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Abstract 

Future automobiles are going to experience a fundamental evolution by installing semiotic 

predictor driver assistance equipment. To meet these equipment, Continuous driving-

behavioral data is observed and processed to construct powerful predictive driving assistance 

systems. In this thesis, we focus on raw driving-behavioral data and present a prediction 

method able to prognosticate the next driving-behavioral state. This method has been 

constructed based on the unsupervised double articulation analyzer method (DAA) which is 

able to segment continuous driving-behavioral data into a meaningful sequence of driving 

situations. Thereafter, our model by mining the driving data sequences situations can define 

and process the most influential data parameters. Our model can interpret the dynamic 

driving data and predict the next state of the determined vehicle by utilizing these 

parameters. This is a novel framework since the combination of main algorithms that we 

used differs from previous related works. Proficiency of this model has been evaluated with 

over three terabytes of driving behavioral data which include 16 drivers’ data, for a total of 

more than 17 hours and over 456 Km. 

Keywords 

Driver Assistance, Driving Situations, Behavior Prediction, Double Articulation Analyzer 

(DAA) 
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Chapter 1  

1 Introduction 

 

Although motor vehicles have had a great influence on human life, they have always 

been a major cause of fatalities. Most vehicular crashes are the result of driver error. In 

the past decades, researchers have tried to devise safety systems to help drivers and even 

rectify driving errors, but still many deficiencies exist. There should be appropriate safety 

systems for recognizing a driver inattention and they should be capable of alerting drivers 

in hazardous situations. According to statistics, driver inattention or unintended 

maneuvers account for the highest percentage of deaths (80%) in the world (Angell, L. et 

al. 2006). This issue has motivated researchers to find solutions for coping with driving 

errors. Their main purpose is to develop safety systems which could help mitigate driver 

errors and hazardous driving situations (Brookhuis, K. A., & de Waard, D. 2010). 

1.1 Problem statement 

Driving is a difficult task because of the need to make correct decisions rapidly. Each 

decision a driver makes is important since it directly impacts traffic safety. Maneuvers 

involving changes in speed and steering wheel angle are the most influential factors 

concerning safety. Any abrupt change in speed or steering wheel can make the driving 

situation unsafe. Since each vehicle is surrounded by other vehicles, any inappropriate 

change in speed or steering wheel may have a cascading effect on vehicular safety. 

 In this thesis, the term “driver behavior” is used to signify the driver’s intent as it 

pertains to the most probable next maneuver. The goal of this thesis is listed as follows: 

1- Understanding drivers’ behaviors; finding relationships between driving 

parameters such as speed, turn signals and steering wheel as inputs as necessary to 

assess a probability concerning the next maneuver. 
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2-  Devising a powerful model for driving assistance systems able to predict the next 

driving maneuver before any specific or unintended maneuver begins. Most 

drivers are familiar with maneuvers such as passing, changing lanes to the left or 

right, starting, stopping, and turning left or right. In this thesis, the focus is placed 

on predicting a subset of canonical maneuvers such as speed and steering wheel 

angle.  

1.2 Research Approach 

In order to understand driver behavior, data recordings were needed to make important 

observations on drivers. Beauchemin et al. (2012) used car-mounted video cameras to 

capture surrounding forward traffic, the driver’s head pose and gaze direction, and 

driving data from the vehicle’s internal network. These data sources were recorded with 

16 drivers over a pre-determined course inside the city of London. In total, 3TB of data 

was collected over more than 450 kilometers. In sum, stereo data from forward pointing 

cameras, vehicular attitude from the CANbus interface, and ocular movements from the 

drivers were recorded.  

In this study, each driver was requested to drive about 28.5 kilometers and 60 minutes 

over a determined route. They were instructed to drive as they normally do. They did not 

have direct knowledge about the goals of the study 

1.3 Thesis Organization 

This thesis is organized as follows: Chapter 2 presents background information on 

advanced driving assistance systems (ADAS) necessary to understand concepts that are 

discussed in the next two subsections. The first subsection introduces the concept of 

driving maneuvers recognition and the second one provides the concept of driving 

maneuvers prediction frameworks. A comprehensive explanation of our research 

implementation found in Chapter 3. Chapter 4 discusses results and compares them with 

other methods. Chapter 5 presents a conclusion of the implemented methods and possible 

future work. 
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Chapter 2  

 

2 Background and Literature Review 
 

Since their introduction, Advanced Driver Assistance Systems (ADAS) remarkably 

reduced the number of transportation fatalities. ADAS improved vehicular safety by 

altering vehicular dynamics when necessary and by alerting drivers in dangerous 

situations. 

Over the last decades, attempts have been conducted to model human driving behavior, in 

part to create more effective ADAS. To achieve this purpose, various driving assistance 

ideas and applications have been presented.  

This Chapter provides a comprehensive report from papers pursuing the idea of 

understanding the behavior of drivers. It reviews the most important methods for driving 

maneuver recognition based on time-series data.  

2.1. Driving Maneuvers Recognition 

In recent years, several approaches for understanding and modeling complex behaviors 

such as driving have been proposed. Such behaviors may be considered as an ordered 

sequence of basic states happening over time. It is assumed that the basic states are the 

smallest “meaningful” units in the data sequence. Each basic state may be created during 

a variable period of time. For example, a change in steering wheel angle in order to 

change lanes takes shorter time in comparison to a right turn at an intersection. Basic 

states are related to each other with a logical relation; e.g. when a vehicle speed reduces 

continuously during a short time and it goes under 10 km/h, it is expected that the next 

state of the vehicle will be a full vehicle stop. Thus, there is a logical relation between 

speed reduction and stopping. To infer such logical relations between basic states, it is 

necessary to determine the set of possible transitions between them. In order to model 

basic states and model transitions, different frameworks such as the Dempster–Shafer 
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framework, have been presented (Nigro, J. M., & Rombaut, M. 2003) (Hermann, A., & 

Desel, J. 2008). 

 

Driving is a complex decision-making task. Drivers must understand the relations that 

exist between their vehicle and the environment. Based on this understanding, drivers 

make appropriate decisions and perform reliable changes in vehicle movement, such as 

stopping, turning right, changing lanes, etc. This paper uses the term “driving maneuvers” 

for this kind of changes in vehicle movement. Each driving maneuver is considered as a 

sequence of basic states. For example, when considering a “right turn” maneuver, there 

are some small units of meaningful operations such as “decreasing the speed”, “turn on 

the right signal”, “angle changes in steering wheel”, and “increasing the speed” that 

happen. 

 

Each driver has an individual conception of the vehicle maneuvers and the surrounding 

environment. Also, each driver follows his/her individual driving style to perform driving 

maneuvers. Consequently, there is not any single model that can be specified. To 

consider these subjective components, probabilistic statements have been used to obtain a 

better understanding of maneuvers. For instance, Schneider et al. (2008) have presented a 

generic method for probabilistic identification of driving situations and maneuvers. This 

method separately models independent uncertainty situations. Bayesian networks and 

fuzzy features are applied in this method to model both the context and driving 

maneuvers. It is believed that using reliable driving assistance systems capable of 

learning and identifying drivers’ patterns, could be very helpful in completing a range of 

different tasks, particularly decision-making.  

