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Abstract 

The important pair-rule segmentation gene fushi tarazu (ftz) encodes a homeodomain (HD)-

containing protein involved in the establishment of even-numbered parasegments during 

embryonic development. The D. melanogaster ftz is a derived homeotic selector (Hox) gene 

which lost its homeotic function during the evolution of arthropods. Genetic analyses have 

shown that FTZ has two distinct activities required during development: HD-dependent and 

HD-independent FTZ activities. The aim of this study was to test the interaction of the two 

FTZ activities proposed by Hyduk and Percival-Smith (1996), by generating site-specific 

mutant ftz alleles for intragenic complementation. CRISPR-mediated homology directed 

repair (HDR) was used to introduce engineered ftz alleles into the ftz locus. Subsequently, 

four ftz engineered alleles were constructed in vectors for reintroduction by Recombinase-

mediated cassette exchange (RMCE). Despite using multiple approaches no CRISPR 

mediated HDR events were detected, and therefore, the model could not be tested. 
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1 INTRODUCTION  

1.1 Drosophila melanogaster as a model system 

Drosophila melanogaster commonly known as the “fruit fly”, is an attractive model 

system of great interest to researchers in the fields of molecular biology, genetics and 

neuroscience. The powerful genetic tools available for D. melanogaster allow 

investigators to elucidate the basis of complex traits, and gene-gene and gene-

environment interactions. The D. melanogaster genome has been sequenced (Adams et 

al., 2000). In addition, D. melanogaster has a short life cycle, can be easily handled in 

laboratories and females have high fecundity. After fertilization, the egg is laid 

externally, which allows scientists to study its development very closely thereby offering 

a key model of development. How genes control development has been studied in great 

depth in D. melanogaster due to its well-understood cell biology, genetics and genome 

(Rubin, 1988). In addition, research into the genetics of D. melanogaster has been greatly 

assisted by the ability to introduce DNA into the genome. The most used method to 

introduce DNA into flies is P-element mediated transformation (Spradling & Rubin, 

1982; Beall & Rio, 1998; Konev et al., 2003). Over the past ten years, methods for gene 

replacement via homologous recombination (HR) have also been developed (Rong & 

Golic, 2000; Horn & Handler, 2005), but due to the complexity and inefficiencies of the 

procedures, they are not used extensively (Huang et al., 2009). 

1.2 Transgenic techniques used in Drosophila   

1.2.1 P-element-mediated transformation 

The P-element is a Drosophila transposable element that has interested researchers for 

many years (Majumdar & Rio, 2015). They are small transposons that have terminal 31 

base pair (bp) inverted repeats, and generate 8 bp direct repeats of target DNA sequence 

upon insertion (Huang et al., 2009). P-elements are used for mutagenesis and the 

development of genetically modified flies used in genetic research (Venken & Bellen, 

2007). P-element-mediated germ-line transformation is a powerful transgenic tool in 

Drosophila, especially when it is employed as an insertional mutagen or when it is 
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combined with tools such as the GAL4-UAS system (Brand & Perrimon, 1993). One 

important characteristic of P-elements is the random site of integration into the genome. 

Although the random nature of P-element integration is vital for generating insertion 

mutations and deletions (indels), it is not ideal for generating transgenic flies. The 

random integration of P-elements requires substantial efforts to map the site of insertion, 

and the genomic position of the insertion can influence the expression of the transgene 

thereby requiring analysis of multiple insertion lines to ensure that the alteration in 

phenotype is due to exclusively transgene expression and not an insertion artifact. 

Another disadvantage of the P-element system is its variable transformation 

effectiveness, a serious problem for large-scale transgenesis efforts (Bateman et al., 

2006). Numerous strategies have been developed to overcome this issue of random 

insertion of transposons using systems based on the FLP and Cre recombinases (Siegal & 

Hartl, 1996; Venken & Bellen, 2007). These solutions allow precise targeting to genomic 

landing site, bypassing the need to analyze multiple independent insertions (Bateman et 

al., 2006). 

1.2.2 TALENs and Zinc-finger nucleases 

Zinc-finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases 

(TALENs) are important tools in modern biological research (Gaj et al., 2013). These 

chimeric nucleases are composed of programmable, sequence-specific DNA-binding 

components associated with a general DNA cleavage domain. ZFNs and TALENs allow 

a comprehensive variety of genetic alterations by inducing DNA double-stranded breaks 

(DSBs) that activate error-prone non-homologous end joining (NHEJ) or homology-

directed repair (HDR) at precise genomic positions (Figure 1; Liu et al., 2012). The 

adaptability of ZFNs and TALENs emerge from the capability to customize the DNA-

binding domain to recognize virtually any sequence (Carlson et al., 2012). These DNA-

binding modules can be merged with various effector domains, including repressors 

recombinases, transposases, nucleases, transcriptional activators, histone 

acetyltransferases and DNA-histone methyltransferases to influence the genomic 

structure and function (Gaj et al., 2013). Therefore, the capacity to modify a gene is  
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Figure 1. Nuclease-induced double-stranded breaks (DSBs) used for gene editing. 

The DSBs made in a genomic target site initiate DNA damage response pathways that 

repair the break either by non-homologous end joining (NHEJ), which result in indel 

mutations (red and green), or by homology-directed repair (HDR) in the presence of a 

repair template (blue), which lead to precise modification of the genome. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Biotechnology (Sander & Joung), 

copyright (2014). 
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largely based on the DNA-binding affinity and specificity of designed zinc-finger and 

TALE proteins. 

1.2.3 Recombinase-mediated cassette exchange  

Recombinase-mediated cassette exchange (RCME) is the exchange of two specific DNA 

segments between two DNA molecules. The bacteriophage ФC31 integrase is used to 

perform RMCE (Groth et al., 2004; Venken et al., 2011). The enzyme typically catalyzes 

specific, unidirectional, site-specific recombination between two attachment sites (att 

sites) called attP and attB. The ФC31 integrase facilitates recombination between the two 

39 base pair sequences, the attP site, which is usually pre-integrated into a Drosophila 

chromosome and serves as a target, or landing site, for precise integration of DNA carried 

on a plasmid with an attB site (Bischof et al., 2007). After recombination, the attP and 

attB sites are converted to attR and attL sites (Figure 2; Groth et al., 2004; Bateman et 

al., 2006). The incorporated or exchanged DNA is stably inherited and expressed. 

1.2.4 Clustered regularly interspaced short palindromic repeats   

Clustered regularly interspaced short palindromic repeats  (CRISPR) is a relatively recent 

and novel genome engineering tool that is being employed to accomplish efficient, 

targeted, genetic modifications not only in Drosophila, but also in the genomes of many 

other model and non-model organisms (Cho et al., 2013; Cong et al., 2013; DiCarlo et 

al., 2013; Friedland et al., 2013; Gratz et al., 2013; Hwang et al., 2013; Wang et al., 

2013). CRISPR was first discovered in 1987 in the Escherichia coli (E. coli) genome and 

has subsequently been shown to participate in adaptive bacterial immunity (Ishino et al., 

1987; Barrangou et al., 2007). The CRISPR/ Cas9 system protects prokaryotes against 

foreign genetic elements (Figure 3.A; Bhaya et al. 2011). In the type II CRISPR system 

short RNA sequences complementary to the invading nucleic acids, the CRISPR RNA 

(crRNA), and a trans-activating CRISPR RNA (tracrRNA) direct the CRISPR-associated 

nuclease (Cas9) to introduce site specific DSBs in the exogenous invading DNA (Bhaya 

et al. 2011; Gaj et al., 2013). 
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Figure 2. Site-specific integration via φC31 integrase-mediated cassette exchange. 

