditions at a time (making experimental optimization extremely time consuming). A 

model can help cut down the experiments required and provide information that 

experimentation cannot provide or would require large costs for the large amount of 

instrumentation required to collect (e.g. the flow of air/leachate inside the landfill). 

Leachate treatment requires a significant cost in the landfilling process. In the case of an 

aerobic landfill, when compressors are continually blowing in compressed air, energy also 

becomes a large financial expenditure. Capturing the methane in the LFG can be used as 

an energy source32 and reduce the cost of energy required to run the compressors. Removal 

of heavy metals combined with the removal of carbon dioxide from LFG can reduce some 

of the treatment cost of leachate as well as increase the heating value of the LFG. 

Combining both the absorption and adsorption/ion exchange processes in a single column, 

can also decrease the capital cost. 
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1.6 Thesis outline 

Chapter one presents a brief introduction to the techniques used to solve problems outlined 

in Section 1.4. Chapter one also provides the objectives and motivations of the work 

presented in this thesis. 

Chapter two presents a literature review that covers the treatment of landfill waste, leachate 

and landfill gas. The chapter is split up into three main sections: (1) the different treatments 

of landfill waste, (2) the different treatments of leachate and (3) the different treatments of 

landfill gas. 

Chapter three presents a mathematical model that describes transport phenomena occurring 

during the conversion of an anaerobic landfill into an aerobic bioreactor landfill. The model 

equations describe the gaseous and leachate flow, the growth and death of anaerobic and 

aerobic biomass, the movement and consumption/production of chemical species and the 

energy transformation processes. 

Chapter four presents experimental research on a hybrid sorption column which attempts 

to combine an absorption and an adsorption/ion exchange column to simultaneously treat 

leachate by removing heavy metals and purifying landfill gas by removing carbon dioxide. 

Finally, Chapter five provides conclusions and recommendations of the overall work. 

Possible directions for future research are also presented. 
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Chapter 2  

2 Treatment of landfill waste, leachate and landfill gas: A 
review 

This review is aimed at the treatment of the entire landfill, including the waste mass and 

the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, 

anaerobic and semi-aerobic bioreactor landfills; dry-tomb landfills), leachate treatments 

(anaerobic and aerobic treatments, adsorption, chemical oxidation, 

coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, 

adsorption, absorption, permeation and cryogenic treatments) are reviewed. This review is 

to provide a summary of what information is available and the gaps present in current 

knowledge. The most significant areas in need of expansion are landfill waste treatments. 

In recent years this area has begun to grow but there is an opportunity for much more. 

Another area that needs to be explored is the treatment of LFG. Gas treatment is a very 

large field but not much effort has been put towards treatment of landfill gas specifically. 

The aim of this review is to compare treatment methods and give direction to future 

research. 

2.1 Introduction 

The increasing human population on Earth has put a strain on the environment. As the 

population increases, the amount of waste produced will increase. In the United States, 

generation of municipal solid waste (MSW) has increased from 88.1 million short tons (1 

short ton is equivalent to 2,000 lbs) in 1960 to 250.9 million short tons in 2012. This 

increase in MSW generation is not only due to the increasing population but increased 

generation per capita. In 1960, 2.68 lbs of waste was generated per person per day and has 

increased to 4.38 lbs of waste per person per day in 20121. In 2006, 28.6% of the generated 

MSW was recycled, 6.9% was combusted in waste-to-energy plants and 64.5% was 

landfilled2. This trend applies worldwide. This will place a strain on the world’s landfills. 

Landfills need land; the world’s land is finite and there will inevitably come a time when 
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there is no more land for landfills. The vast majority of current landfills do nothing to 

address the growing requirement for land. 

The current state of landfill treatment is limited to the “dry-tomb” method. This treatment 

method has been used for a long time, is mature and easily applied to a landfill. Methane 

(CH4) produced by anaerobic biodegradation of MSW typically makes up greater than 45% 

of the total landfill gases (LFG)3. Methane is a more powerful greenhouse gas than carbon 

dioxide (CO2). The global warming potential over a 100-year span is 25. This is due to its 

stronger molar absorption coefficient for infrared radiation and longer atmospheric 

residence time4. In 2004 – 2005, anthropogenic greenhouse gas (GHG) emissions from the 

waste sector totaled 1.4 million metric tons of CO2 equivalent (MMTCO2e). The methane 

made up 90% of the GHG emissions from the waste sector, and 18% of the total global 

anthropogenic CH4 emissions5. The concentration of methane is more than twice as high 

as the level from 150 years ago. The increase in methane concentration is indirectly caused 

by the increasing human population6. 

Landfills produce leachate and gaseous emissions (LFG) that if not treated can be 

environmentally harmful. The treatment of landfill and the emissions (leachate and LFG) 

is a major problem. There has been significant research done on the treatment of leachate, 

much more than has been done on the treatment of MSW and LFG. The purpose of this 

review is to show the state of research of landfill, leachate and LFG treatments. 

This review paper aims at providing alternatives for treating landfill waste and its harmful 

byproducts, leachate and LFG. To date, no review paper encompasses all three phases of 

landfill treatment. It would be impossible to delve into detail of each individual treatment 

method, however, this paper gives a broad, overall view of the different treatment methods. 
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It would be impossible to find one perfect solution that treats the waste, leachate and LFG. 

It takes a combination of different treatment methods to effectively treat all three. 

2.2 Landfill treatments 

Landfill treatments can be classified into three types: aerobic, anaerobic and semi-aerobic. 

Historically, landfills were operated in the “dry-tomb” method but landfills have begun to 

shift towards operating as bioreactors. Operating landfills as bioreactors 

(aerobic/anaerobic/semi-aerobic) has many advantages over the conventional dry-tomb 

method (anaerobic) of landfilling. These advantages include: (1) protection to the 

environment, (2) increased potential for energy production from LFG, (3) in-situ treatment 

and recirculation of leachate leading to reduced treatment cost, (4) greater stabilization 

rates allowing more storage due to increased density, (5) increased rate of decomposition 

shortening post-closure monitoring period and (6) increased sustainability allowing 

possible reuse of the land7–9. Recirculating leachate turns the dry-tomb landfill into a 

bioreactor landfill10,11. Higher rates of leachate recirculation accelerate waste 

biodegradation. A higher rate may leach out large amounts of organic matter, reducing 

biological methane potential12. This decreases the time for stabilization. Depending on how 

permeable (extent of compaction) the waste is, the amount of leachate added is adjusted. 

In low permeability wastes, less leachate is added to prevent surface seepage problems13. 

This causes a decrease in the biodegradation, meaning if possible waste should not be over-

compacted. 

2.2.1 Dry-tomb landfill 

The dry-tomb approach to landfilling, as the name suggests, is entombing the waste to 

disallow (as much as possible) any moisture from entering the waste mass. The rationale 

behind this method is, with no moisture, the waste will remain dry and not decompose, not 

producing any harmful leachate and LFG14. However, in reality, a landfill cannot be 

completely free of moisture infiltration and dry-tomb reactors are not completely dry. This 

causes very slow biodegradation and harmful leachate and LFG production. Due to this, 

dry-tomb landfills have aftercare periods of hundreds of years15. Emissions have to be 
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tracked for environmental impact; methane emissions remain constant for 100 years and 

emissions can extend beyond 100 years16. Aftercare of a landfill typically consists of 

monitoring of emissions (i.e. leachate and LFG), studying the receiving systems (i.e. 

groundwater, surface water, soil, and air) and maintenance of the cover, leachate and gas 

collection systems. The minimum aftercare period depends on regulations. For example, 

in Europe, many member states require a minimum of 30 years of aftercare, which may be 

shortened or prolonged on a site-by-site basis17. This length of aftercare suggests that this 

method is not effective at mitigating risks to health and the environment. 

The dry-tomb approach to landfilling is low cost relative to the bioreactor landfills but is 

not controlled. Due to the low cost developing countries opt to use these landfills and face 

environmental problems from leachate contaminated ground water, odor, air pollution and 

greenhouse gas emissions18. This technology is fundamentally flawed because it is 

assumed that leachate and LFG are contained but this is not possible because the cover and 

liner are not impermeable. This justifies research into finding alternative methods for 

treating landfills that are both economical and less environmentally detrimental. This has 

spawned research into bioreactor landfills. 

2.2.2 Anaerobic bioreactor landfill 

The process by which anaerobic biodegradation occurs is very slow, sometimes spanning 

decades after landfill closure. This means that leachate emissions can span centuries and 

LFG emissions can last more than three decades after closure19. Leachate and LFG 

emissions have to be monitored to ensure environmental protection. Table 2-1 illustrates 

consequences, good and bad, of anaerobic bioreactor landfills. 

Table 2-1 Advantages and disadvantages of anaerobic bioreactor landfill 

Potential Advantages Potential Disadvantages 

 LFG has high methane 

concentration which can be used  

 High volatile fatty acid (VFA) 

concentration can leach harmful 

constituents 

 Decreased waste stabilization 

times  

 Relatively high levels of ammonia 

in leachate 
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 Relatively low cost  Production of hydrogen sulfide 

 In-situ treatment of leachate 
 

Anaerobic biodegradation can be broken down into two stages. In the first stage, the waste 

components (e.g. fats, proteins, etc.), are hydrolyzed to their respective subunits (e.g. fatty 

acids, amino acids, etc.) by a group of facultative and anaerobic bacteria. These products 

then undergo metabolic processes producing simple organic compounds. These 

compounds mainly consist of short chain volatile acids (acetic and propionic acid) and 

alcohols. The second stage takes the products of the first stage and converts them by 

anaerobic bacteria into gases (mainly CH4 and CO2)
20. Each of these two stages has sub-

stages (e.g. stage 1 – hydrolysis, acidogenesis), but the sub-stages can be grouped into one 

of the two stages. 

Nutrients in the waste (i.e. carbon, nitrogen and phosphorus) significantly affect anaerobic 

biodegradation of waste. The limiting nutrient has been shown to be phosphorus21,22. With 

the addition of phosphorus, microbial growth increased up to a concentration of 10 µg of 

PO4 phosphorus per litre of water23. When compared to a control sample, phosphorus 

addition increased removal efficiency of chemical oxygen demand (COD) and NH4
+ 

nitrogen by 5.1% and 8.1% respectively21. Phosphorus can be used to control the growth 

of bacteria in liquids (e.g. leachate), even liquids with low organic carbon content24. 

Phosphorus levels can easily be controlled by adding or removing phosphorus to or from 

the moisture source (i.e. leachate or make up water). Further work can be done with the 

aim of controlling the degradation rates effectively using phosphorus. This could be useful 

if for example, the temperature in the waste is getting too high which could cause safety 

problems or could start killing the microorganisms. Lowering phosphorous levels could 

slow down the microbial activity to reduce the temperature to a safe level. 

Little research has been published on landfill microbiology. Fielding et al. (1998) 

conducted one such study to identify the predominate species of methanogenic bacteria in 

traditional landfills. They had 7 (EF1 to EF7) samples and tried to match the samples to 

known bacteria. Fielding et al. found that isolate EF1 was closely related to M. formicicum 
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MF and EF5 was closely related to M. barkeri MS. Isolate EF2 was found not to be related 

to any of the reference bacteria. Isolates EF3, EF4, EF6 and EF7 showed antigenic 

similarity to M. bryantii MoH and M. bryantii MoHG. Isolates EF3, EF4, EF6 and EF7 

showed differences from the reference bacteria as well as differences among themselves25. 

Further research needs to be done into learning more about the microorganisms that are 

present during anaerobic biodegradation. Studying how different nutrients (e.g. adding 

urea as a nitrogen source to leachate) affect the biodegradation rate could lead to faster 

stabilization times then are currently possible. Anaerobic landfills attempt to use the gas 

produced by the biodegradation to produce energy. However, methane is a harmful 

greenhouse gas. Weighing the benefits of LFG as a fuel compared to the potential 

environmental hazards becomes a problem. Aerobic bioreactor landfills get rid of this 

problem by effectively eliminating the methane production, instead producing carbon 

dioxide and water. 

2.2.3 Aerobic bioreactor landfill 

Aerobic treatment of landfill waste can be thought of as very large scale composting. 

Aerobic landfills are different than anaerobic landfills due to air injection into the landfill 

mass, killing anaerobic bacteria and promoting growth of aerobic bacteria. There are 

numerous methods used for air injection. These include: intermittent high pressure 

aeration, low pressure aeration, active aeration with off-gas extraction, active aeration 

without off-gas extraction, and passive aeration (air venting)26. One benefit/detriment 

(depends on use of LFG) is that methane production virtually ceases. Air injection reduces 

methane concentration in LFG from 60% to 10-15% in 7-10 days27. This gives an 

indication of how fast aerobic bacteria grow and begin degrading the waste. Aerobic 

biodegradation produces mostly carbon dioxide and water28. The effectiveness of the 

aerobic biodegradation process is dependent on the oxygen concentration, and along with 

temperature29,30, moisture content31 and pH32, affect all types of biodegradation33. 

Aerobic landfills have many advantages over anaerobic landfills. These advantages include 

a faster waste stabilization time, lower levels of COD, biological/biochemical oxygen 
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demand (BOD), total organic carbon (TOC), ammonia (reducing odors), phosphorus and 

alkali metals and due to higher temperatures evaporating leachate, less leachate requiring 

treatment. However, injecting compressed air requires a lot of energy. 

An aerobic reactor was examined after 374 days having settled 37%. The aerobic reactor 

was compared to an anaerobic reactor which was operated for 630 days. The anaerobic 

reactor settled 5%34. The reactor conditions were identical except for air injection into the 

aerobic reactor. This simple change produced a difference of 32% in settlement. The 

authors suggested doing more research into aeration rates which has been done by Slezak 

et al. (2012)35 and extended to where in the waste mass the air should be injected by Wu et 

al (2014)36. 

Aeration rates have a large effect on the degradation of the waste. The greatest degradation 

rate was found at the high aeration rates and the lowest was found at medium aeration rates. 

The rate of oxygen assimilation decreased approximately linearly during the 28-day time 

frame of the experimental study35. A fundamental design factor in an aerobic landfill 

process is where to inject the air (bottom/middle/surface layer) and the rate of air injection. 

Aeration at the bottom layer is most effective for decomposition. In terms of how much air 

is injected, a higher injection rate near the bottom (deepest layer) accelerates the 

stabilization36.  

Aerobic treatment had a two order of magnitude lower leachate ammonia level than 

anaerobic treatment37. Aerobic bioreactor landfill experiments claim a lack of unpleasant 

odors and the lower level of ammonia contributes to this. Aerobic landfills treat the leachate 

and decrease the amount produced significantly and can eliminate production of leachate 

completely due to high temperatures in the waste38. Aerobic landfills also decrease volatile 

fatty acid (VFA) levels much more quickly than do anaerobic landfills. Bilgili et al. (2012) 

conducted a study to find the effect of leachate recirculation and aeration on VFA 

concentrations in the resultant leachate. They found that total VFA concentrations in the 

aerobic reactors decreased from 33,930 and 38,270 to 500 and 800 mg L-1, after 120 days 

of operation. The anaerobic reactors had similar removal but took much longer, decreasing 
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to 820 mg L-1 after 350 days and 786 mg L-1 after 450 days39. High VFA concentrations 

will decrease the pH of the leachate, leaching out more contaminants. A quicker VFA 

removal time means that less contaminants will be present in the leachate. 

The ideal temperature for aerobic biodegradation is in the mesophilic range (15-40°C)33. 

The ideal moisture content is between 50 and 60%40. The pH level is not as great a factor 

in determining effectiveness of aerobic biodegradation as long as the pH is not extremely 

acidic or basic because of the various bacterial strains present.  The optimum pH values 

are between 6.5 and 8 but can be between 5.5 and 933. Air injection into the landfill mass 

dries out the landfill, minimizing leachate production41. 

Oxygen consumption varies depending on the types and age of waste. A study by Kallel et 

al. (2003) looked at the oxygen consumption for both fresh and old waste. Fresh waste was 

made up of bulky waste, incombustible waste and incineration ash; old waste was made up 

of bulky waste, incombustible waste, incineration ash and sludge. Their findings showed 

that fresh waste consumed more oxygen than old waste. Bulky waste consumed the most 

amount of oxygen and incineration ash the least, with the rate of oxygen consumption 

dropping to zero within weeks42. However, these results need to be examined carefully. 

Waste is a heterogeneous material and all samples are different. For example, COD values 

for bulky waste and incombustible waste are similar. To compare new and old waste, the 

composition of the waste has to be as close as possible. This can be done by making 

“simulated” waste by producing the waste with known proportions to be replicated. If there 

is a lot of organic material in the old waste, then the results could suggest that old waste 

uses more oxygen than new waste. Assuming identical waste, old waste is further degraded 

than new waste and needs less oxygen. Using only four samples may not be enough. To 

get rid of the error associated with heterogeneity, doing a relatively large number of 

samples will provide more defined trends. 

Shredding wastes increases biodegradation rates43,44. This is true of all types of landfill 

bioreactors but is especially helpful in aerobic landfills. Shredding increases homogeneity 

and surface area, allowing a better distribution of air and better contact with the bacteria 
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lowering the requirement for aeration. Compaction can also be helpful. It results in a more 

uniform mass allowing a lower aeration rate. Compaction reduces the potential for 

channeling. Channeling diverts nutrients, lowering the rate of degradation43. In 

experimental scales, the waste is usually shredded. This is to homogenize the waste as 

much as possible. Shredding has been shown to be effective in increasing biodegradation 

rates. However, in full scale landfills the large amounts of energy required to shred the 

waste make it unfeasible. 

Aerobic biodegradation of landfill waste is a promising alternative to the current anaerobic 

methods in use. Table 2-2 illustrates the consequences of aerobic bioreactor landfills. 

Table 2-2 Advantages and disadvantages of aerobic bioreactor landfill 

Potential Advantages  Potential Disadvantages 

 Decreased waste stabilization 

times 

 High cost for aeration 

 Little to no methane production 

decreases GHG emissions 

 Air can cause flammable/explosive 

mixtures 

 In-situ treatment of leachate  Unknown gases may be produced 

 Removal of moisture by air 

stripping  

 Little to no ammonia production 
 

Methane, a very dangerous greenhouse gas, is produced from anaerobic but not aerobic 

biodegradation. If all landfills were to employ aerobic instead of anaerobic treatment, it 

would have the same effect as removing at least 761 million metric tons of CO2 from the 

atmosphere every year. However, aerobic treatment of waste requires large amounts of air, 

requiring large amounts of energy. Another concern with air present, is the potential for air 

and methane to mix resulting in a flammable/explosive mixture. This becomes an 

optimization problem between environmental benefits and financial expenditure. The 

semi-aerobic landfill attempts to lessen the conflict between benefits and costs by lowering 

the energy required. 
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2.2.4 Semi-aerobic bioreactor landfill 

A semi-aerobic landfill is similar to the aerobic landfill in that air is allowed to enter the 

waste. However, in aerobic landfills, the air is injected continuously whereas in semi-

aerobic landfills, air flows naturally through the leachate collecting pipes45. Tang et al. 

(2008) attempted to track the stabilization of semi-aerobic landfills. The authors used three 

different groups of indicators: leachate characteristics (COD, NH3-N, TOC, etc.); waste 

characteristics (biologically degradable matter, VFAs, volatile solids, coarse fiber, humic 

acid); and external characteristics of the landfill (settlement rate, generation of leachate, 

temperature). Tang et al. came up with three stages: (1) the instability stage, (2) the relative 

stability stage and (3) the absolute stability stage46. Semi-aerobic landfills provide the 

benefits of the aerobic landfill but lower the operational costs by removing the cost of air 

injection. Table 2-3 illustrates the features of semi-aerobic landfills. 

Table 2-3 Advantages and disadvantages of semi-aerobic bioreactor landfill 

Potential Advantages Potential Disadvantages 

 Decreased waste stabilization 

times 

 Unknown gases may be produced  

 Little methane production 

decreases GHG emissions 

 Air can cause flammable/explosive 

mixtures  

 In-situ treatment of leachate 
 

 Relatively low cost 
 

The gaseous emissions from semi-aerobic landfill systems are similar to aerobic landfills. 

The composition of the LFG produced in a large-scale simulated semi-aerobic landfill was 

19-28 vol% CO2, 1-8 vol% O2 and 5-13 vol% CH4. Huang et al. (2008) showed that 

leachate and LFG (less CH4, more CO2) qualities from semi-aerobic were better than 

leachate and LFG produced from anaerobic landfills47. Leachate was tracked using COD, 

ammonia, nitrate and pH. Although effective at reducing the methane concentrations, the 

semi-aerobic landfill did not decrease the concentration as much as the aerobic landfill. In 

this study, none of the analytic methods for tracking leachate or LFG quality were 

mentioned. For example, the authors did not mention how gas concentration was measured. 
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This was true for the leachate analysis as well. The whole purpose of this paper was to 

track the changes of quality of leachate and LFG. The authors displayed the results without 

mentioning how they arrived at the results. 

Leachate samples from two landfills in Malaysia (one anaerobic and one semi-aerobic) 

were taken and 20 different parameters were measured48. Aziz et al. (2010) compared 

leachate from one anaerobic landfill and a semi-aerobic landfill which had a pond of 

leachate that was unaerated and a pond that was intermittently aerated. The leachates were 

at different stages of maturity. The semi-aerobic landfill is older than the anaerobic landfill, 

which affects the level of the contaminants in the leachate. A comparison cannot be made 

if the leachates are at different stages of degradation. A study comparing leachate 

contaminant levels over time from the 3 different bioreactor landfills is useful. However, 

if a valid comparison is to be done, the leachates have to start from the same time point. 

The leachates cannot be at different stages of maturity. Also, leachate contaminant levels 

have to be relatively similar at the start of the study. To do this, three landfill bioreactors 

with as similar waste compositions as possible need to be constructed. “Synthetic” leachate 

needs to be created so that the same composition of leachate goes in to the bioreactors. 

Results from this can then give an accurate description of the leachate quality dynamics in 

the different types of bioreactor landfills. 

2.2.5 Landfill operations and measurements/control 

2.2.5.1 Operations 

Bioreactor landfills require closer attention on performance than do dry-tomb landfills. 

Control and monitoring ensure successful system performance. Biological, chemical and 

hydrologic processes are monitored and controlled. Once the waste has stabilized, the 

operational and maintenance programs can be reduced49. 

The fundamental differences between the traditional anaerobic versus aerobic treatment in 

regards to operations are the presence of wells that provide sources of oxygen and moisture. 

There are two types of wells: air injection wells and moisture injection wells. The air 
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injection wells are used to inject compressed air into the waste. The moisture wells are used 

to inject leachate into the waste50. Figure 2-1 illustrates a schematic representation of 

anaerobic, aerobic and semi-aerobic bioreactor landfills. 
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Figure 2-1 Schematic diagram of: (a) anaerobic bioreactor landfill; (b) aerobic bioreactor 

landfill; (c) semi-aerobic bioreactor landfill – all with leachate circulation 
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Yazdani et al. (2010) found that rates of oxygen transfer to immobile zones significantly 

influence the degradation rate. Immobile gas zones occupy between 32 and 92% of the gas 

filled pore space. Gas tracer tests can determine the size of these zones51. Knowing the 

locations of these zones can then help determine locations of gas injection wells to ensure 

efficient aerobic degradation. Even when sufficient oxygen was supplied, the immobile 

zones were still present and actually increased as the moisture content of the waste was 

increased. The most significant finding was that the rate of air transfer from immobile to 

mobile zones limited aerobic degradation. This is significant because this problem can be 

solved by choosing appropriate locations for the air injection wells. 

2.2.5.2 Measurement/Control 

To ensure that conditions are ideal for bioreactor landfill treatment, data collection is 

essential. The operational parameters need to be monitored. By measuring these 

parameters, the operators can determine if aerobic or anaerobic biodegradation is 

dominating. The moisture content should be in the range of 40-70%. The temperature 

should be in the mesophilic range33. In an aerobic landfill the oxygen concentration should 

be above 0% to ensure enough oxygen for aerobic conditions50. Once the oxygen (or air) 

is pumped in, the conditions change from anaerobic to aerobic relatively quickly usually 

within the first month of injection. In 7 to 10 days, methane concentrations reduced from 

60% to 10-15%27. If the concentration of methane in the LFG is less than 10% by volume, 

this is an indicator of aerobic biodegradation. If the methane concentration is near or above 

50%, this is an indicator of anaerobic biodegradation50. If an aerobic landfill is left 

uncontrolled, the landfill will revert back to anaerobic. The oxygen is consumed by the 

aerobic bacteria and the aerobic bacteria quickly perish. 

Rendra, Warith & Fernandes (2007) found that the higher the leachate circulation, the faster 

the biodegradation. Increasing the leachate circulation rate facilitated the exchange of 

substrate, nutrients, buffer, and diluted inhibitors. The higher circulation rate also spreads 

the microorganisms within the waste. In their study, the air was kept at a constant flow rate 

between samples, so the only variable under consideration was the leachate circulation rate. 
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To help with nutrient needs Rendra et al. added wastewater sludge to the leachate. 

However, they found that the leachate circulation rate had a much more pronounced effect 

on the biodegradation than did the wastewater sludge rate52. This was most likely due to 

the fact that leachate was added at a rate 30 times greater than the wastewater sludge. 

Rendra et al. looked at leachate recirculation and sludge addition as manipulated variables 

to see their effects on biodegradation using factorial experimental design. This led to the 

development of empirical model equations relating the leachate recirculation and sludge 

addition to biodegradation. Sludge addition was found to be insignificant in increasing 

biodegradation. Further work can be done to determine an empirical model relating other 

factors to biodegradation (e.g. air injection and leachate recirculation) using factorial 

design. 

The aerobic biodegradation process is an exothermic process53. This presents two 

important consequences. The first being that with energy released during the process, the 

temperature will inevitably increase and require control. The second consequence of the 

energy release, is the eventual evaporation of water. With the waste being at a moisture 

content between 40 and 70%, there is moisture that can evaporate. As a result, moisture 

content needs to be measured and controlled. Leachate generation decreases throughout 

the degradation process. The evaporation of moisture held in the waste is a reason to the 

decreasing leachate production. 

2.3 Leachate treatment 

Leachate is produced from the percolation of precipitation through the waste mass forming 

a complex liquid. Leachate is a complex variable mixture containing soluble organic, 

inorganic, bacteriological constituents and suspended solids (SS). Due to the 

aerobic/anaerobic microbial decomposition, leachates contain intermediate products as 

well as toxic organics, heavy metals, and other xenobiotic materials54. Factors that affect 

the quality of leachate are age, precipitation, seasonal weather variations, waste type and 

composition55. Hughes et al. (as cited in 56) found that leachate quality was highly variable 

between landfills. This can be attributed to the nature of waste in the landfill. A hazardous 
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waste disposal site for example, would have much more hazardous leachate than a yard 

waste disposal site.  

The leachate chemistry is highly influenced by the amount of rain57. Based on the amount 

of rainfall, the leachate can be separated into three groups: leachates during severe 

droughts, leachates of high rainfall periods and leachates of normal rainfall periods. The 

first group shows the highest mineralization (most concentrated). The second group shows 

the lowest mineralization and concentration (most diluted)57. The composition of leachate 

also changes with the age of the waste being decomposed. Heavy metal concentrations in 

leachate from a United Kingdom landfill decreased with time. However, the concentrations 

of sodium and chlorides increased56. 

Off-site leachate treatment can be a significant portion of the cost of a landfill. Anaerobic 

landfill leachate can be acidic, leaching harmful materials from the waste. This toxic 

leachate left untreated can seep into the groundwater and cause environmental and health 

problems. Aerobic biodegradation has the advantage of occurring at relatively high 

temperatures, effectively decreasing the volume of leachate by evaporation. An aerobic 

landfill was implemented at a landfill near Franklin, Tennessee. Before implementation, 

the landfill produced 720,000 L of leachate a month, costing US$0.15 per gallon for 

treatment and disposal. In this landfill, all of the leachate produced was used onsite as the 

moisture source. This saved the landfill $650,000 over two years from off-site leachate 

treatment. All leachate was consumed onsite and methane production caused by the 

anaerobic microorganisms decreased by more than 98%38. 

Aerobic landfill treatment also treats the leachate, gradually making it less dangerous. At 

the Columbia County landfill (aerobic treatment), within 5 months, acetone was reduced 

from 750 ppm to less than 250 ppm; methyl ethyl ketone (MEK) was reduced from 1,800 

ppm to 300 ppm, and toluene was reduced from 250 ppm to 50 ppm58. At the Columbia 

County landfill, prior to startup, approximately 453,600 L of leachate was sent for 

treatment each month. For the first six months of the aerobic treatment, the leachate 

produced from the entire landfill was utilized in the aerobic landfill (no leachate sent for 
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treatment). After fourteen months of treatment, 945,000 L was sent for treatment, a 

reduction of 86%3. 

