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Abstract 

Steel conical tanks are widely used for liquid storage in North America and elsewhere.  A 

number of those tanks collapsed in the last decades as a result of instability of the steel 

shells. Despite being widely used, no specific design procedure is available for conical 

tanks under dynamic conditions. The research conducted in the current thesis presents a 

simplified approach for the design of steel conical tanks when subjected to ground 

excitations in the form of horizontal and vertical excitations.  

First, the capacity of steel conical tanks to avoid yielding and buckling of the tank vessel 

under hydrodynamic pressure resulting from horizontal ground excitation is evaluated 

using non-linear static pushover analysis. The capacity of steel conical tanks under 

hydrodynamic pressure resulting from vertical ground excitation is then evaluated using 

the same procedure. The analyses are conducted numerically using a non-linear finite 

element model that accounts for the effects of large deformations and geometric 

imperfections on the stability of steel conical tanks. Based on the obtained capacities, a 

design approach is proposed which is based on satisfying an interaction formula that avoids 

both yielding and buckling of the tank vessel. This formula is a function of the steel conical 

tank capacities and the seismic demands resulting from hydrodynamic pressure including 

both impulsive and sloshing components. Finally, this design approach is validated through 

comparison with the results of non-linear dynamic analysis.  

The effect of the base rocking motion on the seismic behaviour of conical shaped steel 

tanks is then studied and a mechanical analog that simulates the forces acting on a conical 

tank subjected to a horizontal excitation including the effect of this base rocking motion is 

developed. This mechanical model takes the flexibility of the tank walls into consideration 

as well the hydrodynamic pressure acting on the tank base. 

Keywords 

Steel liquid tanks, Conical tanks, Seismic, Finite element, Simplified Design, Shell 

buckling, Rocking base motion 
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Chapter 1  

1 Introduction 

1.1 General 

Liquid storage tanks are widely used around the world for the purpose of storing different 

kinds of liquids. The contained liquid might be water used for drinking and fire protection 

or any other fluid used in a specific industry. There are two types of liquid storage tanks 

depending on the required pressure head: either a ground tank, or an elevated tank 

supported on a steel framing system or a concrete shaft. The tank vessel is commonly 

constructed of either steel or reinforced concrete. The choice of the tank, whether ground 

or elevated, and the construction material is mainly based on the function of such tank in 

addition to the properties of the contained liquid. Steel tanks have the advantage of being 

faster in construction time and lighter in weight compared with their reinforced concrete 

counterparts. 

Tanks are found in a variety of cross sectional shapes such as: cylindrical, rectangular, and 

conically-shaped which is the focus of the current study. A conical tank might consist of a 

pure truncated cone as shown in Fig. 1-1a or might be capped with a cylindrical part and 

is referred to in this case as combined conical tank as shown in Fig. 1-1b. Although such 

tanks whether pure or combined are commonly constructed, no specific design procedure 

is found for conical tanks in most liquid-tanks specifications. The only guidelines are based 

on treating a conical-shaped tank as a cylindrical tank with equivalent height, radius, and 

thickness. 

The main difference between conical and cylindrical tanks in the structural behaviour is 

due to the inclination of the conical tank wall. For the case of hydrostatic pressure, the 

volume of the contained liquid can be divided into two portions: vol. 1 which represents 

the fluid cylinder resting on the tank base and vol.2 which represents the remaining fluid. 

The latter volume increases as the base of the tank is approached and is associated with a 

decrease in the vessel radius. This leads to the development of high compressive meridional 
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stresses σm in this region. Tensile hoop stresses σh are also induced circumferentially 

through the tank shells. 

       

Fig. 1-1 (a) Pure conical tank1, (b) Combined conical tank2 

A conical tank in static conditions has to support its own weight in addition to the applied 

hydrostatic pressure acting on the tank walls and base. For steel conical tanks, the 

hydrostatic pressure will be more critical than the weight of the tank due to the relatively 

light weight of steel structures. For the case of liquid-storage conical tanks under dynamic 

loads, the behaviour is more complicated than other ordinary structures. This is due to the 

presence of the contained liquid, which vibrates with different dynamic (vibration) 

characteristics than those of the tank walls.  

For a liquid-filled conical tank subjected to an earthquake excitation, the walls, the floor, 

and the contained liquid are subjected to acceleration. As a result, the walls are affected by 

the inertial forces of the wall in addition to the hydrodynamic pressure of the contained 

liquid. The contained liquid can be divided into two parts: the first part is mainly the lower 

                                                 

1
http://forums.auran.com/trainz/showthread.php?17876-FEC-Key-West-extension-modern-day/page7  

2 http://www.caldwellwatertanks.com 

(a) (b) 
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amount of liquid, which moves with the walls of the tank and is called the impulsive liquid 

mass. The second part is mainly the upper amount of liquid and is called the convective 

liquid mass, which undergoes sloshing due to vibration. The ratio of the convective mass 

to the impulsive one increases as the tank becomes shallower. Also, the frequency of the 

impulsive vibration modes is much higher than those of the convective vibration mode. 

1.2 Background 

Dynamic behaviour of Liquid storage tanks is so important to understand as any failure to 

such structures might have a serious consequences in addition to the structure damage; for 

example, losing water supply or release of combustible materials stored inside. In 1964, 

Alaska earthquake caused damage to a lot of liquid storage tanks highlighting the need for 

revising the design guidelines found by that time. A lot of studies have been performed 

regarding the behaviour of liquid tanks, especially cylindrically-shaped, when subjected to 

earthquake excitations. One of the main findings was the importance of including the tank 

walls’ flexibility when analyzing a liquid tank under seismic action, especially for the case 

of steel tanks due to the relatively small wall thickness, instead of assuming rigid walls. 

The vertical component for an earthquake excitation was also found to be important to 

include when analyzing a liquid tank as vertical acceleration is transmitted to a horizontal 

hydrodynamic loading acting on a tank wall. As a result, tensile hoop stresses are amplified 

and might lead to inelastic buckling of the shell. 

The equivalent mechanical model was then introduced as a simplified approach to analyze 

liquid tanks subjected to earthquake excitations. The idea was to replace the contained fluid 

with a set of lumped masses and linear springs that mimic the total base forces obtained 

from dynamic analysis. The base forces are the base shear and overturning moment for the 

case of horizontal excitation and total vertical force for the case of vertical excitation. 

Although steel liquid tanks in the form of truncated cones are widely used for the purpose 

of liquid storage in an industrial facility or for water supply and fire protection and despite 

the fact that some of these tanks have failed during the last decades, most of the seismic 

design specifications and guidelines focus on the design of steel cylindrical tanks. The only 
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seismic design guidelines for conical tanks found in some specifications are based on using 

an equivalent cylinder. 

The state of stresses under hydrostatic pressure for the case of cylindrical tanks is not 

similar to the case of conical tanks due to the inclination of the tank walls resulting in high 

compressive meridional stresses near the tank base in addition to tensile hoop stresses. For 

the case of horizontal seismic excitation, the induced hydrodynamic pressure will amplify 

both meridional and hoop stresses at one side of the tank and reduce them at the other side 

based on the direction of the ground acceleration, while the induced hydrodynamic pressure 

due to vertical excitation will amplify or reduce the induced stresses in an axisymmetric 

manner based on the direction of the ground acceleration, i.e., upwards or downwards. 

A set of experimental and numerical studies have been carried out on steel conical tanks 

under both hydrostatic and hydrodynamic pressure in order to investigate the effect of wall 

inclination on the tank behaviour and state of stresses. For the seismic-related studies, the 

majority of them focused on calculating the base forces that are transmitted to the 

supporting structure due to a seismic event using equivalent mechanical models, while 

none of them addressed the conical tank’s resistance when subjected to either horizontal or 

vertical ground excitation. This tank resistance is required to assess the vessel wall 

thickness to insure its adequacy to resist the applied hydrodynamic pressure due to a 

seismic event. 

In the previous studies for steel conical tanks under horizontal ground excitations, the 

supporting structure in the form of steel framing system or reinforced concrete shaft was 

assumed to be rigid regarding rotational motions, i.e., no tank base rocking is allowed. For 

the case of a flexible supporting system, the rocking base motion is expected to change the 

vibration characteristics of the tank-support system and, consequently, the induced 

hydrodynamic forces.   

Based on the previous background for research conducted on steel conical tanks, the 

research conducted in the current Ph.D. thesis will try to build on and extend the previous 

studies found in literature by obtaining the steel conical tank capacities to avoid yielding 

and buckling of the vessel when subjected to horizontal and vertical ground excitations. 
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These capacities are then used to provide a simplified design procedure to design steel 

conical tanks subjected to earthquake excitations. The effect of allowing base rocking 

motion on seismic behaviour of steel conical tanks is also studied and a mechanical model 

is provided for such case.  

1.3 Literature Review 

1.3.1 Conical Tanks under Hydrostatic Pressure 

As for most building structures, the motivations for performing detailed investigations are 

usually related to total or partial failures. The first study related to steel conical tanks was 

conducted by Vandepitte et al. (1982) after the collapse of a conical steel water tower in 

Belgium. In this study, a large number of small-scale conical tank models were tested 

experimentally under hydrostatic pressure. The models were gradually filled with water till 

buckling occurred. The test results were used to develop a set of design curves for different 

base restraining conditions. The effect of geometric imperfections on the safety factor of 

the conical tanks was also studied. In 1990, a steel conical water tower collapsed in 

Fredericton, Canada when it was filled with water for the first time. Vandepitte (1999) 

concluded that the main cause of failure was related to the inadequate thickness of the tank 

walls at the base. This was due to the designer’s underestimation of the amplitude of the 

geometric imperfections as their design was based on results obtained from the field of 

aerospace where a superior quality control takes place. 

El Damatty et al. (1997a) and El Damatty et al. (1998) considered a number of steel conical 

tanks with practical dimensions in order to assess their buckling capacity under hydrostatic 

pressure. The effect of geometric imperfections and residual stresses due to circumferential 

and longitudinal welding on the buckling capacity of the tanks were assessed. Based on the 

results of the study, it was concluded that the inelastic behavior has to be considered as 

most of the tanks yielded before buckling instability took place. Also it was concluded that 

the critical geometric imperfection shape that led to the minimum buckling capacity is the 

axisymmetric one. Finally, the hoop residual stresses due to circumferential welding are 

more critical than residual meridional stresses. 
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Hafeez et al. (2010) investigated the buckling behavior of combined conical tanks under 

the effect of hydrostatic pressure. The study was conducted numerically using a three-

dimensional finite element model. The effects of geometric imperfection and residual 

stresses as well as the variation of the geometric and material parameters on the buckling 

capacity of combined conical tanks were also investigated. Finally, a comparison between 

the buckling capacities of combined and equivalent pure conical tanks was conducted. It 

was concluded that the concept of equivalent pure cones underestimate the buckling 

capacity and the yield load of the combined cones. 

Several attempts have been made to provide a simplified design procedure for steel conical 

tanks under hydrostatic pressure suitable for everyday use by practicing engineers. El 

Damatty et al. (1999) developed a simple design approach for steel conical tanks with a 

load factor value of 1.4 taking into account geometric imperfections, snow and roof loads, 

and the existence of an upper cylindrical cap. The idea was to avoid the yielding state of 

tanks, which was shown to always precedes buckling for the tank at any point. An 

economic design approach was also proposed by reducing the tank wall thickness as height 

increases. This study was limited to conical tanks with vertical inclination angle of 45o.  

Sweedan and El Damatty (2009) extended the latter study of combined conical tanks under 

hydrostatic loading using regression analysis based on the results of large number of 

analyzed tanks. This large database included a variation of tank dimensions, angle of 

inclination of the wall, cylindrical cap ratio, yield strength values, and geometric 

imperfection level.  

El Ansary et al. (2010) provided a powerful numerical tool that couples a non-linear finite 

element model and a genetic algorithm optimization technique for the analysis and design 

of steel conical tanks under hydrostatic pressure. This numerical tool is capable of selecting 

the set of design variables which satisfies the structure safety requirements while achieving 

a minimum structure weight and cost. 

As the compressive stresses are concentrated at the base of the conical tanks and the 

buckling is expected at this location, El Damatty et al. (2001) studied the effect of adding 

longitudinal steel stiffeners at the base. Two types of stiffeners were used; the first is free 
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at the tank base simulating the case of retrofitting an existing tank, while the second is 

pinned to the base representing the case of a newly designed tank. It was concluded that, 

the addition of extra free stiffeners increases the limit loads of the tanks by 35% to 64%, 

while for the case of pinned stiffeners this increase varies between 71% and 136%. 

1.3.2 Liquid Tanks under Seismic Loading 

1.3.2.1 Horizontal Excitation 

The first studies regarding seismic behaviour of cylindrical liquid tanks were based on the 

assumption that the tank walls are rigid, i.e., the flexibility of the tank walls has no effect 

on the contained fluid vibrations (Jacobsen (1949), Housner (1957), and Housner (1963)). 

This notion was considered valid until the earthquake in Alaska in the year 1964 where 

considerable damage occurred to a large number of cylindrical liquid storage tanks in the 

form of roof damage, wall buckling, and total collapse (Hanson (1968)). 

More studies were carried out after earthquake in Alaska in an attempt to accurately 

interpret the vibration characteristics, taking into consideration the effect of the wall 

flexibility where the tank deformations affect the hydrodynamic pressure, i.e., fluid-

structure interaction takes place. It was concluded that the flexibility of cylindrical tank 

walls amplifies the tank’s response. Therefore, it has to be accounted for (Veletsos (1974), 

and Haroun and Housner (1981,1982)). 

Many studies in the literature were found to be related to the buckling capacity of 

cylindrical liquid tanks under seismic loading. Virella et al. (2006) investigated the 

dynamic buckling of aboveground anchored cylindrical steel tanks subjected to horizontal 

components of real earthquake records numerically using the finite element method. The 

objective was to estimate the critical horizontal peak ground acceleration (PGA) causing 

either elastic or plastic buckling for the cylindrical shell. Three tank-liquid systems with 

different slenderness ratios were considered subjected to two natural excitation records. 

Dynamic buckling computations including material and geometric non-linearity were 

carried out. It was concluded that buckling at the top of the shell was caused by a negative 

net pressure at the zone in the tank where the impulsive hydrodynamic pressure induced 

by the earthquake excitation exceeds the hydrostatic pressure. This negative net pressure 
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induces membrane compressive circumferential stresses causing buckling to the tank shell. 

The elastic buckling at the top represented the critical state for the medium and tall models, 

while plasticity was reached at the shell before buckling for the shallow tank. The 

slenderness ratio was found to have some influence on the critical PGA with no clear trend. 

Virella et al. (2008) proposed a nonlinear static procedure based on the capacity spectrum 

method found in ATC-40 in order to evaluate the elastic buckling of above-ground 

anchored steel tanks due to horizontal seismic excitations. The objective was to obtain the 

minimum peak ground acceleration (PGA) value that produces buckling in the tank shell. 

The obtained critical PGA estimates were then compared with those calculated using the 

dynamic buckling analyses performed in the latter study. The following was concluded: (a) 

the nonlinear static procedure resulted in slightly smaller, i.e., conservative, values for the 

critical PGA compared to the dynamic buckling results, (b) similar first buckling modes 

were observed by using both static and dynamic buckling analyses, (c) the critical PGA 

decreases with the slenderness ratio. 

Djermane et al. (2014) attempted to evaluate the current design guidelines related to 

dynamic instability provided by AWWA-D100 and EC8 provisions for cylindrical steel 

tanks using a numerical shell finite element model. The idea was to evaluate the critical 

PGA values that cause the tank instability and then compare with their counterparts 

obtained by the codes’ provisions. The authors concluded the following: (a) comparison 

for broad tanks showed a good agreement between numerical and EC8 results, (b) 

standards need some revisions in order to provide improved consideration of the 

imperfections and geometric nonlinearities for the case of tall tanks, (c) simple stress 

limitation found in the standards is very conservative. 

Buratti and Tavano (2014) discussed different buckling modes for liquid-containing 

circular cylindrical steel tanks that are fully anchored at the base with a special focus on 

the secondary buckling occurring in the top part of the tank. A case study for a broad 

cylindrical tank was used in order to investigate various aspects of dynamic buckling using 

a finite element model where the fluid was modelled in the form of unvarying added 

masses, i.e., assuming rigid tank. The following was concluded: (a) hoop stresses due to 
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the hydrostatic pressure reduces the periods for shell-type vibration modes, but it does not 

affect cantilever-type vibration modes, (b) the secondary buckling is an elastic buckling 

mode, but it is strongly influenced by the occurrence of plasticity in other parts of the 

structure. 

El Damatty et al. (1997b,c) conducted the first study to assess the behavior of conical tanks 

under seismic loading where a coupled shell element-boundary element formulation was 

developed to simulate the fluid-structure interaction. A fluid added mass matrix was 

derived and added to the mass matrix of the structure to be incorporated into a nonlinear 

dynamic analysis routine. The results showed that some of the tanks suffered dynamic 

instability although they were designed with factor of safety of about 2.5 under hydrostatic 

pressure. This in turn reflects the importance of the seismic loading compared to the 

hydrostatic one. 

As the finite element dynamic analysis for the tank-fluid system is considered 

computationally expensive, researchers tried to find a simpler procedure to estimate the 

total forces acting on the liquid tank structure when subjected to an earthquake event. A 

practical alternative was to model the contained liquid as lumped masses attached to the 

tank wall rigidly or through linear springs instead of modelling the contained fluid as a 

continuum, which in turn reduce the computation cost for the tank-fluid dynamic analysis. 

The masses-springs system is called equivalent mechanical model whose main objective is 

to match the resulting forces and moments obtained using dynamic analysis. 

Haroun and Housner (1981) introduced a three masses mechanical model for cylindrical 

steel tanks. The three masses are the impulsive fluid mass, the convective fluid mass, and 

the mass reflecting the effect of the flexibility of the tank’s wall. The impulsive mass 

represents the mass of the fluid vibrating in synchronism with the ground and rigidly 

connected to the tank’s wall, while the convective one represents the mass of the fluid 

undergoing sloshing motion at the free surface. El Damatty and Sweedan (2006) developed 

a similar mechanical model for conical tanks in order to predict the base shear and 

overturning moment acting on the tanks when subjected to earthquake events.  
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Moslemi et al. (2011) analyzed an elevated steel conical tank twice when subjected to El-

Centro ground motion; once using finite element analysis where the fluid was modeled 

using displacement-based elements and once using the ACI procedure which is based on 

Housner’s mechanical model for equivalent cylindrical tank. The difference between the 

two methods in terms of base shear and base moment was around 6%. 

1.3.2.2 Vertical Excitation 

Regarding the vertical component, Marchaj (1979) attributed the failure of metallic tanks 

during past earthquakes to the lack of consideration of vertical acceleration in their design. 

Veletsos and Kumar (1984) studied the effect of wall flexibility on the response of 

cylindrical tanks when subjected to vertical component of ground shaking. It was 

concluded that the hydrodynamic effects for a flexible tank might be substantially larger 

than those induced in a rigid tank of the same dimensions, and for an intense excitation, 

they might be of the same order of magnitude as the hydrostatic effects. 

The latter study considered only the radial motion of the tank walls and neglected the effect 

of axial deformations. This assumption was validated by Haroun and Tayel (1985a) who 

provided an analytical method for the computation of the dynamic characteristics in terms 

of natural frequencies, corresponding mode shapes and stress distributions for partly filled 

cylindrical tanks subjected to vertical excitations. Results were compared to numerical 

solution where the liquid region was treated analytically and the elastic shell was modeled 

by finite elements (Haroun and Tayel (1985b)) and both methods showed excellent 

agreement. 

Veletsos and Tang (1986) provided a practical procedure to evaluate the dynamic response 

of rigid and flexible steel and concrete cylindrical tanks with different base conditions 

when subjected to vertical excitations including soil-structure interaction. The main 

conclusion was that soil-structure interaction reduces the maximum hydrodynamic effects 

and might be approximated by a change in the fundamental natural frequency of the tank-

liquid system or an increase in damping 
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Haroun and Tayel (1985) analyzed some cylindrical liquid storage tanks under 

simultaneous horizontal and vertical excitations numerically using finite element method. 

The goal of the study was to assess the relative importance of inclusion of the vertical 

component of the earthquake in the behaviour of the cylindrical tanks. The axial stresses 

resulting from the vertical component was found to be much lower compared to those 

induced due to the horizontal component of the earthquake due to overturning moment. 

However, the hoop stresses due to vertical component was higher than those due to 

horizontal component which might lead to the yielding of the steel shell increasing the 

probability of buckling of the tank walls near the base of the tank. 

Haroun and Abou-Izzeddine (1992) performed a parametric study in order to evaluate the 

effects of different factors that influence the seismic response of an elastic cylindrical tank 

supported on a rigid base when subjected to a vertical excitation by considering shell-

liquid-soil interaction. It was concluded that foundation soil-tank interaction reduces the 

tank response in general, and this reduction is a function of the soil shear-wave velocity as 

well as tank geometric properties. 

El Damatty et al. (1997b,c) derived a fluid-added mass matrix for both horizontal and 

vertical ground motions to be incorporated in time history analysis and it was shown how 

the contribution of vertical excitation to the dynamic instability is important. This coupled 

shell element-boundary element model was verified experimentally using shaking table 

testing for scaled conical shell aluminum models (Sweedan and El Damatty (2002), El 

Damatty et al. (2005), and El Damatty et al. (2005)). 

Jolie et al. (2014) assessed the importance of considering the vertical component of ground 

excitations when designing steel conical tanks using an equivalent mechanical model that 

estimates the acting normal forces due to vertical excitations. In addition, a three-

dimensional finite element model has been developed using shell elements in order to 

predict maximum membrane and overall meridional stresses due to both hydrodynamic 

and hydrostatic pressures. The results showed that the vertical ground acceleration has a 

considerable effect on the increase of the meridional wall stresses compared to those 

resulting from hydrostatic pressure, especially for high seismic hazard regions emphasizing 



12 

 

 

  

the importance of vertical excitation consideration. Also, meridional wall stresses at the 

extreme inner fibre at the tank base are shown to be higher than those developing at the 

mid-surface due to bending effects associated with the boundary conditions at the tank 

base. 

1.4 Objectives of Thesis 

The major objectives of the thesis can be summarized in the following: 

1- Estimate the capacity of steel conical tanks under hydrodynamic pressure due to 

horizontal ground excitations using nonlinear static analysis for both perfect and 

imperfect conical tanks. 

2- Estimate the capacity of steel conical tanks under hydrodynamic pressure due to 

vertical ground excitations using nonlinear static analysis for both perfect and 

imperfect conical tanks. 

3- Provide a simplified seismic design procedure for steel conical tanks when 

subjected to both horizontal and vertical ground excitations and validating this 

procedure using dynamic analysis. 

4- Study the effect of the base rocking motion on the seismic behaviour of steel conical 

tanks  

5- Develop an equivalent mechanical model for steel conical tanks taking the base 

rocking motion into consideration. 

1.5 Scope of Thesis 

The thesis has been prepared in ‘Integrated-Article’ format. In the present chapter, a review 

of the studies related to steel conical tanks under seismic loading and the objectives and 

thesis’s scope are provided. The following four chapters address collectively the thesis 

objectives. Chapter 6 presents the conclusion of the study together with suggestions for 

further research work. A description of scope of each chapter is provided below. 
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1.5.1 Chapter 2 – Capacity of Liquid Steel Conical Tanks under 
Hydrodynamic Pressure Due To Horizontal Ground Excitation 

In this chapter, the capacity of liquid steel conical tanks when subjected to hydrodynamic 

pressure resulting from horizontal ground excitation is obtained. In order to achieve that, a 

numerical finite element model is used based on static pushover analysis. The capacity is 

expressed in terms of the resulting total base shear at failure for the two components of the 

hydrodynamic pressure; impulsive and sloshing. As the impulsive and sloshing vibration 

modes are well-separated regarding their natural frequencies, the analyses are done 

separately for each pressure component. Base shear capacities for perfect steel conical 

tanks are presented in the form of charts for different dimensions, walls’ thicknesses, and 

angles of inclination. As geometric imperfections play an important role in defining the 

capacity of shell structures, the effect of the geometric imperfections on the capacity of 

steel conical tanks is then studied and similar charts are provided for the case of imperfect 

tanks. On the other side, the seismic demands in the form of total base shear are obtained 

using equivalent mechanical model found in the literature for both impulsive and sloshing 

vibration modes and compared to the obtained capacities in order to assess the design of 

the steel conical tanks. Three seismic zones are considered in this comparison representing 

moderate to high seismic zones in Canada. 

1.5.2 Chapter 3 – Capacity of Liquid-Filled Steel Conical Tanks 
under Vertical Excitation   

In this chapter, the capacity of liquid steel conical tanks when subjected to hydrodynamic 

pressure resulting from vertical ground excitation is obtained using static pushover 

analysis. The capacity is expressed in terms of the resulting total vertical force at failure 

Vertical force capacities for perfect steel conical tanks are presented in the form of charts 

for different dimensions, walls’ thicknesses, and angles of inclination. The effect of the 

geometric imperfections on the capacity of steel conical tanks is then studied and similar 

charts are provided for the case of imperfect tanks. The vertical force capacities of the 

conical tanks are then compared with the seismic demands in the form of total vertical force 

obtained using equivalent mechanical model found in the literature in order to assess the 

initial design for the steel conical tanks. A procedure based on artificial ground excitations 
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is used to convert the horizontal response spectra for the same three seismic zones 

considered in the previous chapter to vertical spectra. 

1.5.3 Chapter 4 – Design Procedure for Liquid Storage Steel 
Conical Tanks under Seismic Loading 

In this chapter, a simplified design procedure is proposed to design steel conical liquid 

tanks subjected to horizontal and vertical components of ground excitations. The approach 

is based on satisfying a design equation which is function of the steel conical tank 

capacities and seismic demands. The steel conical tank capacities are those obtained in the 

previous two chapters using non-linear static analyses for both horizontal and vertical 

excitations, while the seismic demands are obtained using equivalent mechanical models 

found in the literature. This design approach takes into consideration the effect of 

geometric imperfections and the effect of sloshing hydrodynamic pressure. In order to 

validate this design procedure, non-linear time history analyses are conducted and their 

outcomes are compared with those of the proposed design procedure in terms of the 

minimum wall thickness. The time history analyses are conducted based on 11 natural 

earthquake records scaled to different seismic zones in Canada. The selection of the ground 

motions is based on a procedure where the seismic hazard is deaggregated in terms of the 

distance and magnitude of the ground motion for different spectral acceleration values. 