The ФC31 integrase typically catalyzes specific, unidirectional, site-specific 

recombination between the attP sites (yellow triangles), which are usually pre-integrated 

into a genomic site for precise integration of DNA carried on a plasmid with attB sites 

(orange triangles). After recombination, the attP and attB sites are converted to attR sites 

(red triangles) in the host, and attL sites (grey triangles) in the donor plasmid. 
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Figure 3. CRISPR/Cas9 system. The type II CRISPR system has been used as a highly 

efficient method for generating site-specific cleavage of double-stranded DNA. (A) 

CRISPR system in prokaryotes. Small fragments from invading DNA (called spacer) are 

incorporated between CRISPR arrays within the host genome, and separated by a short 

palindromic repeats. CRISPR arrays are then transcribed and transcripts produce crRNA, 

which now contain a sequence complementary to the foreign DNA (protospacer) and part 

of CRISPR repeats. TracrRNA hybridizes to the crRNA repeat region and complexes 

with the Cas9 nuclease to introduce site-specific double-stranded breaks next to the PAM 

sequence in the exogenous invading DNA (Bhaya et al. 2011; Gaj et al., 2013; Sander & 

Joung, 2014). (B) The modified CRISPR/Cas9 system only requires RNA-guided Cas9 

nuclease isolated from Streptococcus pyogenes, a synthetic chimeric RNA (chiRNA) or 

guide RNA (gRNA) containing both the crRNA and the tracrRNA (Jinek et al., 2012). 

Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology (Sander 

& Joung), copyright (2014). 
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Recently, the type II CRISPR system has been used as a highly efficient method for 

generating site-specific cleavage of double-stranded DNA (Gratz et al., 2013). 

CRISPR/Cas9 system used is a modification of the original type II system. The modified 

system still uses an RNA- guided Cas9 nuclease isolated from Streptococcus pyogenes, 

but has introduced a synthetic chimeric RNA (chiRNA) containing both the crRNA and 

the tracrRNA (Figure 3.B; Jinek et al., 2012). This advance established a simple two-

component CRISPR system for genome editing, as it only requires a binary 

Cas9/chiRNA riboprotein to create site-specific DSBs in the host DNA. The target site 

recognition of CRISPR/Cas9 depends on the chiRNA that contains 20 bases of sequence 

complementary with the targeted genomic DNA sequence, and targets DNA in the 

genome for cleavage when it is followed by a protospacer adjacent motif (PAM) 

sequence, “NGG”. The 20-base chiRNA recognition sequence and the PAM sequence 

make the CRISPR system very specific because the chance that an identical sequence of 

greater than 20 bases occurs twice in a genome is low (Horn & Handler, 2005; Gratz et 

al., 2013). The DSBs made in a genomic target site initiate DNA damage response 

pathways that repair the break either by NHEJ, which is error-prone, or by HR in the 

presence of a repair template, which can lead to precise modification of the genome 

(Capecchi, 1989; Banga & Boyd, 1992; Rong & Golic, 2000; Gratz et al., 2013). 

TALENs and ZFNs are chimeric nucleases that induce DSBs (Bibikova et al., 2002). 

However, these methods are laborious, time consuming and and the specificity is 

mediated through proteins not complementary nucleotide sequences relative to the 

simpler CRISPR system (Huang et al., 2009; Gaj et al., 2013).  

1.3 Development of Drosophila melanogaster 

D. melanogaster has an average life span of 30 days. Development of an adult fly takes 

10 days in a complex life cycle composed of four major stages: embryonic, larval, pupal 

and adult. First, embryogenesis, the development of a larva from a fertilized egg, is 

composed of a number of sub-stages: syncytial blastoderm, cellular blastoderm, 

gastrulation, germband extension and germband retraction. Embryogenesis takes one day 

after which a first instar larva hatches. This larva eats, grows and molts to give the second 

instar larva, which grows and molts to give the third instar larva. The three larval stages 



  

8 

take around 4-5 days to complete. After this, the larva forms a pupal case, entering the 

pre-pupal and the pupal stages. In the pupal stage, the fly transforms from the larval form 

to an adult in a process called metamorphosis. Finally, a sexually reproductive, adult fly 

ecloses from the pupal case. 

1.4 Segmentation in Drosophila melanogaster 

The development of the fertilized D. melanogaster egg into a larva and then an adult fly 

depends on proper pattern formation along the anterior-posterior (A-P) axis. Much 

research has been done on body pattern formation in Drosophila, and these studies have 

shown that this pattern formation is controlled by the hierarchical interaction between 

specific set of genes: maternal-effect genes, gap genes, pair-rule genes, segment polarity 

genes and Homeotic selector (Hox) genes. These hierarchal interactions give rise to a 

segmented larva. Drosophila embryogenesis has two distinct segmental registers: the first 

register, functioning early during embryogenesis, is the fourteen parasegments which 

later during development is transformed to give rise to the second register, the 

larval/adult segments that are composed of the posterior of one parasegment and the 

anterior of the next (Figure 4.A; Nüsslein-Volhard & Wieschaus, 1980; Martinez-Arias 

& Lawrence, 1984). Anterior-posterior pattern formation is initiated by signals provided 

to the developing egg from the maternal genome during oogenesis. These signals are 

messenger RNA molecules transcribed from the maternal-effect genes of the maternal 

germ-line genome. These RNA signals are important for determining the polarity of the 

developing embryo. The mRNA of the maternal-effect gene bicoid (bcd) defines the 

anterior end of the embryo while the mRNA of nanos (nos) gene defines the posterior 

end. The maternal-effect proteins regulate the expression of the first zygotically 

expressed genes, known as gap genes. The gap genes are expressed in broad domains 

along the A-P axis, and divide the embryo into broad regions. Gap proteins regulate the 

transcription of the pair-rule genes. The pair-rule genes are expressed in seven stripes of 

cells. Two pair-rule genes are very important for segmentation: fushi tarazu (ftz) and 

even-skipped (eve). The pair-rule gene ftz is involved in the establishment of even-

numbered parasegments whereas eve defines the odd numbered parasegments (Maier et  
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Figure 4. Drosophila segments and parasegments. Two pair-rule genes are very 

important for segmentation. (A) During the cellular blastoderm stage, ftz establishes the 

even numbered parasegments; whereas, eve defines the odd numbered parasegments, and 

in doing so, ftz and eve form the first register, the fourteen parasegments, which later 

during development are transformed to give rise to the second segmental register the 

larval/adult segments that are composed of the posterior of one parasegment and the 

anterior of the next. (B) Once segments are established, Hox genes give identity to each 

segment, three head segments; Mandibular, Maxillary and Labial, the three thoracic 

segments; T1, T2 and T3. The eight abdominal segments (A1-A8). Reprinted by 

permission from Developmental Biology, by Gilbert, Scott F., 8th edition, Chapter 9, 

Sinauer Associates Inc.; 2006.  
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al., 1990), and in doing so, set up the parasegmental boundaries. The protein products of 

pair-rule genes regulate the transcription of the segment polarity genes, which are 

responsible for establishing the A-P axis of each segment of the embryo (Lawrence et al., 

1987; Carroll et al., 1988). Once segments are established, all segmentation genes (gap 

genes, pair-rule genes, segment polarity genes) interact to regulate the Homeotic (Hox) 

genes that give identity to each segment (Figure 4.B; Mcginnis & Krumlauf 1992). For 

example, the genes of the Antennapedia Complex (ANT-C) control the formation of the 

three head segments; Mandibular, Maxillary and Labial, and the three thoracic segments; 

T1, T2 and T3 (Struhl, 1982). The segmental identities of the remaining eight abdominal 

segments (A1-A8) are controlled by the genes of the Bithorax Complex (BX-C) (Lewis, 

1978; Martinez-Arias & Lawrence, 1984).  

1.5 Fushi tarazu  

Fushi tarazu (ftz) is one of the best studied genes in D. melanogaster. The ftz gene was 

originally isolated using positional cloning (Wiener et al., 1984).  The expression patterns 

of FTZ mRNA and FTZ protein have been investigated extensively (Hafen et al., 1984; 

Krause et al., 1988). FTZ is expressed in two different phases of D. melanogaster 

development. First, FTZ is expressed in seven stripes, during the syncytial and cellular 

blastoderm and gastrulation stages, where FTZ plays a role in regulating segmentation 

(Krause et al., 1988). The seven stripes of FTZ expressed at the cellular blastoderm stage 

correlate with the cell of the future even-numbered parasegments. The seven FTZ 

expression stripes that define the even-number parasegments are interspersed with seven 

stripes of EVE expression that define the complementary odd-numbered parasegments. 

