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Abstract 

In this thesis length and time scale dependence of the operative plastic deformation 

mechanisms in Au is studied. Uniaxial compression tests were performed at various loading 

rates on FIB-milled Au micropillars and single-crystalline Au microspheres of diameter 

ranging from 0.8 to 6.0 µm to investigate the incipient and bulk plasticity events. Constant-

load ambient-temperature creep tests were performed on the micropillars to study the time-

dependent plasticity at very slow strain rates. Uniaxial compression tests were also 

performed on coated Au microspheres to study the effect of extrinsic constraint on the 

deformation mechanisms. 

During uniaxial compression, both the Au micropillars and microspheres displayed strain 

jumps, the frequency of which decreased with increasing sample diameter and increasing 

resolved shear stress R. The bulk flow stress, corresponding to 5% – 20% average 

compressive strain, was dependent upon both the strain rate and the specimen diameter. 

Analysis of the apparent activation volume, V*, and energy, Q*, of the deformation process 

indicated that the operative deformation mechanism for the small 0.8 µm diameter pillars and 

spheres was characteristic of a mechanism limited by surface nucleation of dislocations while 

larger diameter samples displayed values indicative of the more common dislocation-obstacle 

interaction limited deformation mechanism. 

The deformation-rate dependence of incipient plastic deformation of the Au micropillars and 

microspheres was also dependent upon the strain rate and sample diameter. For the smallest, 

sub-micrometer size, samples the incipient plasticity was controlled by heterogeneous 

dislocation nucleation events, while a dislocation-obstacle interaction limited glide process 

was found to be operative in the larger specimens.  

In the extrinsic constraint study, Au microspheres that were coated with a 40 – 80 nm thick 

Ni layer displayed a slightly increased flow stress compared to similar size uncoated 

microspheres. The estimated V* and Q* values for the coated microspheres suggest that the  

mechanism responsible for the initiation of first dislocation motion is essentially the same 

regardless of the presence of a constraining coating. 
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Chapter 1  

1 Overview 

 

1.1 Introduction 

Nano-/micro electro-mechanical systems (NEMS/MEMS) are being used in many 

sophisticated applications such as in bio-medical and microelectronics devices. For the 

development of these advanced systems, constituting materials are used in small 

volumes. Therefore, understanding mechanical behavior of samples with very small 

volumes is absolutely necessary in order to realize the full potential of these emerging 

nano-/micro-technologies [1–5]. Classical laws of mechanics hold that mechanical 

properties are independent of sample size; however, results of experiments and molecular 

dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron 

scale [6]. Plastic deformation in small volumes requires higher stresses than are needed 

for plastic flow of bulk materials. In bulk form, the yield stress and strength of the 

material remain essentially independent of the sample size because the sample 

dimensions are large compared to the length scale characterizing the material’s 

microstructure. However, when the critical dimensions of a device approach the size of 

material’s microstructure a size effect prevails and the bulk properties can no longer be 

used to predict mechanical behavior [7]. Nix et al. [8] suggested that the length scale 

dependence of the higher flow stress can arise from either the intrinsic properties of the 

deforming material or from extrinsic geometrical constraint imposed upon the 

deformation. 

1.2 Objective 

The objective of this study is to use micro-mechanical test techniques to understand the 

effect of microstructure on the underlying mechanisms of plastic deformation of micron 

and sub-micron size FCC metal samples. Understanding the fundamental time-dependent 
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mechanisms of dislocation nucleation and glide is very important because of recent 

technological advancement of devices such as MEMS, sensors, actuators etc.  

High purity (≥99.99%) polycrystalline and single crystalline Gold (Au) is chosen as a 

model FCC material in this study. Au is chosen because it is the most often used for sub-

micron size commercial components and for studies of the length-scale dependence of 

plastic deformation. Additionally, Au has no native surface oxide layer. Consequently, 

free surfaces can serve as effective sinks and sources for dislocation, and can inhibit 

dislocation storage within the deforming volume. As sample dimensions become smaller 

the role of surfaces becomes more important, and can lead to interesting and unusual 

mechanical behavior. 

1.3 Structure of Thesis 

This thesis has been written following the guidelines of the School of Graduate and 

Postdoctoral Studies at Western University adopting an integrated-article format. It 

contains 8 chapters, 5 of which are experimental research designed to study the length-

scale dependent deformation parameters of small size Au samples. 

Chapter 2 of this thesis presents a review of relevant published literature related to the 

evidence and unique features related to length-scale dependent plastic deformation of 

small size samples. It also describes various numerical and experimental test techniques 

used by several researchers to assess the mechanical properties and plastic deformation 

parameters in various geometries of small size samples. Theories related to the length 

scale effect on the rate-dependent plasticity and the way to accessing fundamental 

deformation parameters are also described. This research involves several unique testing 

and analyzing techniques, a concise description of the primary techniques are also 

included in this chapter.          

Chapter 3 discusses the size dependence of the time dependent plastic deformation 

behavior of Au micropillars and microspheres. The length scale dependence of the 

operative mechanisms of time-dependent plastic deformation was studied using room 

temperature compression, creep, tests performed on Au micropillars and microspheres of 
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1.0 to 5.0 µm diameter. A part of this chapter was presented in Materials Research 

Society (MRS) Spring Meeting 2013, San Francisco, California, USA; the 24th Canadian 

Material Science Conference (CMSC) 2012, Western University, London, Ontario, 

Canada, and the 25th CMSC 2013, McGill University, Montreal, Canada. A version of 

this chapter was published in the Materials Research Society Proceedings, May 2013 [9]. 

Chapter 4 presents the investigation of the size and strain rate dependence of plastic 

deformation of Au microspheres at room-temperature. Au microspheres of four sizes (0.8 

to 6.0 µm diameters) were fabricated and micro-compression tests were performed at 

different loading rates. Finite Element (FE) analysis was performed to estimate the stress-

strain distribution within the compressed microspheres. Finally, the strain rate 

dependence of the estimated flow stress of the different size microspheres was 

investigated to determine the operative deformation mechanism. A part of this chapter 

was presented to the MRS Spring Meeting 2014, San Francisco, California, USA and the 

25th Canadian Congress of Applied Mechanics (CANCAM) conference 2015, London, 

Ontario, Canada. A shorter version of this chapter was published in the 25th CANCAM 

2015 proceedings. A version of this chapter is being prepared for journal submission.  

Chapter 5 presents the investigation of the deformation-rate dependence of the incipient 

plastic deformation of Au microspheres of diameter ranging from 0.8 to 6.0 µm. The 

initial portion of force-displacement data from micro-compression tests performed on the 

Au microspheres were analyzed further to extract the apparent activation volume and 

energy controlling the dislocation nucleation/glide process. A version of this chapter is 

being prepared for journal submission.  

Chapter 6 presents the study of the size and strain rate dependence of incipient and bulk 

plastic deformation of Au micropillars of diameter ranging from 0.8 to 4.0 µm at room 

temperature using flat-punch micro-compression testing. The dependence of yield stress 

on the surface area to volume ratio (SA/V) of the micropillars was determined and the 

results were compared to the trends reported for Au microspheres in Chapter 4. A thermal 

activation based model was used to interpret the loading rate dependence of the incipient 
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yield stress, and the associated deformation rate controlling parameters V* and Q were 

estimated. A version of this chapter will be submitted for publication to a journal. 

Chapter 7 presents the study of the effect of a surface constraining layer, suppression of 

dislocation nucleation and trapping of mobile dislocations, on the mechanical yield 

strength and deformation mechanisms of micrometer-size ductile metal samples. For this 

study single crystal Au microspheres of 3 m diameter were coated with a sputter-

deposited nano-crystalline Ni layer of 40 or 80 nm thickness and room temperature 

compression tests were performed at three loading rates. Force-displacement (F-h) curves 

of the coated Au microspheres were obtained and compared with F-h curves from similar 

diameter uncoated Au spheres. The initial portion of the F-h curves was fitted with a 

Hertzian contact model and the corresponding incipient force was measured. The 

apparent activation volume corresponding to the initiation of incipient plasticity was 

estimated for these coated spheres. Finite element analysis was used to estimate the stress 

and strain distribution within the compressed coated Au spheres. These data were used to 

estimate the apparent activation volume and energy corresponding to the plastic 

deformation at 5% of strain of these coated spheres and results are compared with the 

uncoated spheres. A part of this chapter was presented to the MRS Spring Meeting 2014, 

San Francisco, California, USA. A version of this chapter will be submitted for 

publication to a journal. 

This thesis ends in Chapter 8 with a summary of the main findings and scope of future 

research.  

1.4 Contributions 

The main contributions of this thesis are given below: 

Length-scale dependence of time-dependent plastic deformation mechanism of Au 

micropillars and microspheres was studied. Long-duration (1800 and 3600s) creep tests 

were performed and the creep behavior was analyzed. The long-duration creep tests of 

both the micropillars and microspheres have not been studied before. Nor has the time-

dependent plastic deformation mechanism of Au pillars and spheres been studied.    
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Most of current researcher has investigated the size-dependence of the plasticity of small-

volume samples by considering plasticity as essentially being a rate-independent process. 

This is in fact quite an oversimplification. The research in this thesis investigates, for the 

first time, the length-scale and strain rate-dependent plasticity and the deformation 

kinetics of sub-micron size Au pillars and spheres.   

The kinetics of the incipient plastic deformation of small size samples was studied. The 

incipient plastic behavior of Au micropillar and microsphere was not observed before.  

The effect of a surface passivation layer on the plastic deformation mechanism of small 

size samples was also studied. There are only few studies available on this topic for 

micropillars but none for microsphere therefore the research presented here on this topic 

represents a significant new contribution to the field.  
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Chapter 2  

2 Review of Evidence and Theories Related to Length-scale 

Plasticity 

 

The purpose of this research is to use micromechanical test techniques to study the effect 

of microstructure on the operative mechanisms of plastic deformation of FCC crystalline 

metal samples of micrometer and sub-micrometer size scale. Understanding the 

mechanisms of dislocation nucleation and motion in these small samples is now 

increasingly important because of the development of many technological devices that 

have size at this scale. Many researchers have studied the size-dependence of the 

plasticity of small-volume samples by considering plasticity as essentially a rate-

independent process. This is in fact quite an oversimplification since plasticity is in 

general a strain rate-dependent process; however, investigation of the length-scale 

dependence of the kinetics of the plastic deformation process in ductile crystalline metals 

is still lacking. Literature relevant to these topics will be discussed in this chapter. 

The equivalent stress – strain response of bulk materials is essentially independent of 

sample size since the sample dimensions are very large in comparison to the 

characteristic length scale of the material’s microstructure. When, however, dimensions 

of the sample approach that of its microstructural features, such as its grain size or its 

inter-phase spacing, a size effect prevails and the equivalent stress – strain flow curve of 

the bulk material no longer accurately predicts the flow behavior of the small sample [1]. 

This phenomena was first studied in detail by the performance of uniaxial tensile tests on 

very small diameter metallic and non-metallic whiskers [2]. More recently new, more 

informative, testing techniques have been used to reveal considerable important 

information on the differences in the operative deformation mechanisms in small volume 

samples compared to their bulk counterparts. These developments are discussed below. 
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2.1 Length-scale Dependence of the Uniaxial Flow Stress 

Mechanical tests performed under uniaxial stress conditions on micron- and sub-micron 

size tensile specimens have been performed as early as 1947, where Fisher and Holloman 

[2] studied the size dependence of the yield stress of Copper whiskers having 

micrometer-scale diameters. These whiskers were thought to be initially free of defects 

(i.e. dislocations) prior to deformation. During deformation in tension, they exhibited 

initial elastic deformation followed by plastic yielding and failure at very high stress 

levels which are near to the theoretical strength of the crystal. They proposed that the 

high initial yield stress is associated with the nucleation of the first dislocation/defect 

within the otherwise perfect crystalline whisker while the low stress observed subsequent 

to yielding was attributed to the easy glide of these new dislocations through the 

essentially dislocation free whisker. 

In recent years, uniaxial compression of nanopillars has become the most popular 

experimental method to investigate the length-scale dependence of plastic deformation in 

ductile metals. Uchic et al. [3] were the first to use this test methodology to study small-

scale mechanical behavior of Focused Ion Beam (FIB) milled Ni micropillars and 

reported that there was a gradual progression between bulk and size-limited behavior as 

the micropillar diameter decreased from 40 to 5 µm; significantly higher compressive 

strength was observed in micropillars of smaller diameter. 

Greer and Nix [4,5] continued on from these studies to investigate the uniaxial stress – 

strain response of Au micropillars of diameter between 0.30 to 7.45 µm. Their results 

demonstrate that sub-micrometer diameter Au pillars were up to 50 times stronger than 

bulk Au. They proposed that these high strengths were the result of the operation of a 

dislocation nucleation controlled plastic deformation process. In this mechanism, once 

the sample is small enough, the mobile dislocations have a higher probability of 

travelling, unhindered, across the small distance through the sample to the free surface 

rather than being pinned by other dislocations within the sample. This mechanism is in 

contrast to that which commonly occurs in large volume samples where there is a surplus 

of pre-existing dislocations, or sites within the sample where dislocations can be 

nucleated at a very low applied stress, and the yield stress of the sample is determined 
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primarily by the stress required to move these dislocations through the sample (i.e. 

plasticity is governed by a dislocation-obstacle interaction process). This theory is 

supported by the observation, reported by Greer and Nix, that stress-strain curves 

displayed by the Au nanopillars were composed of elastic loading segments separated by 

discrete displacement bursts (Figure 2.1). 

 

Figure 2.1: (a) Stress-strain behavior of Au micropillars shows that the flow stresses 

increase significantly as the pillar diameter is decreased and (b) SEM image of a 

compressed Au pillar after plastic deformation [5]. 

Volkert et al. [6] performed uniaxial compression tests on single crystal Au pillars 

ranging in diameter from 0.2 to 8.0 µm and found the compressive yield stress scales 

roughly as the inverse square root of the pillar diameter (Figure 2.2a). Images of their 

compressed pillars indicated that deformation occurred by localized shear on the close-

packed slip systems that were subjected to the largest resolved shear stress. After an 

elastic loading regime, the pillars exhibit yielding associated with large discrete strain 

bursts (Figure 2.2b). Both of these features are attributed to the operation of a dislocation 

nucleation-limited mechanism in these small micropillars. They tested pillars of different 

crystal orientation and no obvious differences between the yield stresses and strain 

hardening rates were observed, suggesting that the stress-strain behavior does not depend 

strongly on whether single or multiple slip occurs.  
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Figure 2.2: (a) Yield stress at 5% plastic strain of different diameter Au micropillars 

showing strong size dependence, and (b) Engineering stress–strain curve for a 710 nm 

diameter pillar, displaying discrete strain jumps in the loading curve and the arrow 

indicates the point at which the 15 second hold begins. In the inset the image shows the 

pillar deformed by single slip [6].  

Frick et al. [7] investigated uniaxial compression behavior of FIB manufactured [111] 

nickel (Ni) micropillars, ranging from 0.2 to 25.0 µm diameter. The [111] Ni pillars 

showed a strong increase in yield stress and strain hardening rate with decreasing 

diameter (Figure 2.3). The strain hardening rate was found to be a function of both pillar 

diameter and crystal orientation. The observed strain hardening mechanism was believed 

to be a combination of dislocation–obstacle interaction and dislocation-nucleation limited 

deformation mechanisms. 

 

(a) (b)
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Figure 2.3: (a) Representative compressive true stress–strain behavior for [1 1 1] Ni 

pillars of various diameters ranging from 2.0 µm to below 200 nm. (b) Logarithmic plot 

of the slope between the stress at 3% and 10% strain for all [1 1 1] Ni pillars tested to 

estimate the strain hardening rate [7]. 

Dimiduk et al. [8] made a direct assessment of the crystal-size dependence of the critical 

resolved shear stress of single-slip oriented Ni micropillars of diameter ranging from 1 to 

40 µm. Their results showed strength increases of up to 15 times over pure Ni and size-

affected hardening rates (Figure 2.4). They concluded that, at the micron-size scale, both 

external geometry and internal structure affects the operative mechanism of plastic 

deformation. 

 

Figure 2.4: SEM images of microcrystals: (a) 1 µm diameter sample after test showing 

intense localized shear. (b) Engineering stress-strain curves for different diameter Ni 

pillars [8]. 

(a) (b)

(a) (b)
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Greer [1] explained the experimental and numerical-simulation results of Au nanopillars. 

For larger diameter pillars (greater than 100 µm diameter), the shape of the strain-stress 

curve generated by the numerical dislocation starvation model is consistent with 

conventional strain-hardening behavior for large FCC samples: dislocation elastically 

interact with each other and form sessile dislocations, for example, Lomer-Cottrell locks, 

which act as obstacles to the motion of other dislocations. As dislocations become pinned 

by these locks they form Frank-Read type dislocation sources which cause the total 

number of dislocations within the sample to increase. Thus, for larger diameter pillars, as 

shown in Figure 2.5, the dislocation density clearly increases with increasing plastic 

deformation.  

 

Figure 2.5: Predictions of (a) Stress vs. strain and (b) Dislocation density vs. strain, 

model for a larger pillar with a 100 µm diameter [1].   

On the other hand, the stress and strain model prediction for a smaller, 0.5 µm, diameter 

pillar is shown in Figure 2.6. After elastic loading the mobile dislocations escape at the 

nearby free surfaces, thereby reducing the dislocation density, and the crystal becomes 

dislocation-starved. It is very clear from the comparison of the stress-strain graphs that by 

the time the pillars are deformed by 7%, the stress level supported by the smaller pillar is 

at least 3 times higher than that for the larger pillar. It is notable that this model focuses 

only on the dislocation starvation process and does not incorporate any other physical 

phenomena such as dislocation reactions with point defects, nucleation of new 

dislocations within the deforming sample, or time-dependent obstacle-limited dislocation 

glide processes.   

(a) (b)
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Figure 2.6: Predictions of (a) Stress vs. strain and (b) Dislocation density vs. strain, 

model for a smaller pillar with a 0.5 µm diameter [1].   

 

Figure 2.7: Nominal stress–strain response of uncoated (curves without numeric 

labeling) and tungsten coated Al micropillars displaying much more pronounced and 

smooth strain hardening compared with uncoated pillars [9]. 

The studies described above provide strong experimental evidence for the hypothesis that 

the length-scale dependence of the mechanical strength of ductile metals results from the 

transition in operative deformation mechanisms from one that is governed by obstacle 

limited dislocation glide, when specimen dimensions are greater than several 

micrometers, to one governed by dislocation nucleation from the free surface when the 

(a) (b)
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sample size is less than several micrometers. If this is the case, it is of interest to observe 

the effect of surface barriers on this length-scale dependence. Ng and Ngan [9] studied 

the effects of trapping the mobile dislocations by compressing coated and uncoated Al 

micropillars of diameters ranging from 1.2 to 6.0 µm. As shown in Figure 2.7, the coated 

samples showed a considerably higher strain-hardening rate and much smoother stress–

strain response, suggesting the suppression of dislocation avalanches and a lack of 

nucleation-controlled plasticity. Post-test TEM examination revealed much higher 

dislocation density in the coated pillars at the height level of the pillar where the coating 

had cracked in the final stages of the compression test. Likewise a significant rise in 

dislocation density and formation of dislocation cells was observed, confirming the 

trapping of the dislocations inside the deforming micropillars instead of annihilating at 

the free surface, as was the case in the uncoated micropillars. 

One of the major concerns with the use of uniaxial compression tests performed on FIB 

milled micropillars is that the FIB fabrication technique, which involves metal removal 

by Ga+ ion beam sputtering, has the possibility of imparting considerable amounts of 

crystal damage to the fabricated micropillar and these crystal defects could be responsible 

for the observed increase in flow stress of small-diameter pillars. Several approaches 

were used to address this issue. Greer et al. [4,5] prepared Au micropillars by four 

different techniques: FIB milling, FIB milling followed by annealing, FIB milling 

followed by low-energy Ar+ milling, and samples prepared without FIB milling using a 

lithography/electroplating followed by annealing process. The amount of Ga+ ion 

implantation damage was different for the four processing methods. The flow-stress 

obtained from the experiments for the three different FIB based fabrication methods 

showed similar trends, however the electrodeposited pillars yielded not only at higher 

flow stress than bulk but also exhibited a similar rise in strength as the diameter is 

reduced. Additionally to their experimental results on Ga+ implantation, several literature 

sources report that the implantation depths for 30KeV Ga+ beam are no more than 60 nm. 

The surface damage from 30KeV Ga+ beam on FIB-prepared TEM specimens of Pt, W, 

and Au penetrated not more than 20 – 25 nm into the surface of Au when the Ga+ beam 

was directed normal to the Au surface [10,11].  
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2.1.1 Microspherical Particles, Nanodots, Nanoposts, and Nanorods  

The previous section describes the extensive research conducted with the use of FIB-

milled micropillars loaded in uniaxial compression. While this geometry is still the most 

commonly used method to study length-scale dependence of plastic deformation it is 

associated with several difficulties such as the presence of crystal defects resulting from 

the FIB fabrication process (as described previously) and practical dimensional 

limitations, such as the fabrication of high degrees of surface flatness and parallelism in 

sub-micrometer nanopillars, that result from this fabrication process. To overcome these 

difficulties other test geometries have been developed. Of these, micro-spherical test 

geometries are particularly attractive since they are relatively easy to construct without 

the use of FIB milling. Data obtained from studies that use these geometries are presented 

here. 

D Mordehai et al. [12] successfully produced FCC single-crystal Au microparticles on a 

sapphire substrate via a solid-state diffusion dewetting technique (Figure 2.8). They 

found all microparticles have a {111} facet on the top surface. The size of these 

microparticles was in the range from 0.2 to 1.0 µm (top diameter).  

Although the authors expected the microparticles would be dislocation-fee, since they 

were formed by long-time annealing just below the melting temperature, TEM 

observation indicated that a small number of dislocations were present. All visible 

dislocations were of edge character not residing on close packed {111} planes. Thus, they 

concluded that the observed dislocations would be sessile during compression tests. In 

summary, the Au microparticles were free of mobile dislocations prior to compression 

testing. 
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Figure 2.8: The distribution of Au microparticles on a (0001) oriented sapphire substrate. 

The SEM images before (a) and after (b) the mechanical cleaning. (c) A view from the 

[111] direction and a 52 tilted view of a single Au microparticle [12]. 

Several typical experimental load–displacement curves for the Au microparticles of 

various sizes are shown in Figure 2.9a. Initially, all microparticles exhibit (nearly) 

continuous load–displacement behavior in what was taken to be elastic deformation. The 

elastic loading was followed by very large strain bursts such that, in the smaller 

microparticles, the loading punch came to rest very close to the sapphire substrate. In the 

large microparticles, the strain burst stopped with the loading punch still well above the 

substrate. For most of microparticles tested there was a strong dependence of the yield 

strength on the microparticle size (Figure 2.9b). 
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Figure 2.9: (a) Typical load–displacement curves of several representative microparticles 

and (b) The dependence of the compressive stress on the top facet of the microparticles 

[12]. 

 

Figure 2.10: (a) Compression schematic of a single crystal Au nanodots with a flat punch 

nanoindenter. (b) SEM images before and after the compression of a nanodot, the burst 

associated with this compression at the yield point was equivalent to 50% of the initial 

height of the structure. (c) Load at yield as a function of the burst length normalized by 

the initial height of each structure [13]. 

(b)
(a)
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Mook et al. [13] compressed single crystal nanodots inside a high resolution scanning 

electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. The 

nanodots were loaded elastically and then yielded in a stochastic manner at loads ranging 

from 16 to 110 µN (Figure 2.10). Yielding was instantly followed by displacement 

bursts. SEM movies and still-images taken during the largest displacement bursts 

indicated that elastic strain energy within the sample was released by the formation of 

new surface area in the form of localized slip bands. The apparent energy release rate at 

yielding was calculated between 10 and 100 Jm−2 for burst sizes between 5 and 50% of 

the structure’s initial height.  

Maharaj and Bhushan [14] performed load – unload compression tests on spherical Au 

nanoparticles and Au nanorods (Figure 2.11a-b), using a flat punch nanoindenter and 

reported findings that were quite in contradiction to the generally held notion that the 

dislocation nucleation, and not the dislocation-obstacle interaction, mechanism controls 

plasticity in nano-sized metal samples. Figure 2.11c-d shows load–displacement curves 

obtained from their tests. The resulting displacement at each new load was either the 

same or lower than the previous loading. The authors claimed that this was due to 

increased resistance to deformation as a result of a greater density of dislocations 

restricting the creation and movement of dislocations (i.e. the operation of dislocation-

obstacle limited dislocation glide). Several pop-in events were observed during repeat 

compression tests at increasing loads indicating multiple slip events to occur during 

loading. 
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Figure 2.11: TEM images of (a) spherical Au nanoparticles 50 nm in diameter, (b) Au 

nanorods 50 nm in diameter and 200 nm in length, (c) and (d) Repeat load–displacement 

curves for Au nanoparticles and nanorods with the corresponding maximum loads for 

each compression event. Vertical arrows point to pop-in events [14]. 

Based on compression experiments and molecular dynamics simulations, Chrobak et al. 

[15] showed that the mechanical properties of bulk silicon and silicon nanoparticles are 

significantly different. They found that bulk silicon exists in a state of relative constraint, 

with its plasticity dominated by phase transformations, whereas silicon nanoparticles are 

less constrained and display dislocation-driven plasticity. In their experimental studies, 

compression tests were performed on silicon nanoparticles of radius ranging from 19 to 

169 nm using an indentation system with a blunt diamond tip located in a transmission 

electron microscope (TEM). Their MD simulations of the deformation of silicon 

nanoparticles (Figure 2.12a), found that the maximum contact pressure attained in the 

nanoparticles (21.3–23.5 GPa) is nearly twice that of bulk silicon (~12 GPa). 

(a)

(c)

(b)

(d)
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Furthermore, the sudden pressure drop revealed in their simulations (Figure 2.12b), is 

equivalent to the pop-in observed during the nano-compression experiments and is 

attributable to the nucleation of mobile dislocations in the otherwise defect-free silicon 

particle. 

 

Figure 2.12: Mechanical response of a compressed silicon nanoparticle. (a) MD 

simulations of silicon nanospheres compressed between two rigid plates. (b) Contact 

pressure as a function of strain showing that the maximum contact pressure in the 

nanoparticles is almost twice the hardness of the bulk material [15]. 

