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Abstract 

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disorder that affects 

approximately 1 in 5000 males. Vascular-targeted therapy has been proposed as a 

treatment for DMD to reduce ischemia and enhance endogenous repair. Additionally, a 

more vascularized environment may enhance regenerative approaches currently under 

investigation. Vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG1) are 

two of the most studied pro-angiogenic factors for this approach.  To date, little is known 

regarding the effect of these pro-angiogenic factors on muscle function and whether they 

may exacerbate fibrosis in a relevant murine model of DMD.  The first aim of this thesis 

was to determine the murine model that is best suited for assessing vascular therapy. We 

demonstrate the dystrophin null, utrophin heterozygous mouse (mdx/utrn+/-) develops 

more collagen deposition at an earlier age than the commonly used mdx mouse and is 

therefore a superior choice for assessing therapeutic effects on fibrosis. Next, we 

investigated the effect of exogenous VEGF treatment on fibroblasts derived from severely 

affected diaphragm and mildly affected gastrocnemius muscles of mdx/utrn+/- mice. 

VEGF treatment induced differentiation into myofibroblasts in both cell types, suggesting 

induction of a fibrotic response. The final aim of the thesis was to assess the effect of 

VEGF alone or in combination with ANG1 on functional perfusion as assessed non-

invasively using dynamic contrast-enhanced computed tomography. A combination of 

VEGF and ANG1, but not VEGF alone, slowed progression of ischemia in the mdx/utrn+/- 

hind limb. Increased vessel maturation, as assessed histologically, validated the imaging 

findings. The combination treatment also decreased fibrosis and leukocyte infiltration, 

consistent with decreased vascular permeability following ANG1 treatment. Overall, the 

research in this thesis highlights the drawbacks to use of VEGF as a treatment for ischemia 

associated with DMD and reveals considerations for future use of vascular therapy in 

murine models of the disease.  

  



 

ii 

 

Keywords 

Duchenne muscular dystrophy (DMD), fibrosis, vascular endothelial growth factor 

(VEGF), angiopoietin-1 (ANG1), vascular-targeted therapy, non-invasive imaging, 

inflammation, dynamic contrast-enhanced computed tomography (DCE-CT), perfusion, 

ischemia, myofibroblast 



 

iii 

 

Co-Authorship Statement 

Chapter 1 entitled “Introduction,” includes a portion of content that was adapted 

from Gutpell & Hoffman, 2013. OA Musculoskelet Med. 1(4):33. K.M. Gutpell wrote the 

manuscript with suggestions from Dr. L.M. Hoffman. 

Chapter 2 entitled “Fibrosis in the mdx/utrn+/- mouse validates its use as a fibrotic 

model of muscular dystrophy,” was adapted from Gutpell et al., 2015. PLoS One. 

10(1):e0117306, and reproduced here from PLoS ONE under the Creative Commons 

Attribution license, which grants reuse of the article without the requirement of further 

permission. K.M. Gutpell wrote the manuscript with suggestions from Dr. L.M. Hoffman. 

K.M. Gutpell carried out all experiments in Dr. L.M. Hoffman’s laboratory. W.T. 

Hrinivich wrote the Matlab™ ™ code to analyze Masson’s Trichrome images.  

Chapter 3 entitled “VEGF induces stress fiber formation in fibroblasts derived 

from a murine model of muscular dystrophy” was adapted from Gutpell et al., 2015 and 

reproduced here with permission from Springer. K.M. Gutpell wrote the manuscript with 

suggestions from Dr. L.M. Hoffman. K.M. Gutpell carried out all experiments in Dr. L.M. 

Hoffman’s laboratory. 

Chapter 4 entitled “Vascular therapy reduces ischemia and fibrosis in the 

mdx/utrn+/- mouse,” was adapted from Gutpell et al., 2016 (in preparation).  K.M. Gutpell 

carried out the experimental work, analyzed the data, and wrote the manuscript with 

suggestions from Dr. L.M. Hoffman. W.T. Hrinivich wrote the Matlab™ code for 

analyzing Masson’s Trichrome and immunofluorescence images. N. Tasevski and B. 

Wong performed Masson’s Trichrome and immunofluorescence microscopy, respectively. 

J. Hadway and L. Desjardins performed tail vein catheterizations and assisted with CT 

scanning procedures. F. Su stitched the heart and hind limb scans together. Dr. T-Y. Lee 

provided perfusion expertise. 

  



 

iv 

 

Acknowledgments 

I would not be at this point today without the constant support of my mentor, supervisor, 

and friend, Dr. Lisa Hoffman. Thank you for your patience and guidance throughout this 

process and always having the utmost faith in me.  

During my doctoral study, I have been fortunate to receive stipend support through an 

Ontario Graduate Scholarship, a Queen Elizabeth II Scholarship in Science and 

Technology, and a Canadian Institutes of Health Research (CIHR) Strategic Training 

Fellowship in Vascular Research, as well as travel support from the Collaborative Program 

in Molecular Imaging. Additionally, the CIHR and Natural Sciences and Engineering 

Research Council of Canada supported my research in Dr. Hoffman’s laboratory.  

I have received tremendous support from my advisory committee members: Dr.’s Alison 

Allan, Savita Dhanvantari, David O’Gorman, and Ian Welch. In addition to the valuable 

input you provided to this thesis, you, as role models, provided continual examples of the 

scientist I will strive to exemplify. I would also like to acknowledge the help I received 

from our collaborators Drs. Dwayne Jackson, Ting-Yim Lee, and Andrew Leask. 

As part of the Anatomy and Cell Biology (ACB) Department and the Lawson Health 

Research Institute, I was lucky to have many individuals help me along the way including 

Shazia Donachie, Debra Grant, Michael Wu, Dale Forder, Terrie Ann Campbell, Jenn 

Hadway, Lise Desjardins, and Michele Avon. I would also like to thank Janelle Cobban 

and Dr. Peter Merrifield for providing me with opportunities to be involved with student 

leadership at Schulich and teaching in ACB, respectively. 

I would like to thank my peer mentors and friends who have provided considerable advice 

to me in pursuing a doctoral degree, including Drs. Nicole Novielli, Phil Medeiros, Baraa 

Al-Khazraji, Matthew Grol, Allison Medeiros, and Leonard Guizetti. You may not realize 

you had such a profound effect on me, but I am certainly grateful that you did. 



 

v 

 

I would like to thank my friends Laura, Spencer, Scott, Jen, and Evan for always providing 

an ear to listen, and a reason to laugh. To Tom: In addition to your dear friendship, I am 

forever indebted to you for all of your help with this project.  

To all the past and present members of the Hoffman lab, including Boaz, Nik, David, 

Linshan, and Carl, among others: thank you for the integral role each of you played in the 

past 5 years. To Andrew and Becky: Thank you for going above and beyond to help me 

over the years, you two have helped me in more ways than you know.  

I would like to thank my grandparents for their support and always showing sincere 

interest in my research, giving me the opportunity to talk about such an important aspect 

of my life whenever we speak. Thank you to my great grandmother and all my aunts and 

uncles for your words of encouragement, they have always motivated me. 

To my “little” siblings Kristen, Derek, Leah, and Beck: thank you for being rays of 

sunshine when I needed to smile and for using your wit and sarcasm to make me laugh. To 

my brother-in-law Jeff: thank you for your constant support and reminding me to enjoy the 

finer things in life (i.e. the Blue Jays and Guinness). To my best friend, Jenn: thank you for 

believing in me, lifting me up, and making me feel as though I can do anything.  

I am so grateful to have received endless love and encouragement from all my parents. To 

Isabel: Thank you for being my second mom and genuinely caring for my wellbeing. To 

Joe: Thank you for your constant advice and “stimulating” conversations. To Steve: Thank 

you for your constant support and always making me feel like my work is important to 

you. To my dad: Thank you for instilling in me the importance of hard work and always 

encouraging me not to sweat the small stuff. To my mom: Thank you for being my role 

model. I will always strive to emulate you in everything I do. 

To my partner in life: I will never forget the thousands of research-related conversations 

you have not only put up with, but also genuinely engaged me in. You have been my 

soundboard through it all and to say I will be forever grateful would fall far short. Your 

intellect drives me to be a better scientist, and your kindness inspires me to be a better 

person. This accomplishment would not have been possible without you, Nate.   



 

vi 

 

Project Proposal Summary 

BACKGROUND: The most commonly diagnosed fatal childhood disorder is Duchenne 

muscular dystrophy (DMD), a neuromuscular disease that is invariably fatal by the age of 

30. Regenerative therapy research has been ongoing for decades with little or no 

significant efficacy reported in pre-clinical trials. A major contributor to this inefficacy is 

the ischemia, inflammation, and fibrosis that progressively dominate the degenerating 

muscle tissue, creating a hostile environment for cell transplantation. Studies have 

proposed the use of angiogenic factors to alleviate the ischemia inherent to DMD 

pathology, creating a more optimal environment for regeneration. Vascular endothelial 

growth factor (VEGF) is a known potent inducer of angiogenesis and is of particular 

interest in the field given that preliminary. Recent studies have also proposed a 

combinatorial approach, using VEGF to induce angiogenesis and angiopoietin-1 (ANG1) 

to mature vessels, since VEGF alone is known to produce leaky vasculature. No studies to 

date have investigated whether these factors, either alone or in combination, affect 

perfusion longitudinally in a relevant animal model of DMD. There is also very little 

known regarding the effect, if any, these angiogenic factors may have on inflammation and 

fibrosis. Finally, much of what is currently known about vascular therapies is derived from 

invasive muscle biopsies that may contribute to disease progression and are limited in that 

they provide a small perspective of a very heterogeneous disease.  