 

Hülnhagen et al. (2010) proposed a maneuver recognition method based on a Bayes filter 

algorithm. This method has a straightforward design. It combines probabilistic finite-state 

machines (Vidal, E. et al. 2005) with a fuzzy rule. To form a specific driving maneuver, 

probabilistic finite-state machines construct all possible sequences of basic maneuver 

states. Then, the method uses the fuzzy rule for modeling basic states. In other words, the 

fuzzy rule can model a sequence of basic states related to a specific driving maneuver. 
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For instance, the basic states of an “overtaking” maneuver after decomposition are as 

follows: approach leading vehicle, lane change to the left, passing, and finally lane 

change to the right. 

 

In their approach, Hülnhagen et al. (2010) listed main driving variables such as velocity, 

acceleration, steering wheel, and indicator status. Then, they assigned an optional number 

of self-styled linguistic terms to each variable. For example, linguistic terms that they 

have assigned to the velocity variable are: none, very slow, slow, fast. Thereafter, they 

considered all basic elements and for each one computed the amount of membership each 

linguistic term has had. Finally, Bayes filters have been used to evolve which state of a 

driving maneuver should be chosen according to an assessment of the highest probability. 

 

There are some advantages in Hülnhagen et al.’s (2010) proposed method. First, 

compared to neural networks, this method can explain decisions more easily. Second, it is 

flexible and easily expandable with additional basic elements; i.e. by adding more basic 

elements to the current model, the system can be developed without having any effect on 

other existing elements and maneuver models. Third, this method looks very appropriate 

to ADAS since it has low computational complexity. Finally, it is a robust method to 

recognize turn maneuvers and distinguish them from similar maneuvers. 

2.2. Time Series and Driving Maneuver Prediction 

In recent years, driving behavior prediction has become one of the most important 

challenges in ADAS development. Much work has been conducted to achieve reliable 

driving predictions. A reliable prediction model must have a set of all possible driving 

maneuvers such that it can correctly find the characteristics of the next maneuver. 

 

 In predictive systems, data captured in real time is usually analyzed immediately. In this 

thesis, captured data is considered as a time-series and analyzed after its collection.  
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In order to achieve a predictive model, we first have to find a model that can be adapted 

to time-series driving data. A good number of methods have been presented to model 

driving time series data. Among these, we review those shown to be best-in-class. 

 

In order to predict driving maneuvers, Hidden Markov Models (HMM) (Rabiner, L. R., 

& Juang, B. H. 1986) have often been used to extract information from time-series data 

(Takano, W. et al. 2008) (Gales, M., & Young, S. 2008) (Mitrović, D. 2005). HMMs 

model hidden discrete states as 𝑥 and observations as 𝑦. HMMs treat every observation as 

a statistically independent entity. A next generation approach developed and named  

AutoRegressive Hidden Markov Models (ARHMM) allow some stochastic dependencies 

to exist between observations, as shown in Figure 1. The current observation is dependent 

to a past observation, as there is a correlation between the two. For this reason, ARHMM 

can be used with dynamic behaviors since it is powerful enough to model feedback 

systems (Kishimoto, Y., & Oguri, K. 2008) (Stanculescu, I. et al. 2014). 

 

 

Figure 1: Auto Regressive Hidden Markov Model.  The hidden state X3 is not 

visible to the observer, but we can say that there is a dependency between hidden 

states (X3 and X2) because of the existing dependency between observations (Y2 and 

Y3).  

Both HMM and ARHMM encounter serious problems because they need to have a fixed 

number of states a priori. In order to address these problems, a novel and efficient 

method, called Beta Process AutoRegressive Hidden Markov Model (BP-AR-HMM) was 
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proposed by Fox et al. (2009). This is a robust model that can simultaneously handle 

multiple related time-series data and automatically determine the number of states. 

Hamada et al. (2013) applied a BP-AR-HMM model to their driving dataset. Three 

different driving operations (gas pedal opening rate, brake pressure, and steering wheel 

angle) were considered. Four estimated state sequences were obtained. In each state, 

operations had different behaviors from the other states. Hamada et al. (2013) obtained 

good results. For example, they could find out which specific state is often followed by 

another state. According to their results, there were specific times at which, while brake 

pressure was increasing, the steering wheel angle was approximately zero, and after some 

time, the brake pressure was decreasing and steering wheel angle was increasing. These 

changes happened to create a specific latent state named “turning left”. As it seems, there 

are some specific driving patterns derived from multiple time-series dataset in this 

research. It clearly shows which states follow the previous ones. Later on, Hamada et al. 

(2013) used derived patterns to predict driving operations. Their method could predict 

sudden decreases of brake pressure that were just happening before left turns. This is a 

successful prediction approach since it can predict deceleration in a reasonable time 

before it happens (Hamada, R. et al. 2013). 

2.2.1 Long-term Contextual Prediction 

The capability to predict driver intent is an essential aspect of ADAS. Previous methods 

attempted to model and predict driving behavior within short time scales of their multiple 

time series-data set. To model long-term contextual information, the Double Articulation 

Analyzer (DAA) was proposed by Taniguchi et al. (2012). They suggested that 

contextual information and human driving behavior possess a double articulation 

structure. 

 

The term “double articulation structure” was first presented in order to analyze a speech 

stream. A speech stream data possesses a dual layer of information that can be 

decomposed into several meaningful linguistic units, and each unit can be divided into 

meaningless elements. Meaningless elements called phonemes are at the lowest level of 
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speech organization. Morphology, syntax, and semantics give the meaning to phonemes 

and they are the higher levels of speech organization.  

 

In order to understand long-term human action, it has to be decomposed into short-term 

chunks. To extract long-term human action chunks, Taniguchi, T., and Nagasaka, S. 

(2011) presented a DDA framework that included both a language model; Nested Pitman-

Yor (NPYLM), and a stochastic model; sticky Hierarchical Dirichlet Process Hidden 

Markov Model (sHDP-HMM). Sticky HDP-HMM is an augmented version of HDP-

HMM (Fox, E. B. et al. 2007 in which the number of states is not predefined. Figure 2 

shows the graphical representation of sticky HDP-HMM, which is an improvement over 

normal HDP-HMM. The main difference between HDP-HMM and sticky HDP-HMM is 

that HDP-HMM tends to give high posterior probability to states with rapid switching 

while sticky HDP-HMM fixes this problem. Parameter k in Figure 2 is the transition 

weight which is responsible for controlling rapid switching. If we set k = 0, sticky HDP-

HMM algorithm behaves same as normal HDP-HMM. 

 

DAA assumes that human action is a continuous series of smallest “meaningless” data 

time-series, and the smallest “meaningful” units as sequences of the meaningless 

elements. This structure can find and connect several short-term segments of human 

action. If we look at our spoken language, it also has a double articulation structure. For 

example, a sentence can be decomposed into single letters. Then single letters can be 

chunked into words. Letters individually do not have any meaning, however words do. 