1.5.4 Chapter 5 – Effect of Base Rocking Motion on the Seismic 
Behaviour of Conical Shaped Steel Liquid Storage Tanks 

In this chapter, the effect of base rocking motion for steel conical tanks during a horizontal 

ground excitation is studied. First, the effect of this rocking motion on the change of the 

vibration properties of steel conical tanks is studied. This is achieved using free-vibration 

analysis for the tank-fluid system and comparing the results with the case of no rocking 

motion. Secondly, the effect of this rocking motion on the hydrodynamic pressure acting 

on the tank walls and base due to the existing fluid-structure interaction is studied. This is 

achieved through non-linear time history analysis under artificial earthquake records 

matching three seismic zones in Canada. Finally, a mechanical model that includes the 

effect of base rocking motion is developed in the second part of this chapter using a 

frequency analysis approach. The proposed model takes into consideration the impulsive 
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component of the hydrodynamic pressure, deformability of the tank walls, and the 

hydrodynamic pressure acting on the tank base. The model is then validated through 

comparison with a mechanical model taking the rocking motion under consideration for 

cylindrical tanks found in literature. The parameters of the mechanical model are presented 

in the form of charts for different geometries of steel conical tanks. The proposed 

mechanical model can be used for either ground or elevated steel conical tanks undergoing 

horizontal translation and/or base rotation.             
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Chapter 2  

2 Capacity of Liquid Steel Conical Tanks under 
Hydrodynamic Pressure Due To Horizontal Ground 
Excitation 

Steel conical tanks are widely used for liquid storage around the world and especially in 

North America.  A number of those tanks collapsed in the last decades at different places 

as a result of instability of the steel shells. Despite being widely used, no specific design 

procedure is available for conical tanks under dynamic conditions. Most of the previous 

studies related to steel conical tanks focused on calculating the acting forces due to a 

seismic event. This study however, focuses on evaluating the capacity of conical tanks 

under hydrodynamic pressure resulting from horizontal ground excitation using non-linear 

static pushover analysis. The capacity is then compared to the seismic demand obtained 

using a previously developed mechanical model found in the literature for different seismic 

zones. This paper is a part of a larger study aiming to provide a simplified design procedure 

for steel conical tanks when subjected to earthquakes. The study is conducted numerically 

using a non-linear finite element model that accounts for the effects of large deformations 

and geometric imperfections on the stability of steel conical tanks. 

2.1 Introduction 

Steel conical-shaped liquid storage tanks are commonly used for the purpose of storing 

different kinds of liquids. The contained liquid can either be water used for both drinking 

as well as fire protection or a chemical used in a specific industry. Steel vessels are 

advantageous in comparison to their concrete counterparts as they are composed of 

prefabricated steel panels, which simplify the erection procedure and reduce construction 

costs. A conical tank consists solely of a pure truncated cone, as shown in Fig. 2-1a or 

might be capped with a cylindrical part and is referred to as combined conical tank as 

shown in Fig. 2-1b. Although such tanks whether pure or combined are commonly 

constructed, no specific design procedure is found for conical tanks in most liquid-tanks 

specifications. The only guidelines, found in some design provisions (AWWA (2005), API 



20 

 

 

  

(2005), ECS (1998), and ACI 371 (2008)) are based on treating a conical-shaped tank as a 

cylindrical tank with equivalent height, radius, and thickness.  

       

Fig. 2-1 (a) Pure conical tank3, (b) Combined conical tank4 

The main difference between conical and cylindrical tanks in the structural behaviour is 

due to the inclination of the conical tank wall. For the case of hydrostatic pressure, the 

volume of the contained liquid can be divided into two portions: vol. 1 and vol.2 as shown 

in Fig. 2-2. The latter volume increases as the base of the tank is approached and is 

associated with a decrease in the vessel radius. This leads to the development of high 

compressive meridional stresses σm in this region. Tensile hoop stresses σh are also induced 

circumferentially through the tank shells. The hydrodynamic pressure due to horizontal 

seismic excitation will amplify both σm and σh at one side of the tank and reduces them at 

the other side based on the direction of the ground acceleration.  

                                                 

3
http://forums.auran.com/trainz/showthread.php?17876-FEC-Key-West-extension-modern-day/page7  

4 http://www.caldwellwatertanks.com 

(a) (b) 
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Fig. 2-2 Stresses induced due to inclination of the wall 

The equivalent cylinder proposed by AWWA (2005) and API (2005) is based on the 

average conical tank radius and a total height equals to the inclined wetted surface height 

of the conical tank. On the other side, ECS (1998) and ACI 371 (2008) recommend using 

an equivalent cylindrical tank that has the same free surface diameter as the conical tank 

and a depth that results in the same volume as the conical tank. Jolie et al. (2013) assessed 

the equivalent cylinder concept proposed by different specifications in terms of the 

resulting base shear and overturning moments. The study showed that while the base shear 

is overly-estimated by the AWWA and API, it remains well-predicted by the Eurocode.  

All the design codes are found to under estimate the overturning moment, which was 

related to not including the effect of the vertical hydrodynamic pressure component when 

assuming the tank walls to be vertical not inclined. 

A conical tank in static conditions has to support its own weight in addition to the applied 

hydrostatic pressure acting on the tank walls and base. For steel conical tanks, the 

hydrostatic pressure will be more critical than the weight of the tank due to the relatively 

light weight of steel structures. For the case of liquid-storage conical tanks under dynamic 

loads, the behaviour is more complicated than other ordinary structures. This is due to the 

presence of the contained liquid, which vibrates with different dynamic (vibration) 

characteristics than those of the tank walls.  

For a liquid-filled conical tank subjected to an earthquake excitation, the walls, the floor, 

and the contained liquid are subjected to acceleration. As a result, the walls are affected by 



22 

 

 

  

the inertial forces of the wall in addition to the hydrodynamic pressure of the contained 

liquid. The contained liquid can be divided into two parts: the first part is mainly the lower 

amount of liquid, which moves with the walls of the tank and is called the impulsive liquid 

mass. The second part is mainly the upper amount of liquid and is called the convective 

liquid mass, which undergoes sloshing due to vibration. The ratio of the convective mass 

to the impulsive one increases as the tank becomes shallower. Also, the frequency of the 

impulsive vibration modes is much higher than those of the convective vibration mode. 

The first study related to steel conical tanks was conducted by Vandepitte et al. (1982) after 

the collapse of a conical steel water tower in Belgium. In this study, a large number of 

small-scale conical tank models were tested experimentally under hydrostatic pressure. 

The models were gradually filled with water till buckling occurred. The test results were 

used to develop a set of design curves for different base restraining conditions. The effect 

of geometric imperfections on the safety factor of the conical tanks was also studied. In 

1990, a steel conical water tower collapsed in Fredericton, Canada when it was filled with 

water for the first time. Vandepitte (1999) concluded that the main cause of failure was 

related to the inadequate thickness of the tank walls at the base. This was due to the 

designer’s underestimation of the amplitude of the geometric imperfections as their design 

was based on results obtained from the field of aerospace where a superior quality control 

takes place. 

Several attempts have been made to provide a simplified design procedure for steel conical 

tanks under hydrostatic pressure suitable for everyday use by practicing engineers. El 

Damatty et al. (1999) developed a simple design approach for steel conical tanks with a 

load factor value of 1.4 taking into account geometric imperfections, snow and roof 

weights, and the existence of an upper cylindrical cap. The idea was to avoid the yielding 

state of tanks, which was shown to always precedes buckling for the tank at any point. An 

economic design approach was also proposed by reducing the tank wall thickness as height 

increases. This study was limited to conical tanks with vertical inclination angle of 45o.  

Sweedan and El Damatty (2009) extended the latter study of combined conical tanks under 

hydrostatic loading using regression analysis based on the results of large number of 

analyzed tanks. This large database included a variation of tank dimensions, angle of 
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inclination of the wall, cylindrical cap ratio, yield strength values, and geometric 

imperfection level.  

The first studies regarding seismic behaviour of cylindrical liquid tanks were based on the 

assumption that the tank walls are rigid, i.e., the flexibility of the tank walls has no effect 

on the contained fluid vibrations (Jacobsen (1949), Housner (1957), and Housner (1963)). 

This notion was considered valid until the earthquake in Alaska in the year 1964 where 

considerable damage occurred to a large number of cylindrical liquid storage tanks in the 

form of roof damage, wall buckling, and total collapse (Hanson (1968)). 

More studies were carried out after earthquake in Alaska in an attempt to accurately 

interpret the vibration characteristics, taking into consideration the effect of the wall 

flexibility where the tank deformations affect the hydrodynamic pressure, i.e., fluid-

structure interaction takes place. It was concluded that the flexibility of cylindrical tank 

walls amplifies the tank’s response. Therefore, it has to be accounted for (Veletsos (1974), 

and Haroun and Housner (1981, 1982)). 

Many studies in the literature were found to be related to the buckling capacity of 

cylindrical liquid tanks under seismic loading. Virella et al. (2006) investigated the 

dynamic buckling of aboveground anchored cylindrical steel tanks subjected to horizontal 

components of real earthquake records numerically using the finite element method. The 

objective was to estimate the critical horizontal peak ground acceleration (PGA) causing 

either elastic or plastic buckling for the cylindrical shell. Three tank-liquid systems with 

different slenderness ratios were considered subjected to two natural excitation records. 

Dynamic buckling computations including material and geometric non-linearity were 

carried out. It was concluded that buckling at the top of the shell was caused by a negative 

net pressure at the zone in the tank where the impulsive hydrodynamic pressure induced 

by the earthquake excitation exceeds the hydrostatic pressure. This negative net pressure 

induces membrane compressive circumferential stresses causing buckling to the tank shell. 

The elastic buckling at the top represented the critical state for the medium and tall models, 

while plasticity was reached at the shell before buckling for the shallow tank. The 

slenderness ratio was found to have some influence on the critical PGA with no clear trend. 
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Virella et al. (2008) proposed a nonlinear static procedure based on the capacity spectrum 

method found in ATC-40 in order to evaluate the elastic buckling of above-ground 

anchored steel tanks due to horizontal seismic excitations. The objective was to obtain the 

minimum peak ground acceleration (PGA) value that produces buckling in the tank shell. 

The obtained critical PGA estimates were then compared with those calculated using the 

dynamic buckling analyses performed in the latter study. The following was concluded: (a) 

the nonlinear static procedure resulted in slightly smaller, i.e., conservative, values for the 

critical PGA compared to the dynamic buckling results, (b) similar first buckling modes 

were observed by using both static and dynamic buckling analyses, (c) the critical PGA 

decreases with the slenderness ratio. 

Djermane et al. (2014) attempted to evaluate the current design guidelines related to 

dynamic instability provided by AWWA-D100 and EC8 provisions for cylindrical steel 

tanks using a numerical shell finite element model. The idea was to evaluate the critical 

PGA values that cause the tank instability and then compare with their counterparts 

obtained by the codes’ provisions. The authors concluded the following: (a) comparison 

for broad tanks showed a good agreement between numerical and EC8 results, (b) 

standards need some revisions in order to provide improved consideration of the 

imperfections and geometric nonlinearities for the case of tall tanks, (c) simple stress 

limitation found in the standards is very conservative. 

Buratti and Tavano (2014) discussed different buckling modes for liquid-containing 

circular cylindrical steel tanks that are fully anchored at the base with a special focus on 

the secondary buckling occurring in the top part of the tank. A case study for a broad 

cylindrical tank was used in order to investigate various aspects of dynamic buckling using 

a finite element model where the fluid was modelled in the form of unvarying added 

masses, i.e., assuming rigid tank. The following was concluded: (a) hoop stresses due to 

the hydrostatic pressure reduces the periods for shell-type vibration modes, but it does not 

affect cantilever-type vibration modes, (b) the secondary buckling is an elastic buckling 

mode, but it is strongly influenced by the occurrence of plasticity in other parts of the 

structure. 
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El Damatty et al. (1997b,c) conducted the first study to assess the behavior of conical tanks 

under seismic loading where a coupled shell element-boundary element formulation was 

developed to simulate the fluid-structure interaction. A fluid added mass matrix was 

derived and added to the mass matrix of the structure to be incorporated into a nonlinear 

dynamic analysis routine. The formulation was conducted for both horizontal and vertical 

excitations and the results showed that some of the tanks suffered dynamic instability 

although they were designed with factor of safety of about 2.5 under hydrostatic pressure. 

This in turn reflects the importance of the seismic loading compared to the hydrostatic one. 

Also, it was concluded that the contribution of vertical excitation to the dynamic instability 

has to be included. 

As the finite element dynamic analysis for the tank-fluid system is considered 

computationally expensive, researchers tried to find a simpler procedure to estimate the 

total forces acting on the liquid tank structure when subjected to an earthquake event. A 

practical alternative was to model the contained liquid as lumped masses attached to the 

tank wall rigidly or through linear springs instead of modelling the contained fluid as a 

continuum, which in turn reduces the computation cost for the tank-fluid dynamic analysis. 

The masses-springs system is called equivalent mechanical model whose main objective is 

to match the resulting forces and moments obtained using dynamic analysis. 

Haroun and Housner (1981) introduced a three masses mechanical model for cylindrical 

steel tanks. The three masses are the impulsive fluid mass, the convective fluid mass, and 

the mass reflecting the effect of the flexibility of the tank’s wall. The impulsive mass 

represents the mass of the fluid vibrating in synchronism with the ground and rigidly 

connected to the tank’s wall, while the convective one represents the mass of the fluid 

undergoing sloshing motion at the free surface. El Damatty and Sweedan (2006) developed 

a similar mechanical model for conical tanks in order to predict the base shear and 

overturning moment acting on the tanks when subjected to earthquake events.  

Moslemi et al. (2011) analyzed an elevated steel conical tank twice when subjected to El-

Centro ground motion; once using finite element analysis where the fluid was modeled 

using displacement-based elements and once using the ACI procedure which is based on 
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Housner’s mechanical model for equivalent cylindrical tank. The difference between the 

two methods in terms of base shear and base moment was around 6%. 

The aim of this study is to determine the capacity of steel conical tanks under 

hydrodynamic pressure due to horizontal ground excitation. The capacity, expressed in 

terms of base shear, is obtained using a finite element model through non-linear static 

pushover analysis. Two base shear capacities corresponding to impulsive and sloshing 

hydrodynamic pressure are obtained. Geometric imperfections are incorporated in the finite 

element model in order to study their effect on the capacity of the steel conical tanks. The 

base shear capacities for different levels of geometric imperfections are represented in the 

form of charts for different tank dimensions. Finally, the tank capacities are compared to 

the seismic demand for different seismic zones in Canada obtained using previously 

developed mechanical model found in literature in order to assess the design of the steel 

conical tanks.  

2.2 Hydrodynamic Pressure 

Hydrodynamic pressure is induced on the tank walls and floor during seismic excitation 

acting on a conical tank. The total hydrodynamic pressure can be divided into two 

components: impulsive pressure PI and convective pressure due to sloshing of the water 

surface PS. The sloshing component is a long period component relative to the impulsive 

one and hence the two components can be decoupled in the analysis.  

The impulsive component associated with the hydrodynamic pressure for a conical tank 

containing an ideal fluid and prevented from rocking is governed with the following set of 

equations and boundary conditions (El Damatty et al. 1997b): ∇2PI(r,θ,z,t) = 0                                                     	       inside the fluid volume    	 				  [2-1]       

∂PI(r,θ,z,t) ∂n⁄  = -ρFuሷ  (r,θ,z,t).n                    											     at the surface S1                 	 		  [2-2] 

PI =  0                                                                            at the surface	S3                			    [2-3] 

∂PI(t) ∂n⁄  = 0                                                			              at the surface S2               				    [2-4] 
where uሷ 	(r,θ,z,t) is the acceleration vector at any point of the tank’s wall, n is the unit 

vector normal to the surface of the tank, and 	ρF	is the fluid density. Surfaces S1, S2 and S3; 
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coordinates r, θ, and z are shown in Fig. 2-3 and t is the time. The condition in Eq. 2-3 

reflects the assumption of no sloshing effect as it can be decoupled from the impulsive one, 

while Eq. 2-4 reflects the assumption of no base rocking motion.  

  

Fig. 2-3 Co-ordinate system for the steel conical tank and dimensional parameters 

The solution of the above differential equation was done using the boundary element 

method by (Haroun, 1980) for cylindrical tanks and the same approach was followed by 

(El Damatty et al. 1997b) for conical tanks. The basic idea is to interpolate the dynamic 

pressure using different shape functions satisfying the partial differential equation. The 

impulsive component of the hydrodynamic pressure can be interpolated as follows: 

PI(r,θ,z,t) =	෍   ෍  Ain(t) In( αir) cos( αiz) cos(nθ)                                							    	 		  [2-5]N1

i=1

N2

n=1

 

 αi=(2i-1) π 2h                                                                                                       			     [2-6]⁄  

where Ain (t) is an amplitude function of time, 	In	are the modified Bessel’s functions of the 

first kind. The term cos(	αiz) represents the variation of the hydrodynamic pressure for 

mode i in the vertical Z direction, while the term cos(nθ)	represents the variation of the 

hydrodynamic pressure for mode n in the circumferential direction where n is the wave 

number. The distribution of the first three pressure modes is shown in Fig. 2-4(a-c). 
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Fig. 2-4 Distribution of different pressure modes: (a) Circumferential distribution, 

(b) Vertical distribution for impulsive pressure modes n=1, 3, 5, .. , (c) Vertical 

distribution for impulsive pressure modes n=2, 4, 6, .., (d) Vertical distribution for 

fundamental sloshing pressure mode 

As a result of the decoupling between liquid sloshing modes and shell vibration modes, the 

sloshing component PS(r,θ,z,t)	can be evaluated assuming the tank walls are rigid. Based 

on this assumption, El Damatty et al. (2000) derived an expression for the fundamental 

sloshing component of the hydrodynamic pressure as follows 

PS(r,θ,z,t) = B(t) ρF J1(k1r)  cosh(k1z) cos(θ)                                    									                 [2-7]  	
where J1(k1r)	is the Bessel’s function of the first kind of order one, B(t) is arbitrary 

function of time, and 	ρF	is the fluid density. A procedure to evaluate the constant k1 was 

discussed in detail by El Damatty et al. (2000). The vertical distribution for the fundamental 

sloshing pressure mode is shown in Fig. 2-4d. Details of the impulsive and sloshing 

pressure derivations are found in Appendix D. 

(a) 

(b) 

(c) 

(d) 



29 

 

 

  

2.3 Finite Element Model 

In this study, three-dimensional numerical models are developed for steel conical tanks 

using the finite element method. The numerical model is based on a consistent 13 noded 

subparametric triangular shell element shown in Fig. 2-5a, which was developed by Koizey 

and Mirza (1997). This element has the advantages of being free of the spurious shear 

modes, i.e., locking phenomenon observed in isoparametric shell elements when used in 

modeling thin shell structures. El Damatty et al. (1997d) extended the formulation of this 

shell element to include geometric and material non-linearities. Accordingly, this model 

can be used to predict both elastic and inelastic buckling. Due to symmetry about the 

horizontal axis in both loading and geometry, only half of the cone is modelled and used 

in the analysis. A mesh sensitivity analysis was performed in order to determine the mesh 

size that is able to capture the expected buckling accurately. It is found that a mesh of 512 

triangular elements as shown in Fig. 2-5b is sufficient to accurately capture the buckling 

waves near the tank base.  

The length of the elements is not uniform as the mesh is chosen to be finer near the base of 

the tank due to the stress concentration at this location where buckling is expected to occur. 

The tanks are assumed to be hinged at the base along the circumference and free at the top. 

 

Fig. 2-5 (a) Coordinates and degrees of freedom for a consistent shell element, (b) 
Finite element mesh for half cone 

(a) 
(b) 
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2.4 Method of Analysis 

In this study, non-linear static analysis, commonly known as pushover analysis, is used to 

obtain the load-carrying capacity of the conical tanks. The non-linear static analysis is 

carried out by increasing the load value incrementally till reaching failure, which is in the 

form of buckling of the steel vessel. The load increase is achieved using an increasing load 

factor, which is multiplied by the applied hydrodynamic pressure load pattern. The non-

linearity in the analysis comes from the inclusion of both geometric and material non-

linearity in the finite element model previously discussed.  To include both the hydrostatic 

and hydrodynamic pressure in the analysis, two load factors are used. The first is PHS, 

which corresponds to the hydrostatic pressure while the second is PHD, which corresponds 

to the hydrodynamic pressure. The analysis starts with a value of the load factor PHD equals 

to zero and then the load factor PHS is increased incrementally until it reaches the actual 

value of the hydrostatic pressure acting on the tank. After this stage, the value of PHS is 

kept constant and the value of PHD begins at zero and increases until failure occurs. At the 

end of the analysis, the value of PHD at failure is recorded along with the deformations, 

forces, and stresses corresponding to the failure value. It should be noted that the load 

increments near the failure are reduced in order to better capture the failure load factor. 

This is achieved by doing more than one trial for each analysis.  

A group of 75 tanks of practical dimensions are chosen for this study with Rb ranging from 

4.0m to 6.0m, h from 5.0m to 9.0m, and θv = 30o, 45o, 60o with steel yield stress of 300 

MPa. The tanks are preliminary designed under hydrostatic pressure based on the 

simplified method proposed by Sweedan and El Damatty (2009) assuming good tanks 

regarding the level of geometric imperfection. As yielding of the tank usually precedes 

buckling, i.e., inelastic buckling is expected, the main idea of this simplified design 

procedure was to prevent the tank shell from reaching the yielding state at any point under 

hydrostatic pressure. The concept was based on developing a stress magnification factor 

that relates the maximum stresses that occur in the walls of the tanks resulting from 

membrane, bending and geometric imperfection effects, to the theoretical values obtained 

from membrane behaviour. 
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Based on the distribution of different pressure modes shown in Fig. 2-4, it is clear that the 

total base shear will result from cos θ mode only, i.e., n=1. Regarding the vertical 

distribution of the pressure modes, only the first vertical mode, i.e., i=1, is included in the 

analysis of calculating the conical tank capacities. 

The analysis starts with applying the axi-symmetric hydrostatic pressure on the tank walls. 

A typical plot for the radial deformations of the tank walls at different angles θ is shown 

in Fig. 2-6. As it is expected due to the inclination of the walls, a buckling wave is noticed 

near the base of the tank due to the high compressive stresses at that location. It is worth 

mentioning that although this buckling wave occurred, the tank is still able to resist more 

loads due to hydrodynamic pressure. This is the case since the tanks are designed to sustain 

a value of PHS exceeding the actual hydrostatic pressure. After reaching this stage, the 

hydrodynamic pressure with the cos θ pattern is applied on the walls of the tank and 

increased incrementally while the hydrostatic pressure is kept constant.  

By comparing the radial deformations of the tank walls at failure shown in Fig. 2-6 to those 

just after the hydrostatic pressure phase, it is noticed that along the line θ = 0o the radial 

displacement peak location is shifted up and the buckling wave near the base of the tank 

becomes more clear. At θ=90o, the distribution and the values of the radial displacement 

are nearly the same. Finally at θ=180o, the radial displacements at failure are with negative 

sign, i.e., inwards the tank and the buckling wave is reduced. A typical circumferential 

distribution of the tank deformations is shown in Fig. 2-7. 
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Fig. 2-6 Radial deformations of the tank walls at the end of each phase 

 

Fig. 2-7 Deformed shape at the end of each phase of loading 

In order to check the assumption of excluding the base rocking motion effects on the 

hydrodynamic pressure when obtaining the capacities of steel conical tanks, two sets of 

time history analyses were performed; one with allowing the tank base to undergo rocking 

motion while the other preventing such motion. The results of the analyses showed that the 

difference between the base shear values recorded at buckling for the two cases to be less 

than 5% for different tank configurations, i.e., inclination angle and level of imperfections. 

As such, the curves developed in this study for estimating the seismic capacity of steel 

conical tanks can be applied to both ground and elevated tanks. 
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2.5  Impulsive Base Shear Capacity 

2.5.1 Perfect Tanks 

The capacity of the tanks can be expressed using the value of the load factor PHD at failure, 

but a more relevant quantity especially for seismic related problems is the value of the base 

shear at failure. The purpose of this part of the study is to assess the base shear capacity of 

steel conical tanks under the effect of hydrodynamic pressure in addition to the existing 

hydrostatic pressure. For conical tanks, the value of the base shear reflects the overturning 

moment acting on the tank, which could be very critical. In addition, the base shear 

combined with the overturning moment is required for the design of the supporting shaft 

as well as the foundations. In this study, a steel conical steel tank is considered a failed one 

whenever one of the following two failure criteria takes place: (1) Yielding failure where 

the tank shell yields before buckling instability takes place (2) Buckling failure where the 

tank shell suffers instability before yielding, i.e., elastic buckling. As a result, the base shear 

capacity of a steel conical tank in the current study represents the base shear value just 

before yielding or buckling for the tank vessel. 

In order to understand how the base shear value at failure varies with changing the tank 

geometric parameters, a parametric study is performed. The base shear VI is normalized to 

the total weight of the fluid contained in the tank W in the form of the base shear ratio 

VI/W. For the 75 steel conical tanks discussed earlier, Figs. 2-8, 2-9, and 2-10 shows the 

variation of the ratio VI/W with the parameters h, Rb, and θv, respectively for different wall 

thicknesses tw. For each chart, the geometric parameter under consideration is changed in 

addition to the wall thickness while keeping all the other parameters unchanged. The 

default values for different parameters are h=7.0m, Rb=5.0m, and θv=45o. It is concluded 

from the charts that the value of VI/W decreases as the height of the tank or the bottom 

radius or the angle θv increase. Finally, the ratio VI/W increase with increasing the 

thickness of the tank walls.  
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Fig. 2-8 Variation of impulsive base shear ratio with the tank height and thickness 

 

Fig. 2-9 Variation of impulsive base shear ratio with the tank radius and thickness 
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Fig. 2-10 Variation of impulsive base shear ratio with the tank angle of inclination 

and thickness 
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in the tank wall thickness is found to make the elastic buckling failure criterion more 

probable. 

2.5.2 Imperfect Tanks 

In the previous section, the capacity of perfect steel conical tanks was evaluated based on 

the tank dimensions. In fact, it requires a superior quality control to get perfect straight thin 

steel plates, which can be almost impossible. As a result, geometric imperfections of the 

conical tank walls will exist and their amplitude will be dependent on the quality control 

applied by the builder. Geometric imperfections play an important role in defining the 

buckling capacity of shell structures in general. Although geometric imperfections are 

randomly distributed in a shell, a conservative used model for simulating the geometric 

imperfections is shown in Fig. 2-11 and described by the following expression: 

W(s)=w0sin(2πs LI⁄ ) cos (nθ)                                    			                                				              [2-8] 
where w଴ is the imperfection amplitude, L୍is the imperfection wavelength, s is a coordinate 

measured along the generator of the vessel, and n is an integer defining the circumferential 

wavelength of the  imperfection shape. According to Vandepitte et al. (1982), a conical 

tank with the ratio (w0/LI) less than 0.004 is considered a good cone while a conical tank 

with the ratio (w0/LI) greater than 0.004 but less than 0.01 is considered a poor cone.  