Leachate treatment can be split into two parts: biological treatments and physico-chemical 

treatments. The main biological treatments are: anaerobic and aerobic treatments and 

anammox. The main physico-chemical treatments are: adsorption, chemical oxidation, 

coagulation/flocculation and membrane processes59. The treatment methods have to 

remove biological/chemical pollutants and heavy metals. Heavy metals treatment is 

common in many industries. The treatment methods used depend on many factors (e.g. 

type/amount of heavy metals, required final concentration, etc.). Heavy metals include: 

copper (Cu), silver (Ag), zinc (Zn), cadmium (Cd), gold (Au), mercury (Hg), lead (Pb), 

chromium (Cr), iron (Fe), nickel (Ni), tin (Sn), arsenic (As), selenium (Se), molybdenum 

(Mo), cobalt (Co), manganese (Mn), and aluminum (Al)60. Physico-chemical treatments 

are more expensive than biological treatments but when the BOD/COD ratio is low (<0.1), 

biological processes can be ineffective61. When the BOD/COD ratio is low, this indicates 

a low concentration of biodegradable pollutants and physico-chemical treatment methods 

have to be used. 

2.3.1 Anaerobic treatment 

Anaerobic systems are successful in treating high chemical oxygen demand (COD) 

leachates. The resultant effluent however, still has a high COD, requiring additional 

treatment by aerobic or physico-chemical treatment methods. Anaerobic digestion 

produces low sludge amounts but experiences low reaction rates62. Anaerobic treatment 

produces methane, in the range of 67-81%63–65 that can be captured. 

Timur and Özturk found that 83% of the COD removed (the biodegradable portion) from 

leachate using anaerobic treatment was converted to methane66. This is a useful finding if 

the methane is collected. This allows for a predictive tool if a correlation can be made 

between COD and methane production to determine the amount of methane that can 

potentially be captured. However, this study should be repeated with BOD. COD by 
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definition is all degradable organic compounds, some of which cannot be biodegraded by 

the anaerobic bacteria. BOD contains only biodegradable organic compounds. COD may 

be appropriate but the same study should be done using BOD to compare the results. There 

may be advantages or disadvantages using either COD or BOD but a study comparing the 

two would be very beneficial. If it provides the same information, it at least provides a 

second test to validate the results from the COD results. This study did not examine other 

contaminant data (e.g. BOD, SS, ammonia). These contaminants are important and should 

be studied. 

Anaerobic treatment is unaffected by the presence of metals (alkali, alkali earth and heavy 

metals) in the leachate. The kinetic mechanism of anaerobic treatment is similar to that of 

digestion of municipal wastewater sludge. Heavy metal removal efficiencies can be greater 

than 85% for aluminum, barium, cadmium, mercury, nickel and zinc; 80% for iron; 

between 40 and 70% for chromium, copper, lead and manganese; 30% for calcium; and 

less than 10% for magnesium, potassium and sodium67. Kheradmand et al. (2010) used an 

anaerobic digester in series with an activated sludge unit. The anaerobic digester showed 

excellent heavy metal removal efficiency. The heavy metals that were focused on were Fe, 

Cu, Mn, Zn and Ni. All the heavy metals except Zn (approximately 50% removal) had 

removal efficiencies in the range of 88.8-99.9%. However, ammonia decrease did not 

occur68. 

2.3.2 Aerobic treatment 

In aerobic landfills, leachate is treated as it passes through the waste. The landfill functions 

as both a waste treatment bioreactor and a leachate treatment bioreactor. Aerobic landfills 

recycle the leachate. Leachate is treated by the aerobic bacteria. As the waste stabilized 

using aerobic treatment, metal concentrations were significantly reduced, while no 

appreciable difference was found when the waste stabilized anaerobically69. Kim et al.’s 

study contained graphs tracking the heavy metal concentrations with respect to time. 

Nothing was reported on the kinetics of the removal of the heavy metal levels or any kinetic 

relationships. This should be further explored using experimental design and response 
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surface methodology to determine empirical relationships between important parameters 

and the removal of heavy metal levels and related back to the kinetics of the process. This 

can be further extended to using experimental design to optimize the operational 

parameters to remove heavy metals as effectively as possible. 

Aerobic treatment decreases ammoniacal-N, organic compounds and heavy metals enough 

to allow discharge. Anaerobic cannot treat ammoniacal-N levels in leachates. A landfill in 

the United Kingdom (UK) required a treatment method for the stronger leachates that were 

produced. A sequencing batch reactor using aerobic microorganisms was decided upon for 

the treatment of the strong leachate. The treatment reduced levels of ammoniacal-N, 

organic compounds and heavy metal levels low enough that the leachate could safely be 

discharged into the river70. 

In an aerobic landfill study, the heavy metal concentrations decreased significantly during 

the treatment. Ni levels decreased from 88.85 ppb to less than 1 ppb after 510 days and Pb 

levels decreased from 54.97 ppb to less than 1 ppb after 510 days. Heavy metals may be 

retained by sorption to the MSW. The levels of heavy metals also may be decreased as a 

result of the high pH71. The pH was above 8, which may have caused carbonate 

precipitation and hydroxide precipitation. These processes are used in offsite wastewater 

treatment facilities to treat heavy metals.  After 250 days of operation, nearly 100% NH4
+ 

removal was achieved while NO3
- levels increased. Most of the removal was due to 

nitrification, evident by the increased NO3
- levels. A portion of removal is due to biomass 

synthesis. 

Aerobic treatment of leachate follows the same biological pathways as other aerobic 

wastewater treatments. Kheradmand, Karimi-Jashni and Sartaj (2010) used a combined 

anaerobic digester in series with an activated sludge system to treat municipal landfill 

leachate. They found that in their study the aerobic sludge portion of the treatment showed 

low removal efficiency. This is due to the high organic loading rate (OLR) in the waste 

used. This means that leachate containing high amounts of organic material need to be 

pretreated for more efficient removal68. As for the heavy metal present, the anaerobic 
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digester showed excellent removal efficiency. The heavy metals that were focused on were 

Fe, Cu, Mn, Zn and Ni. All the heavy metals except Zn (approximately 50% removal) had 

removal efficiencies in the range of 88.8-99.9%. Biological treatment methods are cost 

effective compared to other methods (i.e. chemical). However, biological methods produce 

an overabundance of sludge that requires treatment and disposal72. Table 2-4 compares the 

removal efficiency of COD, BOD and/or TOC using both anaerobic and aerobic 

treatments. 
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Table 2-4 Biological treatment removal efficiencies 

 Leachate characteristics Operational conditions Removal 

efficiency (%) 

Reference 

COD 

(mg/L) 

BOD 

(mg/L) 
BOD/

COD 

 

pH 

Temperature 

(°C) 

Volume 

(L) 

HRTa) 

(days) 

Aerobic 

reactor  

(In-situ) 

45,000 35,000 0.8 4.5 - 334 - 
89 COD 

97 BOD 

73 

40,500 - - 4 25-53 250 - 91 COD 74 

Aerobic 

reactor 

(Ex-situ) 

4,298-

5,547 
913-1,017 

0.16-

0.24 
8.6-9.3 - 3 12 

84.4 COD 75 

 4,740-

28,120 
2,840 0.4 7.53 26-30 18 - 60-90 TOC 

76 

 3,246 - - 7 25 4 0.33 69-83 COD 77 

Anaerobic 

reactor  

(In-situ) 

62,000 - - 6.3 - 392 - 98 COD 78 

Anaerobic 

reactor 

(Ex-situ) 

 

55,351 49,400 0.81 6.31 32 ± 1 150 15 
73 COD 

77 BOD 

68 

16,200-

20,000 

10,750-

11,000 

0.54-

1.02 
7.3-7.8 35 ± 2 1 1.5-10 

85 COD 66 

32,562 16,011 
0.49 

5.1-5.31 34 ± 1 14 20 
79.3 COD 

97.1 BOD 

67 

1,365 276 0.2 7.52 - 4 24 76.8 COD 79 

43,000 - - 6.4 ± 2 37 2 5 87 COD 80 

a) HRT: hydraulic retention time 
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2.3.3 Anammox 

Anammox (anaerobic/anoxic ammonium oxidation) treatment is specifically used for 

removing nitrogenous compounds in leachates. Anammox is a bacterium-mediated 

process81.  The exact mechanism that anammox follows is unknown but a few have been 

proposed82. An advantage of anammox treatment is the low sludge production. This is due 

to the low biomass yield83. However, the low biomass yield is due to the slow growth of 

anammox bacteria (generation times of 10 to 12 days at 35°C) and limits the anammox 

process84. Anammox is currently limited to high ammonium containing wastewaters.  

In a study conducted by Cema et al. (2007), they combined a rotating biological contactor 

(RBC) with anammox treatment. The RBC contained aerobic and anaerobic ammonium 

oxidizers. This resulted in autotrophic nitrification and heterotrophic denitrification 

coupled with the existing anammox treatment. They achieved 3.0 g Nm-2d-1 and 3.9 g Nm-

2d-1 of ammonia and nitrite respectively, maximum removal rates. The maximum removal 

rate of inorganic nitrogen was 5.8 g Nm-2d-2 85. 

Recent advances in anammox have been aimed at increasing the activity of the anammox 

bacteria using external energy such as magnetic fields, electric fields and ultrasound. Liu 

et al. (2008) demonstrated that a magnetic field could significantly shorten start-up time 

although the exact physiology change in the bacteria is not well understood. A control 

reactor was compared to a reactor undergoing a magnetic field. The magnetic reactor start-

up time was 3/4 of the start-up time for the control reactor. Short term batch tests were 

conducted to observe the activity at varying magnetic field strengths. A maximum of 50% 

increase in activity was found at 75 mT. To monitor long term effects, a magnetic field 

strength of 60 mT was operated. The results showed a 30% increase in maximum nitrogen 

removal rate and a 1/4 saving in cultivation time86. 

A study conducted by Qiao et al. (2014) looked at the effects of electric fields on anammox 

bacteria. Qiao et al. proposed that the electric fields may alter the redox potential and 

supply energy for growth. Qiao et al. found that anammox activity increased by 25.6% 
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above the control experiment in a certain range of electric field strengths. For their 

particular system this range was between 0 and 2 V/cm, with the optimum value being at 

2 V/cm. Above this range, the activity decreased 21.2% below the control experiment 

levels. Another factor that Qiao et al. considered was the application time. Application time 

was varied between 5 and 60 minutes while keeping the electric field constant at 2 V/cm. 

The application time followed the same trend as electric field strength, increasing the 

activity when compared to the control experiment for a range of 5-40 minutes but 

decreasing activity compared to the control experiment when applied for 60 minutes. The 

maximum activity of 25.6% was reached at an application time of 20 minutes87. 

Another technology that is being used to increase anammox bacteria activity is ultrasound 

although the exact mechanism of ultrasound effect on bacteria activity is unknown. Duan 

et al. (2011) determined that total nitrogen removal rate increased by approximately 21% 

compared to the blank experiment when an ultrasound intensity of 0.3 W/cm2 was applied. 

An ultrasound intensity greater than 0.3 W/cm2 decreased the anammox activity. This was 

done at an exposure time of 5 minutes. Duan et al. then studied the effect of exposure time. 

Intensity was held constant at 0.3 W/cm2 and varied exposure time between 0 and 10 

minutes. They found that the optimal exposure time was 4 minutes, which led to an increase 

of 25.5% over the blank experiment88. Due to its slow biomass growth, anammox has been 

limited in application. However, in the last few years a lot of work has been done on 

increasing the anammox biomass activity to overcome the slow growth. There is a lot of 

potential for application of anammox with increasing treatment rates. 

2.3.4 Adsorption 

Granular (or powdered) activated carbon is the most common type of adsorbent used in 

treating leachate. An area of research that is quickly growing is the application of natural 

zeolites for the treatment of wastewaters. Their relative low cost and ion-exchange 

properties make them very useful for industrial wastewater (leachate) treatment 

applications. Adsorption alone cannot be used as the sole treatment method for leachate. 

Leachate is a complex mixture of numerous contaminants. 
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Marañón et al. used leachate that had already undergone treatment to test activated carbon 

as a post treatment method to remove COD. Three different activated carbons were used: 

Organosorb 10, Organosorb 10MB and Filtracarb CC65/1240. Equilibrium and column 

data were gathered to see how favourable these three carbons were. The data showed that 

the equilibrium was unfavourable and adsorption capacities were low89. Adsorption using 

activated carbon to remove COD is not effective. However, where adsorption may provide 

a solution is in the removal of heavy metals. 

Zeolitic materials have been shown to be very effective in treating heavy metals 

contaminated waste waters (as is the case with leachate) by adsorption/ion exchange. 

Natural zeolites are also attractive because of their low price compared to other adsorbents. 

Zeolite particle size significantly affects the metal uptake; the smaller the particle size, the 

greater the uptake. Metal uptake increases upon increasing temperatures90. 

Zeolites are tectoaluminosilicates with the tetrahedral structure TO4 (where the T can be 

silicon, or aluminum). Zeolites have a negatively charged oxide framework requiring 

balancing by cations. Typical cations found in naturals zeolites are alkali metals (i.e. Na+, 

K+) and alkali earth metals (i.e. Ca2+, Ba2+)91. Ion exchange using zeolites work by 

exchanging the alkali/alkali earth metal ions with heavy metal ions. 

In 1990, Zamzow et al. found that the ion exchange loading values could range from 1.6 

mg/g for Pb2+ to 0 mg/g for Cr3+ when using the zeolitic material clinoptilolite. 

Clinoptilolite is commonly studied for heavy metal treatment because of its selectivity to 

heavy metals. Zamzow et al. also found that the selectivity of the series of heavy metals 

studied was as follows: 

  22232222 HgNiZnCrCoCuCdPb  

Zamzow et al. used clinoptilolite to treat wastewater from an abandoned copper mine in 

Nevada. This was done to see how well clinoptilolite performed on multi-ion wastewater. 

Zamzow et al. found that Al, Fe(III), Cu(II), and Zn were removed to below drinking water 
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standards. However, Mn(II) and Ni(II) were not92. Clinoptilolite is the most abundant 

natural zeolite in the world and as such is very heavily tested. However, other natural 

zeolites and maybe even synthetic zeolites should be tested to compare the efficacy of 

treatment. 

2.3.5 Chemical oxidation 

Physical and biological treatments are less expensive when compared to chemical 

treatments. There are however instances when physical and biological treatments are not 

effective. These instances include for physical: soluble substances; for biological: non-

biodegradable and/or toxic substances93. Derco et al. (2010) used chemical oxidation as a 

pretreatment for leachate with high organic load, high toxicity and low biodegradability. 

Physical and biological treatments would not have been effective as a sole means of 

treatment for this leachate so chemical oxidation was used. Fenton’s oxidative pretreatment 

and ozone treatment were both used on both fresh and mature leachates. Fenton’s oxidation 

involves the reaction of organic material using hydrogen peroxide with ferrous acting as a 

catalyst94. Both Fenton’s oxidation and ozone treatment resulted in comparable removal of 

COD. For mature leachate, Fenton’s oxidation and ozone treatment resulted in the removal 

of 88% and 70% of COD, respectively. For fresh leachate, the removals were 46% and 

42%, respectively. Derco et al. also fitted the experimental data with zero order, first order 

and second order models as well as a two component combined reaction kinetic models. 

The two component combined model consisted of the summation of two first order models, 

one for easily and one for hard oxidable materials. The Fenton’s oxidation best fit the zero 

and first order models and the ozone treatment best fit the combined model94. These kinetic 

models only represent the experimental conditions used in this study. Further work should 

be done to find empirical relationships between the rate constants and experimental 

parameters using response surface methodology. This way, the models can be used to find 

the reduction in COD at different conditions and can be used for optimization. Other 

pollutants (e.g. BOD, SS, ammonia, heavy metals) should have been measured to ascertain 

the effectiveness of removal. 
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Chemical oxidation has been studied in combination with other treatment methods most 

often with coagulation-flocculation61,95, to reduce costs associated with using chemical 

oxidation as a sole means of treatment. Using coagulation-flocculation followed by Fenton 

process removed greater than 80% of the COD. Reversing the order (i.e. Fenton process 

followed by coagulation-flocculation) did not increase the removal efficiency95. 

2.3.6 Coagulation/flocculation 

There are numerous coagulants that can be applied to leachate depending on the presence 

and concentrations of pollutants. Table 2-5 compares different coagulants and the COD 

removal efficiencies. Coagulation/flocculation is useful as pretreatment for raw (fresh) 

leachate. Samadi et al. (2010) did an experimental study to find effects of different 

coagulants, dosage amounts and pH for the removal of COD and total suspended solids. 

The coagulants used were poly aluminum chloride (PAC), alum and ferrous sulfate. 

Samadi et al. found that alum could remove the suspended solids and the best coagulant to 

remove COD was ferrous sulfate. The coagulants were most effective at a pH of 2 and a 

pH of 12. At other pH values, more coagulant had to be added to increase removal 

efficiency96. 

Tatsi et al. looked at using coagulation-flocculation for the treatment of raw and partially 

stabilized leachates. Raw leachate is characterized by low pH and high concentrations of 

pollutants. In the study, the organic matter was in the range of 100,000 mg/L COD for raw 

leachate. Partially stabilized leachate is characterized by higher pH and lower COD, 

ranging from 700 and 15,000 mg/L. Using ferric or aluminum coagulants to treat the raw 

leachate reduced the COD between 25-38%. The partially stabilized leachate had a higher 

removal rate, exceeding 75% reduction97. The removal of COD and TOC is usually 

between 10-25% for raw leachates and between 50-65% with stabilized or biologically 

pretreated leachates98. Consideration has to be taken that the raw leachate had a higher 

COD at the beginning of the treatment process affecting the treatment efficiency. Another 

finding of the study was that mixtures of coagulants did not increase the reduction in 

COD97.
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Table 2-5 Comparison of coagulation/flocculation studies 

Leachate characteristics 

Coagulant/Flocculent Dose (g/L) 

Removal 

efficiency 

(%) 

Reference COD 

(mg/L) 

BOD 

(mg/L) 
BOD/COD pH 

700-

15,000 
50-4,200 0.2 7.9 

Al2(SO4)3·18H2O 0.8 31 COD 

97 
FeCl3·6H2O 2 80 COD 

44,000-

115,000 

9,500-

80,800 
0.38 6.2 

Al2(SO4)3·18H2O 1.5 38 COD 

FeCl3·6H2O 5.2 30 COD 

4,100 200 0.05 8.2 
Al2(SO4)3·18H2O 0.035 M 42 COD 

98
 

FeCl3·6H2O   0.035 M 55 COD 

1,925 - -  8.4  
Al2(SO4)3·18H2O  9.5  62.8 COD 

99 
PAC 2 43.1 COD 

5,050 840 0.17 8 
FeCl3·6H2O 7 mM 72 COD 

100 
PAC 11 mM 62 COD 
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2.3.7 Membrane processes 

Membrane processes include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) 

and reverse osmosis (RO). Membranes are used for the separation of particles, 

microorganisms, organic molecules and other fine pollutants. Depending on the size of the 

pollutant requiring separation, different membrane processes (MF, UF, NF, or RO) are 

chosen. Membranes are more economical when compared to other treatment methods for 

fine pollutants and provide reliable separation. However, fouling is a problem, which 

reduces the removal efficiency. Fouling leads to frequent changing of membranes, 

decreasing the amount of leachate that can be treated. Also, filters accumulate a lot of 

concentrate that needs to be further treated. Due to fouling, the leachate needs pre-treatment 

before membranes can be used. 

MF has a treatment range of between 0.02 and 10 µm (20 and 10,000 nm)101. UF has a 

treatment range of 1-20 nm102. NF rejects particles and molecules smaller than 2 nm. RO 

only allows solvent to pass through103. As the membrane becomes finer, smaller pollutants 

can be removed. However, as the membrane becomes finer, flux decreases and the 

operating pressure must increase. This is a problem for RO due to high costs for pre-

treatment to prevent fouling and high operating pressure. The mechanism for removal is 

sieving and once at the nanoscale (NF, RO and potentially UF) steric and/or charge effects 

also provide a mechanism for removal104. 

Ameen et al. (2011) showed that MF was capable of removing solids from leachate. 

Leachate was pretreated using a coagulation process before passing the leachate through a 

membrane with 0.1 µm surface pores. The turbidity, colour, total suspended solids, total 

dissolved salts and volatile suspended solids decreased by 98.3, 90.3, 99.63, 14.71 and 

20%, respectively. Although this was pretreated leachate, COD should have also been 

tracked. MF removed a high percentage of solids from the leachate making it useful as a 

post-treatment after biological treatment. Ameen at al. found that the membrane 

experienced two types of fouling. The first type was due to buildup of particles on the 
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surface. The second type of fouling was physical deterioration due to either a high pressure 

stretching the surface pores or due to some substance in the leachate causing change in the 

membrane structure. The first type of fouling was reversible using backwash. However, 

the second type of fouling was irreversible101.  

Renou et al. (2009) tested two different ultrafilters for removal of COD. The two 

membranes were a mineral (CARBOSEP® category) membrane and a ceramic 

(KERASEP™ category) membrane. The exact specifications of the membranes are found 

in the study. Two CARBOSEP membranes were used, 10 and 50 kDa MWCO. The 

removal of COD was 48 and 38%, respectively. Three KERASEP membranes were used, 

1, 5 and 15 kDa MWCO. The removal of COD was 66, 63 and 47%, respectively105. 

Trebouet et al. (2001) compared the removal efficiency of two different types of 

nanofilters, MPT-20 and MPT-31 membranes. MPT-20 and MPT-31 had molecular weight 

cut-offs (MWCO) of 450 Da. The COD, BOD and SS of the leachate were 500, 7.1 and 

130 mg/L, respectively. MPT-20 decreased the COD, BOD and SS by 74, 85 and 100%, 

respectively. The MPT-31 decreased COD and BOD by 80 and 98% respectively104. 

Although, the nanofilters had very high removal of COD and BOD, the leachate had 

relatively low COD and BOD values before treatment. These results show potential for 

post-treatment when COD and BOD are low. 

RO can be used to remove both organic and inorganic compounds. Rejection coefficients 

of COD and heavy metals higher than 0.98 and 0.99, respectively, have been reported. 

Chianese et al. (1999) found that increasing the operating pressure from 20 atm to 53 atm 

increased the COD removal from 96 to 98%. The COD of the incoming leachate was 3,840 

mg/L106. RO is very effective in leachate treatment but needs high operating pressures and 

pre-treatment, making it a good candidate for post-treatment or polishing. 



43 

 

 

 

2.4 Landfill gas treatment/use 

As previously stated the vast majority of landfills employ an anaerobic treatment method. 

This leads to higher levels of methane in the LFG when compared to aerobic treatment. 

Due to this, treatments that are used with current landfills may not be applicable/feasible 

to aerobic landfills. Current treatments fall into four categories: adsorption, absorption, 

permeation, and cryogenic treatments. The central treatments are: physical adsorption, 

chemical absorption, pressure swing adsorption, membrane separation and cryogenic 

separation107. Landfill gas can also be used in applications such as power generation, as a 

cheap fuel for ovens/furnaces and with treatment, pipeline quality natural gas. 

2.4.1 Quality of LFG 

The amount of LFG (and methane) produced depends on the waste composition, age of 

waste and the amount of waste dumped (available)108. The quality (amount of methane) of 

LFG varies with time. A study conducted by Staley et al. (2006) determined the majority 

of methane was produced within the first 150 days109. This result was found using 8L 

reactors, meaning there could be differences in full scale operations. However, the key 

detail is that there was a significant drop in methane production. This means the majority 

of methane is produced relatively early in the lifetime of the landfill, this is the optimal 

time to extract LFG for use. About 50 Nm3 of methane was released per ton of typical 

MSW and 200 Nm3 released per dry ton of organic waste110. The landfills examined only 

captured 43 Nm3 of the methane. In addition to CO2 and CH4 and depending on the 

composition of the waste, there can be anywhere from 70 to more than 200 non-methane 

organic compounds (NMOCs)111,112. The significant contributors to the generation of 

NMOCs are the intermediates of anaerobic biodegradation113. This means that aerobic 

conditions would decrease NMOC levels. Zhang et al. (2012) found that aerobically 

pretreated MSW decreased the amount of NMOCs produced. They compared 4 tests to a 

control and found that the 4 tests accounted for 15%, 9%, 16% and 15% of NMOC mass 

compared to that of the control test. The NMOC emissions levels decreased as the aeration 

rate increased114. 
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Powell et al. (2006) found that addition of air into the waste had an impact on the 

composition of LFG in surrounding wells (15 – 17 m away). They found that the CH4/CO2 

ratio decreased significantly at 9 of the 12 vertical wells. The reasons proposed were 

dilution by the air, formation of aerobic conditions and the biological oxidation of the 

methane. The primary goal of this research was finding the effect of air addition on the 

trace gas compositions (H2S, CO, N2O, and volatile organic compounds, VOCs). Powell 

et al. found that CO increased, while H2S decreased. The increase in CO was dramatic, 

raising concerns over the occurrence of incomplete combustion in the waste. There was no 

evidence of any change of N2O and VOCs concentrations115. 

2.4.2 LFG recovery 

The production of LFG is dependent on a number of variables: volume, organic content, 

moisture content and age of waste. Moisture content increases production of LFG but too 

much moisture can block pathways for the escaping LFG, reducing collection efficiency116. 

The need to determine how much LFG (specifically the methane) is produced has led to 

numerous numerical and mathematical models using zero order, first order and second 

order kinetics. 

Zero order models are not used because of their lack of fit with empirical data. Second 

order models are not used because the errors in model parameters add too much uncertainty 

to be useful for prediction117. First order models are most often used, but they do not model 

all of the complicated processes occurring in landfill degradation. The two most common 

models used are the EPA model118–122, and the IPCC model123–126. The EPA model can 

underestimate the production of LFG127,128, making the choice of the parameters in the 

model critical. The IPCC model can be effective but the model parameters have to be 

chosen with consideration126. 

2.4.3 Use of LFG 

This category is not a treatment method; it is an alternative to releasing the LFG to the 

atmosphere. There are numerous uses for LFG including power generation, energy source 
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for heating, and pipeline quality gas. In the case of power generation from LFG, 

pretreatment is relatively basic. Treatment is limited to condensate removal and filtration. 

More extensive cleaning may be required if there are corrosive or harmful trace 

constituents129. Han et al. found that using LFG for power generation in China, lead to a 

decrease of approximately 25,000 tonnes of CO2 in 2009, projecting a maximum decrease 

in CO2 of nearly 125,000 tonnes of CO2 in 2019130. The LFG extraction process may 

become economically unfeasible relatively early in the process. Emissions may not be 

significant but LFG generation continues for decades after closure. The total emissions 

after decades can be significant and environmentally harmful. Niskanen found that the best 

utilization of LFG was combined heat and power production with a heat engine. The LFG 

is used in a heat engine until it is no longer economically feasible at which point the waste 

is used for incineration. They showed that it provided the greatest GHG removal compared 

to proposed alternatives. Incineration however, has been widely reported to be harmful. 

Anaerobic LFG, on average, has a methane concentration of between 45 and 50% and has 

approximately half the heating value of natural gas131. 

2.4.4 Flaring 

Flaring is the combustion of flammable gases (LFG). Flaring converts the methane in the 

LFG to carbon dioxide via combustion with oxygen. Depending on the composition (H2S, 

N2) of the LFG, very harmful gases can be released upon combustion (SOx, NOx, CO)132. 

Flaring has to be carried out at 1200°C or higher. Lower temperatures risk the formation 

of toxic compounds like dioxins133. Flaring is very common in landfills that do not capture 

the LFG for use. LFG with little CH4 (aerobic and semi-aerobic landfills) cannot be flared 

without adding methane before combustion. Therefore, this “treatment” method is aimed 

towards anaerobic LFG. 

2.4.5 Adsorption 

The two primary constituents that need to be separated in LFG are CO2 and CH4. All 

organic (activated carbons) and inorganic (silica gels, aluminas, zeolites) adsorbents, 
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selectively adsorb CO2 over CH4. This is due to CO2 having a larger molecular weight and 

a permanent quadrupole whereas CH4 is nonpolar134. Since CO2 is the dominant constituent 

in aerobic LFG, ideally CH4 would be adsorbed. However, in industry, virtually all CO2-

CH4 separations adsorb CO2, not CH4. In anaerobic LFG, CO2 and CH4 are roughly in 

equal proportions. Therefore, high concentrations of CH4 can be produced and used for 

numerous applications. 