Human action time-series have the same pattern. It is obvious that at each time, point data 

do not have any meaning individually, but when some of them come together, they form 

a meaningful segment. By expanding this idea, several successive segments of time series 

data form a meaningful sequence of a specific human action. A meaningful sequence of a 

specific human action is assumed to be a word. Taniguchi, T., and Nagasaka, S. (2011) 

method can extract unit actions by using NPYLM.  
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Figure 2: sticky HDP-HMM Graph. The variables have been introduced by Fox 

et al. (2009) as follows: 𝒚𝒕  is extracted feature vector at time t and 𝒛𝒕  is its 

related state label. K is an infinite transition bias. Original HDP-HMM, k = 0. 

 

Both sticky HDP-HMM and NPYLM algorithms use a Gibbs sampler in their structure. 

A Gibbs sampler is used to approximate the joint distribution when there are difficulties 

with direct sampling and the joint distribution is unknown. The joint distribution is 

unknown because the full conditional distribution for each parameter (gas, brake, etc.) is 

also unknown. The full conditional distribution for each parameter (𝛼𝑗) is 𝑃(𝛼𝑗  | 𝛼−𝑗,𝑦) 

(𝛼−𝑗,𝑦 is all parameters except 𝛼𝑗).  

 

 A Gibbs sampler is a Markov Chain Monte Carlo (MCMC) algorithm which generates a 

sequence of observations; observations are from a specified joint probability distribution. 
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A Gibbs sampler produces a Markov chain of nearby, correlated samples. For each 

iteration of this algorithm, an instance from the distribution of each variable one after the 

other is being generated. Finally, after convergence is achieved a desirable result is 

obtained.  

 

In 2012, Taniguchi et al. (2012) also used sticky Hierarchical Dirichlet Process HMM 

(HDP-HMM) and Nested Pitman-Yor Language Model (NPYLM) together to develop 

the idea of a double articulation analyzer. They used sticky HDP-HMM as a prelude to 

converting time series data into sentences. Particularly, it has been used to obtain 

sequences of letters (hidden states).  

 

Mochihashi, D. et al. 2009 used infinite HMM for the purpose of flexibly evaluating the 

number of hidden states based on the given training data. To extract words from 

sentences, an unsupervised morphological analysis method was employed. They have 

extended the unsupervised morphological analysis method to work on incomplete 

sentences by parsing incoming time -series data. Mochihashi et al.’s (2009) method is 

also based on Nested Pitman-Yor Language Model (NPYLM), which consists of two 

Hierarchical Pitman-Yor (HPY) processes; a language model and a word model. The 

language model, which is named NPYLM, enables the system to have an unsupervised 

chunking. Figure. 3 shows a graphical representation of the NPYLM model. NPYLM 

takes a text as input. The text must be a set of successive letters separated by spaces. The 

length of the text has an important effect on the final result in that we should make sure 

that the selected letter sequence is large enough to represent each letter frequency 

properly.  
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Figure 3: An example of the NPYLM procedure. (a) shows the coarse text which is a 

mixture of different letters, and hard to read. (b) is a preprocessing level, which is 

preparing the coarse text for main processing. (c) is a readable text which is the 

result of applying the NPYLM process. 

Sticky HDP-HMM and NPYLM are able to extract meaningful chunks from the 

continuous time series-data. Compared to conventional HMM and simple NPYLM, 

Taniguchi et al.’s (2012) method is a better approach as it considers the incompleteness 

of observed sentences and improves the long-term prediction performance. 

 

Taniguchi et al. (2012) first applied their method to a sentence data model. Their 

predictor method assumed that a number of words and states are unknown. In order to 
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have a trained generative language model, a word model had to be trained. Thus, 100 

artificial sentences consisting of 50 words each were generated. Then, for evaluating 

prediction performance, they used one of the sentences as test data and the rest of the 

sentences for training. Following this, they changed the test sentence by omitting the last 

parts of the sentence. The proposed method predicted the erased letters from the 

incomplete sentence. They then compared the results with other methods such as 

conventional Markov Models and simple NPYLM. The results show that NPYLM with 

prediction achieved better results. In particular, it could predict a much longer sequence 

of letters so many times. 

 

In the next experiment, they applied their method to a real-world driving data model. To 

perform the experiment, vehicle data such as velocity, steering angle, brake pressure, and 

accelerator position, were collected. They also added two more features to the time-series 

driving behavior data; one of them was the temporal difference of velocity and the other 

one was the temporal difference of steering angle. Then, they applied sHDP-HMM to the 

acquired data and the unsupervised double articulation analyzer was used to segment and 

chunk the sequence of driving on the roadway. Following this, the same training and 

testing procedure as in the first experiment was performed on the data to evaluate the 

method. Results show that NPYLM with prediction outperformed conventional Markov 

Models and simple NPYLM. 

 

Although DAA is an efficient segmentation method, it has some fundamental drawbacks. 

First, it is not able to perform segmentation and chunking simultaneously. Second, since 

it is a fully unsupervised method, it is not able to generate labels for the extracted driving 

words. Thus, it does not have any label to inform a driver. Third, it just concentrates on 

one estimation result and discards other possible predicted scenarios. Fourth, the duration 

of a chunk, which is related to a driving word, is not considered in this model. Fifth, the 

DAA model extracts too many different kinds of words: it can extract more than 400 

kinds of driving words for 90 minutes of driving. 
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In 2013, Bando et al. (2013) proposed a new framework that can automatically translate 

driving data into sequences of “drive topics” in natural language. In this framework, 

brake pressure, throttle opening rate, steering wheel angle, and velocity are considered as 

physical features. Each of these had different frequencies for each word. They used 

Latent Dirichlet Allocation (LDA) to cluster extracted driving situations based on the 

existing frequency of physical behavioral features that are observed in each driving 

sequence. The distribution of the physical behavioral features included in each drive topic 

was used for automatic driving word labeling. The result of this step is a small number of 

drive topics, such as “accelerating” and “high speed”, assigned to each driving words. 

Although DAA and LDA are completely unsupervised methods, this framework creates 

human-understandable tags. Being independent of any human-created tags is one of the 

greatest benefits of this method. 

 

Bando et al. (2013) used a multimodal latent topic model for estimating multimodal drive 

topics. Multimodal LDA (mLDA) has been proposed for annotating images by Wang et 

al. (2009). The probabilistic distribution of driving behavioral features, image features, 

and human annotated tags are used for estimating multimodal drive topics. Throttle 

opening rate, brake master-cylinder pressure, angle of the steering wheel, and vehicle 

velocity, and their different values form an eight-dimensional feature space for driving 

behavior. K-means has been used for clustering behavioral features in the eight-

dimensional feature space. They tested data with two different values of K (K =  10 

and K =  100). Prediction results coming from K =  10 topics were different from K =

100. In both cases, the experiment showed that a multimodal latent topic model is 

successful in that it is close to the performance of human annotators. 