The second stage of expression is later during neurogenesis during the germband 

extension stage of embryogenesis where ftz is expressed in specific neurons (aCC, pCC, 

RP1 and RP2) (Doe et al., 1988; Carroll & Scott, 1985). 

1.6 Fushi tarazu known protein domains  

The ftz gene of D. melanogaster is a Hox-derived gene located within ANT-C, on the 

right arm of the third chromosome (Wakimoto & Kaufman, 1981; Scott et al., 1983). 

FTZ has three known protein domains: The HD, the FTZ-F1 binding site, and the PEST 
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degradation sequence. The HD, which is a conserved DNA binding domain encoded by 

the 180 bp homeobox sequence, interacts with a specific DNA binding site (Laughon & 

Scott, 1984). The HD is composed of 60 amino acids (aa) (McGinnis et al., 1984) which 

fold into a compact domain consisting of three alpha helixes connected by short loops, 

with two of the helixes forming a helix-turn-helix. This type of structure found in many 

other DNA binding domains (Laughon & Scott, 1984; Schier & Gehring, 1992). The first 

two helices are parallel, while the third helix is perpendicular to the axes of the first two 

helices. The third helix is the one that makes specific amino acid base contacts with 

DNA. HD-containing proteins have various roles, which include cellular differentiation 

and maintenance of pluripotency (McGinnis et al., 1984). The FTZ-F1 domain was first 

identified as binding to the zebra element of the ftz promoter; this cis-acting DNA 

sequence is found upstream of the ftz transcriptional start site (Hiromi et al. 1985). The 

zebra elements are involved in the regulation of ftz expression in the pair-rule periodicity 

in the embryo formation (Ueda et al, 1990). FTZ-F1 is an orphan nuclear receptor that is 

a DNA-binding transcription factor, which is expressed throughout development (Yu et 

al., 1997). In addition to binding to zebra elements, FTZ-F1 also binds to the FTZ protein 

via the FTZ-F1 binding site (Ueda et al, 1990; Guichet et al., 1997; Yu et al., 1997; 

Schwartz et al., 2011).  The formation of a FTZ/FTZ-F1 complex is required for 

segmentation, and is the reason why segmentation is determined by a FTZ HD-

independent activity (Fitzpatrick et al., 1992). Lastly, the PEST degradation sequence is 

located between amino acids 207 to 218 in FTZ. The PEST region is rich in proline (P), 

glutamic acid (E), serine (S) and threonine (T), and plays a role in maintaining the 

stability of FTZ and also acts as a signal for its degradation (Kellerman et al., 1990). 

 The D. melanogaster ftz and Hox genes have evolved from a common ancestral gene 

which encodes a homeodomain (HD)-containing protein. During the evolution of D. 

melanogaster, ftz has acquired a non-homeotic function in segmentation (Alonso et al., 

2001; Heffer et al., 2013). This is believed to have occurred due to loss of the HOX-

specific interaction motif (YPWM), which is a common HOX interaction motif mediating 

the interaction with the HOX cofactor Extradenticle (EXD) (Heffer et al., 2013), and the 

gain of a new motif (LXXLL) that mediates interaction with another cofactor, FTZ-F1 

(Figure 5; Yussa et al., 2001; Schwartz et al., 2001; Löhr & Pick, 2005). FTZ-F1 is  
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Figure 5. Evolution of ftz in D. melanogaster. The gene ftz arose from a Hox gene that 

during evolution lost its homeotic function by losing the YPWM motif, and gained a 

segmentation function by gaining the LXXLL motif. The FTZ protein in D. melanogaster 

has two major domains: FTZ-F1 binding site that is required for ftz segmentation activity, 

and a DNA-binding HD that is required for CNS development. 
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required with FTZ for segmentation, as previous studies have shown that embryos 

lacking FTZ-F1 expression had a ftz phenotype (Figure 6; Guichet et al., 1997; Yu et al., 

1997). The FTZ protein has two distinct activities differentially required during 

development. The two FTZ activities are the HD-dependent and HD-independent FTZ 

activities. The HD-independent FTZ activity is required for FTZ function in 

segmentation, and regulating the expression of key segmentation genes such as increasing 

engrailed (en) and repressing wingless (wg) expression, respectively. The expression of 

en and wg in adjacent cells sets up the parasegmental boundary. The HD-dependent FTZ 

activity is proposed to be required for the accumulation of a high level of FTZ expression 

through early autoactivation of ftz via ftz enhancer (Schier & Gehring, 1992; Hyduk & 

Percival-Smith, 1996). Recently, HD-dependent FTZ activity has been investigated in 

more detail in the Central Nervous System (CNS). Studies of ftz have shown that the 

expression of the pair rule gene eve in RP2 neurons in the developing CNS requires the 

FTZ HD-dependent activity as these neurons grow abnormally in embryos that lack the 

FTZ HD-dependent activity (Doe et al., 1988; Heffer et al., 2013). 

1.7 Rationale and objectives 

Genetic analyses have shown that both the HD-dependent and HD-independent FTZ 

activities are somehow required for segmentation, but that the HD-independent FTZ 

activity, in specific situations, is sufficient for segmentation (Fitzpatrick et al., 1992). To 

reconcile the requirement of the HD dependent FTZ activity and the HD-independent 

FTZ activity for segmentation, a model was proposed by Hyduk and Percival-Smith 

(1996) (Figure 7), in which the two FTZ activities operate at different times during D. 

melanogaster development. During the first stage, the FTZ HD-dependent transcriptional 

activation occurs in the cellular blastoderm embryo, where the FTZ HD binds directly to 

ftz enhancer activating high levels of FTZ expression through autoactivation. Later, 

during gastrulation, the FTZ HD-independent transcriptional activity is required to 

activate ftz enhancer, express EN and to establish a FTZ dependent cuticle (Hyduk & 

Percival-Smith, 1996). My project aimed at testing this model further by showing 

intragenic complementation of two engineered ftz alleles. My goal is to establish an 

expression system for FTZ by modifying the ftz locus using the CRISPR/Cas9 system.  
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Figure 6. ftz phenotypes in D. melanogaster larval cuticle. (A) A wild type larva 

established all segments (T1, T2, T3, A1, A2, A3, A4, A5, A6, A7 and A8). The larval 

cuticle derived from ftz expression is the even-numbered parasegments (denticle belts of 

T2, A1, A3, A5 and A7), and the larval cuticle derived from eve expression is the odd-

numbered parasegments (denticle belts of T1, T3, A2, A4, A6 and A8). (B) ftz mutant 

phenotype where the embryo failed to form the even-numbered parasegments, the larva 

developed from cuticle derived from the odd-numbered parasegments (T1, T3, A2, A4, 

A6 and A8) Nüsslein-Volhard & Wieschaus, 1980; Martinez-Arias & Lawrence, 1984). 