 

Fig. 2-11 Assumed imperfection shape along the generator of tank 
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In this section, the effect of geometric imperfections on the capacity of the steel conical 

tanks when subjected to both hydrodynamic and hydrostatic pressure is studied. The 

geometric imperfection is incorporated in the finite element model discussed in Section 2.3 

in the form of initial strains prior to load application. Firstly, the critical imperfection shape 

i.e., LI and n, leading to minimum buckling capacity of the steel conical tank has to be 

determined. Under the effect of hydrostatic pressure only, Vandepitte et al. (1982) used 

experimental results to get an expression for the critical buckling wave length LCR	which 

turned out to be independent of the height of the tank. Regarding the circumferential 

distribution of the imperfections along the surface of the vessel, El Damatty et al. (1997a) 

have shown that an axisymmetric distribution, i.e., n=0, leads to minimum buckling 

capacity of pure conical tanks. This is due to the presence of hydrostatic pressure, which 

tends to force the structure to buckle in an axisymmetric mode; consequently an 

imperfection shape matching this mode is the critical one.  

Following the same analogy and knowing that hydrostatic pressure has an axisymmetric 

distribution, and hydrodynamic pressure is in the form of cosθ mode, a distribution of 

geometric imperfections corresponding to n=0 or n=1 will lead to the minimum buckling 

capacity of the steel conical tanks when subjected to both hydrodynamic and hydrostatic 

pressure. In order to determine which imperfections’ distribution is critical, a group of 60 

steel conical tanks of practical dimensions are used. The same two-phase loading procedure 

discussed in Section 2.4 is repeated for each tank twice; one with inclusion of axisymmetric 

imperfections tanks and the other with antisymmetric distribution i.e., n=1 with the same 

buckling wave length LI	recommended by	Vandepitte et al. (1982). It is found that a value 

of n=0 will always lead to a lower buckling capacity for the steel conical tanks. This means 

that the hydrostatic pressure loading governs the buckling capacity of the conical tanks due 

to the initiation of the buckling waves during the hydrostatic pressure only loading phase 

as discussed earlier.  

In order to understand how the impulsive hydrodynamic pressure in the form of cosθ mode 

affects the buckling capacity of the conical tanks, a hypothetical analysis is performed 

where the conical tanks are subjected to only hydrodynamic pressure in the form of cosθ 

mode with no hydrostatic pressure till failure. A typical deformed shape at failure for one 
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of the cases is shown in Figs. 2-12, 2-13. In these figures, no clear buckling wave occurred 

along the meridian of the tank similar to the case of the hydrostatic pressure ,while the 

failure happened due to buckling in the circumferential direction near θ =180o. Comparing 

the deformed shape for the two cases, it is concluded that hydrostatic pressure tends to 

force a conical tank to buckle along the meridian, which matches the assumed imperfection 

shape shown in Fig. 2-11. The hydrodynamic pressure on the other hand tends to force a 

conical tank to buckle in the circumferential direction making an axisymmetric 

imperfections’ distribution more critical.  

It has to be mentioned that the inclusion of the axisymmetric geometric imperfections in 

the non-linear static analyses results in the increase of the buckling capacity in some of the 

studied cases, especially with θv=30, in comparison to the case of perfect tanks. This is due 

to the fact that the hydrodynamic pressure in the form of cosθ mode acts in the same 

direction of hydrostatic pressure in one half of the tank and in opposite direction in the 

other half. This might delay the failure due to the buckling of the conical tank. This occurs 

since the distribution of the geometric imperfections is axisymmetric i.e., similar to the 

hydrostatic pressure. In order to make the geometric imperfections more critical and avoid 

increasing the buckling capacity of the tanks, a geometric imperfection pattern with n=0 is 

used but only in the side where the hydrodynamic pressure is acting in the same direction 

of the hydrostatic pressure i.e., θ = 0 to 90. 

 

Fig. 2-12 Variation of radial displacements with height for the case of hydrodynamic 

pressure only 
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Fig. 2-13 Deformed shape at failure for the case of hydrodynamic pressure only 

In order to determine the critical imperfection wave length LCR,	 several analyses are 

performed for each of the 60 conical tanks with different imperfection wave lengths, and 

that which leads to a minimum buckling capacity is considered the critical imperfection 

wave length LCR. A similar expression to that proposed by Vandepitte et al. (1982) is 

assumed. Using regression analysis as shown in Fig. 2-14, the final expression is  

Lcr=4.03ඥRbtw cos θv⁄    										 									 									 									 									 									 									 									 									 										 	  [2-9]                          

where Rb is the tank bottom radius, tw is the wall thickness and θv is the angle of inclination 

with the vertical. The effect of variation of the tank height on the critical imperfection wave 

length is found to be insignificant as noticed by Vandepitte et al. (1982). 

 

Fig. 2-14 Relation between critical imperfection wave length and (Rbtw/cosθv)0.5 
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After deriving an expression for the critical imperfection wave length LCR, an axisymmetric 

imperfection pattern based on Eq. 2-8 is applied to the tanks. Two levels of imperfections 

are studied: the first with w0 = 0.004Lcr to represents good tanks and the second with w0 = 

0.01Lcr represents poor tanks. Figs. 2-15 to 2-17 show the reduction in the base shear 

capacity of the 75 steel conical tanks for the two levels of imperfections, where ts is the 

thickness obtained by the simplified hydrostatic design method. 

 

Fig. 2-15 Comparison of impulsive base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=30)  

 

Fig. 2-16 Comparison of impulsive base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=45) 
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Fig. 2-17 Comparison of impulsive base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=60) 

In the case of θv=30, it is observed that an imperfection with amplitude of 0.004L or less 

has no remarkable effect on the normalized base shear capacity for the tanks with h/Rb less 
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2.6 Sloshing Base Shear Capacity 

In the previous sections, only the impulsive component of the hydrodynamic pressure was 

included in the analysis. As discussed in Section 2.2, another component of the 

hydrodynamic pressure that acts on the tank walls when subjected to a horizontal excitation 

is the convective pressure, which results from the sloshing of the water surface. Since the 

natural frequencies of the impulsive and sloshing vibration modes are well separated from 

one another, the analysis for each component can be performed separately and then 

combined using appropriate combination rule. 

The goal of this section is to evaluate the sloshing base shear capacity for a steel conical 

tank. A similar set of non-linear static analyses to those performed for the impulsive 

component of the hydrodynamic pressure discussed in Section 2.4 are repeated for the 

sloshing component using the sloshing hydrodynamic pressure pattern corresponding to 

Eq. 2-7. The sloshing coefficient K1 is obtained as described by El Damatty et al. (2000). 

The output of each analysis is the base shear value at failure VS which is normalized in the 

form of VSRb/Wh. The variation of the base shear ratio VSRb/Wh with the parameter h/Rb 

for different angles of inclination with the vertical θv is shown in Figs. 2-31 to 2-33 found 

in Appendix A. The effect of wall thickness is included through a family of curves 

represented in the form of multipliers ts which represents the thickness obtained by the 

simplified hydrostatic design method. Using these charts, the sloshing base shear capacity 

VS for a perfect pure steel conical tank with specific geometric parameters under impulsive 

hydrodynamic pressure can be obtained. As for the governing failure mode for the 

considered group of steel conical tanks, the same observations as those in the case of 

impulsive pressure are valid for the case of sloshing pressure. 

Since the impulsive and connective hydrodynamic pressures act simultaneously, the effect 

of geometric imperfection on the sloshing base shear capacity of the steel conical tanks is 

studied using the same imperfection pattern discussed earlier for the impulsive case. An 

axisymmetric geometric imperfection distribution with a wave length following Eq. 2-9 is 

incorporated in the finite element model in the form of initial strains. Two levels of 

imperfections are studied: the first with w0 = 0.004Lcr representing good tanks and the 
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second with w0 = 0.01Lcr representing poor tanks. The variation of the normalized sloshing 

base shear capacity VSRb/Wh with the ratio h/Rb, for the two levels of imperfection as well 

as the case of perfect tanks for the purpose of comparison is shown in Figs. 2-18 to 2-20 

for different angles θv.  

 

Fig. 2-18 Comparison of sloshing base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=30) 

 

 

Fig. 2-19 Comparison of sloshing base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=45) 
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Fig. 2-20 Comparison of sloshing base shear capacity for different imperfection 

levels and actual base shear values for the three seismic zones (θv=60) 
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the previously obtained impulsive and sloshing base shear capacities are compared to 

seismic demands for the seismic zone in which the conical tank will be located in order to 

assess the initial design of the steel conical tanks under hydrostatic pressure only. Seismic 

demands are represented in the form of actual base shear acting on the steel conical tank 

when subjected to a horizontal ground excitation.  

The idea of the mechanical model is to represent the conical tank as a set of lumped masses 

and springs in order to achieve the same resulting base shear and overturning moment 

obtained by dynamic analysis when subjected to the earthquake event. The mechanical 

model derived by El Damatty and Sweedan (2006) shown in Fig. 2-21 is used in this study 

to obtain the seismic demand. The masses mr, mf, and ms represent the impulsive mass 

component, the mass reflecting the effect of walls’ flexibility, and the convective mass 

component, respectively. The total base shear is given by  

Qmax=ටQIr
2 +QIf

2 +QS
2                                                                                                      [2-10]                        

QIr=[(mr − mf)+mo-sh]Gሷ max                                                                                          [2-11]                         

QIf=[mf+me-sh]Sa-sys                                                                                                     [2-12]                         

 QS=ms Sa-s                                                                                                                   [2-13]                        

where Q୍୰ and Q୍୤ reflect the contribution of the rigid and flexible components of the 

impulsive pressure and Qୗ reflects the sloshing contribution. The masses m୭ିୱ୦ and mୣିୱ୦ 

represent the portion of the walls’ mass associated with the rigid and flexible vibration 

modes, respectively.  The acceleration Gሷ ୫ୟ୶ is the maximum ground acceleration for the 

earthquake excitation also known as the peak ground acceleration PGA while Sୟିୱ୷ୱ and 	Sୟିୱ represent the spectral accelerations corresponding to the natural frequencies of the 

liquid-shell system and the first sloshing mode, respectively. 
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Fig. 2-21 Schematic presentation of the equivalent mechanical analog (El Damatty 

and Sweedan 2006) 

Regarding the damping, a value of 0.5% damping is recommended regarding the sloshing 

vibration mode, while a value of 2% for steel tanks is recommended with regards to the 

impulsive mode. Three Canadian seismic zones are considered, which are Toronto, 

Montreal, and Vancouver seismic zones. Toronto is chosen to represent a moderate 

seismically active region while Montreal and Vancouver are chosen to represent zones with 

high activity. The NBCC (2010) 5% damping horizontal hazard design values for the three 

areas are summarized in Table 1.  

Table 2-1 Seismic hazard design values for selected locations in terms of (g) 

Location PGA Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(4.0) 

Toronto 0.12 0.22 0.13 0.067 0.021 0.0105 

Montreal 0.33 0.64 0.31 0.14 0.048 0.024 

Vancouver 0.47 0.95 0.65 0.34 0.17 0.085 

In order to obtain the response spectrum corresponding to damping ratios different than 

5%, a technique based on artificial acceleration time histories compatible with the NBCC 

2010 spectra is used. Preliminary, a set of acceleration time histories with different 

durations compatible with the 5% NBCC 2010 spectra are obtained. Secondly, the response 

spectra for other values of damping ratio are evaluated and compared to the 5% response 
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spectrum. Finally, an average value of the increase ratio required for the damping 

conversion is calculated. This technique is applied separately for impulsive and convective 

vibration modes each with their corresponding range of frequencies for the set of tanks 

used in this study. It is found that the 5% response spectrum should be increased with an 

average factor of 1.44 and 1.2 in order to obtain the 2% damping spectrum and the 0.5% 

damping spectrum, respectively.  

For the impulsive mode, the base shear demand values for impulsive pressure 

QI=ටQIr
2 +QIf

2   are normalized in the form of QIRb/Wh for the sake of comparison with the 

impulsive base shear capacity obtained in Section 2.5. The variation of the normalized 

impulsive base shear demand QIRb/Wh with the ratio h/Rb for the three seismic zones is 

shown in Figs. 2-15 to 2-17 for different angles θv represented as solid lines. Also 

demonstrated on the same charts are the normalized base shear capacity VIRb/Wh values 

for perfect, good, and poor tanks.  

With reference to conical tanks with θv=30, the initial design under hydrostatic pressure 

only is considered satisfactory regarding the impulsive hydrodynamic pressure for the 

following cases: Toronto seismic zone for all levels of imperfections, perfect and good 

tanks corresponding to Montreal seismic zone, poor tanks corresponding to Montreal 

seismic zone with h/Rb less than 1.1, and perfect tanks corresponding to Vancouver seismic 

zone with h/Rb higher than 1.1. In all other cases, the initial design is considered 

unsatisfactory.  

With regards to conical tanks with θv=45, the initial design under hydrostatic pressure only 

is considered satisfactory regarding the impulsive hydrodynamic pressure for the following 

cases: Toronto seismic zone for all levels of imperfections, perfect tanks corresponding to 

Montreal seismic, perfect tanks corresponding to Vancouver seismic zone with h/Rb less 

than 1.2. For all other cases, the initial design is considered unsatisfactory. 

Regarding conical tanks with θv=60, the initial design under hydrostatic pressure only is 

considered satisfactory regarding the impulsive hydrodynamic pressure for the following 

cases: Toronto seismic zone for all levels of imperfections, perfect tanks corresponding to 
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Montreal seismic zone, perfect tanks corresponding to Vancouver seismic zone with h/Rb 

less than 1.25. For all other cases, the initial design is considered unsatisfactory. 

The same procedure is repeated for the sloshing component. The sloshing base shear 

demand QS values are normalized in the form of QSRb /Wh for the sake of comparison with 

the sloshing base shear capacity obtained in Section 2.6. The variation of the normalized 

sloshing base shear QSRb /Wh with the ratio h/Rb for the three seismic zones is shown in 

Figs. 2-18 to 2-20 represented as solid lines. Presented on the same charts are the 

normalized sloshing base shear capacity values VSRb /Wh for each of the cases of perfect, 

good, and poor tanks.  

For conical tanks with θv=30, the initial design under hydrostatic pressure only is 

considered satisfactory regarding the sloshing hydrodynamic pressure. This is valid for the 

three seismic zones regardless the level of imperfection. For conical tanks with θv=45, the 

initial design under hydrostatic pressure only is considered satisfactory regarding the 

sloshing hydrodynamic pressure for the three seismic zones, with the exception of poor 

tanks with h/Rb greater than 1.5 corresponding to Vancouver seismic zone. As for conical 

tanks with θv=60, the initial design under hydrostatic pressure only is considered 

satisfactory for perfect and good tanks corresponding to the three seismic zones. Finally, 

for poor tanks, initial design is inadequate for Vancouver seismic zone and Montreal 

seismic zone with h/Rb greater than 1.1. 

It has to be mentioned that the overturning moment capacity corresponding to the base 

shear capacity provided in Sections 2.5 and 2.6 for impulsive and sloshing hydrodynamic 

pressure components, respectively, can be obtained by equating the ratio between the 

overturning moment demand to the base shear demand to the ratio between the overturning 

moment capacity to the base shear capacity. In other words, the ratio between the 

overturning moment capacity to the base shear capacity will be equal to the height hr and 

hs for the impulsive and sloshing hydrodynamic pressure components, respectively, which 

can be obtained using El Damatty and Sweedan (2006) mechanical model shown in Fig. 2-

21. 
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2.8 Conclusions 

This study represents the first attempt to estimate the capacity of liquid steel conical tanks 

when subjected to hydrodynamic pressure resulting from horizontal ground excitation. In 

order to achieve this, a numerical finite element model is used based on static pushover 

analysis.  

The capacity is expressed in terms of the resulting total base shear at failure for the two 

components of the hydrodynamic pressure, which are impulsive and sloshing. As the 

impulsive and sloshing vibration modes are well-separated regarding their natural 

frequencies, the analyses are performed separately for each pressure component. The 

failure criterion considered in this study for a steel conical tank subjected to both 

hydrostatic and hydrodynamic pressure due to horizontal excitation, is the first which takes 

place of the following two criteria: (1) Yielding failure where the tank shell yields before 

buckling instability takes place (2) Buckling failure where the tank shell suffers instability 

before yielding, i.e., elastic buckling.  

Base shear capacities for perfect steel conical tanks are presented in the form of charts for 

different dimensions, walls’ thicknesses, and angles of inclination. Regarding the 

governing failure mode for both impulsive and sloshing components, the general trend is 

that the probability for yielding failure to take place is higher when the angle θv is 

increased, while the increase in the tank wall thickness is found to push the failure criterion 

to elastic buckling.  

Since geometric imperfections play an important role in defining the capacity of shell 

structures, the effect of the geometric imperfections on the capacity of steel conical tanks 

is studied. It has been found that an axisymmetric distribution of the geometric 

imperfections will lead to the lowest buckling capacity for steel conical tanks. This means 

that the hydrostatic pressure loading phase governs the buckling capacity of the conical 

tanks, as the buckling waves initiate during this loading phase. In order to completely 

define the critical imperfections’ distribution, an expression for the critical imperfection 

wave length is obtained based on regression analysis. The effect of variation of the tank 

height on the critical imperfection wave length is found to be insignificant. Finally, similar 
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charts to those corresponding to perfect conical tanks are provided for the case of imperfect 

tanks where two levels of imperfections’ amplitude are considered and referred to as good 

and poor conical tanks. The probability for yielding failure is found to increase for higher 

geometric imperfections’ amplitude. 

After evaluating the base shear capacities of the conical tanks, the seismic demands in the 

form of total base shear are obtained using equivalent mechanical model found in the 

literature for both impulsive and sloshing vibration modes and compared to the obtained 

capacities in order to assess the initial design for the steel conical tanks. Three seismic 

zones are considered in this Section representing moderate to high seismic zones in 

Canada. Based on the comparison between the conical tank capacities and seismic 

demands, it is concluded that for the impulsive hydrodynamic pressure component, the 

initial design under hydrostatic pressure is found to be adequate for the majority of perfect 

and good tanks corresponding to Toronto and Montreal seismic zones. However, it is not 

adequate for poor tanks corresponding to the two seismic zones. With regards to Vancouver 

seismic zone, the initial design under hydrostatic pressure has been found to be adequate 

only for the case of perfect tanks. For sloshing hydrodynamic pressure component, the 

initial design under hydrostatic pressure only is considered satisfactory for most of the 

cases, with the exception of some good and poor imperfect conical tanks.  
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Appendix A 

 

Fig. 2-22 Variation of ratio VIRb/Wh with h/Rb for perfect tanks (θv =30) 

 

Fig. 2-23 Variation of ratio VIRb/Wh with h/Rb for perfect tanks (θv=45) 
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Fig. 2-24 Variation of ratio VIRb/Wh with h/Rb for perfect tanks (θv=60) 

 

Fig. 2-25 Variation of ratio VIRb/Wh with h/Rb for good tanks (θv=30) 
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Fig. 2-26 Variation of ratio VIRb/Wh with h/Rb for good tanks (θv=45) 

 

Fig. 2-27 Variation of ratio VIRb/Wh with h/Rb for good tanks (θv=60) 
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Fig. 2-28 Variation of ratio VIRb/Wh with h/Rb for poor tanks (θv=30) 

 

Fig. 2-29 Variation of ratio VIRb/Wh with h/Rb for poor tanks (θv=45) 
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Fig. 2-30 Variation of ratio VIRb/Wh with h/Rb for poor tanks (θv=60) 

 

Fig. 2-31 Variation of ratio VSRb/Wh with h/Rb for perfect tanks (θv=30) 
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Fig. 2-32 Variation of ratio VSRb/Wh with h/Rb for perfect tanks (θv=45) 

 

Fig. 2-33 Variation of ratio VSRb/Wh with h/Rb for perfect tanks (θv=60) 
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Fig. 2-34 Variation of ratio VSRb/Wh with h/Rb for good tanks (θv=30) 

 

Fig. 2-35 Variation of ratio VSRb/Wh with h/Rb for good tanks (θv=45) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 1.00 1.50 2.00 2.50

V
S
R

b/
W

h

h/Rb

Good (t=1.0ts) Good (t=1.2ts)

Good (t=1.4ts) Good (t=1.6ts)

Good (t=1.8ts) Good (t=2.0ts)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.50 1.00 1.50 2.00 2.50

V
S
R

b/
W

h

h/Rb

Good (t=1.0ts) Good (t=1.2ts)
Good (t=1.4ts) Good (t=1.6ts)
Good (t=1.8ts) Good (t=2.0ts)
Good (t=2.2ts) Good (t=2.4ts)



61 

 

 

  

 

Fig. 2-36 Variation of ratio VSRb/Wh with h/Rb for good tanks (θv=60) 

 

Fig. 2-37 Variation of ratio VSRb/Wh with h/Rb for poor tanks (θv=30) 
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Fig. 2-38 Variation of ratio VSRb/Wh with h/Rb for poor tanks (θv=45) 

 

Fig. 2-39 Variation of ratio VSRb/Wh with h/Rb for poor tanks (θv=60) 
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Chapter 3  

3 Capacity of Liquid-Filled Steel Conical Tanks under 
Vertical Excitation  

Liquid tanks in the form of truncated cones are commonly used for liquid storage in North 

America and in other locations. This chapter is a part of an extensive research program 

aimed to develop a comprehensive design procedure for liquid-filled steel conical tanks 

under seismic loading. Because of the inclination of the walls of conical tanks, the vertical 

component of the ground motion excitation has a significant effect on conical tanks 

compared to the case of cylindrical tanks. To the best of the authors’ knowledge, the current 

study is the first to focus on the assessment of the capacity of steel conical tanks under the 

vertical component of a seismic excitation. The study is carried out numerically using an 

in-house finite element model by conducting nonlinear static pushover analysis under a 

load distribution simulating hydrodynamic pressure associated with vertical ground 

excitations.  The numerical model accounts for the effects of geometric and material 

nonlinearities as well as initial geometric imperfections. Charts are developed to estimate 

the capacity of steel conical tanks to resist vertical ground excitations based on yielding 

and buckling criteria for different imperfection levels. The developed charts are used to 

estimate the capacities of a number of steel conical tanks which are then compared to the 

hydrodynamic loading associated with various seismic zones.  

3.1 Introduction 

Steel conical tanks are commonly used as liquid-containments. They consist of vessels 

made up of welded steel panels having pure truncated conical shapes or combined conical-

cylindrical shapes as shown in Fig. 3-1. To the best of the authors’ knowledge, no design 

specifications for water structures worldwide provides a clear and rational procedure for 

the seismic design of such structures. The AWWA (2005), API (2005), and ECS (1998) 

recommend converting conical tanks into equivalent cylinders with equivalent height, 

radius, and thickness. This equivalent cylinder approach can be questionable under 

horizontal ground motion, but it is definitely far from reality under vertical ground motion 

as will be discussed later in this section. 
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            Fig. 3-1 Combined steel conical tank 

Researchers realized the importance of studying the effect of ground motions on the 

behaviour of liquid tanks long time ago specially after the Alaska earthquake 1964 where 

considerable damage occurred to a large number of liquid storage tanks. Earlier studies 

were based on assuming the tank walls to be rigid when evaluating the hydrodynamic 

pressure resulting from ground motions (Jacobsen (1949), Housner (1957), and Housner 

(1963)). It was then realized that the flexibility of the tank walls and the interaction that 

happens between the vibration of the walls and the contained fluid affect significantly the 

hydrodynamic pressure and consequently the structural response (Veletsos, (1974), and 

Haroun and Housner (1981,1982)). 

In order to reduce the computation time for analyzing liquid-tank systems, a practical 

alternative is to model the contained liquid as lumped masses attached to the tank wall 

rigidly or through linear springs instead of modelling the contained fluid as a continuum. 

The masses-springs system is called equivalent mechanical model whose main objective is 

to match the resulting forces and moments obtained using dynamic analysis for the 

continuum liquid-tank system subjected to the same horizontal ground excitation. Haroun 

and Housner (1981) introduced a three masses mechanical model for cylindrical steel tanks 
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subjected to horizontal excitations. The three masses are the impulsive fluid mass, the 

convective fluid mass, and the mass reflecting the effect of the flexibility of the tank’s wall. 

The impulsive mass represents the mass of the fluid vibrating in synchronism with the 

ground and rigidly connected to the tank’s wall, while the convective one represents the 

mass of the fluid undergoing sloshing motion at the free surface. 

On the resistance side, a number of studies related to the buckling capacity of cylindrical 

liquid tanks under horizontal ground excitations are found in the literature. Virella et al. 

(2006) investigated the dynamic buckling of anchored cylindrical steel tanks with different 

slenderness ratio subjected to real earthquake records numerically using the finite element 

method in order to estimate the critical horizontal peak ground acceleration (PGA) at which 

elastic or plastic buckling for the cylindrical shell will take place.  

Virella et al. (2008) proposed a nonlinear static procedure based on the capacity spectrum 

method found in ATC-40 in order to assess the elastic buckling of above-ground anchored 

steel tanks due to horizontal seismic excitations. The objective was to obtain the minimum 

peak ground acceleration (PGA) value that produces buckling in the tank shell. The 

obtained critical PGA estimates were then compared with those calculated using the 

dynamic buckling analyses performed in the latter study. 

Djermane et al. (2014) attempted to evaluate the current design guidelines related to 

dynamic instability provided by AWWA-D100 and EC8 provisions for cylindrical steel 

tanks using a numerical shell finite element model. The idea was to evaluate the critical 

PGA values that cause the tank instability and then compare with their counterparts 

obtained by the codes’ provisions.  

Buratti and Tavano (2014) discussed different buckling modes for liquid-containing 

circular cylindrical steel tanks that are fully anchored at the base with a special focus on 

the secondary buckling occurring in the top part of the tank. A case study for a broad 

cylindrical tank was used in order to investigate various aspects of dynamic buckling using 

a finite element model where the fluid was modelled in the form of lumped added masses. 
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The previous studies focused on the horizontal component of the ground excitation. 

Regarding the vertical component, vertical accelerations are transmitted to a horizontal 

hydrodynamic loading acting on the tank wall amplifying the hydrostatic induced pressures 

that might lead to inelastic buckling of the steel shell. As a result, it is important to include 

the effect of vertical ground excitations when it comes to analyzing liquid storage tanks. 

Marchaj (1979) attributed the failure of metallic tanks during past earthquakes to the lack 

of consideration of vertical acceleration in their design. Veletsos and Kumar (1984) studied 

the effect of wall flexibility on the response of cylindrical tanks when subjected to vertical 

component of ground shaking. It was concluded that the hydrodynamic effects for a 

flexible tank might be substantially larger than those induced in a rigid tank of the same 

dimensions, and for an intense excitation, they might be of the same order of magnitude as 

the hydrostatic effects. 

The latter study considered only the radial motion of the tank walls and neglected the effect 

of axial deformations. This assumption was validated by Haroun and Tayel (1985a) who 

provided an analytical method for the computation of the dynamic characteristics in terms 

of natural frequencies, corresponding mode shapes and stress distributions for partly filled 

cylindrical tanks subjected to vertical excitations. Results were compared to numerical 

solution where the liquid region was treated analytically and the elastic shell was modeled 

by finite elements Haroun and Tayel (1985b) and both methods showed excellent 

agreement. 