 

In 2014, Taniguchi et al. (2015) provided another contribution towards improving long-

term driving behavior prediction and rectifying earlier problems. They proposed an 

unsupervised learning method, named Double Articulation Analyzer with Temporal 

Prediction (DAA-TP), which can model the duration of each driving behavior chunk (and 

in particular the remaining duration of a driving-behavior chunk). This is obtainable only 

under the assumption that driving behavior data has a doubly articulated structure. They 
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used a Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM) 

(Johnson, M. J., & Willsky, A. S. 2013) to enable the DAA to model the duration of each 

hidden state along with the ability of automatically estimating the number of hidden 

states. After using HDP-HSMM for estimation, they compressed subsequences of 

identical states into individual letters (from “aaaiirrrr” to “air”, for instance) and used a 

Bayesian unsupervised morphological Analyzer (Mochihashi, D. et al. 2009) for 

chunking driving letters sequences into word sequences. According to this assumption, 

driving behaviors such as “turning right” and “going forward” can be considered as a 

chunk in a sentence. 

 

This proposed method determines all possible latent words that can come after the 

specific chunk and complete the rest of a specific sentence. It also can identify the 

existing probabilistic transition rules between words. Since there are many possibilities of 

latent driving words and letters for completing a specific sentence, the remaining duration 

of the current driving word is not easily predictable and it is necessary for this model to 

take into consideration all the possible latent driving words. 

 

In their experiments, they evaluated DAA-TP’s prediction performance in finding the 

correct position of the next changing point of chunks. Since there was no any other 

competing comparative unsupervised learning method, they used linear regression and a 

recurrent neural network (RNN) as two conventional supervised methods to compare 

their technique with. The probability distribution of the estimated remaining chunk 

duration was calculated for each frame of observation data by these three methods. 

Velocity, steering angle, brake pressure, accelerator, temporal differences of both 

velocity and steering angle were used as input vectors for all three methods. Their results 

indicate DAA-TP is more accurate than RNN and linear regression in predicting the next 

termination time of the current chunk of driving-behavior data. 
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Chapter 3  

 

3 Proposed Method and Its Implementation 

 

The purpose of this study is to present an efficient optimized prediction method for 

advanced driving assistance systems (ADAS). In order to create an appropriate ADAS, 

we need a comprehensive knowledge of the surrounding traffic and driver behavior. 

These are obtained from the CANbus interface, faceLAB eye tracker, and the roadLAB 

frontal stereo-vision system. In this thesis, we only used the data coming from the 

CANbus interface of the vehicle. This interface recorded any change that occurred in gas 

pedal pressure, brake pedal pressure, steering wheel angle, blinker status, and the speed 

of the vehicle. The recording sampling rate was set to 15Hz. The CANbus interface 

recorded data from a total of 16 drivers.  

We were inspired by the natural language processing models and considered two 

powerful methods to obtain a better understanding of the recorded data, namely: sticky 

HDP-HMM (Fox, E. B. 2011) and NPYLM (Mochihashi, D. et al. 2009). These two 

methods together make a robust model called a Double Articulation Analyzer (DAA) 

(Taniguchi, T., & Nagasaka, S. 2011).  

Sticky HDP-HMM is an extension of Hidden Markov Models. This model accepts a 

sequence of data and assigns a label to each data frame, based on the some characteristics 

of the current along with those of its neighbors. HDP-HMM has been used successfully 

in various contexts such as music synthesis (Hoffman et al., 2008), visual scene 

recognition (Kivinen et al., 2007), and gene expression (Beal and Krishnamurthy, 2012). 

In addition, this model is completely independent from any human tags, which fits our 

problem requirements. Therefore, we decided to choose sticky HDP-HMM to label our 

data frames (sticky HDP-HMM is an augmented version of HDP-HMM that assign labels 

more accurately). We considered five values for each frame (gas pedal pressure, brake 
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pedal pressure, steering wheel angle, navigators’ status, and the car speed). If we look at 

each label individually, it is a label for only 
1

15
 of a second and it is too short to convey 

any meaning; thus we use the term “letter” for sticky HDP-HMM generated labels. 

NPYLM is a parsing method for natural language processing. It can parse a sequence of 

letters into words. These words do not belong to any predefined dictionary. I.e. NPYLM 

is completely independent from any predefined dictionary; it parses letters to unknown 

words based on letter frequencies. We look at the output of sticky HDP-HMM as a 

sequence of letters and use NPYLM to extract words from it. Each word refers to a time 

interval (a sequence of frames) of driving maneuver, which is meaningful in comparison 

to letters. 

DAA is a two-layer method that converts a stream of speech into meaningless elements 

(we call them letters) (first layer) and extracts meaningful signs (we call them words) 

from those elements (second layer). In this thesis, we considered driving behaviors data 

as a stream of speech. And, we created a sequence of meaningful signs from our driving 

data to be able to predict the future driving maneuver based on the previous driving 

maneuvers. We used sticky HDP-HPP as the first layer of DAA, and NPYLM as the 

second layer. 

In this research, we applied DAA to the CANbus dataset. In order to use this data for the 

purpose of driving behavior prediction, we presented a novel framework. It is novel 

because we used a different combination of main algorithms which differs from the 

combination that Taniguchi et al. (2012) used. Also, the database that we used is 

completely new. In addition, the chosen algorithms in our framework are completely 

unsupervised. As the result, it builds its own letters and words such that a pre-existing 

dictionary is not necessary. This framework is able to make a use of DAA to predict the 

next driving maneuver that has the most probability of occurring. We then explain the 

model procedure in detail. Figure. 4 briefly shows the steps involved in DAA.   
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Figure 4: Double Articulation Analyzer Steps. 1. CANbus interface of vehicle. 2. 

This picture shows the recorded time-series data (gas, brake, speed, steering wheel, 

and turn signals) coming from CANbus interface. 3. This graph represents the 

sequence of letters for the speed time-series which have been generated after we 

applied sticky HDP-HMM (different colors represent different letters).4. This 

picture shows the sequence of compressed letters. In this step, we have eliminate the 

letters are located beside each other and are duplicated; as an example, 

“tttthhiiiiisss” compresses to “this” (different colors represent different letters). 5. 

This graph represents the sequence of words that have been produced by applying 

NPYLM to the sequence of compressed letters (white space between colors are 

borders between words). 

3.1 Semiotic segmentation using a Double Articulation 
Analyzer (DAA) 

Using DAA to extract meaning from a massive sequence of raw data is the first and most 

important part of our research. To achieve this goal, we trained our model using the 

driving data collected from 15 drivers. The time each driver spent driving was 

approximately one hour. As a result, the total time of the CANbus data represents 15 

hours of driving. Figure 5 shows the determined path each subject drove. The path is 

located in London, Ontario, Canada and it is highlighted in the map. In addition, Table 1 

presents the collected driving behavioral data.  
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Figure 5: Pre-determined driving path on Google map. 

 

Table 1: CANbus data. Training with 15 subjects to test prediction on 1 subject 

distinct from the 15 training sets. Sampling rate is 15 frames per second for both 

training and test sets. 