HYPOTHESES: A combination of VEGF and ANG1, but not VEGF alone, will reduce 

disease progression in a murine model of muscular dystrophy and this effect can be 

measured non-invasively using dynamic contrast-enhanced computed tomography. 

SPECIFIC AIMS: 

i) Investigate histopathological features in the mdx, mdx/utrn+/- and dko mice to 

determine the suitability of each as a model of Duchene muscular dystrophy. 

Hallmark features that will be assessed include percentage of centrally 

nucleated myofibers and extent of fibrosis as indicated by Masson’s Trichrome 

staining.  
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ii) Determine whether VEGF elicits a pro-fibrotic response in fibroblasts derived 

from a murine model of DMD. Fibroblasts isolated from gastrocnemius and 

diaphragm muscles of 10 week-old mice will be treated with VEGF164. qPCR 

will be employed to measure changes in mRNA levels of fibrotic genes 

including Col1A, Ccn2/Ctgf, Acta2 and Fn1. 

iii) Assess the ability of VEGF alone or in combination with ANG1 to enhance the 

microenvironment in dystrophic murine skeletal muscle. Ex vivo analyses 

including immunohistochemistry and western blot will be used to measure 

changes in expression of: alpha smooth muscle actin (marker of mature blood 

vessels), CD45 (leukocyte marker), and collagen (fibrotic marker).  

iv) Use dynamic contrast-enhanced computed tomography (DCE-CT) to determine 

if ex vivo changes in angiogenic, inflammatory, and fibrotic markers observed 

in aim 3 correlate with functional changes in skeletal muscle perfusion.  

SIGNIFICANCE: Addressing the hostile regenerative environment in dystrophic muscle 

may address the lack of efficacy observed with current therapeutic approaches in DMD 

patients. The proposed research will further investigate the role of vascular-targeted 

therapy in vivo in a relevant animal model that more accurately reflects the 

pathophysiology of DMD in patients. The majority of current research utilizes histological 

and post-mortem means of assessing the effect of VEGF treatment, impeding accurate 

interpretation of the effect of treatment on muscle function. The proposed research is novel 

in that it will correlate CT findings with traditional histological analyses following 

treatment with pro-angiogenic agents to better elucidate the potential for its use in the 

clinical arena. 
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1
 A portion of this chapter includes content reproduced from: 

Gutpell K, Hoffman L. Non-invasive assessment of skeletal muscle pathology and treatment for Duchenne 

muscular dystrophy. OA Musculoskeletal Medicine 2013;1(4):33. 
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1 Introduction 

1.1 Chapter Summary 

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy. It 

is also the most fatal genetic disorder diagnosed in children (Emery 2002). DMD is 

caused by a mutation, or mutations, in the gene encoding dystrophin, a large cytoskeletal 

protein that confers membrane integrity in muscle cells. Since dystrophin was discovered 

in 1987, many research groups have attempted to restore its expression in patients and 

animal models of the disease. Although promising results have surfaced in recent years, 

100% dystrophin expression has not yet been achieved, and thus muscle degeneration and 

accompanying fibrosis still occurs. As such, it is well accepted that any real cure to DMD 

will involve a multifaceted approach including methods to both restore dystrophin and 

alleviate the hostile muscular environment already present at the time of diagnosis.  

This chapter provides background on the underlying pathophysiology of DMD, 

therapeutic approaches under investigation to treat the disease, and some of the main 

limitations to current research. Important considerations in conducting DMD research are 

also discussed, including animal models of the disease and techniques for assessing 

functional efficacy of therapies. The aim of this chapter is to provide the overarching 

rationale for the research presented in this thesis.  
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1.2 Duchenne muscular dystrophy 

1.2.1 Living with DMD 

A DMD diagnosis is typically given within the first three to five years of life. The most 

common sign observed by parents is the onset of the “Gower’s maneuver,” whereby a 

child cannot use his leg muscles alone to stand up. Instead, he must use his arms to 

“walk” up his legs to reach a standing position. The first step in diagnosing DMD is 

testing levels of creatine kinase (CK), a metabolite of muscle breakdown (Van Ruetin et 

al. 2014). If CK levels are elevated, physicians will often order genetic testing on blood 

samples to determine if a mutation in the dystrophin gene is present. In some, but not all 

cases, a biopsy will be ordered to confirm a lack of dystrophin protein in the patient’s 

skeletal muscle.  

Once a diagnosis occurs, the life path that each child takes is unique, with some 

responding positively to treatments and living well into their thirties, and others 

succumbing to the disease by their late teenage years. Due to vast improvements in 

healthcare - particularly in the fields of cardiology and pulmonology - the former case is 

becoming increasingly common, with some DMD patients going to college, attaining a 

career and, in some cases, having children (Eagle et al. 2002). Nevertheless, DMD 

patients are limited to wheelchair mobility by approximately age 12 and the care they 

receive is purely palliative, with no current treatments offering an actual cure to date 

(Landfeldt et al. 2015). Eventually, patients succumb to the disease, typically due to 

respiratory complications (Cruz Guzmán et al. 2012, Wei et al. 2016).  

 

1.2.2 Murine models of DMD 

The most widely studied murine model of DMD is the mdx mouse, a dystrophin-null 

mouse that genotypically mimics the human form of the disease (Sicinski et al. 1989; 

Partridge et al. 2013). While this model exhibits classic histological features of muscle 

pathology such as centrally nucleated myofibers and inflammatory infiltrate, it is 

generally healthy until 10 months of age and nearly indistinguishable from a wild-type 

mouse (Stedman et al. 1991, Desguerre et al. 2012). Perhaps most importantly, the 
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disease does not manifest in the same manner as it does in patients, with very little 

skeletal muscle fibrosis observable at any point in the progression of the disease. The 

mdx diaphragm does develop increased fibrotic marker expression, but the extent of 

fibrosis is non-life threatening. Fibrosis and muscle degeneration of the diaphragm 

muscle is a major cause of death in DMD patients and is therefore an important feature in 

an accurate animal model. Further, fibrosis is nearly absent in the hind limb skeletal 

muscles, even at an advanced age. Considering that a large portion of tissue regeneration 

research in this field injects into this area, the lack of fibrosis in the mdx mouse may 

present a potential source of misinterpreted results.  A double knockout mouse lacking 

dystrophin and its analogue, utrophin (utrn), more closely phenocopies DMD (Grady et 

al. 1997). This double knockout mouse (dko) develops observable muscular dystrophy by 

4 weeks of age that rapidly progresses until death, which is typically around 16-22 weeks 

of age. Importantly, the dko mouse also develops fibrosis, which is a major contributor to 

the severity of DMD in patients (Isaac et al. 2013). Although this double knockout model 

is preferred over the mildly affected mdx mouse, it is difficult to keep this mouse alive 

through the course of a longitudinal study. Additionally, in our laboratory, we observe 

that disease severity ranges in this dko mouse, with some animals gaining very little 

weight, only up to 10g, and barely surviving to 8 weeks of age. On the other hand, we 

have a number of dko mice that grow up to 20-25g and survive with minimal intervention 

up to 20 weeks of age. This disparity we observe in our dko mice introduces a great deal 

of variability in our studies and makes interpretation of results difficult. Regardless, any 

therapy should exhibit efficacy in the dko mouse if it holds any real promise of affecting 

patients. Given these considerable issues with the mdx and dko models, the heterozygous 

mouse (mdx/utrn+/-) has received attention in recent years for its potential to act as an 

intermediate model, but the research findings to validate this model as superior to the 

mdx mouse are still lacking.  

 

1.2.3 DMD pathophysiology  

DMD is caused by an absence of dystrophin, due to one or more mutations in the gene 

that encodes the protein (Emery et al. 2002). Since the dystrophin gene is located on the 
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X Chromosome, a mutation almost exclusively affects males, with female carriers of the 

mutation rarely exhibiting a phenotype typical of DMD (Hoffman et al. 1987, Song et al. 

2011). In very rare cases, females may carry mutations on both X Chromosomes and 

therefore exhibit the full phenotype observed in male patients. The gene that encodes 

dystrophin is composed of 79 exons. One or more of these exons can be mutated, with 

exons 45-55 accounting for the most common sites of mutation (Blake et al. 2002). 

Although DMD is an inherited genetic disorder, the mutation may also arise 

spontaneously, accounting for 30-40% of DMD cases. Typically, these mutations result 

in a truncated protein due to the premature addition of a stop codon. In some cases, this 

truncation produces a protein that has reduced, but not completely absent, function (Laing 

et al. 2011). In these cases the disease phenotype is less severe and the patient would be 

diagnosed with Becker’s muscular dystrophy (Hoffman et al. 1989, Hoogerwaard et al. 

1999). When the mutation results in a truncated, non-functional protein, or no protein at 

all, patients are severely affected by the disease and are diagnosed with Duchenne’s 

muscular dystrophy. 

 

Dystrophin is a 427 kDa cytoplasmic protein. It is expressed in a variety of cell types, 

including, but not limited to, cardiac, skeletal, and smooth muscle cells. Dystrophin acts 

to link cytoskeletal actin filaments, the contractile units of myofibers, to extracellular 

matrix proteins, such as laminin (Figure 1.1). Dystrophin is a component of the 

dystroglycan complex, along with sarcoglycan and dystroglycan transmembrane proteins. 