Salehinia et al. [16] used both atomistic simulations and experimental nanoindentation 

tests to examine the effect of vacancies on the onset of plasticity in a Ni single crystal 

under contact loading. Molecular dynamics had shown the effect of vacancy position on 

the yield load, a single vacancy can lower the yield load even when positioned at depths 

of approximately one-third of the indenter contact radius. In cases where the vacancy 

position is close to regions of high shear stresses the nucleation of dislocations is related 

to the location of a vacancy. Complementary experiments have been used to demonstrate 

the effect of indenter size on the onset of yielding in the presence of vacancies. Both the 

simulations and experiments show that larger indenter tips increase the chance of 

weakening the material in the presence of vacancies. 
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Liu et al. [17] carried out molecular dynamics analyses of defect free Al single crystals 

subject to bending to investigate dislocation nucleation from free surfaces. Their 

calculation showed that the slip systems with the largest resolved shear stress were not 

activated and the values of shear stress at which dislocation nucleation occurs are almost 

one order in magnitude smaller than those for nucleation in the bulk material. This is 

consistent with weaker bonding at a free surface than in the interior. It was obtained that 

dislocation nucleation is not well-represented by a critical value of the resolved shear 

stress but is reasonably well-represented by the critical stress-gradient criterion. 

 

Figure 2.13: Mean contact pressure, Pm, versus indentation depth, u, for crystals 

containing surface and/or bulk dislocation sources during frictionless contact [18]. 

Nicola et al. [18] analyzed the indentation of ductile single crystals by a periodic array of 

flat rigid contacts using a continuum mechanics based “discrete dislocation” plasticity 

model. They mainly focused on contrasting the response of crystals having dislocation 

sources on the surface with that of crystals having dislocation sources in the bulk. When 

there are only bulk sources, the mean contact pressure for sufficiently large contacts is 

independent of the friction condition, whereas for sufficiently small contact sizes, there is 

a significant dependence on the friction condition. When there are only surface 
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dislocation sources the mean contact pressure increases much more rapidly with 

indentation depth than when bulk sources are present (Figure 2.13) and the mean contact 

pressure is very sensitive to the strength of the obstacles to dislocation glide. Also, on 

unloading a layer of tensile residual stress develops when surface dislocation sources 

dominate. When both surface and bulk dislocation sources are available, the response is 

generally dominated by the bulk sources. 

Therefore, the incipient plasticity (pop-in) phenomenon observed whenever small volume 

ductile metal samples are tested in compression offers a unique opportunity to 

quantitatively study dislocation nucleation; a stress-assisted, thermally activated process. 

Nucleation of dislocation can be homogenous (in defect free volumes) or heterogeneous 

(i.e. assisted by the presence of defects such as surfaces, inclusions or precipitates, 

vacancies or grain boundaries). In addition pop-ins can also occur at stresses much below 

theoretical stress when sufficiently large volumes are probed, presumably, due to the 

activation of pre-existing dislocations [19]. 

However of the many studies in literature addressing the issue of the dependence of metal 

crystals flow stress on the sample size (i.e. length-scale) at room temperature, there are 

far fewer studies of the rate-dependence of the flow stress and the kinetics of plastic 

deformation over a similar length-scale.  
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2.2 Rate-dependent Plastic Deformation 

It is well established that plastic deformation of crystalline metals is a kinetic 

phenomenon where the dislocation motion due to an applied stress is assisted by the 

intrinsic vibrational “thermal” energy of the atoms [20]. The extent to which the thermal 

energy of the atoms contributes to the deformation process depends upon the magnitude 

of the applied stress and the temperature. By studying the dependence of a material’s 

flow stress upon strain rate and temperature allows one to gain important information 

about the microstructural mechanism by which plastic deformation is occurring.  

During plastic deformation of large crystalline metal samples the flow stress is controlled 

by interactions between gliding dislocations and obstacles present in the material. These 

interactions can be categorized as either long-range or short range. The long-range 

interactions are insensitive to the position of a gliding dislocation and are associated with 

large obstacles such as second-phase precipitates and large arrays of dislocations 

resulting from work-hardening. It is difficult to activate dislocations past these obstacles, 

and the component of the flow stress arising from these interactions is essentially 

insensitive to the strain rate and temperature. These types of obstacles are known as 

“Athermal” obstacles. Short-range obstacles such as individual dislocations, or 

dislocation jogs, cause interactions forces on the gliding dislocations that act over only a 

few atomic distances. These forces can be overcome at finite temperatures with the help 

of thermal fluctuations of adjoining atoms to the dislocation/obstacle interface. Hence, 

the stress required to move the dislocation past this type of obstacles is temperature and 

strain rate dependent. These types of obstacles are known as “Thermal” obstacles. 

The plastic shear strain rate 𝛾̇ in a crystalline solid is expressed in terms of the mobile 

dislocation density 𝜌𝑚, the Burgers vector b of the dislocations, and the average 

dislocation velocity 𝑣̅ as 

 𝛾̇ = ρ𝑚𝑏𝑣̅ (2.1)  

If we consider the deforming material as consisting of a crystalline matrix containing a 

distribution of weak obstacles, 𝛾̇ becomes limited by the energy required for a dislocation 

to move past the obstacles.  
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Figure 2.14 illustrates an idealized force-distance relationship for a dislocation to 

overcome and move past a discrete obstacle. The total area under this force-distance 

curve represents the characteristic Gibbs free energy ∆𝐺0 of the obstacle. For a 

dislocation to successfully move past this obstacle, part of ∆𝐺0 will be supplied by the 

applied mechanical work, 𝜏𝑎𝑝𝑝𝑉∗ , where 𝑉∗ is the apparent activation volume, and the 

remainder, which is denoted as ∆𝐺(𝜏), is supplied by thermal vibrations of the atoms at 

the dislocation/obstacle interface. 

 

Figure 2.14: Idealized resistance force (F) versus distance (x) profile for obstacles 

opposing the dislocation motion in a crystalline material containing an obstacle. 

The probability that the thermal vibration of the atoms will contribute a kinetic atomic 

energy of at least ∆𝐺(𝜏) at a particular temperature T is given by the Boltzmann factor, 

𝑒𝑥𝑝(−∆𝐺(𝜏) 𝑘𝑇⁄ ), where k is the Boltzmann constant. The velocity of the mobile 

dislocations is then given in terms of the probability of atoms, which make up the 

dislocation in the area of the obstacle, having the thermal energy ∆𝐺(𝜏) as 

Thermal

Mechanical

F

X

Obstacle 
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 𝑣̅ = 𝛽𝑏𝜈0𝑒𝑥𝑝 (
−Δ𝐺(𝜏)

𝑘𝑇
) (2.2)  

In this equation  is a dimensionless constant, and 𝜈0 is a characteristic atomic vibration 

frequency (usually taken as the Debye frequency). Substituting this expression into Eq. 

(2.1) gives an expression for shear strain rate 𝛾̇ in terms of the thermal activation energy 

∆𝐺(𝜏). The term ∆𝐺0 expressed as 

 Δ𝐺0 = 𝜏𝑉 + Δ𝐺(𝜏) (2.3)  

The term ∆𝐺0 characterizes the strength of the particular obstacle resisting dislocation 

glide. Table 2.1 lists, approximate values of ∆𝐺0, proposed by Frost and Ashby, for 

different classes of obstacles. 

Table 2.1: Classification of obstacles according to their strength in terms of G0 [21] 

Obstacle 𝚫𝑮𝟎 Example 

Strong 2 𝜇𝑏3 Large or strong precipitates 

Medium 0.2 – 1.0 𝜇𝑏3 Forest dislocations, small or weak precipitates 

Weak < 0.2 𝜇𝑏3 Lattice resistance, solid solution hardening 

 

The highest stress a perfect crystal can sustain without undergoing immediate structural 

transformation at temperature 0 K, referred to as the ideal strength, is approximately E/10 

where E is the elastic modulus of the material. The measured strength of bulk crystals is 

typically far below the ideal strength because of the large number of grown-in defects, 

such as dislocations, that are present. The yield strength of these bulk crystals is limited 

by the resistance to dislocation motion; therefore, the typical flow stress is about a factor 

of 100 below the ideal strength.  

The equations presented above suggest that increasing the temperature will increase the 

probability that atoms locate at a dislocation/obstacle interface will have kinetic energy 

greater than ∆𝐺(𝜏) and hence the flow stress will decrease with increasing temperature.  
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This is of course exactly what is usually observed in metals. Since this thermally-assisted 

mode of dislocation motion requires a waiting period while the dislocation remains 

pinned by the obstacle until the atoms at the dislocation/obstacle interface attain ∆𝐺(𝜏), 

the strength of a material is also inherently dependent upon the loading-, or the strain-, 

rate. We use the parameter referred to as the “activation volume, V” to characterize the 

rate dependence of the operative dislocation-obstacle limited deformation mechanism.  

This is done by rearranging terms in Equation (2.3) as [22] 

 𝑉(τ, T)=−
𝜕(𝑄0 − 𝑄(𝜏))

𝜕𝜏
|

𝑇

 (2.4)  

Deformation operation by different dislocation-obstacle interactions display different 

activation volumes, such as, V = 0.1b3 for creep deformation by lattice diffusion and V = 

1000b3 for deformation by dislocation glide past obstacles via an Orowan bowing type 

mechanism [22]. 

The activation volume V can be determined by both experimentation and by atomistic 

modeling. It thus provides a unique link in coupling two approaches for revealing the 

rate-controlling deformation mechanisms. In experiments, the activation volume can be 

determined by measuring the strain rate sensitivity of the flow stress of a material. During 

a uniaxial tension experiment, the empirical power-law relation between flow stress  

and strain rate 𝜀̇ which most bulk ductile metal samples display is  

 
𝜎

𝜎0
= (

𝜀̇

𝜀0̇
)

𝑚

 (2.5)  

where 𝜎0 and, 𝜀0̇ are the stress and corresponding strain rates at a known reference 

condition, m is the non-dimensional rate sensitivity index and is typically between 0 and 

1; m = 0 gives the rate-independent limit and m = 1 corresponds to the linear Newtonian 

flow. The “apparent” activation volume V* is conventionally defined as 

 𝑉∗ = √3𝑘𝑇
𝜕𝑙𝑛𝜀̇

𝜕𝜎
 (2.6)  

 



27 

 

The strain rate sensitivity, m can be related to the activation volume, V* by combining the 

Eqs. 2.5 and 2.6 as 

 𝑚 = √3
𝑘𝑇

𝜎𝑉∗
 (2.7)  

In these equations the factor √3 arises because the von Mises yield criterion is invoked to 

convert the normal stress  to an effective shear stress *, i.e.,  = 𝜎∗ √3⁄  . Since * is 

related to the resolved shear stress on a single slip plane  by ∗  = 𝑀 √3𝜏⁄ , where M = 

3.1 is the typical Taylor factor for an FCC metal deforming by dislocation glide along the 

{111}<110> crystal system [23], it follows that the true activation volume V associated 

with a unit process and the apparent activation volume V* measured from a 

polycrystalline sample are related by 

 𝑉∗  =
√3

𝑀
𝑉 (2.8)  

In Chapter 5, 6 and 7 of this thesis, the activation volume during incipient plasticity of Au 

microspheres was estimated using a physics based model describe by several researchers 

[24–26]. The following is a detailed description of this model.   

The average strain rate, 𝜀̇, of the microspheres can be described in terms of the motion of 

a population of m dislocations as 

 𝜀̇ = ρ𝑚𝑏𝑣̅ (2.9)  

In the absence of any applied shear stress 

 𝑣̅ = 𝜈0𝑏. 𝑒𝑥𝑝 (−
𝑄

𝑘𝑇
) − 𝜈0𝑏. 𝑒𝑥𝑝 (−

𝑄

𝑘𝑇
) (2.10)  

In the right side of this equation, the first term represents for the forward jumps and the 

second term represents the backward jumps. i.e. both the forward and backward jumps 

are equal. Now when the shear stress (𝜏) is applied,   

The 𝑣̅ can be determined by a standard approach for a stress activation process: 

 𝑣̅ = 𝜈0𝑏 [𝑒𝑥𝑝 (−
(𝜏𝑝 − 𝜏)𝑉

𝑘𝑇
) − 𝑒𝑥𝑝 (−

(𝜏𝑝 + 𝜏)𝑉

𝑘𝑇
)] (2.11)  
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where 𝜈0 is the attempt frequency and 𝜏𝑝 is the lattice resistance or the Peierls stress, 

which is the stress needed to make the dislocations move in the absence of any thermal 

energy. 𝜏 is the applied shear stress, V is the activation volume, T is the absolute 

temperature, and k is the Boltzmann’s constant.  

 𝑣̅ = 𝜈0𝑏 [𝑒𝑥𝑝 (
𝜏𝑉

𝑘𝑇
) − 𝑒𝑥𝑝 (−

𝜏𝑉

𝑘𝑇
)] . 𝑒𝑥𝑝 (−

𝜏𝑝𝑉

𝑘𝑇
) (2.12)  

Since, sinh(𝑥) =
𝑒𝑥−𝑒−𝑥

2
, the above equation can be written as, 

 𝑣̅ = 𝜈0𝑏. 2 sinh (
𝜏𝑉

𝑘𝑇
) . 𝑒𝑥𝑝 (−

𝜏𝑝𝑉

𝑘𝑇
) (2.13)  

Putting this, 𝑣̅ into Eq. 2.9 obtain, 

 
𝑑𝜀

𝑑𝑡
= 2ρ𝑚𝑏2𝜈0. sinh (

𝜏𝑉

𝑘𝑇
) . 𝑒𝑥𝑝 (−

𝜏𝑝𝑉

𝑘𝑇
) (2.14)  

 sinh (
𝜏𝑉

𝑘𝑇
) =

𝑑𝜀
𝑑𝑡

2ρ𝑚𝑏2𝜈0
. 𝑒𝑥𝑝 (

𝜏𝑝𝑉

𝑘𝑇
) (2.15)  

Combining these equations and solving for the applied shear stress yields the following 

relationship: 

 𝜏 =
𝑘𝑇

𝑉
𝑠𝑖𝑛ℎ−1 [

𝑑𝜀
𝑑𝑡

2𝜌𝑚𝜈0𝑏2
𝑒𝑥𝑝 (

𝜏𝑝𝑉

𝑘𝑇
)] (2.16)  

In another case, when shear stress, 𝜏 is applied and the applied mechanical work (𝜏𝑉) is 

large, 

 𝑣̅ = 𝜈0𝑏 [𝑒𝑥𝑝 (−
(𝜏𝑝 − 𝜏)𝑉

𝑘𝑇
) − 𝑒𝑥𝑝 (−

(𝜏𝑝 + 𝜏)𝑉

𝑘𝑇
)] (2.17)  

For large mechanical work (𝜏𝑉), the probability to backward jumps is negligible, 

therefore,  

 𝜈0𝑏. 𝑒𝑥𝑝 (−
(𝜏𝑝 + 𝜏)𝑉

𝑘𝑇
) ≈ 0 (2.18)  
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The Eq. 2.17 becomes, 

 𝑣̅ = 𝜈0𝑏. 𝑒𝑥𝑝 (−
(𝜏𝑝 − 𝜏)𝑉

𝑘𝑇
) (2.19)  

Substituting the value of 𝑣̅ into Eq. 2.9  

 
𝑑𝜀

𝑑𝑡
= ρ𝑚𝑏2𝜈0. 𝑒𝑥𝑝 (−

(𝜏𝑝 − 𝜏)𝑉

𝑘𝑇
) (2.20)  

Rearranging the above equation, we can get the following simplified expression: 

 𝜏 = 𝜏𝑝 +
𝑘𝑇

𝑉
ln [

𝑑𝜀

𝑑𝑡
] −

𝑘𝑇

𝑉
ln[𝜌𝑚𝑏2𝜈0] (2.21)  

This relationship forms the basis of typical analyses of compression tests at elevated 

temperatures [24–26], a plot of the shear flow stress against the natural logarithm of 

strain rate, at a particular temperature, should result in a linear relationship of slope 

𝑘𝑇 𝑉⁄ . Therefore, V can be determined through the obtained slope. The total activation 

energy, Q, of deformation rate controlling obstacles can then be estimated as 𝑄 = 𝜏0𝐾𝑉, 

where 𝜏0𝐾 is the athermal stress of Au [27]. 

2.2.1 Length-scale Effects on Rate-dependent Plasticity 

The activation volume V and strain rate sensitivity m of the flow stress provide a direct 

link between experimentally measurable plastic flow characteristics and underlying 

operative deformation mechanisms. However, this link can be complicated by such 

important factors as mobile dislocation density and strain hardening. In the cases of 

nanopillars or nanospheres the density of mobile dislocations is negligibly small. Under 

these conditions, the ultra-strength deformation will be rate-limited by the rate at which 

dislocations are activated from the surface of the sample. In this case the experimentally 

measured apparent activation parameters are directly related to surface dislocation 

nucleation [22]. 
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Schuh et al. [28] also measured the probability of occurrence of the first measurable 

strain jump during nanoindentation tests performed on Pt at temperature up to 200C. 

The measured rate of strain jumps (𝜂̇), was expressed in terms of an Arrhenius function 

of the temperature T, applied stress σ, activation energy ΔG and activation volume V of 

the deformation process as, 

 𝜂̇ = 𝜂̇0. 𝑒𝑥𝑝 (
Δ𝐺 − 𝜎𝑉

𝑘𝑇
) (2.22)  

The measured ΔG was considerably lower than would be expected for the energy to 

nucleate a dislocation from a perfect Pt crystal. This suggests that the intrinsic dislocation 

nucleation was occurring at crystal imperfections within the test sample. Similar 

conclusions regarding dislocation nucleation stress during nano-indentation have been 

reached by others [29, 30]. A detailed characterization of the effect of specific types of 

dislocation nucleation sources on the temperature- and stress-dependence of the rate of 

intrinsic dislocation nucleation during nano-indentation and micro-pillar compression has 

yet to be done. 

Mook et al. [31] studied freestanding FCC nanoposts of aluminum and permalloy 

undergoing large strain uniaxial compression tests. The nanoposts were produced, 

without FIB milling, by e-beam lithography technique with radii ranging from 0.05 to 

0.15 m (Figure 2.15) and were nanocrystalline with a (111) texture and surface 

roughness below 1 nm. They observed a large amount of scatter in the flow stress 

obtained during compression of these nanoposts and the flow stress tended to increase 

with decreasing contact radius (Figure 2.15c). The apparent activation volumes V* 

required for plastic deformation of these structures were found to be quite small when 

compared to the V* for the deformation of bulk materials, and V* dropped by an order of 

magnitude as the yield strength increased by a factor of three (Figure 2.15d). They 

concluded that this is consistent with near-surface dislocation nucleation as the 

controlling plasticity mechanism. 
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Figure 2.15: The AFM deflection image of an aluminum nanoposts (a) before 

compression (initial radius of 82 nm) and (b) after compression (final radius of 175 nm). 

(c) Flow stress as a function of the effective contact radius and (d) the apparent activation 

volume versus flow stress, for the aluminum and permalloy nanoposts [31]. 

  

 

 

 

 

(a)

(c)

(b)

(d)
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Figure 2.16: (a) Flow stress at 10% strain as a function of strain rate for Cu nanopillars 

(75 to 500 nm) [32]. (b) Activation volume versus diameter at two different strain rates 

denoting the change in activation volume for the smallest diameters [33]. 

Jennings [32,33] demonstrated a significant effect of both strain rate and sample size on 

the compressive strength of single-crystal Cu nanopillars with diameters ranging from 

0.075 up to 0.500 µm. The flow stress, at 10% strain, as a function of strain rate for all 

diameters pillars is shown on Figure 2.16a. The slopes of the curves correspond to the 

strain rate sensitivity, m ranging between 0.027 and 0.057 displayed an increasing trend 

with decreasing pillar diameter. The apparent activation volume V* estimated for the two 

smallest diameter pillars (0.075 and 0.125 µm) was about ~6 and ~7.3b3, but was 

between 9.6 and 62b3 when the pillar diameter was above 0.150 µm (Figure 2.16b). They 

proposed a plasticity mechanism transition from dislocation multiplication via the 

operation of truncated dislocation sources, also referred to as single-arm sources, in 

pillars with diameters greater than 0.150 µm to dislocation nucleation from the surface in 

the smaller diameter samples. 

Chen et al. [34] found the V* is about 0.13b3 for tensile tests performed on “dislocation 

scarce” single-crystal Pd nanowhiskers. In these samples it was concluded that surface 

dislocation nucleation was the predominant mechanism controlling plastic yielding.  

Schneider et al. [35] performed compression test on BCC [001] and [235] oriented Mo 

single crystal pillars ranging from 0.2 to 5.0 m diameter. The smaller pillars showed a 

(a) (b)
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strong dependence of flow stress upon loading rate and the calculated V* was between 

1.3 to 5.3b3 from the smallest to the largest pillars.  

Atomistic modeling of the uniaxial compression on Cu (111) nanowire was studied by 

Zhu et al. [36]. They created surface steps on the (111) surface and found the calculated 

V*s are about 2b3. The small magnitude of V* was associated with surface dislocation 

nucleation. They also found that surface sources have a unique kinetic signature: a small 

activation volume leading to increase strain rate and temperature sensitivities of flow 

stress. They concluded that the activation volume associated with surface dislocation 

nucleation is characteristically in the range of 1  10b3. 

 

Figure 2.17: (a) Strain rate sensitivity, m at different temperature for conventional 

coarse-grained Ni (circles) and nanocrystalline Ni (squares). (b) Comparison of apparent 

activation volume at different temperature of nanocrystalline Ni (circles) and 

conventional coarse-grained Ni (triangles) shows inset in the same plot [37]. 

Wang et al. [37] carried out strain rate jump tests and stress relaxation tests over a range 

of deformation temperatures (77–373 K) on electrodeposited nanocrystalline Ni with an 

average grain size of ~30 nm. The values of the activation volume obtained at different 

temperatures are much smaller than those for the normal rate-controlling mechanism in 

bulk FCC metals. This suggests that the thermally activated process in nanocrystalline Ni 

is different from the conventional forest dislocation cutting mechanism. The strain rate 

sensitivity, m corresponding to the nanocrystalline Ni was found to be higher than coarse-

(a) (b)
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grained polycrystalline Ni (Figure 2.17a). A stronger temperature dependence consistent 

with the higher activation energy and smaller activation volume was observed. There 

appears to be an additional activated process in action, with a higher activation barrier. 

The apparent activation volume was found to be about 20b3 for nanocrystalline Ni at 

about room temperature (Figure 2.17b). This value is one to two orders of magnitude 

lower than the typical value governing normal dislocation-obstacle controlled plastic 

deformation of bulk Ni (see inset Figure 2.17b).  

Afrin and Ngan [38] carried out compression creep tests at room temperature on micron-

sized Ni3Al pillars produced by FIB milling. The nominal creep rates of these 

micropillars were found to be very high, at 10-5 s-1. Their observation, shown in Figure 

2.18, suggest that the deformation at the pillar head is likely to be caused by surface 

diffusion. The absence of any sign of deformation within the main body of the pillar 

indicates that lattice diffusion did not happen, which is reasonable considering the low 

test temperature. The stress exponent of the creep deformation of these pillars was also 

close to unity, implying linear diffusional flow being the dominating creep mechanism. 

Microscopic evidence suggests deformation is due to surface diffusion at the pillar heads. 

Their estimated activation energy was 0.30  0.02 eV for the low temperature 

diffusional creep mechanism.   

 

Figure 2.18: SEM images of Ni3Al micropillar (a) before and (b) after creep testing at 

2000 µN load. In Fig. b, EDX measurements of the deformed head of the pillar and the 

shafts revealed that the same chemical compositions, indicating that the material flowing 

down the pillar heads was indeed Ni3Al. (c) Creep displacement during load hold of the 

micropillar and bulk-material [38].  

(a) (b) (c)
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Figure 2.19: The stress-strain response of (a) 6.3 and (b) 0.8 µm, diameter Al pillars 

[39]. 

Ng and Ngan [39] studied the overall stress-strain response of micron-sized Al pillars, 

fabricated by FIB milling, which were subjected to uniaxial compression. They found 

that the deformation of Al micropillars is a jerky process with a stochastic nature (Figure 

2.19). Their TEM investigation revealed that the dislocation density increased only very 

slightly even after severe plastic deformation. They reported that both the probability of 

occurrence and the size of the discrete displacement jumps observed during compression 

of these Al micropillars were exponentially related to the applied stress. When the 

micropillars were subjected to constant-load creep tests the frequency of the displacement 

jumps decreased with increasing creep time and a steady strain rate creep component also 

contributed to the measured creep strain. This suggests that multiple mechanisms of 

dislocation nucleation controlled and dislocation-obstacle interaction controlled 

dislocation glide may contribute to the intrinsic creep of sub-micron size metal samples.  

Na and Ngan [40] also performed compression testing on FIB milled 6 µm diameter bi-

crystal Al pillars. They reported that introducing a grain boundary inside the micropillar 

resulted in very different mechanical behavior, specifically, the pillar shows much 

smoother and homogeneous deformation, in addition to a higher work hardening rate, 

compared to single-crystal pillars of similar size. These improved deformation 

characteristics were attributed to the increased storage of dislocations as a result of the 

presence of the grain boundary. 
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Choi et al. [41] performed room temperature uniaxial creep experiments on 

nanocrystalline Ni pillars of diameters ranging from 0.6 to 2.0 m. At a given stress, 

much higher total creep strains and strain rates accrue in the smaller pillars (Figure 2.20), 

which is likely due to the increased contributions of free surfaces. The calculated 

apparent activation volume V* increases in the range of 0.5 – 2.2b3 with decreasing stress 

and increasing pillar diameter. These measured values of stress exponent and the 

activation volume suggests that the nanoscale creep event under low stresses may be 

dominated by diffusion-controlled mechanisms.  

 

Figure 2.20: Creep strain vs. time curve: (a) effect of the applied stress; (b) effect of the 

pillar size [41]. 

Wang et al. [42] conducted both uniaxial creep and nanoindentation creep on 

nanocrystalline Ni and directly compared the two sets of data. Micropillars, with a 

nominal diameter of 2 µm, were fabricated by FIB milling and Ni films, with a grain size 

of 14 nm, were prepared by electrodeposition. The stress exponent under the two test 

conditions was found to be almost the same, indicating a similar creep mechanism. 