Shin et al. (2002) used granular activated carbon to assess the removal of trace compounds 

and measure the change in adsorption capacity with differing moisture contents in the LFG. 

The breakthrough time and adsorption capacity of benzene, toluene and ethylbenzene 

decreased when the relative humidity was greater than 60%. As the moisture decreased, 

the trace compounds were removed effectively135. In bioreactor landfills, there is moisture 

present in the landfill and as a result present in the LFG. If adsorption is to be used to purify 

or treat LFG, moisture has to be removed prior to treatment. Adsorption is an attractive 

LFG treatment method because it is a mature technology. However, LFG is a complex 

mixture of many trace compounds and the adsorbents (activated carbons, zeolites, metal-

organic frameworks) have to be selected appropriately. 

2.4.6 Absorption 

Absorption can be used to remove CO2 from LFG. With pretreatment to remove toxic trace 

components commercial natural gas can be made. Gaur et al. (2010) used a combined 

adsorption-absorption process to clean LFG. They used activated carbon to remove small 

amounts of toxic compounds and then absorbed the CO2 using monoethanol amine (MEA) 

and diethanol amine (DEA). The MEA had a higher absorption rate than the DEA, but the 

DEA had a better cyclic capacity. After the second and third cycles, the cyclic capacity of 

MEA decreased nearly 18% and 9%, respectively. The cyclic capacity of DEA decreased 

by 10% and 6%. Using a mixture of MEA and DEA could exploit the strengths of both 

absorbents. The methane obtained using a combined adsorption-absorption was of high 

enough quality to use as residential natural gas136. 
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2.4.7 Permeation 

Permeation is used in the last stages of LFG treatment to remove CO2, leaving CH4 

remaining. Permeation is the use of a membrane to separate gaseous components137. With 

respect to other treatment methods used for LFG, permeation is not used very often and is 

not a heavily researched area. Permeation is the superior treatment choice in smaller 

landfills with LFG production of less than 1000 m3 (STP) h-1 138. Disadvantages associated 

with membranes include the mass transfer resistance due to the membrane itself, potential 

fouling of the membrane especially with LFG, and periodic changing of the membranes139. 

2.4.8 Cryogenic treatments 

This method is also not very widely used because of the high costs associated with cooling 

to cryogenic temperatures. The LFG has to be compressed and isenthalpically expanded 

repeatedly to cool down, requiring high amounts of energy. Methanol is injected into the 

gas forming condensate containing the impurities requiring removal. The condensate is 

removed and water is added, forming a supernatant layer that can be separated, leaving 

diluted methanol140. 

2.5 Conclusions 

There have been a lot of studies done on leachate treatments. This is evident by the 

numerous review papers available. However, this is not the case with landfill and LFG 

treatments. Landfills produce harmful gases and these gases need treatment. In most full 

scale landfills, the landfill gases are flared. However, this is not a suitable treatment 

method. Other methods need to be investigated and scaled up to large scale landfills for 

implementation. 

The literature available on aerobic treatment of landfill waste is lacking. It presents a very 

promising alternative to traditional landfill technologies and as of yet very little research 

has been done in this area. This presents a promising opportunity for further research in a 

field that is very much in its infancy. The treatment and use of by-products of aerobic 
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biodegradation also require extensive research. Another significant finding is the lack of 

research done on the microbiology of both aerobic and anaerobic landfill bioreactors. Little 

research has been done on characterizing what microorganisms are responsible for 

decomposing the landfill waste. Greater understanding can lead to optimization of current 

treatment practices. A lot of the research that has been done on landfill treatment as a whole 

(waste, leachate and LFG) has been done on lab scales. Some effort needs to be put into 

scaling the promising areas of research up, so that eventually this research can make an 

impact. 

This review paper provides a glimpse into the world of landfill treatment. As long as there 

are humans there will be waste; this waste will always need treatment. There will inevitably 

come a time when landfills will be problematic. Area is finite and bound to eventually 

exhaust. Another challenge is the environmental problems that come from leachate and 

LFG. The long-term effects of these two harmful materials will be known in years to come. 

One treatment cannot solve all the problems that are associated with landfills; it will take 

a combination of treatments. The best way to treat these problems is preemptive action, by 

finding solutions for problems before they occur to lessen the impact. This review 

encompasses all aspects of the landfill. There is definitely a need for expansion of our 

knowledge in all aspects of landfills and one aim of this review is pave the way for 

expansion. 

  



49 

 

 

 

2.6 References 

1. United States Environmental Protection Agency. Municipal Solid Waste 

Generation, Recycling, and Disposal in the United States: Facts and Figures for 2012. 

2014. 

2. Arsova L, van Haaren R, Goldstein N, Kaufman SM, Themelis NJ. The state of 

garbage in America. Biocycle. 2008. 

3. Hudgins M, Harper S. Operational characteristics of two aerobic landfill systems. 

Paper Presented at The Seventh International Waste Management and Landfill Symposium 

in Sardinia, Italy, on October 4, 1999. Sardinia, Italy; 1999. 

4. Huber-Humer M, Kjeldsen P, Spokas KA. Special issue on landfill gas emission 

and mitigation. Waste Manag. 2011;31(5):821–2. 

5. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, et al. Mitigation 

of global greenhouse gas emissions from waste: conclusions and strategies from the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working 

Group III (Mitigation). Waste Manag Res. 2008;26(1):11–32. Doi: 

10.1177/0734242X07088433. 

6. Rasmussen RA, Khalil MAK. Atmospheric methane in the recent and ancient 

atmospheres: Concentrations, trends, and interhemispheric gradient. J Geophys Res 

Atmospheres. 1984;89(D7):11599–605. Doi: 10.1029/JD089iD07p11599. 

7. Mehta R, Barlaz M, Yazdani R, Augenstein D, Bryars M, Sinderson L. Refuse 

decomposition in the presence and absence of leachate recirculation. J Environ Eng. 

2002;128(3):228–36. Doi: 10.1061/(ASCE)0733-9372(2002)128:3(228). 

8. Reinhart DR, McCreanor PT, Townsend T. The bioreactor landfill: Its status and 

future. Waste Manag Res. 2002;20(2):172–86. Doi: 10.1177/0734242X0202000209. 



50 

 

 

 

9. Reinhart DR, Townsend T. Landfill Bioreactor Design and Operation. New York, 

NY: Lewis Publishers; 1998. 

10. Kulkarni HS, Reddy KR. Moisture distribution in bioreactor landfills: A review. 

Indian Geotech J. 2012;42(3):125–49. Doi: 10.1007/s40098-012-0012-8. 

11. Reddy K, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T. 

Hydraulic Conductivity of MSW in Landfills. J Environ Eng. 2009;135(8):677–83. Doi: 

10.1061/(ASCE)EE.1943-7870.0000031. 

12. Jiang J, Yang G, Deng Z, Huang Y, Huang Z, Feng X, et al. Pilot-scale experiment 

on anaerobic bioreactor landfills in China. Waste Manag. 2007;27(7):893–901. Doi: 

10.1016/j.wasman.2006.07.008. 

13. McCreanor P, Reinhart D. Hydrodynamic modeling of leachate recirculating 

landfills. Waste Manag Res. 1999;17(6):465–9. 

14. Westlake K. Sustainable Landfill—Possibility or Pipe-Dream? Waste Manag Res. 

1997;15(5):453–61. Doi: 10.1177/0734242X9701500502. 

15. Wang Y, Pelkonen M, Kaila J. Optimization of landfill leachate management in the 

aftercare period. Waste Manag Res. 2012;30(8):789–99. Doi: 

10.1177/0734242X12440483. 

16. Méry J, Bayer S. Comparison of external costs between dry tomb and bioreactor 

landfills: taking intergenerational effects seriously. Waste Manag Res. 2005;23(6):514–26. 

Doi: 10.1177/0734242X05060857. 

17. Laner D, Crest M, Scharff H, Morris JWF, Barlaz MA. A review of approaches for 

the long-term management of municipal solid waste landfills. Waste Manag. 

2012;32(3):498–512. Doi: 10.1016/j.wasman.2011.11.010. 



51 

 

 

 

18. Hirata O, Matsufuji Y, Tachifuji A, Yanase R. Waste stabilization mechanism by a 

recirculatory semi-aerobic landfill with the aeration system. J Mater Cycles Waste Manag. 

2012;14(1):47–51. Doi: 10.1007/s10163-011-0036-7. 

19. Ritzkowski M, Heyer K-U, Stegmann R. Fundamental processes and implications 

during in situ aeration of old landfills. Waste Manag. 2006;26(4):356–72. Doi: 

10.1016/j.wasman.2005.11.009. 

20. Benefield JC, Randall SJ. Biological process design for wastewater treatment. 

Prentice-Hall; 1980. 

21. Dong J, Sheng H, Wen C, Hong M, Jiang H. Effects of phosphorous on the 

stabilization of solid waste in anaerobic landfill. Process Saf Environ Prot. 

2013;91(6):483–8. Doi: 10.1016/j.psep.2012.10.009. 

22. Jegatheesan V, Kastl G, Fisher I, Chandy J, Angles M. Modeling bacterial growth 

in drinking water: effect of nutrients. Am Water Works Assoc J. 2004;96(5):129. 

23. Miettinen IT, Vartiainen T, Martikainen PJ. Phosphorus and bacterial growth in 

drinking water. Appl Environ Microbiol. 1997;63(8):3242–5. 

24. Sathasivan A, Ohgaki S, Yamamoto K, Kamiko N. Role of inorganic phosphorus 

in controlling regrowth in water distribution system. Water Sci Technol. 1997;35(8):37–

44. Doi: 10.1016/S0273-1223(97)00149-2. 

25. Fielding ER, Archer DB, Macario EC de, Macario AJL. Isolation and 

characterization of methanogenic bacteria from landfills. Appl Environ Microbiol. 

1988;54(3):835–6. 

26. Ritzkowski M, Stegmann R. Landfill aeration worldwide: Concepts, indications 

and findings. Waste Manag. 2012;32(7):1411–9. Doi: 10.1016/j.wasman.2012.02.020. 



52 

 

 

 

27. Leikam K, Heyer K-U, Stegmann R. In situ stabilization of completed landfills and 

old sites. Proceedings Sardinia 1997, Sixth International Waste Management and Landfill 

Symposium. Cagliari, Italy; 1997. 

28. Berge ND, Reinhart DR, Townsend TG. The fate of nitrogen in bioreactor landfills. 

Crit Rev Environ Sci Technol. 2005;35(4):365–99. Doi: 10.1080/10643380590945003. 

29. Bonany JE, Geel PJV, Gunay HB, Isgor OB. Simulating waste temperatures in an 

operating landfill in Québec, Canada. Waste Manag Res. 2013;31(7):0734242X13485794. 

Doi: 10.1177/0734242X13485794. 

30. Crutcher AJ, Rovers FA, McBean EA. Temperature as an indicator of landfill 

behavior. Water Air Soil Pollut. 1982;17(2):213–23. Doi: 10.1007/BF00283304. 

31. Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on 

modeling of bioreactor landfill settlement. Waste Manag. 2009;29(3):1018–25. Doi: 

10.1016/j.wasman.2008.08.018. 

32. Öncü G, Reiser M, Kranert M. Aerobic in situ stabilization of Landfill Konstanz 

Dorfweiher: Leachate quality after 1year of operation. Waste Manag. 2012;32(12):2374–

84. Doi: 10.1016/j.wasman.2012.07.005. 

33. Zanetti MC. Aerobic Biostabilization of Old MSW Landfills. Am J Eng Appl Sci. 

2008;1(4):393–8. Doi: 10.3844/ajeassp.2008.393.398. 

34. Erses AS, Onay TT, Yenigun O. Comparison of aerobic and anaerobic degradation 

of municipal solid waste in bioreactor landfills. Bioresour Technol. 2008;99(13):5418–26. 

Doi: 10.1016/j.biortech.2007.11.008. 

35. Slezak R, Krzystek L, Ledakowicz S. Mathematical model of aerobic stabilization 

of old landfills. Chem Pap. 2012;66(6):543–9. Doi: 10.2478/s11696-012-0133-7. 



53 

 

 

 

36. Wu C, Shimaoka T, Nakayama H, Komiya T, Chai X, Hao Y. Influence of aeration 

modes on leachate characteristic of landfills that adopt the aerobic–anaerobic landfill 

method. Waste Manag. 2014;34(1):101–11. Doi: 10.1016/j.wasman.2013.10.015. 

37. Borglin SE, Hazen TC, Oldenburg CM, Zawislanski PT. Comparison of aerobic 

and anaerobic biotreatment of municipal solid waste. J Air Waste Manag Assoc. 

2004;54(7):815–22. Doi: 10.1080/10473289.2004.10470951. 

38. Vitello C. Aerobic degradation: increasing landfill efficiency. Solid Waste Recycl. 

2001;6(1):25–7. 

39. Bilgili MS, Demir A, Varank G. Effect of leachate recirculation and aeration on 

volatile fatty acid concentrations in aerobic and anaerobic landfill leachate. Waste Manag 

Res. 2012;30(2):0734242X11417983. Doi: 10.1177/0734242X11417983. 

40. Zhang X, Matsuto T. Assessment of internal condition of waste in a roofed landfill. 

Waste Manag. 2013;33(1):102–8. Doi: 10.1016/j.wasman.2012.08.008. 

41. Bilgili MS, Demir A, Özkaya B. Influence of leachate recirculation on aerobic and 

anaerobic decomposition of solid wastes. J Hazard Mater. 2007;143(1–2):177–83. Doi: 

10.1016/j.jhazmat.2006.09.012. 

42. Kallel A, Matsuto T, Tanaka N. Determination of oxygen consumption for 

landfilled municipal solid wastes. Waste Manag Res. 2003;21(4):346–55. Doi: 

10.1177/0734242X0302100407. 

43. El-Fadel M, Fayyad W, Hashisho J. Enhanced solid waste stabilization in aerobic 

landfills using low aeration rates and high density compaction. Waste Manag Res. 

2013;31(1):0734242X12457118. Doi: 10.1177/0734242X12457118. 

44. Warith M. Bioreactor landfills: experimental and field results. Waste Manag. 

2002;22(1):7–17. Doi: 10.1016/S0956-053X(01)00014-9. 



54 

 

 

 

45. Yang Y, Yue B, Yang Y, Huang Q. Influence of semi-aerobic and anaerobic landfill 

operation with leachate recirculation on stabilization processes. Waste Manag Res. 

2012:0734242X11413328. Doi: 10.1177/0734242X11413328. 

46. Tang P, Zhao Y, Liu D. A laboratory study on stabilization criteria of semi-aerobic 

landfill. Waste Manag Res. 2008;26(6):566–72. Doi: 10.1177/0734242X08091341. 

47. Huang Q, Yang Y, Pang X, Wang Q. Evolution on qualities of leachate and landfill 

gas in the semi-aerobic landfill. J Environ Sci. 2008;20(4):499–504. Doi: 10.1016/S1001-

0742(08)62086-0. 

48. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJK, Umar M. Leachate characterization 

in semi-aerobic and anaerobic sanitary landfills: A comparative study. J Environ Manage. 

2010;91(12):2608–14. Doi: 10.1016/j.jenvman.2010.07.042. 

49. Kumar S, Chiemchaisri C, Mudhoo A. Bioreactor landfill technology in municipal 

solid waste treatment: An overview. Crit Rev Biotechnol. 2010;31(1):77–97. Doi: 

10.3109/07388551.2010.492206. 

50. Green LC. A method and system for treating biodegradable waste material through 

aerobic degradation. Google Patents; 1998. 

51. Yazdani R, Mostafid ME, Han B, Imhoff PT, Chiu P, Augenstein D, et al. 

Quantifying Factors Limiting Aerobic Degradation During Aerobic Bioreactor Landfilling. 

Environ Sci Technol. 2010;44(16):6215–20. Doi: 10.1021/es1022398. 

52. Rendra S, Warith MA, Fernandes L. Degradation of Municipal Solid Waste in 

Aerobic Bioreactor Landfills. Environ Technol. 2007;28(6):609–20. Doi: 

10.1080/09593332808618822. 

53. Wadkar DV, Modak PR, Chavan VS. Aerobic thermophilic composting of 

municipal solid waste. Int J Eng Sci Technol. 2013;5(3):716–8. 



55 

 

 

 

54. Senior E. Microbiology of landfill site. Second. Boca Raton: Lewis Publishers; 

1995. 

55. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate 

treatment: Review and opportunity. J Hazard Mater. 2008;150(3):468–93. Doi: 

10.1016/j.jhazmat.2007.09.077. 

56. Lu JCS, Eichenberger B, Stearns RJ. Leachate from Municipal Landfills: 

Production and Management. Park Ridge, NJ: Noyes Publications; 1985. 

57. Vadillo I, Carrasco F, Andreo B, Torres AG de, Bosch C. Chemical composition 

of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). 

Environ Geol. 1999;37(4):326–32. Doi: 10.1007/s002540050391. 

58. Hudgins MP, March J. In-Situ solid waste composting using an aerobic landfill 

system. Oral Presentation to Conference Attendees Composting in the Southeast. 1998. 

59. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV. Landfill 

leachate treatment methods: A review. Environ Chem Lett. 2006;4(1):51–61. Doi: 

10.1007/s10311-005-0016-z. 

60. Dhokpande SR, Kaware JP. Biological methods for heavy metal removal: A 

review. Int J Eng Sci Innov Technol. 2013;2(5):304–9. 

61. Rivas FJ, Beltrán F, Carvalho F, Acedo B, Gimeno O. Stabilized leachates: 

sequential coagulation–flocculation + chemical oxidation process. J Hazard Mater. 

2004;116(1–2):95–102. Doi: 10.1016/j.jhazmat.2004.07.022. 

62. Berrueta J, Castrillón L. Anaerobic treatment of leachates in UASB reactors. J 

Chem Technol Biotechnol. 1992;54(1):33–7. Doi: 10.1002/jctb.280540107. 

63. Chang JE. Treatment of landfill leachate with an upflow anaerobic reactor 

containing a sludge bed and a filter. Water Sci Technol. 1989;21:133–43. 



56 

 

 

 

64. Henry JG, Prasad D, Young H. Removal of organics from leachates by anaerobic 

filter. Water Res. 1987;21(11):1395–9. 

65. Kennedy KJ, Hamoda MF, Guiot SG. Anaerobic treatment of leachate using fixed 

film and sludge bed filter systems. J Water Pollut Control Fed. 1988;60(9):1675–83. 

66. Timur H, Özturk I. Anaerobic sequencing batch reactor treatment of landfill 

leachate. Water Res. 1999;33(15):3225–30. Doi: 10.1016/S0043-1354(99)00048-2. 

67. Cameron RD, Koch FA. Trace metals and anaerobic digestion of leachate. J Water 

Pollut Control Fed. 1980;52(2):282–92. 

68. Kheradmand S, Karimi-Jashni A, Sartaj M. Treatment of municipal landfill 

leachate using a combined anaerobic digester and activated sludge system. Waste Manag. 

2010;30(6):1025–31. Doi: 10.1016/j.wasman.2010.01.021. 

69. Kim H, Jang Y-C, Townsend T. The behavior and long-term fate of metals in 

simulated landfill bioreactors under aerobic and anaerobic conditions. J Hazard Mater. 

2011;194:369–77. Doi: 10.1016/j.jhazmat.2011.07.119. 

70. Robinson HD, Barr MJ. Aerobic biological treatment of landfill leachates. Waste 

Manag Res. 1999;17(6):478–86. 

71. Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring 

operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste 

Manag. 2008;28(8):1346–54. Doi: 10.1016/j.wasman.2007.06.024. 

72. Liu Y. Chemically reduced excess sludge production in the activated sludge 

process. Chemosphere. 2003;50(1):1–7. Doi: 10.1016/S0045-6535(02)00551-9. 

73. Bilgili MS, Demir A, Özkaya B. Quality and Quantity of Leachate in Aerobic Pilot-

Scale Landfills. Environ Manage. 2006;38(2):189–96. 



57 

 

 

 

74. Sartaj M, Ahmadifar M, Jashni AK. Assessment of in-situ aerobic treatment of 

municipal landfill leachate at laboratory scale. Iran J Sci Technol Trans B Eng. 

2010;34(B1):107–16. 

75. Wei Y, Ji M, Li R, Qin F. Organic and nitrogen removal from landfill leachate in 

aerobic granular sludge sequencing batch reactors. Waste Manag. 2012;32(3):448–55. 

76. Yahmed AB, Saidi N, Trabelsi I, Murano F, Dhaifallah T, Bousselmi L, et al. 

Microbial characterization during aerobic biological treatment of landfill leachate 

(Tunisia). Desalination. 2009;246(1-3):378–88. 

77. Andrés P, Gutierrez F, Arrabal C, Cortijo M. Aerobic Biological Treatment of 

Leachates from Municipal Solid Waste Landfill. J Environ Sci Health Part A. 

2004;39(5):1319–28. 

78. Bilgili MS, Demir A, Akkaya E, Özkaya B. COD fractions of leachate from aerobic 

and anaerobic pilot scale landfill reactors. J Hazard Mater. 2008;158(1):157–63. 

79. Kamaruddin MA, Yusoff MS, Aziz HA, Basri NK. Removal of COD, ammoniacal 

nitrogen and colour from stabilized landfill leachate by anaerobic organism. Appl Water 

Sci. 2013;3(2):359–66. 

80. Thabet OBD, Bouallagui H, Cayol J, Ollivier B, Fardeau M-L, Hamdi M. 

Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor 

with microbial sulfate reduction. J Hazard Mater. 2009;167(1-3):1133–40. 

81. David R. Environmental microbiology: Deciphering anammox. Nat Rev Microbiol. 

2011;9(12):833. Doi: http://dx.doi.org.proxy1.lib.uwo.ca/10.1038/nrmicro2699. 

82. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, et al. 

Molecular mechanism of anaerobic ammonium oxidation. Nature. 2011;479(7371):127–

30. Doi: 10.1038/nature10453. 



58 

 

 

 

83. Strous M, Van Gerven E, Zheng P, Kuenen JG, Jetten MSM. Ammonium removal 

from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) 

process in different reactor configurations. Water Res. 1997;31(8):1955–62. Doi: 

10.1016/S0043-1354(97)00055-9. 

84. Kartal B, Kuenen JG, Loosdrecht MCM van. Sewage Treatment with Anammox. 

Science. 2010;328(5979):702–3. Doi: 10.1126/science.1185941. 

85. Cema G, Wiszniowski J, Żabczyński S, Zabłocka-Godlewska E, Raszka A, 

Surmacz-Górska J. Biological nitrogen removal from landfill leachate by 

deammonification assisted by heterotrophic denitrification in a rotating biological 

contactor (RBC). Water Sci Technol. 2007;55(8-9):35–42. Doi: 10.2166/wst.2007.239. 

86. Liu S, Yang F, Meng F, Chen H, Gong Z. Enhanced anammox consortium activity 

for nitrogen removal: Impacts of static magnetic field. J Biotechnol. 2008;138(3-4):96–

102. 

87. Qiao S, Yin X, Zhou J, Furukawa K. Inhibition and recovery of continuous electric 

field application on the activity of anammox biomass. Biodegradation. 2014;25(4):505–

13. 

88. Duan X, Zhou J, Qiao S, Wei H. Application of low intensity ultrasound to enhance 

the activity of anammox microbial consortium for nitrogen removal. Bioresour Technol. 

2011;102(5):4290–3. 

89. Marañón E, Castrillón L, Fernández-Nava Y, Fernández-Méndez A, Fernández-

Sánchez A. Tertiary treatment of landfill leachates by adsorption. Waste Manag Res. 

2009;27(5):527–33. Doi: 10.1177/0734242X08096900. 

90. Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite. 

Sci Total Environ. 1994;149(3):139–44. Doi: 10.1016/0048-9697(94)90174-0. 



59 

 

 

 

91. Davis ME, Lobo RF. Zeolite and molecular sieve synthesis. Chem Mater. 

1992;4(4):756–68. Doi: 10.1021/cm00022a005. 

92. Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of Heavy Metals 

and Other Cations from Wastewater Using Zeolites. Sep Sci Technol. 1990;25(13-

15):1555–69. Doi: 10.1080/01496399008050409. 

93. Marco A, Esplugas S, Saum G. How and why combine chemical and biological 

processes for wastewater treatment. Water Sci Technol. 1997;35(4):321–7. Doi: 

10.1016/S0273-1223(97)00041-3. 

94. Derco J. Pretreatment of landfill leachate by chemical oxidation processes. Chem 

Pap. 2010;64(2):237–45. 

95. Boumechhour F, Rabah K, Lamine C, Said BM. Treatment of landfill leachate 

using Fenton process and coagulation/flocculation. Water Environ J. 2013;27(1):114–9. 

96. Samadi MT, Saghi MH, Rahmani A, Hasanvand J, Rahimi S, Syboney MS. 

Hamadan landfill leachate treatment by coagulation-flocculation process. Iran J Environ 

Health Sci Eng. 2010;7(3):253–8. 

97. Tatsi AA, Zouboulis AI, Matis KA, Samaras P. Coagulation–flocculation 

pretreatment of sanitary landfill leachates. Chemosphere. 2003;53(7):737–44. Doi: 

10.1016/S0045-6535(03)00513-7. 

98. Amokrane A, Comel C, Veron J. Landfill leachates pretreatment by coagulation-

flocculation. Water Res. 1997;31(11):2775–82. Doi: 10.1016/S0043-1354(97)00147-4. 

99. Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA. Application of response surface 

methodology (RSM) to optimize coagulation–flocculation treatment of leachate using 

poly-aluminum chloride (PAC) and alum. J Hazard Mater. 2009;163(2–3):650–6. Doi: 

10.1016/j.jhazmat.2008.07.090. 



60 

 

 

 

100. Ntampou X, Zouboulis AI, Samaras P. Appropriate combination of physico-

chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of 

landfill leachates. Chemosphere. 2006;62(5):722–30. Doi: 

10.1016/j.chemosphere.2005.04.067. 

101. Ameen E, Muyibi S, Abdulkarim M. Microfiltration of pretreated sanitary landfill 

leachate. The Environmentalist. 2011;31(3):208–15. Doi: 10.1007/s10669-011-9322-0. 

102. Primo O, Rueda A, Rivero MJ, Ortiz I. An Integrated Process, Fenton 

Reaction−Ultrafiltration, for the Treatment of Landfill Leachate:  Pilot Plant Operation and 

Analysis. Ind Eng Chem Res. 2008;47(3):946–52. Doi: 10.1021/ie071111a. 

103. Vandezande P, Gevers LEM, Vankelecom IFJ. Solvent resistant nanofiltration: 

separating on a molecular level. Chem Soc Rev. 2008;37(2):365–405. 

104. Trebouet D, Schlumpf JP, Jaouen P, Quemeneur F. Stabilized landfill leachate 

treatment by combined physicochemical–nanofiltration processes. Water Res. 

2001;35(12):2935–42. Doi: 10.1016/S0043-1354(01)00005-7. 

105. Renou S, Poulain S, Givaudan JG, Moulin P. Amelioration of ultrafiltration process 

by lime treatment: Case of landfill leachate. Desalination. 2009;249(1):72–82. Doi: 

10.1016/j.desal.2008.09.007. 

106. Chianese A, Ranauro R, Verdone N. Treatment of landfill leachate by reverse 

osmosis. Water Res. 1999;33(3):647–52. Doi: 10.1016/S0043-1354(98)00240-1. 

107. Rajaram V, Siddiqui FZ, Khan ME. Landfill gas treatment technologies. From 

landfill gas to energy technologies and challenges. Leiden, The Netherlands: 

CRC/Balkema; 2012. p. 153–208. 



61 

 

 

 

108. Mor S, Ravindra K, De Visscher A, Dahiya RP, Chandra A. Municipal solid waste 

characterization and its assessment for potential methane generation: A case study. Sci 

Total Environ. 2006;371(1–3):1–10. Doi: 10.1016/j.scitotenv.2006.04.014. 

109. Staley BF, Xu F, Cowie SJ, Barlaz MA, Hater GR. Release of Trace Organic 

Compounds during the Decomposition of Municipal Solid Waste Components. Environ 

Sci Technol. 2006;40(19):5984–91. Doi: 10.1021/es060786m. 

110. Themelis NJ, Ulloa PA. Methane generation in landfills. Renew Energy. 

2007;32(7):1243–57. Doi: 10.1016/j.renene.2006.04.020. 

111. Allen MR, Braithwaite A, Hills CC. Trace organic compounds in landfill Gas at 

seven U.K. waste disposal sites. Environ Sci Technol. 1997;31(4):1054–61. Doi: 

10.1021/es9605634. 

112. Eklund B, Anderson EP, Walker BL, Burrows DB. Characterization of landfill gas 

composition at the Fresh Kills Municipal Solid-Waste Landfill. Environ Sci Technol. 