Reprinted by permission from Elyse Burlingham, (Burlingham, 2012) 
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Figure 7. The model proposed by Hyduk and Percival-Smith (1996). The two FTZ 

activities operate at different times during D. melanogaster development. First to operate 

is the FTZ HD-dependent transcriptional activation in the cellular blastoderm embryo, 

where the FTZ HD binds directly to ftz enhancer activating high levels of FTZ expression 

through autoactivation. Later, during gastrulation, the FTZ HD-independent 

transcriptional activity is required to activate ftz enhancer, express EN and to establish 

FTZ dependent cuticle. Figure reproduced with permission of GENETICS SOCIETY OF 

AMERICA [ETC.] in the format Republish in a thesis/dissertation via Copyright 

Clearance Center.  
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First, I will modify the ftz locus such that the DNA will encode for three FTZ proteins: a 

full length- wild type FTZ (FTZFL), a FTZ polypeptide with a complete deletion of the 

HD (FTZΔHD), and a FTZ polypeptide with a deletion of FTZ-F1 binding site (FTZΔFTZ-

F1)  (Figure 8). Based on the model proposed by Hyduk and Percival-Smith, I expect ftzFL 

larvae to develop normally with all even numbered parasegments, because this locus 

expresses both HD-dependent and HD-independent FTZ activities. Larvae expressing 

ftzΔHD and ftzΔFTZ-F1 mutated genes will exhibit a ftz phenotype, because the ftzΔHD  allele 

can not express sufficient FTZ protein to establish segmentation, and the ftzΔFTZ-F1  allele 

lacks the HD-independent activity required for segmentation. However, to test the model 

that FTZ has two activities, embryos that are hemizygous for the ftzΔHD and ftzΔFTZ-F1 

alleles should result in intragenic complementation, where enough HD- independent FTZ 

activity is present to generate the wild type phenotype (Figure 9). 

 

 

 

 

 



  

18 

 

Figure 8. The structure of different FTZ proteins involved in this study. A full length 

FTZ (FTZFL), a FTZ polypeptide with a deletion of FTZ-HD (FTZΔHD ), a FTZ 

polypeptide with a deletion of the FTZ-F1 binding site (FTZΔFTZ-F1). 
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Figure 9. Intragenic complementation to test FTZ-HD requirement in segmentation. (A) Embryos expressing the ftzFL gene will 

develop normally since the protein product of ftzFL allele has both HD-dependent and independent FTZ activities. (B) The HD-

dependent FTZ activity is responsible for the accumulation of high-levels of FTZ via the ftz enhancer in the late cellular blastoderm 

stage. Therefore, ftzΔHD embryos express a low-level of FTZ HD-independent activity and fail to form the even numbered 

parasegments. The abnormal CNS development is due to the inability of FTZ HD-dependent activity to regulate EVE expression in 

RP2 neurons. (C) Since FTZ/FTZ-F1 interaction is required for segmentation, ftzΔFTZ-F1 embryos will show a ftz phenotype. (D) The 

intragenic complementation between ftzΔHD and ftzΔFTZ-F1 alleles will result in wild-type embryos. The protein product of ftzΔFTZ-F1 

allele has a FTZ HD-dependent activity, which activates the high-levels of FTZ expression from ftzΔHD allele. The allele that lacks the 

HD will then continue to activate EN, repress WG and establish the even numbered parasegments. 
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2 MATERIALS AND METHODS 

2.1 Construction of chiRNAs for CRISPR 

Two chiRNAs were designed to recognize a specific sequence near the 3’ donor and 5’ 

acceptor splicing sites of the ftz intron between ftz exon 1 and exon 2. CRISPR chiRNA 

requires 20 nt homology to recognize the complementary target sequence in the genome 

followed by the PAM sequence (NGG) (Figure 10). The 5’ phosphorylated primers 

(ordered from Invitrogen) encoding 20 nt complementary to the targets in ftz were 

designed (APPENDIX 1). The primers were annealed, and inserted into the cohesive 

ends generated by BbsI in pU6-BbsI-chiRNA vector (Gratz et al. 2013). Ligation of the 

vector and annealed fragments was carried out at 18°C using T4 DNA ligase (New 

England Biolabs) and the ligated mixture was transformed into subcloning-competent 

DH5α cells (Invitrogen). Ampicillin (Amp)-resistant colonies were selected on LB+100 

µg/ml Amp plates. A Mini Plasmid Kit (Geneaid) was used to isolate the plasmid DNA. 

Restriction digest with BbsI verified that the desired chiRNA-encoding plasmids were 

generated (due to loss of BbsI restriction site following ligation). The constructs were 

sent for sequencing analysis at the DNA Sequencing Facility at Robarts Research 

Institute, London, Ontario, Canada for further confirmation. Finally, a QIAfilter Plasmid 

Midi Kit (Qiagen) was used to isolate the plasmid at high concentrations for 

microinjection.   

2.2 Construction of repair vector for CRISPR 

The repair vector was designed to contain a 5’ and a 3’ homology sequence homologous 

to ftz, separated by a yellow+ (y+) body colour marker gene flanked by two inverted attP 

docking sites for Recombinase-mediated cassette exchange (RMCE). The repair vector 

was constructed by the ordered ligation of four DNA fragments, the 5’ and 3’ sequences 

of ftz exons flanked by attP sequence and which contained BsaI restriction sites, 

introduced during PCR amplification from Drosophila genomic DNA. Primers were used 

to amplify the yellow gene from NotI-digested MiMIC plasmid (GenBank: GU370067; 

Venken et al., 2011) and designed to add BsaI sites to each end. The 5’, 3’ sequences of  
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Figure 10. The site targeted in ftz by the 5’ chiRNA/Cas9 riboprotein. The efficient 

target recognition of CRISPR chiRNA to induce DSBs requires 20 nt to recognize its 

complementary target sequence in the genome (black letters) followed by PAM sequence 

NGG (blue underlined letters). 
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ftz and y+ (ordered from Invitrogen; APPENDIX 2) were generated by PCR from the 

appropriate template using a High Fidelity Platinum Taq Polymerase (Invitrogen). The 

DNA fragments were purified using EZ-10 Spin Column DNA Gel Extraction Kit (Bio 

Basic Canada Inc.). The fragments were digested with BsaI (New England Biolabs) to 

generate cohesive ends to ligate into the pFUS_A vector. The pFUS_A was also digested 

with the restriction endonuclease, BsaI and the 5’ phosphates removed with calf intestinal 

phosphatase. All fragments were ligated together in a single reaction using T4 DNA 

ligase (New England Biolabs) (Figure 11). Subcloning efficiency competent cells DH5α 

(Invitrogen) were transformed with the ligation mixture and selected on LB+100µg/ml 

Spectinomycin (Spec) plates that were spread with 40µl 8% Xgal and 40µl 200µM IPTG 

spread prior to plating. Digestion of pFUS_A with BsaI removes the LacZ gene, and 

therefore, white-colored Spec resistant colonies were screened for. White colonies were 

re-streaked on LB+100µg/ml Spec plates for verification, followed by colony PCR using 

primers that were designed to amplify the yellow marker gene (APPENDIX 3). The PCR 

product was run on a 1% agarose gel to verify the presence of the yellow gene fragment. 

A Mini Plasmid Kit (Geneaid) was used to isolate plasmid DNA from a white-colored 

single colony, the structure of the repair vector was verified by restriction enzyme 

analysis. Finally, a QIAfilter Plasmid Midi Kit (Qiagen) was used to isolate the plasmid 

at high concentrations for microinjection purposes.   

2.3 In vitro transcription of ftz and Fst chiRNAs for CRISPR 

Two chiRNAs were designed for targeting the ftz and Frost (Fst) genes. The forward 

primer of the chiRNAs was designed to contain ftz or Fst sequences and the T7 RNA 

polymerase promoter sequence. The first two bases of the 20 base genome target 

sequence always start with GG, which is required for T7 RNA polymerase, and followed 

by the PAM (NGG) sequence: 

(GAAATTAATACGACTCACTATAGGN18GTTTTAGAGCTAGAAATAGC), where 

GGN18 is either ftz or Fst sequence. One common reverse primer was designed to encode 

the remainder of the chiRNA 

(AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTAT  
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Figure 11. The structure of the repair vector for CRISPR. The repair vector contains 

the 5’ and 3’ sequences of ftz exons, separated by a y+ gene flanked by two attP docking 

sites. Primers were designed to add BsaI sites to each end. The 5’and 3’ sequences of ftz 

and y+ were generated by PCR technology each with the appropriate template using a 

High Fidelity Platinum Taq Polymerase. The fragments were then digested with BsaI to 

generate unique cohesive ends to ligate with the pFUS_A vector, which was also digested 

with the restriction endonuclease, BsaI. All fragments were ligated together in a single 

reaction. 
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TTTAACTTGCTATTTCTAGCTCTAAAAC) (Bassett et al, 2013). The two primers 

(ordered from Invitrogen) hybridized to one another and a DNA fragment was generated 

using PCR (Figure 12; APPENDIX 4). The DNA fragment was purified with QIAquick 

PCR Purification Kit (Qiagen). For in vitro transcription (IVT), 0.5 µg of PCR product 

was used for 50µl total volume reaction using Megascript T7 Kit (Ambion) and incubated 

overnight. ChiRNAs were purified by phenol chloroform extraction and ethanol 

precipitation. To avoid RNAse in solutions, MilliQ water, 3M sodium acetate pH=5.2 

and PBS were DEPC treated. Cas9 mRNA was obtained from Invitrogen. 