This link provides a scaffold against which cells may contract and confers overall 

membrane integrity to myofibers (Rybakova et al. 2000). Disruption of this connection 

through loss of dystrophin leads to an increased susceptibility to injury due to mechanical 

stress. This lack of sarcolemma (muscle cell membrane) integrity leads to an increase in 

intracellular free calcium, which has been directly linked to an increase in proteolysis, 

leading to eventual cell death (Hopf et al. 1996). Rapid inflammation responds to this 

muscle necrosis. The infiltrating inflammatory cells are not only responsible for clearing 

away the necrotic muscle cells, but they are a major source of pro-fibrotic signalling 

molecules. Of particular importance is transforming growth factor beta (TGFβ), 

expressed by macrophages and other inflammatory cells, which act on resident fibroblasts 
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to induce differentiation into myofibroblasts. Myofibroblasts are largely responsible for 

laying down the collagen matrix that contributes to tissue rigidity and fibrosis (Desguerre 

et al. 2009, Klinger et al. 2012). This cascade of events continues throughout the life of 

the patient, with fibrotic and adipose tissue progressively dominating what was once 

functional skeletal muscle (Figure 1.2).  
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Figure 1.1: Dystrophin is an integral part of a protein complex that links the 

cytoskeletal elements in muscle cells to the extracellular matrix.  

As part of the dystrophin glycoprotein complex, dystrophin confers overall membrane 

strength to myofibers. The N-terminal domain of dystrophin interacts with actin and the 

C-terminal domain interacts with the dystrophin-associated glycoprotein (DAG) 

complex, composed of sarcoglycans and dystroglycans. The DAG complex binds to 

extracellular proteins in the basal lamina, such as laminin. Additionally, neuronal nitric 

oxide synthase (nNOS) interacts with dystrophin between exons 42-45 at the 

sarcolemma, an interaction that confers enzymatic activity to the protein.  
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Figure 1.2: An X-linked mutation in the dystrophin gene leads to rapid decline in 

muscle function.  

A two-hit hypothesis is used to describe the pathways by which DMD progresses. 

Reduced sarcolemma integrity results in an increased susceptibility to contraction-

induced cellular damage. Damaged muscle tissue is continually replaced by fibrotic and 

adipose tissue. At the same time, reduced nNOS activity leads to impaired vasodilation, 

resulting in ischemia. Many therapeutic approaches aim to restore dystrophin in muscle 

tissue. 

Absence'of'dystrophin'

Decline'in'muscle'
func5on'
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1.2.4 Muscle ischemia due to loss of dystrophin 

Accompanying muscle degeneration is a progression of muscle ischemia in both DMD 

patients and animal models of the disease (Sander et al. 2000). While the primary 

function of dystrophin is to anchor the sarcolemma to the extracellular matrix for 

structural stability, its presence is also important for a number of other functions in 

skeletal and smooth muscle cells. Dystrophin functions as a signal transducer for the 

catalytic activity of neuronal nitric oxide synthase (nNOS). Through a physical 

interaction with dystrophin, nNOS catalyzes the production of nitric oxide (NO) in 

skeletal muscle (van den Bergen et al. 2015, Shiao et al. 2004). NO plays a key role in a 

variety of skeletal muscle cell functions including force production, regulation of blood 

flow, and glucose metabolism (Sander et al. 2000). Thus, with reduced nNOS activity, 

many normal functions of muscle may be impaired.  Additionally, loss of dystrophin in 

smooth muscle cells leads to an inability to produce vasodilation when an increased 

metabolic load is placed on skeletal muscle tissue (Ito et al. 2006). As a result, there is an 

unopposed sympathetic vasoconstriction leading to decreased muscle perfusion in 

patients with DMD. Work by others has shown there is an increase in vasoconstriction in 

DMD patients as indicated by a 16% decrease in blood flow compared to healthy forearm 

muscle. Blood oxygenation is also 7% lower in DMD muscle (Sander et al. 2000). 

Muscle biopsies from these patients confirm this difference in blood flow corresponds to 

decreased nNOS protein levels in DMD patients.  Immunohistological analysis of nNOS 

shows almost no expression of the protein at the sarcolemma. The importance of 

dystrophin in regulating nNOS activity is further demonstrated in transgenic mdx mice 

expressing smooth muscle-specific dystrophin whereby they exhibit improved 

vasoregulation compared to normal mdx mice. While vasodilation is not increased to that 

of a wild type mouse in the transgenic mice, blood flow is significantly increased 

compared to mdx mice lacking dystrophin in smooth muscle cells (Kobayashi et al. 

2008). Overall, the deleterious effect of nNOS inactivity in DMD patients highlights a 

severe need for improved vasorelaxation in DMD patients.  

 

In addition to reduced nNOS activity in dystrophic muscle cells, there is increasing 

evidence to suggest that the vascular network in dystrophic tissue is also compromised. A 
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decrease in vascular density has been demonstrated in the mdx mouse (Loufrani et al. 

2004 & Asai et al. 2007). Microfilm perfusion has been used to visualize the total 

vasculature in the tibialis anterior muscle of the mdx mouse to demonstrate a reduced 

vascular network in the mdx mouse compared to healthy controls (Matsakas et al. 2013). 

Standard immunohistochemical techniques also indicate reduced arteriole density in mdx 

mice. It has not been reported whether a decrease in vascular density exists in DMD 

patients, but it is well known that fibrotic and fatty deposits progressively dominate 

muscle tissue in DMD patients. The dense, fibrotic connective tissue that displaces 

muscle is not well vascularized and therefore may impede blood delivery to the tissue. 

Without proper blood flow, muscle regeneration, by endogenous repair mechanisms or 

exogenous dystrophin delivery, may not occur. Enhancing the vascular environment by 

increased vascular density may confer some of the function that is aberrant due to a lack 

of dystrophin. 

 

Dystrophin absence in endothelial cells (ECs) has also been linked to impaired 

angiogenesis in mdx mice (Palladino et al. 2013). Although dystrophin was classically 

considered to be a muscle-specific protein, this study demonstrates the importance of its 

expression in ECs as well. As with muscle cells, the loss of nNOS activity at the EC 

membrane leads to a cGMP deficiency that affects not only blood blow, as previously 

discussed, but also impairs the ability of ECs to migrate, proliferate, and form tubules in 

in vitro culture assays. Interestingly, a low dose of aspirin aided in EC production of NO 

and cGMP, leading to an increase in microvascular density post-treatment. These 

findings shed a new light on the use of pro-angiogenic growth factors for enhancing the 

microvasculature in mdx mice and DMD patients. Prior to this study, little attention has 

been given to the possibility that, regardless of growth factor treatment, there may be an 

inherent impairment in EC ability to form new vessels in muscular dystrophy.  Thus, the 

results of this study may help explain differences in angiogenesis following treatment in 

dystrophic compared to healthy muscle.  

 

There is evidence of decreased vasodilation, vascular density, and angiogenic capability 

in dystrophin-related myopathy. Taken together, studies relating to ischemia in DMD 
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highlight the need to not only address ways to regenerate muscle cells, but also address 

the vascular problems inherent in this pathology. Without proper vasculature, 

regenerative techniques to restore dystrophin may be rendered futile.  

 

1.3 Strategies to restore dystrophin 

Given the importance of dystrophin in nNOS activity and conferring sarcolemma 

integrity, a number of groups are attempting to restore dystrophin expression in animal 

models of DMD. Some of the most promising approaches to restoring dystrophin include 

exon skipping, genome editing using the Crispr/Cas9 system, and stem cell therapy.  

 

1.3.1 Exon skipping 

When a genetic mutation disrupts the reading frame of nucleotide triplets, or codons, the 

result may be a truncated protein. This is the case in DMD whereby a mutation in one or 

more exons leads to a premature stop codon, resulting in a truncated, non-functional form 

of the dystrophin protein. In most cases, this truncated version of the protein is not even 

detectable as dystrophin. Fortunately, cells have an inherent ability to excise, or “splice”, 

introns, which are portions of a pre-mRNA strand that do not contribute to the amino acid 

sequence of a peptide. Researchers have exploited this innate machinery in cells to splice 

out the mutated exons in the dystrophin gene (Hoffman et al. 2014). The result is an 

imperfect, but largely functional, dystrophin protein. Eteplirsen, developed by Sarepta 

Therapeutics, has been used in Phase III clinical trials to treat patients with a mutation in 

exon 51, one of the more commonly mutated sites in DMD.  The United States Food and 

Drug Administration is reviewing Sarepta’s New Drug Application for Eteplirsen in 

February 2016. Although only 13% of DMD patients may be amenable to exon 51 

skipping, this technology could significantly improve quality of life for that patient 

population (Mendell et al. 2016). It is important to note, though, the dystrophin expressed 

in these cases often lacks its full function and only improves the disease phenotype to a 

less severe form, one similar to that observed in Becker’s muscular dystrophy. 
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1.3.2 Genome editing 

In contrast to exon skipping, whereby the mutation is left intact and a downstream target 

(RNA) is manipulated, genome editing involves correcting the mutation that is embedded 

in the genetic code. A powerful new genome editing tool known as clustered regularly 

interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as one of the 

most promising tools of the 21st century. This system involves the use of RNA to guide a 

nuclease (Cas9) to a specified site in the genome to induce a double-stranded break. An 

exogenous template is then used to modify the mutated site, thereby correcting the 

original defect in the gene. Various groups have used CRISPR/Cas9 to introduce 

dystrophin expression in vitro to immortalized DMD-derived myoblasts and in vivo to the 

mdx mouse, the most commonly used model of DMD (Iyombe-Engembe et al., 2016, 

Long et al. 2014, 2016, Nelson et al., 2016 Tabebordbar et al., 2016). An important 

aspect of the CRISPR system that renders it perhaps more useful than current exon 

skipping practices is the ability to excise a large fragment of DNA, spanning a number of 

exons. By covering the mutations in exons 45-55, CRISPR/Cas9 offers the potential to 

address over 60% of DMD cases.  