1998;32(15):2233–7. Doi: 10.1021/es980004s. 

113. Thomas CL, Barlaz MA. Production of non-methane organic compounds during 

refuse decomposition in a laboratory-scale landfill. Waste Manag Res. 1999;17(3):205–11. 

Doi: 10.1034/j.1399-3070.1999.00030.x. 

114. Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, et al. Release of non-methane organic 

compounds during simulated landfilling of aerobically pretreated municipal solid waste. J 

Environ Manage. 2012;101:54–8. Doi: 10.1016/j.jenvman.2011.10.018. 

115. Powell J, Jain P, Kim H, Townsend T, Reinhart D. Changes in Landfill Gas Quality 

as a Result of Controlled Air Injection. Environ Sci Technol. 2006;40(3):1029–34. Doi: 

10.1021/es051114j. 



62 

 

 

 

116. Goossens MA. Landfill gas power plants. Renew Energy. 1996;9(1–4):1015–8. 

Doi: 10.1016/0960-1481(96)88452-7. 

117. Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Analysis of the 

feasibility of the recovery of landfill gas: a case study of Mexico. J Clean Prod. 

2014;79:53–60. Doi: 10.1016/j.jclepro.2014.05.025. 

118. Chiemchaisri C, Juanga JP, Visvanathan C. Municipal solid waste management in 

Thailand and disposal emission inventory. Environ Monit Assess. 2007;135(1-3):13–20. 

Doi: 10.1007/s10661-007-9707-1. 

119. Faour AA, Reinhart DR, You H. First-order kinetic gas generation model 

parameters for wet landfills. Waste Manag. 2007;27(7):946–53. Doi: 

10.1016/j.wasman.2006.05.007. 

120. Garg A, Achari G, Joshi RC. A model to estimate the methane generation rate 

constant in sanitary landfills using fuzzy synthetic evaluation. Waste Manag Res. 

2006;24(4):363–75. Doi: 10.1177/0734242X06065189. 

121. Machado SL, Carvalho MF, Gourc J-P, Vilar OM, do Nascimento JCF. Methane 

generation in tropical landfills: Simplified methods and field results. Waste Manag. 

2009;29(1):153–61. Doi: 10.1016/j.wasman.2008.02.017. 

122. Wanichpongpan W, Gheewala SH. Life cycle assessment as a decision support tool 

for landfill gas-to energy projects. J Clean Prod. 2007;15(18):1819–26. Doi: 

10.1016/j.jclepro.2006.06.008. 

123. Abushammala MFM, Basri NEA, Basri H, Kadhum AAH, El-Shafie AH. 

Estimation of methane emission from landfills in Malaysia using the IPCC 2006 FOD 

model. J Appl Sci. 2010;10(15):1603–9. Doi: 10.3923/jas.2010.1603.1609. 



63 

 

 

 

124. Börjesson G, Samuelsson J, Chanton J, Adolfsson R, Galle B, Svensson BH. A 

national landfill methane budget for Sweden based on field measurements, and an 

evaluation of IPCC models. Tellus B. 2009;61(2):424–35. Doi: 10.1111/j.1600-

0889.2008.00409.x. 

125. Heyer K-U, Hupe K, Stegmann R. Methane emissions from MBT landfills. Waste 

Manag. 2013;33(9):1853–60. Doi: 10.1016/j.wasman.2013.05.012. 

126. Penteado R, Cavalli M, Magnano E, Chiampo F. Application of the IPCC model to 

a Brazilian landfill: First results. Energy Policy. 2012;42(1):551–6. Doi: 

10.1016/j.enpol.2011.12.023. 

127. Amini HR, Reinhart DR, Mackie KR. Determination of first-order landfill gas 

modeling parameters and uncertainties. Waste Manag. 2012;32(2):305–16. Doi: 

10.1016/j.wasman.2011.09.021. 

128. Tintner J, Kühleitner M, Binner E, Brunner N, Smidt E. Modeling the final phase 

of landfill gas generation from long-term observations. Biodegradation. 2012;23(3):407–

14. Doi: 10.1007/s10532-011-9519-4. 

129. Brown KA, Maunder DH. Exploitation of landfill gas: A UK perspective. Water 

Sci Technol. 1994;30(12):143–51. 

130. Han H, Long J, Li S, Qian G. Comparison of green-house gas emission reductions 

and landfill gas utilization between a landfill system and an incineration system. Waste 

Manag Res. 2010;28(4):315–21. Doi: 10.1177/0734242X09349761. 

131. Jewaskiewitz B. Landfill gas recovery, green energy, and the clean development 

mechanism. Civ Eng Mag South Afr Inst Civ Eng. 2010;18(7):19–23. 

132. Solov’yanov AA. Associated petroleum gas flaring: Environmental issues. Russ J 

Gen Chem. 2011;81(12):2531–41. Doi: 10.1134/S1070363211120218. 



64 

 

 

 

133. Ménard C, Ramirez AA, Nikiema J, Heitz M. Biofiltration of methane and trace 

gases from landfills: A review. Environ Rev. 2012;20(1):40–53. Doi: 10.1139/a11-022. 

134. Sircar S. Separation of methane and carbon dioxide gas mixtures by pressure swing 

adsorption. Sep Sci Technol. 1988;23(6-7):519–29. Doi: 10.1080/01496398808057650. 

135. Shin H-C, Park J-W, Park K, Song H-C. Removal characteristics of trace 

compounds of landfill gas by activated carbon adsorption. Environ Pollut. 

2002;119(2):227–36. Doi: 10.1016/S0269-7491(01)00331-1. 

136. Gaur A, Park J-W, Maken S, Song H-J, Park J-J. Landfill gas (LFG) processing via 

adsorption and alkanolamine absorption. Fuel Process Technol. 2010;91(6):635–40. Doi: 

10.1016/j.fuproc.2010.01.010. 

137. Koros WJ, Fleming GK. Membrane-based gas separation. J Membr Sci. 

1993;83(1):1–80. Doi: 10.1016/0376-7388(93)80013-N. 

138. Rautenbach R, Welsch K. Treatment of landfill gas by gas permeation — pilot plant 

results and comparison to alternatives. J Membr Sci. 1994;87(1–2):107–18. Doi: 

10.1016/0376-7388(93)E0091-Q. 

139. Gabelman A, Hwang S-T. Hollow fiber membrane contactors. J Membr Sci. 

1999;159(1–2):61–106. Doi: 10.1016/S0376-7388(99)00040-X. 

140. Markbreiter SJ, Weiss I. Cryogenic treatment of landfill gas to remove troublesome 

compounds. US5596884 A, 1997. 

  



65 

 

 

 

Chapter 3 

3 The mathematical model of the conversion of a landfill 
operation from anaerobic to aerobic 

Transport phenomena equations were applied to develop a dynamic mathematical model 

that accurately describes the conversion of an anaerobic landfill to an aerobic bioreactor. 

The model equations were solved using the finite element method with the commercially 

available software COMSOL Multiphysics®. The initial aerobic bacteria concentration 

and heat of reaction were fitted with values in the range reported in the literature. The 

consumption rate of oxygen and production rates of carbon dioxide and methane and 

growth rate of aerobic biomass were examined at a biomass concentration of 0.6 kg/m3, at 

full scale landfill biomass concentration of 1 kg/m3 and with a high biomass concentration 

of 10 kg/m3. The bioreactor configuration used in the model showed biodegradation 

occurred in “plugs”. Varying leachate injection rate was shown to be more effective for 

temperature control than the rate of air injection. This model provides a framework to 

determine how other factors such as pH or moisture content affect the conversion from 

anaerobic to aerobic conditions. 

3.1 Introduction 

Effective treating of municipal solid waste (MSW) reduces the potential harm from 

leachate and landfill gas (LFG). In order to increase the rate of biodegradation of the MSW, 

recirculation of leachate has been shown effective in promoting microbial growth. The 

biodegradation rate is further increased by aeration of the landfill body, promoting aerobic 

microbial growth1. Aerobic bioreactor landfills use aerobic bacteria to biodegrade the 

landfill waste. Traditional landfills use the “dry-tomb” method, where the landfill is 

essentially used for waste containment without treating. The dry-tomb method theoretically 

disallows moisture, inhibiting microbial growth and decomposition2. However, dry-tomb 

landfills cannot prevent moisture from infiltrating the landfill. This causes slow 

biodegradation, producing harmful leachate and LFG (primarily methane and carbon 
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dioxide). The bioreactor landfill instead promotes microbial biodegradation by 

recirculating the leachate produced3. 

Bioreactor landfills fall into three categories: aerobic, anaerobic and semi-aerobic. This 

study is focused on aerobic bioreactor landfills. The procedure and development of the 

model could be slightly modified to represent anaerobic/semi-aerobic bioreactor landfills. 

Aerobic bioreactor landfills have many advantages over other landfill types. These 

advantages include: faster waste stabilization, decrease of CO2 equivalent release of 

greenhouse gases (GHGs), decrease in non-methane organic compounds (NMOCs), faster 

reduction in chemical oxygen demand (COD) of leachate4–6. 

Due to the porous nature of the waste, the injection/extraction of gases, the injection of 

leachate and the exothermic nature of the biodegradation, the transport phenomena 

occurring inside an aerobic landfill are complex. Many models have been developed on 

landfills (both dry-tomb and bioreactor landfills). These models represent various aspects 

of landfills. Models have been reported on anaerobic bioreactor landfills7,8 and aerobic 

bioreactor landfills9–13. Various approaches have also been proposed to model flows 

through landfills14–18. Other models describing other phenomena such as landfill 

settlement19, pressure distribution due to landfill gas in landfill20 and gas production21–23 

have also been formulated. Many of these models are formulated using 1 or 2 space 

dimensions and often only looking at steady-state behaviour.  

Once a landfill is closed, there is enough oxygen to sustain aerobic bacteria for a short time. 

After the oxygen is consumed, the aerobic bacteria gradually perish, giving way to the 

anaerobic bacteria, which begin to dominate. If the landfill is left isolated, the aerobic 

bacteria consume the trapped oxygen and die once the oxygen is consumed. The landfill 

will then become anaerobic.  

In this study, a theoretical dynamic 3-dimensional model is developed that represents the 

conversion of an anaerobic bioreactor landfill into an aerobic bioreactor landfill at the onset 

of aeration of the landfill. Changing the parameters of an aerobic landfill and measuring 
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the outcome experimentally can take anywhere from a month to a year whereas changing 

a parameter on a validated model and studying the outcome can be done in less than a 

week. These parameters include temperature of the landfill, oxygen injection rate, pH and 

moisture content of the landfill material6. Also, models can provide insight that 

experimental data cannot provide. For example, the model can be run under conditions that 

are not physically realizable. 

3.2 Theory and computation technique 

The model equations were solved using the finite element method (FEM). The equations 

were solved using the commercially available software COMSOL Multiphysics. Two 

Darcy’s Law interfaces were used for each phase (gas and liquid). The two phases were 

coupled using a storage model node. A transport of concentrated species interface was used 

to define the composition of the gaseous components. A heat transfer in porous media 

interface was used to define the energy balance and temperature of the bioreactor. Finally, 

the biokinetic equations were not included by default in COMSOL Multiphysics, and user-

defined ordinary differential equations were added defining the anaerobic and aerobic 

biomass growth rate equations. All the parameters used in the model (Table 3-1 and Table 

3-2) were defined as global parameters. All the algebraic equations used (e.g. the rates of 

consumption/production, diffusion coefficients) were defined as component variables. 

Figure 3-1 shows a flow diagram that outlines the steps used for the model development. 
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Figure 3-1 Flowchart showing model formulation steps 
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The following model equations describe the gaseous and leachate flow through the MSW. 

Air is injected from the bottom of the bioreactor and flows upwards towards the gas exit at 

the top of the bioreactor. Leachate is injected from the top of the bioreactor and flows 

downwards towards the leachate collection port at the bottom of the bioreactor. Figure 3-

2(a) shows a schematic representation of the bioreactor. Initially, the bioreactor is under 

anaerobic conditions and as the air is injected, the anaerobic bacteria begin to perish and 

the aerobic bacteria grow and consume the oxygen, producing carbon dioxide. The 

composition of the gas changes as it flows through the bioreactor, both spatially and 

temporally. The aerobic biodegradation is exothermic. The rate of aerobic bacterial growth 

is coupled with the temperature. The model also describes the changing temperature of the 

MSW, spatially and temporally. 

3.2.1 Momentum balance 

Two Darcy’s Law equations were formulated to describe the pressure inside of the 

bioreactor. The Darcy’s Law equations were modified to include terms to account for the 

unsaturated flow (pores are not saturated by either fluid phase) inside the bioreactor24,25. 

Darcy’s Law for liquid phase: 
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Darcy’s Law for gaseous phase: 
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Where a  is the density of the aqueous phase [kg/m3], cS  is the specific capacity of the 

MSW  [1/Pa], aP  is the pressure of aqueous phase [Pa],   is the intrinsic permeability of 

the MSW [m2], 
ark ,
 is the relative permeability of the aqueous phase [-], a  is the dynamic 
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viscosity of the aqueous phase [Pa·s], g is the gravitational acceleration constant [m/s2], z  

is the coordinate of vertical elevation [m], 
gP  is the pressure of the gaseous phase [Pa], 

g  is the density of the gaseous phase [kg/m3], 
grk ,

 is the relative permeability of the 

gaseous phase [-] and 
g  is the dynamic viscosity of the gaseous phase [Pa·s]. 

c

ae

src
P

S
S






,
)(   (3-3) 







/1

1/1

,

1
































ae

a
c

S

g
P  (3-4) 


i

iig    (3-5) 


i

iig    (3-6) 

r  is the residual volume fraction [-], s  is the total porosity or saturated volume fraction 

[-], 
aeS ,
 is the effective saturation of the aqueous phase [-], cP  is capillary pressure [Pa], 

  [1/m],   [-] and   [-] are the van Genuchten constants, i  is the mass fraction of 

component i [-], i  is the density of component i [kg/m3] and i  is the dynamic viscosity 

of component i [Pa·s]. 
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Where cH  is the capillary pressure head [m]. 
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geS ,
 is the effective saturation of the gaseous phase [-], wa  is the volume fraction of the 

aqueous phase [m3/m3], wra  is residual saturation of water [m3/m3] and wsa  is the saturation 

water content [m3/m3]. The numerical values of the parameters used in the previous 

equations are found in Table 3-2.  

For the aqueous phase: 
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For the gas phase: 
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3.2.2 Mass balance 

Equations 3-12, 3-13 and 3-14 are the continuity equation, Darcy’s velocity and component 

mass balance in the gas phase, respectively28. Equations 3-12 and 3-13 are formulated for 

each phase. 

m
s Q
t





)(

)(
u


 (3-12) 

)( zgP  



u  (3-13) 

u  is velocity vector [m/s], mQ  is the source term mass flow rate [kg/m3/s] and P  is the 

pressure [Pa]. Table 3-2 provides the physical properties of the MSW used in the model 

equations. 
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Where ij  is the mass flux relative to the mass averaged velocity of component i [kg/m2/s] 

and iR  is the rate of consumption/production of component i [kg/m3/s]. 
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F

iD  is the Fickian diffusion coefficient of component i [m2/s], nM  is the average molecular 

weight [kg/mol]. 

The multicomponent Fickian diffusion coefficients were estimated using the following 

relationship30: 
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ijD  is the binary Fickian diffusion coefficient of components i and j [m2/s], ix  is the mole 

fraction of component i [-] and 
jx  is the mole fraction of component j [-]. 

The binary diffusion coefficients can be found using the Chapman-Enskog equation31: 
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ij  is the average collision diameter of components i and j [m], D  is the collision integral 

[-], T  is the temperature of the MSW [K], iM  is the molecular mass of component i 
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[kg/mol] and 
jM  is the molecular mass of component j [kg/mol]. The parameters used in 

the Chapman-Enskog Equation are found in Table 3-1. 

2
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i  is the collision diameter of component i [m] and 
j  is the collision diameter of 

components j [m].  
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NT  is the standardized temperature [-]. 
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T  is the model temperature, i  is the characteristic energy of component i [J], 
j  is the 

characteristic energy of component j [J], 
ibk ,
 is the Boltzman’s constant of component i 

[J/K] and 
jbk ,
 is the Boltzman’s constant of component j [J/K]. 

Table 3-1 Fickian diffusion estimation parameters 

 Collision diameter, 

σ (10-10 m) 

Characteristic energy, 

ε/kb (K) 

Reference 

oxygen 3.476 106.7 

32 
nitrogen 3.798 71.4 

carbon dioxide 3.941 195.2 

methane 3.758 148.6 
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iN  is the combined mass flux of component i [kg/m2/s]. 

Biokinetic equations 

Monod-type kinetics have been used to describe the bacteria in landfills by many 

researchers7,8,10,12,17 and was used in this model. 
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If the substrate concentration is sufficiently high (
NskS , ), Equation 3-23 reduces to: 
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Where NR  is the anaerobic biomass production rate [kg/m3/day], NX  is the concentration 

of the anaerobic biomass [kg/m3], 
Nmk ,

 is the maximum anaerobic biodegradation rate 

constant [day-1], Ntempk ,  is the temperature correction factor for anaerobic biomass [-], S  is 

the available substrate [kg/m3], 
Nsk ,

 is the substrate half-saturation constant for anaerobic 

growth [kg/m3] and 
NDR ,

 is the anaerobic biomass decay rate [kg/m3/day]. 

ADA

OO

O

As

AtempAm
A

A RX
ck

c

Sk

S
kk

t

X
R ,

,

,,

22

2 






  (3-25) 

If the substrate concentration is sufficiently high (
AskS , ), Equation 3-25 reduces to: 



75 

 

 

 

ADA

OO

O

AtempAm
A

A RX
ck

c
kk

t

X
R ,,,

22

2 






  (3-26) 

Where 
AR  is the aerobic biomass production rate [kg/m3/day], 

AX  is the concentration of 

the aerobic biomass [kg/m3], 
Amk ,
 is the maximum aerobic biodegradation rate constant 

[day-1], 
Atempk ,
 is the temperature correction factor for aerobic biomass [-], 

Ask ,
 is the 

substrate half-saturation constant for aerobic growth [kg/m3], 
2Oc  is the mass concentration 

of oxygen [kg/m3], 
2Ok  is the oxygen half-saturation constant [kg/m3] and 

ADR ,
 is the 

aerobic biomass decay rate [kg/m3/day]. 

Kim et al. (2007) assumed that the decay rate for both anaerobic and aerobic species are: 

)(05.0 0,,, NNNmND XXkR   (3-27) 

)(05.0 0,,, AAAmAD XXkR   (3-28) 

Where 
0,NX  and 

0,AX  are the initial anaerobic and aerobic biomass concentrations 

[kg/m3], respectively. 

When the anaerobic bacteria are exposed to oxygen, there is no growth and Equation 3-24 

becomes: 

)(05.0 0,, NNNmN XXkR   (3-29) 

When the aerobic bacteria are starved of oxygen in the anaerobic phase of the landfill, there 

is no growth and Equation 3-26 becomes: 

)(05.0 0,, AAAmA XXkR   (3-30) 

The temperature correction factor was proposed by Rosso et al. (1993) to correlate 

microbial growth with cardinal temperatures33 and has been used in  aerobic biodegradation 
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models12,34. Equation 3-31 is used in both the anaerobic and aerobic biokinetic equations 

(Equations 3-23 to 3-26). The cardinal temperatures in the correction factor are changed 

according to the biomass and are found in Table 3-2. 
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T  is the temperature of the MSW [K], maxT  is the maximum temperature for microbial 

growth [K], 
minT  is the minimum temperature for microbial growth [K] and 

optT  is the 

optimal temperature for microbial growth [K]. 
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Where ix  is the mole fraction of component i [-], ic  is the molar concentration of 

component i [mol/m3] and 
jc  is the molar concentration of component j [mol/m3]. 

Many different chemical formulas have been proposed for use as MSW9,10,35 and 

biochemical reactions for anaerobic biodegradation. In this model the following formula, 

proposed by Themelis and Kim (2002), was used: 

241410624106 75.225.3)(5.1)( COCHOHCOHOHC xx    (3-33) 

This biochemical formula is used to estimate the methane and carbon dioxide production 

rate using stoichiometric relationships combined with the anaerobic growth equation 

(Equation 3-24). The product gases are only produced as the anaerobic bacteria grow, 

therefore the decay term is not included: 
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Where 
2COR  is the production rate of carbon dioxide [kg/m3/day], 

4CHR  is the production 

rate of methane [kg/m3/day] and 
NBSY ,/

 is the substrate/anaerobic biomass yield coefficient 

[kgB/kgS]. 

Themelis and Kim (2002) proposed the following generalized reaction for the aerobic 

biodegradation of MSW: 

221410624106 65)(5.6)( COOHOHCOOHC xx    (3-36) 

This biochemical formula is used to estimate the oxygen consumption rate and carbon 

dioxide production rate using stoichiometric relationships combined with the aerobic 

growth equation (Equation 3-26). The gases are only consumed and produced as the 

aerobic bacteria grow, therefore the decay term is not included: 
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Where 
2OR  is the consumption rate of oxygen [kg/m3/day] and 

ABSY ,/
 is the 

substrate/aerobic biomass yield coefficient [kgB/kgS]. The parameters used in the biokinetic 

equations are found in Table 3-2. 

3.2.3 Energy balance 

Equations 3-39 to 3-43 were used for the energy balance28: 
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Where V  is the volume of the MSW [m3], 
eqPC )(  is the equivalent heat capacity 

[J/m3/K], 
eqk  is the equivalent thermal conductivity [W/m/K], 

PC  is the specific heat of 

the gas [J/kg/K], reacH  is the reaction heat [kJ/mol], 
inLF ,

 is the flowrate of leachate 

[mL/min], 
wPC ,

 is the specific heat of water [J/kg/K], 
0,LT  is the initial leachate 

temperature [K], 
ingF ,

 is the flowrate of gas [L/min] and 
0,gT  is the initial temperature of 

the gas [K]. 
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Where MSW  is the mass fraction of the MSW [-], MSW  is the density of MSW [kg/m3], 

MSWPC ,
 is the specific heat of MSW [J/kg/K] and 

iPC  is the specific heat of component i 

[J/kg/K]. 

kkk MSWMSWMSWeq )1(    (3-42) 

MSWk  is the thermal conductivity of the MSW [W/m/K] and k  is the thermal conductivity 

of the gas [W/m/K]. 

i

i

ikk    (3-43) 

Where ik  is the thermal conductivity of component i [W/m/K]. The parameters used in 

Section 3.2.3 are found in Table 3-2. 

Table 3-2 Model equation parameters 

Parameter Unit Value Reference 

  1/m 0.2 12 

  - 5 12 

  - 0.8 12 

wa  m3/m3 0.28 12 

wra  m3/m3 0.2 26 

wsa  m3/m3 0.49 27 

s  - 0.3 17 

r  - 0.1 27 

  m2 10-12 17 

MSW  kg/m3 164 29 

Nmk ,
 day-1 0.2 10 



80 

 

 

 

Amk ,
 day-1 1.0 10 

NBSY ,/
 kgB/kgS 0.05 10 

ABSY ,/
 kgB/kgS 0.1 36 

2Ok  kg/m3 7x10-6 12,37 

NTmin,
 °C 15 38 

NoptT ,
 °C 35 38 

NTmax,
 °C 70 38 

ATmin,
 °C 5 12,34,37 

AoptT ,
 °C 58.6 12,34,37 

ATmax,
 °C 71.6 12,34,37 

MSWPC ,
 MJ/m3/K 2.0 39 

MSWk  W/m/K 0.0445 40 

reacH  kJ/mol -1,500 Estimated from model 

inLF ,
 mL/min 20 29 

 

ingF ,
 L/min 1.9 29 

Table 3-3 Initial conditions 

Parameter Unit Value Reference 

NX  kg/m3 0.2 Set equal to 
AX  

AX  kg/m3 0.2 Estimated from model 

T  °C 20 29 

P  atm 1 Assumed 

4CHx  - 0.542 9 

2COx  - 0.458 9 

3.2.4 Model assumptions 

This model has inherent assumptions to decrease the number of equations required:  

 Mass of MSW is sufficient to render biokinetic dependence to unity; 
NskS ,  and 

AskS ,  

 Biodegradation of MSW is negligible during the model time period (mass of MSW 

remains constant; 0)( StS  ) 
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 MSW is homogeneous; material properties (e.g. permeability, porosity) are 

isotropic 

3.3 Results and discussion 

3.3.1 Geometry and meshing 

Figure 3-2(a) gives a schematic view of the bioreactor geometry used. The geometry is 

based on previous literature (experimental study)29. Due to the symmetry in the x- and y-

directions, the geometry was cut in half in the x-direction and again cut in half in the y-

direction (Figure 3-2(b) and (c)) and a symmetry boundary condition was enforced on the 

x- and y-planes. This was done to decrease the computational cost and decrease the time 

required for solution convergence. The solution was mirrored in the x- and y-directions to 

give the full bioreactor geometry. The relative tolerance for convergence was set to 10-12 

due to the small magnitudes of the variables. The initial conditions used in the model are 

found in Table 3-3. 

The dimensions of the bioreactor were 0.71 m in width and 0.55 m in height. However, in 

the study, the bioreactor had a 0.1 m gravel layer at the bottom. Since the gravel layer is 

inert and non-biodegradable it was excluded from the model geometry. Therefore, the 

model was run using a height of 0.45 m. The model begins at the onset of aeration and was 

solved in 4 hour increments for 7 days, to allow 6 time points in each day. 



82 

 

 

 

 

Figure 3-2 Model geometry: (a) schematic view; (b) isometric view with symmetric slice 

shown; (c) symmetric slice with overlain mesh 

The mesh refinement study is shown in Figure 3-3. Multiple variables were tracked and 

the finest mesh that led to mesh independence was used (<1%). Percent difference 

(Equation 3-44) was used to track the mesh independence. Triangular mesh elements were 

used on the top and bottom faces. The mesh was then swept in the z direction. Boundary 

layer mesh elements were also added to the faces that had gas flow running in parallel (non-

symmetry faces).  

100% 



meshfinest

meshfinestmesh
Difference

x
  (3-44) 

The mole fraction of methane plot showed 0 due to the very small numbers. The finest 

mesh gave a mole fraction of 0 and due to numerical noise the other mesh values were 

approximately 10-23. The mesh was sufficiently fine at 42.4 mm based on the %Difference 

(<1 %) observed in Figure 3-3. All the mesh values were much less than 1% but this mesh 

size was chosen because it provided minimum error with relatively short convergence time. 

The refined mesh is shown in Figure 3-2(c). 
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Figure 3-3 Mesh refinement study 

3.3.2 Anaerobic-aerobic conversion 

3.3.2.1 Parameter estimation 

Based on the results of Borglin et al.29, the model was consistent with what was found in 

the experimental results. Borglin et al. used 200L tanks filled with fresh waste. Leachate 

was injected from the top of the tank and air injected from the bottom. The outlet gas and 
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leachate composition, temperature, pressure, moisture content, humidity and flowrates 

were monitored. The model was run assuming the top face of the tank was not insulated to 

represent the difficulty that Borglin et al. had maintaining the elevated temperatures. The 

initial aerobic biomass and heat of reaction were the two parameters that were used to 

control gas composition and temperature. These parameters were fit by varying the values 

and observing the outlet composition of the gas and the average temperature. The 

composition of the outlet gas was between 0-1% carbon dioxide (Figure 3-4(a)) as reported 

by Borglin et al. The average temperature was 26°C and the maximum temperature was 

26.4°C. 

 

Figure 3-4 Parameter estimation plot: (a) outlet volume fraction of CO2 over time; (b) 

average temperature over time and (c) maximum temperature over time 
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To correspond with 0-1% carbon dioxide, initial aerobic biomass concentration had to be 

within the range of 0 to 0.6 kg/m3 and the heat of reaction was -1,500 kJ/mol. Because 

Borglin et al. did not add any initial inoculum, this corresponds to the aerobic biomass 

present in the waste initially. Generally, aerobic biomass concentrations are higher10,12.  

However, as evidenced by the low decrease in oxygen when compared to Kim et al. 

(2007)10 and Fytanidis and Voudrias (2014)12, and observed in field conditions42, the fitted 

biomass concentration was logical. The modest increase in temperature also showed this 

fact. Waste temperature typically increases to 50°C and more42–44. However, Borglin et al. 

had trouble keeping temperature in the system, losing heat, further validating the lower 

aerobic concentration value. 