Veletsos and Tang (1986) provided a practical procedure to evaluate the dynamic response 

of rigid and flexible steel and concrete cylindrical tanks with different base conditions 

when subjected to vertical excitations including soil-structure interaction. The main 

conclusion was that soil-structure interaction reduces the maximum hydrodynamic effects 

and might be approximated by a change in the fundamental natural frequency of the tank-

liquid system or an increase in damping 

Haroun and Tayel (1985) analyzed some cylindrical liquid storage tanks under 

simultaneous horizontal and vertical excitations numerically using finite element method. 

The goal of the study was to assess the relative importance of inclusion of the vertical 
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component of the earthquake in the behaviour of the cylindrical tanks. The axial stresses 

resulting from the vertical component was found to be much lower compared to those 

induced due to the horizontal component of the earthquake due to overturning moment. 

However, the hoop stresses due to vertical component was higher than those due to 

horizontal component which might lead to the yielding of the steel shell increasing the 

probability of buckling of the tank walls near the base of the tank.  

Haroun and Abou-Izzeddine (1992) performed a parametric study in order to evaluate the 

effects of different factors that influence the seismic response of an elastic cylindrical tank 

supported on a rigid base when subjected to a vertical excitation by considering shell-

liquid-soil interaction. It was concluded that foundation soil-tank interaction reduces the 

tank response in general, and this reduction is a function of the soil shear-wave velocity as 

well as tank geometric properties. 

A number of studies have been done related to conical tanks under hydrostatic pressure. 

Motivated with the collapse of a conical steel water tower in Belgium, Vandepitte et al., 

(1982) tested a large number of small-scale conical tank models experimentally under 

hydrostatic pressure by gradually filling the model till buckling occur. Design charts for 

different base restraining conditions were developed based on this experimental program. 

In 1990, a steel conical water tower collapsed in Fredericton, Canada due to 

underestimation of the effect of geometric imperfections according to Vandepitte (1999) 

in addition to analyzing the conical tank as a pressurized vessel which is not always a 

conservative assumption. El Damatty et al. (1997a), El Damatty et al. (1998), and Hafeez 

et al. (2010) assessed the inelastic stability of pure and combined liquid-filled steel conical 

tanks including the effect of geometric imperfections and residual stresses due to welding 

of the steel panels forming the conical shell. 

El Damatty et al. (1999) and Sweedan and El Damatty (2009) provided a simplified design 

procedure for steel conical tanks under hydrostatic pressure for steel conical tanks taking 

into account geometric imperfections. The idea was to avoid the yielding state of tanks 

which was shown to always precedes buckling for the case of hydrostatic pressure.  
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El Damatty et al. (1997b,c) derived a fluid-added mass matrix for both horizontal and 

vertical ground motions to be incorporated in time history analysis using coupled shell 

element-boundary element formulation to simulate the fluid-structure interaction. By 

analyzing some steel conical tanks using this approach, it was shown how serious could be 

the dynamic loading compared to the static one and how the contribution of vertical 

excitation to the dynamic instability is important. This coupled shell element-boundary 

element model was verified experimentally using shaking table testing for scaled conical 

shell aluminum models (Sweedan and El Damatty (2002) and El Damatty et al. (2005)). 

Comparing cylindrical to conical tanks regarding the state of stresses, a vertical ground 

acceleration will lead to an axisymmetric hydrodynamic pressure, in addition to the 

existing hydrostatic pressure, resulting in meridional axial stresses that do not exist for the 

case of cylindrical tanks due to the inclination of the conical tank walls.  As both 

hydrostatic pressure and hydrodynamic pressure due to vertical excitation are 

axisymmetric, the state of stresses for both of them is similar and is shown in Fig. 3-2, 

where the contained liquid can be divided into two zones: Z1 which is resting on the tank 

base and Z2 resting on the inclined wall. As the pressure due to the liquid in Z2 increases 

with a reduction in the vessel radius closer to the tank base, high compressive meridional 

stresses σm are developed in this region compared to the case of a cylindrical tank. In 

addition to the compressive meridional stresses, tensile hoop stresses σh are also induced 

circumferentially through the tank shells. Hydrodynamic pressure due to vertical excitation 

will magnify or reduce the hydrostatic pressure induced stresses based on the direction of 

the ground acceleration, i.e., upwards or downwards. 
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Fig. 3-2 Stresses induced due to inclination of the wall 

Jolie et al. (2014) assessed the importance of considering the vertical component of ground 

excitations when designing steel conical tanks using an equivalent mechanical model that 

estimates the acting normal forces due to vertical excitations. In addition, a three-

dimensional finite element model has been developed using shell elements in order to 

predict maximum membrane and overall meridional stresses due to both hydrodynamic 

and hydrostatic pressures. The results showed that the vertical ground acceleration has a 

considerable effect on the increase of the meridional wall stresses compared to those 

resulting from hydrostatic pressure, especially for high seismic hazard regions emphasizing 

the importance of vertical excitation consideration. Also, meridional wall stresses at the 

extreme inner fibre at the tank base are shown to be higher than those developing at the 

mid-surface due to bending effects associated with the boundary conditions at the tank 

base.  

Similar to the case of liquid filled steel conical tanks subjected to horizontal ground 

excitations, equivalent mechanical model was used in order to obtain the loads acting on 

steel conical tanks subjected to vertical excitations. The model’s parameters are obtained 

such that the model yields the same total vertical force obtained through dynamic analysis 

for the continuum liquid-tank system. Sweedan and El Damatty (2005) proposed a two-

mass mechanical model for pure conical tanks. The two masses are the rigid fluid mass, 

and the mass reflecting the effect of the flexibility of the tank’s wall. This model is 

described in more details in Section 3.7 as it will be used in this study. Sweedan (2009) 



70 

 

 

  

introduced a similar mechanical model that can be used for combined conical-cylindrical 

tanks subjected to vertical excitations. 

As mentioned earlier, most of the previous studies focused on studying the behaviour of 

steel conical tanks when subjected to vertical ground excitations and how acting loads can 

be obtained in order to design such structures. The other side of the design inequality which 

is the tank resistance has not been studied before to the best of the author’s knowledge. As 

a result, this study focuses on obtaining the capacity of steel conical tanks when subjected 

to vertical ground excitations. Nonlinear static pushover analysis is used to determine this 

capacity using finite element modeling for the steel conical tanks. In addition, the effect of 

geometric imperfections on the evaluated buckling capacity is studied. After obtaining the 

capacity for the steel conical tanks, it is then compared to the acting loads corresponding 

to different seismic zones obtained through a previously developed mechanical model for 

vertical ground excitations in order to assess the design of the tanks. 

3.2 Hydrodynamic Pressure 

When a conical tank is subjected to a vertical ground excitation, the tank is subjected to 

accelerations resulting in hydrodynamic pressure acting on the tank walls and base in 

addition to the existing hydrostatic pressure. The hydrodynamic pressure due to vertical 

excitation acting on a conical tank containing an ideal fluid is governed with the following 

set of equations and boundary conditions El Damatty et al. (1997b): ∇2PI(r,θ,z,t) = 0                              				     inside the fluid volume        								  												      [3-1]           
∂PI(r,θ,z,t)

∂n
 = -ρFuሷ  (r,θ,z,t).n                   at the surface S1																																		 												   [3-2] 

 PI =  0                                                 			 at the surface S3                      						 										   	   [3-3] 
∂PI(t)

∂n
 = -ρFGሷ v(t).n                             		   at the surface S2                      						   										   	 [3-4]  

where uሷ  (r,θ,z,t) is the acceleration vector at any point of the tank’s wall, n is the unit vector 

normal to the surface of the tank,	Gሷ v(t) is the vertical acceleration acting on the tank base, 

and ρF is the fluid density. Surfaces S1, S2 and S3 are as shown in Fig. 3-3. 
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Fig. 3-3 Co-ordinate system for the steel conical tank and dimensional parameters 

The solution of the above differential equation was done by interpolating the dynamic 

pressure using different shape functions that satisfy the boundary conditions on the tank 

surfaces El Damatty et al. (1997b). The hydrodyanmic pressure PD associated with an 

axisymmetric excitation can be then expressed as 

 PD(r,θ,z,t) = ෍  Aio(t) Io(αir) cos(αiz) + Gሷ v(t)(1 −  z 

h
 )                             			 		       [3-5]N1

i=1

 

where Aio (t) are the amplitude functions of time, Io are the modified Bessel’s functions of 

the first kind and  α୧ depend on the height, h, of the fluid in the tank as 

αi=(2i-1) π 2h⁄                                                                                                 	      		      [3-6] 
The time varying parameters Aio (t) were obtained using coupled finite element-boundary 

element method by El Damatty et al. (1997b) for steel conical tanks, where the tank walls 

are modeled using a shell element while the boundary element method is used to simulate 

the hydrodynamic pressure resulting from the acting vertical ground excitation Gሷ v(t).  
In the hydrodynamic pressure expression, the term cos(αiz) represents the variation of the 

hydrodynamic pressure for mode i in the vertical Z direction. A typical plot of the first 

three vertical pressure modes is shown in Fig. 3-4. 
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Fig. 3-4 Different vertical axisymmetric pressure modes 

3.3 Finite Element Model 

As mentioned earlier, the current study aims at evaluating the buckling capacity of steel 

conical tanks subjected to vertical ground excitations. In order to achieve that, 3D 

numerical models are developed for steel conical tanks using the finite element method. 

The finite element used is the 13 noded subparametric triangular shell element developed 

by Koizey and Mirza (1997) as shown in Fig. 3-5a. This subparametric element is 

advantageous in terms of being free of the spurious shear modes and the locking 

phenomenon observed in isoparametric shell elements counterparts when used in modeling 

thin shell structures such as steel conical tanks. In addition, this finite element model can 

be used to predict both elastic buckling and inelastic buckling of the tank shell as the used 

shell element was extended to include both geometric and material non-linearities (El 

Damatty et al. (1997d)). 

For the finite element mesh used, modelling half of the conical tank is sufficient due to 

symmetry about the horizontal axis in both loading and geometry. The used mesh is shown 

in Fig. 3-5b which consists of 512 triangular finite elements. Due to the expected stress 

concentration near the tank base as result of the inclination of the walls, the finite element 

mesh is chosen to be finer near the base of the tank. The tanks are assumed to be hinged at 

the base along the circumference and free at the top. 
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Fig. 3-5 Coordinates and degrees of freedom for a consistent shell element, (b) Finite 

element mesh for half cone 

3.4 Method of Analysis 

Nonlinear static pushover analysis is used in this study to evaluate the buckling capacity 

of steel conical tanks subjected to vertical ground excitations. This is done by increasing 

the acting water pressure incrementally till instability occurs. The incremental load 

increase is achieved using a load factor. As hydrostatic pressure on the tank walls is always 

present, two load factors are used: the first is PHS which corresponds to the hydrostatic 

pressure and the second is PHD which corresponds to the hydrodynamic pressure.  

The analysis is divided into two phases: For phase 1, which represents the stage of 

hydrostatic pressure only, PHS is increased incrementally till the value corresponding to the 

actual hydrostatic pressure while PHD is kept at zero value. For phase 2, which represents 

the stage where both hydrostatic and hydrodynamic pressure act simultaneously, PHS is kept 

constant at the value corresponding to the actual hydrostatic pressure while PHD is increased 

incrementally till instability occurs. 

The group of steel conical tanks considered in this study have the following practical 

dimensions, bottom radius Rb ranging from 4.0m to 6.0m, cone height h ranging from 5.0m 

to 9.0m, and angle of inclination with the vertical θv = 30o, 45o, 60o with steel yield stress 

of 300 MPa yielding a total of 75 tanks. In order to obtain the wall thickness, the tanks are 

(a) 
(b) 
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designed under hydrostatic pressure only based on the simplified method proposed by 

Sweedan and El Damatty (2009) assuming good tanks regarding the level of geometric 

imperfection according to the classification proposed by Vandepitte et al., (1982).   

Similar to the case of hydrostatic pressure, all the pressure modes associated with vertical 

excitation are axisymmetric and consequently no base shear force is expected due to this 

excitation. However, because of the inclination of the walls, a net vertical force will act at 

the bottom section of the walls. This vertical force will be used to express the buckling 

capacity of the steel conical tanks as will be shown in the coming sections. Regarding the 

vertical distribution of the pressure modes, only the first vertical mode, i.e., i=1, is included 

in the analysis in calculating the buckling capacity for the conical tanks. 

3.5 Results of Analysis 

3.5.1 Deformed Shape 

Figure 6 shows a typical distribution for the axisymmetric radial deformations of the tank 

walls along the height. The distribution is shown at the end of each stage of the discussed 

two-phase loading scheme.  At the end of the hydrostatic pressure only loading, i.e., 

phase1, buckling wave is noticed near the tank base due to the compressive stress 

concentration at this location. As the steel conical tanks considered in the current study are 

designed under hydrostatic pressure with a load factor greater than unity, the tanks are still 

able to resist more loads in the second phase of loading which incorporate both hydrostatic 

pressure and hydrodynamic pressure corresponding to vertical ground excitations. During 

this second phase, radial deformations are increased as the hydrodynamic pressure load 

factor is increased especially near the mid-height of tank. This is due to the hydrodynamic 

pressure distribution which have the peak value at this location. The amplitude of the 

buckling wave is amplified during this second stage till instability happens indicating the 

end of the analysis. A schematic for the circumferential distribution of the tank 

deformations is shown in Fig. 3-7 
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Fig. 3-6 Radial deformations of the tank walls at the end of each phase of loading (R=4.0m, 

h=7.0m, θv=45o) 

 

Fig. 3-7 Deformed shape at the end of each phase of loading 

3.5.2  Vertical Force Capacity 

In this section, the resistance capacity for steel conical tanks subjected to vertical ground 

excitations is evaluated using the nonlinear static pushover procedure described in the 

previous section. The capacity is expressed in the form of the total vertical force N at 

failure. Two possible failure criteria are defined for a steel conical tank subjected to both 
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hydrostatic and hydrodynamic pressure: (1) Yielding failure criterion where the tank shell 

yields before instability takes place, (2) Buckling failure criterion where the tank shell 

suffers elastic instability before yielding.  

For the group of steel conical tanks considered in this study, the tank shell was found to 

yield before instability takes place which means that the yielding criterion is the governing 

for failure. The same observation was noted by El Damatty et al. (1997a) for the case of 

steel conical tanks under hydrostatic pressure which has an axisymmetric distribution 

similar to the case of the hydrodynamic pressure due to vertical excitations. As a result, the 

steel conical tank resistance in this study will be expressed in terms of the total vertical 

force corresponding to the first yielding of the tank vessel.  

As a first step to understand how the vertical force resistance varies with the tank 

dimensions, a parametric study is performed where a datum steel conical tank is used with 

h=7.0m, Rb=5.0m, and θv=45o. One parameter is studied at a time in order to assess the 

effect of this parameter on the vertical force resistance. The vertical force N is normalized 

to the total weight of the fluid contained in the tank W in the form of the vertical force ratio 

N/W. For the steel conical considered in this study, Figs. 3-8 to 3-10 show how the ratio 

N/W values change with the parameters Rb, H, and θv, respectively. For each chart, a family 

of curves exists to reflect the effect of increasing the tank wall thickness tw on the vertical 

force resistance. It is concluded from the charts that the value of N/W decreases with 

increasing the height of the tank or the bottom radius or the angle θv. Finally, the ratio N/W 

is higher for thicker steel conical tanks. 
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Fig. 3-8 Variation of total vertical force ratio with the tank height and thickness 

(Rb=5.0m, θv=45o) 

 

Fig. 3-9 Variation of total vertical force ratio with the tank radius and thickness 

(h=7.0m, θv=45o) 
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Fig. 3-10 Variation of total vertical force ratio with the tank angle of inclination and 

thickness (Rb=5.0m, h=7.0m) 

The previous charts showed how the vertical force resistance for a steel conical tanks 

subjected to hydrodynamic pressure due to a vertical ground excitation changes with the 

steel conical tank dimensions each at a time. In order to express the vertical force resistance 

for a steel conical tank with random dimensions, different geometric parameters should be 

combined together. The variation of the vertical force resistance with tank geometric 

parameters is expressed in the form of the relation between the dimensionless parameters 

h/Rb and Nh/WcRb in the form of charts, where Wc is the cylindrical part weight of the 

contained fluid. These two dimensionless parameters are validated by making sure that for 

different tanks with the same ratio h/Rb the value of the parameter Nh/WcRb have the same 

value. The charts are shown in Figs. 3-20 to 3-22 found in Appendix B for different values 

of the angle θv. The effect of wall thickness is included through a family of curves 

represented as multipliers of ts which is the thickness obtained by the simplified hydrostatic 

design method proposed by Sweedan and El Damatty (2009).  

As mentioned earlier, this chapter represents a part of a larger study aiming to provide a 

simplified design procedure for steel conical tanks when subjected to ground excitations. 

By providing these charts, the vertical force resistance N for a pure steel conical tank can 

be obtained and then compared with the acting loads in order to assess the design of conical 
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tanks to resist the hydrodynamic pressure due to vertical ground excitations. This design 

assessment will be done in the coming sections. 

3.6 Effect of Geometric Imperfection 

As steel conical tanks are constructed of steel panels welded together in both longitudinal 

and circumferential directions, geometric imperfections will exist and their amplitude is 

dependent on the quality control applied during construction. For steel thin walled 

structures as for the case of steel conical tanks, geometric imperfections are very critical 

when it comes to buckling instability. In this section, the vertical force resistance for steel 

conical tanks subjected to hydrodynamic pressure due to vertical ground excitations is 

evaluated for the case of imperfect tanks following the same procedure used in the previous 

section.  

Despite geometric imperfections are randomly distributed by nature, a conservative model 

for simulating the geometric imperfections is shown in Fig. 3-11 and is described by the 

following expression: 

W(s)=w0sin ൬2πs

LI
൰ cos (nθ)                                                                                   		        [3-7]   

where w଴ is the imperfection amplitude, L୍	is the imperfection wavelength, s is a 

coordinate measured along the generator of the vessel, and ݊ is an integer defining the 

circumferential wavelength of the  imperfection shape. Two categories of imperfect steel 

conical tanks according to Vandepitte et al. (1982) are considered in the current study: 

good conical tank with w0/LI less than 0.004, poor conical tank with w0/LI greater than 

0.004 but less than 0.01.  
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Fig. 3-11 Assumed imperfection shape along the generator of tank 

Using this model, geometric imperfections are incorporated in the finite element model 

discussed in Section 3.3 in the form of initial strains prior to load application. Previous 

studies (Vandepitte et al. (1982), El Damatty et al. (1997a)) related to the effect of 

geometric imperfections on the capacity of conical tanks under hydrostatic pressure have 

shown that the critical buckling wave length LCR	is not a function of the height of the conical 

tank and that an axisymmetric distribution, i.e., n=0, leads to minimum buckling capacity 

due to the axisymmetric distribution of the hydrostatic pressure. 

For the case of combined hydrostatic pressure and hydrodynamic pressure due to vertical 

ground excitations, an axisymmetric geometric imperfections’ distribution will be the most 

critical as both hydrostatic and hydrodynamic pressures have axisymmetric distributions 

and consequently force the tank walls to buckle in an axisymmetric manner. In order to 

determine the critical imperfection wave length, several values for the imperfection wave 

length are assumed for each tank and the one leading to the minimum tank capacity is 

considered the critical wave length Lcr. An expression for Lcr is then obtained using 

regression analysis in the form of  

Lcr=4.03ඥR t cos θv⁄       																																																																																																											[3-8] 
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The effect of variation of the tank height on the critical imperfection wave length was found 

to be insignificant as noticed by Vandepitte et al. (1982) for the case of hydrostatic pressure 

only. The Lcr expression in Eq. 3-8 is similar to the one obtained by Vandepitte et al., 

(1982) for the case of hydrostatic pressure with a different constant value of 3.6. This 

relatively small difference implies that the hydrostatic pressure loading phase governs the 

capacity of imperfect conical tanks as the buckling waves initiate during this loading phase.  

Using the above critical wave length with an axisymmetric distribution, geometric 

imperfections are incorporated in the finite element model and applied to the steel conical 

tanks using the same nonlinear pushover two-phase loading scheme discussed before. Two 

levels of imperfections’ amplitude are studied: w0 = 0.004Lcr to represent good tanks, w0 = 

0.01Lcr to represent poor tanks. Figures 3-12 to 3-14 show for different angles θv the 

variation of the normalized total vertical force resistance Nh/WcR with the ratio h/Rb for 

the two levels of imperfections in addition to the case of perfect tanks for comparison. 

Similar to the case of perfect conical tanks, yielding of the tank walls is found to occur 

prior to shell instability for tanks with geometric imperfections included.  

The reduction in the normalized total vertical force capacity Nh/WcRb is found to increase 

as the tank walls become more inclined. The average percentage of the reduction for good 

tanks is found to be 40%, 53%, and 63% for θv=30, 45, and 60, respectively. For poor 

tanks, the average percentage of the reduction is found to be 69%, 83%, and 95% for θv=30, 

45, and 60, respectively.  
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Fig. 3-12Effect of level of geometric imperfection on the total vertical force capacity 

(θv=30) 

 

Fig. 3-13 Effect of level of geometric imperfection on the total vertical force capacity 

(θv=45) 
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Fig. 3-14 Effect of level of geometric imperfection on the total vertical force capacity 

(θv=60) 

3.7 Equivalent Mechanical Model 

The purpose of the previous part of this study was to be able to obtain the total vertical 

force capacity for perfect and imperfect steel conical tanks subjected to both hydrostatic 

and hydrodynamic pressure due to vertical ground excitations. In order to design the tanks, 

the obtained capacity should be compared with the acting loads, also known as seismic 

demand, corresponding to the seismic zone where the conical tank will be located. Seismic 

demand for the case of vertical ground excitations is represented in the form of total vertical 

force acting just above the steel conical tank base. This total vertical force demand can be 

obtained using an equivalent mechanical model simulating the steel conical tanks with the 

contained fluid. 

Sweedan and El Damatty (2005) introduced a two masses mechanical model for steel 

conical tanks subjected to vertical ground excitation as shown in Fig. 3-15. The two masses 

are the rigid fluid mass, and the mass reflecting the effect of the flexibility of the tank’s 

wall. The mass mo-w is rigidly attached to the supporting tower and vibrates with the ground 
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acceleration, while the mass mf-w is a flexible mass that vibrates with the fundamental 

frequency of the tank-liquid system. The masses, and natural frequencies were presented 

in charts based on the tank dimensions. The total vertical force 	Nv is given by  

Nv=ටN1
2+N2

2																																																																																																																																		[3-9]                

N1=(mo-w-mo-s)Gሷ vmax																																																																																																																[3-10]            

N2=(mf-w+mf-s)Sa-sys																																																																																																																		[3-11]                         

where N1 and N2 reflect the contribution of the rigid and flexible components of the 

hydrodyanmic pressure, respectively. The masses mo-s and mf-s represent the portion of the 

tank walls’ mass associated with the rigid and flexible vibration modes, respectively.  The 

acceleration Gሷ vmax is the maximum vertical ground acceleration for the earthquake 

excitation also known as the peak ground acceleration PGA while Sa-sys is the spectral 

acceleration corresponding to the natural frequency of the liquid-shell system. 

 

Fig. 3-15 Schematic presentation of the equivalent mechanical model, (Sweedan and 

El Damatty (2005)) 

As case studies, three seismic zones in Canada are considered which are Toronto, Montreal, 

and Vancouver. Toronto is chosen to represent a moderate seismically active region while 

Montreal and Vancouver are chosen to represent zones with high activity. The 5% damping 
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NBCC (2010) horizontal response spectra corresponding to the three seismic zones are 

summarized in Table 1.  

Table 3-1 Seismic hazard design values for selected locations in terms of (g) 

Location PGA Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) Sa(4.0) 

Toronto 0.12 0.22 0.13 0.067 0.021 0.0105 

Montreal 0.33 0.64 0.31 0.14 0.048 0.024 

Vancouver 0.47 0.95 0.65 0.34 0.17 0.085 

As a value of 2% damping is recommended for hydrodynamic vibration mode, a technique 

based on artificial acceleration time histories compatible with the NBCC 2010 spectra is 

used to obtain spectra for damping values different than the 5% ones. In this proposed 

technique, the first step is to obtain a set of acceleration time histories with different 

durations compatible with the 5% NBCC 2010 spectra. Secondly, the 2% damping 

response spectra are evaluated and then compared to the 5% damping ones. Finally, an 

average value for the increase in the spectrum values is calculated. Following this 

technique, it is found that the 5% response spectrum should be increased with an average 

factor of 1.44 in order to obtain the 2% damping spectrum. Another point of importance is 

that the NBCC 2010 spectra are to be used for horizontal not vertical ground excitations. 

In order to get the vertical response spectra, the vertical-to-horizontal response spectral 

ratio V/H has to be determined. The ratio V/H is very sensitive to the spectral period and 

the distance from the fault and is higher at short periods and might exceed unity as noted 

by Bozorgnia et al. (1995) and Bozorgnia et al. (1996). Bozorgnia and Campbell (2004) 

performed an extensive study using 443 earthquake records in order to come up with a 

simplified model, as shown in Fig. 3-16, for the ratio V/H based on the natural period, soil 

conditions, and distance from the fault.  

As the natural period for the first vertical vibration mode for the set of steel conical tanks 

used in this study ranges from 0.08 sec to 1.18sec, the commonly used value of 2/3 for the 

ratio V/H is found to be conservative assuming an earthquake with distance more than 60 

km based on the model proposed by Bozorgnia and Campbell (2004). Based on that, a V/H 
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value of 2/3 is used to reduce the 2% damping horizontal response spectra in order to obtain 

the vertical spectra for different seismic zones. 

 

Fig. 3-16 Simplified V/H response spectral ratio, (Bozorgnia and Campbell (2004)) 

After obtaining the vertical response spectra for different seismic zones, the equivalent 

mechanical model for steel conical tanks is used in order to obtain the values of the total 

vertical force for the set of steel conical tanks described in Section 3.4. The values of the 

total vertical forces are expressed in the form of the ratio Nvh/WcRb for the sake of 
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comparison with the total vertical force capacities obtained in Section 3.5 using the non-

linear static analysis. The variation of the normalized total vertical force Nvh/WcRb with 

the ratio h/Rb for the three seismic zones is shown in Figs. 3-17 to 3-19 represented by the 

solid lines. On the same charts, the normalized total vertical force capacity values are 

shown for the cases of perfect, good, and poor tanks.  

 

Fig. 3-17 Comparison of total vertical force capacity to the vertical force demand for 

the three seismic zones (θv=30) 
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Fig. 3-18 Comparison of total vertical force capacity to the vertical force demand for 

the three seismic zones (θv=45) 

 

Fig. 3-19 Comparison of total vertical force capacity to the vertical force demand for 

the three seismic zones (θv=60) 
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design is found to be satisfactory except for the following cases: poor tanks corresponding 

to Montreal seismic zone with h/Rb more than 1.5, and poor tanks corresponding to 

Vancouver seismic zone with h/Rb more than 1.2.  Finally for conical tanks with θv=60, 

the initial design is found to be satisfactory except for the following cases: good tanks 

corresponding to Vancouver seismic zone with h/Rb more than 1.2, poor tanks 

corresponding to Toronto seismic zone with h/Rb more than 1.4, and poor tanks 

corresponding to Montreal and Vancouver seismic zones. 