1.3.3 Cell therapy  

The chief self-renewing muscle progenitor cell is the satellite cell (SC), named for its 

location under the basal lamina. SCs are the primary physiologically relevant stem cell 

population contributing significantly to muscle regeneration (Murphy et al., 2011, Chang 

et al. 2014). When satellite cells are activated, they undergo myogenesis, differentiating 

into myoblasts that fuse with each other to form multinucleated myotubes (Figure 1.3). 

Given the ability of SCs and other muscle progenitor cells to undergo myogenesis, 

various groups are looking at these populations as ways to introduce dystrophin-

expressing stem cells into dystrophic muscle (Mendell et al. 1995, Skuk et al. 2006, 

2007). Stem cell therapy has been one of the most widely studied- and perhaps most hotly 

contested- approaches to treating DMD. Clinical trials involving muscle-specific stem 

cells have been ongoing since the 1990’s. There is evidence of donor cells present in 

recipient tissue up to 13 years post implant, suggesting the possibility for using cell 

therapy in the future (Gussoni et al. 2002, Skuk & Tremblay 2016). Although these initial 
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studies have furthered our knowledge regarding the role of various cell populations in 

regenerating lost muscle, there have been no widespread reports of any cell therapy 

having significant effects on muscle function following treatment. There are a number of 

ongoing clinical trials with estimated completion dates in 2016-2018 using various 

populations of stem cells including umbilical cord-derived mesenchymal stem cells and 

bone marrow-derived stem cells. Rita Perlingeiro’s group is currently investigating the 

efficiency of induced pluripotent stem cells to regenerate muscle in mdx mice (Filareto et 

al. 2012). This approach involves isolating skin fibroblasts from mdx mice/DMD patients, 

reprogramming them back to a pluripotent stem cell state, correcting the dystrophin 

mutation, and implanting them back into the host. This approach is attractive in that it 

uses an autologous transplant, which largely mitigates the chances of stem cell rejection 

post-implant.  

 

While cell therapy research may be promising for the future, this and other regenerative 

approaches face a significant hurdle in that they attempt to introduce dystrophin into a 

hostile, fibrotic environment that is not conducive to regeneration (Klinger et al. 2012). 

The “seed and soil” hypothesis, often referred to in cancer research, is also applicable to 

regenerative therapy for DMD. Regardless of the regenerative capacity of any specific 

cell population, its potential for reconstituting muscle is dependent on the transplantation 

environment. Given the inflammation and fibrosis that is so prominent in muscular 

dystrophy, it is not surprising that cells do not survive after transplantation. Since parents 

are often unaware their child is affected until 1-6 years of age, this pathogenesis has 

already been initiated and any therapeutic approaches would involve the presence of 

inflammation and potentially fibrosis. Thus, in addition to researching methods for 

introducing dystrophin into muscle, there is also a need to find ways to improve the 

hostile environment that will receive cell transplantation. 
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Figure 1.3: Muscle-specific stem cells known as satellite cells undergo myogenesis to 

form muscle tissue.  

Satellite cells, while present in DMD patients, are quickly exhausted and the process of 

myogenesis is insufficient to meet the demands of reconstituting muscle in patients. 
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Figure 1.4: VEGF and ANG1 play a role in angiogenesis by eliciting different 

responses upon binding to their receptors on endothelial cells.  

Upon binding to its type-2 receptor (VEGFR-2), VEGF increases endothelial pores 

through p38/MAPK signaling, allowing for extravasation of leukocytes from the blood 

into tissue. Upon activation of phospholipase C-gamma (PLC-ϒ), signaling through the 

Raf/MEK/MAPK pathway results in DNA synthesis and cell proliferation. Upon ANG1 

binding to the Tie2 receptor, vascular-endothelial (VE) cadherin increases cell-cell 

interaction for increased barrier function. ANG1 also increases vascular smooth muscle 

cell (SMC) recruitment indirectly by increasing expression of endothelial cell (EC)-

derived chemoattractants, such as platelet-derived growth factor, hepatocyte growth 

factor, and heparin-binding epidermal growth factor. Binding of both VEGF and ANG1 

to VEGFR-2 and Tie2, respectively, lead to increased cell survival through 

phosphoinositide 3-kinase (PI3K) activation. Portions of the figure adapted from 
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Ilvanainen et al. 2003; Kobayashi et al. 2006, Shibaya & Claesson-Welsh 2006, Olsson et 

al. 2006; Li et al. 2015). 

 

1.4 Vascular targeted therapy for DMD 

 

Vascular therapy has been identified as a potential treatment for DMD (Ennen et al. 

2013). Since vascular endothelial growth factor (VEGF) has long been accepted as a 

master regulator of vessel development, groups are attempting to increase its function- 

through receptor modulation or administration of the growth factor itself- to enhance the 

vasculature in animal models of DMD. VEGF exerts its effect by binding to its type II 

receptor, VEGFR2, inducing receptor dimerization, leading to phosphorylation of 

intracellular tyrosine residues (Ruch et al. 2007). Activation of VEGFR2 can lead to 

increased signalling through a variety of pathways, but the most relevant to the 

angiogenic response in endothelial cells is the RAS/RAF/MEK/MAPK pathway, 

although the details have not been fully elucidated (Meadows et al. 2001). Ras activation 

in ECs has been shown to play a role in proliferation, migration, and branching cues.  

Importantly, VEGF binding to VEGFR2 also increases vascular permeability through 

formation of endothelial pores (Garrido-Urbani et al. 2008). Although VEGF induces an 

angiogenic response, the newly formed vessels are “leaky”, lacking functional maturity, 

which may impede any enhancements to the blood flow. As such, it is hypothesized that 

use of VEGF in combination with other factors may be necessary to attain fully 

functional vessels. One factor in particular is the secreted glycoprotein angiopoietin-1 

(ANG1), a member of the angiopoietin family of growth factors. By binding to the Tie2 

receptor, ANG1 plays a vital role in endothelial remodelling (Baffert et al. 2004 & 

Thurston et al. 2005), vascular reinforcement (Gamble et al. 2000), and vessel survival 

(Cho et al. 2004). ANG1 is therefore under investigation for a range of diseases including 

sepsis and stroke (Sato et al. 2005). Given its role in promoting vascular maturity during 

both development and in adult tissue, ANG1 is a prime candidate to exert synergistic 

effects along with VEGF in dystrophic, ischemic muscle.   
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Another reason angiogenic growth factor supplementation may be beneficial to DMD 

patients is the fact that current gold standard medications may interfere with endogenous 

VEGF action. Glucocorticoids (Prednisone, Deflazacort), are the cornerstone therapy 

currently offered to DMD patients, with therapy beginning around five years of age.  

Randomized controlled trials that originated in the late 1980’s revealed a short-term 

benefit to patients receiving glucocorticoids, evidenced by improved muscle function for 

six months to two years, but long term benefits were not apparent (Mendell et al. 1989). 

Although this study occurred decades ago, glucocorticoid treatment is still prescribed 

based on these findings. One potential explanation for this lack of long-term efficacy may 

reside in the fact that glucocorticoids inhibit VEGF and MMP-2 (Ishiguro et al. 2014). 

Matrix metalloproteinase-2 (MMP-2) is a promising candidate for enhancing VEGF-

induced angiogenesis since it increases the ability of endothelial cells to degrade ECM 

components and invade through the matrix. Thus, while glucocorticoids may reduce 

inflammation, they may also be acting to reduce angiogenesis and perhaps contribute to 

the long-term progression of disease. It is possible that increasing circulating VEGF 

levels through treatment may alleviate this undesired effect of glucocorticoids and 

increase their efficacy as well.  

 

1.4.1 Vascular therapy to reduce muscle ischemia  

Proper blood delivery is vital to maintenance of healthy organs. In a highly metabolic 

tissue such as skeletal muscle, proper blood flow is crucial for delivering oxygen and 

nutrients that are in high demand, particularly during exercise and contractions required 

from day-to-day movements. The vascular response is crucial in mediating changes in 

blood flow, inducing vasodilation when there is an increased metabolic demand. Thus, in 

DMD patients in whom vasodilation is impaired, oxygen and nutrient delivery is reduced 

(Nelson et al. 2014). Although muscle ischemia is not the primary culprit responsible for 

the DMD pathology, it certainly perpetrates myonecrosis, adding to overall disease 

progression. Specifically, functional ischemia plays an integral, although not exclusive, 

role in contraction-induced muscle damage (Asai 2007). Increasing vasodilation via 

phosphodiesterase-5 (PDE-5) inhibitor, tadalafil, has been shown to lessen the extent of 
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myofiber damage in the mdx mouse (Adamo et al. 2010 Percival et al. 2012). In DMD 

patients, sildenafil, another PDE-5 inhibitor, rescues exercise-induced hyperaemia 

(Nelson et al. 2014).  These findings highlight the value of increasing blood flow in the 

poorly perfused dystrophic skeletal muscle. An important question that is still 

unanswered is whether restoring blood flow actually slows disease progression in 

dystrophic muscle. 

 

1.4.2 Vascular therapy to enhance endogenous repair 

One of the main goals of vascular therapy is to introduce a factor, or factors, that act on 

vascular cells (endothelial cells, smooth muscle cells), to increase their function in the 

vascular network. An added benefit of vascular therapy that has been elucidated since the 

early 2000’s is its effect on endogenous repair mechanisms. A number of studies have 

eloquently demonstrated that endogenous repair mechanisms are insufficient in DMD and 

animal models of the disease (Sacco et al. 2010, Dumont et al. 2015). In healthy 

individuals, muscle-specific stem cells, known as satellite cells, are largely responsible 

for this repair mechanism by regenerating new myofibers. A 2010 study by Sacco et al. 

demonstrated a reduced regenerative capacity of SCs derived from dystrophic muscle. 