However, the strain rate measured by nanoindentation creep was about 100 times faster 

than that by uniaxial creep. The faster creep rate was caused by the facts that the stress 

state under nanoindentation is more complex and severe than the uniaxial condition. The 

creep activation energy for the two creeps is also the same and both correspond to the 

activation energy for grain-boundary diffusion in Ni, suggesting that a similar diffusion-

assisted dislocation glide process is operative in both testing situations. 
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2.2.2 Summary 

The data presented in this section indicates that small, sub-micrometer, diameter metal 

samples deform plastically by a mechanism that is different from that occurring in large 

bulk samples in several ways: i) they display substantially high initial yield stress, ii) they 

deform plastically by a stochastic process involving intermittent strain jumps, iii) their 

operative deformation mechanism is characterized by small activation volumes compared 

to that of bulk metal deformation modes. Although these observations have now been 

reported by numerous independent investigators, there remain considerable unanswered 

questions and some conflicting findings related to the role of certain important features 

such as surface condition (coated or uncoated, rough or smooth), presence of pre-existing 

dislocations or internal obstacles to dislocation glide (such as grain boundaries or 

precipitates), and crystallographic orientation on the operative mechanisms of the time-

dependent deformation of these small volume samples.  It is against this background of 

evidence, or lack thereof, which the experimentation presented in the subsequent chapters 

of this thesis is performed. 

This thesis research involves several unique testing and analysis techniques which will 

now be described in some detail. 
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2.3 Experimental and Analytical Methods 

What follows is a concise description of the primary experimental and analytical 

techniques that are used in the research described in this thesis. 

2.3.1 Instrumented Flat-punch Micro-Indentation 

The uniaxial micro-compression and creep testing of Au micropillars and microspheres 

carried out in this study were performed with a computer-controlled NanoTest 

indentation machine manufactured by Micro Materials Ltd. (Wrexham, UK) [43]. The 

instrument consists of a vertically mounted ceramic pendulum that rotates about a 

frictionless pivot Figure 2.21. The upper end of the pendulum is attached to an 

electromagnetic coil wrapped around an aluminum core. When electrical current is 

supplied to the coil that top of the pendulum is attracted to a permanent magnet which, in 

turn, causes the bottom of the pendulum, containing flat-punch diamond indenter, to 

move towards the test sample (such as a micropillar or a microsphere). The force applied 

to the pendulum is directly proportional to the current fed to the coil. A parallel plate 

capacitor is attached to the bottom end of the pendulum. The change in capacitance 

across the parallel plates is proportional to the displacement of the indenter. The 

electromagnetic coil actuator is capable of applying up to 20 N force with a precision of  

100 nN. The capacitance displacement gauge has a displacement range of about 50 µm. 

The test sample is attached to a stage whose motion is operated by means of three DC 

motors in an XYZ configuration. These motors are controlled from a motherboard that 

has three power modules, an electronic interface module and a backlash control unit. 

Power supply to the system is from the computer while magnetic encoders control the 

motor positioning. When current is applied to the coil, the probe’s maximum movement 

and pendulum orientation are determined by the limit stop setting.  
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Figure 2.21: Schematic diagram of a micro-indentation tester assembly fitted with a flat-

punch indenter used for uniaxial compression and creep test of the Au small scale 

samples [43]. 

The diamond flat-punch indenter used in this study to perform uniaxial compression and 

creep tests was made by FIB milling a flat surface on a diamond Berkovich pyramidal 

indenter. The projected area of the flat surface is an equilateral triangle with ~15 m 

sides. The circular flat area on the center of the triangle is ~8.7 m as shown in Figure 

2.22a. The side view of the flat-punch indenter tip in Figure 2.22b showing the 

smoothness of the flat tip surface.      
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Figure 2.22: Flat-punch indenter used in this study for uniaxial compression and creep 

tests. (a) Top view of the indenter showing the flat surface circumference area and (b) 

Side view of the flat-punch indenter tip showing the surface smoothness of the flat 

surface.   

The machine works by measuring the motion of a probe (indenter) when in contact with a 

material surface. The sequence begins by applying an increasing amount of force on the 

probe to either indent or compress the surface of a polished sample or feature to a 

predetermined force/depth at a defined loading rate. The force, depth and time of the test 

are recorded by the NanoTest software installed on the computer system. The software 

allows the user to positioning the sample stage, finding the sample surface, specifying 

different parameters such as the loading and unloading rates, the maximum indentation 

depth and the maximum indentation force. The software also allows post-processing of 

the test data to collect and analyze the data and determine the mechanical properties of 

the material.  

To accurately perform compression and creep tests, it is very necessary to perform load, 

depth and microscope calibrations to ensure that the instrument is recording accurate and 

repeatable output data. Load calibrations are conducted by hanging weights, of known 

mass, to the pendulum while the machine records the voltage required to fix the actuator 

coil to balance the pendulum in a vertical position. Depth calibration is performed using a 

sample of known material properties (fused silica). No force is applied to the indenter 

8.7 m

(a) (b)
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during this test, rather the DC motor is used to move the stage, with the reference sample 

attached, to make contact with the indenter. The X-stage translational DC motor then 

moves the sample a fixed amount further toward the indenter resulting in movement of 

the capacitor plate and a change in signal amplitude from the capacitor. With proper 

calibration the capacitance gauge will record indenter displacement of about 0.05 – 0.06 

nm/bit. Finally, the microscope calibration is carried out by performing micro-indentation 

on a polished Al sample to know the exact vertical and horizontal distance between the 

flat-punch indenter tip and the reference point of the optical microscope that is attached 

to the indentation tester. Microscope calibration is vital to properly compress the Au 

microspheres and micropillars used in this study.   

2.3.2 Electron Backscattered Diffraction (EBSD)  

Electron Backscattered Diffraction is a widely used technique for obtaining information 

about the crystallographic orientation of a specimen surface. The technique is usually 

performed with an SEM. The electron beam strikes the specimen and the electrons are 

elastically scattered from a region of the crystal directly below the surface. Electrons that 

strike the surface at an angle that satisfies the Bragg's condition (described below) will 

reflect very strongly from the surface and cause a bright “Kikuchi” line to appear on a 

fluorescent phosphor screen located in the SEM near to the specimen. Each lattice plane 

is represented on the fluorescent screen by a Kikuchi band. By comparing the pattern of 

the Kikuchi bands that appear on the fluorescent screen to theoretically determined 

patterns corresponding to specific crystal structures the crystallographic orientation of the 

surface of the sample can be determined.  

The configuration of a typical EBSD instrument is shown in Figure 2.23. In general, an 

EBSD system consists of a specimen preferably tilted at about 70° from the horizontal, a 

phosphor screen which is fluoresced by back scattered electrons emitting from the 

specimen, a sensitive charge coupled device (CCD) video camera for viewing the 

diffraction pattern on the phosphor screen, a vacuum interface for mounting the phosphor 

screen and CCD camera in the SEM chamber, electronic hardware to control the SEM, 
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and a computer to control the EBSD experiments, analyze the diffraction pattern and 

display the results. 

 

Figure 2.23: Schematic diagram of the components of an EBSD system [44]. 

During the experimentation, the intensity of the back-scattered electrons depends upon 

their incident angle  to the sample surface (Figure 2.24). At certain characteristic angles, 

B, the backscattered electron intensity reaches a maximum and this angle is related to the 

inter-planar spacing, d, of a family of crystal planes in the sample by the Bragg’s law:  

 𝑛𝜆 = 2𝑑 sin 𝜃𝐵 (2.23)  

where n is an integer, and λ is the wavelength of the incident electrons. These electrons 

are diffracted to form a set of paired large angle cones corresponding to each diffracting 

plane. When used to form an image on the fluorescent screen the regions of enhanced 

electron intensity between the cones produce the characteristic Kikuchi bands of the 
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electron backscatter diffraction pattern (Figure 2.25a). The center lines of the Kikuchi 

bands correspond to the projection of the diffracting planes on the phosphor screen. The 

Kikuchi bands are indexed in terms of the Miller indices of the diffracting crystal planes 

which formed them.  Each point on the phosphor screen corresponds to the intersection of 

a crystal direction with the screen.  In particular, the intersections of the Kikuchi bands 

correspond to the intersection of zone axes in the crystal. Therefore, these points are used 

to index the crystal direction for the zone axis and the positions of the Kikuchi bands are 

used to calculate the orientation of the diffracting crystal (Figure 2.25b). So, analysis of 

Kikuchi pattern: Each band = diffraction of a family of planes; Intersections of bands = 

intersections of planes = zone axes; Angles between bands = angles between planes; 

Position of bands, directly linked to the crystallographic orientation. 

The orientation of the crystal lattice is measured with respect to some reference frame. A 

graphical representation of the orientation of the crystal coordinate system in terms of the 

specimen coordinate system is referred to as a pole figure. Conversely, a graphical 

representation of the orientation of the specimen coordinate system in terms of the crystal 

coordinate system is referred to as an inverse pole figure.  

 

Figure 2.24: Formation of backscattered Kikuchi pattern by EBSD in a SEM. (a) Origin 

of Kikuchi lines from the tilted specimen [44]. (b) Schematic illustration of how features 

in the diffraction pattern are related to the crystal structure [45]. 

 

(a) (b)
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Figure 2.25: (a) A diffraction pattern from nickel collected at 20 kV accelerating voltage.  

(b) Indexing of the diffraction pattern. Kikuchi bands are labelled in terms of the Miller 

indices of the crystal planes that generated them (black). The planes project onto the 

screen at the center of the bands. Kikuchi band intersections are labelled with crystal 

direction that meets the screen at this point (white). This direction is the zone axis of the 

planes corresponding to the intersecting Kikuchi bands [45].  

2.3.3 The Focused Ion Beam Instrument 

A focused ion beam (FIB) instrument is very similar to an SEM. While FIB instruments 

can be stand-alone equipment, the one used in our studies, LEO (Zeiss) 1540XB 

FIB/SEM, was incorporated with an SEM to form a dual-beam system with enhanced 

capabilities. The FIB ion column is mounted at an angle of 54° to the sample stage in a 

horizontal position. This system is fitted with a sample transfer airlock compartment that 

allows for rapid sample change without causing significant disruption to the high vacuum 

of the main chamber. It is also fitted with a six axes sample stage that allows for complex 

sample manipulation. Other major components include liquid metal ion source, an ion 

column, an electron column, detectors gas inlets and a computer system used to control 

and operate the instrument.  

 

(a) (b)
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Figure 2.26: A schematic diagram of a basic FIB system showing the major components 

[46]. 

Figure 2.26 shows a schematic diagram of a basic FIB instrument without the electron 

column. Micromachining is carried out by sputter milling that basically involves 

sputtering of atoms from the surface of the material. For milling purposes, a liquid metal 

gallium ion source (LMIS) is needed. Ga+ ions are commonly used for this primarily 

purpose because of its low melting temperature of 29.8 °C.  

The FIB milled micropillars studied in this thesis, for each micropillar fabrication 

process, a 10 nA Ga+ beam was used to mill a larger diameter circular area of 60.0 m 

diameter to 6.0 m diameter to insure the flat punch indenter, used to perform the 

subsequent mechanical testing did not contact the surrounding material while 
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compressing the micro-pillar. A 200 pA Ga+ beam was used to fine polish the 6.0 m 

diameter surface to the desired micropillar diameter from 5.0 to 0.8 m diameter.      

The Ga+ beam is focused to a very small spot size using electromagnetic lenses located 

within the ion column. The focused ion beam can then be very accurately moved 

(rastered) anywhere on the sample surface with the use of electromagnetic scanning coil. 

When the FIB instrument is equipped with an electron beam column, as was the 

instrument used in this study, the focused electron beam can be also scanned across the 

sample surface to monitor the FIB milling process, in real-time and at high resolution 

[46]. 
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Chapter 3  

3 Study of the Size Dependence of Time-dependent Plastic 

Deformation of Au Micropillars and Microspheres1 

 

In this study the length scale dependence of the operative mechanisms of time-dependent 

plastic deformation was studied using room temperature compression tests performed on 

Au micropillars and microspheres of 1.0 to 5.0 µm diameter. The samples tested 

displayed deformation that had a component of random strain jumps. In the case of the 

Au micropillars, the frequency of the strain jumps showed a bilinear dependence upon 

pillar diameter with the frequency being larger, and more sensitive to diameter, when the 

pillar diameter was small (and R was high). We suggest that this indicates a transition 

from deformation occurring by deformation on multiple slip planes to deformation 

occurring predominantly by single-plane dislocation slip when the pillar diameter is less 

than 2 µm. 

The strain jump frequency during the constant-load micropillar creep tests showed a 

linear dependence upon R. Creep tests performed on the microspheres of 5.0 µm 

diameter displayed displacement jump frequency that was essentially independent of the 

applied load while the jump frequency increased with increasing load for the smaller 2.5 

µm diameter microspheres. We suggest that this difference is related to the volume of the 

microsphere. When the volume is small, the component of the deformation that occurs by 

a stochastic dislocation glide process is increased and becomes strongly dependent upon 

the magnitude of the local shear stress. 

 

 

                                                 

1
 The manuscript in this chapter is an extended version of the one published in Materials Research Society 

Proceedings, May 2013 [AZM Islam, R.J. Klassen, MRS Online Proc. Libr., Vol. 1580, pp. 1–6] 
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3.1 Introduction 

Initiation of plastic deformation in very small size samples, about 1 µm in length 

dimension, requires a much higher stress than in larger “bulk” samples. It is generally 

accepted that the stress required to initiate plastic deformation in such small volumes is 

controlled by the process of dislocation nucleation rather than dislocation glide [1–8]. 

Experimental data upon which we base our understanding of the length-scale dependence 

of plasticity are obtained primarily from nano-indentation and micropillar compression 

tests. Recently, micropillar compression tests have provided the most significant data 

owing primarily to their simple uniaxial stress state. Many researchers have reported that 

the overall stress-strain response during uniaxial compression of micron-sized pillars 

displays a “jerky” stochastic nature and the probability of the occurrence and the size of 

the discrete displacement jumps are related to the applied stress [9–13]. When the 

micropillars are subjected to constant-load creep tests the frequency of the displacement 

jumps decreases with increasing creep time and a steady strain rate creep component also 

contributes to the measured creep strain [11,12]. This suggests that multiple mechanisms 

of dislocation nucleation and/or obstacle-limited dislocation glide may contribute to the 

intrinsic creep of sub-micron size metal samples. 

Recently single crystal metal microspheres have been tested in place of micropillars.  

These spheres can be fabricated at a lower cost and in greater quantity than the focused 

ion beam (FIB) milled micropillars. Although these spheres clearly do not undergo 

constant-stress deformation when subjected to uniaxial compression, they display 

stochastic deformation characteristics similar to compressed micropillars. Several 

researchers have produced FCC single-crystalline pure Au microspheres on a sapphire 

substrate by the solid-state diffusion dewetting technique [14–16]. It is this technique that 

we use in this study to investigate the length-scale dependence of the operative 

mechanisms of time-dependent plastic deformation of high purity Au microspheres. In 

this study we also compare the creep response of these Au microspheres to Au 

micropillars made, of the same dimension, using conventional FIB milling techniques.  
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3.2 Experimental 

3.2.1 Micropillar Fabrication 

A 0.5 mm thick foil of 99.99% pure polycrystalline Au was mechanically prepared by 

grinding with successively finer grades of SiC papers followed by final polishing in a 

0.05 µm colloidal alumina slurry. The sample was then annealed at 500C for 12 hours to 

promote grain growth and then chemically etched by emersion, at 25C for about 2 

minutes, in an aqueous solution of 8 wt% Iodine and 21 wt% Potassium Iodide. The Au 

removal rate in this solution was about 28 angstroms per second. The flow diagram of the 

sample preparation is shown in Figure 3.1a. The grain size of the Au was measured 

between 20 to 300 µm (Figure 3.1b). 

Four sets of micropillars, designated A to D, were fabricated by FIB milling at the 

Nanofabrication Laboratory at Western University (London, Ontario, Canada). The 

diameters of the micropillars were approximately 1, 2, 3, and 5 µm and the 

diameter/height ratio was between 1: 1 and 1: 3. Five pillars were fabricated for each set 

of micropillars; two pillars were used for constant loading rate uniaxial compression tests 

and three were used for constant uniaxial load creep tests. In total, nineteen micropillars 

were tested in this study.  

Electron back scatter diffraction (EBSD) was used to index the crystallographic 

orientation of the grains comprising the Au surface upon which the micropillars were 

made. EBSD analysis was performed at The Canadian Centre for Electron Microscopy, 

Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, 

Canada, on the sample by dividing the sample into six areas to capture all the 

micropillars. Figure 3.2 shows SEM images of two areas where most of the micropillars 

were located. The orientation maps and the corresponding inverse pole figure of these 

areas are shown in Figure 3.3. Inverse pole figures are a form of graphical representation 

of the orientation of sample with respect to the conventional (hkl) crystal coordinate 

indices. In the maps the red, green, and blue colors represent the [001], [101], and [111] 

crystallographic directions. The grains from which micropillars are made are designated 
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G1 to G5 as shown in Figure 3.2. Specific geometric and crystallographic details of each 

micropillar are given in Table 3.1.  

 

Figure 3.1: (a) Flow diagram shows the steps involved in the preparation of the bulk Au 

sample for micropillar fabrication. (b) SEM image shows the exposed grains on the Au 

sample. FIB milling was used to fabricate micropillars, identified as G1  G5 (Figure 

3.2), on some of the exposed grains. Grain size: 20  300 µm. 

Grain size: 20 to 300 µm 

Further etched with a commercial gold etchant TFA 

To remove surface roughness Al2O3 polishing particles

Annealed in Oven 

At 500C for 12 hours To allow for grain growth

A small piece (5 mm x 7 mm x 0.5 mm) 

99.99% pure polycrystalline Au 
Prepared by mechanically 

polishing

(a)

(b)
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Figure 3.2: SEM images of the Au grains (a) Area 1 and (b) Area 2, labelled G1 to G5, 

containing the test micropillars. 

 

Figure 3.3: Inverse pole figure showing the crystallographic orientation map of (a) the 

Area 1 (Figure 3.2a) and (b) the Area 2 (Figure 3.2b). The crystal Z direction is normal to 

the surface of the sample. (c) Color key for the maps. 

G1
G2

G3 G4

G5

(a) (b)

(a) (b)

(c)
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Table 3.1: Summary of the geometry and crystallographic orientation of the seventeen 

Au micropillars used in this study. 

Sample 

Name 

Pillar 

Diameter 

(m) 

Pillar 

Height 

(m) 

Axial 

crystallographic 

direction of the 

pillar 

Schmid factor 

for the active 

{111}<110> 

slip system 

(Eq. 3.1) 

Loading 

rate 

(mN/s) 

Test details 

CL = Creep load 

(mN) and Time 

(sec) Top Avg. 

A1 4.97 5.35 6.5 <0.7, 0.5, 0.5> 0.80 0.05 Compression 

A2 4.81 5.30 5.5 <0.7, 0.5, 0.5> 0.37 0.03 CL= 0.20, 3600s 

A4 4.90 5.29 5.7 <0.7, 0.4, 0.6> 0.78 0.04 CL= 0.40, 3600s 

A5 4.80 5.34 6.2 <0.8, 0.5, 0.3> 0.62 0.02 CL= 0.40, 3600s 

B1 2.74 3.01 4.4 <0.7, 0.4, 0.6> 0.63 0.01 CL= 0.20, 3600s 

B2 2.81 3.28 4.4 <0.7, 0.4, 0.6> 0.70 0.01 CL= 0.20, 1800s 

B3 2.80 3.25 4.2 <0.7, 0.4, 0.6> 0.75 0.03 Compression 

B5 2.62 3.22 4.4 <0, 0.2, 0.9> 0.50 0.04 Compression 

C1 1.99 2.49 3.2 <0.7, 0.4, 0.6> 0.46 0.01 CL= 0.20, 1800s 

C2 1.60 1.81 3.5 <0.7, 0.4, 0.6> 0.78 0.01 CL= 0.20, 1800s 

C3 1.70 2.20 2.9 <0.8, 0.5, 0.3> 0.79 0.02 CL= 0.15, 1800s 

C4 1.74 2.14 3.2 <0.7, 0.5, 0.5> 0.75 0.03 Compression 

C5 1.76 2.10 3.4 <0.7, 0.4, 0.6> 0.46 0.01 CL= 0.15, 1800s 

D1 0.80 1.08 1.7 <0.7, 0.4, 0.6> 0.72 0.05 Compression 

D2 0.84 1.20 2.3 <0.8, 0.5, 0.3> 0.67 0.01 CL= 0.10, 1800s 

D3 0.74 1.16 1.9 <0.7, 0.4, 0.6> 0.57 0.01 CL= 0.10, 1800s 

D4 0.87 0.98 1.8 <0.7, 0.5, 0.5> 0.65 0.01 CL= 0.10, 1800s 

 

3.2.2 Microsphere Fabrication 

Gold microspheres were fabricated on a (0001) sapphire surface. An A8 PMMA positive 

photoresist layer was spin-deposited on the sapphire surface and e-beam lithography was 

used to project a grid of 2.5 and 5.0 µm diameter circles upon the photoresist. After the 

exposed photoresist was removed, a polycrystalline Au film of 300 nm thickness was 

deposited by e-beam evaporation. The remaining photoresist was then removed and the 

2.5 and 5.0 µm diameter, 0.3 µm thick, Au cylinders were annealed in-vacuum at 

1000C. During this anneal the Au dewetted from the sapphire substrate and took the 

form of a single-crystal sphere, of 2.5 to 5.0 µm diameter, oriented with the <111> 

direction normal to the sapphire surface [14]. This lithographic/deposition procedure 

ensured that Au spheres of precise diameter and spacing were produced which we could 
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subsequently be test in compression. Twenty two Au microspheres were made and tested 

in this study (Figure 3.4). 

 

Figure 3.4: Shows the array (5 * 7 matrixes) of 2.5 and 5.0 µm microspheres fabricated 

using e-beam lithography patterning technique.  
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Table 3.2: Summary of the geometry of the Au microspheres used in this creep study. 

Specimen 

Designation 

Sphere 

diameter 

(m) 

Loading rate 

(mN/sec) 

Creep test details 

Creep load (mN) Time (s) 

C1R6 2.4 0.01 0.10 3600 

C3R6 2.5 0.01 0.10 3600 

C4R5 2.4 0.01 0.15 3600 

C5R7 2.4 0.01 0.15 3600 

C5R5 2.5 0.01 0.20 3600 

C4R7 2.5 0.01 0.25 3600 

C5R4 2.5 0.02 0.25 3600 

C1R5 2.5 0.02 0.30 1800 

C3R4 2.5 0.02 0.35 1800 

C4R4 2.5 0.02 0.40 1800 

D4R7 5.6 0.01 0.30 3600 

D1R5 5.5 0.02 0.40 3600 

D4R6 5.5 0.02 0.50 3600 

D5R4 5.8 0.04 0.60 3600 

D4R4 5.5 0.04 0.60 1800 

D5R7 5.9 0.04 0.70 3600 

D5R6 5.6 0.04 0.70 1800 

D1R4 6.2 0.04 0.80 3600 

D5R5 5.5 0.04 0.80 3600 

D1R7 6.0 0.04 0.90 3600 

D4R5 5.6 0.05 0.90 3600 

D2R6 6.3 0.05 1.10 3600 

 

3.2.3 Micro-compression Tests 

The Au micropillars and microspheres were compressed with an instrumented micro-

indentation tester (Micro Materials Ltd., Wrexham UK) fitted with a diamond flat punch 

indenter. The contact face of the flat punch was in the shape of an equilateral triangle 

with 8.7 µm sides. An optical microscope and a computer-controlled translation stage 

were used to position the test samples in line with the flat punch.  

The micropillars and microspheres were tested by compression at loading rates between 

0.01 and 0.05 mN/sec. During these tests the applied load and the displacement of the 
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punch were recorded about every 0.5 sec. Constant-load creep tests were also performed 

by compressing the samples to a prescribed load and then holding the load constant for 

1800 to 3600 seconds while recording the displacement of the punch about every 10 

seconds. From these data the average stress and strain in the test samples could be 

determined.  Table 3.1 and Table 3.2 provide specific details for the seventeen 

micropillar and the twenty two microsphere compression tests performed in this study. 

3.3 Results and Discussion 

3.3.1 Uniaxial Compression of the Au Micropillars and Microspheres 

Figure 3.5 and Figure 3.6, show SEM micrographs taken before and after the 

compression of several Au micropillars and microspheres. The 5 µm diameter 

micropillars showed considerable increase in diameter after compression, indicating the 

occurrence of uniform plastic deformation, while the smaller diameter micropillars 

deformed by localized shear on specific slip planes. 

The true stress – true strain plots for a representative micropillar from each of the four 

pillar diameters is shown in Figure 3.7a. The true stress – true strain curve for the largest, 

5 µm, diameter pillars were smooth and almost identical in shape and magnitude to those 

reported by Greer et al. [1,2] for similar size Au pillars. The smaller diameter pillars 

showed irregular “stepped” stress – strain response similar to what was reported by others 

[2,5,9]. The frequency of the “steps” increased with decreasing pillar diameter. This 

supports previous theories that plastic flow in the small diameter Au micropillars occurs 

by the sudden collective motion of dislocations along specific slip systems [2,4,10,13].  

The flow stress is clearly larger for the small diameter pillars compared to the large 

diameter pillars. Figure 3.7b shows a logarithmic true stress – true strain plot of the same 

data as in Figure 3.7a. The strain-hardening coefficient n, indicated by the slope of the 

data ranges between n = 0.24 and 0.40 which is of similar magnitude to previously 

reported values of n = 0.20 – 0.25 obtained from large-specimen uniaxial testing of Au 

[17].  



60 

 

The comparison of flow stress at 5 and 10% strain for all diameter micropillars is plotted 

in Figure 3.8. At 5% strain, the average flow stress of the 1 and 5 µm pillars is about 240 

and 45 MPa, which shows an almost 5 times increase in strength for the smaller pillar. 

Similarly, at 10% strain, the strength increases about 4 times when the pillar diameter 

decreased from 5 to 1 µm. A significant increase in strength and change of work 

hardening of the Au micropillars were observed as a function of decreasing diameter.  

 

 

 

 

(a) 1 m

(b) 2 m
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Figure 3.5: SEM images before and after deformation of: (a) 1, (b) 2, (c) 3 and (d) 5 µm 

diameter Au micropillars.  