After approximately 1 day, the carbon dioxide concentration increased above 1% and 

continued to rise (Figure 3-4(a)). The carbon dioxide volume fraction decreased from its 

initial concentration (due to the initial anaerobic state) to the concentration of carbon 

dioxide being produced via the aerobic biodegradation. The gas composition did not 

completely match the 0-1% reported by Borglin et al. and this can be explained by the 

differing biokinetics. Landfills have different consortiums of bacteria with different 

biokinetics. Another consideration for the differing concentration is the assumption that 

substrate concentration was constant. As time progresses, this concentration will decrease 

and the rate of production of carbon dioxide will also decrease. Running the model for 

many months or a year in the future would require this assumption be eliminated and 

substrate concentration be factored into the model. 

After 7 days the average bioreactor temperature reached 26°C (Figure 3-4(b)). The 

maximum temperature in the waste reached approximately 26.4°C (Figure 3-4(c)). Borglin 

et al. have reported a temperature of 27°C. Giannis et al. (2008) conducted a similar study 

to Borglin et al. but used a cubic cell instead of a hexagonal prism as their lab scale landfill. 

Giannis et al. (2008) found during their study that the temperature varied between 20°C 

and 54°C for the first 70 days of their experiment45. The difference can be attributed to the 

heterogeneous nature of MSW and the varying composition of the MSW. MSW and 
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therefore the biokinetic/heat values are different from landfill to landfill and can be 

different from one location to another in the same landfill. The fitted value was in the range 

of the heat of reaction reported in literature (-460 kJ/mol by Kim et al. (2007) and -616 

kcal/mol by Kim et al. (2007)). The results presented in Section 3.3.2 (and its subsections) 

were simulated using the estimated initial aerobic biomass concentration and heat of 

reaction values. 

Another consequence of the bioreactor not being able to retain heat (due to heat loss), is 

that the temperature did not reach the optimal temperature (58.6°C). An advantage of using 

a model is that the model can be run assuming no loss of heat and the effects of retaining 

the heat (and subsequent increase of temperature) on the growth of aerobic bacteria, 

consumption of oxygen and production of carbon dioxide and methane can be examined. 

3.3.2.2 Growth of aerobic bacteria 

An important parameter in the conversion from an anaerobic to aerobic landfill is the initial 

aerobic biomass concentration. Figure 3-5 shows the effect of initial aerobic biomass 

concentration on the average and maximum temperatures in the waste after 24 hours. Since 

the heat produced during anaerobic biodegradation is negligible compared to the heat 

produced during aerobic biodegradation, temperature can be used as an indicator to 

determine the efficacy of aerobic biodegradation and subsequently, the conversion from an 

anaerobic landfill to an aerobic landfill. Looking at Figure 3-5, at low aerobic biomass 

(0.01 and 0.1 kg/m3) concentration, the temperature was near ambient temperature 

(assumed to be 20°C). This indicates little aerobic biodegradation. At 5 kg/m3, the opposite 

behaviour occurred; the temperature increased significantly. This indicates high aerobic 

biodegradation. Aerobic biomass concentration can be increased physically by the addition 

of aerobic sludge. 
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Figure 3-5 Average and maximum temperature of waste after 24 hours with varying 

initial aerobic biomass concentration (kg/m3) 

If the initial aerobic biomass concentration increases, the aerobic bacteria grow faster and 

as a result will consume oxygen faster. Figure 3-6 shows the growth rate of aerobic biomass 

concentration with increasing initial aerobic biomass concentration after 24 hours in 3 

dimensions. This agrees with Figure 3-5, however a piece of information was not 

represented in Figure 3-5. Figure 3-6(e) shows a negative growth rate in the top half of the 

bioreactor. This was due to the lack of oxygen in these areas. The high concentration of 

aerobic biomass consumed the oxygen before it made its way through the entire volume. 
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Figure 3-6 Temperature (°C), aerobic growth rate (kg/m3/s) and oxygen volume fraction 

after 24 hours with initial aerobic biomass concentration of: (a) 0.01 kg/m3; (b) 0.1 

kg/m3; (c) 0.6; kg/m3 (d) 1 kg/m3 and (e) 5 kg/m3 
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3.3.2.3 Oxygen consumption 

As time progressed, the aerobic bacteria began to produce heat. The temperature profile 

inside the bioreactor began to stabilize and the temperature effects on the aerobic bacteria 

dominated growth rates and subsequently, oxygen consumption rates. The areas that 

showed the highest oxygen consumption were areas that had a higher temperature (Figure 

3-7). A higher oxygen consumption rate directly relates to the biodegradation rate of MSW. 

The areas with higher concentrations of aerobic bacteria are biodegraded faster. The top of 

the bioreactor was not insulated and natural convection lead to heat losses from the 

bioreactor. This removed heat and decreased the temperature at the top of the bioreactor 

by fractions of a degree when compared to the bottom. 
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Figure 3-7 Temperature (°C) and oxygen consumption rate (kg/m3/s):  (a) 1 day; (b) 2 

days; (c) 3 days and (d) 4 days 
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3.3.2.4 Carbon dioxide production 

Carbon dioxide production followed the same trend as the oxygen consumption. In the 

areas of higher temperature, more carbon dioxide was produced. These areas will show the 

greatest biodegradation rate of MSW. Figure 3-8 shows this trend as time progresses. 

Figure 3-4(a) shows the maximum carbon dioxide volume fraction as time progresses. 

There was a sharp decrease just after time 0 due to the carbon dioxide being pushed out of 

the bioreactor by the incoming air. Initially, little carbon dioxide was produced when 

compared to the flow of air coming in, diluting the carbon dioxide. However, as time 

progressed, the rate of production of carbon dioxide increased. As a result, the volume 

fraction increased, with the oxygen volume fraction decreasing. 

 

Figure 3-8 Carbon dioxide production rate (kg/m3/s): (a) 1 day; (b) 2 days; (c) 3 days and 

(d) 4 days 
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3.3.2.5 Methane production 

The initial gas composition was 54.2% CH4 and 45.8% CO2 (anaerobic conditions) based 

on the stoichiometry in Equation 3-33. Before air injection began there was no oxygen, 

meaning the system was under complete anaerobic conditions. At the onset of air injection, 

the methane production in the areas with oxygen, ceased, shown in Figure 3-9. This model 

was run assuming homogeneous isotropic porous media. This means air reached the entire 

bioreactor. This assumption holds true for lab scale bioreactors but full scale landfills are 

not ideal and this assumption may not hold true. There are locations where air cannot reach 

(e.g. if a large non-biodegradable obstruction is in the waste) and there will be pockets of 

anaerobic bacterial growth. 

 

Figure 3-9 Methane production rate (kg/m3/s): (a) 4 hrs and (b) 24 hrs 

3.3.3 Higher aerobic biomass concentration 

In Section 3.3.2, the parameters used were set with the intention of replicating results found 

in Borglin et al. in order to find estimates for the heat of reaction and the initial biomass 

concentration. Here, the intention was to use the model to predict the behaviour in a larger 

scale system (e.g. a condition in which the oxygen composition in the reactor is less than 

that of atmospheric composition), and to investigate the landfill behaviour that may not be 

physically feasible (e.g. a very high initial aerobic biomass concentration of 10 kg/m3). 
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3.3.3.1 Full scale landfill aerobic biomass concentration 

The initial aerobic biomass concentration was increased to decrease the oxygen 

concentration and investigate its effect on temperature and aerobic biomass growth rate. 

The initial aerobic biomass concentration was increased to 1 kg/m3 used in Fytanidis and 

Voudrias (2014). At this initial aerobic concentration, oxygen still reached the entire 

reactor and as a result the methane production rate was 0. The behaviour of the biomass 

growth was similar to that of Section 3.3.2 in which the gradient of aerobic biomass growth 

rate decreased from areas of high temperature to low temperature. The main differences 

were the higher temperatures due to the greater heat production by the higher biomass 

concentration leading to higher rate of biodegrading of MSW and lower concentration of 

oxygen at the outlet (Figure 3-10). 

 

Figure 3-10 After 24 hours: (a) temperature (°C); (b) aerobic growth rate (kg/m3/s) and 

(c) oxygen volume fraction (-) 

3.3.3.2 High aerobic biomass concentration 

The initial aerobic biomass concentration was increased by an order of magnitude to 10 

kg/m3 to investigate its effect. Since MSW biodegradation is directly related to the growth 

of the aerobic bacteria, a higher concentration of aerobic biomass would lead to faster 

MSW biodegradation. However, other variables (e.g. temperature, 

consumption/production rates, etc.) are not simple to discern. 
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The large aerobic biomass concentration rapidly increased the temperature in the reactor 

(Figure 3-11(a)). Although the higher temperature will decrease the growth rate of the 

biomass (Equation 3-31), the large concentration of biomass will increase the growth rate 

enough to compensate for the high temperature. Figure 3-11(b) shows a plot of the first 

time derivative of the concentration of aerobic biomass (the growth rate). Even though 

temperature was at the maximum allowed temperature for growth, the biomass were still 

growing at a fast rate when compared to the aerobic growth rates in Figure 3-6. The 

problem with allowing the temperature to remain this high, is the safety concerns. There is 

potential for combustion to occur. Incomplete combustion inside landfill mass has been 

reported in literature46,47 when trace amounts of carbon monoxide have been found in the 

gas being extracted. Therefore, temperature needs to be controlled, via increased leachate 

injection (or air injection). Assuming the aerobic biomass starts near 1 kg/m3, it will take 

time for the concentration to increase to 10 kg/m3. In that time, enough MSW may have 

been biodegraded to slow down the rapid growth and help limit the heat generation. 
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Figure 3-11 After 24 hours: (a) temperature (°C); (b) aerobic biomass growth rate (kg/m3/s); (c) oxygen volume fraction (-) and (d) 

rate of methane production (kg/m3/s) 
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The gradient of aerobic biomass growth is in stark contrast to Section 3.3.2, where a higher 

temperature meant a higher biodegradation rate. In Section 3.3.2, the temperature had not 

exceeded the optimal temperature for aerobic growth. Further increase in the temperature 

increased the rate of growth of the aerobic bacteria. Here, the temperature was above the 

optimal temperature. Increasing temperature decreased the aerobic growth rate as the 

temperature deviated further from the optimal temperature; shown in Figure 3-11(a) and 

(b). Up until the point where there was no more oxygen (approximately half way along the 

z-axis in Figure 3-11(b)), the aerobic growth rate increased. This corresponded to a slight 

temperature gradient in Figure 3-11(a). 

As can be seen in Figure 3-11(b) and (c), oxygen did not reach the top portion of the 

bioreactor. This means that aerobic bacteria cannot grow in the top portion of the bioreactor 

(shown by the negative aerobic growth rate in Figure 3-11(b), indicating aerobic bacterial 

death). Aerobic bacteria will only biodegrade the portions where growth is occurring. 

Eventually these areas will biodegrade and the aerobic bacteria will have no MSW to 

sustain growth and will perish. The air is then no longer used up in the bottom portion and 

will reach higher in the waste and allows aerobic growth and biodegradation. In this way, 

in this configuration, with high aerobic biomass concentration, the bioreactor acts similar 

to a plug flow reactor. Figure 3-11(d) shows the methane production rate. Methane is 

produced in the top portion of the bioreactor where no oxygen reached. 

3.3.4 Temperature control 

As shown in Section 3.3.2, temperature is an important variable for the aerobic 

biodegradation rate. Equations 3-25 and 3-26 show that the aerobic bacterial growth rate is 

dependent on temperature. If the temperature exceeds the optimal temperature shown in 

Table 3-2, the aerobic bacteria growth rate will decrease. Therefore, temperature control is 

required. This is typically done in two ways: (1) increasing air flowrate and/or (2) 

increasing the leachate flowrate42. Figure 3-12(a) shows the effect of increasing and 

decreasing air flowrate on the average temperature of the bioreactor and Figure 3-12(b) 
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shows the effect on maximum temperature in the bioreactor (middle point is the actual air 

flow condition). Figure 3-12(c) shows the effect of increasing and decreasing leachate 

flowrate on the average temperature of the bioreactor and Figure 3-12(d) shows the effect 

on the maximum temperature in the bioreactor (middle point is the actual leachate flow 

condition). 

Increasing air flowrate did not appreciably decrease the temperature of the landfill. 

However, increasing leachate flowrate did. The rate at which the temperature decreased 

when increasing leachate flowrate began to level off as shown by Figure 3-12(b). The 

higher the leachate flowrate, the closer the temperature was to the injection temperature of 

the leachate (20°C). The specific heat capacity of leachate is approximately 4 times larger 

than that of air. However, varying air flowrate has more consequences than simply acting 

as a heat sink. Decreasing air flowrate can potentially cause some aerobic bacteria to perish 

due to lack of oxygen. Since the growth of the aerobic bacteria causes the heat production, 

less aerobic bacteria will decrease the temperature. However, this is not a suitable method 

if the landfill is to operate aerobically. It would require a significant increase in air flowrate 

to accomplish the same cooling as leachate. From an economic standpoint, this is not 

always feasible. Increasing the air flowrate will also strip more moisture from the landfill 

requiring more leachate injection to compensate. Therefore, varying leachate flowrate is a 

more effective temperature control method. 



98 

 

 

 

 

Figure 3-12 Varying air flowrate: (a) average temperature (°C); (b) maximum 

temperature (°C); varying leachate flowrate: (c) average temperature (°C); (d) maximum 

temperature (°C) 

3.4 Conclusions and summary 

A 3-dimensional dynamic mathematical model for a landfill operation was developed using 

coupled partial differential equations representing the governing mass, energy and 

momentum balances.  The model was solved using the finite element method using 

COMSOL Multiphysics. The model was used to determine the transport phenomena that 

occurred upon the conversion of an anaerobic bioreactor landfill into an aerobic bioreactor 

landfill. The fitted model parameters were consistent with values found in the literature. 
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In the initial stages of conversion of an anaerobic landfill to an aerobic landfill, the initial 

aerobic biomass concentration was the main factor that limited the growth of aerobic 

bacteria (assuming the presence of sufficient oxygen). The more bacteria present, the faster 

they grew and the faster they dominated. Once the aerobic bacteria have begun to grow, 

heat will be produced, increasing the temperature of the waste. Higher temperatures 

promoted the rate of the growth of aerobic bacteria (until the temperature increased beyond 

the optimal growth temperature). The areas with higher aerobic activities will biodegrade 

at a faster rate. However, areas where aerobic bacteria activity was significant enough to 

increase the temperature beyond the optimal temperature, showed less aerobic growth. 

Controlling temperatures (and by extension, biodegradation) was found to be more 

effective by varying the leachate flowrate when compared to varying the air flowrate. An 

increase in aerobic biomass concentration (simulated using 10 kg/m3) showed that the 

biodegradation occurs at a rapid rate. However, the temperature increases quickly and does 

not decrease. This can have safety issues and temperature needs to be controlled. 

At large aerobic biomass concentrations, oxygen may not reach the entire solid waste mass 

and areas may not biodegrade. The waste will biodegrade in “plugs”. When areas of the 

waste become biodegraded enough, the aerobic bacteria cannot sustain growth with the 

remaining organic portion of the waste. The oxygen will then not be consumed in these 

areas and will flow to the areas where oxygen did not initially reach. 

Future work can be performed to scale-up the model and test different geometries and air 

injection well placements to optimize the aerobic process. Work is being done to test how 

multiple aerobic-anaerobic conversions would behave10. A model that starts aerobically 

and is converted to anaerobic would also be useful. Other factors (e.g. pH, moisture 

content) can be included in the reaction rates, to examine their effects on conversion of the 

landfills and on the transport phenomena. This can also be extended to determine the effect 

on the MSW biodegradation. The results show this model can be useful in tracking the 

conversion process and provide useful insights in full scale landfills operations. 

  



100 

 

 

 

3.5 References 

1. Baltoukas D. 1-D approximation for the simulation of preferential flow in 

heterogeneous landfill conditions. Delft University of Technology, Delft, Netherlands, 

2012. 

2. Westlake K. Sustainable Landfill—Possibility or Pipe-Dream? Waste Manag Res. 

1997;15(5):453–61. Doi: 10.1177/0734242X9701500502. 

3. Kulkarni HS, Reddy KR. Moisture distribution in bioreactor landfills: A review. 

Indian Geotech J. 2012;42(3):125–49. Doi: 10.1007/s40098-012-0012-8. 

4. Erses AS, Onay TT, Yenigun O. Comparison of aerobic and anaerobic degradation 

of municipal solid waste in bioreactor landfills. Bioresour Technol. 2008;99(13):5418–26. 

Doi: 10.1016/j.biortech.2007.11.008. 

5. Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, et al. Release of non-methane organic 

compounds during simulated landfilling of aerobically pretreated municipal solid waste. J 

Environ Manage. 2012;101:54–8. Doi: 10.1016/j.jenvman.2011.10.018. 

6. Omar H, Rohani S. Treatment of landfill waste, leachate and landfill gas: A review. 

Front Chem Sci Eng. 2015;9(1):15–32. Doi: 10.1007/s11705-015-1501-y. 

7. El-Fadel M, Findikakis AN, Leckie JO. Numerical Modelling of Generation and 

Transport of Gas and Heat in Landfills I. Model Formulation. Waste Manag Res. 

1996;14(5):483–504. Doi: 10.1177/0734242X9601400506. 

8. Gholamifard S, Eymard R, Duquennoi C. Modeling anaerobic bioreactor landfills 

in methanogenic phase: Long term and short term behaviors. Water Res. 

2008;42(20):5061–71. Doi: 10.1016/j.watres.2008.09.040. 



101 

 

 

 

9. Themelis NJ, Kim YH. Material and energy balances in a large-scale aerobic 

bioconversion cell. Waste Manag Amp Res J Int Solid Wastes Public Clean Assoc ISWA. 

2002;20(3):234–42. Doi: 10.1177/0734242X0202000304. 

10. Kim S-Y, Tojo Y, Matsuto T. Compartment model of aerobic and anaerobic 

biodegradation in a municipal solid waste landfill. Waste Manag Res. 2007;25(6):524–37. 

Doi: 10.1177/0734242X07079148. 

11. Slezak R, Krzystek L, Ledakowicz S. Mathematical model of aerobic stabilization 

of old landfills. Chem Pap. 2012;66(6):543–9. Doi: 10.2478/s11696-012-0133-7. 

12. Fytanidis DK, Voudrias EA. Numerical simulation of landfill aeration using 

computational fluid dynamics. Waste Manag. 2014;34(4):804–16. Doi: 

10.1016/j.wasman.2014.01.008. 

13. Omar H, Rohani S. Transport Phenomena in the Conversion of an Anaerobic 

Landfill Into an Aerobic Landfill. Proceedings of the 2015 COMSOL Conference in 

Boston. Boston; 2015. 

14. Duquennoi C, Weisse S, Clement R, Oxarango L. Coupling Hydrodynamics and 

Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate 

Injection in Municipal Waste Landfills. Proceedings of the COMSOL Conference 2011 

Boston. Stuttgart, Germany; 2011. 

15. McCreanor P, Reinhart D. Hydrodynamic modeling of leachate recirculating 

landfills. Waste Manag Res. 1999;17(6):465–9. 

16. Ishimori H, Sakanakura H, Endo K, Yamada M, Osako M. Numerical Model for 

Leaching and Transporting Behavior of Radiocesium in MSW Landfill. Proceedings of the 

COMSOL Conference 2013 Boston. Boston; 2013. 

17. Ishimori H, Endo K, Ishigaki T, Sakanakura H, Yamada M. Coupled fluid flow and 

thermal and reactive transport in porous media for simulating waste stabilization 



102 

 

 

 

phenomena in semi-aerobic landfill. Proceedings of the 2011 COMSOL Conference in 

Boston. Boston; 2011. 

18. Ishimori H, Endo K, Yamada M. Reliability Evaluation for Static Chamber 

Method at Landfill Sites. Proceedings of the COMSOL Conference 2009 Boston. Boston; 

2009. 

19. Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on 

modeling of bioreactor landfill settlement. Waste Manag. 2009;29(3):1018–25. Doi: 

10.1016/j.wasman.2008.08.018. 

20. Xi Y, Xiong H. Numerical simulation of landfill gas pressure distribution in 

landfills. Waste Manag Res. 2013;31(11):1140–7. Doi: 10.1177/0734242X13502380. 

21. Faour AA, Reinhart DR, You H. First-order kinetic gas generation model 

parameters for wet landfills. Waste Manag. 2007;27(7):946–53. Doi: 

10.1016/j.wasman.2006.05.007. 

22. Abushammala MFM, Basri NEA, Basri H, Kadhum AAH, El-Shafie AH. 

Estimation of methane emission from landfills in Malaysia using the IPCC 2006 FOD 

model. J Appl Sci. 2010;10(15):1603–9. Doi: 10.3923/jas.2010.1603.1609. 

23. Amini HR, Reinhart DR, Mackie KR. Determination of first-order landfill gas 

modeling parameters and uncertainties. Waste Manag. 2012;32(2):305–16. Doi: 

10.1016/j.wasman.2011.09.021. 

24. Van Genuchten MT. A closed-form equation for predicting the hydraulic 

conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892–8. 

25. COMSOL. Two-phase flow in column. Available at 

http://www.comsol.com/model/two-phase-flow-in-column-499. 



103 

 

 

 

26. Stoltz G, Tinet A, Staub M, Oxarango L, Gourc J. Moisture Retention Properties 

of Municipal Solid Waste in Relation to Compression. J Geotech Geoenvironmental Eng. 

2012;138(4):535–43. Doi: 10.1061/(ASCE)GT.1943-5606.0000616. 

27. Jayakody KPK, Shimaoka T, Komiya T, Ehler P. Laboratory Determination of 

Water Retention Characteristics and Pore size Distribution in Simulated MSW Landfill 

Under Settlement. Int J Environ Res. 2014;8(1):79–84. 

28. COMSOL. COMSOL Documentation. Available at www.comsol.com. 

29. Borglin SE, Hazen TC, Oldenburg CM, Zawislanski PT. Comparison of aerobic 

and anaerobic biotreatment of municipal solid waste. J Air Waste Manag Assoc. 

2004;54(7):815–22. Doi: 10.1080/10473289.2004.10470951. 

30. Fairbanks DF, Wilke CR. Diffusion Coefficients in Multicomponent Gas Mixtures. 

Ind Eng Chem. 1950;42(3):471–5. Doi: 10.1021/ie50483a022. 

31. Chapman S, Cowling TG. The Mathematical Theory of Non-uniform Gases: An 

Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. 

Cambridge University Press; 1970. 

32. Brodkey RS, Hershey HC. Transport phenomena: a unified approach. New York ; 

Montreal: McGraw-Hill; 1988. 

33. Rosso L, Lobry JR, Flandrois JP. An Unexpected Correlation between Cardinal 

Temperatures of Microbial Growth Highlighted by a New Model. J Theor Biol. 

1993;162(4):447–63. Doi: 10.1006/jtbi.1993.1099. 

34. Baptista M, Antunes F, Gonçalves MS, Morvan B, Silveira A. Composting kinetics 

in full-scale mechanical–biological treatment plants. Waste Manag. 2010;30(10):1908–21. 

Doi: 10.1016/j.wasman.2010.04.027. 



104 

 

 

 

35. Themelis NJ, Ulloa PA. Methane generation in landfills. Renew Energy. 

2007;32(7):1243–57. Doi: 10.1016/j.renene.2006.04.020. 

36. Beaven RP, White JK, Braithwaite P. Application of the University of Southampton 

Landfill Degradation and Transport Model (LDAT) to an aerobic treatment field 

experiment. Proceedings of Global Waste Management Symposium. Colorado, USA; 2008. 

37. Sole-Mauri F, Illa J, Magrí A, Prenafeta-Boldú FX, Flotats X. An integrated 

biochemical and physical model for the composting process. Bioresour Technol. 

2007;98(17):3278–93. Doi: 10.1016/j.biortech.2006.07.012. 

38. Tchobanoglous G, Theisen H, Vigil SA. Integrated solid waste management: 

engineering principles and management issues. New York ; Montreal: McGraw-Hill; 

1993. 

39. Yeşiller N, Hanson JL, Liu W-L. Heat Generation in Municipal Solid Waste 

Landfills. J Geotech Geoenvironmental Eng. 2005;131(11):1330–44. 

40. Manna L, Zanetti MC, Genon G. Modeling biogas production at landfill site. 

Resour Conserv Recycl. 1999;26(1):1–14. Doi: 10.1016/S0921-3449(98)00049-4. 

41. Bilgili MS, Demir A, Özkaya B. Influence of leachate recirculation on aerobic and 

anaerobic decomposition of solid wastes. J Hazard Mater. 2007;143(1–2):177–83. Doi: 

10.1016/j.jhazmat.2006.09.012. 

42. Green LC. Method and system for treating bio-degradable waste material through 

aerobic degradation. 5,888,022, 1999. 

43. Zanetti MC. Aerobic Biostabilization of Old MSW Landfills. Am J Eng Appl Sci. 

2008;1(4):393–8. Doi: 10.3844/ajeassp.2008.393.398. 

44. Wadkar DV, Modak PR, Chavan VS. Aerobic thermophilic composting of 

municipal solid waste. Int J Eng Sci Technol. 2013;5(3):716–8. 



105 

 

 

 

45. Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring 

operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste 

Manag. 2008;28(8):1346–54. Doi: 10.1016/j.wasman.2007.06.024. 

46. Crutcher AJ, Rovers FA, McBean EA. Temperature as an indicator of landfill 

behavior. Water Air Soil Pollut. 1982;17(2):213–23. Doi: 10.1007/BF00283304. 

47. Powell J, Jain P, Kim H, Townsend T, Reinhart D. Changes in Landfill Gas Quality 

as a Result of Controlled Air Injection. Environ Sci Technol. 2006;40(3):1029–34. Doi: 

10.1021/es051114j. 



106 

 

 

 

Chapter 4  

4 Removal of CO2 from landfill gas and Pb2+ from 
leachate using a hybrid sorption process 

Landfills produce methane and carbon dioxide as the waste is biodegraded. Typically, this 

gas is flared and the energy is lost. The objective of this study was the removal of carbon 

dioxide for the purification of methane from landfill gas and removal of heavy metals from 

leachate using a hybrid sorption column (both adsorption and absorption). The column had 

a 6 cm diameter and 70 cm height. The heavy metals were removed via adsorption/ion 

exchange using the natural zeolite clinoptilolite. The experimental results agreed with the 

theoretical results found using Aspen HYSYS®. Using leachate as the liquid phase resulted 

in slightly more removal of carbon dioxide than water (60.6% and 56.8%, respectively 

using zeolite; 63.4% and 61.5%, respectively using glass beads). Using zeolite as packing 

compared to glass beads showed slightly less removal (56.8% and 61.5%, respectively 

using water and 60.6% and 63.4%, respectively when using leachate). When zeolite was 

used as packing and leachate as the sorbent, the gas composition was in equilibrium after 

2 recycles at a composition of 55% methane and 45% carbon dioxide. When glass beads 

were used as packing, the carbon dioxide removal was high enough (63.4%) that the carbon 

dioxide desorbed at the inlet of the pump and did not allow further recycles. The initial pH 

of the model leachate (prepared using distilled water and lead(II) nitrate) was tested in 

batch experiments to see how the efficacy of lead removal varied with pH. At pH 2.8, 4.9 

and 5.6 the removal of lead was 99.64 ± 0.07%, 99.77 ± 0.06% and 99.84 ± 0.07%, 

respectively. Increasing pH higher than this point caused precipitation and decreased the 

lead concentration to 2.5 ppm. The subsequent removal at pH 10.3 was 91.64 ± 2.25%.  

The experimental and simulation results indicated that the hybrid sorption column can be 

useful for the removal of CO2 at higher pressures from landfill gas but requires a longer 

column length for the effective removal of heavy metals from leachate. 
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4.1 Introduction 

Greenhouse gases (GHGs) have been steadily rising every year. This is due to the 

increasing human population. Carbon dioxide is nearly always blamed for the increase 

because of the large amounts produced via energy production by fossil fuels and cement 

manufacturing. However, methane is a more potent greenhouse gas, 25 times as potent as 

carbon dioxide. Methane traps more infrared radiation and has a longer atmospheric 

residence time1. In the year 2004 – 2005, anthropogenic GHG emissions from the waste 

sector totaled 1.4 million metric tons of CO2 equivalent. From the GHG emissions 

produced by the waste sector, 90% was made up of methane and 18% of the global 

anthropogenic methane emissions2. Furthermore, the concentration of methane in the 

atmosphere is more than twice its concentration 150 years ago. This is indirectly caused by 

the increase in human population3. Anaerobic landfills primarily produce both methane and 

carbon dioxide.  Table 4-1 shows a range of volume fractions of the various components 

of anaerobic landfill gas (LFG). Different authors provide different compositions for 

anaerobic landfill but this reference was used because ranges of the different gases were 

given. The gas composition used in this work was 50% CH4 and 50% CO2. This 

composition falls inside the range given in Table 4-1 and is reported in literature4. 