3.8 Conclusions 

As most of the studies found in literature related to seismic behaviour of steel conical tanks 

focused on evaluating the acting loads on the tank walls due to the resulting hydrodynamic 

pressure, this study represents the first attempt to evaluate the capacity of steel conical 

tanks subjected to hydrodynamic pressure due to vertical ground excitations. The capacity 

is obtained using nonlinear finite element model through nonlinear static pushover 

analysis. The conical tank capacity is expressed in terms of the total vertical force acting 

just above the tank base at failure. The governing failure criteria for the case of steel conical 

tanks subjected to both hydrostatic and hydrodynamic pressure due to vertical ground 

excitation is found to be the yielding of the tank walls. 

The vertical force resistance for a series of steel conical tanks with practical dimensions is 

obtained and normalized in the form of the dimensionless parameter Nh/WcRb. The 

normalized vertical force resistance for the group of tanks is then plotted with the height to 

bottom radius ratio. The charts are provided for different wall inclination angles and 

thicknesses to study their effects on conical tanks’ resistance. 

The aforementioned charts are obtained assuming the tank walls to be free of any geometric 

imperfections which is almost impossible to occur as the tank vessel is constructed of 

welded steel panels. As a result, the effect of these unavoidable geometric imperfections 

on the vertical force resistance is studied. The geometric imperfections are incorporated in 

the finite element model in the form of initial strains. An axisymmetric imperfections 

distribution is assumed to be the most critical being similar to the distribution of both 

hydrostatic and hydrodynamic pressure for the case of vertical excitations. An expression 
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for the critical imperfection wave length that leads to the minimum tank capacity is 

obtained using regression analysis as a function of the tank dimensions.  

Two levels of geometric imperfections are considered which are good and poor based on 

the amplitude of imperfections. Finally, similar charts to those in the first part are provided 

in order to know how much the total vertical force resistance is reduced with the inclusion 

of the imperfections in the analyses. The reduction in the normalized total vertical force 

capacity Nh/WcRb is found to increase with the angle θv. The average percentage of the 

reduction for good tanks is found to be 40%, 53%, and 63% for θv=30, 45, and 60, 

respectively, while for poor tanks, the average percentage of the reduction is found to be 

69%, 83%, and 95% for θv=30, 45, and 60, respectively.  

In order to assess the design of steel conical tanks under hydrostatic pressure only, the 

obtained vertical force resistance has to be compared with the loads acting on the tank walls 

due to the vertical ground excitation. The acting loads are also referred to as the vertical 

force demand corresponding to a specific ground excitation. This total vertical force 

demand is obtained based on equivalent mechanical model found in the literature for the 

case of vertical excitations where the contained fluid is modelled in the form of lumped 

masses connected to the tank walls through linear springs.  

The total vertical force demand is obtained for three different seismic zones representing 

moderate and highly active zones in Canada. The NBCC 2010 5% damping horizontal 

response spectra are first converted to the 2% damping vertical response spectra using 2 

conversion factors. The first factor is the damping factor which is obtained through a 

technique based on NBCC 2010-corresponding artificial ground excitation records, while 

the second factor is the horizontal to vertical conversion factor which is obtained from 

models found in the literature based on the natural frequencies of the steel conical tanks 

considered in the current study. The obtained vertical force demand values are compared 

to the vertical force resistance values obtained previously in the current study and it is 

found that the design of the steel conical tanks under hydrostatic pressure only is 

considered enough to resist the total vertical forces induced by the vertical excitation for 

the three seismic zones except for poor tanks with θv=45o corresponding to Montreal 
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seismic zone with h/Rb more than 1.5 and Vancouver seismic zone with h/Rb more than 

1.2;  good tanks with θv=60o corresponding to Vancouver seismic zone with h/Rb more 

than 1.2, poor tanks with θv=60o corresponding to Toronto seismic zone with h/Rb more 

than 1.4 and Montreal and Vancouver seismic zones. 
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Appendix  B 

 

Fig. 3-20 Variation of ratio Nh/WcRb with h/Rb for perfect tanks (θv=30) 

 

Fig. 3-21 Variation of ratio Nh/WcRb with h/Rb for good tanks (θv=30) 
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Fig. 3-22 Variation of ratio Nh/WcRb with h/Rb for poor tanks (θv=30) 

 

Fig. 3-23 Variation of ratio Nh/WcRb with h/Rb for perfect tanks (θv=45) 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.50 1.00 1.50 2.00 2.50

N
h/

W
cR

b

h/Rb

Poor (t=1.0ts) Poor (t=1.2ts)

Poor (t=1.4ts) Poor (t=1.6ts)

Poor (t=1.8ts) Poor (t=2.0ts)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

0.50 1.00 1.50 2.00 2.50

N
h/

W
cR

b

h/Rb

Perfect (t=1.0ts) Perfect (t=1.2ts)
Perfect (t=1.4ts) Perfect (t=1.6ts)
Perfect (t=1.8ts) Perfect (t=2.0ts)
Perfect (t=2.2ts) Perfect (t=2.4ts)



97 

 

 

  

 

Fig. 3-24 Variation of ratio Nh/WcRb with h/Rb for good tanks (θv=45) 

 

Fig. 3-25 Variation of ratio Nh/WcRb with h/Rb for poor tanks (θv=45) 
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Fig. 3-26 Variation of ratio Nh/WcRb with h/Rb for perfect tanks (θv=60) 

 

Fig. 3-27 Variation of ratio Nh/WcRb with h/Rb for good tanks (θv=60) 
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Fig. 3-28 Variation of ratio Nh/WcRb with h/Rb for poor tanks (θv=60) 
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Chapter 4  

4 Design Procedure for Liquid Storage Steel Conical Tanks 
under Seismic Loading 

Steel liquid tanks in the form of truncated cones are widely used for the purpose of liquid 

storage in an industrial facility or for water supply and fire protection. Despite the fact that 

some of these tanks have failed during the last decades, most of the seismic design 

specifications and guidelines focus on the design of steel cylindrical tanks with the only 

design guidelines for conical tanks, found in some specifications, are based on using an 

equivalent cylinder approach. This approach is not based on any theoretical or experimental 

basis highlighting the need for more realistic seismic design procedure for this shape of 

liquid tanks. In this study, a simplified procedure that avoids both yielding and buckling of 

the steel tank vessel is proposed to design liquid filled steel conical tanks subjected to 

horizontal and vertical earthquake excitations. The proposed design procedure is based on 

satisfying a design formula that combines the ratio of seismic demand to the tank resistance 

when subjected to hydrodynamic pressure due to horizontal and vertical excitations. The 

design procedure is then validated by comparing its outcomes with those obtained using 

non-linear time history analysis as a reference. The design approach accounts for the 

initially-existing geometric imperfections. The study is carried out numerically using an 

in-house finite element model that accounts for the effects of geometric and material 

nonlinearities. 

4.1 Introduction 

Steel conical-shaped liquid tanks are used as fluid containment in an industrial facility or 

for water supply and fire protection. A conical tank consists of a steel vessel resting on a 

supporting structure. The conical vessel is constructed of prefabricated steel panels welded 

together circumferentially and longitudinally. Based on the required pressure head, a 

conical tank vessel might be elevated above ground through a reinforced concrete shaft. 

Two common configurations for steel conical tanks exist: (1) Pure truncated cone as shown 

in Fig. 4-1a, (2) Combined conical tank with a cylindrical cap as shown in Fig. 4-1b.  
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Fig. 4-1 (a) Pure conical tank5, (b) Combined conical tank6 

Despite the fact that some of these tanks have failed during the last decades, most of the 

previous studies and, consequently, seismic design specifications focused on the design of 

steel cylindrical tanks. The most common failure mode for steel conical tanks is in the form 

of shell instability due to the relatively small wall thickness. The only seismic design 

guidelines for conical tanks found in some specifications (AWWA (2005), API (2005), and 

ECS (1998)) are based on using equivalent cylinder approach which is not based on any 

theoretical or experimental basis. 

The state of stresses under hydrostatic pressure for the case of cylindrical tanks is not 

similar to the case of conical tanks due to the inclination of the tank walls. To better 

understand the resulting stresses for the case of conical tanks, the volume of the contained 

liquid is divided into vol. 1 and vol.2 as shown in Fig. 4-2. The first one is transferred 

directly to the tank base, while the second one is resting on the tank inclined walls. Due to 

                                                 

5
http://forums.auran.com/trainz/showthread.php?17876-FEC-Key-West-extension-modern-day/page7  

6 http://www.caldwellwatertanks.com 

(a) (b) 
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the inclination of the walls, compressive meridional stresses σm are developed in addition 

to tensile hoop stresses σh meridionally and circumferentially, respectively, through the 

tank shells. Compressive stresses σm are maximum near the tank base due to the reduction 

in the tank radius in addition to the increase of the fluid volume resting on the tank walls, 

i.e., vol.2. These compressive stresses are very critical for the case of steel tanks as they 

might lead to shell instability.  

 

Fig. 4-2 Stresses induced due to inclination of the wall 

Motivated by the collapse of a conical steel water tower in Belgium, Vandepitte et al. 

(1982) tested a large number of small-scale conical tank models experimentally under 

hydrostatic pressure. The objective was to develop a set of design charts for different base 

restraining conditions and geometric imperfections’ levels. In 1990, a steel conical water 

tower collapsed in Fredericton, Canada when it was filled with water for the first time. The 

tank failed as the amplitude of the geometric imperfections was underestimated 

(Vandepitte (1999)). For the design of steel conical tanks under hydrostatic pressure, El 

Damatty et al. (1999) and Sweedan and El Damatty (2009) provided simplified design 

approach that takes into account geometric imperfections and the existence of an upper 

cylindrical cap.  

Seismic behaviour of Liquid storage tanks is important to understand as any failure to such 

structures might have a serious consequences in addition to the structure damage; for 
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example, losing water supply or release of combustible materials stored inside. A lot of 

studies were carried out in order to understand the seismic behaviour of cylindrical steel 

either assuming the tank walls to be rigid (Jacobsen (1949), Housner (1957), and Housner 

(1963)) or taking into consideration the effect of wall flexibility in the form of fluid-

structure interaction (Veletsos (1974), Haroun and Housner (1981,1982)). It was concluded 

that the flexibility of cylindrical tank walls amplifies the tank response and has to be 

accounted for. 

The induced hydrodynamic pressure on a liquid storage tank walls due to a horizontal 

ground excitation is divided into two components known as impulsive and sloshing 

components. The impulsive component corresponds to the lower amount of liquid which 

moves with the walls of the tank. As a result, it has a maximum value near the tank base. 

The long period sloshing component corresponds to the upper amount of liquid undergoing 

sloshing. In general, the impulsive pressure is the most critical unless the liquid tank is 

extremely shallow. 

When a steel conical tank is subjected to earthquake excitation, hydrodynamic pressure is 

induced on the tank walls. For the case of horizontal excitation, the induced hydrodynamic 

pressure will amplify both σm and σh at one side of the tank and reduce them at the other 

side based on the direction of the ground acceleration, while the induced hydrodynamic 

pressure due to vertical excitation will amplify or reduce both σm and σh in an axisymmetric 

manner based on the direction of the ground acceleration, i.e., upwards or downwards. 

Jolie et al. (2013) assessed using the equivalent cylinder approach found in AWWA (2005), 

API (2005), and ECS (1998) when analyzing conical tanks subjected to horizontal ground 

excitations. This was done by comparing the base shear and overturning moment obtained 

using equivalent mechanical model for conical tanks to those obtained using the equivalent 

cylinder approach. It was shown that the base shear is well-predicted by the Eurocode, 

while it is overly-estimated by the AWWA and API. On the other side, the three design 

codes under-estimated overturning moment due to ignoring the effect of the vertical 

component of the hydrodynamic forces due to horizontal excitation when assuming the 

tank walls to be vertical not inclined. 
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El Damatty et al. (1997b,c) conducted the first study to assess the behavior of conical tanks 

under seismic loading where a coupled shell element-boundary element formulation was 

developed to simulate the fluid-structure interaction for both horizontal and vertical 

excitations. A fluid added mass matrix that can be incorporated into a nonlinear dynamic 

analysis routine was derived. 

Early studies about seismic behaviour of cylindrical liquid tanks often ignored the effect 

of the vertical excitations as most of the structures are relatively stiff in the vertical 

direction. However, it has been observed that the maximum amplitude of the vertical 

excitation component can exceed peak horizontal amplitude especially near the center of 

the earthquake. Vertical acceleration is transmitted to a horizontal hydrodynamic loading 

acting on the tank walls. As a result, tensile hoop stresses are amplified and might lead to 

inelastic buckling of the shell. Marchaj (1979) attributed the failure of metallic tanks during 

past earthquakes to the lack of consideration of vertical acceleration in their design. 

Veletsos and Kumar (1984) and Haroun and Tayel (1985a) showed that the flexibility of 

cylindrical tank walls amplifies the tank response and has to be accounted for the case of 

vertical excitations as well. 

Veletsos and Tang (1986) provided a practical procedure to evaluate the dynamic response 

of rigid and flexible steel and concrete cylindrical tanks with different base conditions 

when subjected to vertical excitations including soil-structure interaction. The main 

conclusion was that soil-structure interaction reduces the maximum hydrodynamic effects 

and might be approximated by a change in the fundamental natural frequency of the tank-

liquid system or an increase in damping. Haroun and Abou-Izzeddine (1992) performed a 

parametric study in order to evaluate the effects of different factors that influence the 

seismic response of an elastic cylindrical tank supported on a rigid base when subjected to 

a vertical excitation by considering shell-liquid-soil interaction. It was concluded that 

foundation soil-tank interaction reduces the tank response in general, and this reduction is 

a function of the soil shear-wave velocity as well as tank geometric properties. 

The analysis of steel liquid tanks when subjected to ground excitations is considered 

relatively complicated due to the existence of the contained liquid that results in fluid-
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structure interaction. As a result, researchers introduced the concept of equivalent 

mechanical models where the contained liquid is simulated as lumped masses attached to 

the tank wall rigidly or through linear springs. By doing that, the complicated tank-liquid 

system is replaced with a set of masses and springs that can be incorporated in dynamic 

analysis reducing the computation time extensively. The main objective of an equivalent 

mechanical model is to match the resulting base forces and moments obtained using 

dynamic analysis for the original tank-liquid system. 

For horizontal ground excitations, Haroun and Housner (1981) introduced a three masses 

mechanical model for cylindrical steel tanks. The three masses are the impulsive fluid 

mass, the sloshing fluid mass, and the mass reflecting the effect of the flexibility of the 

tank walls. El Damatty and Sweedan (2006) developed a similar mechanical model for 

conical tanks in order to predict the base shear and overturning moment acting on a conical 

tank base.  

For vertical ground excitations, Sweedan and El Damatty (2005) proposed a two-mass 

mechanical model for pure conical tanks in order to get the same values of the total vertical 

forces acting on the tank walls. The two masses are the rigid fluid mass, and the mass 

reflecting the effect of the flexibility of the tank’s wall. Sweedan (2009) introduced a 

similar mechanical model that can be used for combined conical-cylindrical tanks 

subjected to vertical excitations. 

To the best of the authors’ knowledge, this study will be the first attempt to provide a design 

procedure for liquid steel conical tanks subjected to ground excitations including both 

horizontal and vertical components. The proposed design approach is based on satisfying 

a design interaction formula that combines the effect of hydrodynamic forces acting on 

conical tanks due to both horizontal and vertical components of a ground excitation. The 

proposed formula is a function of the conical tank capacity with respect to both yielding 

and buckling of the tank vessel in addition to the seismic demand which represents the 

actual forces acting on a structure when subjected to an earthquake. The capacity for 

different pressure components is obtained in the previous two chapters using non-linear 

static analysis, while the corresponding demand for each pressure component is obtained 
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based on previously developed equivalent mechanical models found in the literature. In 

order to validate the proposed design formula, non-linear time history analyses are used 

and their results are compared to those based on the proposed formula. 

4.2 Hydrodynamic Forces  

4.2.1 Horizontal Excitation 

For a conical tank subjected to a horizontal excitation, a resulting base shear Q and a 

corresponding overturning moment M will act just above the tank base as shown in Fig. 4-

3a. Based on the distributions of different circumferential hydrodynamic pressure modes, 

the total base shear will result from the cos θ pressure mode only shown in Fig. 4-3b where 

θ is the circumferential angle. 

 

Fig. 4-3 Effect of horizontal acceleration on a conical tank 

As discussed earlier, the idea of a mechanical model is to represent the contained fluid 

inside a conical tank as a set of lumped masses and springs in order to obtain the same 

resulting base shear and overturning moment obtained by dynamic analysis when subjected 

to the same earthquake event. The mechanical model derived by El Damatty and Sweedan 

(2006) shown in Fig. 4-4 is used in this study to obtain the seismic demand. The masses 

mr, mf, and ms represent the impulsive mass component, the mass reflecting the effect of 
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walls’ flexibility, and the convective mass component, respectively. The total maximum 

base shear Qmax is given by  

Qmax=ටQIr
2 +QIf

2 +QS
2 																																																																																																																			[4-1] 

QIr=[(mr − mf)+mo-sh]Gሷ max																																																																																																						[4-2] 

QIf=[mf+me-sh]Sa-sys																																																																																																																				[4-3] 

QS=ms Sa-s																																																																																																																																																																																						 				[4-4] 

where Q୍୰ and Q୍୤ reflect the contribution of the rigid and flexible components of the 

impulsive pressure and Qୗ reflects the sloshing contribution. The masses m୭ିୱ୦ and mୣିୱ୦ 

represent the portion of the walls’ mass associated with the rigid and flexible vibration 

modes, respectively.  The acceleration Gሷ ୫ୟ୶ is the maximum ground acceleration for the 

earthquake excitation also known as the peak ground acceleration PGA while Sୟିୱ୷ୱ and 	Sୟିୱ represent the spectral accelerations corresponding to the natural frequencies of the 

liquid-shell system and the first sloshing mode, respectively. 

 

Fig. 4-4 Equivalent mechanical model for conical tanks subjected to horizontal 

excitation, (El Damatty and Sweedan (2006)) 

4.2.2 Vertical Excitation 

For conical tanks subjected to a vertical excitation, a resulting total normal force N will act 

just above the tank base as shown in Fig. 4-5a. Due to the axisymmetric distribution of the 
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resulting hydrodynamic pressure as shown in Fig. 4-5b, neither a total base shear nor an 

overturning moment will result due to the vertical excitation. 

 

Fig. 4-5 Effect of vertical acceleration on a conical tank 

Sweedan and El Damatty (2005) introduced a two masses mechanical model for steel 

conical tanks subjected to vertical ground excitation as shown in Fig. 4-6. The two masses 

are the rigid fluid mass, and the mass reflecting the effect of the flexibility of the tank’s 

wall. The mass mo-w is rigidly attached to the supporting tower and vibrates with the ground 

acceleration, while the mass mf-w is a flexible mass that vibrates with the fundamental 

frequency of the tank-liquid system. The masses, and natural frequencies were presented 

in charts based on the tank dimensions. The total vertical force 	Nv is given by  

Nv=ටN1
2+N2

2																																																																																																																															  [4-5]                

N1=(mo-w − mo-s)Gሷ vmax																																																																																																													[4-6]            

N2=(mf-w+mf-s)Sa-sys																																																																																																																			[4-7]                         

where N1 and N2 reflect the contribution of the rigid and flexible components of the 

hydrodyanmic pressure, respectively. The masses mo-s and mf-s represent the portion of the 

tank walls’ mass associated with the rigid and flexible vibration modes, respectively.  The 

acceleration Gሷ vmax is the maximum vertical ground acceleration for the earthquake 

excitation i.e., PGA while Sa-sys is the spectral acceleration corresponding to the natural 

frequency of the liquid-shell system. 

P P 

N 

Pressure  
distribution 

(a) 

(b) 



109 

 

 

  

 

Fig. 4-6 Equivalent mechanical model for conical tanks subjected to vertical 

excitation Sweedan and El Damatty (2005) 

4.3 Geometric Imperfections 

The steel vessels of conical tanks are normally constructed from curved panels welded 

together along circumferential and longitudinal directions. As a result, geometric 

imperfections will exist and play an important role in defining the capacity of steel liquid 

conical tanks and might lead to failure if not estimated correctly as for the case of the 

collapsed steel conical water tower in Fredericton (Vandepitte (1999)). A commonly used 

model for simulating the geometric imperfections	W(s), Fig. 4-7, is described as: 

W(s)=w0sin ൬2πs

LI
൰ cos (nθ)                                                                                           [4-8]   

where w଴ is the imperfection amplitude, L୍ is the imperfection wavelength, s is a coordinate 

measured along the generator of the vessel, and n is an integer defining the circumferential 

wavelength of the  imperfection shape. According to Vandepitte et al. (1982), a conical 

tank with the ratio w଴/L୍ less than 0.004 is considered a good cone while a conical tank 

with the ratio w0/LI ranging from 0.004 to 0.01 is considered a poor cone. 

For the case of steel conical tanks under the effect of hydrostatic pressure only, (Vandepitte 

et al., 1982) used experimental results to get an expression for the critical buckling wave 

length LCR	which was found to be independent on the height of the conical tank,	while El 

Damatty et al. (1997a) have shown that an axisymmetric distribution, i.e., n=0, leads to 
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minimum buckling capacity due to the axisymettric nature of hydrostatic pressure. An 

expression for the critical buckling wave length was derived in Chapter 2. This critical 

buckling wave length leads to the minimum tank capacity for the case of combined 

hydrostatic and hydrodynamic pressure due to horizontal excitation using non-linear static 

analysis. The critical buckling wave length was given by  

Lcr=4.03ඥRb t୵ cos θv⁄                                                                                                [4-9] 
where Rb is the tank bottom radius, t is the wall thickness, and θv is the angle of inclination 

of the tank walls with the vertical. 

 

Fig. 4-7 Assumed imperfection shape along the generator of tank 

The effect of variation of the tank height on the critical imperfection wave length was found 

to be insignificant as noticed by Vandepitte et al. (1982). Similar procedure was followed 

in order to estimate the critical imperfection wave length for the case of combined 

hydrostatic and hydrodynamic pressure due to vertical excitation. It was found that the 

same expression, i.e., Eq. 4-9, will lead to the minimum buckling capacity for this case as 

the buckling waves initiate during the initial hydrostatic pressure phase similar to the case 

of horizontal excitation. Two levels of geometric imperfections will be considered in this 

study: (1) w0 = 0.004Lcr to represent the limit for good tank, (2) w0 = 0.01Lcr to represent 

the limit for poor tanks.  
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4.4 Steel Conical Tank Capacities  

4.4.1 Horizontal Excitation 

The capacity for steel conical tanks with practical dimensions using non-linear static 

analysis when subjected to hydrodynamic pressure due to horizontal excitation was 

estimated in Chapter 2. A linear pressure pattern corresponding to the hydrostatic pressure 

was applied and increased incrementally till its actual value and then a pressure pattern 

corresponding to the hydrodynamic pressure distribution was increased incrementally, 

while maintaining the hydrostatic pressure constant, till failure occurs. The capacity of a 

steel conical tank was represented by the base shear value just before yielding or buckling 

for the tank vessel. Regarding the governing failure mode, the general trend was that the 

probability for yielding failure to occur is higher when the angle θv is increased. In addition, 

the increase in the tank wall thickness was found to make the elastic buckling failure, i.e., 

tank shell suffers instability before yielding, more probable. 

A group of 75 tanks of practical dimensions were chosen with bottom radius Rb ranging 

from 4.0m to 6.0m, tank height h from 5.0m to 9.0m, and θv = 30o, 45o, 60o. The tanks were 

preliminary designed under hydrostatic pressure only based on the simplified method 

proposed by Sweedan and El Damatty (2009) assuming good tanks regarding the level of 

geometric imperfections. The tanks were analyzed with three levels of geometric 

imperfections; perfect, i.e., no imperfections, good, i.e., w0/LI=0.004, and poor, i.e., 

w0/LI=0.01. The same procedure was done for both impulsive and sloshing components of 

the hydrodynamic pressure. The base shear capacity for impulsive component VI and 

sloshing component VS were represented in the form of the unit-less parameter VRb/Wh 

where W is the weight of the contained fluid. The effect of wall thickness was included 

through a family of curves represented in the form of multiplier of ts which is the thickness 

obtained by the simplified hydrostatic design method. The variation of the normalized base 

shear VIRb/Wh and VSRb/Wh with the ratio h/Rb for different levels of imperfection and θv 

were presented in the form of charts (Appendix A). 
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4.4.2 Vertical Excitation 

The total normal force capacity using non-linear static analyses was estimated in Chapter 

3 following the same procedure described for the horizontal component. The same group 

of tanks described for the case of horizontal excitation were used for this study. The tanks 

were analyzed with three levels of geometric imperfections; perfect, good, and poor. The 

steel conical tank capacity was expressed in terms of the total vertical force N 

corresponding to the first yielding of the tank vessel. The total normal force capacity for 

impulsive component N was represented in the form of the unit-less parameter Nh/WcRb 

where Wc is the weight of the cylindrical volume of the contained fluid. 

For the group of steel conical tanks considered, the tank shell was found to yield before 

instability takes place similar to what was noted by El Damatty et al. (1997a) for the case 

of steel conical tanks under hydrostatic pressure which has an axisymmetric distribution 

similar to the case of the hydrodynamic pressure due to vertical excitations. The effect of 

thickness change was included through a family of curves for different thicknesses. The 

variation of the normalized total vertical force Nh/WcRb with the ratio h/Rb for different 

levels of imperfection and θv were represented in the form of charts (Appendix B). 

4.5 Proposed Design Procedure 

The main goal of the current study is to propose a design procedure for steel liquid conical 

tanks subjected to both horizontal and vertical components of ground excitations taking 

into account the effect of geometric imperfections. The idea is to use an interaction formula 

which if satisfied means a conical tank is considered safe against both yielding and 

buckling of the tank shell when subjected to the ground excitation under consideration. The 

interaction formula is a function of the conical tank capacities and the seismic demands. 

The proposed interaction formula is in the form of  ൬VID

VIC
൰n

+ ൬VSD

VSC
൰n

+ ൬ND

NC
൰n

≤ 1.0                                                                  								         [4-10]  
where VIC and VSC	are the base shear capacities for a steel conical tank subjected to a 

horizontal excitation corresponding to impulsive and sloshing hydrodynamic pressure 
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components, respectively. They can be obtained as per Section 4.4.1. ND is the total vertical 

force capacity for a steel conical tank subjected to a vertical excitation which can be 

obtained as per Section 4.4.2. VID and VSD represent the base shear demands for a steel 

conical tank subjected to a horizontal excitation corresponding to the impulsive and 

sloshing hydrodynamic pressure components, respectively. They can be obtained using the 

equivalent mechanical model for horizontal excitations developed by El Damatty and 

Sweedan (2006). ND is the total vertical force demand for a steel conical tank subjected to 

a vertical excitation which can be obtained from the equivalent mechanical model 

developed by Sweedan and El Damatty (2005). Finally, n is the power order of the 

combination which will be determined in the following section based on time history 

analysis. 