 Training  Test  

Sampling rate 15 Hz 15 Hz 

Number of subjects 15 1 

Total distance  427.5 km 28.5 km 

Total data length  12.9822 hours 1.1236 hours 

Mean velocity 39.3579 km/h 32.1254 km/h 



20 

 

 

3.1.1 Data selection 
 

As an initial step, we need to determine what type of data we want to work on. In this 

research, the CANbus network data recorded speed, brake and accelerator actuator 

pressure, steering wheel rotation, and turn signals. By understanding the relationships 

between these elements (if they exist), predicting the most probable next driver maneuver 

may be possible.   

Three different combinations of these data items have been selected and tested in this 

research. First, speed, brake, and gas were selected. Following this, we added steering 

wheel to observe the result of the new combination and compare it with previous results. 

Finally, a new parameter, turn signals, was added to find out whether it can improve the 

model result or not. In the next two sections, the implementation of DAA for our model is 

explained in detail. 

 

 

3.1.2 Segmentation via sticky HDP-HMM 
 

Once the raw data is selected, sticky HDP-HMM is used to find meaningful patterns 

within the time-series data. This algorithm accepts multiple time series data as input. For 

instance, speed values, brake and gas pressure values over the time can be the input of 

sticky HDP-HMM algorithm. Sticky HDP-HMM segments the driving data into a 

sequence of driving behavioral primitives (letters). It is possible to determine the number 

of unique driving primitives, as we can set the number of unique letters as a parameter in 

sticky HDP-HMM. In this study, the number of unique letters is set to M = 25 and M = 

50. We run this algorithm with different M values. We noticed that the range between 25 

and 50 generates most accurate results because choosing a number larger than 50 leads to 

having different states for similar driving primitives. On the other hand, choosing a value 
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less than 25 leads to having same states for dissimilar driving primitives. Sticky HDP-

HMM is an unsupervised method that works simultaneously on different numbers of 

time-series and produces one driving primitive (letter) for each frame. Sticky HDP-HMM 

uses a blocked Gibbs sampler (Fox, E. B. et al. 2007) to find joint changing points within 

the time-series. Then, Sticky HDP-HMM considers joint changing points over time-

series, and extracts the sequence of driving letters. Speed, brake, gas, steering wheel, and 

turn signals are observation states for our implementation of sticky HDP-HMM and 

driving letters are the hidden states. Driving letters are the output of sticky HDP-HMM. 

I.e. sticky HDP-HMM assign a letter to each data frame. 

Figure 6 represents the sticky HDP-HMM result when we used just speed, brake and gas 

time-series as observations. In this figure, the first, second, and third graph are from the 

speed, brake, and gas time series, respectively. Colors represent driving letters (the output 

of sticky HDP-HMM). It is noticeable that the sequence of letters for all three graphs is 

the same. That is, sticky HDP-HMM assigns a letter to each frame considering all time-

series together. For example, from time 500 to time 750, the three graphs all show the 

color red. 

Figure 7 is similar to Figure 6, but it represents the sticky HDP-HMM results when we 

used speed, brake, gas, and steering wheel together.  

Figure 8 also displays the sticky HDP-HMM results when speed, brake, gas, steering 

wheel and signals were used. There is an interesting story behind these three figures; the 

results of sticky HDP-HMM shows that the characteristics of an individual letter do not 

change over different time-series. 

By comparing these three figures, it is observed that the results in Figure 8 are more 

precise in segmentation since the characteristics of the same color letters are matched 

better than the two other results. It means that adding steering wheel and turn signals data 

has a positive effect on the results of the segmentation.  
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Figure 6: Sticky HDP-HMM results using speed, brake, and gas. Each color 

represents a unique driving letter. Colors in the 3 graphs at each point of time are 

the same, because sticky HDP-HMM generates the result based on all time series 

together.  
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Figure 7: Sticky HDP-HMM results using speed, brake, gas, and Steering wheel. 

Each color represents a unique driving letter. Colors in the 4 graphs at each point of 

time are the same, because sticky HDP-HMM generates the result based on all time 

series together.  
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Figure 8: Sticky HDP-HMM results using speed, brake, gas, Steering wheel, and 

signals. Each color represents a unique driving letter. Colors in the 4 graphs at each 

point of time are the same, because sticky HDP-HMM generates the result based on 

all time series together.  
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3.1.3 Chunking via NPYLM 

After sticky HDP-HMM gives the sequence of letters, we preprocess it to be prepared for 

NPYLM. I.e. we compress the duplicate letters from the same state to prevent confusion 

and false (invalid) results. For example, “ttttthhiiiiisss“ would be replaced with “this“. 

NPYLM was used to parse sequence of letters (sticky HDP-HMM results after the 

preprocessing step) into words. Without assuming any predefined dictionary and by using 

a Gibbs sampler, NPYLM extracts words from the sequence of letters. This process 

happens based on the letters frequency. In this research, NPYLM accepts the compressed 

sequence of letters as input and extracts more than 345000 non-unique words from 15 

hours of driving. The output of NPYLM is a sequence of words that belongs to all time 

series that we have. I.e. our multiple time series data now can be considered as a 

sequence of words. Each word is a sequence of letters. In contradiction to letters, these 

words represent a small chunk of the driver’s behavior that have meaning. Figure 9 

shows speed, gas, and brake time series values. In this figure, each color belongs to a 

specific letter. Picture. 1 at this figure represents the output of sticky HDP-HMM. 

Picture. 2 shows the sequence of words. There is a white space between words. As an 

example, the first word has three letter that the first and third letter are the same. This 

word convey some meanings. For instance, picture.1 time intervals indicates that speed is 

increasing, brake pressure is decreasing, and gas pressure is increasing.  
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Figure 9 : NPYLM result. Picture 1. represents sticky HDP-HMM result. Each color 

belongs to a specific letter. Picture 2. shows the result of NPYLM. It is a sequence of 

words. First word belongs to Picture .1. I.e. purple, yellow, purple is a word. The 

meaning of this word is: speed is increasing.  

 

 



30 

 

3.2 Finding patterns for predicting driving behaviors using 
DAA 

Around 450 unique words have been extracted from the CANbus data set. This is a large 

amount of data that is not easily understandable. I.e. extracted words are not applicable 

enough for drivers to understand intuitively. Therefore, in this study we want to present a 

novel applicable structure which is able to find common patterns among the training 

words data set. 

Extracted word boundaries have the most important role in finding common features, 

because they are actually the contextual changing points of time-series data. Such a large 

amount of words does not mean large word diversity. Indeed, by analyzing driving 

behavioral words, it is possible to recognize patterns among words. What follows, are 

describe the steps involved in clustering driving behavioral words, constructing a 

distribution table, and predicting driver behavior. 

 

 

3.2.1 Driving behavioral feature extraction 

In this research, we determined the most influential parameters for analyzing the words. 

These parameters were calculated for each word and are referred to as “driving 

behavioral features”. Driving behavioral features are listed as acceleration and mean for 

speed, brake, gas, steering wheel and mean of signal data for each word (9 features in 

total). These features have been calculated in their determined time duration. Access to 

these driving behavioral features is a fundamental achievement for further analysis. From 

the viewpoint of statistics, driving behavioral features are very worthwhile to consider. 