Table 4-1 Typical anaerobic landfill gas composition 

Component Volume fraction (%) Reference 

CH4 40-55 

5 

CO2 35-50 

N2 0-20 

O2 0 

H2S Up to 200 ppm 

In landfills, attempts are made to reduce the amount of methane released to the atmosphere 

by capturing the LFG and flaring it. However, flaring has the unwanted consequence of 

potentially producing harmful gases (SOx, NOX, CO) depending on the composition of the 

LFG6. Furthermore, flaring has to be done at a temperature of 1200°C or higher to reduce 

the risk of toxic compounds (e.g. dioxins) being produced7. An alternative to wasting the 
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energy is to use the LFG for other applications such as power generation8–10 or fuel 

production10,11. However, anaerobic LFG has approximately half the heating value of 

natural gas12. Removing carbon dioxide can increase the heating value. 

Research has been conducted on removing CO2 using chemical scrubbing13–16. Water 

scrubbing is simple, effective and versatile. It has not been as extensively researched17–19 

as chemical scrubbing because it is not as widely used. In landfills there is access to 

leachate that can be used as an absorbent in place of water. 

Removing heavy metals from wastewaters (in this case leachate) can be accomplished in 

numerous methods. In this study the method to be used is adsorption/ion exchange by 

zeolites. The heavy metal that is focused on is lead. Lead has the highest adsorption/ion 

exchange selectivity of the common heavy metals found in landfill leachate for the natural 

zeolite clinoptilolite20. The adsorption/ion exchange for lead using zeolite is shown in 

Equation 4-1. 

  m

s

n

z

m

z

n

s nMmPbnMmPb )()()()(  (4-1) 

where M designates the zeolite cation being exchanged (Na, K, Ca or Mg), n designates 

the ionic charge, which can vary for the transition metals, and the subscripts (s) and (z) 

designate in solution and bonded to the zeolite, respectively. 

Various adsorbents can be used to remove heavy metals such as activated carbons21–24, 

natural/synthetic zeolites20,25–27 and metal-organic frameworks28. Clinoptilolite, a natural 

zeolite, is the most heavily studied zeolite for use in the removal of heavy metals29–31 and 

is the choice for use in this study. 

Both heavy metal removal using adsorption/ion exchange and gas separation using 

absorption are most often carried out in packed bed columns. The purpose of this study is 

to combine the two methods in one column and test its efficacy when compared to the best 

case scenario (i.e. two single columns). The goal of this study is to prove the efficacy of 

this hybrid sorption system and spawn further research and development to eventually scale 
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up this system. Combining two columns in one, simplifies the design requirements and 

reduces the capital cost. 

4.2 Economic incentive for the landfill gas purification 

This section provides the economics of using the methane from the LFG as an energy 

source. The prices are taken from distributors in the Province of Ontario32 and are shown 

in Table 4-2. 

day

m
FLFG

3

000,84 33 

55.040.0
4

CHx
5 

Table 4-2 Ontario natural gas prices 

Distributor Cost (¢/m3) 

Union Gas Ltd. 9.4846 

Enbridge Gas Distribution Inc. 11.7485 

Natural Resource Gas Ltd.  18.7001 
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Using Union Gas prices, between $1,163,000 and $1,599,000 per year can be saved on 

natural gas. 

Enbridge Gas Distribution Inc. 
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Using Enbridge Gas prices, between $1,441,000 and $1,981,000 per year can be saved on 

natural gas. 
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Using Natural Resource Gas prices, between $2,293,000 and $3,153,000 per year can be 

saved on natural gas. 



111 

 

 

 

4.3 Materials and methods 

4.3.1 Zeolite preparation 

The natural zeolite sample used in this project was a commercial product provided by Earth 

Innovations Inc. (Toronto, ON, Canada) with the particle size of 7.6 ± 1.6 mm. The natural 

zeolite clinoptilolite was used for heavy metal removal and as packing for absorption. The 

chemical formula of clinoptilolite is given by (Na,K,Ca)4Al6Si30O72·24H2O
34. The 

chemical composition is found in Table 4-3. The chemical composition was found using 

X-ray fluorescence (XRF) technique. This clinoptilolite contained mostly Al2O3 (11.5%) 

and SiO2 (67.5%) and little amounts of other oxides. To regenerate the zeolite, the zeolite 

was soaked in a 10% (by weight) NaCl, 1% HCl (by volume) in distilled water solution for 

24 hours35. After 24 hours the zeolite was thoroughly washed with distilled water and dried 

at 110°C overnight. The cation exchange capacity (CEC) values of zeolites used in both 

the column and the batch tests are found in Section 4.4.1.5. 

4.3.2 Leachate preparation 

Leachate used in the absorption experiments was obtained from the W12A Landfill in 

London, Ontario, Canada. Before use, the leachate was filtered through VWR Grade 413 

mesh filter to remove fine particles that may clog the nozzle used to spray the absorbent. 

When not in use, the leachate was stored at 4°C to minimize potential degradation of the 

leachate. When experiments are performed, the leachate is allowed to return to room 

temperature for use and subsequently refrigerated after the experiments are finished. 

4.3.3 Model leachate solution preparation 

The model leachate solution was prepared by dissolving Pb(NO3)2 in deionized water to 

get a concentration of 100 ppm. Lead was used due to its having the highest adsorption/ion 

exchange uptake selectivity by clinoptilolite. The pH of the solutions were varied using 

HNO3 and NaOH. 
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4.3.4 Characterization techniques 

The zeolite sample was washed with deionized water and dried at 100°C for 5 hours then 

characterized using XRF (for chemical composition), X-ray diffraction (XRD) (for 

crystallinity and phase composition), scanning electron microscope (SEM) for 

morphology, thermogravimetric analysis (TGA) (for thermal stability and water content) 

and BET method (for surface area). Furthermore, CEC of the zeolite was measured using 

ammonium acetate standard technique35. Characterizations were done on zeolite samples 

with particle sizes between 250 and 425 μm except for the CEC which was done on samples 

with particle sizes of between 5.5 and 6 mm. 

XRF results were obtained using PANalytical PW2400 Wavelength Dispersive instrument. 

The powder XRD patterns of the zeolite sample was obtained using a Rikagu Miniflex 

XRD (Japan) machine at CuKα radiation (λ= 0.154 nm), with a step size of 0.05° in the 2θ 

range of 5–60°. Morphology was observed using Hitachi S 2600N SEM (Tokyo, Japan) 

operating at 5 kV of acceleration voltage. The TGA curves were obtained under nitrogen 

atmosphere from ambient temperature up to 1050°C with heating rate of 10 °C/min using 

a Mettler Toledo TGA/SDTA 851e model (Switzerland) with version 6.1 STARe software. 

The BET and Langmuir surface areas were obtained using a Micrometrics ASAP 2010 

(Micrometrics, Norcross, USA). Known amounts of sample was loaded into the BET 

sample tube and degassed under vacuum (10–5 Torr) at 150 °C. 

The CEC values of the zeolitic samples were measured using the ammonium acetate 

saturation (AMAS)35 technique followed by using UV-VIS spectroscopy to determine the 

ammonium concentration. A known mass of the zeolite sample was contacted with 1 N 

solution of ammonium acetate (NH4OAc). The samples were shaken in an end-over-end 

shaker for 5 days. After 5 days, the samples were allowed to air dry. The dried samples 

were then put in contact with 10% NaCl, 1% HCl in distilled water for 6 hours and the 

zeolite was filtered out. The supernatant was mixed with sodium salicylate, sodium 

hydroxide and sodium hypochlorite to determine the ammonium concentration. The 

sample was then analyzed using UV-VIS spectroscopy (Cary 100 UV-Visible 
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Spectrophotometer, Agilent, Santa Clara, USA) and correlated to the ammonium 

concentration (correlation shown in Figure A-1). 

Lead concentration was determined by inductively coupled plasma optical emission 

spectrometry (ICP-OES) using a Varian Vista Pro ICP-OES with SPS-3 Auto-sampler 

(Australia). The wavelengths used in the ICP analysis were 182.143 nm, 217.00 nm, 

220.353 nm, 261.417 nm and 283.305 nm. The lead concentration results from the 5 

wavelengths were averaged to give the lead concentration reported in this work. Prior to 

ICP-OES analysis, the samples were filtered through 0.45 µm polyethersulfone membrane 

filters. 

4.3.5 Experimental setup and procedure 

4.3.5.1 Experimental setup 

Figure 4-1 shows the experimental set-up used. The experiments were carried out at room 

temperature (21-25°C). The gas flow rate was controlled with a 50-500 mL/min rotameter. 

A diaphragm pump was used to introduce water/leachate to the column at a flow rate of 

50-150 mL/min. Liquid was sprayed at the column top using a 90° full cone 303SS spray 

nozzle. All of the experiments were carried out in a column with 6 cm diameter and 70 cm 

height. The column pressure was adjusted with a ¼” back pressure regulator. The column 

was filled with Winsted precision glass balls. To avoid high pressure drop ¼” glass balls 

were used for absorption tests. 
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Figure 4-1 Hybrid sorption system schematic 

4.3.5.2 Absorption column experimental procedure 

The objective of this study was to remove CO2 from a CO2-CH4 mixture representing 

anaerobic LFG to increase the concentration of CH4. The mixture of gases was 50% CO2 

and 50% CH4, measured gravimetrically to 1% error. A premixed gas cylinder with this 

combination was supplied from Praxair (London, ON). The simulated LFG mixture 

pressure was kept constant using a pressure regulator. 

Water was first pumped into the column. Once the water had reached the bottom, the gas 

was introduced in the bottom of the column to begin. A constant level of liquid (liquid 

holdup) was allowed at the bottom of the column to force the gas up through the bed. The 

constant level was controlled using a valve on the outlet tube. Without liquid, the gas 

preferentially chooses to go through the liquid outlet due to less pressure drop when 
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compared to the packed bed. The gas and water/leachate were allowed to run for 10 minutes 

before a gas sample was taken, to allow the column to reach equilibrium (equilibrium time 

found experimentally in the preliminary experiments; shown in Figure A-2) and to ensure 

results were independent of one another. Tests were all done in triplicates. Absorption tests 

were carried out with water and the results were compared with Aspen HYSYS® V8.6 to 

ensure the adequacy of the experimental system. The sour gas Peng-Robinson fluid 

package was used. Carbon dioxide is an acidic gas, therefore this had to be accounted for 

in the selection of fluid package. A GEM5000 (LANDTEC NORTH AMERICA, Colton, 

California) landfill gas analyzer was used to measure the gas composition (CO2 and CH4 

vol%) in output stream. The compositions were normalized by subtracting the trace O2 and 

N2 from the gas analyzer results. All the leachate was collected at the bottom of the column 

and was reused for multipass leachate experiments. 

4.3.5.3 Batch adsorption/ion exchange experimental procedure 

For batch adsorption/ion exchange studies, 3 g (±1%) of zeolite was put in contact with 30 

mL of the model leachate solution for 1 hour and 5 minutes in an end-over-end shaker in a 

PPCO tube at 20-30 rpm (average of 25 rpm) (equilibrium time is less than 6 hours; Figure 

A-3). Based on the concentration of lead, equilibrium concentration would be too low for 

accurate detection, so 1 hour and 5 minutes was chosen to ensure lead concentration was 

detectable. The batch tests were run in triplicate and 30 mL of model leachate solution was 

also mixed for 1 hour and 5 minutes in a PPCO tube as the baseline to account for any 

adsorption to the tube walls. The pH of the solutions was varied using HNO3 and NaOH to 

determine the effect of pH on removal of lead. After both column and batch tests, the 

treated model leachate solutions were filtered through a 0.45 µm polyethersulfone 

membrane filter before being analyzed for lead concentration. 

4.3.5.4 Adsorption/ion exchange column experimental procedure 

The column was washed in 2% (by volume) nitric acid and the tanks and tubes were soaked 

in 2% nitric acid for 24 hours before the adsorption/ion exchange test to ensure any residual 

adsorbed heavy metals in the tanks were removed. Time was started when the first drops 
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of model leachate solution dropped into the column sump. Samples were taken from the 

outlet of the column and filtered through 0.45 µm polyethersulfone filters. In the previous 

sections, liquid holdup was used to force the gas upwards. However, to allow independent 

sample collections of treated model leachate, gas was not introduced into the column. The 

liquid holdup at the bottom would influence the future samples collected because the model 

leachate going through the column would mix with the liquid holdup. 

4.4 Results and discussion 

4.4.1 Adsorbent characterization 

4.4.1.1 Chemical composition 

XRF data for the clinoptilolite is summarized in Table 4-3. Si/Al ratio is an important 

characteristic of zeolites. The ratio affects physico-chemical properties of the zeolite.  The 

ratio was calculated from the XRF data. The Si/Al ratio was 10.37 (mass basis) and 9.96 

(mole basis), supporting data gathered from XRD patterns that the sample is a 

clinoptilolite-rich tuff zeolite belonging to the heulandite (HEU) family36. 

Loss on ignition (LOI) was determined by heating the sample at 1050°C for 3 hours in an 

electrical furnace and was 10.50%. Given the TGA (Figure 4-4) and LOI data, it can be 

concluded that the main weight loss of the natural samples resulted from water evaporation 

rather than decomposition of any component due to the large mass decrease at 

approximately 100°C. 

Table 4-3 Chemical composition of the zeolite sample by XRF technique 

 MRLa (wt %) Zeolite sample 

SiO2 0.2 67.50 

TiO2 0.04 0.30 

Al2O3 0.1 11.50 

Fe2O3 0.04 1.65 

MnO 0.06 0.01 

MgO 0.11 0.50 

CaO 0.03 2.20 

K2O 0.06 4.11 

Na2O 0.08 0.91 
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P2O5 0.01 0.10 

Cr2O3   0.01 <0.01 

BaO   0.02 0.04 

SrO   0.02 0.01 

LOIb 0.01 10.50 

Total -- 99.54 

Si/Al (wt) -- 10.37 

Si/Al (mol) -- 9.96 
aMRL: Method Reporting Limit 

bLOI: Loss on Ignition 

4.4.1.2 Phase purity (crystallinity) and morphology 

The XRD result is shown in Figure 4-2. According to the XRD patterns presented in Figure 

4-2, the main zeolitic phase pointed to the HEU structure, which can be either heulandite 

or clinoptilolite. Since the Si/Al ratio is higher than 4, clinoptilolite can be considered the 

major phase of the sample36. 

 

Figure 4-2 XRD Patterns of (A) pure clinoptilolite (simulated XRD pattern) compared 

with (B) zeolite sample 
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The zeolite sample was viewed under magnification using a SEM. Figure 4-3 shows the 

crystalline structure of clinoptilolite. Clinoptilolite is characterized by broad flat 

rectangular faces with angled corners37. 

 

Figure 4-3 SEM micrograph of the zeolite sample 

4.4.1.3 Thermal analysis 

Figure 4-4 shows the TGA curve of the of the fresh (unused) zeolite sample. Approximately 

9.5% weight loss occurred at 100°C. Another peak of about 1% weight loss at 

approximately 750°C leads to a total weight loss of 10.5%. This is in good agreement with 

the LOI value in Table 4-3. 
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Figure 4-4 TGA curve of the zeolite sample (heating rate 10°C/min, under N2 

atmosphere) 

The small peak (at approximately 750°C) can be attributed to minerals containing the 

carbonate ion (i.e. CO3
2-) such as calcium carbonate38. Calcium carbonate decomposes 

around 700-900°C39. The weight loss of the sample at approximately 750°C is close to 1%. 

4.4.1.4 Surface area 

The BET surface area was found to be 28.2 m2/g. The Langmuir surface area was found to 

be 38.9 m2/g. The micropore area was found to be 7.2 m2/g and the external surface area 

was found to be 21.0 m2/g. The majority of the surface area was the external surface as it 

was 74.5% of the total surface area. 
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4.4.1.5 Cation exchange capacity 

Cation exchange capacity is a specific characteristic of a zeolite, which depends on its 

structural chemistry. CEC is a measure of how many cation exchange sites are available. 

After saturation for 5 days at room temperature, the supernatant was filtered and the 

saturated zeolite dried thoroughly at room temperature. After saturation, all of the exchange 

sites are occupied by NH4
+ ions. The amount of NH4

+ (concentration) ions is a measure of 

CEC. To measure CEC, the NH4
+ ions have to be removed from the zeolite and measured. 

To accomplish this the NH4
+-saturated samples were soaked in a 10% NaCl, 1% HCl 

solution to exchange the NH4
+ ions with Na+ ions according to the following reaction: 

 
)(4)(4 aq

NHNaZNaNHZ aq   (4-2) 

The ammonium saturated zeolite was soaked in 25 mL of 10% NaCl, 1% HCl solution for 

6 hours. The ammonium concentration was measured using an assay made by mixing the 

supernatant with sodium salicylate, sodium hydroxide and sodium hypochlorite. The 

colour of the solutions was calibrated with known ammonium concentrations using UV-

VIS spectroscopy (Figure A-1). 

According to the results, the CEC of the zeolite used for the column was 0.85 ± 0.16 meq/g 

and the CEC of the zeolite used for the batch pH tests was 0.98 ± 0.09 meq/g. The CEC 

values are comparable to clinoptilolite CEC values reports in literature38. 

4.4.2 Absorption 

4.4.2.1 Agreement between the experimental and simulated results 
of absorption 

The first step for this study was to determine if the designed column performed correctly. 

To accomplish this, experimental results using water as the absorbent and glass beads as 

packing were used. The experimental results were compared to simulation results obtained 

from Aspen HYSYS V.8.6. The results are shown in Figure 4-5. 
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Figure 4-5 Experimental results vs. Aspen HYSYS simulation results 

Figure 4-5 shows the agreement between the experimental and simulated results. This 

verified the column’s operational functionality. 

4.4.2.2 Comparison of the performance of different packings and 
absorbents 

Using leachate as an absorbent was compared to water to test its performance in removing 

carbon dioxide. The performance of the zeolite particles was also compared to glass beads 

to test its efficacy as packing material. 
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Figure 4-6 Methane vol% with different packing and absorbents 

Figure 4-6 shows that using glass beads as packing compared to zeolite provided a higher 

vol% of methane in the outlet gas stream (more carbon dioxide removal). Using beads, 

water and leachate achieved a CH4 vol% of 61.5% and 63.4%, respectively. Using zeolite, 

water and leachate achieved a CH4 vol% of 56.8% and 60.6%, respectively. The function 

of the packing is to provide a greater surface area and a longer residence time to allow for 

mass transfer of carbon dioxide from the gas phase to the liquid phase (either water or 

leachate). There was a slight increase in the methane volume fraction using glass beads 

when compared to zeolite. This was due to the uniformity of the spheres when compared 

to the zeolite. Due to the non-uniformity of the zeolite particles, some channeling in the 

liquid phase occurred. Some portions of the column did not become wet. The channeling 

decreased residence time and did not allow the water to become saturated with carbon 
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dioxide. While performing the experiments with zeolite, it was seen that the water/leachate 

was more evenly distributed in the top half of the column and channeling was more apt to 

occur in the bottom half. 

Also, leachate provided a greater removal of carbon dioxide from the gas (Figure 4-6). 

Using leachate, beads and zeolite achieved a CH4 vol% of 63.4% and 60.6%, respectively. 

Using water, beads and zeolite achieved a CH4 vol% of 61.5% and 56.8%, respectively.  

The pH of the leachate was 7.56 (slightly basic) and the pH of the water was 6.53 (slightly 

acidic). The basicity of the leachate favours the dissolution of carbon dioxide more than 

the water. The dissolution of carbon dioxide in water proceeds via the following 

equilibrium reaction: 

)(32)(2)(2 aqlg
COHOHCO   (4-3) 

The basicity (hydroxide ions) neutralized some of the carbonic acid produced, favouring 

the forward reaction when the leachate was used. 

4.4.2.3 Simulation results at higher pressures 

Absorption columns are typically run at pressures much higher than atmospheric 

pressure17,18. Figure 4-7 shows the methane vol% simulation results at higher pressures 

using water. The sorption system was limited in increasing pressure due to safety 

requirements. However, as shown by Figure 4-5, experimentation and simulation results at 

atmospheric pressure were in close agreement. Therefore, simulation can be used to 

provide results at higher pressures. At 20 atm, the vol% of CH4 was greater than 95%. The 

simulation was run using the same water flowrate and the same gas molar flowrate. In 

Section 4.4.2.2, leachate showed a slightly higher methane vol% than water (beads – 63.4% 

and 61.5%, respectively and zeolite – 60.6% and 56.8%, respectively) when compared to 

water (Figure 4-6). 
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Figure 4-7 Methane vol% simulation results at higher pressures using water 

At higher pressures, leachate can be used to separate carbon dioxide and methane. At 20 

atm, water increased the methane vol% to approximately 95%. Using leachate can provide 

similar (or slightly increased) methane purity. 

4.4.2.4 Multipass leachate absorption 

After the leachate was used as an absorbent, the leachate was subsequently reused to test 

its efficacy as an absorbent. Figure 4-8 shows the methane vol% as the leachate is used 

multiple times. Gas composition reached equilibrium after the second recycle for the 

zeolite packing at approximately 55% methane. The pH reached an equilibrium of 

approximately 6.5 after the first recycle (Figure 4-9) . The equilibrium pH achieved using 
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the glass beads was lower than the zeolite after the first recycle. This could be due to more 

carbon dioxide dissolved, producing more acid. 

On the first leachate use, the glass bead packing removed more carbon dioxide than the 

zeolite packing; 26.8% and 21.2% CO2 removal, respectively. This caused the leachate to 

become saturated in carbon dioxide. After the first recycle, carbon dioxide desorbed from 

the carbon dioxide in the suction line, near the inlet of the pump. This caused tiny bubbles 

to form and severely affected the pump operation, and did not allow any further recycles. 

The zeolite packing did not achieve the same dissolution of carbon dioxide and did not 

have this problem. 

 

Figure 4-8 CH4 vol% after multiple leachate reuse 
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*-1 indicates initial pH (before use) 

Figure 4-9 pH after multiple leachate reuse 

Due to the absorption being performed at atmospheric pressure, little carbon dioxide was 

desorbed after completion. If the absorption were performed at elevated pressures, a return 

to atmospheric pressure would have removed the majority of the carbon dioxide, and 

allowed more carbon dioxide to be absorbed in subsequent uses and prevented cavitation 

occurring. 
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4.4.3 Adsorption/ion exchange 

4.4.3.1 Batch adsorption/ion exchange test; pH in the batch tests 

A batch adsorption/ion exchange test was performed using the zeolite particles to 

determine how much lead could be removed from the model leachate solution under ideal 

batch conditions. Depending on the age of the landfill (and the subsequent age of the 

leachate), the pH can vary between acidic and basic conditions. Anaerobic landfills are 

characterized by acidic leachate early in their lives as acidic compounds are produced. The 

landfills become less acidic over time as the acidic species are consumed40. Figure 4-10 

shows the initial pH and final pH after 1 hour of contact time between the model leachate 

solution and the zeolite. Figure 4-11 shows the removal of lead with varying pH. Starting 

at 100 ppm lead concentration, at pH 2.8, 4.9 and 5.6 the removal of lead was 99.64 ± 

0.07%, 99.77 ± 0.06% and 99.84 ± 0.07%, respectively. The most acidic samples showed 

the least removal of lead. This is due to the hydronium ions being in competition with the 

lead ions for the cation sites on the zeolite. This results in an increase in pH (Figure 4-10). 

As the pH increased (B and C in Figure 4-10), less hydronium ions were in competition for 

the cation sites, the removal of lead increased and the pH increase was not as large (Figure 

4-10). Since less hydronium ions are present, the driving force is less than A (Figure 4-10) 

and less hydronium ions are exchanged. Once the pH became basic (D), the lead 

precipitated out. The precipitate was filtered out and adsorption/ion exchange experiments 

were carried out. The pH decreased (became more acidic) due to the slight acidic nature of 

zeolites. Removal at D (Figure 4-11) conditions were 91.64 ± 2.25%. The initial 

precipitation decreased the concentration from 100 ppm to approximately 2.5 ppm. 

Removal at basic conditions decreased due to the competition between the Pb2+ and the 

Na+ ions for the cation exchange sites. The Na+ ions are added when the pH is increased 

using NaOH. 
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Figure 4-10 pH before and after zeolite contact 
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Figure 4-11 %Removal at different initial pH values 

The lead precipitation (via hydroxide precipitation) is given by the following equilibrium 

reaction: 

  OHPbOHPb 2)( 2

2  (4-4) 

From this reaction, the pH at which precipitation occurs can be determined. This is done 

using the following equation (Ksp value was found from the CRC Handbook41 with a value 

of 1.43e-20): 

][
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74.514]log[   pOHpHOHpOH  

Therefore, based on this calculation, at 100 ppm, lead precipitates at a pH of 5.74. 

The Ontario guidelines for daily lead discharge in process effluent is 0.4 ppm42. After 1 

hour, the lead concentration did not decrease below the guidelines for discharge. However, 

1 hour was not enough contact time to reach equilibrium (Figure A-3). After 12 hours of 

contact time (equilibrium time surpassed) the concentration of lead was below 0.4 ppm. 

This was below the discharge limit. 

4.4.3.2 Continuous adsorption/ion exchange column test 

Figure 4-12 shows the concentration divided by the initial concentration of lead as time 

progresses while flowing through the adsorption/ion exchange column. The lead 

concentration decreased to between 8 and 10 ppm at the column exit. The removal was not 

enough for safe discharge and meeting the environmental guidelines. Therefore, the 

leachate would need further treatment to decrease the lead concentration. Clinoptilolite 

with a particle size of 7.6 ± 1.6 mm was used as packing. Due to the shape of the zeolite 

particles, the lead did not have access to the sites inside of the zeolite for ion 

exchange/adsorption due to the short residence time. The lead ions only had access to the 

surface sites, significantly decreasing the area available for removal of lead. By increasing 

the height of the column, the lead concentration can decrease below 8 ppm. The highest 

removal of lead occurs at the start of the adsorption/ion exchange process. Furthermore, 

due to the particle shape of the zeolites, channeling was observed. A small portion of the 

zeolite particles were in contact with the zeolite. 
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Figure 4-12 Lead concentration divided by initial lead concentration over time (inset is a 

zoomed in view of the line) 

4.5 Conclusions 

Clinoptilolite was characterized and used for lead removal from model leachate solution. 

It was also partially used as packing in a hybrid sorption column for absorption to purify 

methane by removing carbon dioxide from a 50-50 mixture of CO2 and CH4 representing 

the LFG. 

The column efficacy was tested by comparing experimental results at different gas 

flowrates with Aspen HYSYS V8.6 simulation results. The experimental results agreed 

with the results found using Aspen HYSYS at atmospheric pressure. When used as packing 

for absorption, clinoptilolite showed slightly less carbon dioxide removal efficiency 
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compared to traditional inert spherical glass bead (56.8% to 61.5% for water and 60.6% to 

63.4% for leachate). The non-uniformity of the clinoptilolite particles was proposed to have 

caused channeling of the liquid and did not allow sufficient residence time for equilibrium 

between the liquid and gas phases. Landfill leachate was tested for use as an absorbent in 

the place of water. At the same gas and liquid flowrates, there was a 1.9% increase in 

removal of carbon dioxide using leachate instead of water using glass bead packing and 

3.8% increase using zeolite packing. Simulation results showed at 10 atm, the methane 

vol% was greater than 90%, showing an approximately 80% removal of carbon dioxide. 

Reusing leachate as an absorbent showed potential when using zeolite packing. Gas 

composition equilibrium was reached after 2 recycles at 55% of methane. However, when 

using glass beads, carbon dioxide saturated the leachate and caused desorption (cavitation) 

at the inlet of the pump, negatively affecting performance. 

During batch adsorption/ion exchange tests, removal of lead increased as pH increased 

until neutral pH. The higher the pH, the less hydronium ions were in competition for the 

ion exchange sites. At basic pH (pH 10.3), the sodium ions (from sodium hydroxide) were 

in competition with the lead ions, showing less lead removal. Precipitation decreased the 

lead concentration to 2.5 ppm. Starting from 2.5 ppm, at pH 10.3, 91.64 ± 2.25% removal 

of lead was observed. Starting at 100 ppm lead concentration, at pH 2.8, 4.9 and 5.6 the 

removal of lead was 99.64 ± 0.07%, 99.77 ± 0.06% and 99.84 ± 0.07%, respectively. 

Increasing pH greater than 5.74 causes lead precipitation. After contact with the zeolite, 

the lower the pH, the higher the pH increased. This was due to a higher concentration of 

hydronium ions causing a larger driving force for uptake of the hydronium ions. 