 

 

 

 

(d) 5 m

(c) 3 m
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Figure 3.6: SEM images before and after deformation of: (a) 2.5 and (b) 5.0 µm diameter 

Au microspheres. The sapphire substrate is nonconductive and the fabricated 

microspheres were not connected to each other, thus a ~15 nm thick layer of Cr was 

deposited on the samples to promote electrical conduction and reduce charging during 

SEM imaging. Some deposited Cr particle can be seen on the surface of the 

microspheres. 

 

 

(a) 2.5 m

(b) 5.0 m
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Figure 3.7: (a) Plot of true normal stress versus normal strain for one representative test 

performed on each Au micropillar diameter and (b) logarithmic true stress – true strain 

plot of the same data as in Figure 3.7a. 
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Figure 3.8: Representation of the changes of flow stresses at two different strain (5% and 

10%) with decreasing pillar diameter from 5 to 1 µm. The dotted lines represents power 

law fitting.   

In the FCC materials slip occurs along < 110 > directions upon the closed-packed {111} 

planes. Therefore, {111} < 110 > represents the operative slip system for FCC crystals. 

The FCC materials contains four unique closed-packed planes of the form {111} and 

three independent closed-packed directions of the form < 110 > upon each plane. Thus, 

a total of twelve possible slip systems exist. For each micropillar the applied shear stress 

𝜏𝑅 acting upon the active slip plane in the direction of dislocation motion was calculated 

as 

 𝜏𝑅 = 𝜎(cos 𝜙)(cos 𝜆) (2.1)  

Where,  is the applied normal compressive stress,  and  are the angles between the 

loading direction and the normals to the slip plane and the slip direction respectively. The 

system on which slip occurs is the one which possesses the largest Schmid factor, 

(cos 𝜙)(cos 𝜆). The angles  and  were determined from the EBSD data and 

measurements taken from the SEM images of the deformed micropillars.  
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Figure 3.9 shows 𝜏𝑅, corresponding to 3% plastic strain, versus micropillar diameter. 

𝜏𝑅 increased at a low rate with decreasing pillar diameter between 2 and 5 µm but with 

considerably increased rate when the pillar diameter is smaller, in the range from 1 to 2 

µm. Comparing the images of the deformed micropillars (Figure 3.5) with the trends 

shown in Figure 3.9 suggests that this change in dependence of 𝜏𝑅 upon pillar diameter 

coincides with the change in deformation from one of dislocation multiple-slip, in the 

large diameter micropillars, to one of predominantly single-slip in the small diameter 

micropillars. 

 

Figure 3.9: Resolved shear flow stress R (Eq. 3.1) necessary for 3% strain versus Au 

micropillar diameter. 
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3.3.2 Time-dependent Plastic Deformation 

Room temperature time-dependent plastic deformation behavior of Au was studied for all 

the four (1, 2, 3 and 5 µm) diameter micropillars and the two (2.5 and 5.0 µm) diameter 

microspheres. For this study, the maximum creep load was selected below the yield load 

of Au micropillars and spheres, and the flat-punch indenter was held at that selected load 

for about 3600 seconds for larger diameter pillars and spheres (5.0 µm), and 1800 

seconds for smaller diameter pillars (1 and 2 µm) and spheres (2.5 µm). Time-depth 

response data were recorded during the holding period. The details of the specimen size 

and creep test of both micropillar and microsphere are tabulated in Table 3.1 and Table 

3.2.  

Figure 3.10 shows plots of micropillar displacement versus time during the constant-load 

creep of representative samples of large- and small-diameter Au micropillars. All the 

samples that we tested displayed deflection-time responses consisting of sudden strain 

jumps superimposed upon uniform time-dependent deformation. Analysis of our creep 

data indicated that the applied force varied by less than 6% over the duration of these 

constant force creep tests and, thus, the observed strain jumps were not directly related to 

significant changes in the applied load to the test sample. The observed strain jumps are 

similar to previously reported findings [11–13]. The frequency of deflection jumps and 

the resulting normal strain  are shown as a function of R in Figure 3.11. The average 

strain jumps per hour is plotted against micropillar diameter shown in Figure 3.12. The 

average frequency of strain jumps linearly decreased with increasing pillar diameter. The 

magnitude of deformation resulting from stochastic strain jumps increases with the 

increasing applied shear stress R. Since the magnitude of R is larger for the small 

diameter micropillars (Figure 3.9) the contribution from stochastic strain jumps to the 

total creep strain is also considerably larger for these micropillars.  
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Figure 3.10: Representative displacement-time curves from constant-load creep tests 

performed on (a) 1 and (b) 5 µm diameter Au micropillars. The applied load, F is 

indicated on each graph. 

 

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

D
e

p
th

 (n
m

)

Time (sec)

F = 0.10 mN

0

50

100

150

200

250

300

0 1000 2000 3000 4000

D
e

p
th

 (n
m

)

Time (sec)

F = 0.40 mN

1 m

5 m

(a)

(b)



68 

 

 

Figure 3.11: Relationship between (a) the frequency of strain jumps and (b) the resulting 

normal strain  versus the applied resolved shear stress R for the Au micropillars tested 

in constant-uniaxial load compression. 
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Figure 3.12: Average frequency of strain jumps for four diameters (1, 2, 3 and 5 µm) Au 

micropillars during constant uniaxial load creep tests. 

A total of twenty-two Au microspheres, 2.5 and 5.0 µm diameter, were tested in this 

study (Table 3.2). Figure 3.13 shows plots of microsphere displacement versus time 

during the constant-load creep of representative samples of large- and small-diameter Au 

microspheres. During constant-load creep of the Au microspheres deformation occurs as 

a result of a complex state of stress within the sample. The frequency of displacement 

jumps was calculated and plotted them as a function of applied force (Figure 3.14). While 

it is clear that the stress state within the deforming microspheres is variable, and highly 

complex, comparison of the dependence of the deformation jump frequency to the 

applied load for creep tests performed on microspheres of the same initial diameter gives 

insight to the operative mechanisms of time-dependent deformation. Figure 3.14b 

indicates that for the large 5.0 µm diameter microspheres, the rate at which deflection 

jumps occur is essentially independent of applied load while for the smaller 2.5 µm 

diameter microspheres, the deflection jump rate increases with increasing applied load 

(Figure 3.13a). 
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Figure 3.13: Representative displacement-time curves from constant-load creep tests 

performed on (a) 2.5 and (b) 5.0 µm diameter Au microsphere. The applied creep load, F 

is indicated on each graph. 
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Figure 3.14: Strain jump frequency versus applied compressive load for (a) 2.5 and (b) 

5.0 µm diameter Au microspheres. 
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3.4 Conclusions 

In this study the length scale dependence of the operative mechanisms of time-dependent 

plastic deformation was studied using compression tests performed on Au micropillars 

and microspheres of 1.0 to 5.0 µm diameter. The samples were tested at room 

temperature and displayed deformation that had a component of random strain jumps. In 

the case of the Au micropillars, the frequency of the strain jumps showed a bilinear 

dependence upon pillar diameter with the frequency being larger, and more sensitive to 

diameter, when the pillar diameter was small (and R was high). We suggest that this 

indicates a transition from deformation occurring by multiple-slip to deformation 

occurring predominantly by single-plane dislocation slip when the pillar diameter is less 

than 2 µm.  

The strain jump frequency during the constant-load micropillar creep tests showed a 

linear dependence upon R. Constant-load creep tests performed on the microspheres of 

5.0 µm diameter displayed displacement jump frequency that was essentially independent 

of applied load while the jump frequency increased with increasing load for the smaller 

2.5 µm diameter microspheres. We suggest that this difference is related to the volume of 

the microsphere: when the volume is small, the component of the deformation that occurs 

by a stochastic dislocation glide process is increased and becomes strongly dependent 

upon the magnitude of the applied local shear stress. 

The next chapter of this thesis will present the kinetics of size and strain rate dependence 

of plastic deformation of Au microspheres of size ranges between 0.8 and 6.0 µm 

diameter.  
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Chapter 4  

4 Plastic Deformation of Gold Microspheres 

 

In this chapter size and strain rate dependence of plastic deformation of Au microspheres 

was investigated at room-temperature using micro-compression testing. The contact yield 

stress was observed to increase from 210 MPa for 6.0 µm to 865 MPa for 0.8 µm 

diameter spheres. The apparent activation volume, V*, associated with the rate dependent 

plastic deformation remained constant at 4 – 6b3 for 0.8 and 1.0 µm spheres over strains 

up to 20% whereas it displayed an increasing trend from 12 – 42b3 for 3.0 and 6.0 µm 

diameter specimens. These findings suggest that the operative deformation mechanism 

was dependent upon the diameter of the sphere. Our test data suggest that the larger 

spheres deformed by a mechanism of dislocation-obstacle limited glide whereas, the 

smaller spheres deformed by a dislocation-starvation mechanism. 

4.1 Introduction 

Nano-/micro electro-mechanical systems (NEMS/MEMS) are being used in many 

sophisticated applications such as in bio-medical and microelectronics devices. For the 

development of these advanced systems, constituting materials are used in small 

volumes. Therefore, understanding mechanical behavior of samples with very small 

volumes is absolutely necessary in order to realize the full potential of these emerging 

nano-/micro-technologies [1]. In particular, the use of microspherical particles is being 

explored as drug delivery systems in biomedical applications [2]. Additionally, these 

structures are of wide interest in nanotechnology because of their potential use in the 

fabrication of nano-scale electrical devices, such as transistors and resistors [3]. 

Information about their mechanical properties and deformation mechanisms is essential 

to understanding their performance during manufacturing, processing and end-user 

applications.  
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The topic of mechanical behavior of materials in small volumes has been of tremendous 

interest to the scientific community for over the past few decades [4]. In bulk form, the 

yield stress and strength of the material remain essentially independent of the sample size 

because the sample dimensions are large compared to the length scale characterizing the 

material’s microstructure. However, when the critical dimensions of a device approach 

the size of the material’s microstructure a size effect prevails and the bulk properties can 

no longer be used to predict mechanical behavior [5].  

In initial studies, the measured hardness of common materials displays an inverse 

dependence upon the indentation depth and this was explained in terms of hardening 

associated with the formation of geometrical necessary dislocations (GNDs) to 

accommodate the large strain gradients imposed by the nanoindentation process [6,7].  

Recently, micro-compression tests on focused ion beam (FIB) machined nano- and 

micro-pillars have shown that single crystalline metals containing dislocations also 

display size dependent yield stress even in the absence of strain gradients [5,6,8–10]. 

These high strengths were associated with the dislocation starved conditions that prevail 

in small volumes, causing the operative deformation mechanism to be limited solely by 

the dislocation nucleation process at the sample surface rather than dislocation-obstacle 

interactions within the sample. While all of these studies are consistent with the tenet that 

smaller is stronger, a unified plasticity mechanism encompassing all deformation length 

scales has yet to be established [1,11]. 

In this work, we have investigated the size and strain rate dependence of the mechanical 

behavior of metallic microspheres. For this purpose, Gold (Au) spheres of four sizes (0.8 

to 6.0 µm diameters) were fabricated and micro-compression tests were performed at 

different loading rates. FE analysis was performed to estimate the stress-strain 

distribution within the compressed microspheres. Finally, the strain rate dependence of 

the estimated flow stress of the different size microspheres was investigated to determine 

the operative deformation mechanism. 
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4.2 Materials and Methods 

4.2.1 Sample Preparation 

 

 

Figure 4.1: (a) Schematic diagram showing the steps used to fabricate Au microspheres 

and (b) the fabricated Au microspheres are equidistant from each other, therefore no 

mechanical manipulator is needed to isolate them for compression testing.       
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Gold microspheres were fabricated on a (0001)-oriented sapphire (α-Al2O3) surface. An 

A8 PMMA positive photoresist layer was spin-coated on the O2 plasma cleaned sapphire 

surface and e-beam lithography was used to project a grid of 1.5 to 12.0 µm diameter 

circles upon the photoresist. After the exposed photoresist was removed, a polycrystalline 

Au film of 100 to 600 nm thickness was deposited by e-beam evaporation. The remaining 

photoresist was then removed and the resulting Au cylinders, of 1.5 to 12.0 µm diameter 

and 0.1 to 0.6 µm height, were annealed in-vacuum at 1000C (Figure 4.1). During 

annealing the Au de-wetted from the sapphire substrate and took the form of facetted 

single-crystal spheres of 0.8 to 6.0 µm diameter (Figure 4.2). The facets were {111} close 

packed planes [12–14]. About 100 Au microspheres were fabricated for each diameter. 

As the sapphire substrate is nonconductive, and the fabricated microspheres were not 

connected to each other, a 10 – 15 nm thick layer of Cr was deposited on the microsphere 

pattern surface to improve the SEM imaging. Post-imaging, Cr layer was removed with 

Hydrofluoric (HF) acid to perform compression tests on the microspheres. Similarly, the 

deformed microspheres were imaged by depositing 10 – 15 nm thick layer of Cr.  

4.2.2 Microsphere Compression 

The Au microspheres were compressed with an instrumented NanoTest platform by 

Micro Materials Ltd (Wrexham, UK) fitted with a 9 µm diameter diamond flat punch 

indenter. About 60 compression tests were performed for four different sized spheres. 

The compression tests were carried out by loading the indenter at a constant loading rate 

to a maximum depth of about 20% of the initial sphere diameter. The loading rates, 

ranged from 0.01 to 1.00 mN/sec, and were used to study the strain rate dependence of 

plastic deformation of the spheres. 
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Figure 4.2: SEM images of as fabricated (a) 0.8 and (b) 3.0 µm diameter Au 

microspheres. Facets are marked by white dotted lines in the image (a). 

 

 

(a) 

(b) 
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4.2.3 Finite Element Simulations 

FE simulations of the microsphere compression were performed using the mesh shown in 

Figure 4.3. The shape and dimension of the microsphere were obtained from 

measurements made from SEM images. In the simulation, the flat-punch indenter and the 

substrate were assumed to be analytical rigid and frictionless. The microsphere was 

meshed with 4-node linear axisymmetric quadrilateral elements. 

 

Figure 4.3: Schematic representation of the FE mesh used in this study. The dimension 

of the different Au microspheres analyzed is shown in the insets. 

The compression process was simulated by imposing downward displacement of the 

nodes at the flat punch/sphere interface (Region A in Figure 4.3). All simulations were 

performed by defining multiple analysis steps. Isotropic elastic properties of the gold, 

Young’s Modulus, E = 79 GPa [15] and Poisson’s ratio,  = 0.42 [16], were used. The 

force-depth response obtained from the simulation (Figure 4.4) was matched with the 

experimental force-depth response curve for the tested microspheres, by adjusting the 

multi-linear rate-dependent isotropic plastic flow properties of Au in the FE model [17]. 
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In total, 12 models were created for four different diameter microspheres (0.8 to 6.0 µm) 

compressed at three loading-rates.  

 

Figure 4.4: FE simulated F-h curves matched with experiment F-h curves: (a) 0.8 and (b) 

6.0 µm Au spheres. 
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4.3 Results 

4.3.1 Experimental Micro-compression Tests 

Figure 4.5 shows the experimental force-displacement (F-h) curves for the smaller, 0.8 

and 1.0 µm, and larger, 3.0 and 6.0 µm, diameter microspheres compressed at loading 

rates of 0.01 to 1.0 mN/sec. The deformation force F of the small 0.8 µm diameter 

spheres shows a strong dependence upon the loading rate.  

Besides loading rate dependence, discrete load jumps in the F-h curves were observed for 

the tested spheres and the frequency of these jumps increased with decreasing sphere 

diameter. 

Similar load-jump features were previously reported in nanoindentation and nano-/micro-

pillar compression studies and were associated with the initiation of dislocation 

nucleation/avalanche events in nano-sized crystalline samples [1,4,5,10–14]. SEM 

images of the deformed 3.0 and 6.0 µm diameter spheres are shown in Figure 4.6. 

Multiple slips lines corresponding to {111}<110> slip systems can be seen. 
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Figure 4.5: Experimentally obtained force, F versus displacement, h response for (a) 0.8, 

(b) 1.0, (c) 3.0 and (d) 6.0 µm Au microspheres loaded at three different rates. The insets 

are the initial part of the F-h curve at the same scale as Fig. 4.5a. 
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Figure 4.6: Compressed microspheres (a) 3.0 and (b) 6.0 µm. In these images, multiple 

slips lines corresponding to {111}<110> slip systems are visible. 

The apparent contact stress corresponding to the start of plastic yielding of the Au 

microspheres was expressed as the initial yielding force divided by the area of the {111} 

facet at the top of the sphere upon which the flat-punch indenter contacted. In this way 

the maximum contact stress of the smallest, 0.8 µm, diameter sphere was estimated to be 

between 670 MPa and 2 GPa while the largest, 6.0 µm, diameter sphere was between 210 

and 350 MPa over the three loading rates tested.  

Bei et al. [18] have shown that surface damage from the FIB milling pillars can affect the 

response of a compressed structure, and will minimize displacements bursts during its 

testing. The microspheres tested in this study show the true response of the materials 

since they are fully annealed monocrystalline samples made without the use of ion 

milling. 

 

 

 

 

(a) 3.0 µm (b) 6.0 µm 
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4.3.2 Stress-Strain Curve from FE Simulation 

The stress-strain distribution in the compressed spheres was analyzed using FE 

simulations. The von Mises stress-strain data were collected for each load-depth 

increment from the nodes along the axis of rotation of the FE model of the microsphere. 

The distribution of the von Mises equivalent stress and strain along the axis of rotation 

during plastic deformation at highest loading rates is plotted in Figure 4.7.  

The average von Mises stress-strain data, collected from the nodes along the axis of 

symmetry of the model, were recorded for each load-depth increment. Figure 4.8 shows 

the average von Mises stress versus von Mises strain curves for the 0.8, 1.0, 3.0 and 6.0 

µm diameter microspheres compressed at the three loading rates. The yield stress 

increases with increasing loading rates for all size microspheres; however, the yield stress 

of the smallest spheres displayed significantly greater loading rate dependence. The von 

Mises stress values, corresponding to 20% von Mises strain, for 0.8 µm spheres increased 

from 275 to 425 MPa with increasing loading rate from 0.01 to 0.10 mN/s whereas for 

largest 6.0 µm diameter spheres they increased from 215 to 225 MPa. These data indicate 

that the strain rate dependence of yield stress is increased with decreasing sphere 

diameter. 
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Figure 4.7: von Mises equivalent plastic, (a) stress and (b) strain distribution at the 

highest loading rates of the Au microspheres during micro-compression. In these plots, 

h/R is the normalized distance along the axis of rotation of the sphere during 

compression, h is the deformed sphere depth and R is the sphere radius (Figure 4.3). 
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Figure 4.8: von Mises stress verses strain responses for the (a) 0.8, (b) 1.0, (c) 3.0 and 

(d) 6.0 µm diameter Au microspheres obtained from FE analyses performed at three 

loading rates. 
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4.4 Discussion 

Besides enhanced strain rate sensitivity with decreasing sphere size it is clear from Figure 

4.8 that, for a particular strain and strain rate, small diameter spheres display a higher 

flow stress than large diameter spheres and this is consistent with previously reported 

length scale-dependence of plasticity [1,4,5,8,9,11]. The strain, strain rate, and 

temperature dependence of the flow stress  of plastically deforming metals is often 

described in terms of the following Arrhenius relationship [19]; 

 𝜎 = 𝐴𝜀𝑛𝜀̇𝑚𝑒𝑥𝑝 [−
𝑄

𝑅𝑇
] (4.1)  

where 𝜀 is strain, 𝜀̇ is strain rate, A is a material constant, n is the strain hardening 

exponent, m is the strain rate sensitivity, Q is the activation energy, T is the absolute 

temperature and R is the universal gas constant.  

Figure 4.9a shows the strain dependence of the flow stress at strain rates of 3.9*10-2 sec-1, 

1.4*10-1 sec-1 and 2.6*10-1 sec-1 at 295k for 0.8 µm diameter spheres. The calculated 

values of n are 0.30, 0.27, and 0.26 respectively. These values of n are significantly less 

than those of the larger 6.0 µm diameter spheres (Figure 4.9c)  

For 0.8 µm diameter microspheres, the calculated values of the strain rate sensitivity m, 

corresponding to four constant 𝜀 values of 0.05, 0.10, 0.15, 0.20, were 0.30, 0.28, 0.26, 

and 0.24 (Figure 4.9b). Which was considerably more than the m values for the 6.0 µm 

diameter microspheres (Figure 4.9d). 
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Figure 4.9: (a) and (c) Log () vs. Log () plots showing the effect of strain rate on n and 

(b) and (d) Log () vs. Log (strain rate) plots showing the effect of strain on m for 0.8 

and 6.0 µm Au spheres. 

Figure 4.10 shows n (plotted against 𝜀̇) and m (plotted against 𝜀) for all the microsphere 

diameters tested in this study. The strain-hardening exponent n for the larger, 6.0 and 3.0 

µm diameter spheres ranged between 0.40 – 0.50 and showed clear strain rate 

dependence. These values are consistent with those reported in the literature for bulk soft 

FCC metals [19].  The calculated n values for the smaller (0.8 to 1.0 µm) diameter Au 

microspheres were, however, lower, approximately 0.3, and were significantly less 

dependent upon the strain rate. These noticeable differences between the smaller and 

larger diameter spheres indicate that the smaller spheres deform differently than the 

larger spheres, which undergo plastic deformation similar to bulk metals. 
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Figure 4.10: (a) Strain hardening exponent, n and (b) Strain rate sensitivity, m for all 

diameters Au microspheres tested in this study. 
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The values of m, Figure 4.10b, increased with decreasing sphere diameter indicating that 

the flow stress becomes more strain rate-sensitive in the smaller diameter sphere. For the 

6.0 µm diameter sphere, m decreased from 0.08 to 0.03 as the 𝜀 increased from 0.05 to 

0.20. The m value of 0.03 is typical of bulk FCC metals [20]. This is another indication 

that the large diameter Au microspheres deformed in a manner similar to bulk Au. The 

smaller diameter spheres (0.8 – 1.0 µm) displayed significantly higher m value ranging 

between 0.2 – 0.3. 

The strain rate dependence of the deformation behavior sheds light on the operative 

deformation mechanism. Some recent attempts have been made to characterize the length 

scale dependence of the strain rate sensitivity of the flow stress of nanocrystalline Ni. In 

these studies it was observed that nanocrystalline Ni, displayed higher strain rate 

sensitivity than normal Ni [21]. A notable effect of both strain rate and sample size on the 

compressive strength of single crystalline Cu nanostructures was also reported by 

Jennings et al., they observed that smallest diameter (125 nm) Cu nanostructure 

displayed, a flow stress with a clear strain rate sensitivity arising from the operation of 

thermally-activated surface dislocation sources [22]. 

In pure metals, such as Au samples studied here, mobile dislocations are frequently 

obstructed by various obstacles, such as point defects and other dislocations and these 

barriers are overcome by thermal activation. The strength for impeding dislocation glide 

is characterized by their apparent activation volume, 𝑉∗ [23,24]. 

In the deformation of small volume samples, such as our 0.8 µm diameter Au spheres, 

dislocation nucleation from the sample surface is very likely to contribute significantly to 

the deformation process and thus affect the measured activation volume. Atomistic 

simulations have predicted dislocation nucleation from free surfaces has an apparent 

activation volume of 1~10b3 which would result in a significant thermal contribution to 

the source’s strength [25]. Dislocation cross-slip in conventional crossed grained FCC 

materials has a broad range of activation volumes ~10~100b3 [26]. The operation of 

Fank-Read dislocation sources, whose activation volume is relatively large, 

~100~1000b3, would make an almost negligible thermal contribution to its strength [24]. 
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Because of their different thermal activation characteristics, the variation of activation 

volumes between the two mechanisms, dislocation of nucleations from surfaces and 

dislocation nucleation from internal Frank-Read sources, should show considerably 

different strain rate dependence. Surface dislocation nucleation mechanism is highly 

strain rate dependent while dislocation nucleation from internal Frank-Read sources will 

have minimal strain rate dependence [22]. 

Using the strain rate sensitivity values m, 𝑉∗ can be calculated using the following 

equation [27–29]; 

 𝑉∗ = √3𝑘𝑇/𝑚𝜎 (4.2)  

Where  is the applied stress, k is the Boltzmann constant and T is the absolute 

temperature. Using the above relationship, the strain dependence of estimated activation 

volumes of all Au microspheres is illustrated in Figure 4.11.  

 

Figure 4.11: Apparent activation volume V* plotted as a function of strain for the 

different diameter Au microspheres. 
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The obtained V* values were converted to parameters of apparent activation energy Q*, 

necessary for a dislocation to overcome the obstacles that impede its movement through 

the sample using the relation, 𝑄∗ = 𝜏0𝐾𝑉∗ [30], (Table 4.1). In order to estimate the total 

athermal apparent activation energy, Q* (0K.V*), of deformation rate controlling 

obstacles, athermal stress, 0K = 256 MPa was used [31]. When the strain increased from 

5 to 20%, the estimated athermal Q* value ranged between 0.16 to 0.14 eV for 0.8 µm 

sphere, and 1.10 to 1.61 eV for 6.0 µm sphere. In the case when Q* ~ 0.2 eV, dislocation 

obstacle strength is weak and dislocation glide is essentially controlled by the lattice 

resistance [31]. This is observed for our small diameter Au spheres (Table 4.1). For the 

larger diameter spheres, Q* is between 1 to 2 eV which suggests that deformation is 

controlled by a mechanism of obstacle-limited dislocation glide [31]. In the case of the 

larger diameter Au spheres in this study, the internal obstacles to dislocation glide will be 

dislocation-dislocation interactions. 

Table 4.1: The estimated apparent activation energy during Au sphere deformation. 

Sphere Size 

(µm) 

Apparent activation energy, Q* in eV at different level of strain 

5% 10% 15% 20% 

0.8 0.16 0.14 0.14 0.14 

1.0 0.22 0.19 0.19 0.19 

3.0 0.45 0.55 0.73 0.81 

6.0 1.10 1.15 1.47 1.61 

Figure 4.11 shows the calculated V* versus strain for the Au microspheres in this study. 