For example, if the rate of speed acceleration is negative, we can expect speed decreasing 

in the next seconds. In some cases, this scenario may be accompanied with the blinking 

of the right signal, and interpreted as a right turn in the next few seconds. 
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3.2.2 Clustering driving behavioral words 

After DAA provided a sequence of words and all of their driving features were 

calculated, our proposed method clusters them into a number of classes (number of 

classes = k). Clustering is being performed based on the words features. 

 K-mean is used for clustering the words in k different classes. Because our driving 

features showed quite different variances, we standardized them before using K-means. 

It is important to note that we can determine k in our clustering algorithm. We set the 

value of k as k = 10 since it gave the best result for our data set. The words feature vector 

is a 9-dimensional vector that has been calculated individually for each word. Using the 

smaller k gave some classes that became unity while their feature vectors were not 

parallel. Thus, they must not have been located in the same class. On the other hand, 

increasing k did not increase the result accuracy. 

After the clustering step, each word belongs only to one class (we call these classes as 

“states”). Words with the same state have similar features. For example, the speed 

acceleration for all members of a determined state should be similar. 

In addition, we calculated 9 features (acceleration and mean for speed, brake, gas, 

steering wheel and mean of signal data) for our states in the same way as our words. 

These features are needed in the subsequent steps. 

3.2.3 Constructing a probabilistic distribution table 

Since the state of each word was determined, it is time to find out what is the relationship 

between sequential states. One of the most important questions is: Is there any specific 

pattern emerging from states in the word sequence and if yes, how can we find them? To 

answer this question, we have to find the probability of transition between any two 

different driving states. In order to better understand how transitions occur between 

various driving states, we have to introduce a new term: Previous Fixed Lag (PFL). PFL 

is the number of previous observed states that we need to predict the next future state. We 
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set PFL = 2 because numbers larger than 2 did not improve the results significantly. In 

addition, larger PFL increases the running time of our algorithm.  

After setting the value of PFL, it is time to construct the probabilistic distribution table. 

This table indicates the probability of transition between different states. In more detail, 

when PFL is 2, from each two states in the past, there is a transition to a next specific 

state. Thus, based on the frequency of the observed states in the training dataset, it is 

possible to construct a probabilistic distribution table that can specify which state has the 

highest likelihood to happen in the next.   

The size of the table depends on the value for PFL and the number of features:  

table size =  number of classes𝑃𝐹𝐿 ∗  number of classes 

In addition, the value of each cell is calculated from the following formula: 

𝑝(𝑖, 𝑗) =  
𝑛(𝑖,𝑗)

∑ 𝑛(𝑖,𝑘)𝑁
𝑘=1

 

𝑝(𝑖, 𝑗) = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑜𝑖𝑛𝑔 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖  

𝑛(𝑖, 𝑗) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑡𝑒 𝑖 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠     

3.3 Driving behaviors’ prediction using test dataset 

Predicting the upcoming driving behavior is one of the most challenging issues in high 

technology cars. This feature gives the ability to predict high-risk driving behaviors and 

prevent accidents. In this research, we focused on this issue and presented a novel 

framework that is able to assist drivers by predicting driving behavior parameters such as 

speed and steering wheel in the upcoming seconds. 

We defined two parameters to be able to work with test data. The first parameter is the 

Number of Previous Frames (NPF) and the second one is the Number of Next Frames 

(NNF). The NPF parameter indicates how far in the past we want to use driving behavior 
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data. In other words, NPF indicates the amount of driving history that we need to predict 

the future. Conversely, the NNF parameter determines how far in the future we want to 

put a benchmark for predicting the driving behavior. Different scenarios have followed to 

choose the best values for these parameters. Among them, we provide the results for NPF 

values of 15 and 30 which means that we considered the vehicular states one and two 

seconds before the current time. The NNF was set to 8 and 15, which means that we want 

to predict the vehicular behavior for the next half second to a full second. 

By setting a value for NPF, it is possible to extract the 9 features (acceleration and mean 

for speed, brake, gas, steering wheel and mean of signal data) for the past time interval. 

Then, we used a multi Support Vector Machine (multi SVM) to compare extracted 

features with our states features (see Section 3.2.2) to find the appropriate states for the 

previous time intervals.  

After the states are indicated for previous time intervals, our framework predicts the state 

of the future time interval based on the probability table. 

Now that we can indicate which state the next state of the current driving behavior will 

be, we can then predict the speed value and the angle of steering wheel for the next 

upcoming seconds. After determining the next state of the vehicle, it is straightforward to 

calculate the value of speed for the next vehicular state. As an example, assume that our 

car is at second t, we want to predict the value of speed at second t + r. Assume that we 

have attained the predicted state for the time t + r and it is equal to s; in this step, we look 

at the features of s and find the value of speed acceleration 𝑎. After finding the speed 

acceleration value, just a simple substitution is needed; we use 𝑉 = 𝑎𝑡 +  𝑉0. Hence, the 

result is the predicted value for speed at time t + r. 
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Chapter 4  

 

4 Results and evaluation 

To evaluate the effectiveness of our proposed method, we conducted an experiment to 

predict speed values for our test data set. The first 15 drivers’ data were selected as the 

training dataset and driver number 16 was selected for the test data set. We repeated the 

procedure with different parameters (NPF= {15, 30} , NNF = {8, 15}). 

We did also the cross validation on the test data set to achieve certain results. We used 

the leave-one-out cross-validation in a way that 15 drivers were selected for the training 

set and the last driver was selected for the test case for every validation cycle. 

Figure 10 shows the real and the predicted speed values for driver number 16. And Figure 

10 shows the real and the predicted steering wheel values for the same driver. As we can 

see in Figure 10, although the two diagrams do not have a complete overlap, they show 

very similar values at each point in time; and there is not any significant difference 

between the real values and the predicted values. 
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Figure 10 : The real and the predicted speed values for driver number 16. 
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Figure 11 : The real and the predicted steering wheel values for driver number 16. 

 

To quantitatively evaluate the results, we calculated Mean Squared Error (MSE) for the 

predicted values to see the accuracy of the algorithm in different scenarios. In addition, 

we defined a confidence interval for each predicted value, which is shown in below: 

| Predicted_value  −    Real_value|  ≤  1.50  

We set confidence interval equal and less than 1.50, because predicting the car speed for 

the next second with 1.5 kilometer per hour error is considered as a reliable value in our 

work. I.e. the system can correctly detect dangerous situation as long as we predict the 

car speed in the confidence interval range. Same situation applies to steering wheel angle 

confidence interval. Based on the confidence interval, it is easy to find out what 
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percentage of our results is reliable. Table 2, Table 3, and Table 4 present the framework 

results for the speed prediction, while Table 5 and Table 6 present results for the steering 

wheel prediction. 

 

 

Table 2: Speed prediction results using gas, brake and speed datasets. This table 

displays the percentage of reliable predicted values satisfying | Predicted_value  -   

Real_value| ≤ 1.50. 