Due to shortened telomere length and decreased telomerase activity, SCs in dystrophic 

skeletal muscle are unable to keep up with the self-renewal required to regenerate lost 

tissue. A 2015 study by Dumont et al. has received a great deal of attention for 

uncovering another deficient mechanism in mdx SCs. For decades, researchers have 

shown that myoblasts in culture do not express dystrophin, but this study showed, for the 

first time, that SCs do express the protein and that it is necessary for proper cell polarity. 

This polarity gives SCs important cues regarding needs for replication, activation, and 

differentiation. Thus dystrophin-deficient SCs do not receive proper environmental cues 

and therefore lack their full function. This study has paved the way for DMD to now be 

classified not only as a muscle-wasting disease, but also as a stem cell disease. Taken 

together, these studies have highlighted the need to improve endogenous repair 

mechanisms in a system where this process is quickly exhausted.  
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Viral delivery of VEGF has demonstrated its ability to improve endogenous repair in 

skeletal muscle. Following injection of recombinant adeno-associated VEGF (rAA 

VEGF), histological findings show an increase in myogenin-positive SCs. Myogenin is 

expressed early in myogenesis and is therefore a good indicator of regeneration. This 

study also demonstrated a significant increase in the number of regenerating myofibers 

compared to mdx mice receiving a control injection (Messina et al. 2007). Similar results 

were observed in a hind limb ischemia model and the glycerol and cardiotoxin models of 

muscle injury (Arsic et al. 2004). It is now well accepted that SCs express both VEGF as 

well as its receptor, VEGFR-2, and in fact, in healthy skeletal muscle, SCs account for 

the majority of VEGF and VEGFR-2 expression.  

 

1.4.3 Vascular therapy to enhance cell therapy 

 

In regards to using vascular therapy as an adjunct to other therapeutic approaches, there is 

a growing body of evidence to suggest that it may enhance the engraftment and function 

of transplanted cells. A major hurdle of current cell therapy approaches is the lack of 

survival, migration, proliferation, and function of transplanted cells. In 1977, 

Schmalbruch et al. discovered that SCs reside in close proximity to microvasculature, 

suggesting a possible role for blood vessels in directing the movement of stem cells. 

Indeed, a 1984 study by Venkatasubramanian and Solursh demonstrated that embryonic 

skeletal muscle cells migrate toward a gradient of growth factors whereas other 

mesenchymal cell types present in the limb bud do not exhibit this chemotactic 

behaviour. The finding that myoblasts migrate towards areas of existing vasculature, due 

to secretion of pro-angiogenic growth factors, has prompted researchers to investigate the 

ability of angiogenesis to aid in the migration of transplanted myoblasts. Thus, in 2001, 

Corti et al. tested the ability of various growth factors to enhance migration of C2C12 

myoblasts across an endothelial layer. Various growth factors, in particular hepatocyte 

growth factor as well as platelet-derived growth factors A and B significantly increased 

migration of myoblasts. VEGF has also been shown to increase migration of C2C12 

myoblasts and SCs in the Boyden chamber assay, an in vitro experiment used to measure 
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cell migration (Germani et al. 2003). The hypothesis that VEGF may in fact enhance cell 

transplants was put to the test in a study assessing the effects of the growth factor on 

muscle derived stem cell transplants into the mdx mouse (Deasy et al. 2009). VEGF was 

shown to increase proliferation and differentiation of the stem cells in vitro, lending 

further evidence that VEGF does not act solely on endothelial cells in the context of 

DMD treatment. Although this group reported an increase in endogenous repair, decrease 

in fibrosis, and increase in microvasculature following transplantation of VEGF-

expressing muscle stem cells, VEGF expression did not result in an increase in 

dystrophin-positive myofibers, which would be expected if these cells had indeed 

contributed to the new muscle. The authors do postulate, however, the lack of dystrophin-

positive fibers could be due to the pro-proliferative effect of VEGF on MDSCs, resulting 

in increased proliferation of these transplanted cells, but not necessarily increased 

differentiation. Interestingly, a more recent study from the same group demonstrated the 

regenerative capacity of MDSCs is reduced when VEGF signalling is inhibited (Beckman 

et al. 2013). This study and others have highlighted the beneficial effect of VEGF on cell 

transplants, but have proposed that it may be through mechanisms other than enhancing 

the engraftment of these cell populations contribute to the reconstitution of the muscle 

(Distefano et al. 2013). VEGF as a proliferative stimulus may increase the survival of 

transplanted cells, thereby allowing them to exert a paracrine effect for a larger amount of 

time, contributing to further endogenous repair in the muscle. Overall, based on the 

chemotactic effect of pro-angiogenic factors such as VEGF, future studies using 

angiogenesis as a pre-treatment for cell transplants may augment the effect of these cells 

following treatment.  

 

 

1.4.4 Limitations to current vascular therapy 

 

Given the potential of angiogenesis to enhance both endogenous repair and cell therapy 

for treating DMD, methods for increasing VEGF, a potent inducer of angiogenesis, are 

attractive. Although an impressive body of research supports the potential efficacy of 
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VEGF as a DMD drug, the majority of studies have used viral methods to deliver the 

growth factor. Although adeno-associated viruses have been used in a number of clinical 

trials and appear to be relatively safe, it is not yet clear whether the actual dose of VEGF 

expressed in the tissue could be predicted in a consistent manner. This concern is of 

special importance considering the findings that describe formation of hemangiomas 

following long-term exposure to VEGF treatment at high doses (Springer et al. 1998, Lee 

et al. 2000). Thus, it would be of particular value to deliver the growth factor at a low 

dose in a more controlled manner. 

 

The standard method for determining the effect of vascular therapy on angiogenesis is ex 

vivo histology. Elevation in expression of CD31, a marker of endothelial cells, is the most 

commonly used measurement of angiogenesis. Since CD31 is also a marker of 

macrophages and neutrophils, extreme care must be taken to ensure that measurement of 

this marker excludes any type of inflammatory cells present in dystrophic muscle. 

Further, CD31 marks the endothelial layer, but it does not mark functionally mature 

vessels. Thus, in addition to CD31, assessing alpha-smooth muscle actin expression in 

vascular smooth muscle cells may demarcate vessels that confer functional benefit to the 

muscle. Much like CD31 staining, though, extreme care must be taken to ensure 

distinction is made between αSMA that marks blood vessels compared to that which 

marks myofibroblasts.  Previous studies that have reported changes in either CD31 or 

αSMA do not elaborate on the methods used to quantify expression of these markers 

histologically. Even taking these limitations into account, very few studies go beyond 

histological findings to assess the functional efficacy of vascular-targeted therapy. Thus, 

there is little evidence, to date, that VEGF, with or without ANG1, actually affects 

functional perfusion. Therefore, it is absolutely critical to determine whether or not these 

factors may affect perfusion and correlate those findings to conventional histological 

data.  

 

Transplant studies using cells expressing VEGF have demonstrated a decrease in fibrosis 

following treatment. While these findings may suggest an anti-fibrotic role of VEGF in 

dystrophic muscle, this is an important assumption that has not yet been rigorously tested. 
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The importance of fibrosis in DMD has gained more attention in recent years and any 

therapeutic approach under investigation should specifically assess its effect on fibrosis 

in this disease. To do so, an appropriate animal model, one that develops significant 

fibrosis, must be used. There is currently a lack of data to support the anti-fibrotic role of 

VEGF in DMD. Given that VEGF has been shown to exacerbate extracellular matrix 

(ECM) deposition in other fibrotic diseases such as scleroderma and idiopathic 

pulmonary fibrosis (Maurer et al. 2014 & Hostettler et al. 2014), it is plausible that VEGF 

may also exert a pro-fibrotic response in DMD. Testing the effect of VEGF at an 

appropriate stage of disease progression and in a relevant model should be done prior to 

moving to larger animal models and, certainly, prior to clinical studies.  

 

1.5 Functional assessment of therapeutic efficacy 

While vascular-targeted therapy offers significant potential for the treatment of DMD, 

current research is hindered by an important limitation. The standard method for 

assessing the effect of vascular therapy is through invasive muscle biopsies that may 

themselves contribute to further disease progression (Forbes et al. 2013; Triplett et al. 

2014). In addition to the invasive nature of muscle biopsies, information gleaned from 

this tissue is limited to histological (H&E, Masson’s Trichrome stains), biochemical, and 

molecular (western blotting, gene expression) analyses that preclude any sort of 

longitudinal, functional assessment.  DMD manifests as a very heterogeneous disease 

affecting certain muscle groups differently (Forbes et al. 2013; Triplett et al. 2013). In 

fact, some muscle groups appear nearly unaffected in DMD. Depending on the tissue 

region selected for biopsy, this sample may drastically over or underestimate the true 

extent of therapeutic efficacy in the patient. Thus, there is a critical need for ways to 

noninvasively assess disease progression and subsequent efficacy of therapeutic 

interventions.  

1.5.1 Laser Doppler Imaging 

Laser Doppler imaging (LDI) utilizes infrared light to monitor the movement of blood 

cells in the microvasculature. Since it is an optical technique, it is primarily used to 
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monitor blood flow in superficial tissues, such as in skin, to assess burns and the extent of 

fibrosis in systemic scleroderma, as well as intraoperatively during brain surgery. 