The plotted V* are normalized with respect to b3, where the Burgers vector of Au is taken 

as b = 0.289 nm [32,33]. The V* remained independent of strain during compression, 

with approximately a constant value of 4 – 6b3, for the smaller diameter, 0.8 and 1.0 µm, 

spheres whereas, for larger diameter, 3.0 and 6.0 µm spheres, the estimated V* increased 

from 12 – 42b3, with increasing strain. The low V* values, 4 – 6b3, for the smaller 

diameter spheres in this work are similar to previously reported estimates for FCC metals 

by Mook and Gerberich [34], and are characteristic of dislocation nucleation events 

during plastic deformation. These findings are also consistent with frequent discrete load 
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jumps that were observed in the F-h curves for 0.8 and 1.0 µm spheres (Figure 4.4a–b) 

and suggest that plastic deformation for these smaller diameter spheres is controlled by a 

dislocation nucleation mechanism. This notion is further supported by high contact stress 

estimations (~ 865MPa) for the smaller spheres. These contact stress values are close in 

magnitude to the calculated ideal shear strength for Au (~ 800MPa) [35]. On the other 

hand, the larger, 3.0 and 6.0 µm, diameter spheres displayed smoother F-h curves (Figure 

4.4c–d) and deformed at much lower contact stresses (340 – 210 MPa). Also, the V* 

magnitude (12 – 42b3) and its tendency to increase with increasing strain are typical of 

the operation of a dislocation-obstacle interaction limited deformation mechanism which 

is common in bulk ductile metals [23].  

4.5 Conclusions 

In this study the dependence of the plastic deformation of Au microspheres upon sphere 

diameter (0.8 – 6.0 µm) and strain rate at ambient temperature is investigated using 

micro-compression testing. Our study observed that the dependence of flow stress upon 

both strain and strain rate was lightly dependent upon the diameter of the Au 

microspheres. Analysis of the apparent activation volume, V* and energy Q* of the 

deformation process indicated that the operative deformation mechanism, for the small 

0.8 – 1.0 µm diameter spheres was typical of a mechanism limited by the surface 

nucleation of dislocation, and for larger 3.0 – 6.0 µm diameter spheres was controlled by 

the dislocation-obstacle interaction limited mechanism, which is typical for bulk FCC 

metals. These findings are particularly important in case of emerging nano/micro-

technologies, making use of materials at ever decreasing scales.  

The next chapter of this thesis will present the kinetics of size and strain rate dependence 

of incipient plastic deformation of these small size Au microspheres.  
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Chapter 5  

5 Kinetics of Incipient Plasticity of Gold Microspheres 

 

Flat-punch micro-compression testing was employed to investigate the strain rate 

dependence of incipient plastic deformation in Au microspheres of diameter ranging from 

0.8 to 6.0 µm. While the load corresponding to the onset of incipient plasticity increased 

with decreasing sphere diameter, the magnitude of this critical load also increased with 

increasing loading rate. This size dependence of the critical incipient load was attributed 

to the presence of vacancies whose density increased with increasing microsphere size. A 

thermal activation based model was used to interpret the loading-rate dependence of 

measured incipient loads, apparent activation volume, V*, and energy, Q*, values were 

found to be 0.2b3 and 0.01eV for 0.8 µm sphere and increased to 2.1b3 and 0.08eV for 6.0 

µm spheres. These estimated values indicate that the incipient plasticity is controlled by 

heterogeneous nucleation events and are consistent with surface self-diffusion 

mechanism, implying that surface played a prominent role during the onset of plastic 

deformation in tested microspheres. 

5.1 Introduction 

Micro-spherical particles are currently being used in applications as diverse as bio-

medical drug delivery systems to large surface area electrodes energy-storage devices. 

Their usefulness in these applications arises from their high surface to volume ratio and 

ease of fabrication. Furthermore, it is well established that materials when used at small-

scales, ranging from nano- to micro-meter size, display considerably enhanced 

mechanical properties compared to their bulk counterparts [1–10].  

Many small-scale uniaxial compression or indentation hardness studies have observed 

that plastic deformation occurs by stochastic mechanism of discrete “displacement 

jumps” corresponding to the motion of single or groups of dislocations [11–14]. The 

nucleation of the first dislocation during small scale experiments is assumed to occur 
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homogenously within the material when the magnitude of the shear stress within the 

deformed volume approaches the theoretical shear strength of the material [15–20]. 

Nanoindentation hardness have shown that strain jumps associated with dislocation 

nucleation occur at a stress level that corresponds to nearly the ultimate shear strength of 

the material. 

William Paul et al. [21] investigated the initial plastic damage to a 100 nm thick Au (111) 

single crystal using a well-defined W (111) indenter with the combination of scanning 

tunneling microscopy (STM) and atomic force microscopy (AFM) and found the stress 

corresponding to the initial displacement jump events was much lower than the 

theoretical shear strength, which suggests that dislocations were inhomogenously 

nucleated within the bulk.  

The theoretical strength representing the atomic bonding strength of a material, is very 

high in comparison to its measured bulk strength. In an ideal perfect metal sample, a very 

high strength will be required to break the inter-atomic bonds necessary to nucleate a 

dislocation. This process is generally called homogenous dislocation nucleation. But, 

when a material contains pre-existing dislocations or internal/external surfaces from 

which dislocations can be easily nucleated, the material will begin plastic deformation at 

a stress much below its theoretical strength. This process is referred to a heterogeneous 

dislocation nucleation. Both experimental and theoretical studies are necessary to 

completely understand the effect of sample size on the transition from homogenous to 

heterogeneous dislocation nucleation. Most of the work in this area to date has been of a 

computational/numerical modelling approach. Experimental investigations in this area 

are still lacking.      

In this work, we present the force-depth responses from compression tests performed at 

different loading rates on Au microspheres of diameters ranging from 0.8 to 6.0 µm at 

ambient temperature. The main purpose of this work is to study the incipient plastic 

behavior of small size FCC metal samples. We analyse the force-displacement data from 

compression tests performed on the Au microspheres to extract the apparent activation 

volume and energy controlling the dislocation nucleation/glide process. 
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5.2 Materials and Methods 

5.2.1 Sample Preparation 

Gold microspheres were fabricated on a (0001)-oriented α-Al2O3 (Sapphire) surface. An 

A8 PMMA positive photoresist layer was spin-deposited on the O2 plasma cleaned 

sapphire surface and e-beam lithography was used to project a grid of 1.5 to 12.0 µm 

diameter circles upon the photoresist. After the exposed photoresist was removed, a 

polycrystalline Au film of 100 to 600 nm thickness was deposited by e-beam sputter 

deposition. The remaining photoresist was then removed and the 1.5 to 12.0 µm diameter, 

0.1 to 0.6 µm thick, Au cylinders were annealed in-vacuum at 1000C. During the 

annealing process the Au de-wetted from the sapphire substrate and took the form of 

monocrystalline spheres, of 0.8 to 6.0 µm diameter. The spheres displayed a facetted 

surface. Previous studies have identified similar facets in Au microsphere as being of 

{111} orientation [22–24]. About 100 Au microspheres were fabricated for each diameter 

of 0.8, 1.0, 3.0 and 6.0 µm (Figure 5.1). As, the sapphire substrate is nonconductive and 

the fabricated microspheres were equidistant and also not connected to each other, around 

10 – 15nm layer of Cr was deposited on the microsphere pattern surface for SEM 

imaging. Post- imaging, Cr layer was removed to perform compression tests on the 

microspheres. Similarly, the deformed microsphere were imaged by depositing 10 – 

15nm layer of Cr.  

5.2.2  Microsphere Compression 

The Au microspheres were compressed with an instrumented NanoTest nano-indentation 

hardness testing platform constructed by Micro Materials Ltd (Wrexham, UK). A 9 µm 

diameter diamond flat punch indenter was attached to the indentation tester. In total, 

around 60 compression tests were performed for the four different sized spheres. The 

tests were carried out by pressing the flat-punch against the Au microsphere at a constant 

loading rate to maximum displacement of 20% of the original diameter of the sphere. 

Loading rates, ranging from 0.01 to 1.00 mN/sec, were used to study the strain rate 

dependence of the incipient plasticity of the microspheres. 
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Figure 5.1: SEM images of representative: (a) 0.8, (b) 1.0, (c) 3.0 and (d) 6.0 µm 

diameter Au microsphere.  

5.3 Data Analysis and Results 

5.3.1 Prediction of Contact Stress  

Stress-strain curves of the deformed microspheres can be prepared from experimentally 

obtained load-displacement data using an alternative or a simplified method, which was 

used by the other researcher’s [22,23,25]; stress can be obtained by instantaneous force, F 

divided by the instantaneous contact area, 𝜋𝑟2 by assuming circular contact area, where r 

(a) 0.8 µm (b) 1.0 µm 

(c) 3.0 µm (d) 6.0 µm 
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is the top facets radius and similarly strain can be obtained dividing the compression 

depth to the height of the sphere. To calculate the instantaneous contact area accurately, 

the change of facet length with compression depth of the Au microspheres was calculated 

from the FE model as described in Section 4.2.3.  

 

Figure 5.2: Change of top facets diameter during FE simulation of Au microspheres 

deformation under uniaxial compression at different loading rates for, (a) 0.8, (b) 1.0, (c) 

3.0 and (d) 6.0 µm diameter spheres. 

The top facets diameter of the deformed microspheres was recorded from FE simulation 

model (Chapter 4). The predicted facet diameter during compression is shown in Figure 

5.2 for a range of Au microsphere diameters loaded at various loading rates. It is clear 

from the Figure 5.2 that loading rates have little effect on the facet length changes. Using 

these facet diameters along with force data from the experimental compression tests 

(Figure 4.5), contact stress versus average axial strain values was calculated (Figure 5.3).  
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Figure 5.3: Contact stress-strain curves of Au microspheres of (a) 0.8, (b) 1.0, (c) 3.0 and 

(d) 6.0 µm diameter at different loading rates.  

In Figure 5.3, small (0.8 and 1.0 µm) diameter spheres show very high contact stress 

during the initial stages of deformation around 1.7 and 1.1 GPa. The contact stress 

decreased gradually until 10% of strain, after that the change of contact stress with strain 

is almost constant. On the other hand, large (3.0 and 6.0 µm) diameter spheres showed 

contact stress that increased gradually with strain and loading rates. At the highest 

loading rate, yield contact stresses are about 400 and 310 MPa for 3.0 and 6.0 µm 

diameter microspheres. This change in the strain dependent of the contact stress for small 

and large diameter Au microspheres indicates that different mechanisms are operating 

during the deformation process. 
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5.3.2 Hertzian Approximation 

Figure 5.4 shows the Force-displacement (F-h) curves of four different diameter Au 

spheres (0.8, 1.0, 3.0 and 6.0 µm) compressed at loading rates from 0.01 to 1.00 mN/s. 

The strain rate, expressed as the change of strain with respect to time at the incipient load, 

was determined from the test data at each loading rate.    

Also included in the Figure 5.4 are the elastic loading trends based upon Hertzian contact 

between an elastic half-space to a depth, h indenting an elastic sphere of radius, R. 

In the Hertzian elastic contact model, the contact force, F is related to h as [26]  

 𝐹 =
4

3
𝐸𝑟𝑅1 2⁄ ℎ3 2⁄  (5.1)  

where 𝐸𝑟 is the reduced elastic modulus which is given as 

 
1

𝐸𝑟
=

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
 

(5.2)  

where, 𝐸1, 𝐸2 are Elastic moduli and 𝜈1, 𝜈2 are Poisson’s ratios associate with the sphere 

and the half-space. For this work, 𝐸𝑟 was calculated by considering isotropic elastic 

properties of E1 = 1141 GPa, 𝜈1 = 0.07 [27] for the diamond flat-punch indenter and E2 = 

79 GPa [28], 𝜈2 = 0.42 [8] for the Au microspheres. R is the radius of the Au 

microsphere. 
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Figure 5.4: Representative F-h curves measured during compression of the Au 

microspheres at three different loading rates, (a) 0.8, (b) 1.0, (c) 3.0 and (d) 6.0 µm 

diameter Au microspheres. For each test the initial portion of the F-h curve is well 

matched by the F-h elastic response predicted by the Hertzian contact model (Eq. 5.1) 

(solid red lines). The load corresponding to the first incipient plasticity event is marked 

by the black arrow. For the sake of clarity, the displacement data for three different 

loading rates is offset by 10 nm in these figures. 
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The first deviation from these Hertzian elastic loading profiles is considered as the 

initiation of incipient plasticity. As can be seen in Figure 5.4, the incipient load clearly 

displayed an increasing trend with increasing loading rates for each microsphere 

diameter. This indicates that incipient load, and hence the yield strength, of these 

structures is strain rate sensitive. For the smallest microsphere (0.8 µm) diameter, the 

incipient load increased from 0.035 ± 0.012 mN to 0.087 ± 0.022 mN as the loading rates 

increased from 0.01 to 0.10 mN/s (Figure 5.4a). Incipient load increased from 0.092 ± 

0.022 mN to 0.185 ± 0.033 mN as the loading rates increased from 0.15 to 1.00 mN/s for 

the largest microsphere (6.0 µm) diameter (Figure 5.4d). Table 5.1 shows the details of 

the loading rate and corresponding incipient load for all the diameter Au microspheres.  

The increasing incipient load with increasing loading rate indicates that the incipient 

yield stress 𝜎𝑦, of the tested microspheres increased with increasing strain rates. The 

incipient load data was converted to incipient stress by dividing it by the area of the 

{111} facet upon which the flat-punch indenter contacted the Au sphere. The facets area 

was measured from SEM images of the microspheres. A corresponding effective shear 

stress, 𝜏𝑦was then calculated from 𝜎𝑦 2 

 𝜏𝑦 = 0.55𝜎𝑦 (5.3)  

 

 

 

 

                                                 

2 The effective shear stress was obtained by multiplying the yield strength by the Schmid 

factor for the <111> loading axis, assuming uniaxial loading. Plastic deformation to 

occur in FCC metals there are 12 independent slip systems, {111}<110>. As these Au 

microspheres have shown <111> direction normal to the sapphire surface, therefore 

Schmid factor for all possible slip systems were calculated and highest Schmid factor was 

found to be 0.55 for the  (111) [101] and (111)[110] slip systems [48]. 
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Table 5.1 Summary of loading rate and the corresponding incipient load of the tested Au 

microspheres  

Sphere diameter (m) Loading rate (mN/sec) Incipient Load, Li (mN) 

0.8 

0.01 0.035 ± 0.012 

0.05 0.046 ± 0.018 

0.10 0.087 ± 0.022 

1.0 

0.05 0.045 ± 0.021 

0.10 0.056 ± 0.012 

0.15 0.072 ± 0.011 

3.0 

0.05 0.096 ± 0.019 

0.15 0.173 ± 0.051 

0.50 0.203 ± 0.061 

6.0 

0.15 0.092 ± 0.022 

0.50 0.157 ± 0.024 

1.00 0.185 ± 0.033 

 

5.3.3 The Elastic Strain Energy Density (SED) Associated with 

Incipient Plasticity 

For the tested microsphere compressions, the elastic energy that is stored within the Au 

microspheres can be measured directly from the load-displacement curves shown in 

Figure 5.4. The total stored elastic strain energy density is represented by the area under 

the F-h curve up to the yield point normalized with respect to the volume of the sphere. 

For the microsphere between 0.8 to 6.0 µm diameters, total elastic strain energy densities 

values were found between, 5 to 20 J/cm3 for 0.8 µm diameter sphere, and between 0.031 

to 0.098 J/cm3 for 6.0 µm diameter sphere (Figure 5.5). The strain energy densities for 

the smallest diameter spheres are consistent with the value found from literature (5 to 20 

J/cm3) for Au microspheres of 340 nm initial nominal diameter [13].  
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Figure 5.5: The total elastic strain energy density at different the strain rates for 0.8 to 

6.0 µm diameter Au spheres during initial yielding. 

In Figure 5.5, incipient SEDs are plotted on a log-log plot as a function of strain rates for 

the Au microspheres. SED has an inverse relationship with sphere diameters i.e. smaller 

spheres exhibits larger SED during the incipient deformation. However, it is evident that 

SED increases as stain rate increases for all microspheres.   

The SED during the plastic deformation of these microspheres can be calculated using 

the area under the contact stress-strain curve (Figure 5.3). Contact stress-strain data in 

Figure 5.3 were fitted with a 5th order polynomial function (as shown in dotted line in the 

Figure 5.3) and numerical integration was used to calculate the area under the stress-

strain curve i.e. SED at different level of strain. 
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Figure 5.6: Effect of strain rate on the strain energy density (J/m3) at different level of 

strain for Au microspheres of different sizes: (a) 0.8, (b) 1.0, (c) 3.0 and (d) 6.0 µm 

diameter. 

Figure 5.6 shows the calculated SED at different level of strain and strain rate for the 

microspheres. At any given strain level, SED increases with strain rate for smaller (0.8 

µm) diameter sphere but SED is almost constant with strain rate for larger (6.0 µm) 

diameter sphere. Effect of microsphere size and strain rate on SED for all microsphere 

deformation process is combined in Figure 5.7. At 5 % strain, for example SED changes 

from 58 to 64 J/m3 for 0.8 µm sphere and from 14 to 15 J/m3 for 6.0 µm sphere (Figure 

5.8).  
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Figure 5.7: Effect of sphere size and strain rate on strain energy density during all 

microsphere deformation process.  

 

Figure 5.8: Shows the SED as a function of strain rates at 5% strain during all 

microsphere deformation process.  

0

50

100

150

200

250

0 0.05 0.1 0.15 0.2 0.25

St
ra

in
 E

n
e

rg
y 

D
e

n
si

ty
 (

J/
cm

3
)

Strain

0.8 µm, 0.04

0.8 µm, 0.15

0.8 µm, 0.25

1.0 µm, 0.07

1.0 µm, 0.15

1.0 µm, 0.25

3.0 µm, 0.02

3.0 µm, 0.03

3.0 µm, 0.06

6.0 µm, 0.01

6.0 µm, 0.02

6.0 µm, 0.05

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3

St
ra

in
 E

n
e

rg
y 

D
e

n
si

ty
 (

J/
cm

3
)

Strain Rate (s-1)

0.8 µm

1.0 µm

3.0 µm

6.0 µm



114 

 

5.3.4 The Activation Volume and Activation Energy of Incipient Plastic 

Deformation   

The average strain rate, 𝜀̇, of the microspheres can be described in terms of the motion of 

dislocations by the following Orowan’s equation [29]; 

 𝜀̇ =
𝑑𝜀

𝑑𝑡
= 𝜌𝑚𝑏𝑣̅ (5.4)  

where 𝜌𝑚 is the density of mobile dislocations, 𝑏 and 𝑣̅ are the magnitude of the Burgers 

vector and the velocity of dislocation. The dislocation velocity 𝑣̅ expressed by the 

following standard approach for a stress activation process [30]: 

 𝑣̅ = 𝜈0𝑏 [𝑒𝑥𝑝 (−
(𝜏𝑝 − 𝜏)𝑉

𝑘𝑇
) − 𝑒𝑥𝑝 (−

(𝜏𝑝 + 𝜏)𝑉

𝑘𝑇
)] (5.5)  

where 𝜈0 is the atomic jump frequency, 𝜏𝑝 is the athermal lattice resistance, (i.e. the 

Peierls stress) needed to cause a dislocation to move, 𝜏 is the applied shear stress, V is the 

activation volume, T is the absolute temperature, and k is the Boltzmann’s constant. 

Combining Eqs. 5.4 and 5.5 with the assumption that 𝜏𝑉 ≫ 𝑘𝑇, the second term in square 

brackets of Eq. 5.5 is much less than the first, and assuming also that the activation 

volume can be treated as constant, the following expression for 𝜏 can be arrived at  

 𝜏 = 𝜏𝑝 +
𝑘𝑇

𝑉
ln 𝜀̇ −

𝑘𝑇

𝑉
ln[𝜌𝑚𝑏2𝜈0] (5.6)  

This relationship forms the basis of typical analyses of compression tests at elevated 

temperatures [30–32], a plot of the shear flow stress against the natural logarithm of 

strain rate, at a particular temperature, should result in a linear relationship of slope 

𝑘𝑇 𝑉⁄ . The total activation energy, Q, of deformation rate controlling obstacles can then 

be estimated as 𝑄 = 𝜏0𝐾𝑉, where 𝜏0𝐾 is the athermal stress of Au [33]. The estimations 

of the activation energy Q and the activation volume V provide information on the 

underlying deformation rate controlling mechanism in the Au microspheres. 
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The normalized shear stress, corresponding to the first incipient plastic strain event, 

incip/G, obtained from the incipient loads of the microspheres compressed at different 

strain rates is shown in Figure 5.9. In these plots the elastic shear modulus of GAu = 23.8 

GPa was used [34]. The figure indicates that the incipient stress increases as the strain 

rates increased for all the spheres. The incipient shear stress of the 6.0 µm diameter 

spheres is the lowest and the 0.8 µm diameter spheres is the highest. Also included on the 

graph is the theoretical shear strength, which is normally estimated between ~G/30 to 

G/10 for FCC metals such as Au [35–37]. 

 

Figure 5.9: Normalized incipient shear stress versus strain rate of Au microspheres. 

Included in the plot are dashed lines indicating common estimates of the ideal theoretical 

shear strength (ideal = G/30 to G/10) of a metal. 

It is notable that the normalized incipient shear stress of the smaller, 0.8 and 1.0 µm 

diameter spheres, approaches the estimated theoretical strength limit for Au, while the 

larger, 3.0 and 6.0 µm diameter spheres, displayed incipient plastic yielding at 

considerably lower stress levels.  
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It is interesting to notice that besides bulk deformation behavior in Chapter 4, incipient 

stress in the tested microspheres also displays both strain rate and size dependence. The 

strain rate dependence of the incipient stress suggests that the deformation mechanism 

controlling these events involves a time-dependent diffusion based process. The size 

dependence of the incipient stress can be explained by increased vacancy sites with 

increasing facet size3 i.e. the contact area between the flat-punch indenter and 

microspheres. Salehinia et al. [38] demonstrated that the presence of vacancies 

underneath the indenter during a nano-indentation hardness test on single crystal Ni 

strongly affects the incipient loads. Increased population of vacancies underneath the 

larger contact area lowered the yield load compared to smaller indentations where higher 

incipient loads were observed. This study showed that the vacancy concentration beneath 

a nano-indenter will influence the subsequent dislocation nucleation stress and can thus 

influence the time-dependence of the deformation process.    

Mordehai et al. [22] performed MD simulations on Au micro-particles, and reported that 

the first dislocation nucleation events, which is related to the large incipient dislocation 

burst, occurs at the upper facet vertices, where the facetted sphere contacts compressing 

surface, regardless of the micro-particle size. They suggested that the initial number of 

potential dislocation nucleation sites is constant, regardless of particle size, and the size 

effect on the incipient yield load is associated with the probability of dislocation 

nucleation at these vertices. 

The slope of strain rate dependence of  in Figure 5.9 is kT/V*, and thus provides 

information on the apparent activation volume, V*, (Eq. 5.6). The length-scale 

dependence of V* is shown in Figure 5.10 where the estimated value of V* for the 

microspheres is plotted versus a length scale parameter (sphere diameter). The plotted V* 

are normalized with respect to b3, where bAu = 0.289 nm [39,40]. The estimated V* during 

incipient plasticity of 0.8 and 1.0 µm diameter Au spheres are about 0.2 and 0.4b3 

respectively. It is important to notice here is that the V* values obtained here is much 

                                                 

3
 The facet size of 0.8, 1.0, 3.0 and 6.0 µm diameter Au microspheres was measured around 210 ± 29, 259 

± 27, 842 ± 88 and 835 ± 52 nm respectively. 
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lower than the V* obtained during the bulk deformation of these two diameters 

microspheres (Ch. 4) which were of the order of 4 – 6b3. Similarly, the estimated average 

incipient V* for larger (3.0 and 6.0 µm) diameter Au spheres are about 1.8 and 2.1b3 

respectively, whereas the estimated V* obtained from bulk deformation of these spheres 

were between 12 – 42b3 (Ch. 4). The much lower activation volumes obtained here 

during initial yielding of Au microspheres is consistent with previously reported studies 

that have reported activation volumes of 1.5b3 for single crystalline Ni3Al [41], 0.5b3 for 

single crystalline platinum [18] and about 0.2 – 1.0b3 for Magnesium [42]. In these 

studies the low V* are attributed to heterogeneous dislocation nucleation events where 

dislocations are nucleated at pre-existing defects such as vacancy or vacancy cluster, an 

impurity atom, or free surfaces [42]. Zhu et al. [43] confirmed by the molecular dynamic 

simulation that an activation volume for dislocation nucleation at a free surface is of the 

order of 1 – 10b3. Included in Figure 5.10 are the apparent activation volumes reported by 

these studies plotted against an appropriate length scale (i.e. indentation depth or 

specimen length). 

 

Figure 5.10: The change of apparent activation volume, V* during incipient plastic 

deformation of different diameter Au microspheres.  
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In order to estimate the apparent activation energy, 𝑄∗ = 𝜏0𝐾𝑉∗, of the deformation rate 

controlling obstacles, in the Au microspheres tested in this study, athermal stress, 𝜏0𝐾 = 

256 MPa was used [44]. The calculated Q* values ranged between 0.01 to 0.08eV as the 

microsphere size increased from 0.8 to 6.0 µm. The estimated magnitudes of V* and Q* 

here are of the order of surface self-diffusion based processes as reported by Liu et al. 

[45]. These results are also consistent with the findings from a recent study by Chen et al. 

[46,47] in which authors employed nano-tensile experiments to investigate the kinetics of 

incipient plastic deformation in Pd whiskers. Authors interpreted results using a thermal 

activation based model, similar to the one used in the present study, and reported similar 

activation volume and activation energy values and attributed stress-assisted surface 

diffusion process as rate controlling mechanism.  

5.4 Summary 

Flat-punch micro-compression testing was employed to investigate the deformation-rate 

dependence of the incipient plastic deformation of Au microspheres of diameter ranging 

from 0.8 to 6.0 µm. The incipient yield load increased with increasing loading rate for a 

particular sized microsphere, whereas, it decreased with increasing microsphere size. The 

size dependence of incipient loads was attributed to the presence of vacancies whose 

amount increased, as a result of increased flat-punch/sphere contact area, in the larger 

diameter microspheres. A thermal activation based model was used to interpret the 

loading-rate dependence of the measured incipient loads. The apparent activation volume, 

V*, and energy, Q*, values were found to be 0.2b3 and 0.01eV for 0.8 µm sphere and 

increased to 2.1b3 and 0.08eV for 6.0 µm spheres. These estimated values indicate that 

the incipient plasticity is controlled by heterogeneous dislocation nucleation events 

occurring at, or near, the flat-punch/sphere interface the rate of which is highly dependent 

upon the rate of surface self-diffusion of the Au atoms. This study illustrates the 

importance of surfaces on the onset of plastic deformation in crystalline metal nano-

structures such as microspheres, micropillars and microbeams. 