4.6 Time-History Analysis 

Although time history analysis is the most realistic and accurate when it comes to 

simulating structures undergoing ground excitations, it is computationally expensive and 

therefore not practical to be used by design engineers on a daily basis. Moreover, for the 

case of liquid storage tanks, time history analysis is more complicated due to the presence 

of the contained fluid where fluid-structure interaction has to be accounted for in order to 

capture the actual behaviour for such kind of structures. In this section, non-linear time 

history analyses are carried out for the same set of 75 steel conical tanks discussed in 

Section 4.4 with three levels of geometric imperfections i.e., perfect, good, and poor in 

order to evaluate the best estimate for the power n found in Eq. 4-10 and validate the 

proposed design approach.  

A coupled shell element-boundary element formulation is used where a fluid-added mass 

matrix is obtained corresponding to the tank vessel degrees of freedom (El Damatty et al. 

(1997c)). This fluid-added matrix is added to the structure mass matrix and then 

incorporated in dynamic or free vibration analysis. This technique is considered 

computationally efficient compared to modelling the contained fluid using finite elements 

as the total number of degrees of freedom are considerably reduced.  
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The long-period sloshing component of the hydrodynamic pressure is included in the analysis 

assuming the tank walls to be rigid i.e., ignoring the fluid-structure interaction (El Damatty et 

al., (2000)). This assumption was found to be acceptable as noted by Haroun (1980) for 

cylindrical tanks and also due to the fact of relatively small sloshing hydrodynamic pressure 

compared to the impulsive pressure. During the time-history analysis, hydrostatic pressure is 

applied prior to the application of the ground accelerations at each time increment. 

The time history analyses are conducted based on 11 natural earthquake records scaled to 

different seismic zones in Canada. The selection of the used ground motions is based on 

the deaggregation of seismic hazard procedure proposed by Halchuk and Adams (2004) 

for different locations in Canada where the seismic hazard is deaggregated in terms of the 

focal depth and the magnitude of the ground motion for different spectral acceleration 

values. Three Canadian seismic zones are considered in the current study which are 

Toronto, Montreal, and Vancouver. Using the deaggregation parameters for the three 

seismic zones considered, a search process is conducted using the PEER strong ground 

motions database in order to select the natural ground motion records. The selected records 

corresponding to different seismic zones are summarized in table 4-1. 

After the selection of the ground motion records, they are scaled in order to match the target 

seismic zone. The scaling procedure is based on matching the spectral acceleration of the 

record under consideration with the spectral acceleration of the response spectrum obtained 

from NBCC (2010) at the natural frequency of the first impulsive vibration mode. This 

scaling is applied separately for each of the horizontal and vertical components of the 

ground motion record and is done for each tank separately as each conical tank has its own 

natural frequency. A schematic for the scaling procedure is shown in Fig. 4-8. 
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Table 4-1 Selected ground excitation records corresponding to different seismic 

zones 

Seismic Zone 
Record 

ID* 
Record Name Date 

Duration 
(sec) 

Toronto 

557 Chalfant Valley-02 1986 20 

703 Whittier Narrows-01 1987 20 

1680 Northridge-04 1994 20 

2227 Chi-Chi, Taiwan-02 1999 30 

Montreal 

935 Big Bear-01 1992 25 

3510 Chi-Chi, Taiwan-06 1999 35 

947 Northridge-01 1994 20 

81 San Fernando 1971 20 

Vancouver 

323 Big Bear-01 1983 25 

927 Chi-Chi, Taiwan-05 1992 20 

3032 Coalinga-01 1999 30 

* Record ID from http://peer.berkeley.edu/peer_ground_motion_database 

In order to determine the natural frequencies for the impulsive vibration modes for both 

horizontal and vertical vibrations, free vibration analyses are performed using the coupled 

finite-boundary element code developed by El Damatty et al. (1997b). The derived fluid-

added matrix is incorporated in the Eigen-value problem which results in the vibration 

mode shapes and natural frequencies. The damping was incorporated in the time history 

analyses based on the Rayleigh damping where it is represented as a linear combination of 

the mass and stiffness of the structure. A value of 2% damping is used for the impulsive 

hydrodynamic pressure component, while a value of 0.5% is used for the sloshing 

component. 
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Fig. 4-8 Schematic for the scaling of the ground motion spectrum to match the 

NBCC 2010 spectrum 

Three-dimensional numerical models are developed in this study for the steel conical tanks 

using the finite element method to carry on the time history analysis. The numerical models 

are based on a consistent subparametric triangular shell element shown in Fig. 4-9a that 

was developed by Koizey and Mirza (1997). Such a consistent subparametric formulation 

eliminated the spurious shear modes and locking phenomenon observed in isoparametric 

shell elements when used in modeling thin shell structures. El Damatty et al. (1997d) 

extended the formulation of this shell element to include both the large deformation 

geometric nonlinear effect in addition to material nonlinearity for steel. The geometric 

imperfection is incorporated in the finite element model in the form of initial strains prior 

to load application at each time step. 
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Fig. 4-9 (a) Coordinates and degrees of freedom for the consistent shell element 

(Koizey and Mirza (1997)), (b) Finite element mesh for half cone 

Due to symmetry about the horizontal axis in both loading and geometry, only half of the 

cone is modelled and used in the analysis. A mesh of 128 triangular elements is used for 

the model and is shown in Fig. 4-9b. The length of the elements is not uniform as the mesh 

is chosen to be finer near the base of the tank due to the stress concentration at this location 

where buckling is expected to occur. The tanks are assumed to be hinged at the base along 

the circumference. Finally, the horizontal and vertical degrees of freedom at the tank base 

level are constrained in order to have the same deformations in order to simulate the rigid 

concrete slab underneath the tank. 

4.7 Results of Time History Analysis 

As mentioned in the last section, the set of the steel conical tanks chosen for this study are 

subjected to the eleven ground motion records summarized in table 1 in the form of 

horizontal and vertical ground accelerations. For the horizontal component, the output 

forces acting on the tank base will be in the form of total base shear V and a corresponding 

overturning moment M as shown in Fig. 4-3, while the vertical component of the ground 

motion will lead to a total vertical force N as shown in Fig. 4-5. It is worth mentioning that 

both M and N are calculated at a level just above the tank base as the base itself is not 

included in the finite element mesh discussed earlier. 

(a) 
(b)
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The impulsive and sloshing base shear time histories are shown in Fig. 4-10 for one of the 

steel conical tanks subjected to Chalfant Valley-02 record. Comparing the base shear 

values for the two components, it can be concluded that the impulsive component is more 

critical compared to the sloshing one especially for the cases of θv=30o, 45 o. Contributions 

to the total base shear and overturning moment from sloshing mode is found to be 

negligible due to the small spectrum accelerations associated with such low frequency 

sloshing modes.  
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Fig. 4-10 Base shear time history for a steel conical tank (Rb=4m, h=5m) subjected 

to Chalfant Valley-02; (a) θv=30o, (b) θv=45o, (c) θv=60o 
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For the effect of the angle of inclination θv, the maximum impulsive base shear is reduced 

as the tank becomes more inclined, while the sloshing base shear is increased for higher θv 

values. This is due to the fact that as the conical tank becomes wider at top, the amount of 

fluid participating in the sloshing response is higher reducing the amount of fluid 

participating in the impulsive response. The overturning moment is found to be higher as 

θv is increased despite the lower fluid mass participating in the impulsive response for 

higher θv values. This is due to the longer moment arm for more inclined conical tanks. 

The same conclusion can be drawn for the total vertical force as conical tanks with higher 

θv values have larger horizontal projection for the inclined wetted surface leading to higher 

total vertical force. 

The hydrodynamic pressure distribution along the height of one of the studied tanks 

subjected to Northridge-01 ground motion in terms of horizontal impulsive pressure, 

horizontal sloshing pressure, and vertical impulsive pressure is shown in Fig. 4-11. The 

plotted pressure distributions are the maximum throughout the excitation duration, i.e., do 

not occur at the same time. As the total output forces (Q, M, N) discussed earlier are 

obtained by integrating the pressure distribution over the wetted surface area, the same 

conclusions can be drawn for the corresponding pressure distribution. The maximum 

horizontal and vertical impulsive pressure is located in the lower half of the tank height 

and is shifted upward as the conical tank becomes more inclined, while the maximum 

sloshing pressure occurs at the liquid free surface. It has to be mentioned that the 

circumferential distribution of the horizontal impulsive and sloshing pressure has a cosθ 

distribution, while the vertical impulsive pressure is axisymmetric.  
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Fig. 4-11 Hydrodynamic pressure distribution for a steel conical tank (Rb=4m, 

h=5m) subjected to Northridge-01; (a) Horizontal Impulsive Pressure, (b) 

Horizontal Sloshing Pressure, and (c) Vertical Impulsive Pressure 
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Figure 4-12 shows the deformed shape for one of the conical tanks subjected to Northridge-

01 ground motion at two stages: (1) Just after the application of the hydrostatic pressure, 

(2) At maximum displacement value throughout the duration of the ground motion. The 

deformed shape is plotted in terms of horizontal, vertical, and transversal displacement. 

Due to the stress concentration near the base of the steel conical tank, buckling waves starts 

to initiate just after the hydrostatic pressure stage and increase with the application of the 

hydrodynamic pressure. Such deformation pattern is commonly known as elephant-foot 

buckling and was noted in several liquid storage tanks after some earthquake events. 

      

Fig. 4-12 Displaced shape for steel conical tank (Rb=4m, h=5m, θv=45o) subjected to 

Northridge-01; (a) Horizontal displacement, (b) Vertical displacement, and (c) Transversal 

displacement 

As discussed in Section 4.4, the finite element model used in this study takes into 

consideration both geometric and material nonlinearities. As a result it is capable of 

capturing any localized buckling whether occurring prior to yielding of the tank shell i.e., 

elastic buckling or after yielding i.e., inelastic buckling. The conical tanks are preliminary 

designed under hydrostatic pressure only in order to obtain the wall thickness (ts) based on 

the simplified method proposed by Sweedan and El Damatty (2009) assuming good tanks 

regarding the level of geometric imperfections. 
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For the set of steel conical tanks considered in this study, one of three final states can take 

place: 

(1) Safe Elastic, if the tank survived the scaled ground excitation including horizontal and 

vertical components without yielding of the tank shell. 

(2) Safe Plastic, if the tank survived the scaled ground excitation including horizontal and 

vertical components with yielding of the tank shell taking place. 

(3) Unsafe Plastic, if the tank failed under the scaled ground excitation including horizontal 

and vertical components due to buckling instability which most probably will happen near 

the tank base due to the stress concentration resulting from inclination of the tank walls in 

addition to the confinement at the base supports. 

Time history analyses for the perfect steel conical tanks i.e., no geometric imperfections, 

shows that all the tanks behaved elastically and survived ground motions corresponding to 

the three considered seismic zones. The same observation is found for the case of the steel 

conical tanks with good level of geometric imperfections corresponding to the seismic 

zones of Toronto and Montreal. For Vancouver seismic zone, the majority of the good 

conical tanks survived the three ground excitations either elastically or inelastically with a 

thickness factor ranging from 1.2-1.4. The thickness factor is the ratio between the 

thickness required for a steel conical tank to remain elastic and survive the ground 

excitation treq under consideration to the initial thickness ts. 

Regarding tanks with poor level of imperfections, over 90% of the steel conical tanks 

designed to resist hydrostatic pressure with θv=30o, 45o survived the ground excitations 

corresponding to Toronto seismic zone elastically, while the remaining tanks survived 

inelastically with a thickness factor of 1.2. For tanks with θv=60o corresponding to Toronto 

seismic zone, it is found that the majority of the tanks survived the ground excitations 

inelastically with some tanks failing due to buckling with a maximum thickness factor of 

1.2. 

For ground excitations corresponding to Montreal seismic zone, more than 90% of the poor 

conical tanks designed to resist hydrostatic pressure with θv=30o did not survive the ground 
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excitations elastically, while none of the tanks with θv=45o, 60o survived the ground 

excitations elastically. The maximum thickness factor is 1.4, 1.4, and 1.6 for θv=30o, 45o, 

60o, respectively. Finally for ground excitations corresponding to Vancouver seismic zone, 

all poor conical tanks designed to resist hydrostatic pressure only did not survive the 

ground excitations elastically with more than 90% of the tanks failing due to buckling with 

maximum thickness factor of 1.8. 

4.8 Proposed Design Approach Validation 

In this section, the proposed design approach which is expressed in the form of a design 

formula is validated by comparing the results obtained from Eq. 4-10 with the results of 

the non-linear time history analyses performed in the previous section. Starting with the 

hydrostatic wall thickness ts, the tank capacities VIC, VSC, and NC are obtained from the 

charts found in Appendices A and B based on the tank dimensions and level of geometric 

imperfections.  

On the other hand, seismic demands VID , VSD, and ND are obtained using equivalent 

mechanical models based on the tank dimensions and the ground excitation characteristics. 

The left hand side of Eq. 4-10 is then computed and the minimum conical tank wall 

thickness required to satisfy the formula treq is determined. 

Regarding the validation using non-linear time history analysis, it is done as follows  

1) The time history analysis is performed for the same conical tank including both 

horizontal and vertical components of the earthquake excitation corresponding to 

the same seismic zone starting with a tank wall thickness ts.  

2) The analysis is repeated for different wall thicknesses till the conical tank sustain 

the ground excitation without suffering any buckling or yielding and treq is 

determined. As there is more than one ground motion corresponding to each 

seismic zone, the maximum treq to sustain all the ground motions for the same zone 

is the one recorded.  

3) The required thickness obtained based on the proposed design approach i.e., Eq. 4-

10 should be greater than or equals to the one obtained from the non-linear time 

history analysis in order to consider the design approach validated. 
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The abovementioned procedure including the proposed design approach in addition to the 

non-linear time history analysis is repeated for each conical tank corresponding to different 

seismic zones and levels of geometric imperfections.  

As mentioned earlier, the power order n of the design formula that is used to combine 

different pressure components is determined based on the time history analysis results. This 

is done for each tank by first assuming a value for the power order n and then check the 

design formula using the required thickness treq obtained by nonlinear time history analysis. 

Finally, the lowest value for n satisfying the design formula is determined by trial and error 

and recorded. 

In order to make the proposed design approach more practical, a single value for the power 

order n is chosen for all conical tanks corresponding to each level of geometric 

imperfections instead of using different values for each tank. By investigating the n values 

obtained for the steel conical tanks chosen in the current study, a value of n=2 is found to 

give a required wall thickness greater than or equals to the one obtained by time history 

analysis for all perfect and good steel conical tanks.  

On the other side for poor tanks, the value n=2 is found to give lower values for the required 

wall thicknesses than those obtained by time history analysis meaning that the proposed 

formula is not applicable for poor conical tanks when using n=2. By trying different values 

for the power n, it is found that a value of n=1 is satisfactory for the case of poor steel 

conical tanks. As a result, a value of n=2 is proposed for perfect and good steel conical 

tanks, while a value of n=1 is proposed for the case of poor steel conical tanks. 

The outcomes of the discussed validation procedure are summarized in Figs. 4-13 to 4-30 

found in Appendix C where the ratio (treq/ts) obtained by the two methods, i.e., the proposed 

design approach and time history analysis, is plotted for the steel conical tanks located in 

different seismic zones with different levels of geometric imperfection. The conical tanks 

are described in the form of Rx-hy where x is the tank bottom radius, while y is the tank 

height, both in meters. Each plot corresponds to a certain seismic zone for a specific angle 

of inclination θv and level of geometric imperfections which are expressed in the form of 

(Seismic zone-Level of imperfections-θv). TOR, MON, and VAN represent Toronto, 
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Montreal, and Vancouver seismic zones, respectively. PE, GD, and PR represents perfect, 

good, and poor level of geometric imperfections, respectively. By inspecting the figures, it 

can be seen that the proposed design formula using n=2 for perfect and good tanks and n=1 

for poor tanks will yield a tank wall thickness that is equals to or greater than the required 

thickness obtained by the time history analysis for all the conical tanks considered in the 

current study. 

It has to be mentioned that the proposed design approach is general and not restricted to be 

used for steel conical tanks in Canada. The design approach can be used to design steel 

conical tanks located elsewhere by using the corresponding design spectrum for the seismic 

zone where the tank is to be located. Scaling the chosen earthquake records to match the 

Canadian seismic zones’ spectra is done just to have a reference and due to the fact that the 

choice of the earthquake records is based on the deaggregation of seismic hazard procedure 

(Halchuk and Adams, 2004) for different locations in Canada.  

4.9 Summary of the Design Approach 

The steps of the proposed design approach for a steel conical tank subjected to horizontal 

and vertical ground excitations are as follows: 

(1)  Initially design the conical tank under hydrostatic pressure only assuming good 

level of geometric imperfection according to Sweedan and El Damatty (2009). 

(2) Use the obtained thickness from step (1) ts to obtain the conical tank capacity 

corresponding to: 

(a) Horizontal impulsive component VIC using charts in Appendix A  

(b) Horizontal sloshing component VSC using charts in Appendix A 

(c) Vertical impulsive component NC using charts in Appendix B 

(3) For a specific ground excitation, the response spectra for both horizontal and 

vertical components are used to obtain the seismic demands for this excitation 

corresponding to: 

(a) Horizontal impulsive component VID using the mechanical model developed 

by (El Damatty and Sweedan 2006) 
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(b) Horizontal sloshing component VSD using the mechanical model developed 

by (El Damatty and Sweedan 2006) 

(c) Vertical impulsive component ND using the mechanical model developed by 

(Sweedan and El Damatty 2005) 

(4)  Calculate the left hand side of the formula in Eq. 4-10 with n=1 for poor conical 

tanks and n=2 for perfect and good conical tanks. 

(5) If the left hand side is less than unity, then the used wall thickness is adequate to 

resist the stresses resulting from the ground motion excitation elastically. On the 

other hand, if the formula is not satisfied, then the wall thickness has to be increased 

and the steps (2) till (4) are repeated till Eq. 4-10 is satisfied. 

4.10 Conclusions 

In this study, a design approach for steel conical liquid tanks subjected to horizontal and 

vertical components of a ground excitation is proposed. The approach is based on satisfying 

a design formula which is a function of the steel conical tank capacities obtained by non-

linear static analysis and seismic demands obtained using equivalent mechanical models. 

This design approach takes into consideration the effect of geometric imperfections and 

the effect of sloshing hydrodynamic pressure. Finally, the design approach is validated 

using non-linear time history analysis and the steps of the approach are summarized. 

Regarding the time history analysis outputs, the total base shear, overturning moment, 

pressure distribution over the tank walls, and the deformed shape of the tank walls are 

investigated and the main conclusions were as follows: (1) Impulsive base shear is more 

critical compared to the sloshing base shear especially for tanks with θv=30o, 45 o; (2) The 

maximum impulsive base shear is reduced as the tank becomes more inclined, while the 

sloshing base shear is increased for higher θv values; (3) The overturning moment is higher 

for more inclined tanks due to the longer moment arm; (4) The total vertical force is found 

to be higher for more inclined tanks due to the larger horizontal projection for the inclined 

wetted surface; (5) The maximum horizontal and vertical impulsive pressure is located in 

the lower half of the tank height and is shifted upward for more inclined tanks, while the 

maximum sloshing pressure occurs at the liquid free surface.  
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For the considered steel conical tanks designed under hydrostatic pressure, the following 

was noted regarding the final state at the end of the time history analysis: (1) Perfect tanks 

corresponding to the three seismic zones and good tanks corresponding to Toronto and 

Montreal seismic zones behaved elastically and survived the corresponding ground 

motions; (2) Majority of the good tanks corresponding to Vancouver seismic zone survived 

the ground motions either elastically or inelastically; (3) Over 90% of the poor tanks with 

θv=30o, 45o corresponding to Toronto seismic zone survived the ground motions 

elastically, while the remaining tanks survived inelastically; (4) Majority of the poor tanks 

with θv=60o corresponding to Toronto seismic zone survived the ground motions 

inelastically with some tanks failing due to buckling; (5) Over 90% of the poor tanks with 

θv=30o corresponding to Montreal seismic zone did not survive the ground motions 

elastically, while none of the tanks with θv=45o, 60o survived the ground motions 

elastically; (6) All poor tanks corresponding to Vancouver seismic zone did not survive the 

ground motions elastically with more than 90% of the tanks failing due to buckling. 
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Appendix  C 

 

Fig. 4-13 Required thickness relative to ts for the cases TOR-PE-30, TOR-PE-45, 

TOR-PE-60, TOR-GD-30, TOR-GD-45, TOR-GD-60, MON-PE-30, MON-PE-45, 

MON-PE-60, MON-GD-30 

 

Fig. 4-14 Required thickness relative to ts for the case TOR-PR-30 
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Fig. 4-15 Required thickness relative to ts for the case MON-PR-30 

 

Fig. 4-16 Required thickness relative to ts for the case VAN-PE-30 
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Fig. 4-17 Required thickness relative to ts for the case VAN-GD-30 

 

Fig. 4-18 Required thickness relative to ts for the case VAN-PR-30 
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Fig. 4-19 Required thickness relative to ts for the case TOR-PR-45 

 

Fig. 4-20 Required thickness relative to ts for the case MON-GD-45 
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Fig. 4-21 Required thickness relative to ts for the case MON-PR-45 

 

Fig. 4-22 Required thickness relative to ts for the case VAN-PE-45 
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Fig. 4-23 Required thickness relative to ts for the case VAN-GD-45 

 

Fig. 4-24 Required thickness relative to ts for the case VAN-PR-45 
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Fig. 4-25 Required thickness relative to ts for the case TOR-PR-60 

 

Fig. 4-26 Required thickness relative to ts for the case MON-GD-60 
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Fig. 4-27 Required thickness relative to ts for the case MON-PR-60 

 

Fig. 4-28 Required thickness relative to ts for the case VAN-PE-60 
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Fig. 4-29 Required thickness relative to ts for the case VAN-GD-60 

 

Fig. 4-30 Required thickness relative to ts for the case VAN-PR-60 
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Chapter 5  

5 Effect of Base Rocking Motion on the Seismic Behaviour 
of Conical Shaped Steel Liquid Storage Tanks 

Liquid storage tanks in the form of truncated cone steel vessels are widely used in order to 

provide water supply and also to store other liquids that might be used for industrial 

purposes. For the case of elevated conical tanks, the effect of the tank base rocking motion 

has been assumed to be negligible in previous studies related to seismic behaviour of 

elevated steel conical tanks. In this study, the assumption of ignoring the base rocking 

motion is assessed by studying the effect of this motion on the seismic behaviour and the 

vibration characteristics of elevated steel conical tanks. A fluid-added mass matrix 

incorporating the rocking effect is derived and then incorporated in dynamic and free-

vibration analyses. In addition, a mechanical analog that simulates the forces acting on an 

elevated conical tank subjected to a horizontal excitation including the effect of this rocking 

motion is developed. This mechanical model takes the flexibility of the tank walls into 

consideration as well the hydrodynamic pressure acting on the tank base and hence can be 

used to evaluate the maximum resulting forces for a rigid or a flexible conical tank 

subjected to a horizontal ground excitation. Different Parameters of the mechanical model 

are displayed in the form of charts for different tank dimensions. Finally, an example is 

provided to show how the developed mechanical model is applied to evaluate the response 

of steel conical tanks subjected to horizontal ground excitation taking base rotation into 

consideration. 

5.1 Introduction 

Conical vessels are commonly used as storage containments in elevated tanks. For such 

tanks, the vessels can consist solely from a truncated conical shell and they referred to as 

pure conical tank. If the truncated conical vessels have a superimposed top cylinder part, 

they are called combined conical tank. Photos of pure and combined conical tanks are 

shown in Fig. 5-1a and Fig. 5-1b, respectively. It is also quite common that the shafts of 

elevated conical tanks are made of reinforced concrete while the vessels are made of steel 

curved panels welded together. While few studies can be found in the literature regarding 
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the seismic behaviour of conical tanks, the guidelines for the design of liquid-filled 

structures do not provide rational procedure for designing such structures under seismic 

loading. The most comprehensive guidelines (AWWA (2005), API (2005)) consider the 

seismic analysis of conical tank by converting them to equivalent cylinders.  

 

Fig. 5-1 (a) Pure conical tank7, (b) Combined conical tank8 

As a result of the inclination of the walls of conical tanks, the state of stresses in such 

structures, either under hydrostatic or hydrodynamic pressure (due to seismic excitation), 

are different from the state of stresses in cylindrical containers. Under hydrostatic pressure, 

a number of studies have been carried out for steel conical tanks focusing on elastic and 

inelastic stability and taking into account the effects of geometric imperfections and 

residual stresses (Vandepitte et al. (1982), Vandepitte (1999), El Damatty et al. (1997a), El 

Damatty et al. (1997b,c), El Damatty et al. (1998), El Damatty et al. (1999), and Hafeez et 

                                                 
7http://forums.auran.com/trainz/showthread.php?17876-FEC-Key-West-extension-modern-day/page7  
8 http://www.caldwellwatertanks.com 
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al. (2010)). Sweedan and El Damatty (2009) provided a simplified design procedure for 

steel conical tanks under hydrostatic pressure for steel conical tanks.  

For the case of conical tanks subjected to horizontal excitations, hydrodynamic pressure is 

induced on the tank walls and base in addition to the acting hydrostatic pressure. This 

hydrodynamic pressure will magnify the hydrostatic-induced stresses at one side of the 

tank and reduce it on the other side leading to an acting overturning moment. The contained 

fluid is divided into impulsive and sloshing fluid masses. The impulsive liquid mass 

represents the lower amount of fluid that moves with the walls of the tank, while the 

sloshing fluid mass represents the surface amount of fluid undergoing sloshing. 

It was noticed that seismic loadings can cause significant damages to liquid-filled storage 

tanks after the Alaska earthquake 1964. One of the challenges in analyzing liquid-filled 

containers under seismic loading is the estimation of the hydrodynamic pressure. Earlier 

studies were based on assuming the tank walls to be rigid when evaluating the 

hydrodynamic pressure (Jacobsen (1949), Housner (1957), and Housner (1963)). Later on, 

it was realized that the flexibility of the tank walls and the interaction that happens between 

wall vibrations and the contained liquid might significantly affect the impulsive 

hydrodynamic pressure distribution and consequently the structural response (Veletsos 

(1974), Haroun and Housner (1982), and Haroun and Housner (1981)). On the other side, 

the sloshing hydrodynamic pressure was found to be independent of wall vibrations and 

hence it can be obtained assuming rigid walls. 