Number of 

letters 

Time interval in 

the past 

Time interval in 

the future 

MSE Reliable 

predicted 

values 

25 1 second 0.5 second 0.5055 95.28% 

25 2 second 1 second 1.4351 82.73% 

50 1 second 0.5 second 0.6673 93.96% 

50 2 second 1 second 1.9793 77.88% 

 

Table 3: Speed prediction results using gas, brake, speed and steering wheel 

datasets. This table displays the percentage of Reliable predicted values satisfying                                      

| Predicted_value  -   Real_value| ≤ 1.50. 

Number of 

letters 

Time interval in 

the past 

Time interval in 

the future 

MSE Reliable 

predicted 

values 

25 1 second 0.5 second 0.4839 95.19% 
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25 2 second 1 second 1.3653 83.19% 

50 1 second 0.5 second 0.4566 95.29% 

50 2 second 1 second 1.3477 82.95% 

 

Table 4: Speed prediction results using gas, brake, speed, steering wheel and signals 

datasets. This table displays the percentage of reliable predicted values satisfying  

| Predicted_value  -   Real_value| ≤ 1.50. 

Number of 

letters 

Time interval in 

the past 

Time interval in 

the future 

MSE Reliable 

predicted 

values 

25 1 second 0.5 second 0.5004 95.04% 

25 2 second 1 second 1.4356 83.29% 

50 1 second 0.5 second 0.4921 94.26% 

50 2 second 1 second 1.3611 83.38% 

 

According to the predicted speed results in Table 2, Table 3, and Table 4, it is noticeable 

that adding the steering wheel parameter to speed, brake, and gas parameters could 

improve the final results, while adding the turn signals parameters did not provide any 

improvement. Consequently, the combination of speed, gas, brake, and steering wheel 

outperformed other combinations. The best result has been obtained by setting the 

number of letters to 50, the past time interval to 1 second, and the future time interval to 

half of a second. About 95.29% of the predicted speed values are in the confidence 

interval and the total mean squared error for the predicted speed values is 0.4566 for the 

best result.  
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It is important to notice that increasing the number of letters does not make considerable 

changes to final results. In contrast, using larger time intervals in the past and future 

causes worse results, which are not precise enough to be considered herein. 

Table 5: Steering wheel prediction results using gas, brake, speed and steering wheel 

datasets. This table displays the percentage of reliable predicted values satisfying | 

Predicted_value  -   Real_value| ≤ 1.50. 

Number of 

letters 

Time interval in 

the past 

Time interval in 

the future 

MSE Reliable 

predicted 

values 

25 1 second 0.5 second 19.1612 88.70% 

25 2 second 1 second 62.6855 79.21% 

50 1 second 0.5 second 19.7761 85.99% 

50 2 second 1 second 64.4277 76.76% 

 

Table 6: Steering wheel prediction results using gas, brake, speed, steering wheel 

and signals datasets. This table displays the percentage of reliable predicted values 

satisfying |Predicted_value  -   Real_value| ≤ 1.50. 

Number of 

letters 

Time interval in 

the past 

Time interval in 

the future 

MSE Reliable 

predicted 

values 

25 1 second 0.5 second 19.1387 89.64% 

25 2 second 1 second 62.6632 80.48% 

50 1 second 0.5 second 19.1213 89.66% 
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50 2 second 1 second 62.4713 79.89% 

 

In accordance with the results in Table 5 and Table 6, it is obvious that adding turn signal 

parameters could significantly decrease the total mean squared error. There is not a 

considerable difference in results when we change the number of letters. The best result 

has been obtained when the past time interval was set to 1 second, and the future time 

interval to half of a second. It shows about 89.66% of the predicted steering wheel values 

are in the confidence interval and the total mean squared error is 19.1213.  
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Chapter 5  

 

5 Summary and Conclusions 

Although the invention of automobiles has been an important achievement in human life, 

unfortunately it is one of the major causes of death and injuries. In most cases, human 

driving errors are reported as the main cause for transportation accidents. In order to 

prevent crashes and mitigate their fatalities, there has been a consistent need to improve 

safety and create assistance systems for automobiles. In recent years, researchers focused 

on Advanced Driving Assistance Systems (ADAS) to reduce the number and the severity 

of accidents. In this thesis, we studied the existing literature in the field of ADAS 

development, as it pertains to maneuver prediction. Thereafter, we presented a novel 

framework for ADAS able to predict some aspects of driver behavior for short periods of 

time.     

5.1 Conclusions 

Our proposed framework is able to predict the next driving behavior in one or half of a 

second based on previously observed driving behavior. Our data includes speed, brake, 

gas, steering wheel, and turn signals time-series. We could not find any other research in 

this field that uses this variety of sensors together (CANbus database time-series). 

Different combinations of CANbus data were considered to see which one is more 

efficient. In order to obtain a powerful prediction model, first sticky HDP-HMM and 

NPYLM models were used together prior to DAA to chunk time-series into a sequence of 

time intervals (words). 

Following this, a number of features were defined for each word such as speed, 

acceleration, and mean velocity. Observing these features over time has a critical impact 

on finding an appropriate pattern for further analysis. For example, knowing that speed is 

increasing or decreasing in a number of specific intervals leads us to predict similar 

driving behaviors. Accordingly, time intervals (words) were clustered into a number of 
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classes based on their features. Each class consists of a number of words with similar 

features that differ from other classes’ members. For example, it is possible that the speed 

decreases in two classes while the steering wheel angle changes in only one of them. The 

first class behavior is interpreted as “turning” while the second one is interpreted as 

“stopping” or “speed decreasing”. Once the data was trained and patterns were found, the 

model was applied to the test data. We trained our model with three different 

combinations of time series and predicted the speed and steering wheel values for the test 

data. As previously mentioned, the combination of speed, brake, gas, and steering wheel 

was the most successful combination for speed prediction. Our model is able to predict 

speed values in 95% of cases, subjected to the confidence interval. Moreover, the 

combination of speed, brake, gas, steering wheel, and signals lead our method to predict 

the steering wheel angle with more than 89% accuracy, subjected to the same confidence 

interval.  

A major distinction of our framework for driver behavior prediction consists in the fact 

that the sum of our algorithms run automatically and are independent of any human 

annotation or tagging. Moreover, the ability to predict upcoming driving behaviors 

relatively precisely for the next half second offers any existing ADAS ample time to 

intervene and mitigate consequences, should the next predicted maneuver be inconsistent 

with the current driving situation. 

5.2 Future Work 

All algorithms of the presented framework have been programmed in a very friendly, 

expandable, and reusable structure that could be used for further development. This 

implementation has the potential to be combined other, supplemental data sources in 

order to increase the accuracy and range of maneuver prediction. 

 

 

 



43 

 

 

Bibliography 

 
Angell, L. S., Auflick, J., Austria, P. A., Kochhar, D. S., Tijerina, L., Biever, W., ... & Kiger, S. (2006). 

Driver workload metrics task 2 final report (No. HS-810 635). 

  

Bando, T., Takenaka, K., Nagasaka, S., & Taniguchi, T. (2013, June). Unsupervised drive topic finding 

from driving behavioral data. In Intelligent Vehicles Symposium (IV), 2013 IEEE (pp. 177-182). IEEE.  