Further work can be done on scaling up and increasing the pressure of the column to 

examine the removal of carbon dioxide. More work can also be done on the kinetics of the 

removal of the heavy metals. The complexity of the processes that are occurring 

(absorption, adsorption/ion exchange, fluid flow) should also be modelled to better 

understand what is occurring. 

  



133 

 

 

 

4.6 References 

1. Huber-Humer M, Kjeldsen P, Spokas KA. Special issue on landfill gas emission 

and mitigation. Waste Manag. 2011;31(5):821–2. 

2. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, et al. Mitigation 

of global greenhouse gas emissions from waste: conclusions and strategies from the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working 

Group III (Mitigation). Waste Manag Res. 2008;26(1):11–32. Doi: 

10.1177/0734242X07088433. 

3. Rasmussen RA, Khalil MAK. Atmospheric methane in the recent and ancient 

atmospheres: Concentrations, trends, and interhemispheric gradient. J Geophys Res 

Atmospheres. 1984;89(D7):11599–605. Doi: 10.1029/JD089iD07p11599. 

4. Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Analysis of the 

feasibility of the recovery of landfill gas: a case study of Mexico. J Clean Prod. 

2014;79:53–60. Doi: 10.1016/j.jclepro.2014.05.025. 

5. Bove R, Lunghi P. Electric power generation from landfill gas using traditional and 

innovative technologies. Energy Convers Manag. 2006;47(11–12):1391–401. Doi: 

10.1016/j.enconman.2005.08.017. 

6. Solov’yanov AA. Associated petroleum gas flaring: Environmental issues. Russ J 

Gen Chem. 2011;81(12):2531–41. Doi: 10.1134/S1070363211120218. 

7. Ménard C, Ramirez AA, Nikiema J, Heitz M. Biofiltration of methane and trace 

gases from landfills: A review. Environ Rev. 2012;20(1):40–53. Doi: 10.1139/a11-022. 

8. Goossens MA. Landfill gas power plants. Renew Energy. 1996;9(1–4):1015–8. 

Doi: 10.1016/0960-1481(96)88452-7. 



134 

 

 

 

9. Morgan SM, Yang Q. Use of Landfill Gas for Electricity Generation. Pract Period 

Hazard Toxic Radioact Waste Manag. 2001;5(1):14–24. Doi: 10.1061/(ASCE)1090-

025X(2001)5:1(14). 

10. Themelis NJ, Ulloa PA. Methane generation in landfills. Renew Energy. 

2007;32(7):1243–57. Doi: 10.1016/j.renene.2006.04.020. 

11. Mostbauer P, Lombardi L, Olivieri T, Lenz S. Pilot scale evaluation of the BABIU 

process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste 

Manag. 2014;34(1):125–33. Doi: 10.1016/j.wasman.2013.09.016. 

12. Jewaskiewitz B. Landfill gas recovery, green energy, and the clean development 

mechanism. Civ Eng Mag South Afr Inst Civ Eng. 2010;18(7):19–23. 

13. Dang H, Rochelle GT. CO2 Absorption Rate and Solubility in 

Monoethanolamine/Piperazine/Water. Sep Sci Technol. 2003;38(2):337–57. Doi: 

10.1081/SS-120016678. 

14. Diao Y-F, Zheng X-Y, He B-S, Chen C-H, Xu X-C. Experimental study on 

capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag. 

2004;45(13-14):2283–96. Doi: 10.1016/j.enconman.2003.10.011. 

15. Gaur A, Park J-W, Maken S, Song H-J, Park J-J. Landfill gas (LFG) processing via 

adsorption and alkanolamine absorption. Fuel Process Technol. 2010;91(6):635–40. Doi: 

10.1016/j.fuproc.2010.01.010. 

16. Kim GH, Park SY, You JK, Hong WH, Kim J-N, Kim J-D. CO2 absorption kinetics 

in a CO2-free and partially loaded aqueous ammonia solution 2014;250:83–90. 

17. Rasi S, Läntelä J, Veijanen A, Rintala J. Landfill gas upgrading with countercurrent 

water wash. Waste Manag. 2008;28(9):1528–34. Doi: 10.1016/j.wasman.2007.03.032. 



135 

 

 

 

18. Rasi S, Läntelä J, Rintala J. Upgrading landfill gas using a high pressure water 

absorption process. Fuel. 2014;115:539–43. Doi: 10.1016/j.fuel.2013.07.082. 

19. Cozma P, Wukovits W, Mămăligă I, Friedl A, Gavrilescu M. Modeling and 

simulation of high pressure water scrubbing technology applied for biogas upgrading. 

Clean Technol Environ Policy. 2015;17(2):373–91. Doi: 10.1007/s10098-014-0787-7. 

20. Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of Heavy Metals 

and Other Cations from Wastewater Using Zeolites. Sep Sci Technol. 1990;25(13-

15):1555–69. Doi: 10.1080/01496399008050409. 

21. Kobya M, Demirbas E, Senturk E, Ince M. Adsorption of heavy metal ions from 

aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol. 

2005;96(13):1518–21. Doi: 10.1016/j.biortech.2004.12.005. 

22. Zaini MAA, Amano Y, Machida M. Adsorption of heavy metals onto activated 

carbons derived from polyacrylonitrile fiber. J Hazard Mater. 2010;180(1–3):552–60. Doi: 

10.1016/j.jhazmat.2010.04.069. 

23. Kanawade SM, Gaikwad RW. Adsorption of heavy metals by activated carbon 

synthesized from solid wastes. Int J Chem Eng Appl. 2011;2(3):207–11. 

24. Rahman MM, Adil M, Yusof AM, Kamaruzzaman YB, Ansary RH. Removal of 

Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut 

Shells. Materials. 2014;7(5):3634–50. Doi: 10.3390/ma7053634. 

25. Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite. 

Sci Total Environ. 1994;149(3):139–44. Doi: 10.1016/0048-9697(94)90174-0. 

26. Ouki SK, Kavannagh M. Performance of natural zeolites for the treatment of mixed 

metal-contaminated effluents. Waste Manag Res. 1997;15(4):383–94. Doi: 

10.1177/0734242X9701500406. 



136 

 

 

 

27. Erdem E, Karapinar N, Donat R. The removal of heavy metal cations by natural 

zeolites. J Colloid Interface Sci. 2004;280(2):309–14. Doi: 10.1016/j.jcis.2004.08.028. 

28. Fang Q-R, Yuan D-Q, Sculley J, Li J-R, Han Z-B, Zhou H-C. Functional 

Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-

Selective Catalysis. Inorg Chem. 2010;49(24):11637–42. Doi: 10.1021/ic101935f. 

29. Tuncan A, Tuncan M, Koyuncu H, Guney Y. Use of natural zeolites as a landfill 

liner. Waste Manag Res. 2003;21(1):54–61. Doi: 10.1177/0734242X0302100107. 

30. Turan NG, Ergun ON. Removal of Cu(II) from leachate using natural zeolite as a 

landfill liner material. J Hazard Mater. 2009;167(1-3):696–700. 

31. Ozel U, Akdemir A, Ergun ON. Utilization of natural zeolite and perlite as landfill 

liners for in situ leachate treatment in landfills. Int J Environ Res Public Health. 

2012;9(5):1581–92. Doi: 10.3390/ijerph9051581. 

32. Ontario Energy Board. Natural gas rate updates. Natural Gas Rate Updates. 

Available at 

http://www.ontarioenergyboard.ca/OEB/Consumers/Natural+Gas/Natural+Gas+Rates. 

33. Martín S, Marañón E, Sastre H. Landfill gas extraction technology: study, 

simulation and manually controlled extraction. Bioresour Technol. 1997;62(1-2):47–54. 

34. Kowalczyk P, Sprynskyy M, Terzyk AP, Lebedynets M, Namieśnik J, Buszewski 

B. Porous structure of natural and modified clinoptilolites. J Colloid Interface Sci. 

2006;297(1):77–85. Doi: 10.1016/j.jcis.2005.10.045. 

35. Bain DC, Smith BFL. A Handbook of Determinative Methods in Clay Mineralogy. 

A Handbook of Determinative Methods in Clay Mineralogy. Glasgow: Blackie & Son Ltd.; 

1987. p. 248–74. 



137 

 

 

 

36. Cotton A. Dissolution kinetics of clinoptilolite and heulandite in alkaline 

conditions. Biosci Horiz. 2008;1(1):38–43. Doi: 10.1093/biohorizons/hzn003. 

37. Snellings R, Haren TV, Machiels L, Mertens G, Vandenberghe N, Elsen J. 

Mineralogy, Geochemistry, and Diagenesis of Clinoptilolite Tuffs (miocene) in the Central 

Simav Graben, Western Turkey. Clays Clay Miner. 2008;56(6):622–32. Doi: 

10.1346/CCMN.2008.0560603. 

38. Du Q, Liu S, Cao Z, Wang Y. Ammonia removal from aqueous solution using 

natural Chinese clinoptilolite. Sep Purif Technol. 2005;44(3):229–34. Doi: 

10.1016/j.seppur.2004.04.011. 

39. Galan I, Glasser FP, Andrade C. Calcium carbonate decomposition. J Therm Anal 

Calorim. 2012;111(2):1197–202. Doi: 10.1007/s10973-012-2290-x. 

40. Erses AS, Onay TT, Yenigun O. Comparison of aerobic and anaerobic degradation 

of municipal solid waste in bioreactor landfills. Bioresour Technol. 2008;99(13):5418–26. 

Doi: 10.1016/j.biortech.2007.11.008. 

41. William Haynes. CRC Handbook of Chemistry and Physics. Boca Raton: CRC 

Press; 2014. 

42. Government of Ontario. O. Reg. 560/94: Effluent monitoring and effluent limits - 

metal mining sector. Ontario.ca. Available at 

https://www.ontario.ca/laws/regulation/940560#BK27. Accessed February 12, 2016. 

 

 

 



138 

 

 

 

Chapter 5  

5 Conclusions and recommendations 

5.1 Conclusions 

A mathematical model was developed that captured the phenomena occurring during the 

conversion of an anaerobic landfill into an aerobic landfill. In the beginning of the 

conversion process, the main limiting factor in the conversion from an anaerobic to aerobic 

landfill, was the initial aerobic biomass. Aerobic biodegradation is an exothermic process. 

Therefore, temperature can be used to observe the efficacy of the conversion. At initial 

aerobic concentrations of 0.01, 0.1, 0.6, 1 and 5 kg/m3 showed average waste temperatures 

of approximately 20.0, 20.2 21.0, 21.9 and 49.6°C. The higher the initial biomass 

concentration, the faster the temperature increased (indicating aerobic biomass growth). 

However, at 5 kg/m3 the model showed that the oxygen was being consumed before it 

reached the entire reactor (waste). In reality, this will cause the waste to be biodegraded in 

plugs (like in a plug flow reactor). The model demonstrated that increasing the temperature 

up to the optimum growth temperature of aerobic bacteria (58.6°C), increased the aerobic 

biomass growth rate, oxygen consumption rate and carbon dioxide production rate. 

However, if the temperature exceeded the optimal temperature (58.6°C) for aerobic 

biomass growth, the opposite behavior (lower aerobic biomass growth rate, oxygen 

consumption rate and carbon dioxide production rate) was observed. The model also 

showed that varying leachate flowrate was a more effective temperature control method 

when compared to varying air flowrate. This was due to leachate having a higher specific 

heat capacity compared to air. 

A combined sorption (absorption and adsorption/ion exchange) column was proposed for 

the removal of carbon dioxide from LFG (absorption) and heavy metals from leachate 

(adsorption/ion exchange). The column had a diameter of 6 cm and a height of 70 cm. The 

heights of the beds (glass beads/zeolite) were between 52 and 55 cm. The sorption 

column’s efficacy was tested by verifying the experimental data against simulation data 
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found using Aspen HYSYS. The experimental data agreed with the simulation results 

proving the operability of the column. The column was tested with both glass bead packing 

and granular zeolite packing to determine the difference in their ability to remove carbon 

dioxide from a gas mixture of 50% CO2 and 50% CH4 representing a typical landfill gas 

(LFG). The glass beads showed higher (water – 61.5% and 56.8%, respectively and 

leachate – 63.4% and 60.6%, respectively) removal of carbon dioxide than zeolite due to 

channeling that occurred with the zeolite packing. The short residence time did not allow 

equilibrium to be established between the liquid and gas phases. 

Batch tests showed that the higher the pH (up to neutral pH), the more lead was removed. 

Contact was made with 30 mL of model leachate solution (100 ppm Pb, made using lead(II) 

nitrate) and 3 g of zeolite (clinoptilolite) for 1 hour and 5 minutes before being filtered to 

remove the zeolite. The zeolite particle size was 7.6 ± 1.6 mm. Zeolite and model leachate 

were in contact in a PPCO tube, mixing in a rotating oven at 25 rpm. The contact time was 

chosen so that the lead concentration was high enough (>0.01 ppm) for accurate 

measurement. Batch adsorption tests showed that removal of lead increased as pH became 

more neutral. The higher the pH (in the acidic pH range), the less H+ ions were competing 

for the ion exchange sites. At basic pH, the addition of sodium hydroxide added sodium 

ions. The sodium ions were in competition with the lead ions and less lead was removed. 

Starting at 100 ppm lead concentration, at pH 2.8, 4.9 and 5.6 the removal of lead was 

99.64 ± 0.07%, 99.77 ± 0.06% and 99.84 ± 0.07%, respectively. At basic conditions, lead 

precipitation decreased the concentration to approximately 2.5 ppm. Starting at 2.5 ppm, 

the removal of lead was 91.64 ± 2.25%. The pH has to be higher than 5.74 for precipitation 

to occur. After contact with the zeolite, the lower the pH, the higher the pH increased. This 

was due to a higher concentration of hydronium ions causing a larger driving force for 

uptake of the hydronium ions. Starting at an initial of pH 2.8, 4.9, 5.6 and 10.3 led to final 

pH values of 4.0, 5.9, 6.3 and 9.9, respectively. The decrease in pH for the basic sample 

(pH 10.3) was due to the acidic nature of clinoptilolite. 
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5.2 Recommendations 

The modelling work presented in this thesis was validated using published experimental 

data. The validation was conducted to check that the results of the model were in agreement 

with the experimental data found in the open literature. A more thorough validation should 

be conducted using additional experimentation data. The model requires many parameters 

taken from literature. This model should also be validated against full scale landfill data. 

In small/pilot scale studies, not all potential complexities can be seen in experimental data 

(e.g. full scale physical parameters of the waste may not be isotropic). Temperature and 

oxygen concentration effects were included in the biokinetics of the anaerobic and aerobic 

bacteria. Other factors (e.g. pH, moisture content) should also be considered into the 

biokinetics. The waste dependence was taken out of the biokinetic equations due to the 

assumption that the model time length was short enough to keep substrate term in the 

biokinetic equation 










 Sk

S

S

 near unity. The model could also be modified to represent 

other types of landfills (i.e. anaerobic and semi-aerobic landfills) and can help understand 

the processes occurring. 

With the sorption column, tests can be done at higher pressures. At atmospheric pressure, 

there was modest removal of carbon dioxide (approximately 20-30% CO2 removal). At 

higher pressures, there will be much higher removal efficiency of carbon dioxide. Also, 

reuse of absorbent at higher pressures should be tested after desorbing at atmospheric 

pressures. Different lengths of the column should also be tested to determine if the 

concentration of lead can be decreased below the Ontario discharge standards. A 

mathematical model should also be developed that explains the processes that are occurring 

in the column (fluid flow, absorption, adsorption).  
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Appendices 

Appendix A Preliminary adsorption/ion exchange 
column results 

A.1 Ammonium assay calibration curve 

The ammonium concentration in the NaCl solution can be determined using an assay made 

when sodium salicylate, sodium hydroxide and sodium hypochlorite are added. To find the 

calibration curve, known concentrations of ammonium (made from a known stock 

solution) were mixed with sodium salicylate, sodium hydroxide and sodium hypochlorite 

before using UV-VIS spectroscopy to determine the intensity of the absorbance peak. The 

peak absorbance intensity is correlated to the ammonium concentration. The graph 

showing the correlation is found in Figure A-1. 
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Figure A-1 Ammonium concentration calibration curve 

A.2 Absorption equilibrium time determination 

Water was sent into the top of the column (glass bead packing used). Gas was sent into the 

column from the bottom. At specific times, samples of water from the bottom of the column 

were taken. The pH of the samples was measured. As carbon dioxide is dissolved, water 

becomes more acidic (Equation 4-3). The plot of pH with respect to time is shown in Figure 

A-2. The pH reaches steady-state after approximately 5 minutes. 
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Figure A-2 Absorption equilibrium time 

A.3 Adsorption equilibrium time determination 

Leachate was pretreated as explained in Section 4.3.2 then 30 mL of leachate was put in 

contact with 3 g of zeolite. Individual samples were run for each time interval (1 h, 6 h, 12 

h, 24 h, 48 h and 72 h). At each time interval, the leachate was filtered through a 0.45 µm 

polyethersulfone syringe filter and analyzed using inductively coupled plasma mass 

spectrometry (ICP-MS) to determine the concentration of chromium, copper, zinc, 

cadmium, lead and nickel. The equilibrium time graph is shown in Figure A-3. 
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Figure A-3 Adsorption/ion exchange equilibrium time using landfill leachate 
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Appendix B Transport Phenomena in the Conversion of 
an Anaerobic Landfill into an Aerobic 
Landfill 

 

Abstract: A two-dimensional dynamic model was developed using the concentrated 

reacting flow through porous media, heat transfer in porous media and mathematics 

interfaces. Initial aerobic biomass concentration was shown to be a very important 

parameter in the conversion of anaerobic landfills into aerobic landfills. Too low an initial 

aerobic concentration showed inefficient biodegradation whereas too high a concentration 

caused the biodegradation to proceed very quickly producing excess heat and killing the 

bacteria. Air flowrate was found to be less effective than leachate flowrate in controlling 

the landfill temperature. Increasing air flowrate by 4 times did little to change the 

temperature. The addition of leachate significantly cooled the waste. 

B.1 Introduction 

The growing human population has led to the accumulation of municipal solid waste 

(MSW). This has necessitated the creation of more landfills. However, these landfills come 

at a cost, land. In the future, there will be no land available to devote to landfills and a 

viable solution needs to be implemented. A potential solution that is gaining ground is the 

bioreactor landfill. 

Traditional “dry-tomb” landfills entomb the MSW in an attempt to prevent moisture from 

infiltrating the landfill lessening the environment for microbial growth and activity. 

Moisture infiltration can lead to many environmental problems such as the production of 

landfill gas (a very potent mixture of greenhouse gases) caused by microbial activity, 

production of toxic leachate, and production of noxious odours1. 

Bioreactor landfills are the opposite of dry-tomb landfills because moisture (and air for 

aerobic landfills) is injected into the landfill to promote microbial activity. These landfills 

are highly monitored and controlled to safeguard the environment and ensure efficient 
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operation. The increased activity of the microbes in the MSW, increases the biodegradation 

rate, significantly decreasing the time required for waste stabilization. 

Bioreactor landfills are split into two categories based on the dominant bacterial species 

present: anaerobic and aerobic. The type of bioreactor landfill has implications on the rate 

of biodegradation, composition of landfill gas and composition/toxicity of leachate. 

Experimental determination of the same information that a good model can provide, can 

take months or years, substantiating the need for a useful model to shorten the time 

considerably. 

B.2 Governing equations 

B.2.1 Gas flow equation 

Air is injected into the waste mass to supply oxygen to the aerobic bacteria. The bacteria 

produce gases, which are extracted along with any unconsumed oxygen (the gases are 

collectively called landfill gas). The flow of air and landfill gas is defined by the Brinkman 

equation: 
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Where   is the density of the gas (kg/m3), u  is the velocity vector (m/s), P  is the porosity 

of the waste (-), P  is the pressure (Pa),   is the viscosity of the gas (Pa∙s),   is the 

permeability of the waste (m2), F  is the Forcheimer coefficient (kg/m4) and brQ  is the 

volumetric mass source (kg/m3/s). 
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B.2.2 Gas transport equations 

The flow of the gas species is dependent on bulk flow (convection) and molecular flow 

(diffusion) processes. Since no one species makes up greater than 90% of the composition 

of the gas, transport of concentrated species is used: 

iii
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Where i  is the mass fraction of component i  (-), ij is the mass flux vector relative to the 

mass averaged velocity (kg/m2/s), iR  is the rate of consumption/production for component 

i  (kg/m3/s). 
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Where F

iD  is the Fickian diffusion coefficient of component i  (m2/s) and  is the 

average molecular weight (kg/mol). 

The multicomponent diffusion coefficients are found by the relationship proposed by 

Fairbanks and Wilke2 using binary Fickian diffusion coefficients (found using the 

Chapman-Enskog equation). 
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Where 
ijD  is the binary Fickian diffusion coefficient of components i  and j (m2/s), ix  is 

the mole fraction of component i  and 
jx  is the mole fraction of component j . 
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Where iM  is the molecular weight of component i  (kg/mol). 

iii ujN   (B-7) 

Where iN  is the combined mass flux vector of component i  (kg/m2/s). 

B.2.3 Biokinetic equations 

Anaerobic biomass growth 

Initially, when no oxygen is present, the dominant bacterial species are anaerobic. The 

equation describing the anaerobic biomass growth rate is as follows: 
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When the concentration of substrate (waste) is sufficiently high, )( ,NskS  , simplifies 

Eq. B-8 to: 

NDNNM
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  (B-9) 

Where NR  is the anaerobic biomass growth rate (kg/m3/day), NX  is the concentration of 

the anaerobic biomass (kg/m3), 
NMK ,

 is the anaerobic Monod maximum growth rate 

constant (day-1), S  is the available substrate (kg/m3), 
Nsk ,

 is the substrate half-saturation 

constant for anaerobic growth (kg/m3) and 
NDR ,

 is the anaerobic biomass decay rate 

(kg/m3/day). 

Kim et al. assumed the decay rate of anaerobic biomass was given by the following3: 

)(05.0 0,,, NNNMND XXKR   (B-10) 
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Where 
0,NX  is the initial concentration of anaerobic biomass (kg/m3). 

Aerobic biomass growth 

On the onset of aeration, the anaerobic bacteria begin to perish and aerobic bacteria begin 

to dominate. The equation describing the aerobic biomass growth rate is as follows: 
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If the substrate concentration is sufficiently high, )( ,AskS  , Eq. B-11 reduces to:
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Where AR  is the aerobic biomass production rate (kg/m3/day), AX  is the concentration of 

the aerobic biomass (kg/m3), 
AMK ,

 is the aerobic Monod maximum growth rate constant 

(day-1), 
tempk  is the temperature correction factor (-), 

2Oc is the concentration of oxygen 

(kg/m3), 
2Ok  is the oxygen half saturation constant (kg/m3), 

Ask ,
 is the substrate half-

saturation constant for aerobic growth (kg/m3) and 
ADR ,

 is the aerobic biomass decay rate 

(kg/m3/day).  

Kim et al. assumed the decay rate of aerobic biomass was given by the following3: 

)(05.0 0,,, AAAMAD XXKR   (B-13) 

Where 
0,AX  is the initial concentration of anaerobic biomass (kg/m3). 

The temperature correction factor, shown in Eq. B-14, describes the temperature 

dependence of the growth of aerobic bacteria: 
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Where T  is the temperature of the MSW (K), maxT  is the maximum temperature for 

aerobic bacterial growth (K), minT  is the minimum temperature for aerobic bacterial 

growth (K) and 
optT  is the optimal temperature for aerobic bacterial growth (K). 

B.2.4 Species consumption/production equations 

Themelis and Kim proposed the following generalized reaction for the anaerobic 

biodegradation of waste4: 

241410624106 75.225.3)(5.1)( COCHOHCOHOHC xx    (B-15) 

Based on this, the production of methane and carbon dioxide in the anaerobic state can be 

formulated: 

NBS

NNM

NBS

N

MSW

CO

CO

Y

XK

Y

R

M

M

R

,/

,

,/2

2

75.2

   (B-16) 

NBS

NNM

NBS

N

MSW

CH

CH

Y

XK

Y

R

M

M

R

,/

,

,/4

4

25.3

  (B-17) 

Where 
2COR  is the production rate of carbon dioxide (kg/m3/s), 

2COM  is the molecular 

weight of carbon dioxide (kg/mol), MSWM  is the molecular weight of MSW (kg/mol), 

4CHM  is the molecular weight of methane (kg/mol), 
NBSY ,/

 is the substrate/anaerobic 

biomass yield coefficient (kgB/kgS) and 
4CHR  is the production rate of methane (kg/m3/s). 

Themelis and Kim proposed the following generalized reaction for aerobic biodegradation 

of waste4: 
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221410624106 65)(5.6)( COOHOHCOOHC xx    (B-18) 

Based on this, the consumption of oxygen and production of carbon dioxide in the aerobic 

state can be formulated: 
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Where 
2OR  is the consumption rate of oxygen (kg/m3/s), 

2OM  is the molecular weight of 

oxygen (kg/mol), 
ABSY ,/

 and is the substrate/aerobic biomass yield coefficient (kgB/kgS). 

Table B-1 Physical properties of waste 

Parameter Unit Value Reference 

Waste porosity )( p  - 0.3 5 

Waste permeability 

)(  

m2 10-12 5 

Waste density 

)( MSW  

kg/m3 600 Assumed 

Table B-2 Biokinetic parameters 

Parameter Unit Value Reference 

Maximum anaerobic Monod growth 

rate constant )( ,NMK  

day-1 0.2 3 

Maximum aerobic Monod growth rate 

constant )( ,AMK  

day-1 1.0 3 

Oxygen half saturation constant )(
2Ok  kg/m3 7x10-6 6,7 
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Substrate/anaerobic biomass yield 

coefficient )( ,/ NBSY   

kgB/kgS 0.05 3 

Substrate/aerobic biomass yield 

coefficient )( ,/ ABSY  

kgB/kgS 0.1 8 

Minimum aerobic growth temperature 
)( minT  

°C 5 6,7,9 

Optimal aerobic growth temperature (

optT ) 

°C 58.6 6,7,9 

Maximum aerobic growth temperature 

)( maxT  

°C 71.6 6,7,9 

Table B-3 Heat parameters 

Parameter Unit Value Reference 

Specific heat capacity of MSW 

)( ,MSWPC  
MJ/m3/K 2.0 10 

Heat conductivity of MSW )( MSWk  W/m/K 0.0445 11 

Aerobic biodegradation heat of 

reaction )( reacH  

kJ/mol -460 3 

Leachate injection flowrate )( ,inLF  L/day 2,100 12 

 

B.2.5 Energy balance equations 

The source of heat is the aerobic biodegradation of the waste (exothermic reaction). 

Anaerobic biodegradation is slightly exothermic and can be endothermic depending on the 

composition of the waste. The energy balance is given by: 

QTkTCV
t

T
CV eqPeqP 




)()( u  (B-21) 

Where V  is the volume of the MSW (m3), 
eqk  is the equivalent thermal conductivity 

(W/m/K), PC  is the specific heat of the gas (J/kg/K) and Q  is the source/sink term of 

energy (W). 
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PMSWMSWPMSWMSWeqP CCC  )1()( ,   (B-22) 

Where MSW
 is the mass fraction of the MSW (-), MSW

 is the density of MSW (kg/m3) and 

MSWPC ,  is the specific heat of MSW (J/kg/K). 

kkk MSWMSWMSWeq )1(    (B-23) 

Where MSWk  is the heat conductivity of the MSW (W/m/K) and k  is the heat conductivity 

of the gas (W/m/K). 

)()( 0,,0,,, gPinggLwpinLwreac TTCFTTCFHRQ    (B-24) 

 Where reacH  is the reaction heat (kJ/mol), 
inLF ,

 is the flowrate of leachate (mL/min), 

wPC ,
 is the specific heat of water (J/kg/K), 

0,LT is the initial leachate temperature (K), 
ingF ,

 

is the flowrate of gas (L/min), and 
0,gT  is the initial temperature of the gas (K). 

B.3 Use of COMSOL Multiphysics 

The model contains momentum, mass and energy transport phenomena. The momentum 

and mass balances are solved using the concentrated reacting flow in porous media 

interface. The energy balance was solved using the heat transfer in porous media interface. 

Due to the complex nature of the biokinetics involved in the process, COMSOL does not 

contain these equations by default. The equations had to be added using multiple 

distributed ODEs. COMSOL contained the option to couple the reacting flow in porous 

media and heat transfer in porous media interfaces. The biokinetics had to be coupled 

manually to both the reacting flow (gas consumption/production is dependent on 

biokinetics) and the heat transfer interfaces (reaction heat generation is dependent on 

biokinetics). 
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B.4 Analysis conditions 

Model parameters used in the various equations are found from published literature. The 

parameters describing the physical properties of the waste are found in Table B-1. Kinetic 

parameters used for the model are found in Table B-2. Heat transfer parameters are found 

in Table B-3.  