The next chapter of this thesis will present the kinetics of incipient and bulk plastic 

deformation of Au micropillars of diameter ranging from 0.8 to 4.0 µm.   
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Chapter 6  

6 Kinetics of Plastic Deformation of Au Micropillars 

 

The size and strain rate dependence of incipient and bulk plastic deformation of Au 

micropillars of diameter ranging from 0.8 to 4.0 µm were studied at room temperature 

using flat-punch micro-compression testing. The yield stress of the micropillars was 

observed to increase from 102 to 350 MPa when pillar diameter decreased from 4.0 to 0.8 

µm. EBSD analysis was performed to determine the crystallographic orientation of the 

micropillars and the critical resolved shear stress associated with the onset of plastic 

deformation was calculated. The dependence of yield stress on the surface area to volume 

ratio (SA/V) of the micropillars was determined and the results were compared to the 

trends reported for Au microspheres in Chapter 4. The results suggest that smaller size 

Au samples, 0.8 µm diameter pillars and 0.8 µm diameter spheres, with SA/V ratio >5, 

deform differently than larger size samples with SA/V ratio <5. The magnitude of the 

apparent activation volume V* and energy Q* displayed by the micropillars 

corresponding to an average uniaxial plastic strain of 5% indicated that the operative 

deformation mechanism was dependent upon the diameter of Au micropillar. The size 

dependence of the early, incipient, stage of plastic deformation was also determined for 

the Au micropillars. For a specific sized micropillar the incipient yield stress increased 

with increasing loading rate while, for a specific loading rate, it decreased with increasing 

micropillar diameter. A thermal activation based model was used to interpret the loading 

rate dependence of the incipient yield stress, and the associated deformation rate 

controlling parameters V* and Q* were estimated.    
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6.1 Introduction 

Mechanical properties of crystalline metals at small-scale deformation is currently of 

tremendous scientific interest and various experimental test techniques have been 

employed to study the microstructural phenomena responsible for the marked increase in 

yield strength that occurs when the dimension of the test sample is less than about 1 – 5 

µm (see Chapter 3). 

In this chapter, we report an investigation of the size and strain rate dependence of the 

flow stress, both incipient and after 5% plastic strain, of Au micropillars of three 

diameters (0.8, 2.0, and 4.0 µm) that were tested at three loading rates. The purpose of 

this work is to determine the operative mechanisms that control the plastic deformation of 

these small size FCC metal samples. 

6.2 Methods 

6.2.1 Micropillar Fabrication 

A 0.5 mm thick foil of 99.95% pure polycrystalline Au was mechanically prepared by 

grinding with successively finer grades of SiC papers followed by final polishing in 0.05 

µm colloidal alumina slurry. The sample was then annealed at 900C for 12 hours and 

then chemically etched by emersion, in an aqueous solution of 8 wt% Iodine and 21 wt% 

Potassium Iodide, for about 2 minutes at 25C. The Au removal rate in this solution was 

about 28 angstroms per second. The grain size of the Au was large, as a result of the 

annealing, and was measured at between 20 to 600 µm. 

The Au micropillars were fabricated by FIB milling at the Nanofabrication Laboratory at 

Western University (London, Ontario, Canada). The diameter of the micropillars was 0.8, 

2.0 and 4.0 µm and the diameter/height ratio was between 1:1 and 1:3. At least ten 

micropillars of each diameter were fabricated.  
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6.2.2 EBSD Analysis 

Electron back scatter diffraction (EBSD) was used to index the crystallographic 

orientation of the grains comprising the Au surface upon which the micropillars were 

made. The EBSD was performed at the Zircon and Accessory Phase Laboratory 

(ZAPLab) at Western University (London, Ontario, Canada). Figure 6.1 shows SEM 

images of two areas where most of the micropillars were located. The orientation maps 

and the corresponding inverse pole figures of these areas are shown in Figure 6.2. The 

grains from which micropillars were made are designated G1 to G6 in Figure 6.2.  

For each micropillar the applied shear stress 𝜏𝑅 acting upon the active dislocation slip 

plane in the direction of dislocation motion was calculated as 

 𝜏𝑅 = 𝜎 cos 𝜙 cos 𝜆 (6.1)  

where,  is the applied normal compressive stress,  and  are the angles between the 

loading direction and the slip plane normal and the slip direction respectively. The crystal 

system on which dislocation first slip occurs is the one possessing the largest Schmid 

factor cos 𝜙 cos 𝜆. FCC materials, such as Au, deform plastically by dislocation slip 

along the {111} < 110 > slip system. Twelve possible slip planes/directions exist within 

this system. 

The Miller indices corresponding to the axial direction of micropillars are shown in Table 

6.1. The angle  was determined from the dot product of the <hkl> pillar normal direction 

(Table 6.1) and normal vectors 〈111〉, 〈1̅11〉, 〈11̅1〉, 〈111̅〉 of the {111} family of close-

packed planes. Similarly, the angle  was determined from the dot product of the <hkl> 

pillar normal direction and the three independent closed packed directions, 

[110], [101], [011] of the < 110 > family of close-packed crystal directions. The 

calculated maximum Schmid factor of the different grains containing micropillars is 

summarized in Table 6.1.  
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Figure 6.1: SEM images of the Au micropillars fabricated by FIB milling into different 

grains of the sample 

 

Figure 6.2: Inverse pole figure showing the crystallographic orientation map of the 

different grains, labelled G1 to G6, containing the test Au micropillars. The crystal Z 

direction (loading direction) is normal to the surface of the sample. (c) Color key for the 

maps. 
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Table 6.1: Summary of the grain containing Au micropillars, their crystallographic 

orientation and the calculated maximum Schmid factor.  

Grain 

Designation 

Axial 

crystallographic 

direction of the 

grain 

Fabricated micropillars on the 

grains (A, B and C represents 

0.8, 2.0 and 4.0 µm dia.  pillars) 

Maximum Schmid 

factor for the 

{111}<110> slip 

system (Eq. 6.1) 

G1 <0.4, 0.1, 0.9> 

A2, A4, A5, A7 

2B, 2C, 2D, 2H, 2I, 2J, 2K 

4C, 4D, 4E, 4F, 4G, 4H, 4I, 4J, 

4K 

0.26 

G2 <0.5, 0.1, 0.9> A3, A8, A9 0.19 

G3 <0.1, 0.7, 0.7> A6, A11 0.32 

G4 <0.5, 0.3, 0.8> A10, 2A, 4A, 4B 0.32 

G5 <0.2, 0.2, 0.9> A1 0.23 

G6 <0.6, 0.4, 0.7> A12, 2E, 2F, 2G 0.33 

6.2.3 Micropillar Compression Tests 

The Au micropillars were compressed on an instrumented NanoTest platform made by 

Micro Materials Ltd (Wrexham, UK) and fitted with a ~ 9 µm diameter flat punch 

diamond indenter. An optical microscope and a computer-controlled translation stage 

were used to position the micropillars in line with the flat-punch. About 30 micropillars 

were tested in compression. The compression tests were carried out by loading the 

micropillars at a constant rate to an average compressive strain of about 20%. The 

loading rates ranged from 0.01 to 0.30 mN/sec (Table 6.2). 
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Table 6.2: Summary of the geometry of the twenty-five Au micropillars used in this 

study. 

Overall 

pillar 

size 

Pillar 

Designation 

Pillar 

Average 

Diameter 

(m) 

Pillar 

Height 

(m) 

Loading 

rate 

(mN/s) 

Surface 

Area, SA 

(µm2) 

Volume,  

V 

(µm3) 

SA/V 

ratio 

0.8 m 

A1 0.69 1.95 0.10 4.60 0.73 6.31 

A4 0.86 2.05 0.01 6.12 1.19 5.14 

A6 0.78 2.05 0.05 5.50 0.98 5.62 

A7 0.82 2.06 0.05 5.83 1.09 5.36 

A8 0.78 1.80 0.01 4.89 0.86 5.68 

A9 0.82 1.90 0.10 5.42 1.00 5.40 

A10 0.78 1.60 0.05 4.40 0.76 5.75 

A11 0.83 1.95 0.10 5.62 1.05 5.33 

Average 
0.80  

0.05 

1.92  

0.16 
 

5.30  

0.61 

0.96  

0.16 

5.58  

0.36 

2.0 m 

2A 2.00 4.30 0.05 30.15 13.51 2.23 

2C 1.90 4.60 0.15 30.29 13.04 2.32 

2D 2.15 4.20 0.01 31.99 15.25 2.10 

2E 2.10 4.32 0.01 31.96 14.96 2.14 

2F 2.00 4.30 0.15 30.15 13.51 2.23 

2G 2.10 4.40 0.05 32.49 15.24 2.13 

2H 1.95 4.50 0.15 30.55 13.44 2.27 

2J 1.90 4.40 0.05 29.09 12.47 2.33 

2K 1.99 4.60 0.01 31.86 14.30 2.23 

Average 
2.01  

0.09 

4.40  

0.14 
 

30.95  

1.15 

13.97  

1.01 

2.22  

0.08 

4.0 m 

4A 4.30 6.90 0.15 107.71 100.18 1.08 

4C 4.20 7.04 0.05 106.72 97.52 1.09 

4D 4.10 7.42 0.05 108.76 97.94 1.11 

4E 4.10 6.87 0.15 101.67 90.68 1.12 

4F 4.10 7.98 0.15 115.97 105.34 1.10 

4G 3.95 6.60 0.05 94.14 80.86 1.16 

4H 3.90 6.60 0.30 92.79 78.83 1.18 

4I 4.12 6.60 0.30 98.74 87.97 1.12 

Average 
4.10  

0.13 

7.00  

0.48 
 

103.31  

7.92 

92.42  

9.45 

1.12  

0.03 
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6.3 Results 

6.3.1 Micropillar Force vs Displacement Response 

Figure 6.3 shows SEM micrographs taken before and after the compression of 

representative Au micropillars of 0.8 to 4.0 µm diameter. All the micropillars deformed 

by localized shear on specific slip planes. Multiple slips lines corresponding to 

{111}<110> slip can be seen. 

Figure 6.4 to Figure 6.6 shows the experimentally obtained force-displacement (F-h) 

curves for the 0.8, 2.0, and 4.0 µm diameter micropillars compressed at three loading 

rates. For a given displacement h, the micropillars all display increased deformation force 

F with increased loading rate.   
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Figure 6.3: Representative SEM images before and after deformation of (a) 0.8, (b) 2.0 

and (c) 4.0 µm diameter Au micropillars. In these images, multiple slips lines 

corresponding to {111}<110> slip systems are clearly visible. 
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Figure 6.4: Experimentally obtained F-h response for 0.8 µm diameter Au micropillars 

loaded at three different rates, (a) 0.01, (b) 0.05 and (c) 0.10 mN/s. 

 

Figure 6.5: Experimentally obtained F-h response for 2.0 µm diameter Au micropillars 

loaded at three different rates, (a) 0.01, (b) 0.05 and (c) 0.15 mN/s. 
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Figure 6.6: Experimentally obtained F-h response for 4.0 µm diameter Au micropillars 

loaded at three different rates, (a) 0.05, (b) 0.15 and (c) 0.30 mN/s. 

6.3.2 True Stress-strain Response 

Figure 6.7 to Figure 6.9 show plots of the true stress-strain and the corresponding critical 

resolved shear stress-true strain response of the tested Au micropillars compressed at 

three loading rates. The true and the engineering stress and strain are related by the 

following equations [1], 

 𝜎𝑇 = 𝜎(1 + 𝜀) 
(6.2)  

 𝜀𝑇 = 𝑙𝑛(1 + 𝜀) 
(6.3)  

where, 
T
 and 

T
 represents true stress and strain while  and  represents the engineering 

stress and strain. The critical resolved shear stress was obtained using the Eq. 6.1 and the 

maximum Schmid factors as shown in Table 6.1.  
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The true stress-strain curve for the smallest diameter pillars (0.8 µm) showed irregular 

“stepped” stress-strain responses similar to what was reported by others and is associated 

with the onset of deformation via a dislocation nucleation/avalanche mechanism [2–9]. 

The largest diameter (4.0 µm) pillars showed smooth stress-strain response which is 

almost identical in shape and magnitude to those reported by Greer et al for similar size 

Au pillars [10,11].  

It was reported by Bei et al. [12] that ion-induced surface damage resulting from the FIB 

milling process can affect the  response of micropillars and  minimize displacement 

bursts during testing. In comparison to the F-h curves displayed by similar size 

microspheres in compression (Chapter 4), the micropillars show noticeably lower 

frequency of the discrete stress jumps. 

6.3.3 Comparison of Critical Resolved Shear Stress  

Figure 6.10 shows a comparison of the calculated resolved shear stress, R of the Au 

micropillars compressed at the three loading rates. The yield R increases with increasing 

loading rates for all size micropillars. The smallest diameter sphere displayed a strong 

dependence upon the loading rate. It can be observed clearly when considering the data at 

low strain levels, say less than 5%, the loading rate dependence of R is increased when 

the micropillar diameter is small. 
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Figure 6.7: The true stress versus true strain responses and the corresponding R versus 

true strain plots for 0.8 µm diameter Au micropillars compressed at three different 

loading rates of (a) 0.01, (b) 0.05 and (c) 0.10 mN/s.     
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Figure 6.8: The true stress versus true strain responses and the corresponding R versus 

true strain plots for 2.0 µm diameter Au micropillars compressed at three different 

loading rates of (a) 0.01, (b) 0.05 and (c) 0.15 mN/s.     
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Figure 6.9: The true stress versus true strain responses and the corresponding R versus 

true strain plots for 4.0 µm diameter Au micropillars compressed at three loading rates of 

(a) 0.05, (b) 0.15 and (c) 0.30 mN/s.     
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Figure 6.10: Critical resolved shear stress, R versus true strain for (a) 0.8, (b) 2.0 and (c) 

4.0 µm diameter Au micropillars, compressed at three loading rates ranging from 0.01 to 

0.30 mN/s. 
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The surface area and volume of each Au microsphere was calculated prior to 

compression testing. The surface area to volume (SA/V) ratio was between 1 and 6, and 

increased with decreasing pillar diameter (Table 6.2). 

Comparison of the results from the FIB-milled micropillars presented in this chapter with 

those from similar size annealed Au microspheres (Chapter 4) allows us to assess the 

effect of FIB-induced ion damage on the operative deformation mechanisms. Comparison 

of the F-h response of the micropillars and the microspheres (Figure 6.4 to Figure 6.6 and 

Figure 4.5) indicate that the number of discontinuities/load jumps is decreased in the 

micropillars compared to the similar size microspheres. These discontinuities are thought 

to result from dislocation nucleation at the free surface followed by rapid, uninhibited, 

motion of the dislocation through the defect-free sample. Since this appears to happen 

more frequently in the annealed Au microspheres we can conclude that the process of 

FIB milling invokes a certain amount of crystal defects in the micropillars and this tends 

to impede the dislocation motion. It should be noted that, since both the microspheres and 

the micropillars display similar increasing yield stress with decreasing sample size 

(Figure 4.8 and Figure 6.7 to Figure 6.9), the critical factor affecting the flow stress in the 

small size samples is the stress required to nucleate dislocations, most likely from the free 

surface of the sample, rather than the stress required to move the dislocations through the 

sample. 

Further comparison between the Au micropillars and microspheres can be done by 

assessing their flow stress as a function of their SA/V ratio. For the microspheres the 

bottom surface of the sphere is attached to the sapphire substrate and it was found from 

the SEM images that 1/4 of the ideal sphere radius was reduced. Therefore, the reduced 

surface area and volume were calculated using partially-filled sphere standard formulae4. 

                                                 

4
 For an ideal sphere, the surface area, 𝑆𝐴𝐼 = 4𝜋𝑟2 and volume, 𝑉𝐼 = (4/3)𝜋𝑟3, where, r = sphere radius. 

If the sphere height is reduced by the amount of hR, from the bottom/top of the sphere then, the sphere 

reduced surface area, 𝑆𝐴𝑅 = 2𝜋𝑟ℎ𝑅 and reduced volume, 𝑉𝑅 = 𝜋ℎ𝑅
2 (3𝑟 − ℎ𝑅)/3. The sphere actual surface 

area, 𝑆𝐴 =  𝑆𝐴𝐼 − 𝑆𝐴𝑅 and actual volume, 𝑉 = 𝑉𝐼 − 𝑉𝑅 [35]. 
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The calculated SA/V ratios for the Au microspheres of 6.0 to 0.8 µm diameter were 

found between 1 and 7. 

Figure 6.11 depicts the compressive yield stress versus true strain and SA/V ratio for Au 

micropillars tested at a loading rate of 0.05 mN/s. In this plot, the data of 1.0 µm diameter 

pillars were obtained from Chapter 3. For a given level of strain, the yield stress 

increased significantly as the SA/V ratio increases (i.e. pillar diameter decreases). For 

example, the yield stress at 5% strain increased from 102 to 350 MPa as the SA/V ratio 

increased from 1 to 6. It is notable in Figure 6.11b that the yield stress increased 

significantly when SA/V ratio is above 5. This suggests that the basic operative 

mechanism of plastic deformation may be different in small test specimens when SA/V > 

5. 

Figure 6.12 shows the von Mises equivalent average centre-line stress – strain response 

for the Au microspheres reported in Chapter 4. For these microspheres the equivalent 

stress, corresponding to 5% equivalent strain, increased from 100 to 225 MPa with 

increasing SA/V ratio from 1 to 7. Like the micropillar data shown in Figure 6.11, a 

significant increase of the von Mises flow stress occurred when SA/V > 5. 
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Figure 6.11: Effect of surface area to volume (SA/V) ratio on yield stress during Au 

micropillar deformation process. (a) Plot of the yield stress against strain for different 

SA/V ratios and (b) Shows the change of yield stress as a function of SA/V ratio at 

constant strain levels. The 1.0 µm diameter pillar data were obtained from Chapter 3.   
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Figure 6.12: Effect of surface area to volume (SA/V) ratio on yield stress during Au 

microspheres deformation process. (a) Plot of the von Mises yield stress against strain for 

different SA/V ratios and (b) Shows the change of von Mises yield stress as a function of 

SA/V ratio at constant strain levels. The microspheres data were obtained from Chapter 

4. 
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6.4 Analysis and Discussion 

6.4.1 Prediction of Bulk Deformation 

Besides enhanced strain rate sensitivity with decreasing micropillar size it is clear from 

Figure 6.7 to Figure 6.9 that small diameter pillars display a significantly higher flow 

stress than large diameter pillars and this is consistent with previously reported length 

scale-dependence of plasticity [2–4,6,10,13]. The strain, strain rate and temperature 

dependence of the flow stress  of plastically deforming metals is often described in 

terms of an Arrhenius relationship of the following type [14]; 

 𝜎 = 𝐴𝜀𝑛𝜀̇𝑚𝑒𝑥𝑝 [−
𝑄

𝑅𝑇
] (6.4)  

where 𝜀 is strain,  𝜀̇ is strain rate, A is a material constant, n is the strain hardening 

exponent, m is the strain rate sensitivity exponent, Q is the thermal activation energy of 

the operative deformation mechanism, T is the absolute temperature and R is the 

universal gas constant. Figure 6.13 shows the logarithmic  - 𝜀̇ response at 𝜀 = 5% for 

the 0.8, 2.0, and 4.0 µm diameter micropillars. The slope m of the data increases as the 

pillar diameter decreases.  

Using the strain rate sensitivity values m, the apparent activation volume 𝑉∗ 

characterizing the operative deformation rate limiting dislocation nucleation/glide 

mechanism can be calculated as [15–17]; 

 𝑉∗ = √3𝑘𝑇/𝑚𝜎 (6.5) 

where k is the Boltzmann constant. With the above equation, the strain dependence of 𝑉∗ 

was calculated for all the Au micropillars tested. In this calculation both the flow stress  

and resolved shear stress R corresponding to  = 5% were used in Eq. 6.5 to calculate V*. 

As was mentioned earlier, R was calculated from  by using Eq. 6.1 and the maximum 

Schmid factor, calculated by EBSD assessment of the <hkl> orientation of the specific 

micropillar and the assumption that dislocation slip occurs on the <110>{111} slip 

system.  
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The calculated V* values are listed in Table 6.3 and Table 6.4. The calculated V* are 

normalized with respect to b3, where the Burgers vector of Au was taken as b = 0.289 nm 

[18,19]. When the Au pillar diameter increased from 0.8 to 4.0 µm, V* increased from 

3b3 to about 57b3 when flow stress  was used and from 10b3 to about 178b3 when the 

resolved shear stress R was used in Eq. 6.5.  

 

Figure 6.13: Logarithmic plot of flow stress corresponding to  = 5%, versus strain 

rate. The calculated strain rate sensitivity exponent m = 0.29, 0.10 and 0.08 for the 0.8, 

2.0 and 4.0 µm diameter Au pillars respectively. 

The low V* values, about 3b3, for the smaller diameter pillars is similar in magnitude to 

previously reported estimates for FCC metal nano-size samples that are deforming by a 

dislocation nucleation limited mechanism of plastic deformation [20]. The V* magnitude 

(31 – 57b3) of the larger diameter pillars, is typical of the operation of a dislocation-

obstacle interaction limited deformation mechanism which is common in bulk ductile 

metals [21]. 
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The obtained V* values were converted to parameters of apparent activation energy Q*, 

necessary for a dislocation to overcome the obstacles that impede its movement through 

the sample using the relation [22]  

 𝑄∗ = 𝜏𝑉∗ (6.6) 

In order to estimate the total athermal apparent activation energy, Q*, of the deformation 

rate controlling obstacles, the estimated theoretical athermal stress of Au, 
0K

 = 256 MPa 

[23], was used along with values of V* obtained in terms of the application of the normal 

stress  and the resolved shear stress R in Eq. 6.5. The calculated values of Q* range 

between 0.12 to 2.20 eV when  was considered and 0.38 to 6.85 eV when R was 

considered but, in either case, Q* increased with increasing micropillar diameter (Table 

6.3 and Table 6.4).  

In the case when Q*  is small, about 0.2 eV, the operative dislocation-obstacle interaction 

strength is weak and dislocation glide is essentially controlled by the lattice resistance 

[23]. The small values of Q* observed for the small diameter Au micropillars suggest that 

this type of dislocation-obstacle interaction is occurring and is consistent with a very low 

number of dislocations being present within an otherwise perfect Au crystal. In the case 

of the larger diameter pillars Q* is considerably larger, between 1 and 2 eV, suggesting 

that the rate of deformation is limited by the rate at which dislocations overcome stronger 

obstacles present in the microstructure of the pillar [23]. In the case of the larger diameter 

Au pillars, the internal obstacles to dislocation glide will be other dislocations present as 

dislocation clusters (or networks) created as a result of the plastic deformation process. 

 

 

 

 



145 

 

Table 6.3: The estimated apparent activation volume and energy during micropillar 

deformation, when the normal flow stress, T was considered in Eq. 6.5. 

Pillar Size 

(µm) 

Deformation parameters at 5% of strain, considering T in Eq. 6.5 

Apparent activation volume, V* (b3) Apparent activation energy, Q* (eV) 

0.8 3 0.12 

2.0 31 1.19 

4.0 57 2.20 

Table 6.4: The estimated apparent activation volume and energy during micropillar 

deformation, when the resolved shear stress, R was considered in Eq. 6.5. 

Pillar Size 

(µm) 

Deformation parameters at 5% of strain, considering R in Eq. 6.5 

Apparent activation volume, V* (b3) Apparent activation energy, Q (eV) 

0.8 10 0.38 

2.0 87 3.35 

4.0 178 6.85 

 

6.4.2 Prediction of Incipient Deformation 

During the early stage of plastic deformation noticeable jumps are displayed in the  

response of sub-micrometer size metal samples. These “incipient” deformation events 

occur as a result of the nucleation of individual, or small groups of, dislocations followed 

by their rapid glide through otherwise perfect crystalline material culminating in their 

formation of a surface step when they reach the free surface of the sample. The 

magnitude of incipient deformation events decreases with increasing plastic strain or with 

increasing sample size since, in both cases, the crystal structure of the sample becomes 

more defected which complicates the operative mechanisms by which plastic deformation 

occurs.  

In this section, the early stage of plastic deformation behavior of the Au micropillars, is 

studied to understand further the operative deformation mechanisms controlling the 

incipient plasticity events.       
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6.4.2.1 Estimation of the Initial Yield Stress  

The variation of initial portion of the true stress-strain (T-T) curves obtained from the 

compression of Au micropillars is shown in Figure 6.14 to Figure 6.16. Included in the 

Figures are the linear elastic - trends calculated by applying the Hooke’s law (E
Au

 = 79 

GPa [24,25]).  

 

Figure 6.14: Initial portion of the individual true stress vs true strain curves of 0.8 µm 

diameter Au microspheres tested at loading rates of (a) 0.01, (b) 0.05 and (c) 0.10 mN/s, 

fitted with the elastic stress-strain response predicted by Hooke’s law (solid green lines). 

The - elastic response predicted by the Hooke’s elastic equation are compared to the 

initial portion of the experimentally obtained T-T curves. The first deviation from the 

Hooke’s elastic stress-strain profiles is considered as the initiation of incipient plasticity. 

These figures indicate that the incipient stress clearly displayed an increasing trend with 

increasing loading rates for each micropillar diameter. This indicates that the initial yield 
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strength, of these samples is strain rate sensitive. The incipient yield stress for all the Au 

micropillars tested is shown in Table 6.5. 