The first study conducted to assess the behavior of conical tanks under seismic loading was 

done by El Damatty et al. (1997b,c) where a coupled shell element-boundary element 

formulation was developed to simulate the fluid-structure interaction between the 

hydrodynamic pressure and the vibration of the tank walls during a seismic excitation 

including both horizontal and vertical components. A fluid added mass matrix was obtained 

from the above formulation and is added to the mass matrix of the structure to be 

incorporated into a nonlinear dynamic analysis routine. This coupled shell element-

boundary element model was verified experimentally using shaking table testing of scaled 
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conical shell aluminum models (Sweedan and El Damatty (2002) and El Damatty et al. 

(2005)). 

Using the numerical model, El Damatty and Sweedan (2006) developed an equivalent 

mechanical model that can be easily used in analyzing conical tanks under the horizontal 

component of a ground excitation. In this mechanical model, the contained fluid is 

represented using lumped masses attached to the tank walls through linear springs. The 

lumped masses represent both the impulsive and sloshing components. The properties of 

the mechanical model were developed such that the model mimics the base shear and 

overturning moment obtained using the sophisticated numerical model. 

The aforementioned studies were all based on assuming that the tanks are not undergoing 

rocking movement, i.e., the tank base moves as a rigid body either vertically or 

horizontally. Depending on the pressure head required, a liquid tank might be elevated 

above the ground through a supporting structural system. The supporting system can be in 

the form of steel framing or a reinforced concrete shaft. Ignoring the base rocking motion 

might be valid for the case of ground tanks or elevated tanks with the supporting structure 

rigid enough to prevent such rocking motion. For cantilever type of supporting structure, 

the base of the liquid tank might undergo a significant rocking motion under the effect of 

horizontal earthquake excitation.  

Haroun and Ellaithy (1985a) developed an analytical mechanical model for flexible 

cylindrical tanks taking into consideration the effect of rigid base rocking motion and 

lateral translation. Different model’s parameters were presented in the form of analytical 

expressions and charts. Veletsos and Tang (1987) studied the dynamic response for rigid 

and flexible cylindrical tanks subjected to a rocking base motion and extended the 

mechanical model used for horizontal excitations to permit consideration of the effects of 

base rocking. Haroun and Ellaithy (1985b) analyzed two elevated cylindrical tanks; one 

supported by a X-braced frame and the second supported by a pedestal tower, in order to 

assess the effects of tank rotation, tank translation, and tank wall flexibility on the seismic 

response of the tanks. It was concluded that the effect of tank flexibility is measurable 

especially when coupled with tank rotation. In addition, including the tank rotation 
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increased the total base shear with 12% and 52% for X-braced and pedestal tanks, 

respectively.  

To the best of the authors’ knowledge, the current study represents the first attempt to 

investigate the effect of the tank base rocking motion on the seismic behaviour and 

vibration characteristics of steel conical tanks under the effect of horizontal excitations. 

The study starts with deriving a fluid-added mass matrix that simulates the induced 

hydrodynamic pressure including the effect of rocking motion using a coupled shell 

element-boundary element formulation. The finite element model for the steel conical 

tanks is then described. The derived fluid-added matrix is then incorporated in both 

dynamic and free-vibration analyses in order to assess the effect of including the base 

rocking motion on the seismic response and the vibration characteristics of the steel conical 

tanks. Finally, a mechanical model that takes into consideration the effect of the base 

rocking motion on the hydrodynamic pressure is developed using the derived mass-matrix 

for steel conical tanks subjected to horizontal excitations. The parameters of this 

mechanical model are presented in chart form showing their variations with the geometric 

parameters of conical tanks. Finally, a numerical example is presented to illustrate the 

application of the proposed mechanical analog in predicting the seismic forces acting on 

steel conical tanks subjected to horizontal excitations. 

5.2 Hydrodynamic Pressure 

Hydrodynamic pressure is induced on the tank walls and base during seismic excitation 

acting on a conical tank. The total hydrodynamic pressure can be divided into two 

components: impulsive pressure P୍  and sloshing pressure Pୗ. The sloshing component is a 

long period component relative to the impulsive one and hence the two components can be 

decoupled in the analysis (Haroun (1980)).  

The impulsive hydrodynamic pressure component for a conical tank filled with an ideal 

fluid is governed with the following set of equations and boundary conditions (El Damatty 

et al. (1997b)): ∇2PI(r,θ,z,t) = 0                                                     	       inside the fluid volume    	 			   [5-1]       

∂PI(r,θ,z,t) ∂n⁄  = -ρFuሷ  (r,θ,z,t).n                    											     at the surface S1                       [5-2] 
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PI =  0                                                                            at the surface	S3                       [5-3] 

∂PI(t) ∂n⁄  = -ρF uሷ z (r,θ,t)                                             at the surface S2                        [5-4] 
where uሷ  (r,θ,z,t) is the acceleration vector at any point of the tank’s wall, n is the unit vector 

normal to the surface of the tank, and ρF is the fluid density. Surfaces S1, S2 and S3; 

coordinates r, θ, and z are shown in Fig. 5-2 and t is the time.  The sloshing component can 

be separately derived due to the well-seperation in natural periods between sloshing and 

impulsive pressure modes. This is reflected through the boundary condition at the fluid 

surface i.e., Eq. 5-3. The boundary condition at the tank base i.e., Eq. 5-4 allows the 

inclusion of the base rocking motion by relating the hydrodynamic pressure with the 

vertical movement of the tank base. 

 

Fig. 5-2 Co-ordinate system for the steel conical tank and dimensional parameters 

The solution of the above differential equation, Eq. 5-1, is done using the boundary element 

method by interpolating the dynamic pressure using different shape functions satisfying 

the boundary conditions described in Eqs. (2-4) as described by Haroun (1980) for 

cylindrical tanks and El Damatty et al. (1997b) for conical tanks. The obtained impulsive 

component of the hydrodynamic pressure is interpolated as follows: 

PI(r,θ,z,t) = ቎෍   ෍  Ain(t) Hin(r,θ,z) N1

i=1

N2

n=1

቏+B (t)  H(N1+1)(r,θ,z)																																			[5-5] 

Hi,n(r,θ,z) =I
n
( αir) cos( αiz) cos(nθ)																																																																																				[5-6] 

H(N1+1)=(1- z h⁄ ) r cosθ                                                                                 									       [5-7] 
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αi=(2i-1) π 2h⁄                                                                                                               [5-8] 
where Ain (t), and B(t) are the amplitude functions of time, In are the modified Bessel’s 

functions of the first kind. The second term in Eq. 5-5 is included in order to satisfy the 

boundary condition at the base expressed in Eq. 5-4 which includes the effect of rocking 

base motion on the hydrodynamic pressure acting on the tank walls and base. Based on the 

distributions of different circumferential pressure modes cos(nθ) shown in Fig. 5-3, the 

only mode that will yield a resulting base shear and corresponding overturning moment is 

the cos θ mode, i.e., n=1. 

 

Fig. 5-3 Circumferential distribution of different pressure modes 

As the boundary conditions along tank surfaces are functions of walls’ acceleration which 

in turn depends on the hydrodynamic pressure value, fluid-structure interaction exists and 

should be accounted for in order to capture the real behaviour of a liquid tank subjected to 

a ground excitation. The fluid-structure interaction is more pronounced for the case of steel 

tanks as the flexibility of the tank vessel has a major contribution to the seismic response 

due to the relatively small thickness of the tank vessel. 

A coupled shell element-boundary element formulation is carried out leading to the 

formulation of a fluid-added mass matrix which is added to the structure mass matrix and 

then incorporated in dynamic and free vibration analyses of the liquid-shell system. This 

technique is considered computationally efficient compared to modelling the contained 

fluid using finite elements as the total number of degrees of freedom are considerably 

reduced. The formulation is based on the consistent 13 noded subparametric triangular shell 

element shown in Fig. 5-4a that was developed by Koizey and Mirza (1997) and extended 

by (El Damatty et al. 1997d) to include nonlinear and dynamic behaviour. The formulation 
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is summarized in the following steps and more details can be found in El Damatty et al. 

(1997b).  

The difference in the current formulation to the one found in El Damatty et al. (1997b) is 

due to the inclusion of the rocking term into the hydrodynamic pressure expression shown 

in Eq. 5-5 which corresponds to the subscript (N1+1) in the following derivation described 

in Eqs. (5-9 to 5-20). 

The variational functional ܬ for the initial value problem, Eqs. (1-4) is given by 

J=න ቎1
2
න (∇PI.∇PI)

 

Ω

dv+න ρFuሷ .nP
I

 

S

ds቏ dt                                                     								       [5-9] t2

t1

 

Where ߩி is the fluid mass density, Ω is the fluid volume and S is the sum of the wetted 

surfaces that are shown in Fig. 5-2. Green’s theory is then applied to the first term to 

convert the volume integral into surface integral as 

 J=න ቎1
2
൝න PI

∂PI

∂n
ds

 

S
-නPI.∇2PI

 

Ω

dvൡ+න ρFuሷ .nP
I

 

S

ds቏ dt                       																	     [5-10] t2

t1

 

The term ׬ ூܲ. ∇ଶ ூܲ	ஐ  is equal to zero according to Eq. 5-1 to 5-4 reducing the variational ݒ݀

functional to 

  J=න ቎1
2
න PI

∂PI

∂n
ds

 

S1+S2

+ න ρFuሷ .nP
I

 

S1+S2

ds቏ dt
t2

t1

                                    							              [5-11] 
The impulsive hydrodynamic pressure can be then obtained by maximizing or minimizing 

the first variation of ܬ satisfying the fluid wetted surfaces’ boundary condition. In order to 

obtain the fluid added matrix [DM] that simulates the hydrodynamic pressure, virtual work 

concept is used where virtual displacements δ{∆U} are assumed and the virtual work done ܹߜ by the hydrodynamic pressure can be obtained as  

δW=δ{∆U}T[DM]൛uሷTൟ                                                                                               [5-12] 
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The virtual displacements, wall and base accelerations {uሷ } are interpolated using the 13-

noded shell element shape functions (Koizey and Mirza (1997)). The fluid mass matrix is 

obtained using the following procedure with including only the cosθ mode, i.e., N2=1: 

The first term in the variational function	ܬ is expressed in matrix format as  

   
1

2
න PI

∂PI

∂n
ds

 

S1+S2

=
1

2
{Ai1(t)}1×(N1+1)

T  [C*](N1+1)×(N1+1) 
{Ai1(t)}1×(N1+1)

      																			 [5-13] 
where 

 Cij
*=

 
න Hi1

∂Hj1

∂n
ds

 

S1+S2

                                                                                              [5-14] {Ai1(t)}1×(N1+1)
T =൛A11(t)  A21(t)……….  AN11(t)  B(t)ൟ                              							       [5-15] 

Using the chain rule as ∂Hj1 ∂n⁄ = (∂Hj1 ∂r)(⁄ ∂r ∂n)⁄ + (∂Hj1 ∂z)(⁄ ∂z ∂n⁄ ) leads to the 

following derivatives for the shape functions ܪ	 with respect to the normal vector n [5-16]    for tank walls 

∂Hj1

∂n
=αjI1

' ൫αjr൯ cos൫αjz൯ cos(θ) cos(θv) +αjI1
 ൫αjr൯ sin൫αjz൯ cos(θ) sin(θv)          j=1,… ,N1 

∂Hj1

∂n
= ቀ1-

 z 

h
ቁ cos(θ) cos(θv)+

 r 

h
cos(θ) sin(θv)                                                 j=N1+1 

 for tank base 

∂Hj1

∂n
=αjI1

 ൫αjr൯ sin൫αjz൯ cos(θ)                                                                            j=1,… ,N1 

∂Hj1

∂n
=

r

h
cos(θ)                                                                                                     j=N1+1 

The integration in Eq. 5-14 is performed numerically over the surfaces S1 and S2 which are 

discretized using shell elements. The second term in the variational function	ܬ can be 

expressed in the form of  

 න ρFuሷ .nP
I

 

S1+S2

ds=ρF ෍ Ai1(t) ෍ න Hi1{G}1×39
T dS

 

Selem

൛uሷTൟ
39×1

          													   			     [5-17] 

 Nelem

N1+1

i=1
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where Selem is the area of each shell element, Nelemis the total number of shell elements 

used to discretize the tank wall and base. The vector {ܩ}	் is a function of shell element 

shape functions and direction cosines that can be found in Koizey and Mirza (1997) and ൛uሷTൟ
 
is the acceleration vector that includes the translational accelerations in the three 

directions at each of the 13-nodes for each shell element. 

Taking the first derivative of the variational function	ܬ with respect to the amplitude 

function Ai1(t) gives the following 

 {Ai1(t)}N1×1=-ρF[C*](N1+1)×(N1+1)

-1 ∑ [F](N1+1)×39
 
Nelem

൛uሷTൟ
39×1

																																												[5-18]                      

where the matrix [ܨ]	is function of shell element shape functions and direction cosines in 

addition to the pressure shape functions ܪ௜ଵ. Assembling the nodal acceleration vector {ݑሷ 		} 
and the matrix [F], the impulsive hydrodynamic pressure can be expressed as follows 

where M is the total number of degrees of freedom. 

 PI(r,θ,z,t)=-{H}1×(N1+1)
T  ቎ρF[C*](N1+1)×(N1+1)

-1 ෍ [F](N1+1)×39

 

Nelem

቏
(N1+1)×M

൛uሷ  tൟM×1
         	        [5-19] 

By obtaining the virtual work done by the hydrodynamic pressure assuming virtual 

displacements, the fluid added mass matrix [DM] can be obtained according to Eq. 5-12 

and is given by 

෍ න {G}39×1
 {H}1×(N1+1)

T ቎ρF[C*](N1+1)×(N1+1)

-1 ෍ [F](N1+1)×39

 

Nelem

቏
(N1+1)×M

ds         	 [5-20] 

Selem

 

Nelem

 

This fluid-added matrix can be added to the structure mass matrix and the total mass matrix 

can be then incorporated into nonlinear dynamic analysis or free vibration analysis for the 

steel conical tanks taking into consideration the base rocking motion in addition to the 

fluid-structure interaction. The sloshing component of the hydrodynamic pressure is not 

included assuming that the base rocking motion has negligible effects on the water sloshing 

as noticed experimentally by Chaduvula et al. (2013). 
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5.3 Finite Element Model 

The numerical model used in the current study is based on the consistent 13 noded 

subparametric triangular shell element shown in Fig. 5-4a that was developed by Koizey 

and Mirza (1997). This element has the advantages of eliminating the spurious shear modes 

and locking phenomenon observed in isoparametric shell elements when used in modeling 

thin shell structures. El Damatty et al. (1997d) extended the formulation of this shell 

element to include geometric and material non-linearities as well as dynamic effect.  

Three-dimensional numerical models are developed for steel conical tanks using the finite 

element method. Due to symmetry about the horizontal axis in both loading and geometry, 

only half of the cone is modelled and used in the analysis. A mesh of 136 triangular 

elements (128 for the tank walls and 8 for the tank base) is used for the model as shown in 

Fig. 5-4b. The length of the elements is not uniform as the mesh is chosen to be finer near 

the base of the tank due to the stress concentration at this location where buckling is 

expected to occur. The tanks are assumed to be free at the top.  

In order to insure the sufficiency of the number of elements in the used mesh, a sensitivity 

analysis is performed where different mesh sizes, starting with a course one, are used to 

carry out the dynamic analysis till convergence in the output values takes place. Figure 5-

5 shows the base shear force V time history for a steel conical tank subjected to a horizontal 

excitation using two different meshes: (1) using 52 elements (48 for the tank walls and 4 

for the tank base), (2) using 136 elements (128 for the tank walls and 8 for the tank base). 

The two time histories are shown to yield almost the same base shear values over the 

excitation duration meaning that the used finite element mesh is sufficient. 
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Fig. 5-4 (a) Coordinates and degrees of freedom for a consistent shell element, (b) 
Finite element mesh for half cone 

 

Fig. 5-5 Base shear force time history for a steel conical tank subjected to a 

horizontal excitation using two finite element meshes 

5.4 Fluid-Added Matrix Validation  

In order to validate the fluid-added matrix derivation, non-linear dynamic analyses are 

performed twice; the first one using the fluid-added matrix derived in the current study 

including the base rocking effect with a high rotational spring stiffness Kαα value 

approaching infinity, while the second one using the fluid-added matrix derived by (El 

Damatty et al. 1997b) assuming no rocking base motion. A tank with Rb=4.0m , h=5.0m, 
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and θv=45o is subjected to an artificial ground excitation corresponding to Montreal seismic 

zone for the two cases and the time history of both total base shear and overturning moment 

are compared as shown in Figs. 5-6, 5-7. The base shear V is normalized by the weight of 

the contained fluid W while the overturning moment M is normalized by the term W.Rb. 

The comparison indicated that the two cases yield the same base shear and overturning 

moments meaning validation of the derived fluid-added mass matrix. 

 

Fig. 5-6 Time history for V/W for cases of rocking allowed and prevented 

 

Fig. 5-7 Time history for M/WRb for cases of rocking allowed and prevented 
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5.5 Effect of Base Rocking Motion  

The change in seismic behaviour of elevated steel conical tanks by allowing the tank base 

to undergo rocking motion is mainly attributed to two factors: (1) Allowing the tank base 

to undergo rocking motion, changes the vibration properties of the conical tank i.e., natural 

frequencies and mode shapes, (2) By undergoing rocking motion, the deformations and 

accelerations of the tank walls change consequently leading to a change in the 

hydrodynamic pressure acting on the tank walls and base due to the existing fluid-structure 

interaction. These two factors are discussed in details in the following sub-sections. 

In order to study how the base rocking motion changes the natural frequencies of a steel 

conical tank, a group of 75 tanks of practical dimensions are chosen with cone bottom 

radius Rb ranging from 4.0m to 6.0m, cone height h from 5.0m to 9.0m, and angle of 

inclination with vertical θv = 30o, 45o, 60o. The conical tanks are assumed to be elevated 

above the ground through a hollow cylindrical reinforced concrete shaft with a concrete 

slab connecting the tank vessel to the shaft as shown in Fig. 5-8a,b.  Assuming the RC shaft 

to behave elastically, it can be incorporated in the finite element analysis of the steel conical 

tanks through two translational springs with horizontal stiffness Kxx, vertical stiffness Kzz 

and a rotational spring with stiffness Kαα as shown in Fig. 5-8c. Figure 5-8d shows the RC 

shaft stiffness matrix given by  

Kxx= 12EcI Lsh
3       																																																																																																																 [5-21]⁄  

Kzz= EcA Lsh
 ⁄ 																																																																																																																									 [5-22] 

Kαα= 4EcI Lsh
      																																																																																																																     [5-23]⁄  

Kxα= Kxα = 6EcI Lsh
2  																																																																																																												 [5-24] ⁄  

where Ec is the concrete modulus of elasticity, I and A are the RC shaft moment of inertia 

and cross sectional area, respectively. Lsh
  is the shaft length and Kxα is the coupling 

stiffness of the RC shaft. Table 1 gives the stiffness value Kαα corresponding to four 

different RC shaft dimensions 
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Fig. 5-8 (a) Elevated tank structure, (b) RC shaft cross-section, (c) Springs 

simulating the RC shaft, and (d) RC shaft stiffness matrix 

Table 5-1  Practical RC shaft dimensions and corresponding rotational stiffness Kαα 

Shaft Lsh (m) Rb (m) tsh (m) Kαα (N.m/rad) 

1 10 3.0 0.2 1.53E+11 

2 20 3.0 0.5 1.65E+11 

3 10 6.0 0.2 1.29E+12 

4 20 6.0 0.5 1.50E+12 

5.5.1 Free Vibration Analysis 

Free vibration analyses for the chosen group of steel conical tanks are performed using the 

coupled finite-boundary element routine discussed earlier. The natural frequencies ω	and 

the corresponding mode shapes {∅} are obtained by solving the Eigen-value problem ([K]-ω2[M]){∅}={0}                                                                                                  [5-25] 
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where [ܭ] is the stiffness matrix of the conical tank vessel in addition to the RC shaft, [M] 
is the fluid added mass matrix including the effect of rocking motion derived in Section 

5.2. The shell mass is ignored in this part as it is relatively small compared to the fluid mass 

for the case of steel tanks. The tank base is assumed to behave rigidly either in translation 

or rotation due to the presence of the concrete slab at the tank base. This is reflected in the 

finite element model described in Section 5.3 by applying a constraint condition to the tank 

base horizontal degrees of freedom.  

The analyses are repeated for the four RC shafts described in Table 5-1 in order to assess 

how changing the supporting shaft will affect the values of the natural impulsive frequency 

f1. The natural frequency f1 is represented in the form of the dimensionless parameter (f1Rbඥρs E⁄  ) where ρs is the mass density of the vessel material and E is the young’s 

modulus of elasticity for the tank vessel. This dimensionless parameter is found to best 

represent the variation of f1 with different parameters that affect its value when plotted 

against slenderness ratio h/Rb for a constant ratio tw/Rb where tw is the tank wall thickness. 

The variation of the parameter (f1Rbඥρs E⁄  ) with the slenderness ratio h/Rb for the four 

RC shafts is shown in Fig. 5-9 for the case of allowing the rocking motion in addition to 

the case of ignoring such motion for the sake of comparison. The parameter (f1Rbඥρs E⁄  ) 

is found to be higher as the tank approach a cylindrical tank i.e., lower θv values and found 

to be lower for the case of including the rocking motion. The range of the percent reduction 

in the natural frequency f1	due to including the rocking motion is summarized in Table 5-

2 for different θv values. For example, the reduction in the natural frequency f1 for the 25 

elevated conical tanks supported by shaft 1 and inclined with θv=30o ranges from 6% to 

19.2%. 
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Fig. 5-9 Variation of the parameter (f1Rb(ρs/E)0.5) with the slenderness ratio h/Rb 

Table 5-2 % reduction range in the natural frequency (f1) of the cosθ impulsive 

mode 

θv Shaft 1 Shaft 2 Shaft 3 Shaft 4 

30 6.0 ~ 19.2 7.2 ~ 19.6 4.0 ~ 21.2 4.3 ~ 21.0 

45 9.4 ~ 21.0 10.1 ~ 22.5 4.8 ~ 10.5 4.8 ~ 10.0 

60 8.2 ~ 22.1 8.3 ~ 22.5 4.50 ~ 10.3 4.2 ~ 9.1 
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As it can be seen from the previous table, allowing an elevated conical tank base to rock 

results in a reduction in the natural frequency that can reach up to 23% for the range of 

tanks considered in the current study. As a result, the seismic behaviour in addition to the 

base forces are expected to be different compared to the case of preventing the rocking 

motion as will be discussed in the subsequent section.   

5.5.2 Non-Linear Dynamic Analysis 

Allowing the tank base to undergo rocking motion will change the conical tank response 

and, consequently due to the existing fluid structure interaction, the hydrodynamic pressure 

distribution. In this sub-section, the overall seismic behaviour of steel conical tanks when 

they undergo rocking motion is assessed in terms of how the main seismic quantities such 

as total base shear and overturning moment are affected by such a rocking motion. The 

same group of steel conical tanks considered in the previous section are designed under 

hydrostatic pressure only based on the simplified method proposed by Sweedan and El 

Damatty (2009) in order to evaluate the wall thicknesses. The tanks are assumed to be good 

tanks regarding the level of geometric imperfection according to the classification proposed 

by Vandepitte et al. (1982).  

In order to analyze the steel conical tanks subjected to ground excitation, non-linear time 

history analysis is used where the dynamic equations for the liquid-shell system which are 

given by [M]{uሷ } + [C]{uሶ } + [K]{u} =-[M]{H} ah
t                                                                       [5-26] 

are solved numerically using Newmark’s method at each time increment where [M] is the 

summation of the shell mass matrix and the fluid-added matrix derived in Section 5.2, [K] 

is the summation of the tangential stiffness matrix of the tank shell to the stiffness matrix 

of the RC shaft, [C] is the damping matrix which is obtained as a linear combination of [M]and[K] according to the Rayleigh method (Chopra  (2001)). {uሷ },	{uሶ },and	{u} are the 

tank wall or base acceleration, velocity, and displacement, respectively. The term {H} ah
t  

represents the ground horizontal excitation acting on the conical tank. More details on the 

solution technique for the nonlinear dynamic equations could be found in El Damatty et al. 
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(1997b). The damping ratio is assumed to be 2% which is the value for impulsive 

hydrodynamic pressure modes found in literature. 

Three artificial earthquake excitations are generated in order to carry out the dynamic 

analysis for the steel conical tanks under consideration. These artificial excitations are 

designed to match the NBCC (2010) response spectrum for the seismic zones of Toronto, 

Montreal, and Vancouver. The artificial excitation for Toronto seismic zone with the 

corresponding response spectrum in addition to the NBCC (2010) spectrum are shown in 

Fig. 5-10.  

 

Fig. 5-10 Artificial ground excitation for Toronto seismic zone with the 

corresponding spectrum   

Nonlinear time history analyses are performed for the 75 steel conical tanks under the effect 

of the three prescribed artificial ground excitation records for different RC shafts described 

in Table 5-1. The resulting total base shear V and overturning moment M due to the 

impulsive hydrodynamic pressure are obtained and the maximum value for both V and M 

is recorded for each case.  

Comparing Vmax and Mmax obtained from the case of ignoring the rocking base motion to 

the corresponding case with allowing the tank base to undergo rocking motion, the 
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percentage increase or reduction in Vmax and Mmax is calculated for each seismic zone. The 

percentage increase or reduction in Vmax and Mmax for different RC shafts and angles θv is 

summarized in Tables 5-3, 5-4, respectively, in the form of (maximum reduction ~ 

maximum increase) where the reduction is represented with a negative sign. For example, 

the percentage change in Vmax due to allowing the tank base to rock for the 25 tanks with 

θv=30o supported with shaft 1 and subjected to artificial ground motion corresponding to 

Toronto seismic zone ranges from a reduction of 6.3% to an increase of 16.3%.   

The percentage increase for the total base shear reaches 36.8%, 23%, 15.3% for 

θv=30o,45o,60o, respectively as shown in Table 4-3. On the other side, table 4 shows that 

the percentage increase for the overturning moment reaches 32.6%, 27.3%, 16.5% for 

θv=30o,45o,60o, respectively. As a result, allowing the tank base to rock might have a 

significant impact on the total seismic forces for elevated steel conical tanks. 