Researchers have used it to assess blood flow in a rodent hind limb ischemia model in 

rodents. In this model, an incision is made in one hind limb and the femoral artery is 

occluded, inducing ischemia in that limb. LDI is then used to monitor re-perfusion of that 

muscle over time.  In recent years, groups have used the hind limb ischemia model to 

assess angiogenic capabilities in mdx mice (Palladino et al. 2013) and the effect of cell 

therapy on blood flow (Brenes et al. 2012). While these studies have tremendous value in 

demonstrating functional changes in the disease with and without a therapeutic 

intervention, there are inherent limitations to the use of LDI to assess therapy in DMD 

research. Depth of penetration is minimal, with the average depth capable of imaging via 

laser Doppler being 1mm  (Rajan et al. 2008), although this value is strongly dependent 

on wavelength. This limited penetration makes LDI suitable for skin and superficial 

imaging, but not suitable for deeper tissues without invasive surgery. The degree of 

ligation is also a source of variability in inducing ischemia, opening up a potential source 

of misinterpreted results. Lastly, and perhaps most importantly, the hind limb ischemia 

model is an acute, invasive technique, suitable for animal research only. Although LDI 

studies provide valuable insights into functional effects of therapeutic intervention, a 

number of modifications would be required to use LDI to assess vascular therapy in 

patients. It would be invaluable to use a functional imaging tool that could be performed 

in both preclinical animal models as well as patients to better elucidate what differences 

may exist in treatment responses. Further, in a disease characterized by inflammation and 

constant muscle degeneration, studying therapeutic efficacy following an additional 

surgical injury may introduce a source of confounding results.  

1.5.2 Non-invasive imaging 

While the use of LDI in the hind limb ischemia model offers a number of advantages for 

basic researchers, it is not a practicable option for patient studies. The potential benefits 

that non-invasive imaging offers for both monitoring disease status and therapeutic 

outcome are numerous and may change our understanding of DMD progression and 

treatment. From the perspective of a patient, non-invasive imaging would eliminate the 
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need for painful muscle biopsies, which are the typical method of assessing muscle 

damage. The biopsy process itself may also induce further damage to already injured 

muscle. From the perspective of a researcher, non-invasive imaging allows for a more 

global analysis of what is happening in vivo, an advantage not offered by ex 

vivo histological analyses. It has also been suggested that changes observed non-

invasively may precede changes in physiological outcome, i.e. muscle contractile 

strength and endurance (Ahmad et al. 2010), which is important when considering the 

timing of therapeutic intervention. It should be noted, however, that non-invasive 

imaging is not yet able to definitively diagnose DMD in patients (Grounds et al. 2008 

Kuru et al. 2013). While new blood tests for detecting specific mutations in the 

dystrophin gene are being developed (Kim et al. 2010), it would be advantageous to 

investigate the use of non-invasive imaging for diagnostic purposes as well. Regardless, 

computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 

tomography (PET) may be viable options to non-invasively assess disease progression 

and therapeutic efficacy. 

1.5.2.1 DCE-CT 

X-ray computed tomography (CT) technology utilizes computed-processed X-rays to 

produce a three-dimensional image of the internal structures of an object. Dense tissues 

such as bones will attenuate an X-ray more than tissues that are composed largely of 

water or air. CT resolutions between tissue densities allow researchers to distinguish 

between tissues that vary by only 1% in their densities, making it an ideal tool to image 

fat and muscle tissue (Gellerich et al. 1990; Goodpaster et al. 2000).  Given these 

characteristics, CT has been in use since the 1980’s to monitor structural changes in 

dystrophic skeletal muscle, becoming a gold standard in assessing muscle degeneration.  

While dynamic contrast enhanced CT (DCE-CT) has not been widely used in the DMD 

research field, it has made significant contributions to the diagnosis and treatment 

strategies of other diseases. DCE-CT has significantly improved outcomes for stroke 

patients by helping to distinguish stroke sub-types, which has enhanced patient quality of 

life and lessened the economic burden associated with poorly managed stroke treatment. 

There are some important limitations to using CT to assess muscle involvement in DMD 
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patients, which may explain the lack of routine clinical use. First, there are concerns with 

x-ray exposure to humans; repeated scans during a longitudinal study may be particularly 

unsafe for pediatric patients (Brenner et al. 2001). Current research is attempting to 

implement dose reduction methods using various software and hardware techniques that 

may reduce radiation dose by 2–3 fold, making it more suitable for use in young patients 

(Lee et al. 2010). Additionally, most CT methods are unable to distinguish between 

connective tissue and muscle, which makes it difficult to assess extent of fibrosis, another 

hallmark of DMD (Liu et al. 1993; Nakayama et al. 2013). Dynamic contrast-enhanced 

CT (DCE-CT) may address this issue by providing measurements of perfusion in skeletal 

muscle. Since fibrotic tissue is largely under perfused, blood flow to those areas is limited 

and thus may be detected via DCE-CT. The use of a radiopaque contrast agent, such as 

iodine with a high atomic number, is also ideally suited to monitor changes in muscle 

ischemia that are inherent to disease progression in DMD. DCE-CT has been used to 

assess changes in blood flow in the mdx mouse following exercise and to monitor disease 

progression in a severely affected model of DMD (Ahmed et al. 2011). While these 

results point to the usability of DCE-CT in murine models of DMD, no study to date has 

used this tool to assess therapeutic intervention.  

1.5.2.2 MRI and PET 

Magnetic resonance imaging (MRI) is an ideal imaging modality for visualizing the 

anatomy of soft tissue within the body, thus offering many potential benefits for use in 

assessing muscle pathogenesis in both animal models of DMD, DMD patients and other 

patients suffering from a broad spectrum of myopathies (Lamminen et al. 1990, a,b; Liu 

et al. 1993). Magnetic resonance imaging (MRI) involves placing a subject in a strong 

magnetic field, which results in the alignment of hydrogen nuclei that are part of water 

molecules. When an external radio wave is applied to the subject in the magnetic field, 

some of the nuclei are excited. After relaxing from this excited state, the released energy 

produces small radio signals, or pulses, that are detected by the scanner, in both time and 

space. The time it takes for the longitudinal or transverse excitations to relax are referred 

to as T1- and T2-relaxation times, respectively. Imaging techniques focused on transverse 

relaxation times produce images with areas of high water content appearing dark (weak 
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signal strength), and areas of higher fat content appearing bright (strong signal strength). 

To this end, MRI has been utilized to distinguish healthy versus dystrophic muscle in the 

mdx mouse (McIntosh et al. 1998). Specifically, T2-weighted images illustrate that 

degenerating muscle in mdx mouse hind limbs appear more heterogeneous on an MR 

image compared to hind limb musculature of a wild-type mouse, which appears largely 

homogeneous; higher T2 values were attained in control muscles and these regions of 

interest appeared “lighter” than in the degenerating muscle in mdx mice. Histologically, 

the “dark” areas on a T2 map were found to correspond to areas of inflammation and 

macrophage infiltration in dystrophic muscle lesions, as validated histologically. 

Additionally, some areas on a T2 map of dystrophic hind limbs exhibited an intense 

signal, indicating the presence of fatty infiltrate in the mdx mouse that was not present in 

healthy wild-type hind limb musculature (Dunn et al. 1999). Recent work by 

Vandenbourne and colleagues, confirms the use of T2 mapping to assess changes in 

skeletal muscle of the lower extremities in DMD patients aged 5–15. Specifically, this 

group confirmed that T2 values are elevated in lower limb muscles of DMD patients 

versus healthy, age-matched control subjects, including younger subjects between the 

ages of 5 and 8. Interestingly, these differences in T2 values correlated well with 

functional tests of muscle contractile strength tests in these individuals. Another recent 

study from 2010 reported the use of T2 mapping to examine the effect of corticosteroid 

treatment—the current gold standard therapy to inhibit/reduce inflammation—in DMD 

patients relative to both untreated and healthy patients. While patient compliance is 

always a potential issue given the age of DMD patients, MRI may be safely repeated and 

confers no pain to the individual. Furthermore, MRI does not involve ionizing radiation, 

making it an attractive tool for pediatric patient use. Taken together, these studies provide 

compelling evidence that MRI may be a valuable tool for providing information on 

global changes in muscle composition as disease progresses, with or without the use of 

therapeutic interventions. 

While MRI and CT are useful for their detailed anatomical data and high resolution, PET 

imaging may offer more information in regards to muscle function in animal models and 

in DMD patients. PET involves the use of a radiolabeled substance that will emit 

positrons after injection into the body. When a positron collides with a nearby electron, 
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two 511 keV photon are created.  Detectors in the PET scanner capture this coincidence 

event allowing for localization of the collision. Thus, depending on the radiolabeled 

substance, various types of cells and tissues can be imaged. The most widely used 

substance in patients today, mainly as a standard diagnostic imaging tool for cancer is 

fluorine[18]-labeled fluorodeoxyglucose (18F-FDG), a glucose analog. Cells that express 

the GLUT-1 glucose transporter, mainly metabolically active cells, take up 18F-FDG. 

While some studies have used FDG-PET for assessing muscular dystrophy-related 

cardiomyopathy in patients (Quinlivan et al. 1996), it has yet to be assessed in significant 

studies of skeletal muscle metabolism in DMD patients. There is strong evidence that 

FDG-PET will be a useful tool for monitoring inflammation in myopathies as indicated 

by a progressive increase in FDG uptake compared to wild-type controls (Tateyama et al. 

2015, Al Nahhas et al. 2011). 