 

Figure 6.15: Initial portion of the individual true stress vs true strain curves of 2.0 µm 

diameter Au microspheres tested at loading rates of (a) 0.01, (b) 0.05 and (c) 0.15 mN/s, 

fitted with the elastic stress-strain response predicted by Hooke’s law (solid green lines). 
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Figure 6.16: Initial portion of the individual true stress vs true strain curves of 4.0 µm 

diameter Au microspheres tested at loading rates of (a) 0.05, (b) 0.15 and (c) 0.30 mN/s, 

fitted with the elastic stress-strain response predicted by Hooke’s law (solid green lines). 
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Table 6.5: Summary of loading rate and the corresponding initial yielding stress, 

incipient stress, of the tested Au micropillars 

Au pillar diameter 
Loading rate 

(mN/sec) 
Strain rate (sec-1) 

Incipient yield Stress 

(MPa) 

0.8 µm 

0.01 0.0032 ± 0.0033 89.2 ± 27.4 

0.05 0.0048 ± 0.0025 106.4 ± 33.4 

0.10 0.0062 ± 0.0043 158.4 ± 44.1 

2.0 µm 

0.01 0.0019 ± 0.0006 15.8 ± 2.0 

0.05 0.0033 ± 0.0015 19.3 ± 0.8 

0.15 0.0041 ± 0.0010 26.2 ± 2.5 

4.0 µm 

0.05 0.0014 ± 0.0010 7.4 ± 0.8 

0.15 0.0031 ± 0.0019 9.4 ± 1.5 

0.30 0.0053 ± 0.0005 13.7 ± 1.2 

 

6.4.2.2 The Kinetics of Incipient Deformation of Au Micropillars  

The analysis technique described in Chapter 5 (Section 5.3.4) is used here to estimate the 

apparent activation volume V*, a characteristic signature of the deformation rate 

controlling obstacles in these deforming Au micropillars. 

The normalized shear stress, corresponding to the first incipient plastic strain event, 

incip/G, obtained from multiplying the incipient normal yield stress (Table 6.5) with the 

maximum Schmid factor (Eq. 6.1 and Table 6.1) of the micropillars compressed at 

different strain rates is shown in Figure 6.17. In this plot the elastic shear modulus of 𝐺𝐴𝑢 

= 23.8 GPa  was used [26]. The incipient shear stress increases with increasing strain rate 

for all the pillars. The incipient shear stress of the 4.0 m diameter pillars is the lowest 

while the 0.8 m diameter pillars is the highest. Also included on the graph is the 

theoretical shear strength, which is normally estimated between ~G/30 to G/10 for FCC 

metals such as Au [12,27,28]. 

The strain rate dependence of the incipient yield stress suggests that the deformation 

mechanism controlling these events involve a time-dependent diffusion-controlled 
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deformation process. In that sense, the size dependence of the incipient yield stress can be 

explained by increased available vacancy sites as the surface area of the micropillar 

increases. Salehinia et al. [29] demonstrated that the presence of vacancies underneath the 

indenter during a nano-indentation hardness test on single crystal Ni strongly affects the 

incipient loads. Increased population of vacancies underneath the larger contact area of 

the larger diameter micropillars. This study showed that the vacancy concentration 

beneath a nano-indenter will influence the subsequent dislocation nucleation stress and 

can thus influence the time-dependence of the deformation process. Thus, a similar type 

of mechanism may be at work during the deformation of the Au micropillars in this 

study.    

 

Figure 6.17: Normalized incipient shear stress versus strain rate of Au micropillars. 

Included in the plot are dashed lines indicating common estimates of the ideal theoretical 

shear strength (ideal = G/30 to G/10) of a metal. 

The slope of strain rate dependence of  in Figure 6.17 is kT/V*, and thus provides 

information on the apparent activation Volume, V*. The estimated values of V* for the 
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micropillars, calculated by using this expression and the data from Figure 6.17 are listed 

in Table 6.6. The listed V* are normalized with respect to b3, where bAu = 0.289 nm.    

The estimated V* during incipient plasticity of 0.8 m diameter Au pillar is about 5.4b3. 

It is significant that the V* values obtained here are lower than the V* obtained during the 

bulk deformation ( = 5%). Similarly, the estimated average incipient V* for the larger 

2.0 and 4.0 m diameter Au spheres are between 47 and 144b3 respectively.  

Table 6.6: The estimated apparent activation volume and energy during incipient 

plasticity event of the tested Au micropillars when resolved shear stress was considered.   

Deformation Parameters 0.8 µm Au 2.0 µm Au  4.0 µm Au 

V* (b3) 5.4 47 144 

Q* (eV) 0.21 1.83 5.55 

The lower activation volumes obtained here during initial yielding of Au micropillars is 

consistent with previously reported studies that have reported activation volumes of 1.5b3 

for single crystalline Ni3Al [30], 2 – 4b3 for Cu nanowire [31], 2.8b3 for Al nanoposts 

[20], 5.3b3 for Mo micropillar [32] and 9.6 – 62b3 for Cu nanopillars [33]. Molecular 

dynamic simulations performed by Zhu et al. have indicated that the process of 

dislocation nucleation from a metallic free surface has a characteristic activation volume 

between 1 – 10b3  [31]. In our study the low V* is therefore attributed to heterogeneous 

dislocation nucleation events at pre-existing defects, such as individual vacancies or 

vacancy clusters located at, or near to, the free surface of the micropillars.  

The estimated magnitudes of V* (5.4b3) and Q* (~0.21eV) for 0.8 µm diameter Au pillars 

is of the order of surface self-diffusion based processes as reported by Liu et al. [34]. The 

estimated Q* (~1.83 and ~5.55eV) for the 2.0 and 4.0 µm diameter Au micropillars 

suggests that deformation is controlled by a mechanism of obstacle-limited dislocation 

glide [23]. 
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The above analysis of the sample size- and strain rate-dependence of the deformation of 

Au micropillars was performed by considering average pillar diameter and estimated 

Schmid factors determined from the EBSD analysis. The calculated values of V* and Q*, 

which are the fundamental findings of this study are highly dependent upon the 

magnitude of the pillar diameter and the calculated stress responsible for the plastic 

deformation process. In this chapter we calculated these parameters by considering the 

mean pillar diameter and either the average normal stress,  or the resolved shear stress,  

acting on the close-packed crystal system displaying the highest Schmid factor. Table 6.7 

shows values of V* and Q* calculated by three different approaches and a comparison 

plot between equivalent data from the Au micropillars and microspheres (Chapter 5) is 

shown in Figure 6.18.  

In the case of the Au microspheres, the microsphere contact diameter with the flat-punch 

indenter used to determine the contact stress. This contact stress is therefore highly 

dependent upon the measured facet diameter and the assumption that, for the spheres 

since EBSD data were not available, the Schmid factor was 0.55. Therefore, to compare 

the microsphere results with the micropillar results, the additional analysis condition (c) 

in Table 6.7 was most appropriate, where the pillar top diameter and a Schmid factor of 

0.55 was used. It is observed from Figure 6.18 that during the incipient plasticity event, 

the initial contact surface, play a very significant role. The initial contact surface, for the 

micropillars is the top diameter while for the microsphere it is the facet diameter which 

contacts the flat-punch indenter. The 0.8 µm diameter pillar and 3.0 to 6.0 µm diameter 

spheres have the same contact surface and the estimated V* (1.7 – 2.1b3) are also almost 

the same. However, for samples with larger contact surfaces, such as the 2.0 and the 4.0 

µm diameter pillars, significantly higher V* values were estimated ~17.9 to 49.5b3. 
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Table 6.7: Comparison of the estimated apparent activation volume (V*) during incipient 

plasticity event of the tested Au micropillars, considering pillars average and top 

diameter for stress calculation, and also to compare the micropillar results with 

microsphere, same Schmid factor of microsphere (0.55) was used to calculate the shear 

stress 

Au pillar 

size 

Estimated incipient V*(b3) of Au pillars in different condition, using Eq. 5.6  

(a) Pillar average 

diameter 

(b) Pillar top 

diameter 

(c) Pillar top diameter and 

Schmid Factor = 0.55 

T used R used  T used  R used R used 

0.8 µm 1.8 5.4 1.3 3.9 2.3 

2.0 µm 13.8 47.5 9.8 34.0 17.9 

4.0 µm 38.1 144.0 27.2 102.8 49.5 

 

 

Figure 6.18: A comparison of the normalized incipient shear stress versus strain rate of 

Au micropillars, from this chapter, and microspheres, from Chapter 5. In the plot, the V* 

for micropillars are taken from Table 6.7 when condition (c) was considered. 

0.0001

0.001

0.01

0.1

0.001 0.01 0.1

 i
n

ci
p
/G

Strain rate (s-1)

Sphere = 0.8 µm

Sphere = 1.0 µm

Sphere = 3.0 µm

 Sphere = 6.0 µm

Pillar = 0.8 µm

Pillar = 2.0 µm

Pillar = 4.0 µm

Theoretical (G/10)

Theoretical (G/30)



154 

 

6.5 Summary 

In this study the sample size and strain rate dependence of the plastic deformation 

behavior of Au micropillars (0.8 to 4.0 µm diameter) subjected to uniaxial compression at 

ambient temperature was studied. It was observed that the dependence of the flow stress, 

after considerable plastic deformation corresponding to  = 5%, was dependent upon both 

strain rate and micropillar diameter. Analysis of the apparent activation volume, V* and 

energy Q* of the deformation process indicated that the operative deformation 

mechanism, for the small 0.8 µm diameter pillars was typical of a mechanism limited by 

the surface nucleation of dislocations, and for the larger 2.0 and 4.0 µm diameter pillars 

was controlled by the more common dislocation-obstacle interaction limited mechanism. 

The deformation-rate dependence of the incipient plastic deformation behavior was also 

investigated for the micropillars. The incipient yield stress, for a particular sized 

micropillar, increased with increasing strain rate whereas, for a particular strain rate, it 

decreased with increasing micropillar diameter. The size dependence of incipient yield 

stress was attributed to the presence of vacancies whose amount increased, as a result of 

increased flat-punch/pillar contact area, in the larger diameter micropillars. The apparent 

activation volume, V*, and energy, Q*, values were found to be 5.4b3 and 0.21eV for 0.8 

µm diameter pillars and increased to 144b3 and 5.55eV for 4.0 µm diameter pillars. These 

estimated values suggest that the incipient plasticity of the smallest diameter pillar is 

controlled by heterogeneous dislocation nucleation events occurring at, or near, the flat-

punch/pillar top interface the rate of which is highly dependent upon the rate of surface 

self-diffusion based process. 

The next chapter of this thesis will present the effect of a surface constraining layer on 

the mechanical yield strength and deformation mechanisms of Au microspheres. 

 

  



155 

 

References 

1. W. D. Callister, Materials Science and Engineering: an Introduction, 7th ed. New 

York, USA: John Wiley & Sons, Inc, 2007. 

2. J. Greer, 2006, “Bridging the gap between computational and experimental length 

scales: a review on nano-scale plasticity,” Rev. Adv. Mater. Sci, Vol. 13, pp. 59–

70. 

3. W. D. Nix, J. R. Greer, G. Feng, and E. T. Lilleodden, Feb. 2007, “Deformation at 

the nanometer and micrometer length scales: Effects of strain gradients and 

dislocation starvation,” Thin Solid Films, Vol. 515, pp. 3152–3157. 

4. C. P. Frick, B. G. Clark, S. Orso,  a. S. Schneider, and E. Arzt, Aug. 2008, “Size 

effect on strength and strain hardening of small-scale [111] nickel compression 

pillars,” Mater. Sci. Eng. A, Vol. 489, pp. 319–329. 

5. D. Mordehai, S.-W. Lee, B. Backes, D. J. Srolovitz, W. D. Nix, and E. Rabkin, 

Aug. 2011, “Size effect in compression of single-crystal gold microparticles,” Acta 

Mater., Vol. 59, pp. 5202–5215. 

6. W. M. Mook, C. Niederberger, M. Bechelany, L. Philippe, and J. Michler, Feb. 

2010, “Compression of freestanding gold nanostructures: from stochastic yield to 

predictable flow,” Nanotechnology, Vol. 21, pp. 055701–9. 

7. A. S. Schneider, B. G. Clark, C. P. Frick, P. a. Gruber, and E. Arzt, May 2009, 

“Effect of orientation and loading rate on compression behavior of small-scale Mo 

pillars,” Mater. Sci. Eng. A, Vol. 508, pp. 241–246. 

8. D. Mordehai, M. Kazakevich, D. J. Srolovitz, and E. Rabkin, Apr. 2011, 

“Nanoindentation size effect in single-crystal nanoparticles and thin films: A 

comparative experimental and simulation study,” Acta Mater., Vol. 59, pp. 2309–

2321. 

9. S.-W. Lee, D. Mordehai, E. Rabkin, and W. D. Nix, Jul. 2011, “Effects of focused-

ion-beam irradiation and prestraining on the mechanical properties of FCC Au 

microparticles on a sapphire substrate,” J. Mater. Res., Vol. 26, pp. 1653–1661. 

10. J. R. Greer, W. C. Oliver, and W. D. Nix, Apr. 2005, “Size dependence of 

mechanical properties of gold at the micron scale in the absence of strain 

gradients,” Acta Mater., Vol. 53, pp. 1821–1830. 

11. J. Greer and W. Nix, Jun. 2006, “Nanoscale gold pillars strengthened through 

dislocation starvation,” Phys. Rev. B, Vol. 73, pp. 245410–6. 

12. H. Bei, S. Shim, G. M. Pharr, and E. P. George, Oct. 2008, “Effects of pre-strain 

on the compressive stress–strain response of Mo-alloy single-crystal micropillars,” 

Acta Mater., Vol. 56, pp. 4762–4770. 



156 

 

13. J. R. Greer, C. R. Weinberger, and W. Cai, Oct. 2008, “Comparing the strength of 

f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation 

dynamics simulations,” Mater. Sci. Eng. A, Vol. 493, pp. 21–25. 

14. R. W. Cahn, Strengthening Methods in Crystals, Vol. 17. Halstead Press Division, 

Wiley, 1972. 

15. Y. Wang,  a Hamza, and E. Ma, Jun. 2006, “Temperature-dependent strain rate 

sensitivity and activation volume of nanocrystalline Ni,” Acta Mater., Vol. 54, pp. 

2715–2726. 

16. H. Somekawa and C. A. Schuh, Dec. 2011, “Effect of solid solution elements on 

nanoindentation hardness, rate dependence, and incipient plasticity in fine grained 

magnesium alloys,” Acta Mater., Vol. 59, pp. 7554–7563. 

17. T. Zhu, J. Li, S. Ogata, and S. Yip, Mar. 2009, “Mechanics of Ultra-Strength 

Materials,” MRS Bull., Vol. 34, pp. 167–172. 

18. W. D. Nix and S. Lee, 2011, “Micro-pillar plasticity controlled by dislocation 

nucleation at surfaces,” Philos. Mag., Vol. 91, pp. 1084–1096. 

19. V. Bhakhri and R. J. Klassen, Apr. 2009, “The strain-rate dependence of the 

nanoindentation stress of gold at 300 K: A deformation kinetics-based approach,” 

J. Mater. Res., Vol. 24, pp. 1456–1465. 

20. W. M. Mook, M. S. Lund, C. Leighton, and W. W. Gerberich, Oct. 2008, “Flow 

stresses and activation volumes for highly deformed nanoposts,” Mater. Sci. Eng. 

A, Vol. 493, pp. 12–20. 

21. U. F. Kocks,  a. S. Argon, and M. F. Ashby, Jan. 1975, “Thermodynamics and 

Kinetics of Slip,” Prog. Mater. Sci. 

22. J. M. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Jan. 

2013, “Extraction of plasticity parameters of GaN with high temperature, in situ 

micro-compression,” Int. J. Plast., Vol. 40, pp. 140–151. 

23. F. H. J. and M. F. Ashby, Deformation-Mechanism Maps, 1st ed. New York, USA: 

Pergamon Press, 1982. 

24. C. A. Volkert and E. T. Lilleodden, Nov. 2006, “Size effects in the deformation of 

sub-micron Au columns,” Philos. Mag., Vol. 86, pp. 5567–5579. 

25. C. A. Volkert, E. T. Lilleodden, D. Kramer, and J. Weissmüller, 2006, 

“Approaching the theoretical strength in nanoporous Au,” Appl. Phys. Lett., Vol. 

89, p. 061920. 

26. Y. Kamimura, K. Edagawa, and S. Takeuchi, 2013, “Experimental evaluation of 

the Peierls stresses in a variety of crystals and their relation to the crystal 



157 

 

structure,” Acta Mater., Vol. 61, pp. 294–309. 

27. D. Hull and D. Bacon, Introduction to dislocations, 4th ed. Jordan Hill, Oxford: 

Butterworth-Heinemann, 2001. 

28. S. S. Brenner, 1956, “Tensile strength of whiskers,” J. Appl. Phys., Vol. 27, pp. 

1484–1491. 

29. I. Salehinia, V. Perez, and D. F. Bahr, 2012, “Effect of vacancies on incipient 

plasticity during contact loading,” Philos. Mag., Vol. 92, pp. 550–570. 

30. P. C. Wo, L. Zuo, and  a. H. W. Ngan, 2005, “Time-dependent incipient plasticity 

in Ni3Al as observed in nanoindentation,” J. Mater. Res., Vol. 20, pp. 489–495. 

31. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, 2008, “Temperature and strain-

rate dependence of surface dislocation nucleation,” Phys. Rev. Lett., Vol. 100, p. 

25502. 

32. A. S. Schneider, B. G. Clark, C. P. Frick, and E. Arzt, Jan. 2009, “Correlation 

between Activation Volume and Pillar Diameter for Mo and Nb BCC Pillars,” 

MRS Proc., Vol. 1185, pp. 1185–II07–04. 

33. A. T. Jennings and J. R. Greer, Mar. 2011, “Tensile deformation of electroplated 

copper nanopillars,” Philos. Mag., Vol. 91, pp. 1108–1120. 

34. C. L. Liu, J. M. Cohen, J. B. Adams, and  a F. Voter, 1991, “EAM study of surface 

self-diffusion,” Surf. Sci., Vol. 253, pp. 334–344. 

35. A. D. Polyanin and A. V. Manzhirov, “Handbook of Mathematics for Engineers 

and Scientists,” Chapman & Hall/CRC, Taylor & Francis Group, 2007, pp. 68–69. 

 

 

 

 

 

 

 

 



158 

 

Chapter 7  

7 Effect of a Surface Constraining Layer on the Plastic 

Deformation of Au Microspheres  

 

Single crystal Au microspheres of 3 m diameter were coated with a sputter-deposited 

nano-crystalline Ni layer of 40 or 80 nm thickness to study the effect of extrinsic 

constraint on the mechanical yield strength and deformation mechanisms of micrometer-

size ductile metal samples.  Room temperature compression tests were performed at three 

loading rates. SEM images of the deformed microspheres displayed micro-cracking of the 

deposited Ni layer during plastic deformation. Force-displacement (F-h) curves of the 

coated Au microspheres were obtained and compared with F-h curves from similar 

diameter uncoated Au spheres. The initial portion of the F-h curves was fitted with a 

Hertzian contact model and the corresponding incipient force was measured. 

The estimated apparent activation volume and energy corresponding to the initiation of 

incipient plasticity is nearly identical for the coated and the uncoated Au microspheres 

which suggests that the mechanism responsible for the initiation of first dislocation 

motion in the Au microspheres is essentially the same regardless of the presence of a 

constraining coating however the Ni coating does raise the stress required for dislocation 

nucleation slightly. 

The apparent activation volume and energy of the rate-dependent deformation process 

after the Au microspheres have endured significant (about 5%) plastic strain is increased 

for the coated spheres compared to the uncoated spheres and increases with increasing Ni 

layer thickness. This reflects the effect of the Ni layer in constraining the motion of 

mobile dislocations and preventing them from reaching the free surface of the 

microspheres. 

 

 



159 

 

7.1 Introduction 

It is well established that small metal samples, with length dimensions in the nanometer 

or micrometer range, display considerably enhanced mechanical strength compared to 

their bulk counterparts [1–7]. The data presented for such systems indicate quite 

conclusively that this increase in strength is due to a transition in the operative 

deformation mechanisms from one controlled by dislocation-obstacle interactions to one 

controlled by dislocation nucleation. In addition to this “intrinsic” deformation 

mechanism transition, the deformation of small samples is often affected by physical 

constraint imposed by rigid surrounding material.  In such situations an increased density 

of “geometrically necessary” dislocations within the small sample is necessary to 

accommodate this constraint. Little experimental data exist on the effect of such extrinsic 

constraint on the activation energy of the dislocation nucleation and glide processes in 

these small ductile samples.  

The majority of experiment-based studies of the effect of geometrical constraint on the 

deformation of micrometer-scale metal samples have been performed with coated- and 

noncoated- thin metal films [8–13]. The flow stress in the coated, also referred to as 

passivated, thin films is usually higher than the flow stress of the non-passivated films. 

Plastic deformation occurs by discrete dislocation glide through the thin metal film [14]. 

If the film is coated by a harder, adherent, layer the threading dislocation cannot leave the 

ductile material and the resulting dislocation pileup effectively hardens the metal film 

[15]. 

While polycrystalline metal thin films are employed widely in many applications, micro-

spherical particles are also now being used in diverse applications such as, for example, 

pharmaceutical drug delivery systems or Li-storage media in Li-ion batteries. The 

increased application of surface-coated metal microspheres has motivated the study, 

described in this chapter, of the effect of passive Ni layer thickness on the strength and 

ductility of 3 µm diameter Au microspheres. 
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7.2 Materials and Methods 

7.2.1 Sample Preparation and Passivation Layer 

Gold microspheres were fabricated on a (0001)-oriented sapphire (α-Al2O3) surface. An 

A8 PMMA positive photoresist layer was spin-coated on an O2 plasma cleaned sapphire 

wafer and e-beam lithography was used to project a grid of 8 µm diameter circles upon 

the photoresist. After the exposed photoresist was removed, a polycrystalline Au film of 

400 nm thickness was deposited by e-beam evaporation. The remaining photoresist was 

then removed and the resulting Au cylinders, of 8 µm diameter and 0.4 µm height, were 

annealed in-vacuum at 1000C. During annealing the Au de-wetted from the sapphire 

substrate and took the form of facetted single-crystal spheres of 3 µm diameter. The 

facets were {111} planes [16–18]. About 100 Au microspheres were fabricated. Sputter 

deposition technique was then used to deposit Ni layers of either 40 or 80 nm thickness 

on to these microspheres (Figure 7.1). An Edwards Auto500 sputter deposition tool, 

equipped with a thickness monitor, was used to perform the Ni layer deposition. A FIB-

prepared cross sectional image of a 3 m diameter Au microsphere containing a 40 nm 

thick Ni layer is shown in Figure 7.2. The e-beam deposited Ni layer has a grain size of 

less than 100 nm. 
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Figure 7.1: SEM images of 3 µm diameter Au microsphere coated with nanocrystalline 

Ni layer of (a) 40 and (b) 80 nm thickness. 

 

Figure 7.2: SEM images of a FIB milled cross-sectional view of a 40 nm Ni coated 3 µm 

diameter Au microsphere. The inset images display the deposited Ni layer around the Au 

periphery of the microsphere.  
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7.2.2 Microsphere Compression 

The Ni-coated Au microspheres were compressed with an instrumented NanoTest 

platform made by Micro Materials Ltd (Wrexham, UK) fitted with a 9 µm diameter 

diamond flat punch indenter. About 40 compression tests were performed. The 

compression tests were carried out by loading the indenter at a constant loading rate to a 

maximum depth of about 20% of the initial sphere diameter. Three loading rates ranging 

from 0.05 to 0.50 mN/sec were used to study the effect of the Ni layer on the plastic 

deformation of the spheres.  

7.2.3 Finite Element Simulation of the Microsphere Compression 

FE simulations of the microsphere compression were implemented using the 

axisymmetric 2D mesh shown in Figure 7.3. The shape and dimensions of the 3 µm 

diameter Au microsphere were obtained from measurements made from SEM images as 

described in detail in Section 4.2.3. Isotropic elastic properties of the Au, E = 79 GPa 

[19], and  = 0.42 [20], were used for the microsphere. The plastic properties of Au were 

defined in the model by selecting the same multi-linear isotropic plastic flow curve of 3 

µm diameter Au sphere, based on the plastic properties of Au at loading rates of 0.05, 

0.15 and 0.50 mN/s (Section 4.2.3). For the Ni layer, isotropic elastic properties were 

again assumed, E = 207 GPa and  = 0.31 [6], and the plastic properties were defined by 

the plastic properties reported for nano-crystalline Ni of 53 – 137 nm grain sizes from 

[21] at room temperature.    
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Figure 7.3: Finite Element model of a 3 µm Au sphere coated with a Ni layer of (a) 40 

and (b) 80 nm thickness. 

In the simulation, the flat-punch indenter and the substrate beneath the sphere were 

assumed to be rigid and frictionless. Both the Ni layer and microsphere were meshed 

with 4-node quadratic axisymmetric quadrilateral elements. The compression process was 

simulated by imposing downward displacement of the nodes at the flat punch/Ni coating 

interface. All simulations were done by defining multiple analysis steps. Two different 

types of interaction properties were defined between the Au sphere and coated Ni layer to 

understand the failure mechanism: (a) a surface based frictionless contact, that connect 

between two deformable bodies and (b) a surface based tie constraints, which ties two 

surfaces together for the duration of the simulation. The average experimental F-h curve 

obtained from the experiment and from these two different FE models of 3 m Au 

spheres, containing Ni surface coatings of 40 or 80 nm thickness are shown in Figure 7.4. 

The F-h responses from both of the frictionless contact and tie constraint Ni layer model 

showed the same trend as the experimental F-h curve obtained at different loading rates. 

In comparison of the bonding between the Au sphere and Ni layer, the tie constraint 

(a) (b)

40 nm Ni

Au sphere

Flat-punch Indenter

80 nm Ni

Au sphere



164 

 

model required slightly more force to compress the sphere then the frictionless contact 

model for both of Ni layer thicknesses (Figure 7.4).    

 

Figure 7.4: F vs. h responses obtained from the FE simulations and the experiments for 

the compression of 3 µm diameter Au spheres coated with a: (a) 40 and (b) 80 nm 

thickness Ni layer. Two criteria are used in the FE simulation to simulate the extreme 

cases of Ni/Au bonding: i) Frictionless sliding contact and ii) rigid “Tie” bonding. 
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7.3 Data Analysis  

7.3.1 Experimental Micro-compression of Passivated Spheres 

Figure 7.5 shows the experimental force-displacement (F-h) response, at the three 

loading rates, of the 40 and 80 nm thick Ni-coated Au microsphere. The deformation 

force, F, of the coated microspheres shows a dependence upon loading rate similar to 

what was observed for the uncoated microspheres (Figure 4.5c, Chapter 4).  