Table 5-3 Upper and lower bounds for % change in Vmax
 for different seismic zones 

 Toronto Montreal Vancouver 

θv 
Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

30 
-6.3 

16.3 

-5.8 

28.1 

-7.5 

2.2 

-10.9 

18.8 

-11.2 

36.8 

-7.5 

32.4 

-5.2 

5.1 

-13.5 

17.2 

-6.6 

25.1 

-9.0 

23.9 

-4.0 

4.6 

-13.0 

8.4 

45 
-14.6 

9.1 

-7.1 

23.0 

-16.6 

5.8 

-10.1 

2.1 

-23.6 

5.2 

-6.4 

22.2 

-17.6 

3.4 

-15.4 

6.9 

-20.2 

5.8 

-12.9 

13.6 

-17.3 

6.1 

-13.8 

0.1 

60 
-18.8 

5.9 

-42.6 

5.5 

-18.4 

15.3 

-10.7 

11.7 

-21.8 

5.1 

-25.3 

5.3 

-22.9 

7.5 

-15.7 

9.5 

-20.0 

7.0 

-24.2 

6.9 

-16.9 

13.9 

-17.5 

9.9 

Table 5-4 Upper and lower bounds for % change in Mmax
 for different seismic zones 

 Toronto Montreal Vancouver 

θv 
Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

Shaft 

1 

Shaft 

2 

Shaft 

3 

Shaft 

4 

30 
-9.1 

17.0 

-9.4 

22.7 

-8.7 

0.8 

-13.9 

12.8 

-13.0 

31.8 

-11.4 

32.6 

-9.1 

3.1 

-15.3 

14.6 

-8.9 

23.6 

-12.8 

18.0 

-7.9 

2.5 

-13.5 

7.7 

45 
-11.7 

10.5 

-6.3 

27.3 

-15.6 

3.7 

-10.1 

1.4 

-21.2 

3.9 

-7.7 

22.3 

-16.4 

4.4 

-16.8 

6.6 

-18.2 

4.4 

-12.6 

12.1 

-16.2 

5.5 

-13.7 

0.2 

60 
-20.6 

4.2 

-41.0 

6.8 

-18.2 

16.5 

-10.6 

11.6 

-25.3 

5.3 

-22.9 

7.5 

-15.7 

9.5 

-14.2 

4.6 

-21.4 

7.9 

-22.5 

6.1 

-15.6 

12.6 

-14.9 

9.4 
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5.6 Mechanical Model for Steel Conical Tanks Undergoing 
Rocking  

According to the previous section, it was shown that including the base rocking motion 

might have a significant effect on the total output forces acting on steel conical tanks 

subjected to horizontal excitations. As discussed in Section 4.1, a mechanical model where 

the contained fluid is represented by lumped masses attached to the tank wall through linear 

springs can be used to simulate the fluid inside the tank. The main function of a mechanical 

model is to mimic the resulting total base shear and overturning moment obtained using 

dynamic analysis. 

In this section, a mechanical model for steel conical tanks including the effect of base 

rocking motion is developed and charts are provided for the model’s parameters. The 

proposed model is shown in Fig. 5-11b where the impulsive rigid mass mr is located at a 

height hrb  while the mass mf which is located at a height hfb represents the portion of mr 

which participates in the vibration of the flexible walls of the steel conical tank. Based on 

the mechanical model, the total shear force Q(t) and the overturning moment M(t) are 

given by   

Q(t) = mf xሷ (t) + mrGሷ (t) + mr hrbαሷ (t)                           	                      				 							  						     	[5-27] 
M(t) = mf hfbxሷ (t) + mrhrbGሷ (t) +  Itb αሷ (t)          	                                       																		   [5-28] 
Itb=(mrhrb

2  + Irb)                                                                                            							   			 		 [5-29] 
where 	I୰ୠ is the central moment of inertia of the mass m୰. xሷ (t), Gሷ (t), and αሷ (t) represent 

the relative acceleration of the mass mf , the base translational acceleration, and the base 

rotational acceleration, respectively. The first tem represents the flexible component of the 

base shear Qf(t)and overturning moment Mf(t), while the summation of the last two terms 

represents the rigid components Qr(t) and Mr(t). The subscript b is used to reflect the 

inclusion of the moment acting on the tank base. In order to obtain the moment just above 

the base, the terms hrb, hfb, and Itb have to be replaced with hr, hf, and It respectively, in the 

first two terms in Eqs. 13 and 14. 
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It has to be mentioned that the forces due to the flexible mass mf are corresponding to the 

relative acceleration xሷ (t). As a result, the mechanical model described in Fig. 5-11a has to 

be used when the steel conical tank is combined with other dynamic systems such as a 

supporting structure. The transformation between the two models is based on the following 

relations 

m0 = mr − mf																																																																																																																													 [5-30] 

m0h0b = mrhrb − mfhfb																																																																																																														[5-31] 

m0h0b
2  + I0=Itb−mfhfb

2 																																																																																																																[5-32] 

 

Fig. 5-11 Schematic presentation of the equivalent mechanical model 

In order to completely define the proposed mechanical model, six parameters are needed 

to be determined which are the masses	m୤, m୰ and their effective heights	h୰ୠ,	h୤ୠ in 

addition to the central moment of inertia	I୰ and the spring stiffness kf. The spring stiffness 

kf is obtained through free vibration analyses using the fluid-added mass matrix derived in 

Section 5.2, where the natural frequency of the first impulsive cosθ pressure mode f1 is 

recorded. The frequency f1 and the spring stiffness Kf are related through f1= 1 2π⁄ ඥkf mf⁄  

. The free vibration analysis is repeated for the set of 75 conical tanks described earlier 

with three different values of the ratio tw/Rb where tw is the tank wall thickness.  

The variation of the parameter (f1Rbඥρs E⁄ 	) with the slenderness ratio h/Rb
 for different 

tw/Rb values is shown in Fig. 5-12.  In order to validate the free vibration results, a similar 

set of analyses are carried out for the same set of tanks but with vertical walls representing 

the case of cylindrical tanks and compared to the results obtained by Haroun and Ellaithy 

(1985a) as shown in Fig. 5-12a where an excellent agreement is shown.  
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(a) tw/Rb=0.001 (b) tw/Rb=0.005 

 

(c) tw/Rb=0.01 

Fig. 5-12 Variation of (f1Rb(ρs/E)0.5) with slenderness ratio h/Rb for different θv 

The remaining parameters of the proposed mechanical model are determined according to 

the following procedure for each steel conical tank: 

1) The Conical tank is subjected to a horizontal ground excitation in the form of white 

noise covering the frequency range of the group of tanks being studied. 

2) At first, the conical tank is assumed to be rigid i.e., the accelerations of the tank 

walls are the same as the ground acceleration Gሷ (t), in order to obtain the rigid 

component of the resulting base shear Qr(t). 
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3) Being in phase with Gሷ (t), the base shear Qr(t) is used to obtain the rigid mass mr 

as the ratio between Qr(t) and Gሷ (t) 
4) The effective height of the rigid mass hrb is determined based on the rigid 

component of the overturning moment Mr(t) as the ratio between Mr(t) and mrGሷ (t). 
5) The same analysis in step (2) is repeated taking the wall flexibility into 

consideration in order to get the total base shear Q(t) where the flexible component 

of the base shear Qf(t) can be obtained as Qf(t) = Q(t)− Qr(t) 

6) A frequency analysis is performed to obtain the transfer function หHQf(t)ห between 

the flexible base shear Qf(t) and the excitation acceleration Gሷ (t). The transfer 

functionหHQf(t)ห is found to have the trend of the transfer function of a single 

oscillator with a peak value occurring at the resonant frequency of the 

cosθ impulsive mode. As a result, หHQf(t)ห can be expressed as the product of the 

flexible mass mf and the dynamic amplification factor DAF of the acceleration 

experienced by this mass where  

DAF = ൬fex

fI
൰2 1ට[1-(fex fI⁄ )2]

2
+ [2ξ(fex fI⁄ ) ]2

                                           			    [5-33] 
where fex is the excitation frequency,	ߦ is the damping ratio and fI is the natural 

frequency of the cosθ  impulsive mode.  

7) A curve fitting process is conducted to assess the best estimates for the parameters 

mf, fI and ߦ. The fitting process is based on the least square technique. The 

estimated values of fI and ߦ are found to match the cosθ  natural frequency obtained 

from the free vibration analysis and the damping ratio assumed in the time history 

analysis, respectively. A sample of the curve fitting process for a steel conical tank 

(θv=45o, Rb=4m, h=5m) is shown in Fig. 5-13. 

8) In order to obtain effective height of the flexible mass hfb , steps 5 to 7 are repeated 

for the flexible component of the overturning moment Mf(t). The transfer 

function|HMf(t)| is found to have the trend of the transfer function of a single 

oscillator as well and is given by |HMf(t)|= mf hfb*DAF. The best estimate of the 

height hfb is obtained from the curve fitting process. 



165 

 

 

  

9) Finally the term Itb is obtained by subjecting the steel conical tank to a ground 

excitation in the form of rotational excitation αሷ (t) and recording the rigid 

component of the overturning moment Mr(t)=	I୲ୠαሷ (t) from where Itb is calculated. 

 

Fig. 5-13 Fitting the transfer function of the flexible component of the base shear to 

a scaled single oscillator response  

In order to validate the proposed mechanical model, the same prescribed procedure is 

applied to a similar group of cylindrical tanks and the model’s parameters are compared to 

those obtained according to the mechanical model developed by Haroun and Ellaithy 

(1985a) as shown in Fig. 5-14 where an excellent agreement can be noticed.  
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Fig. 5-14 Comparison between the proposed mechanical model parameters and the 

values provided by (Haroun and Ellaithy 1985a) 

Being validated, the entire process (steps 1-9) involving finite element time history 

analysis, Fourier analysis and curve fitting is repeated for all conical tanks considered in 

this study. As a result, the variation of the mechanical model parameters mr/mt, mf/mt,	hrb/h, hr/h,	hfb/h, hf/h,	It/mth2 and Itb/mth2with the parameters h/Rb and θv are 

determined where mt is the total mass of the contained fluid. The analyses indicates that 

all parameters are independent of the wall thickness tw. The variation of the mechanical 

model parameters with h/Rband θv are shown in Figs. 5-15 to 5-19. It is worth mentioning 

that the difference between the total fluid mass mt and the rigid mass mr represents the 

mass contributing in the long period sloshing pressure modes. 
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Fig. 5-15 Variation of the parameter mr/mt with ratio h/Rb  

 

Fig. 5-16 Variation of the parameter mf/mt with the slenderness ratio h/Rb  

 

Fig. 5-17 Variation of the parameters hrb/h and hr/h with the slenderness ratio h/Rb  
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Fig. 5-18 Variation of the parameter hfb/h and hf/h with the slenderness ratio h/Rb 

 

Fig. 5-19 Variation of the parameter Itb/mh2 and It/mh2 with the slenderness ratio 

h/Rb  

The rigid mass ratio mr/mt is found to have higher values as the inclination of the tank 

walls is reduced which means higher contribution of impulsive mass and less participation 

of sloshing mass for the same tank as the tank approach a cylindrical tank. This is related 

to the fact that conical tanks with higher θv can be observed as a broader cylindrical tank 

where the contribution of the sloshing response is increased compared to the impulsive 

one. On the contrary, the ratios hrb/h, hfb/h, and Itb/mh2 have higher values as the 

inclination of the tank walls is increased. This is related to the couple associated with the 

vertical component of the hydrodynamic pressure which significantly increases with the 

increase in θv. 
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5.7 Numerical Example 

In this section, a numerical example is presented in order to illustrate how the mechanical 

model developed in the previous section can be used to predict the total seismic forces 

acting on steel conical tanks undergoing base rocking motion when subjected to a 

horizontal excitation.  

The elevated steel conical tank under consideration has the following dimensions: Rb=4m, 

h=6m, tw=10mm, θv=45o. The steel Modulus of elasticity is assumed to be 2x105 Mpa. The 

tank is elevated through a hollow circular RC shaft with an outer radius of 4m, Lsh=20m, 

tsh=0.25m. The RC Modulus of elasticity is assumed to be 2x104 Mpa. The tank is subjected 

to the 1940 El-Centro earthquake that occurred in Southern California. 

Based on the RC modulus of elasticity and the shaft dimensions, the corresponding 

stiffness values for the RC shaft are: 

Kxx=1.37x109 N/m         (Eq. 5-21) 

Kαα=8.83x1011N.m/rad    (Eq. 5-23) 

Kxα=1.37x1010 N/rad        (Eq. 5-24) 

Based on the ratios h/Rb=1.5 and tw/Rb=0.0025, the following parameters for the 

mechanical model can be obtained:  

f1=5.9 Hz         (Fig. 5-12)  

mr/m=0.217     (Fig. 5-15) 

mf/m=0.201     (Fig. 5-16) 

hrb/h=1.545      (Fig. 5-17) 

hfb/h=1.596      (Fig. 5-18)  

Itb/mh2=0.575  (Fig. 5-19)  

Due to the existence of the RC shaft in addition to including the base rotation, the steel 

elevated conical tank can be represented by a 3-DOF system, Fig. 5-11a. The 3 degrees of 

freedom are: horizontal translation at the tank base y(t) which is different that the ground 

displacement G(t), base rotation α(t), and horizontal translation of the flexible fluid mass 

relative to the tank axis x(t).  
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The problem can be solved using the modal superposition technique where the eigenvalue 

problem represented by Eq. 5-25 is solved to obtain the eigenvalues, i.e., natural 

frequencies ω and eigenvectors, i.e., mode shapes φ. The mass matrix [M] and stiffness 

matrix [K] for the 3-DOF system with respect to the displacement vector dT={x(t)  y(t)  

α(t)} are given by 

[M]= ቎ mf mf mfhfb

mf mf + mo moho+mfhfb

mfhfb moho+mfhfb moho
2+mfhfb

2 +Io

቏                        [K]= ൥Kf 0 0
0 Kxx Kxα

0 Kxα Kαα

൩ 
The relation between the terms mo, ho, Io and mr, hrb, It are given by Eqs. 5-30 to 5-32. The 

spring stiffness for the flexible mass can be obtained as Kf	=	(2πf1)2mf. Solving the 

eigenvalue problem for the steel conical tank considered, the natural periods Ti=2π/ωi	and the corresponding mode shapes, normalized to unit x displacement, are 

T1=0.32 s    {∅1}T={1   1.459   0.125}    

T2=0.037 s	 	 	 	 {∅2}T={1  -0.507  -0.046}				
T3=0.011 s	 	 	 	 {∅3}T={1  -4.536    0.370}				
After obtaining different mode shapes {∅i}	, the modal participation factor Γ for vibration 

mode i can be obtained as 

Γi=
{∅i}[M]{r}

{∅i}[M]{∅i}
 

where {r}T={0 1 0}  

The total base shear Vi and overturning moment Mi can be then obtained as 

Vi=Γi ({∅i}[M]{r})Sa,i 

Mi=Γi ({∅i}[M]{m})Sa,i 

where {m}T={0 0 1} and Sa,i is the spectral acceleration for vibration mode i obtained from 

the 2% damping El-Centro acceleration response spectrum which are Sa,1=0.986g,  

Sa,2=0.429g, and Sa,3=0.319g where g is the gravitational acceleration. Finally, the base 

shear Vi and overturning moment Mi can be obtained for each mode and then combined 
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using the SRSS combination rule leading to VSRSS=2011 kN and MSRSS=19478 kN. The 

contribution of higher vibration modes was found to be negligible for the case of the 

considered elevated steel conical tank. 

It has to be mentioned that the mass and mass moment of inertia of the supporting RC shaft 

were ignored in this example. However, they can be included by adding them to the mass 

mo and moment of inertia Io in the diagonal elements for the mass matrix [M]. 

5.8 Conclusions 

The effect of base rocking motion for steel conical tanks during a horizontal ground 

excitation is studied. The change in the tank behaviour compared to the case of no rocking 

motion is mainly attributed to the change of the vibration properties of the conical tank in 

addition to the variation in the hydrodynamic pressure acting on the tank walls and base 

due to the existing fluid-structure interaction.  

In order to carry out the fluid-structure interaction, a coupled shell element-boundary 

element formulation is used where a fluid-added mass matrix is obtained corresponding to 

the tank vessel degrees of freedom including the effect of this base rocking motion. This 

fluid added matrix is added to the structure mass matrix and then can be incorporated in 

dynamic or free vibration analysis. For the effect of allowing the tank base to rock on the 

natural frequency of the cosθ impulsive mode and it is found that the percent reduction in 

the natural frequency is higher for thicker tanks. The percent reduction in the natural 

frequency is almost constant for the cases of 30o and 45o, while it is lower for θv=60o.  

The steel conical tanks are then subjected to artificial earthquake excitations corresponding 

to the NBCC (2010) spectra using non-linear dynamic analysis based on the derived fluid-

added mass matrix. The resulting base shear and overturning moment acting on the tank 

base are compared to the case where rocking is not included. It was shown that the percent 

increase is higher for the case of overturning moment and can reach up to 32% for the 

overturning moment and 37% for the base shear. Based on the previous results, it is 

concluded that allowing the tank base to rock has a major impact on the behaviour and 

seismic quantities for steel conical tanks.  
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Finally, a mechanical model that includes the effect of base rocking motion is developed 

using a frequency analysis approach. The proposed model takes into consideration the 

impulsive component of the hydrodynamic pressure, deformability of the tank walls, and 

the hydrodynamic pressure acting on the tank base. The model is validated through 

comparison with a mechanical model for cylindrical tanks that include the rocking base 

motion found in the literature. The parameters of the mechanical model are presented in 

the form of charts for different dimensions of steel conical tanks. The proposed mechanical 

model can be used for either ground or elevated steel conical tanks undergoing horizontal 

translation and base rotation. Finally, a numerical example to illustrate how the proposed 

mechanical model can be used to estimate the base forces for an elevated steel conical tanks 

is presented. 
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Chapter 6  

6 Conclusions and Recommendations 

6.1 Summary 

The current thesis is related to the seismic behaviour and design of steel liquid conical 

tanks. The study is conducted numerically using in-house nonlinear finite element model. 

Chapter 1 covers a literature review for the research conducted on liquid tanks subjected 

to seismic loading.  

In Chapter 2, the capacity of steel conical tanks under hydrodynamic pressure resulting 

from horizontal ground excitation using non-linear static pushover analysis is evaluated. 

Two capacities are obtained corresponding to the impulsive and sloshing components of 

the hydrodynamic pressure including the effect of geometric imperfections. The capacities 

expressed in terms of base shear values at failure are presented in chart form for different 

geometries and imperfections’ level. The obtained capacities are then compared to the 

seismic demand obtained using a previously developed mechanical model found in the 

literature for different seismic zones. The same procedure is followed in Chapter 3 for steel 

conical tanks under hydrodynamic pressure resulting from vertical ground excitation. The 

capacities expressed in terms of total vertical force values at failure are presented in chart 

form for different geometries and imperfections’ level. 

In Chapter 4, a design approach for liquid steel conical tanks subjected to ground 

excitations including both horizontal and vertical components is proposed. This approach 

is based on satisfying a design interaction which is a function of the conical tank capacities 

obtained in the previous two chapters in addition to the seismic demands obtained based 

on previously developed equivalent mechanical models found in the literature. The design 

procedure is validated using the outputs of nonlinear time history analyses.  

The effect of the base rocking motion for elevated steel conical tanks on their seismic 

behaviour when subjected to horizontal excitations is studied in Chapter 5. First, a fluid-

added mass matrix that simulates the induced hydrodynamic pressure including the effect 
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of rocking motion using a coupled shell element-boundary element formulation is derived. 

This derived fluid-added mas matrix is then incorporated in dynamic and free-vibration 

analyses in order to assess the effect of including the base rocking motion on the seismic 

response and the vibration characteristics of the steel conical tanks. Finally, a mechanical 

model that takes into consideration the effect of the base rocking motion on the 

hydrodynamic pressure is developed. The parameters of this mechanical model are firstly 

validated using results from previous studies related to cylindrical tanks and then presented 

in chart form showing their variations with the geometric parameters of conical tanks. 

6.2 Conclusions 

The following conclusions are drawn from the first part of the thesis related to seismic 

loading: 

• Based on the comparison between the conical tank capacities and seismic demands 

for horizontal excitations, it is concluded that for the impulsive hydrodynamic 

pressure component, the initial design under hydrostatic pressure is found to be 

adequate for the majority of perfect and good tanks corresponding to Toronto and 

Montreal seismic zones. However, it is not adequate for poor tanks corresponding 

to the two seismic zones. With regards to the Vancouver seismic zone, the initial 

design under hydrostatic pressure has been found to be adequate only for the case 

of perfect tanks.  

• For sloshing hydrodynamic pressure component, the initial design under 

hydrostatic pressure only is considered satisfactory for most of the cases, with the 

exception of some good and poor imperfect conical tanks. 

• The reduction in the normalized total vertical force capacity Nh/WcRb is found to 

increase with the angle θv. The average percentage of the reduction for good tanks 

is found to be 40%, 53%, and 63% for θv=30, 45, and 60, respectively, while for 

poor tanks, the average percentage of the reduction is found to be 69%, 83%, and 

95% for θv=30, 45, and 60, respectively.  
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• The design of the steel conical tanks under hydrostatic pressure only is considered 

enough to resist the total vertical forces induced by the vertical excitation for the 

three seismic zones except for poor tanks with θv=45o corresponding to Montreal 

seismic zone with h/Rb more than 1.5 and Vancouver seismic zone with h/Rb more 

than 1.2; good tanks with θv=60o corresponding to Vancouver seismic zone with 

h/Rb more than 1.2, poor tanks with θv=60o corresponding to Toronto seismic zone 

with h/Rb more than 1.4 and Montreal and Vancouver seismic zones. 

• Regarding the time history analysis outputs, it is found that: (1) Impulsive base 

shear is more critical compared to the sloshing base shear especially for the cases 

of θv=30o, 45 o; (2) The maximum impulsive base shear is reduced as the tank 

becomes more inclined, while the sloshing base shear is increased for higher θv 

values; (3) The overturning moment is higher for more inclined tanks due to the 

longer moment arm; (4) The total vertical force is found to be higher for more 

inclined tanks due to the larger horizontal projection for the inclined wetted surface; 

(5) The maximum horizontal and vertical impulsive pressure is located in the lower 

half of the tank height and is shifted upward for more inclined tanks, while the 

maximum sloshing pressure occurs at the liquid free surface.  

• For steel conical tanks designed under hydrostatic pressure, the following is noted 

regarding the final state at the end of the time history analysis: (1) Perfect tanks 

corresponding to the three seismic zones and good tanks corresponding to Toronto 

and Montreal seismic zones behaved elastically and survived the corresponding 

ground motions; (2) Majority of the good tanks corresponding to Vancouver 

seismic zone survived the ground motions either elastically or inelastically; (3) 

Over 90% of the poor tanks with θv=30o, 45o corresponding to Toronto seismic 

zone survived the ground motions elastically, while the remaining tanks survived 

inelastically; (4) Majority of the poor tanks with θv=60o corresponding to Toronto 

seismic zone survived the ground motions inelastically with some tanks failing due 

to buckling; (5) Over 90% of the poor tanks with θv=30o corresponding to Montreal 

seismic zone did not survive the ground motions elastically, while none of the tanks 

with θv=45o, 60o survived the ground motions elastically; (6) All poor tanks 
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corresponding to Vancouver seismic zone did not survive the ground motions 

elastically with more than 90% of the tanks failing due to buckling. 

• For the effect of allowing the tank base to rock on the natural frequency of the cosθ 

impulsive mode, it is found that the percent reduction in the natural frequency is 

higher for thicker tanks. The percent reduction in the natural frequency is almost 

constant for the cases of 30o and 45o, while it is lower for θv=60o.  

• Comparing the resulting base shear and overturning moment acting on the tank base 

to the case where rocking is not included, it is shown that the percent increase is 

higher for the case of overturning moment and can reach up to 32% for the 

overturning moment and 37% for the base shear.  

6.3 Recommendation for Future Work 

The following recommendations are added for future work which would extend the results 

presented in this thesis: 

• Develop capacity charts for the case of combined conical tanks similar to those 

obtained in the current study for the case of pure conical tanks. 

• Extend the proposed design procedure to be applicable for the case of combined 

conical tanks. 

• Study the effect of residual stresses on the capacity of conical tanks when subjected 

to hydrodynamic pressure. 

• Check the proposed design procedure for the case of elevated conical tanks where 

the base rocking motion is allowed. 
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Appendix D 

Derivation of Hydrodynamic Pressure 

For irrotational flow for an incompressible inviscid liquid, the hydrodynamic pressure, 

Pd(r,θ,z,t) satisfies the Laplace equation within the liquid volume represented by (0 ≤ r ≤ 

(Rb+z tan θv), 0 ≤ θ ≤ 2π , 0 ≤ z ≤ h) 

∇2Pd=0 

where 

∇2=
∂2

∂r2 +
1

r

∂

∂r
+

1

r2

∂2

∂θ2 +
∂2

∂z2 

The function Pd must satisfy that the velocities of the liquid and the vessel normal to their 

mutual boundaries should be matched. As the velocity vector of the liquid is the gradient 

of the velocity potential ∅ which is related to the hydrodynamic pressure as Pd	= − ρl ∂∅ ∂t⁄  

where ρl is the liquid density, the liquid-container boundary conditions can be expressed 

as follows: 

1. At the rigid tank bottom, z = 0, the liquid velocity in the vertical direction is zero 

∂Pd

∂z
(r,θ,0,t)=0 

2. The velocity of the liquid adjacent to the vessel wall and the wall itself are compatible 

in the direction normal to the vessel wall 

∂Pd∂n (R,θ,z,t)= − ρl ∂2u∂t2 (θ,z,t).n 

where u(θ,z,t).n is the vessel displacement normal to the vessel wall. 

At the liquid free surface, z = h + ߦ(	r, θ, t), two boundary conditions must be imposed with ߦ represents the sloshing wave height. The first condition is that a fluid particle on the free 

surface will always remain on the free surface. The second condition is that the pressure 
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on the free surface is zero. Assuming small-amplitude waves, the free surface boundary 

conditions can be expressed as 

∂Pd

∂z
(r,θ,h,t)=−ρl

߲ଶξ
ଶݐ∂ (r,θ,t) 

−Pd(r,θ,h,t)+ρlg ξ(r,θ,t) =0 

in which the second-order terms are neglected. The two conditions can be combined to 

yield the following boundary condition  

∂2Pd

∂t2
(r,θ,h,t)+g

∂Pd

∂z
(r,θ,h,t)=0 

The solution of the Laplace equation	∇ଶPd = 0 can be obtained by the method of separation 

of variables and the possible solutions for the Laplace equation, that are nonsingular at r = 

0 and have vanishing derivative with respect to z at z = 0, can be given by 

Pd(r,θ,z,t)=T෡n(t) cos (nθ) ۔ە 
ۓ  

Jn (kr) cosh(kz)
In (kr) cos(kz)  

rn

 

 

where In(kr) and Jn(kr) are the modified Bessel functions and Bessel functions, 

respectively, k is a separation constant, and n is the circumferential wave number.  

The solutions of Pd(r, θ, z, t) should be superimposed to satisfy the boundary conditions at 

the liquid-shell interface, and at the liquid free surface. 

Pd(r,θ,z,t) = − ρl ෍቎෍Ai(t)  In(αir) cos(αiz) cos(nθ) +

∞
i=1

෍  

∞
j=1

B୧(t) Jn(k1r) cosh(k1z) cos(nθ)቏∞
n=1

 

The first term represents the impulsive component as the separation constant 

αi=(2i-1) π 2h⁄  is chosen to satisfy the condition of zero pressure at the surface, while the 

second term represents the sloshing component. 
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