The geometry being used is a 20 m by 20 m cell (). Air injection wells are located at the 

corners and the extraction well is located in the center. 

 

Figure B-1 Geometry of the landfill cell 

B.5 Results 

Figure B-2 shows the effect of initial aerobic biomass concentration on the conversion of 

anaerobic landfill into an aerobic landfill. Temperature is used as an indicator to give 

information about the biodegradation. Aerobic biodegradation is exothermic and the 
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temperature can give insight into the efficacy of the biodegradation. For example, landfill 

temperatures remaining near ambient temperature indicate minimal aerobic 

biodegradation. Figure B-2(a) shows a very small increase in temperature from the initial 

temperature. This indicates inefficient biodegradation. At the other end of the spectrum is 

Figure B-2(c). In this figure, the temperature has increased rapidly, indicating the 

requirement for control of the biodegradation. Figure B-2(c) shows the waste temperature 

nearing the maximum growth temperature shown in Table B-2. Exceeding this temperature 

will cause the aerobic bacteria to die, and will significantly decrease the biodegradation 

rate. 

As can be seen from Figure B-2, if the landfill is left uncontrolled then the temperature will 

gradually climb. The temperature is generally controlled in two fashions: (1) by increasing 

the air flowrate or (2) by adding/increasing leachate injection. 

 

   

(a) 0.1 kg/m3 (b) 1 kg/m3 (c) 10 kg/m3 

Figure B-2 Temperature after 1 day with varying initial aerobic biomass concentrations – 

initial temperature = 293K  
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(a) 10 scfm (b) 20 scfm (c) 40 scfm 

Figure B-3 Temperature after 1 day with varying air flowrates – initial temperature = 

293K 

   

(a) No leachate (b) 1050 L/day (c) 2100 L/day 

Figure B-4 Temperature after 1 day with varying leachate injection rates – initial 

temperature = 293K 

Figure B-3 shows the effect of increasing air flowrate. Increasing the air flowrate by 4 

times, did little to decrease the temperature. Increasing the air flowrate, increases the 

distance the air gets into the waste before the air heats to the waste temperature. Another 

effect of the increase in air flowrate, is the homogenization of temperature via convection. 

The cell temperature becomes more uniform as the air injection flowrate increases. 

However, as shown by Figure B-4, the addition of leachate decreases the temperature 

significantly. The specific heat of leachate is approximately three orders of magnitude 
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greater than the air. This shows that air is not effective in decreasing temperature and 

leachate is effective. This would require a significant increase in air flowrate to cool as 

effectively as leachate and would increase operating costs. 

B.6 Conclusions 

Initial aerobic biomass concentration was shown to be an important parameter in the 

conversion of an anaerobic landfill into an aerobic landfill. Too low of an initial aerobic 

biomass concentration and the growth of the aerobic biomass was slow. Too high of an 

initial aerobic biomass concentration and the growth of the aerobic biomass was rapid and 

produced excessive heat. Aerobic sludge can be injected to adjust the initial aerobic 

biomass concentration to quicken the conversion of the landfill. 

The model has yet to be validated by experimental/industrial data. It is consistent with 

expectations and literature. The aerobic biomass grow with time and show a pattern of 

higher growth in areas of greater oxygen. This translates to higher oxygen consumption 

and carbon dioxide production in these areas. 

Kinetic parameters have come from published literature and may not exactly fit the 

experimental conditions, therefore parameter fitting will likely be required. 

This model can provide a very useful tool for the operation of aerobic landfills. Testing 

many different scenarios/conditions (e.g. different air flowrates, different air injection 

temperature, different ambient temperature) can be done in a relatively short time when 

compared to testing these scenarios experimentally. Scenarios that are not physically 

realizable may also be tested to see their effects on the landfill to provide additional insight. 
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Appendix C Microwave assisted zeolitization of coal fly 
ash using landfill leachate as the solvent 

 

 Coal fly ash (CFA) was converted to zeolite using microwave energy. Landfill leachate 

was used as the solvent, after increasing its pH with sodium hydroxide to precipitate the 

heavy metals contents, in three modes: filtered using a 0.45 µm filter (fine-filtered), filtered 

using a 1 µm filter (coarse filtered) and unfiltered. The experiments were performed using 

a self-adjusting microwave source (single-mode, 2.45 GHz, CEM cooperation, Discover, 

USA) in a cylindrical batch PTFE vessel (28 mm ID × 108 mm). The XRD analysis of the 

product showed that using leachate inhibited the production of zeolite A (LTA) and 

favoured the production of hydroxysodalite (SOD). More heavy metals removal from 

leachate by precipitation and filtration favoured LTA production. Samples synthesized at 

300 W of microwave irradiation for 30 minutes had a SOD/LTA ratio of 1.00, 1.06, and 

2.28 for fine-filtered, coarse filtered and unfiltered leachate samples.  SEM, TGA and CEC 

analyses further confirmed that more heavy metal precipitation and filtration favoured LTA 

over SOD production. CECs for zeolites synthesized using fine-filtered, coarse filtered and 

unfiltered leachate were 0.80, 0.72 and 0.67 meq/g, respectively. SOD production 

increased with increased microwave irradiation energy. There was an optimal microwave 

irradiation energy level per g of CFA (65.9 kJ/g) in which the most LTA was produced. 

C.1 Introduction 

Coal-fired energy production has gradually decreased in recent years. Despite this fact, due 

to the growth in population and world development, coal-fired energy still remains a very 

large segment of the energy production market. Coal-fired power plants burn pulverized 

coal to produce electricity. One of the waste products produced upon the combustion of 

coal is a particulate material called coal fly ash (CFA). Coal fly ash is potentially 

carcinogenic and has to be disposed of or used safely to mitigate the potential risks1. CFA 

contains silicon and aluminum which can be utilized to synthesize zeolites. Zeolites are 

used as catalysts (mainly in the petroleum/petrochemical industry), to purify air and water, 
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as well as other uses in industrial settings. Many studies have been conducted2–12 and 

reviews written13,14 on the production of zeolites from CFA. 

Zeolitization of CFA involves the use of high quantities of water. Production of one metric 

ton of zeolite from CFA requires 20 metric tons of fresh water15. Most of the studies utilized 

pure water during the synthesis process. However, there has been growing interest in 

utilizing liquid waste streams in the production of zeolite. Eliminating the use of fresh 

water can significantly reduce the cost and environmental impact associated with the 

zeolitization process. Furthermore, if a source of wastewater is used instead of fresh water, 

two waste streams (CFA and wastewater) are used for the production of a value added 

material. Belviso et al.16 synthesized zeolite X from CFA and seawater as the solvent by 

fusion with NaOH followed by hydrothermal crystallization. A comparison was done 

between the results obtained from the use of seawater and distilled water. The synthesis 

yield was higher using seawater than using distilled water at different crystallization 

temperatures. Hussar et al.17 synthesized zeolite A by a hydrothermal process using sodium 

silicate, sodium aluminate and the by-product of an aluminum etching process. The 

chemical composition of the aluminum etching by-product consisted of the following main 

oxides expressed as percentage by weight; Al2O3, 92%; Na2O, 6%; SiO2, 0.5%. Their 

results indicated that a higher synthesis reaction temperature and longer reaction time 

favored synthesis of zeolite A. The effect of using industrial waste brine solution instead 

of ultra-pure water was investigated during the synthesis of zeolite by Musyoka18. They 

used coal fly ash as the Si feedstock and high halide brine obtained from the retentate 

effluent of a reverse osmosis water treatment plant of a mine, as the solvent. The brine 

contained high sodium and potassium and low concentrations of toxic elements. Also there 

was trace amounts of aluminum equal to 48.38 µg/L and no silicon. The use of brine as a 

solvent resulted in the formation of hydroxysodalite zeolite although unconverted mullite 

and hematite from the fly ash feedstock were also present in the product. Musyoka et al. 5 

used two types of mine waters (acidic and circumneutral). The important cationic species 

of circumneutral water were: Na: 952 mg/L, Mg: 38 mg/L, Ca: 19 mg/L and Si: 1.2 mg/L 

(no detectable Al); and in the acidic drainage water were: Fe: 4694 mg/L, Na: 68 mg/L, 
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Mg: 386 mg/L, Ca: 458 mg/L, Al: 613 mg/L and Si: 31 mg/L. Zeolites Na-X and Na-P1 

were synthesized by fusion and hydrothermal method, respectively. The use of 

circumneutral mine water resulted in similar zeolite forms, i.e. Na-P1 and X, whereas the 

use of acidic mine drainage led to the formation of a single phase hydroxysodalite zeolite. 

Studies were also conducted by Behin et al.19 utilizing a liquid waste stream from plasma 

electrolytic oxidation (PEO), which is a relatively novel technique to produce functional 

oxide coatings on the surface of metals such as aluminum, magnesium, and titanium 

alloys20. The wastewater from the PEO process had a pH of 12 and contained Na (63 mg/L), 

K (497 mg/L), Si (295 mg/L) and Al (10 mL/g) metal cations. The zeolite produced with 

PEO wastewater was comparable with the zeolite produced with fresh water in terms of 

BET surface area, water carrying capacity and cation exchange capacity (CEC). The 

wastewater streams used in the above experiments did not contain any heavy metals. 

Landfill leachates, however may contain heavy metal ions and would be an interesting 

study to conduct on the zeolitization process of CFA. 

Landfill leachate is produced when water infiltrates a landfill and leaches out from the 

landfill. Depending on the composition of the waste, leachate can contain soluble organic, 

inorganic, bacteriological constituents, heavy metals and suspended solids21. It presents 

many potential environmental hazards and due to its complex nature is difficult and 

expensive to treat. A significant portion of the landfilling cost is due to leachate treatment. 

Many studies have been conducted22–25 and reviews written26–28 on leachate treatment. 

Here the goal is to use leachate instead of water for the production of zeolite A. There have 

been studies conducted using wastewater to synthesize zeolites, however, in these studies 

the major constituents have been alkali and alkali-earth metals. The use of leachate in this 

experiment helps to shed light on the effects of heavy metal ions in the reaction mixture on 

the zeolitization process. 
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C.2 Materials and methods 

C.2.1 Materials 

Coal fly ash was obtained from a coal fired power plant (Ontario Power Generation, 

Nanticoke, Canada) and was stored in a sealed container before use. Sodium hydroxide 

(Alphachem, Mississauga, Canada) and sodium aluminate anhydrous (Sigma-Aldrich, 

USA) were of analytical grade and used as received. The leachate was obtained from the 

W12A Landfill (London, Canada). Upon collection of the leachate, the leachate was 

filtered through VWR Grade 415 Filter Paper (Mississauga, Canada) to remove any 

particulate matter present in the leachate. When not in use, the leachate was stored at 4°C 

to limit degradation of the leachate. When used during experiments, the leachate was 

allowed to reach room temperature before each experiment. The unused leachate was 

subsequently refrigerated after use. Other chemicals used for characterization tests were of 

analytical grade. Other chemicals used for characterization tests were of analytical grade. 

C.2.2 Experimental procedure 

Coal fly ash was converted into zeolite by a single step hydrothermal alkaline treatment 2. 

Zeolitization of coal fly ash was carried out as follows: 2.18 g of sodium hydroxide 

granules with 1.82 g of fly ash (NaOH/CFA ratio of 1.2) were dissolved in 17 mL of 

leachate. Upon increase of pH (required for digestion of CFA) using NaOH, heavy metal 

hydroxides precipitated. One set of experiments was conducted with leachate that was 

filtered through 0.45 µm polyethersulfone syringe filters (VWR, Canada) (fine-filtered). 

Another set of experiments was conducted with the leachate filtered through 1 µm filter 

paper (coarse filtered). A third set using the unfiltered leachate. The digestion of CFA was 

conducted at 60ºC for 12 h using an end-over-end shaker in a cylindrical PPCO vessel (25.5 

mm ID × 104.5 mm). After digestion, 3 mL of the aqueous sodium aluminate solution 

(0.155 g/mL) were added and the reaction solution aged for 2 hours. Subsequently, the 

mixture was subjected to microwave radiation for crystallization. The experiments were 

performed using a self-adjusting microwave source (single-mode, 2.45 GHz, CEM 

cooperation, Discover, USA) at atmospheric pressure. A cylindrical batch PTFE vessel (28 
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mm ID × 108 mm) equipped with a reflux condenser was placed in the microwave chamber 

for varied periods of time (10, 20 and 30 min) and microwave power (100, 200, 300 W). 

In a single mode microwave, electromagnetic irradiation is directed through a precisely-

designed wave guide that produces a standing wave, whereas in multimode microwave 

there is a mixture of many waves with different phase shifts. The microwave field density 

in a single mode microwave is much higher compared to a multimode microwave. 

Therefore, similar results can be achieved in a single-mode microwave using lower power 

input29. After a given period of MW irradiation, the solid products were filtered, washed 

with deionized water and dried overnight. 

C.2.3 Characterization 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to measure 

the concentration of different ions in the leachate. Concentrations were found using a 

Perkin-Elmer Optima-3300 DV ICP-Atomic Emission Spectrometer (USA). Chemical 

composition of the CFA sample was determined by means of X-ray fluorescence 

spectroscopy (XRF) utilizing PANalytical PW2400 Wavelength Dispersive. Rigaku–

Miniflex powder diffractometer (Japan) was used to collect XRD data of the synthesized 

zeolites using CuKα (λ for Kα = 1.54059 Å) over the range of 5°<2θ<25° with a step width 

of 0.02°. The obtained crystalline phase was identified based on standard peaks in 

literature30. The thermogravimetric analysis (TGA) of the samples was performed using a 

Mettler Toledo TGA/SDTA 851e model (Switzerland) with version 6.1 STARe software. 

The samples were heated from 25°C to 600°C at a heating rate of 10°C/min under nitrogen 

purge. The crystal size distribution and morphology of the zeolites were studied by 

scanning electron microscope (SEM); Hitachi S 2600N SEM (Tokyo, Japan) operating at 

5 kV of acceleration voltage. CEC was measured using ammonium acetate saturation 

method (5 days) based on Bain and Smith31. The zeolite samples were soaked in a 1 N 

solution of ammonium acetate for 5 days in the same end-over-end shaker. After 5 days, 

the zeolite samples were filtered and allowed to air dry. The dried samples were then 

washed using 100 mL (5 x 20 mL) of an aqueous solution of 10 wt% NaCl and 1 vol% HCl 

to remove the fixated ammonium. The ammonium concentration in the supernatant was 
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then measured. The ammonium concentration was correlated to peak absorbance intensity 

between 550 and 800 nm measured using UV-VIS spectroscopy (Figure C-5). To prepare 

the samples for the UV-VIS spectroscopy, sodium salicylate, sodium hydroxide and 

sodium hypochlorite were added and 5 minutes allowed to elapse for the reaction to 

proceed to completion. 

C.3 Results and discussion 

C.3.1 Inductively coupled plasma atomic emission spectroscopy 
(ICP-AES) 

The ions concentrations and pH of the leachate are found in Table C-1 

Table C-1 Cation concentrations (mg/L) and pH of leachate 

Cation Concentration (mg/L) 

Ag < 0.01 

Al 0.14 

As < 0.01 

B 3.95 

Be < 0.01 

Ca 206.08 

Cd 4.15 

Co 0.03 

Cr 0.27 

Cu 1.71 

Fe 0.62 

Hg < 0.01 

K 252.27 

Li 0.05 

Mg 141.46 

Mn 1.01 

Mo < 0.01 

Na 810.80 

Ni 5.92 

P 0.53 

Pb 0.62 

S 99.13 

Sb < 0.01 

Se < 0.01 

Si 21.94 
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Sn < 0.01 

Tl < 0.01 

V < 0.01 

Zn 7.61 

pH* 7.56 

* Unitless 

The leachate contained high levels of Ca (206.08 mg/L), K (252.27 mg/L), Mg (141.46 

mg/L), Na (810.80 mg/L) and S (99.13 mg/L). Ca, K, Mg and Na are most likely a result 

of the leaching of salts from the soil covers of the landfill32. Sulfur is most likely from the 

leaching of the landfill waste33. Silicon and Al are required for the synthesis of zeolites. 

The landfill leachate had only trace amounts of both elements; concentrations of Si and Al 

were 21.94 and 0.14 mg/L, respectively. 

C.3.2 X-ray analysis (XRF and XRD) 

The chemical compositions of the CFA that was used as the main source of Si and Al for 

hydrothermal zeolitization process are summarized in Table C-2. The SiO2/Al2O3 ratio was 

found to be 2.13, which was appropriate for the synthesis of low silica zeolite crystallites 

such as LTA type zeolite. According to the XRD data, the main components of the CFA 

were amorphous aluminosilicate as well as quartz and mullite that existed as crystalline 

structures as indicated in Table C-2. 

Table C-2 XRF analysis of chemical composition of CFA 

 Parameter  Weight percent (%) 

Major oxide   

 SiO2  41.78 

 Al2O3  19.61 

 CaO  13.64 

 Fe2O3  5.79 

 MgO  3.23 

 TiO2  1.39 

 K2O  1.1 

 Na2O  0.94 

 P2O5  0.71 

 BaO  0.36 

 SrO  0.25 
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 Cr2O3  0.01 

 MnO  0.02 

Loss On Ignition  10.89 

Total  99.72 

    

Phases analysis   

 Amorphous aluminosilicate   

 Quartz (SiO2)   

 Mullite (3Al2O3.2SiO2)   

*SiO2/Al2O3: 2.13 

The XRD analysis was conducted for all the samples after microwave irradiation in order 

to identify the zeolite phases present. Two major zeolitic phases were observed, namely 

zeolite A (LTA) and hydroxysodalite (SOD). The XRD patterns for the different leachates 

are shown in Figure C-1. 
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Figure C-1 The XRD patterns of zeolitized coal fly ash utilizing: a) fine-filtered leachate 

b) coarse filtered leachate and c) unfiltered leachate as the reaction solvent 

The relative peak intensities were defined as the ratio of the characteristic peak of each 

product species to the highest characteristic peak observed. 

SampleLTA

SampleLTA

LTA
I

I
RI

,

,
  (C-1) 

SampleSOD

SampleSOD

SOD
I

I
RI

,

,
  (C-2) 

Table C-3 shows the relative peak intensities of the samples irradiated with different 

microwave power and using different leachates as the reaction solvent. It was observed that 

higher microwave power for 30 min irradiation time favoured the production of SOD over 
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LTA. Furthermore, the fine-filtered leachate solvent produced more zeolite A and higher 

crystallinity. This indicates that microwave irradiation favours the production of SOD 

which has also been reported by previous works34. It can also be concluded that the 

presence of cations other than Na+ can disrupt the production of zeolite A thus lowering 

the crystallinity of the product and strongly favouring the production of SOD over LTA. 

Table C-3 Relative characteristic XRD Peak Intensity for fine-filtered, coarse filtered and 

unfiltered synthesis after 30 minutes of microwave irradiation 

Leachate 
Power (W), time 

(min) 
LTA SOD 

Fine-filtered 

300, 30 1.00 1.00 

200, 30 0.346 0.471 

100, 30 0.495 0.345 

Coarse filtered 

300, 30 0.495 0.525 

200, 30 0.407 0.404 

100, 30 0.445 0.318 

Unfiltered 

300, 30 0.390 0.888 

200, 30 0.495 0.444 

100, 30 0.297 0.395 

In order to study the effect of total microwave energy irradiation on the zeolite phase 

produced, relative intensities of characteristic peaks of both LTA and SOD were plotted 

against microwave irradiation energy. Figure C-2 illustrates the results for both coarse 

filtered and unfiltered leachate used as the zeolitization reaction solvent. In both cases it is 

observed that there is an optimal microwave irradiation energy level for the production of 

LTA, however as the amount of irradiation energy is increased, more SOD was produced. 

While the production of LTA plateaus, the production of SOD increases linearly. 
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Figure C-2 The characteristic XRD peak intensities with respect to microwave irradiation 

utilizing: a) coarse filtered leachate and b) unfiltered leachate as reaction solvent 
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This trend is more pronounced for the zeolite synthesized in the unfiltered leachate. Much 

more SOD is produced compared to LTA for unfiltered leachate experiments than the 

coarse filtered leachate. This again indicates that the heavy metals in the reaction solution 

retard the production of LTA and significantly favour the production of SOD. 

From Figure C-2, it is observed that zeolitic characteristic peaks occur sooner for coarse 

filtered leachate solvent experiments compared to the unfiltered leachate solvent 

experiments. This indicates that heavy metal constituents prevent nucleation of LTA 

zeolite crystals. Our research group has earlier conducted similar experiments with pure 

water35 and wastewater produced from plasma electrolytic oxidation process19 (both 

lacking heavy metal ions) and produced pure LTA unlike for leachate experiments that 

produced a mixture of LTA and SOD. This indicates the significant role that heavy metal 

ions play in suppressing the nucleation of LTA. 

The presence of various alkali metal cations in otherwise identical gels, results in the 

synthesis of different zeolites. For example, Na+, K+, Cs+ result in crystallization of zeolite 

A, chabazite, and edingtonite, respectively36. The interactions between negatively charged 

silicate, aluminate and aluminosilicate species and the cation species are extremely 

important in determining the zeolite crystallized. ,LTA is a less stable phase compared to 

SOD11 and requires germination of multiple composite building units (CBU’s) as opposed 

to SOD which has only one CBU  (beta cage). The presence of heavy metal oxides may 

favour the production of a stable phase by preventing the germination of “d4r” and “lta” 

cages which are the CBU’s required for LTA synthesis 37. Abundance of beta cages (“sod” 

CBU) in the solution in lieu of “d4r” and “lta” favours the production of stable SOD phase. 

C.3.3 Scanning electron microscope (SEM) 

The scanning electron microscope (SEM) images of the synthesized zeolites utilizing 

unfiltered, coarse filtered and fine-filtered leachate as zeolitization solvent are illustrated 

in Figure C-3(a-f). In all of the SEM images, two distinct main structures can be observed, 

cubic and rough surfaced spheres. The cubic structures are associated with LTA 
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framework, while the rough sphere are SOD framework10,38,39. The zeolitic frameworks are 

crystallized on the surface of the undissolved coal fly ash particles in accordance with an 

earlier suggested mechanism13,35. 
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Figure C-3 The SEM images of zeolitized coal fly ash utilizing: a, b) fine-filtered c, d) 

coarse filtered and e, f) unfiltered leachate as solvent 
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The SEM images indicate that the cubic structures associated with the LTA are more 

abundant than spherical structures in both fine-filtered and coarse filtered leachate 

experiments. In the case of unfiltered experiments, the spherical SOD crystals clearly 

outnumber the cubic LTA. These results corroborate the results and conclusions drawn 

from XRD analysis. 

C.3.4 Thermogravimetric analysis (TGA) 

The TGA curves of the synthesized zeolites using unfiltered, coarse filtered and fine-

filtered leachate as reaction solvent are shown in Figure C-4. 

 

Figure C-4 The TGA of synthesized zeolites using fine-filtered, coarse filtered and 

unfiltered leachate as solvent 
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All three samples showed major weight loss at approximately 120-130°C (shown by the 

derivative lines). The synthesized zeolite using fine-filtered leachate, coarse filtered 

leachate, and unfiltered leachate lost approximately 9.0%, 10.4% and 11.0%, respectively 

(shown by the weight loss lines of the three samples; Figure C-4). The derivative of the 

weight loss of the synthesized zeolites samples using coarse filtered and fine-filtered 

leachates decreased in magnitude at approximately 340-350°C (seen as an upward trend in 

the derivative curves), whereas that of the synthesized zeolite using unfiltered leachate was 

relatively flat after 340-350°C. This indicates that more weight was lost by the zeolite 

produced using unfiltered leachate. A possible explanation for the higher weight loss of the 

zeolite synthesized using unfiltered leachate is due to the thermal decomposition of heavy 

metal hydroxides present in the unfiltered leachate. The difference between the three 

synthesized zeolite samples was the amount of heavy metal precipitate in the leachate. 

Upon filtration of the precipitates, the concentration of heavy metal hydroxide decreased. 

The unfiltered leachate had the highest heavy metal hydroxides concentration. 

Another result of the heavy metal hydroxides concentration difference between the samples 

was the water carrying capacity. This is shown in Figure C-4 by the depth of the large peak 

of the first derivatives at approximately 100-140°C.The lower the peak, the more water is 

held in the zeolite structure. This can be ascribed to an increase in surface area compared 

to the initial CFA10. The lowest peak in the first derivatives (most negative), was that of 

the zeolite synthesized using fine-filtered leachate, showing the most water carrying 

capacity. The highest peak (least negative) was that of the zeolite synthesized using 

unfiltered leachate, showing the least water carrying capacity. 

C.3.5 Cation exchange capacity (CEC) 

Figure C-5 shows the correlation between ammonium concentration and peak absorbance 

intensity. The R2 value was found to be 0.9991 indicating a very strong linear correlation 

between ammonium concentration and peak absorbance intensity. After removal of the 

ammonium ions from the zeolite, the ammonium concentration was measured using UV-

VIS method as explained in Section C.2.3. 
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Figure C-5 The correlation between the NH4
+ concentration and peak absorbance 

intensity 

The CEC values of the zeolites synthesized using fine-filtered, coarse filtered and 

unfiltered leachate are shown in Figure C-6. The CEC values of the zeolites synthesized 

using fine-filtered, coarse filtered and unfiltered leachate were 0.80, 0.72 and 0.67 meq/g, 

respectively. 
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Figure C-6 The CEC values of fine-filtered, coarse filtered and unfiltered leachate 

prepared zeolites 

The CEC value depends on the amount of zeolite A produced. Raw CFA has a CEC value 

of 0.3 meq/g10. Whereas CEC values of zeolite A are reported in the range of 2-5 

meq/g10,40,41. Sodalite has a CEC value ranging from 0.099-1.22 meq/g (various ions were 

used to determine the CEC of sodalite in literature)42. Since, raw CFA and sodalite have 

lower CEC values than zeolite A, the presence of either of these will decrease the CEC of 

the produced sample. Table C-3 shows that the zeolite synthesized using fine-filtered 

leachate had the highest amount of zeolite A. The zeolite synthesized using coarse filtered 

leachate had more zeolite A than the zeolite synthesized using unfiltered leachate and this 

corresponds to a higher CEC value (0.72 and 0.67 meq/g, respectively; Figure C-6). The 

SEM micrographs (Figure C-3) also confirm the larger quantity of zeolite A using fine-
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filtered and coarse filtered leachate compared to the zeolite synthesized using unfiltered 

leachate. 

C.4 Conclusions 

Landfill leachate was used for coal fly ash zeolitization. Sodium hydroxide added to the 

leachate solution resulted in a large amount of heavy metal precipitation. In order to 

investigate the effects of the presence of heavy metal cations and precipitation on the 

zeolitization process, three sets of experiments were performed. In one set, the precipitate 

was removed using 0.45 µm filters. In another set, filtration was performed with 1 µm 

filters. In a third set of experiments, no filtration was performed. After the zeolitization 

process utilizing single mode microwave, multiple analyses, including XRD, SEM, CEC 

and TGA were conducted. 

The XRD analysis indicated that utilizing leachate for the synthesis of zeolites suppressed 

the production of LTA and favoured the production of SOD. Unfiltered leachate produced 

the highest ratio of SOD to LTA. Whereas, fine-filtered leachate, with the least amount of 

heavy metal precipitate, produced the highest amount of LTA even though there was still 

SOD present. This indicated that the presence of heavy metal ions leads to the production 

of SOD; the higher the amount of heavy metal in the solution, the higher the ratio of SOD 

to LTA. 

Microwave power was associated with both higher crystallinity and production of SOD. 

There was an optimal level of microwave energy irradiated for the production of LTA. 

Further increasing the irradiated energy, reduced the production of LTA which eventually 

plateaued while SOD production increased linearly. This trend was more pronounced for 

experiments conducted with unfiltered leachate. 

The SEM, CEC and TGA results corroborated the XRD results. The SEM micrographs 

showed approximately equal amounts of LTA and SOD structures deposited on CFA 

particles for both zeolites produced using coarse filtered and fine-filtered leachate solutions 

while zeolite produced using unfiltered leachate samples showed more SOD structures. 
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The CEC values were the highest for the zeolite synthesized using fine-filtered leachate 

followed by the zeolite synthesized using coarse filtered leachate and lowest for the 

unfiltered leachate. The TGA results showed the same trend for the water carrying capacity. 
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