Both the coated microspheres did not display noticeable load jumps during the initial 

deformation up to about 100 nm. This is in contrast to similar diameter uncoated Au 

microspheres which displayed distinct load jumps features in this initial deformation 

range. After about 100 nm deflection the 80 nm thick Ni-coated microspheres showed 

similar discrete load jump features as the uncoated 3 µm Au spheres. In contrast, the 40 

nm thick Ni-coated spheres displayed much smoother F-h response over a much larger 

deflection up to about 500 nm (Figure 7.5). SEM images of the deformed Ni-coated Au 

microspheres are shown in Figure 7.6. Both thicknesses of coated spheres showed 

cracked Ni layers after deformation.     
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Figure 7.5: Experimentally obtained force, F versus displacement, h response for a 3 µm 

diameter Au microsphere coated with Ni layer of (a) 40 and (b) 80 nm thickness, tested at 

three different loading rates. The 40 nm coated sphere displays much smoother F-h 

responses with low magnitude load jumps like features, whereas the 80 nm coated sphere 

shows discrete load jumps like features with higher magnitude of load during the jumps. 

Both of the cases the load jumps rate decreases with increasing loading rates.   
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Figure 7.6: SEM images after compression of 3 µm diameter Au microspheres when 

coated with Ni layer of, (a) 40 and (b) 80 nm, in thickness. The compressed microspheres 

showing micro cracking and debonding of the Ni layer. It is visible that the crack opening 

of the coated Au microsphere of the 80 nm Ni coated layer is much bigger than the 40 nm 

Ni coated layer. 
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7.3.2 FE Simulation of the Compression of Coated Microspheres 

The plastic deformation of the Ni-coated 3 µm diameter Au spheres was analyzed using 

FE simulation. Two FE models were considered: i) Ni-layer in frictionless contact with 

the Au sphere and ii) Ni-layer in rigid contact with the Au sphere.   

 

Figure 7.7: Contour plot of von Mises stress distribution from the FE simulation for 3 

µm diameter Au microsphere when coated with (a) 40 and (b) 80 nm, layer of Ni by 

considering frictionless contact model between the Ni coating and Au sphere.  

The distribution of the von Mises equivalent stress and strain during the plastic 

deformation at the lowest loading rate (0.05 mN/s) are showed in contour plot of Figure 

7.7 and Figure 7.8. In both coating conditions, the Ni layer becomes separated, or 

debonded, from the Au sphere as deformation proceeds. The separation of the Ni layer 

started from the edge of the flat facet located at the top of the Au microsphere where the 

indenter contacts, and compresses, the sphere. This corresponds well with the location of 

the cracks observed on the SEM images of the deformed microspheres (Figure 7.6).  

The contour plot of the von Mises equivalent plastic strain distribution in Figure 7.8 

illustrates that plastic deformation within the Au microsphere is extensive and is 

maximum at the point where the flat-punch indenter begins contact with the sphere. This, 

Separation Separation 
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consequently, is also the point of maximum equivalent strain in the Ni layer and is where 

the Ni layer first debonds from the Au microsphere.  

 

Figure 7.8: Contour plot of von Mises equivalent plastic strain distribution for 3 µm 

diameter Au microsphere when coated with (a) 40 and (b) 80 nm, layer of Ni by 

considering frictionless contact between the Ni coating and the Au sphere.  

7.4  Results and Discussion 

The F-h responses in Figure 7.9 indicate that, for slow loading rates of 0.05 and 0.15 

mN/s, the force is required to deform the Au sphere increases as the coating thickness 

increases.   

A comparison of the coated and uncoated 3 µm diameter Au microspheres at a selected 

loading rate, 0.05 mN/s, obtained from the FE simulation of the uniaxial compression 

(described in Section 7.2.3) are presented in Figure 7.10. The F-h curves obtained from 

the FE simulation show almost the same trend as observed experimentally (Figure 7.9a). 

The effect of the Ni layer on the initial, incipient, yielding will be analyzed further in the 

next section.  
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Figure 7.9: Experimentally measured F-h response of 3 µm diameter Au microsphere 

with and without 40 and 80 nm Ni coating deformed at three loading rates: (a) 0.05, (b) 

0.15, (c) 0.50 mN/s, and (d) the average F-h responses of all loading rates are compared 

to observe the overall effect of the coating.     
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Figure 7.10: Comparison of the F-h response obtained from the FE models of the 

uncoated and coated 3 µm diameter Au microspheres when loaded at a rate of 0.05 mN/s. 

The stress-strain distribution in the compressed coated Au microspheres was obtained 

from the FE simulations. The average von Mises stress-strain data, collected from the 

nodes along the axis of symmetry of the model, were recorded for each load-depth 

increment. Figure 7.11 shows the von Mises stress versus von Mises strain curves, 

averaged along the central axis of rotation on the model, for the 40 and 80 nm Ni coated 

3 µm diameter Au spheres compressed at the three loading rates. The yield stress 

increases with increasing loading rates for both the Ni coatings thicknesses. A 

comparison plot of the von Mises stress-strain distribution between the coated and non-

coated sphere is shown in Figure 7.12. It is obvious that the yield stress increases when 

the 3 µm diameter Au sphere was coated with a layer of Ni; however, increasing the layer 

thickness from 40 to 80 nm does not result in significantly further increase in stress.    
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Figure 7.11: von Mises equivalent stress-strain response obtained from the FE models of 

3 µm diameter Au sphere with (a) 40 and (b) 80 nm thick Ni coatings at three loading 

rates.  

 

Figure 7.12: A comparison of the von Mises equivalent stress-strain response obtained 

from the FE models of the coated and uncoated 3 µm diameter Au sphere at 0.50 mN/s 

loading rate. 
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7.4.1 Estimation of Initial Yielding using Hertzian Elastic Contact 

The variation in the experimentally measured F-h curves obtained from multiple 

specimens of 40 and 80 nm thick Ni-coated 3 m diameter Au microspheres are shown in 

Figure 7.13 to Figure 7.15. Included in these graphs are the elastic loading trends 

calculated by applying the Hertzian equation for contact between an elastic sphere of 

radius R1 = ∞ (i.e. a flat surface) compressing, to a depth h, another elastic sphere of 

radius R2 ≈ 1.5 m. Because incipient yielding occurred in these microspheres when they 

were compressed to a very small depth and the yield strength of nano-crystalline Ni is 

much higher than Au, we are approximating the elastic F-h response by assuming that the 

two spheres in the Hertzian approximation have the elastic properties of Au.         

In this Hertzian elastic contact model (R1 = ∞, R  R2  1.5 m)  the contact force, F is 

related to h as [22] 

 𝐹 =
4

3
𝐸𝑟𝑅1 2⁄ ℎ3 2⁄  (2.24)  

where 𝐸𝑟 is the reduced elastic modulus which is given as 

 
1

𝐸𝑟
=

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
 (2.25)  

where, 𝐸1, 𝐸2 are Elastic moduli and 𝜈1, 𝜈2 are Poisson’s ratios associate with the Au 

sphere (R2) and the diamond half-space (R1). For this work, 𝐸𝑟 was calculated by 

considering isotropic elastic properties of E1 = 1141 GPa, 𝜈1 = 0.07 for the diamond flat-

punch indenter [23] and E2 = 79 GPa [19], 𝜈2 = 0.42 [20] for the Au sphere. R is the 

radius of the coated Au microsphere which is about 1.54 and 1.58 µm considering the 40 

and 80 nm Ni coatings thickness. Additionally, considering the elastic properties of Ni, 

E2 = 207 GPa, 𝜈2 = 0.31 [6], The F-h profile obtained from Hertz contact model was also 

plotted in Figure 7.13 and Figure 7.14.      
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Figure 7.13:  Individual F-h curves for 40 nm Ni coated 3 µm diameter Au microspheres 

tested at different loading rates. The solid lines show the elastic stress-strain response 

predicted by application of a Hertzian contact model. Deviation of the experimental data 

trend from the elastic model indicates the initiation of incipient plasticity.  
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Figure 7.14: Individual F-h curves for 80 nm Ni coated 3 µm diameter Au microspheres 

tested at different loading rates. The solid lines show the elastic stress-strain response 

predicted by application of a Hertzian contact model. Deviation of the experimental data 

trend from the elastic model indicates the initiation of incipient plasticity. 
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Figure 7.15: Comparison of the representative measured F-h curves of Au microspheres 

with (a) 40 and (b) 80 nm thick Ni coating at three loading rates. For each test the initial 

portion of the F-h curve is well matched by the F-h elastic response predicted by the 

Hertzian contact model (solid blue lines). The load corresponding to the first incipient 

plasticity event is marked by the black arrow. For the sake of clarity, the displacement 

data for three loading rates is offset by 10 nm in these figures.   

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

F
 (

m
N

)

h (nm)

0.05 mN/s

0.15 mN/s

0.50 mN/s

Hertz (Au)

40 nm Ni

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

F
 (

m
N

)

h (nm)

0.05 mN/s

0.15 mN/s

0.50 mN/s

Hertz (Au)

80 nm Ni

(a)

(b)



177 

 

The initial deviation of the experimental F-h data from the calculated Hertzian elastic 

loading profiles in Figure 7.15 is considered to be the point of initiation of incipient 

plasticity. The incipient load displays an increasing trend with increasing loading rate for 

the coated microspheres. This indicates that the yield strength, of these samples is strain 

rate sensitive. A comparison of the incipient loads for both the coated and uncoated 

spheres is shown in Table 7.1. It is notable that the incipient load for the uncoated spheres 

is less than the coated sphere for all loading rates. This suggest that the yield strength 

during the incipient event of the Au microsphere is increased with the Ni coated layer. 

Similar behavior was observed by Ng and Ngan [24] when Al micropillars of 1.2 to 6.0 

µm diameter were coated with tungsten. The coated pillars exhibited a notably higher 

strain-hardening rate and much smoother stress–strain response. The authors proposed 

that the tungsten layer suppressed the nucleation and motion of dislocation avalanches 

during the compression of the micropillars. Their TEM analyses confirmed the trapping 

of the dislocations inside the deforming Al pillars. 

Table 7.1: Summary of loading rate and the corresponding incipient load of the tested 

uncoated and Ni coated 3 µm diameter Au microspheres 

3 µm diameter Au Sphere Loading rate (mN/sec) Incipient Load (mN) 

Uncoated 

0.05 0.096 ± 0.019 

0.15 0.173 ± 0.051 

0.50 0.203 ± 0.061 

Coated with 40 nm of Ni 

0.05 0.115 ± 0.029 

0.15 0.184 ± 0.025 

0.50 0.213 ± 0.010 

Coated with 80 nm of Ni 

0.05 0.136 ± 0.026 

0.15 0.178 ± 0.034 

0.50 0.228 ± 0.041 
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7.4.2 Plastic Deformation of the Coated Spheres  

The analysis technique described in Chapter 5 (Section 5.3.4) is used here to estimate the 

incipient apparent activation volume V*, a characteristic signature of the deformation rate 

controlling mechanism in these coated Au microspheres. 

In Figure 7.15 and Table 7.1, the increased incipient load with increasing loading rate 

indicates that the incipient yield stress 𝜎𝑦, of the tested Ni-coated Au microspheres 

increased with increasing strain rates. The incipient load data were converted to a 

representative incipient stress by dividing by the area of the {111} facet upon which the 

flat-punch indenter contacted the coated Au sphere. The contact facet area of the 

uncoated sphere was measured from SEM images of the microspheres and this contact 

facet diameter was used for both the coated and uncoated spheres. A representative 

average strain rate at the incipient load was determined as 𝜖̇ =
𝑑

𝑑𝑡
(

∆ℎ

𝐷
) from the data of 

the tests performed at each loading rate. In this expression h is the compression depth, 

D is the height of the sphere, and t is the time.   

The slope (kT/V*) of the strain rate dependence of , provides information on the 

apparent activation volume, V*5, (Eq. 5.6, Chapter 5). The  values were determined from 

the incipient yield stress 𝜎𝑦 using the relationship (Eq. 5.3) described in detail in Chapter 

5 (Section 5.3.2). The dependence of V* upon Ni layer thickness is shown in Table 7.2 

where V* for the Ni-coated 3 µm Au spheres is compared with that of the uncoated Au 

spheres. The estimated V* of the coated microspheres is normalized with respect to b3
, 

where bAu = 0.289 nm [25,26]. The estimated V* during incipient plasticity of the 40 and 

80 nm thick Ni coated Au spheres is about 1.53 and 1.65b3 respectively (Table 7.2). It is 

important to note here that the incipient V* values obtained for the coated microspheres is 

the same, within the experimental scatter, as the V* = 1.76b3 obtained from the uncoated 

microspheres (Chapter 5).  

                                                 

5
 We refer to V* as the apparent activation volume because in this analysis we treat the stress and strain 

within the Au spheres as being constant. This is a clear simplification since the FE model predicts a 

complex, and highly varying stress and strain state in the deformed Au sphere. 
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The estimated V* values were converted to the apparent activation energy, Q*, of the 

deforming rate controlling obstacles, using the relation [27], Q* = 
0K

V*, where 
0K

 is the 

athermal yield stress of Au, 
0K

 = 256 MPa [28]. The calculated Q* for both of the 40 and 

80 nm thickness Ni coated Au spheres is about ~0.8eV, which is identical to the uncoated 

sphere.   

Table 7.2: Estimated apparent activation volume, V*, and energy, Q*, during the 

incipient plasticity event of the uncoated and Ni-coated 3 µm diameter Au microspheres 

Incipient Deformation 

Parameters 
3 µm Au 3 µm Au + 40 nm Ni 3 µm Au + 80 nm Ni 

V* (b3) 1.76 ± 0.18 1.53 ± 0.42 1.65 ± 0.34 

Q* (eV) 0.07 ± 0.01 0.08 ± 0.02 0.08 ± 0.02 

The V* of the coated microspheres during the plastic deformation process at 5% of strain 

can be calculated by using the method described in Chapter 4 (Section 4.4). For 40 and 

80 nm coated spheres, the calculated values of the strain rate sensitivity m, corresponding 

to 5% strain is 0.136 and 0.124 respectively. Using Eq. 4.2 (Chapter 4), the estimated V* 

is, 14.3b3 for 40 nm and 15.6b3 for 80 nm, Ni coated 3 µm diameter Au sphere. V* 

increases with the Ni coating and also with the increasing coating thickness. The Q* 

increased from 0.45 to 0.60 eV from the uncoated to the coated Au sphere. A comparison 

of the experimental scatter included values of V* and Q* for the uncoated and coated Au 

microspheres is given in Table 7.3.      
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Table 7.3: Estimated apparent activation volume, V*, and energy, Q*, during plastic 

deformation at 5% of strain for the uncoated and coated 3 µm Au microspheres 

Bulk Deformation 

Parameters 
3 µm Au 3 µm Au + 40 nm Ni 3 µm Au + 80 nm Ni 

V* (b3) 11.7 ± 1.9 14.3 ± 2.6 15.6 ± 3.2 

Q* (eV) 0.45 ± 0.07 0.55 ± 0.10 0.60 ± 0.12 

When considering the estimated V* and Q* values corresponding to the incipient 

initiation of plastic deformation we see that the coated and uncoated spheres are almost 

identical however, the incipient yield stress increases with the coating thickness and 

loading rate. This suggests that the general rate-controlling mechanism of initial plastic 

deformation remains the same for the uncoated and the coated 3 µm Au spheres despite 

the fact that the stress required to initiate the first dislocation movement is increased in 

the coated microspheres. It is notable that from the FE simulation, the Ni layers start 

debonding from the corner of Au sphere (Figure 7.8), and the initation of the debonding 

is observed at about 1% average compressive strain. Thus, one can deduce that the Ni-

layer is still intact when incipient plasticity occurs. 

When the same microspheres are examined after enduring a significant amount of plastic 

strain, corresponding to an average compressive strain of about 5%, the estimated V* and 

Q*, increase with Ni coating (Table 7.3). In this situation the Ni layer has begun to crack 

but is not fully seperated from the Au sphere (Figure 7.6). Thus, the Ni layer appears to 

still be constraining the movement of mobile dislocations within Au sphere and impeding 

their reaching the free surface. 
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7.5 Summary 

Single crystalline Au microspheres of 3 m diameter were coated with a Ni layer of 

either 40 or 80 nm thickness and tested by compression at different loading rates to study 

the effect of extrinsic constraint on the mechanical properties and deformation 

mechanisms of these small-size spheres.  

The Ni coating resulted in a slightly increased F-h response compared to similar diameter 

uncoated Au microspheres and, in all cases the F-h response was clearly dependent upon 

loading rate. 

The estimated apparent activation volume V* corresponding to the initiation of incipient 

plasticity is nearly identical for the coated and the uncoated Au microspheres, V*uncoated is 

about 1.76b3 while V*coated is between 1.53 and 1.65b3. This suggest that the  mechanism 

responsible for the initiation of first dislocation motion in the Au microspheres is 

essentially the same regardless of the presence of a constraining coating however the Ni 

coating does raise the stress required for dislocation nucleation slightly. 

When one considers the apparent activation volume and energy of the rate-dependent 

deformation process after the Au microspheres have endured significant (about 5%) 

plastic strain we observe that V* is increased to between 14.3 and 15.6b3 for the coated 

spheres compared to 11.7 b3 for the uncoated spheres and V* increases with increasing Ni 

layer thickness from 40 to 80 nm. This increase in apparent activation volume reflects the 

effect of the Ni layer constraining the motion of nucleated dislocations and preventing 

them from reaching the free surface of the microspheres.                  
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Chapter 8  

8 Conclusion and Scope of Future Research 

The main objective of this research was to use micro-mechanical test techniques to 

understand the effect of microstructure on the underlying mechanisms of plastic 

deformation of micron and sub-micron size FCC metal samples. The following 

conclusions can be drawn the results obtained from the experimental and numerical 

studies in this research:      

In the first study in this thesis (Chapter 3), the length scale dependence of the operative 

plastic deformation mechanisms was studied using compression tests performed on Au 

micropillars and microspheres of 1.0 to 5.0 µm diameter. The samples were tested at 

room temperature and displayed deformation that had a component of random strain 

jumps. In the case of the Au micropillars, the frequency of the strain jumps showed a 

bilinear dependence upon pillar diameter with the frequency being larger, and more 

sensitive to diameter, when the pillar diameter was small (and R was high). This 

indicates a transition from deformation occurring by multiple-slip to deformation 

occurring predominantly by single-plane dislocation slip when the pillar diameter is less 

than 2.0 µm.  

The strain jump frequency during the constant-load micropillar creep tests showed a 

linear dependence upon R. Constant-load creep tests performed on the microspheres of 

5.0 µm diameter displayed displacement jump frequency that was essentially independent 

of applied load while the jump frequency increased with increasing load for the smaller 

2.5 µm diameter microspheres. The difference is related to the volume of the 

microsphere: when the volume is small, the component of the deformation that occurs by 

a stochastic dislocation glide process is increased and becomes strongly dependent upon 

the magnitude of the applied local shear stress. 

In the following study (Chapter 4), the dependence of the plastic deformation of Au 

microspheres upon sphere diameter (0.8 – 6.0 µm) and strain rate at ambient temperature 
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is investigated using micro-compression testing. The flow stress displayed nominal 

dependence upon both strain and strain rate, and diameter of the Au microspheres. 

Analysis of the apparent activation volume, V* and energy Q* of the deformation process 

indicated that the operative deformation mechanism, for the smaller 0.8 – 1.0 µm 

diameter spheres was typical of a mechanism limited by the surface nucleation of 

dislocation, and for the larger 3.0 – 6.0 µm diameter spheres was controlled by the 

dislocation-obstacle interaction limited mechanism, which is typical for bulk FCC metals. 

These findings are particularly important in case of emerging nano/micro-technologies, 

making use of materials at ever decreasing scales.  

Subsequently in Chapter 5, flat-punch micro-compression testing was employed to 

investigate the deformation-rate dependence of the incipient plastic deformation of Au 

microspheres of diameter ranging from 0.8 to 6.0 µm. The incipient yield load increased 

with increasing loading rate for a particular sized microsphere, whereas, it decreased with 

increasing microsphere size. The size dependence of incipient loads was attributed to the 

presence of vacancies whose amount increased, as a result of increased flat-punch/sphere 

contact area, in the larger diameter microspheres. A thermal activation based model was 

used to interpret the loading-rate dependence of the measured incipient loads. The 

apparent activation volume, V*, and energy, Q*, values were found to be 0.2b3 and 

0.01eV for 0.8 µm sphere and increased to 2.1b3 and 0.08eV for 6.0 µm sphere. These 

estimated values indicate that the incipient plasticity is controlled by heterogeneous 

dislocation nucleation events occurring at, or near, the flat-punch/sphere interface the rate 

of which is highly dependent upon the rate of surface self-diffusion of the Au atoms. This 

study illustrates the importance of surfaces on the onset of plastic deformation in 

crystalline metal nano-structures such as microspheres, micropillars and microbeams. 

The sample size and strain rate dependence of the plastic deformation behavior of Au 

micropillars (0.8 to 4.0 µm diameter) subjected to uniaxial compression at ambient 

temperature was studied in Chapter 6. It was observed that the dependence of the flow 

stress, after considerable plastic deformation corresponding to  = 5%, was dependent 

upon both strain rate and micropillar diameter. Analysis of the apparent activation 

volume, V* and energy Q* of the deformation process indicated that the operative 
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deformation mechanism, for the small 0.8 µm diameter pillars was typical of a 

mechanism limited by the surface nucleation of dislocations, and for the larger 2.0 and 

4.0 µm diameter pillars was controlled by the more common dislocation-obstacle 

interaction limited mechanism. 

The deformation-rate dependence of the incipient plastic deformation behavior was also 

investigated for the micropillars. The incipient yield stress, for a particular sized 

micropillar, increased with increasing strain rate whereas, for a particular strain rate, it 

decreased with increasing micropillar diameter. The size dependence of incipient yield 

stress was attributed to the presence of vacancies whose amount increased, as a result of 

increased flat-punch/pillar contact area, in the larger diameter micropillars. The apparent 

activation volume, V*, and energy, Q*, values were found to be 5.4b3 and 0.21eV for 0.8 

µm diameter pillars and increased to 144b3 and 5.55eV for 4.0 µm diameter pillars. These 

estimated values suggest that the incipient plasticity of the smallest diameter pillar is 

controlled by heterogeneous dislocation nucleation events occurring at, or near, the flat-

punch/pillar top interface the rate of which is highly dependent upon the rate of surface 

self-diffusion based process. 

The final study of this thesis was to understand the effect of extrinsic constraint on the 

mechanical properties and deformation mechanisms of these small-size Au spheres. In 

this investigation single crystalline Au microspheres of 3.0 µm diameter were coated with 

a Ni layer of either 40 or 80 nm thickness and tested by compression at different loading 

rates. The Ni coating resulted in a slightly increased F-h response compared to similar 

diameter uncoated Au microspheres and, in all cases the F-h response was clearly 

dependent upon loading rate. 

The estimated apparent activation volume V* corresponding to the initiation of incipient 

plasticity is nearly identical for the coated and the uncoated Au microspheres, V*uncoated is 

about 1.76b3 while V*coated is between 1.53 and 1.65b3. This suggest that the  mechanism 

responsible for the initiation of first dislocation motion in the Au microspheres is 

essentially the same regardless of the presence of a constraining coating however the Ni 

coating does raise the stress required for dislocation nucleation slightly. 
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When one considers the activation volume and activation energy of the rate-dependent 

deformation process after the Au microspheres have endured significant (about 5%) 

plastic strain we observe that V* is increased to between 14.3 and 15.6b3 for the coated 

spheres compared to 11.7 b3 for the uncoated spheres and V* increases with increasing Ni 

layer thickness from 40 to 80 nm. This increase in activation volume reflects the effect of 

the Ni layer constraining the motion of nucleated dislocations and preventing them from 

reaching the free surface of the microspheres.                  

8.1 Scope of Future Research 

The findings of the studies reported in this thesis open many research areas for future 

consideration. Some of these are described below: 

1. Molecular Dynamic Simulation 

It was found from this research that surfaces play a very important role to the 

deformation mechanism of the small size samples. Atomistic molecular dynamic 

simulation of the microsphere and pillar compression process can be performed to 

understand the effect of surface and the activity of dislocation at the interface of the flat-

punch indenter and the microsphere facets and pillar top diameter.  This is currently a 

very active area of research and one that Prof. R. J. Klassen’s group has also now become 

involved with. 

2. Surface Passivation Layer of Micropillar and Microsphere 

In this study, 40 and 80 nm layer of Ni are used to passivate 3.0 µm diameter Au sphere, 

several different thickness layer of Ni can be deposited on the 3.0 µm diameter Au sphere 

and further study can be performed to know the effect of Ni layer thickness to the Au 

sphere deformation. Smaller diameter Au spheres (0.8 and 3.0 µm) can be coated with 

different layer of Ni to study the effect of coating to the size of the sphere. Different 

materials can be chosen to passivate the microspheres such that interfacial debonding can 

be avoided. Similar study can be performed on micropillars and the estimated 

deformation parameters can be compared with microspheres.   
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3. High Temperature Micro-compression 

The strain rate-dependence plastic deformation behavior of these Au microspheres can be 

performed at elevated temperature. Uniaxial compression test at three different loading 

rates can be done on these Au spheres and pillars at 300, 400 and 500C to accurately 

measure the thermal activation energy of the deformation process.   

4. Long-duration Creep Testing at High Temperature 

The kinetics of the time-dependent plastic deformation behavior of these Au 

microspheres can be studied further at ambient and elevated temperatures. These test can 

be performed by selecting three different level of compression force below the yield force 

of the microspheres. The resulting depth-time data obtained from these creep test can be 

analyzed further using thermal activation based model to find out the fundamental 

deformation rate controlling parameter activation volume to understand the kinetics of 

the creep deformation.     
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Appendices 

Appendix A: Study of the effect of element size on the FE results 

The FE model of the 3.0 µm diameter Au microspheres presented in Chapter 4, is further 

analyzed with a coarse to fine mesh to see how a change in mesh density affect the 

results. Corse to fine mesh of the Au sphere is shown in Figure A.1.   

 

Figure A.1: Corse to fine mesh of the 3.0 µm diameter Au sphere FE model. The mesh is 

performed using approximate global element size control of (a) 0.15, total 448 elements 

(b) 0.10, total 664 elements, (c) 0.05, total 1257 elements, (d) 0.03, total 4867 elements 

and (d) 0.01, total 33701 elements.      

(a) (b) (c)

(d) (e)
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Figure A.2: The force-displacement (F-h) curve obtained from course to fine mesh of the 

3.0 µm diameter Au microsphere uniaxial compression FE model. The F-h curves 

produced by different model does not noticeably affect the results.    
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