2.4 Design of ftz constructs for RMCE 

Four ftz constructs were designed for RMCE to create modified ftz loci in vivo. The 

ФC31 integrase catalyzes the integration between the attP sites at the ftz attP y+ attP locus, 

and the attB sites in the plasmids that contain DNA constructs encoding four FTZ 

proteins (FTZFL , FTZΔHD  , FTZΔFTZ-F1 and FTZTT) involved in this study (Figure 13). 

The ftz constructs were obtained from four ectopic expression constructs (obtained from 

the Percival-Smith Lab) by restriction digestion with NotI. The digests were separated by 

2% agarose gel electrophoresis, and the ftz DNA fragments isolated using Gel/PCR DNA 

fragments Extraction Kit (Geneaid). The isolated fragments were ligated to NotI-digested 

pBS-SK plasmid containing inverted attB sites, previously generated by Laura Garofalo 

(University of Western Ontario, Canada). Ligation was carried out at 18°C using T4 

DNA ligase (New England Biolabs) and the ligated fragment was transformed into 

subcloning efficiency competent cells DH5α (Invitrogen). Ampicillin resistant colonies 

were selected on LB+100 µg/ml Amp plates. Mini Plasmid Kit (Geneaid) was used to 

isolate plasmid DNA from a single colony and verified by restriction enzyme analysis. 

The constructs were sent for sequencing analysis at the DNA Sequencing Facility at 

Robarts Research Institute, London, Ontario, Canada for further confirmation. Finally, a 

QIAfilter Plasmid Midi Kit was used to isolate the plasmid at high concentrations for 

microinjection purposes.  
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Figure 12. The site targeted in ftz by the synthesized 3’ chiRNA. The first two bases of the genome target sequence always start 

with diguanine GG, which is required for precise initiation of the T7 promoter, and followed by the PAM NGG sequence. The two 

primers hybridize to one another and the DNA fragment generated by PCR used for in vitro transcription. The synthesized chiRNA 

directs Cas9 to recognize and cleave both DNA strands upstream PAM sequence NGG. 

 

 



  

26 

 

 

Figure 13. Schematic of RMCE via ФC31 integrase. The exchange of the pre-existing cassette ftz attP y+ attP with the new cassettes: 

ftz attB FL attB , ftz attB ΔFTZ-F1 attB , ftz attB ΔHD attB  and ftz attB FTZ TT attB ,is mediated by RMCE following injection of the ФC31 integrase and 

pBS-SK plasmids that contain ftz DNA flanking attB sites. After recombination between attP and attB sites, the cassette is integrated 

between attR sites to establish ftz fly lines: ftz attR FL attR , ftz attR ΔFTZ-F1 attR , ftz attR ΔHD attR  and ftz attR FTZ TT attR . 

 



  

27 

2.5 Fly strains 

The three fly strains used in this study were: y w, act-cas9 flies y1 M{Act5C-Cas9.P}ZH-

2A w* (stock number 54590)  and nos-cas9 flies with genotype y1 M{nos-Cas9.P}ZH-2A 

w* (stock number 54591). The fly stocks were obtained from the Bloomington 

Drosophila Stock Centre. 

2.6 Microinjection of embryos and screening for successful 
germ-line transformants 

Eggs were collected every 30 min after egg laying (AEL) on apple juice plates smeared 

with yeast paste to stimulate oogenesis. To dechorionate the embryos, 3% bleach was 

poured on the plate for 1 min. The embryos were washed off into a mesh basket and 

rinsed with tap water. Using a dissecting needle, the embryos were lined up on the edge 

of an agar strip in a specific anterior-posterior orientation.  The aligned embryos were 

picked up on double-sided tape adhered to a glass microscope slide. Embryos were dried 

under a hair dryer for 3.45-4.45 min (depending on the room temperature and humidity), 

and then covered with halocarbon oil. The glass slide was placed under the microscope in 

order to inject embryos at the posterior end with a glass needle that was filled with the 

appropriate injection mixture. The injected embryos expressing Cas9 (act-Cas9, nos-

Cas9), or not expressing Cas9 (y w), were kept at 18°C for 48 h, then moved to 25°C to 

hatch into larva and then an adult fly. The injected embryos that developed into adult flies 

(G0) were crossed with 3-4 virgin y w flies of the opposite sex to verify a successful 

germ-line transmission of the targeted modification, and the F1 progeny of each cross 

(from 50-100 flies) were carefully screened under a microscope for the desired marker 

phenotype (y+ or w+). 

DNA Injection mixture: 

For y w flies: 

500ng/µl  Cas9                                                   

250ng/µl  Each chiRNA 
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100ng/µl Repair template 

10%  Glycerol  

1X    PBS solution 

For Cas9 flies: 

250ng/µl  Each chiRNA 

500ng/µl  Repair template 

10%  Glycerol  

1X    PBS solution 

P-Element Injection mixture: 

400ng/µl  P-Element 

200ng/µl  Helper plasmid (Δ2-3wc) 

RNA Injection mixture: 

For y w flies: 

100ng/µl  Cas9 mRNA                                                  

500ng/µl Each chiRNA 

300ng/µl  Repair template 

10%  Glycerol  

1X    PBS solution 

For Cas9 flies: 

500ng/µl  Each chiRNA 
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300ng/µl Repair template 

10%  Glycerol  

1X    PBS solution 
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3 RESULTS 

The aim of the study was to create a model to test for the interaction of FTZ HD-

dependent and HD-independent activities. The overall goal was to generate site-specific 

mutant ftz alleles and then test these alleles for intragenic complementation. The creation 

of these alleles was attempted in a two-step protocol. First, CRISPR was used to induce 

DSBs and repaired with HR to establish a mutant ftz locus containing attP sites. Second, 

the attP sites would be used to introduce engineered ftz alleles into the ftz locus via the 

RMCE technique (Groth et al., 2004). 

3.1 Design of constructs for CRISPR/Cas9-mediated HR 

3.1.1 ChiRNAs for CRISPR 

In the CRISPR system, a riboprotein consisting of chiRNA and the Cas9 protein makes 

site-specific DSBs in DNA. In my studies, I used two methods to generate chiRNAs. The 

first method was to clone the target sequence into the unique BbsI site of pU6-BbsI-

chiRNA plasmid, which after injection into the Drosophila syncytial blastoderm embryo 

is transcribed to give the chiRNA. The sites targeted in ftz by these chiRNAs are 

indicated in (Figure 14.A). In the second method I injected the mRNA directly into 

syncytial blastoderm embryos. The synthetic chiRNAs were transcribed in vitro by T7 

RNA polymerase, which starts the transcription with diguanine (GG). For that reason, the 

target sequence must start with GG for initiation of transcription at the T7 promoter 

(Figure 14.B). The two chiRNAs plasmids for ftz, and the two in vitro transcribed 

chiRNAs for each ftz and Frost (Fst), a positive control, were designed and analyzed by 

BLAST to minimize the chance of off-target effects. The synthesized chiRNAs direct 

Cas9 to recognize and cleave both DNA strands upstream of the PAM sequence NGG of 

the 5’ end and 3’ end of ftz or Fst exons, stimulating the cellular DNA repair mechanism 