 

Bando, T., Takenaka, K., Nagasaka, S., & Taniguchi, T. (2013, November). Automatic drive annotation via 

multimodal latent topic model. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International 

Conference on (pp. 2744-2749). IEEE.  

 

Beal, M., & Krishnamurthy, P. (2012). Gene expression time course clustering with countably infinite 

hidden Markov models. arXiv preprint arXiv:1206.6824. 

 

Beauchemin, S. S., Bauer, M., Kowsari, T., & Cho, J. (2012). Portable and scalable vision-based vehicular 

instrumentation for the analysis of driver intentionality. Instrumentation and Measurement, IEEE 

Transactions on, 61(2), 391-401. 

 

Brookhuis, K. A., & de Waard, D. (2010). Monitoring drivers’ mental workload in driving simulators using 

physiological measures. Accident Analysis & Prevention, 42(3), 898-903. 

 

Fox, E. B., Sudderth, E. B., Jordan, M. I., & Willsky, A. S. (2007). The sticky HDP-HMM: Bayesian 

nonparametric hidden Markov models with persistent states. Arxiv preprint.  

 

Fox, E. B., Jordan, M. I., Sudderth, E. B., & Willsky, A. S. (2009). Sharing features among dynamical 

systems with beta processes. In Advances in Neural Information Processing Systems (pp. 549-557). 

  

Fox, E. B., Sudderth, E. B., Jordan, M. I., & Willsky, A. S. (2011). A sticky HDP-HMM with application to 

speaker diarization. The Annals of Applied Statistics, 1020-1056. 

 



44 

 

Gales, M., & Young, S. (2008). The application of hidden Markov models in speech recognition. 

Foundations and trends in signal processing, 1(3), 195-304.  

 

Hamada, R., Kubo, T., Ikeda, K. I., Zhang, Z., Shibata, T., Bando, T., & Egawa, M. (2013, May). Towards 

prediction of driving behavior via basic pattern discovery with BP-AR-HMM. In Acoustics, Speech and 

Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 2805-2809). IEEE.  

 

 Hermann, A., & Desel, J. (2008, September). Driving situation analysis in automotive environment. In 

Vehicular Electronics and Safety, 2008. ICVES 2008. IEEE International Conference on (pp. 216-221). 

IEEE.  

 

Hoffman, M., Cook, P., & Blei, D. (2008). Data-driven recomposition using the hierarchical Dirichlet 

process hidden Markov model. In Proc. International Computer Music Conference. 

 

Hülnhagen, T., Dengler, I., Tamke, A., Dang, T., & Breuel, G. (2010, June). Maneuver recognition using 

probabilistic finite-state machines and fuzzy logic. In Intelligent Vehicles Symposium (IV), 2010 IEEE (pp. 

65-70). IEEE.  

 

Johnson, M. J., & Willsky, A. S. (2013). Bayesian nonparametric hidden semi-Markov models. The Journal 

of Machine Learning Research, 14(1), 673-701. 

 

Kishimoto, Y., & Oguri, K. (2008, September). A modeling method for predicting driving behavior 

concerning with driver’s past movements. InVehicular Electronics and Safety, 2008. ICVES 2008. IEEE 

International Conference on (pp. 132-136). IEEE.  

 

Kivinen, J. J., Sudderth, E. B., & Jordan, M. I. (2007, October). Learning multiscale representations of 

natural scenes using Dirichlet processes. In Computer Vision, 2007. ICCV 2007. IEEE 11th International 

Conference on (pp. 1-8). IEEE. 

 

Mitrović, D. (2005). Reliable method for driving events recognition. Intelligent Transportation Systems, 

IEEE Transactions on, 6(2), 198-205.  

 

Mochihashi, D., Yamada, T., & Ueda, N. (2009, August). Bayesian unsupervised word segmentation with 

nested Pitman-Yor language modeling. InProceedings of the Joint Conference of the 47th Annual Meeting 



45 

 

of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: 

Volume 1-Volume 1 (pp. 100-108). Association for Computational Linguistics.  

 

Nigro, J. M., & Rombaut, M. (2003). IDRES: A rule-based system for driving situation recognition with 

uncertainty management. Information Fusion, 4(4), 309-317.  

 

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. ASSP Magazine, IEEE, 

3(1), 4-16.  

 

Schneider, J., Wilde, A., & Naab, K. (2008, June). Probabilistic approach for modeling and identifying 

driving situations. In Intelligent Vehicles Symposium, 2008 IEEE (pp. 343-348). IEEE.  

 

Stanculescu, I., Williams, C. K., & Freer, Y. (2014). Autoregressive Hidden Markov Models for the Early 

Detection of Neonatal Sepsis. Biomedical and Health Informatics, IEEE Journal of, 18(5), 1560-1570.  

 

Takano, W., Matsushita, A., Iwao, K., & Nakamura, Y. (2008, September). Recognition of human driving 

behaviors based on stochastic symbolization of time series signal. In Intelligent Robots and Systems, 2008. 

IROS 2008. IEEE/RSJ International Conference on (pp. 167-172). IEEE.  

 

Taniguchi, T., & Nagasaka, S. (2011, December). Double articulation analyzer for unsegmented human 

motion using pitman-yor language model and infinite hidden markov model. In System Integration (SII), 

2011 IEEE/SICE International Symposium on (pp. 250-255). IEEE.  

 

Taniguchi, T., Nagasaka, S., Hitomi, K., Chandrasiri, N. P., & Bando, T. (2012, June). Semiotic prediction 

of driving behavior using unsupervised double articulation analyzer. In Intelligent Vehicles Symposium 

(IV), 2012 IEEE (pp. 849-854). IEEE.  

 

Taniguchi, T., Nagasaka, S., Hitomi, K., Takenaka, K., & Bando, T. (2015). Unsupervised hierarchical 

modeling of driving behavior and prediction of contextual changing points. Intelligent Transportation 

Systems, IEEE Transactions on, 16(4), 1746-1760.  

 

 Vidal, E., Thollard, F., De La Higuera, C., Casacuberta, F., & Carrasco, R. C. (2005). Probabilistic finite-

state machines-part I. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(7), 1013-1025.  

 



46 

 

Wang, C., Blei, D., & Li, F. F. (2009, June). Simultaneous image classification and annotation. In 

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 1903-1910). IEEE.  

  



47 

 

Curriculum Vitae 

 

 
Name:   Maedeh Hesabgar 
 
 
Post-secondary  Sharif University of Technology 
Education and  Tehran, Iran 
Degrees:   2008-2012 B.Sc. 
 

 
The University of Western Ontario 
London, Ontario, Canada 
2014-2015 M.Sc. 
 

 
 
Honors and   Western Graduate Research Scholarship 
Awards:   2014-2015 
 
 
 
 
Related Work  Research Assistant 
Experience   University of Western Ontario 

2014-2015 
 
Teaching Assistant 
University of Western Ontario 
2014-2015 
 
Teaching Assistant 
Sharif University of Ontario 
2011-2012 
 
 

 


	Advanced Driving Assistance Prediction Systems
	Recommended Citation

	ETD word template