HDR to occur. 
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Exon 1 Exon 2
IntronFtz locus

5’...atatggccaccacaaacagccagagccactacagctacgccgacaacatga

acatgtacaacatgtatcacccccacagcctgccgcccacctactacgataattca

ggcagcaatgcctactatcagaacacctccaattatcagggctactatccccagga

gagttactcggagagctgctactactacaacaatcaggagcaggtgaccacccaga

ctgtaccgcccgtgcaacccaccaccccgccgcccaaggccaccaagcgcaaggcc

gaagatgatgctgcttccatcatcgccgccgtggaggagcgacccagcacactgag

ggctctgctcaccaatcccgtgaagaagctgaagtacacccccgactatttctaca

caaccgtcgagcaggtgaagaaggctcccgccgtaagcaccaaggtcaccgccagc

cccgctcccagctacgaccaagagtacgtgactgtgcccacgcccagcgcctccga

ggatgtcgactacttggacgtctactcgccccagtcgcagacgcagaagctgaaga

atggcgactttgccacccctccgccaaccacgcccacctctctgccgcccctcgaa

ggcatcagcacgccaccccaatcgccgggggagaaatcctcgtcagctgtcagcca

ggagatcaatcatcgaattgtgacagccccgaatggagccggcgatttcaattggt

cgcacatcgaggagactttggcatcaggtaggcatcacacacgattaacaacccct

aaaaatacactttgaaaatattgaaaatatgtttttgtatacatttttgatatttt

caaacaatacgcagttataaaactcattagctaacccattttttctttgcttatgc

ttacagattgcaaagactcgaaacgcacccgtcagacgtacacccgctaccagacc

ctggagctcgagaaggagttccacttcaatagatacatcacccggcgtcgtcgcat

cgatatcgccaatgccctgagcctgagcgaaaggcagatcaagatctggttccaaa

accgacgcatgaagtcgaagaaggatcgcacgctggacagctccccggagcactgt

ggtgccggctacaccgcgatgctgccgccactggaggccacaagcaccgccaccac

cggggcaccatcggtgccagtgcccatgtaccaccaccaccaaaccaccgccgcct

accccgcttacagccacagtcacagtcatggttatggcctgctcaatgattaccct

cagcagcagacccaccagcagtacgatgcctacccgcagcagtaccaacatcagtg

cagctaccagcaacatccacaggacctctaccatctgtcttgaggtccggc...3’  

(A) 

                  5’...ccaccacaaacagccagagccac...3’!

 

 

           5’...gacctctaccatctgtcttgagg...3’  

              5’...ccaattatcagggctactatccc...3’ 

 

 

              5’...ccaccagcagtacgatgcctacc...3’ 

(B) 
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Figure 14. The sites targeted in ftz by the 5’ and 3’ chiRNAs. The intron region 

between the two ftz exons with the sequences chosen for design of CRISPR chiRNAs to 

direct cleavage of both DNA strands by Cas9 nuclease are indicated in blue and yellow. 

(A) The targeted cut site of chiRNAs expressed from plasmid DNA (purple arrow). The 

chiRNA required 20 nt to recognize its complementary target sequence in the genome 

followed by PAM sequence NGG (highlighted in blue; PAM in red letters). (B) The 

targeted cut site of chiRNAs directly injected as RNA (purple arrow). The chosen 

sequence was selected following the principle: GGN18 found on the sense or anti-sense 

strand of the targeted gene (highlighted in yellow).  
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3.1.2 Repair Template for CRISPR 

The repair template promotes HDR after the generation of DSBs at a gene locus by 

CRISPR/Cas9 system (Carroll & Beumer, 2014). The repair template constructed 

contains 5’ and 3’ sequences to ftz exons (homology arms), y+ as a body marker flanked 

by two inverted attP ɸC31 recombination sites. Thus, the marker was used to identify 

transformants flies (ftz attP y+ attP), if the repair template was inserted between ftz exons by 

HR replacing ftz coding sequence. The double-stranded DNA (dsDNA) was assembled 

into the pFUS_A vector using an ordered assembly strategy. Restriction digests were 

used to confirm the structure of the repair template (Figure 15). 

3.2 Screens for germ-line transformants 

During injection of a syncytial blastoderm embryo at the posterior end, pole cells take up 

the repair template and express the chiRNA riboprotein.  I screened for insertion of the y+ 

gene as an indication that HR directed repair of a DSB had occurred. Many methods have 

been used to express the chiRNA/Cas9 riboprotein in syncytial blastoderm embryos. 

First, the chiRNA was transcribed from a plasmid with a U6 promoter or the chiRNA was 

transcribed in vitro and injected directly into the embryo. Second, the Cas9 protein was 

either translated from a mRNA transcribed from an injected plasmid, expressed from a 

transgene containing Cas9 expressed from an actin or nos promoter inserted into the 

genome, or translated from a Cas9 mRNA which was injected directly into the embryo. 

In order to establish a germ-line transformant ftz flies via CRISPR/Cas9 system, injection 

was performed into two fly strains. Flies not expressing Cas9 (y w) which required three 

CRISPR components to be injected into syncytial blastoderm embryos: the Cas9 and 

chiRNAs-encoding plasmids (for CRISPR DNA injection), or Cas9 and chiRNA mRNA 

(for CRISPR RNA injection) along with the ftz repair template. y w flies embryos were 

injected with CRISPR DNA components which resulted in 78 fertile flies but no 

transformants with y+ body colour were obtained when F1 progeny were screened (Table 

1). CRISPR RNA components were also injected into y w embryos of which 80 flies were 

fertile but again no transformants were obtained  (Table 2). The second fly strain used 

was Cas9 transgenic flies, expressing the Cas9 nuclease in the germ-line. In this strain, 

only two CRISPR components are required to be injected. For all injections the repair  
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Figure 15. Restriction enzyme analysis of the repair template. (A) Restriction enzyme 

digests confirmed the orientation of the structured repair template (isolated from three 

single white colonies). Resolution of the digest products by 1% agarose gel 

electrophoresis showed an expected pattern of cleavage using the restriction enzymes 

BglII (4913, 3989, 1068 bp), XbaI (9970) and EcoRI (7876, 2094). (B) Schematic 

indicates where the restriction enzymes BglII , XbaI and EcoRI make the cuts in the 

repair template. 
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Table 1. Screens for germ-line transformants after CRISPR DNA injection. 

Fly strain  DNA injection
Total of 

survivors
Fertile Sterile

Transformant

 fly

y w ftz 107 78 29 0

nos-Cas9

 or act-Cas9
ftz 122 92 30 0

Total= 229 170 59 0
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Table 2. Screens for germ-line transformants after CRISPR RNA injection. 

Fly strain  RNA injection
Total of 

survivors
Fertile Sterile

Transformant

 fly

y w ftz 133 80 53 0

nos-Cas9

 or act-Cas9
ftz 116 86 30 0

Total= 249 166 83 0
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DNA template was injected. In one set of injections chiRNA encoding plasmids were 

injected and out of 92 fertile flies no transformants were identified  (Table 1). In a second 

set of injections in vitro transcribed chiRNA was injected and out of 86 fertile flies no 

transformants were identified  (Table 2). When preparing the RNA, it is important to 

avoid RNAse contamination. Thus, 2µl of each CRISPR component were analysed by 

2% agarose gel electrophoresis before injection (Figure 16). The gel showed RNA 

degradation in the presence of two of ftz repair templates, therefore the RNAse-free 

template was used in injection.  

CRISPR DNA injections of Frost (Fst) have shown an efficiency rate of 10% in 

Drosophila (unpublished data of Dr. Anthony Percival-Smith). Frost is a gene that plays 

a role in Drosophila thermal tolerance (Colinet et al., 2010). To test RNA injection 

efficiency, CRISPR RNA injection was tested to modify Fst locus in Cas9-expressing or 

not expressing flies. The chiRNAs and Fst repair template with/without the Cas9 mRNA 

were injected into syncytial blastoderm embryos. However, none of the screened F1 

progeny yielded any transformant progeny with the w+ marker (Table 3). The Fst RNA 

injection mixture was also tested prior and post injection to ensure integrity (Figure 17). 

To test my injection efficiency further, y w embryos at the syncytial blastoderm stage 

were injected with two components: a P-element containing plasmid and a helper plasmid 

transposase source (Δ2-3wc). One transformant fly w+ was observed after screening 

through F1 progeny (Table 3), suggesting that the injection procedure being followed 

works, albeit with low efficiency. 

3.3 Survival and sterility for the various CRISPR 
approaches 

The low survival rates have been observed in Drosophila CRISPR studies (Bassett et al. 

2013; Gratz et al., 2014). The injected CRISPR components could be toxic to some 

degree, which might have resulted in a low survival rate in the range of 2.3-14% post- 
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Table 3. Screens for germ-line transformants after P-element and CRISPR injections used as a control. 

Total of Transformant

survivors  fly

P-element 106 70 36 1

CRISPR (Fst) 30 23 7 0

nos-Cas9

 or act-Cas9
CRISPR (Fst) 10 8 2 0

Total= 146 101 45 1

Viable Sterile

y w

Fly strain   Injection
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Figure 16. CRISPR RNA stability for ftz injection. CRISPR components used in RNA 

injection mixture were analysed by 2% agarose gel electrophoresis before injection to test 

RNA integrity. The gel showed that Cas9 mRNA was degraded in the presence of ftz 

repair templates (1) and (2) (blue circles). Therefore, ftz repair template (3) was used for 

CRISPR RNA injection. 
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Figure 17. CRISPR RNA stability for Fst injection. Fst Injection mixture was analysed 

by 2% agarose gel electrophoresis before and after injection. The gel showed that all 

CRISPR components were still present after 4 hours of injection. 
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injection reported in (Table 4 & Table 5). In addition, it has been reported that 5.6-

78.4% of the injected survivor flies were sterile which was also found in this study 

(Table 4 & Table 5; Bassett et al. 2013; Gratz et al., 2013; Sebo et al., 2014; Yu et al., 

2013; Ren et al., 2014). 
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Table 4. The average survival rate and sterility rate of CRISPR DNA injection. 

 

Fly strain DNA Injection 
Number of 

 injected embryos 

Number of  

 survivors 

Average of 

 survival 

rate 

Number of  

 sterile survivors 

Average of 

 sterility 

rate 

y w 

ftz  

double chiRNAs  

(5' and 3') 

852 63 

8.4% 29 27.1% 

ftz  

single chiRNA  

(5' or 3') 

464 44 

nos Cas9- 

or  

act-Cas9 

ftz  

double chiRNAs  

(5' and 3') 

3368 93 

2.3% 30 24.6% 

ftz  

single chiRNA  

(5' or 3') 

1600 29 
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Table 5. The average survival rate and sterility rate of CRISPR RNA injection. 

 

Fly 

strain 
RNA Injection 

Number of 

 injected embryos 

Number of 

  survivors 

Average of  

survival rate 

Number of  

 sterile survivors 

Average of 

 sterility rate 

y w 

ftz  

double chiRNAs  

(5' and 3') 

1028 56 

5.7% 53 39.8% 

ftz  

single chiRNA  

(5' or 3') 

1300 77 

Fst  

double chiRNAs  

(5' and 3') 

214 30 14.0% 7 23.3% 

nos 

Cas9- 

or  

act-Cas9 

ftz  

double chiRNAs  

(5' and 3') 

2074 114 

3.1% 30 25.9% 

ftz  

single chiRNA  

(5' or 3') 

272 2 

Fst  

double chiRNAs  

(5' and 3') 

246 10 4.1% 2 20.0% 
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4 Discussion 

4.1 Limitation of CRISPR/Cas9 technique 

CRISPR/Cas9 system is a relatively recent genome editing technique that has only been 

employed for the past three years to manipulate not only the Drosophila genome, but also 

the genomes of many other model and non-model organisms. CRISPR/Cas9 is a highly 

selective method to induce site-specific breaks in double-stranded DNA. CRISPR DSBs 

introduce small insertion and deletion (indels) by NHEJ repair mechanism at the site of 

the DSB, or allow specific genomic alteration by HDR pathway when an exogenous 

repair template is supplied (Bassett et al., 2013; Gratz et al., 2013; Kondo & Ueda, 2013; 

Sebo et al., 2014; Yu et al., 2013; Port et al., 2014). The germ-line transmission rate 

reported in a previous study when injection plasmids encoding Cas9 and chiRNA protein 

into Drosophila embryos to induce DSBs followed by NHEJ-mediated repair was 5.9% 

for the induction of indels (Gratz et al., 2013). However, a higher mutagenesis rate of 

around 80% was observed when injecting CRISPR RNA (Cas9 mRNA and chiRNA) into 

syncytial blastoderm Drosophila embryos (Bassett et al., 2013; Yu et al., 2013). The 

difference of mutagenesis efficiency between CRISPR DNA and RNA injections may be 

due to the higher expression levels of direct injection of Cas9 and chiRNA mRNA, 

compared to their expression from an injected plasmids DNA (Bassett & Liu, 2014). 

CRISPR studies also use an effective, but time-consuming method (Bassett & Liu, 2014) 

to achieve genetic modification by crossing two transgenic flies: one expressing Cas9 

using the nanos promoter, and another line expressing chiRNA driven through the U6 

promoter. This method achieved the highest mutagenesis with 90% of flies yielding a 

mutant offspring (Kondo & Ueda, 2013; Bassett & Liu, 2014). However, an alternative to 

this method with 12-75% efficiency, is to inject Cas9-expressing flies with chiRNA 

encoding plasmids (Ren et al., 2013; Sebo et al., 2014). 

CRISPR/Cas9 can be used to create precise genome modifications. The DSBs stimulate a 

HDR pathway in the presence of an exogenous template that shares a 20 nt homology 
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with the target DNA on either side of the break site. CRISPR/Cas9 potential to facilitate 

this integration is reported to be lower than induced mutations by NHEJ repair (Gratz et 

al., 2013; Gratz et al., 2014; Port et al., 2014). The injection of the three CRISPR 

components: Cas9 and chiRNA encoding DNA plasmids along with a repair template had 

yielded an integration efficiency of 0.3% (Gratz et al., 2013). Cas9-expressing flies 

showed an increase in integration between 0-11% (Gratz et al., 2014). This can be 

explained by fewer CRISPR components being injected, considering 11-38% of the 

offsprings integrated the exogenous template (Port et al., 2014) when introduced into 

Cas9 and chiRNA-expressing transgenic flies. 

The ability of CRISPR/Cas9 system to create DSBs at a specific target in the genome is 

solely dependent on the 20 nt homology of chiRNA, which guides the Cas9 nuclease to 

the target sequence. However, a 20 nt homology to the target sequence might not be good 

enough for proper targeting of Cas9 to the desired locus. A 20 nt homology length might 

increase the chances of creating off-target DSBs (Bassett & Liu, 2014). In this study, the 

failure to modify ftz loci by CRISPR/Cas9 system using HDR, could be explained by the 

low rate of integration observed in previous studies mentioned above. As a control for my 

injection technique, I was successful in establishing a germ-line transformant fly by the 

P-element mediated transformation technique, albeit at a low frequency. 

Furthermore, the stability of chiRNA in vivo can affect the efficiency of CRISPR/Cas9 

system. If chiRNAs are unstable due to some in vivo degradation mechanism, it would 

fail to direct the Cas9 to the target sequence. Accessibility to chromatin can be another 

factor that can interfere with the CRISPR/Ca9 system. Epigenetic mechanisms like 

methylation have been known to protect a sequence from being mutated (Gowher et al., 

2000; Takayama et al., 2014). Epigenetic silencing might be the case for Hox and derived 

Hox genes, which are crucial for the development of an organism. Thus, it remains to be 

determined whether Hox genes can at all be modified. 
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4.2 Alternative strategies 

To establish a germ-line transformant ftz fly, I attempted to inject syncytial blastoderm of 

y w and Cas9-expressing flies with both CRISPR DNA and RNA, but in all cases, no 

germ-line transformants were obtained (Table 1 & Table 2). An alternative experiment is 

to inject the repair template into fly embryos that express both Cas9 and chiRNA from 

transgenes. This would minimize the number of CRISPR components required to be 

injected, thus increasing the efficiency of the CRISPR system to create and repair DSBs 

(Port et al., 2014). 

There are no reports of CRISPR/Cas9-mediated editing of Hox genes in the literature. It 

has been shown that genes which could not be modified by CRISPR/Cas9 system, were 

successfully edited by TALENs (Treen et al. 2013; Sasaki et al. 2014). If CRISPR fails to 

edit/modify the Hox genes, which are indispensable for the proper development of the 

organism, this failure of CRISPR suggests that there might exist an inherent epigenetic 

mechanism, for instance, methylation, which protects these evolutionarily conserved 

genes from being mutated. 

4.3 Future / Expected results 

If a modified Drosophila with a manipulable ftz locus is generated and ftz constructs are 

reintroduced with RMCE, the initial goals of this project can then be pursued. The ftz 

locus that expresses wild type FTZFL should develop normally with all even numbered 

parasegments, as this locus expresses FTZ with both HD-dependent and HD-independent 

FTZ activities. ftz attR ftzΔHD attR larvae will exhibit a ftz phenotype because of an 

insufficient accumulation of FTZ protein due to the absence of the early transcriptional 

autoactivation of ftz via the ftz enhancer, which is HD-dependent. Subsequently, FTZ 

does not accumulate to a high level, such that the HD-independent activity of FTZ cannot 

rescue the formation of the even numbered parasegments. Also, embryos should have an 

abnormal nervous system, because the HD-dependent FTZ activity is required for 

nervous system development (Heffer et al., 2013). ftz attR ftzΔFTZ-F1 attR larvae will also have 



  

47 

a ftz phenotype due to the inability of FTZ ΔFTZF1 to regulate EN and WG expression, 

since the FTZ segmentation function requires the FTZ-F1 interaction, via the LXXLL 

motif (Schwartz et al., 2001). Furthermore, the nervous system should develop normally, 

since it requires the HD-dependent FTZ activity. To test the hypothesis that FTZ has two 

activities, we expect that establishment of flies that are hemizygous for the ftz attR ftzΔHD attR 

and  ftz attR ftzΔFTZ-F1 attR alleles should result in intragenic complementation, where a 

complementation occurs between two ftz mutant alleles, to give the wild type phenotype. 

This is because the ftz attR ftzΔFTZ-F1 attR allele, which has a HD-dependent FTZ activity, will 

be able to activate high levels of FTZ expression from the ftz attR ftzΔHD attR allele. The ftz 

attR ftzΔHD attR allele that encodes the HD-independent FTZ activity will activate the 

expression of EN, repress the expression of WG and establish the even numbered 

parasegments (Figure 9). Future studies using alternative genome editing strategies will 

hopefully allow the creation of novel models to test FTZ HD-dependent and HD-

independent functions. 
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                                       Appendices 

 

      List of Primers 

 

Appendix 1. Primers used for cloning ftz chiRNAs into pU6_BbsI_chiRNA plasmid 

Primer Sequence 

5' chiRNA-F 5'-...CTTCGACCTCTACCATCTGTCTTG…-3' 

5' chiRNA-R 5'-...AAACCAAGACAGATGGTAGAGGTC…-3' 

  

3' chiRNA-F 5'-...CTTCGTGGCTCTGGCTGTTTGTGG…-3' 

3' chiRNA-R 5'-...AAACCCACAAACAGCCAGAGCCAC…-3' 
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Appendix 2. Primers used for constructing the repair template 

Primer Sequence  PCR Template  

5' ftz-F 5'-...CAGCTAGGTCTCGCTATAGCATCCATAGACAACCTACTTAAA…-3' 

y w 

(Genomic DNA) 
5' ftz-R 

5'-...CAGCTAGGTCTCCCATGCCCCCAACTGAGAGAA 

CTCAAAGGTTACCCCAGTTGGGGCGGATGTGTATTGCTAGATTTC…-3' 

   

y+-F 5'-...CAGCTAGGTCTCCCATGCGACTATTAAATGATTATCGCC…-3' MiMIC 

(Venken et al., 

2011) y+-R 5'-...CAGCTAGGTCTCGGTCCTCGACCTGCAGGTCAACGGATC…-3' 

   

3' ftz-F 
5'-...CAGCTAGGTCTCGGGACCCCCCAACTGAGAGAA 

CTCAAAGGTTACCCCAGTTGGGGGGTCCGGCGATGCTCAGTTAC…-3' y w 

(Genomic DNA) 

3' ftz-R 5'-...CAGCTAGGTCTCCCGCCCCAAAATGTGACATTTTCTCTGGCG…-3' 
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Appendix 3. Primers used for colony PCR screening of the correct repair template 

Primer Sequence  

Screen 1-F 5'-...CTGGCAGTTCCCTACTCTCG…-3' 

Screen 1-R 5'-...GGTAAATCAGCGGGCTGCGTTCG…-3' 

  

Screen 2-F 5'-...CAGGGAAAGTTCAACTTAATCGC…-3' 

Screen 2-R 5'-...CTGTCCTGGCTGGTCTAGACGTC…-3' 

  

Screen 3-F Same as (Screen 2-F) 

Screen 3-R 5'-...GAGCCGCCACCAATTGGACC…-3' 
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Appendix 4. Primers used to generate chiRNAs template for IVT 

Primer Sequence  

T7-ftz chiRNA1-F 
5'-...GAAATTAATACGACTCACTATAGGGATAGTAGCCCTGATAAT 

GTTTTAGAGCTAGAAATAGC…-3' 

T7-ftz chiRNA2-F 
5'-...GAAATTAATACGACTCACTATAGGTAGGCATCGTACTGCTGG 

GTTTTAGAGCTAGAAATAGC…-3' 

T7-Fst chiRNA1-F 
5'-...GAAATTAATACGACTCACTATAGGCGGTTGGTTCGGAAATTT 

GTTTTAGAGCTAGAAATAGC…-3' 

T7-Fst chiRNA2-F 
5'-...GAAATTAATACGACTCACTATAGGAGCCCCAACCGAACCTCC 

GTTTTAGAGCTAGAAATAGC…-3' 

Common primer-R 
5'-...AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAA 

CTTGCTATTTCTAGCTCTAAAAC…-3' 
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Copyright Permissions for Figures 

 

Appendix 5. Permission to use (figure 1 + figure 3) 
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Appendix 6. Permission to use (figure 4) 

 

 

 

 

 

 

 

 



  

62 

Appendix 7. Permission to use (figure 6) 
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Appendix 8. Permission to use (figure 7) 

 



  

64 

 

 



  

65 

 

 



  

66 

 

 



  

67 

 

 



 

68 

Curriculum Vitae 

 

Name:                Alaa Briek 
 
Post-secondary  King Abdul-Aziz University 
Education and  Jeddah, Saudi Arabia 
Degrees:   2004-2008 B.Sc. 
 

The University of Western Ontario 
London, Ontario, Canada 
2013-2016 M.Sc. 
 
 

Honours and   King Abdullah Scholarship 
Awards:   2010-2015 
 
 
Related Work               Intern 
Experience   Al-Burj Laboratories  

Attended the following labs: Microbiology, Parasitology, 
Hematology and Chemistry and Performed: Blood, urine and 
stool tests 
2008 
 
Researcher 
The University of Ottawa 
Worked in the “Human Ovarian Cancer Biology and 
Chemoresistance”  
2011 

 
 
 


	A Genetic Test of a Model for Two Activities of Fushi Tarazu Protein in Drosophila Melanogaster
	Recommended Citation

	tmp.1461949161.pdf.pZ3co