  

While PET imaging may be a promising avenue for longitudinally assessing muscle 

degeneration and therapeutic interventions, there are a few limitations that must also be 

considered. First, more work needs to be conducted to determine the utility of FDG as a 

radiolabel for inflammatory cells. Although inflammatory cells express the GLUT-1 

receptor, muscle cells, which are highly metabolic, express this receptor as well. As such, 

changes in FDG uptake could be due to changes in inflammation or due to changes in 

muscle metabolism. Thus, more proof-of-principle studies will be required prior to using 

FDG in the context of DMD. Similarly, although MRI offers considerable advantages for 

imaging skeletal muscle, there are still drawbacks to using this modality. Hence CT is 

most optimal for preclinical studies in DMD research. Imaging time is significantly 

longer for MRI compared to CT, which is a drawback for both pediatric patients as well 

as preclinical studies in mice whereby a mouse would need to be anesthetised for hours 

compared to just minutes for CT. In terms of feasibility, the cost of an MRI scan is much 

higher than for a CT scan and, for clinical studies, claustrophobia and patient compliance 

would be a more significant issue using MRI. 
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1.6 Thesis hypotheses and specific objectives 

 

1.6.1 Hypotheses 

A combination of VEGF and ANG1, but not VEGF alone, will enhance skeletal muscle 

perfusion in a murine model of muscular dystrophy and this effect can be measured non-

invasively using dynamic contrast-enhanced computed tomography. 

 

1.6.2 Specific objectives 

Chapter 2 

i) Investigate histopathological features in the mdx, mdx/utrn+/- and dko mice 

and compare those findings to C57BL/10 mice to determine the suitability of 

each as a model of Duchene muscular dystrophy.  

Chapter 3 

ii) Determine whether VEGF elicits a pro-fibrotic response in fibroblasts derived 

from a murine model of DMD.  

Chapter 4 

iii) Assess the effect of VEGF alone or in combination with ANG1 on the 

microenvironment (i.e. vasculature, collagen deposition, and inflammatory 

infiltration) in dystrophic murine skeletal muscle.  

iv) Employ dynamic contrast-enhanced computed tomography (DCE-CT) to 

determine if ex vivo changes in angiogenic, inflammatory, and fibrotic 

markers observed in aim 3 correlate with functional changes in skeletal 

muscle perfusion.  

  



29 

 

1.7 References 

Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor 

(CTGF) modulates cell signaling by BMP and TGF-beta. Nat Cell Biol 2002;4(8):599-

604. 22.  

Ahmad N, et al. Use of imaging biomarkers to assess perfusion and glucose metabolism 

in the skeletal muscle of dystrophic mice. BMC Musculoskelet Disord. 2011;12:127.  

Amthor H, Egelhof T, McKinnell I, Ladd ME, Janssen I, Weber J. Albumin targeting of 

damaged muscle fibres in the mdx mouse can be monitored by MRI. Neuromuscul 

Disord. 2004;14(12):791-6. 

Arpan I, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Triplett WT. T2 mapping 

provides multiple approaches for the characterization of muscle involvement in 

neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old 

boys with Duchenne muscular dystrophy. NMR Biomed. 2013;26(3):320-8. 

Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JA, Yasuhara SE. Primary role of 

functional ischemia, quantitative evidence for the two-hit mechanism, and 

phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One. 

2007;2:e806.  

Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM. Age-related 

changes in vascular endothelial growth factor dependency and angiopoietin-1-induced 

plasticity of adult blood vessels. Circ Res. 2004;94: 984–992.  

Best TM, Gharaibeh B, Huard J. Stem cells, angiogenesis and muscle healing: A 

potential role in massage therapies? Postgrad Med J. 2013; 89(1057):666-70. 

Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in fibrosis. 

Growth Factors. 2011;29(5):196-202. 

Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and 

dystrophin-related proteins in muscle. Physiol Rev.2002; 82(2):291-329. 



30 

 

Brandan E, Cabello-Verrugio C, Vial C. Novel regulatory mechanisms for the 

proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. 

Matrix Biol. 2008;27(8):700-8. 21. 

Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal 

cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289-96. 

Cabello-Verrugio C, Brandan E. A novel modulatory mechanism of transforming growth 

factor-beta signaling through decorin and LRP-1. J Biol Chem 2007;282(26):18842-

50. 

Cho CH, et al. Designed angiopoietin-1 variant, COMP-ANG1, protects against 

radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004;101: 

5553–5558 

Cirak S, et al. Restoration of the dystrophin-associated glycoprotein complex after exon 

skipping therapy in Duchenne muscular dystrophy. Mol Ther. 2012;20(2):462-7. 

Corti S, et al.. Chemotactic factors enhance myogenic cell migration across an 

endothelial monolayer. Exp Cell Res. 2001;268(1):36-44. 

Cruz Guzmán Odel R, Chávez García AL,  Rodríguez-Cruz M. Muscular Dystrophies at 

Different Ages: Metabolic and Endocrine Alterations. Int J Endocrinol. 2012; 

2012:485376.  

Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J. Effect of VEGF on the 

regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther. 

2009;17(10):1788-98. 

Desguerre I, Arnold L, Vignaud A, Cuvellier S, Yacoub-Youssef H, Gherardi RK, et al. 

A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse 

mimicking muscular dystrophy. Muscle Nerve. 2012;45(6):803-14.  

Dunn JF, Zaim-Wadghiri Y. Quantitative magnetic resonance imaging of the mdx mouse 

model of Duchenne muscular dystrophy. Muscle Nerve. 1999;22(10):1367-71. 



31 

 

Eagle M, et al. Survival in duchenne muscular dystrophy: Improvements in life 

expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul 

Disord. 2002;12(10):926-9. 

Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. 

Neuromuscul Disord. 1991;1(1):19-29. 

Emery AE. The muscular dystrophies. Lancet 2002;359(9307):687-95. 

Emery AE. The muscular dystrophies. Lancet. 2002;359 (9307): 687–695 

Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for duchenne muscular 

dystrophy. Skelet Muscle. 2013;3(1):9,5040-3-9. 

Fakhfakh R, Lee S-J, Tremblay JP. Administration of a soluble activin type iib receptor 

promotes the transplantation of human myoblasts in dystrophic mice. Cell 

transplantation. 2012;21(7):1419-1430.  

Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaafet T, et al. An ex vivo Gene 

Therapy Approach to Treat Muscular Dystrophy Using inducible Pluripotent Stem 

Cells. Nature communications. 2013;4:1549.  

Flanigan KM, von Niederhausern A, Dunn DM, Alder J, Mendell J, Weiss RB. Rapid 

Direct Sequence Analysis of the Dystrophin Gene. Am J Hum Genet. 2003; 72(4):931-

9. 

Forbes SC, Walter GA, Rooney WD, Wang DJ, DeVos S, Pollaro J. Skeletal muscles of 

ambulant children with Duchenne muscular dystrophy: validation of multicentre study 

of evaluation with MR imaging and MR spectroscopy. Radiology. 2013;269(1):198-

207.  

Fujimoto T, Itoh M, Tashiro M, Yamaguchi K, Kubota K, Ohmori H. Glucose uptake by 

individual skeletal muscles during running using whole-body positron emission 

tomography. Eur J Appl Physiol. 2000;83(4–5):297-302. 



32 

 

Gamble JR, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in 

vitro and targets cell junctions. Circ Res. 2000;87: 603–607 

Garrido-Urbani S, Bradfield PF, Lee BP, Imhof BA. Vascular and epithelial junctions: a 

barrier for leucocyte migration. Biochem Soc Trans. 2008;36(Pt 2):203-11. 

Gellerich I, Koch RD. Computerized tomography findings in malignant progressive 

Duchenne muscular dystrophy. Psychiatr Neurol Med Psychol (Leipz) 1990;42(5): 

282-90.   

Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation 

determined by computed tomography is associated with skeletal muscle lipid content. 

J Appl Physiol. 2000;89(1):104-10. 

Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A. Towards developing 

standard operating procedures for pre-clinical testing in the mdx mouse model of 

duchenne muscular dystrophy. Neurobiol Dis. 2008;31(1):1-19. 

Hoffman EP, Brown RH,Jr, Kunkel LM. Dystrophin: The protein product of the 

duchenne muscular dystrophy locus. Cell. 1987;51(6):919-28. 

Hogrel JY, et al.. Assessment of a symptomatic duchenne muscular dystrophy carrier 20 

years after myoblast transplantation from her asymptomatic identical twin sister. 

Neuromuscul Disord. 2013;23(7):575-9. 

Iivanainen E, et al. Angiopoietin-regulated recruitment of vascular smooth muscle cells 

by endothelial-derived heparin binding EGF-like growth factor. FASEB J. 

2003;17(12):1609-21. 

Ito K, et al. Smooth muscle-specific dystrophin expression improves aberrant 

vasoregulation in mdx mice. Hum Mol Genet. 2006;15:2266-2275. 

Iyombe-Engembe JP, Ouellet DL, Barbeau X, Rousseau J, Chapdelaine P, Lagüe P, 

Tremblay JP Efficient Restoration of the Dystrophin Gene Reading Frame and Protein 



33 

 

Structure in DMD Myoblasts Using the CinDel Method. Mol Ther Nucleic Acids. 

2016;5:e283. 

Jackson RS, Schlarkman TC, Hubble WL, Osman MM. Prevalence and patterns of 

physiologic muscle uptake detected with whole-body 18F-FDG PET. J Nucl Med 

Technol. 2006;34(1):29-33. 

Kim HK, Laor T, Horn PS, Wong B. Quantitative assessment of the T2 relaxation time of 

the gluteus muscles in children with Duchenne muscular dystrophy: a comparative 

study before and after steroid treatment. Korean J Radiol. 2010;11(3):304-1. 

Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron 

emission tomography/computed tomography scanners. Semin Nucl Med. 

2003;33(3):166-79. 

Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R. The role of fibrosis in duchenne 

muscular dystrophy. Acta Myol. 2012;31(3):184-95. 

Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC. Hepatocyte growth factor 

mediates angiopoietin-induced smooth muscle cell recruitment. Blood. 2006;108(4), 

1260–1266.  

Kobayashi YM, et al. Sarcolemma-localized nNOS is required to maintain activity after 

mild exercise. Nature. 2008;27;456(7221):511-5. 

Koch S, Claesson-Welsh L. (2012). Signal Transduction by Vascular Endothelial Growth 

Factor Receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.  

Kuru S, Satai M, Tanaka N, Konagaya M, Nakayam T, Kawai M. Natural course of 

muscular involvement assessed by computed tomography method in Duchenne 

muscular dystrophy. Neurol Clin Neurosci. 2013;1(2):63-8. 

Laing NG, Davis MR, Bayley K, Fletcher S. Wilton SD. Molecular Diagnosis of 

Duchenne Muscular Dystrophy: Past, Present and Future in Relation to Implementing 

Therapies. Clin Biochem Rev. 2011;32(3), 129–134. 



34 

 

Lamminen AE, Tanttu JI, Sepponen RE, Suramo IJ, Pihko H. Magnetic resonance of 

diseased skeletal muscle: combined T1 measurement and chemical shift imaging. Br J 

Radiol. 1990a;63(752):591-6. 

Lamminen AE. Magnetic resonance imaging of primary skeletal muscle diseases: 

patterns of distribution and severity of involvement. Br J Radiol. 1990b;63946-50. 

Landfeldt E, et al. Compliance to Care Guidelines for Duchenne Muscular Dystrophy. J 

Neuromuscul Dis. 2015; 2(1), 63–72.  

Leask A, Abraham DJ. All in the CCN family: Essential matricellular signaling 

modulators emerge from the bunker. J Cell Sci. 2006;119:4803-10. 

Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 

2007;74(2):207-12. 

Lee TY, Chhem RK. Impact of new technologies on dose reduction in CT. Eur J Radiol. 

2010;76(1):28-35. 

Lemieux C, Maliba R, Favier J, Theoret J-F, Merhi Y, Sirois MG. Angiopoietins can 

directly activate endothelial cells and neutrophils to promote proinflammatory 

responses. Blood. 2005;105:1523–1530 

Li L, et al. P38/MAPK contributes to endothelial barrier dysfunction via MAP4 

phosphorylation-dependent microtubule disassembly in inflammation-induced acute 

lung injury. Sci Rep. 2015;5:8895. doi: 10.1038/srep08895. 

Liu GC, Jong YJ, Chiang CH, Jaw TS. Duchenne muscular dystrophy: MR grading 

system with functional correlation. Radiology. 1993;186(2):475-80. 

Liu M, Chino N, Ishihara T. Muscle damage progression in Duchenne muscular 

dystrophy evaluated by a new quantitative computed tomography method. Arch Phys 

Med Rehabil. 1993;74(5): 507-14.  



35 

 

Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal 

genome editing partially restores dystrophin expression in a mouse model of muscular 

dystrophy. Science. 2016;351(6271):400-403.  

Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention 

of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. 

Science. 2014;345(6201):1184-1188.  

Loufrani L, Matrougui K, Gorny D, et al. Flow (shear stress)-induced endothelium-

dependent dilation is altered in mice lacking the gene encoding for dystrophin. 

Circulation. 2001;103(6):864–870.  

Lynn S, et al. Measuring clinical effectiveness of medicinal products for the treatment of 

Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25(1):96-105. 

Matsakas A, Yadav V, Lorca S, Narkar V. Muscle ERRgamma mitigates Duchenne 

muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J. 

2013;27(10):4004-16. 

McIntosh LM, Baker RE, Anderson JE. Magnetic resonance imaging of regenerating and 

dystrophic mouse muscle. Biochem Cell Biol. 1998;76532-41. 

Mendell JR, et al. Myoblast transfer in the treatment of Duchenne's muscular 

dystrophy. N Engl J Med. 1995;333:832–838. 

Mendell JR, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's 

muscular dystrophy. N Engl J Med. 1989;320(24):1592-7. 

Miyazaki D, et al. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx 

muscles reduces angiogenesis resulting in impaired growth of regenerated muscle 

fibers. Hum Mol Genet. 2011;20(9):1787-99. 

Nakayama T, Kuru S, Okura M, Motoyoshi Y, Kawai M. Estimation of net muscle 

volume in patients with muscular dystrophy using muscle CT for prospective muscle 

volume analysis: an observational study. BMJ Open. 2013;3(10):e003603.  



36 

 

Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, 

et al. In vivo genome editing improves muscle function in a mouse model of 

Duchenne muscular dystrophy. Science. 2016;351(6271):403-7.  

Oi N, Iwaya T, Itoh M, Yamaguchi K, Tobimatsu Y, Fujimoto T. FDG-PET imaging of 

lower extremity muscular activity during level walking. J Orthop Sci. 2003;8(1):55-

61. 

Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in 

control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359-71. 

Palladino M, et al. Angiogenic impairment of the vascular endothelium: A novel 

mechanism and potential therapeutic target in muscular dystrophy. Arterioscler 

Thromb Vasc Biol. 2013;33(12):2867-76. 

Pappas GP, Olcott EW, Drace JE. Imaging of skeletal muscle function using (18) FDG 

PET: force production, activation and metabolism. J Appl Physiol. 2001;90(1):329-37. 

Quinlivan RM, Lewis P, Marsden P, Dundas R, Robb SA, Baker E. Cardiac function, 

metabolism and perfusion in Duchenne and Becker muscular dystrophy. Neuromuscul 

Disord. 1996;6(4):237-46. 

Rodino-Klapac LR, Mendell JR, Sahenk Z. Update on the treatment of duchenne 

muscular dystrophy. Curr Neurol Neurosci Rep. 2013;13(3):332,012-0332-1. 

Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K. Structure of a VEGF-

VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol. 

2007; 14(3):249-50. 

Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong 

link between the sarcolemma and costameric actin. J Cell Biol. 2000;150(5):1209-14. 

Sampaolesi M, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic 

dogs. Nature. 2006;444(7119):574-9. 



37 

 

Sander M, et al.  Functional muscle ischemia in neuronal nitric oxide synthase-deficient 

skeletal muscle of children with duchenne muscular dystrophy. Proc Natl Acad Sci. 

2000;5;97(25):13818-23. 

Sato T, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood 

vessel formation. Nature. 1995;376: 70–74 

Seto JT, Bengtsson NE, Chamberlain JS. Therapy of genetic disorders-novel therapies for 

duchenne muscular dystrophy. Curr Pediatr Rep. 2014; 2(2):102-12. 

Shiao T, et al. Defects in neuromuscular junction structure in dystrophic muscle are 

corrected by expression of a NOS transgene in dystrophin-deficient muscles, but not in 

muscles lacking alpha- and beta1-syntrophins. Hum Mol Genet. 2004;13(17):1873-84. 

Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of 

angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312(5):549-60. 

Skuk D, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy 

patients after high-density injections of normal myogenic cells. J Neuropathol Exp 

Neurol. 2006;65: 371–386 

Skuk D, et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy 

patients following intramuscular injections of normal myogenic cells. Mol Ther. 

2004;9: 475–482.  

Skuk D, et al. First test of a “high-density injection” protocol for myogenic cell 

transplantation throughout large volumes of muscles in a Duchenne muscular 

dystrophy patient: eighteen months follow-up. Neuromuscul Disord. 2007;17: 38–46 

Skuk D, Tremblay JP. Confirmation of donor-derived dystrophin in a Duchenne muscular 

dystrophy patient allotransplanted with normal myoblasts. Muscle Nerve. 2016. doi: 

10.1002/mus.25129. [Epub ahead of print] 



38 

 

Song T-J, Lee K-A, Kang S-W, Cho H, Choi Y-C. Three Cases of Manifesting Female 

Carriers in Patients with Duchenne Muscular Dystrophy. Yonsei Med J. 2011;52(1), 

192–195. 

Straub V, Donahue KM, Allamand V, Davisson RL, Kim YR, Campbell KP. Contrast 

agent-enhanced magnetic resonance imaging of skeletal muscle damage in animal 

models of muscular dystrophy. Magn Reson Med. 2000;44655-5. 

Sun G, et al. Connective tissue growth factor is overexpressed in muscles of human 

muscular dystrophy. J Neurol Sci. 2008;267(1-2):48-56. 

Suri C, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during 

embryonic angiogenesis. Cell. 1996;87(7):1171-80. 

Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene 

editing in dystrophic mouse muscle and muscle stem cells. Science. 

2016;351(6271):407-11. 

Thurston G, et al. Angiopoietin 1 causes vessel enlargement, without angiogenic 

sprouting, during a critical developmental period. Development. 2005;132: 3317–

3326. 

Triplett WT, et al.. Chemical shift-based MRI to measure fat fractions in dystrophic 

skeletal muscle. Magn Reson Med. 2014;72(1):8-19  

van den Bergen JC, Wokke BH, Hulsker MA, Verschuuren JJ, Aartsma-Rus AM. 

Studying the role of dystrophin-associated proteins in influencing becker muscular 

dystrophy disease severity. Neuromuscul Disord. 2015;25(3):231-7. 

Van Ruiten, H. J. A., Straub, V., Bushby, K., & Guglieri, M. Improving recognition of 

Duchenne muscular dystrophy: a retrospective case note review. Arch Dis Child. 

2014;99(12), 1074–1077.  

Venkatasubramanian K, Solursh M. Chemotactic behavior of myoblasts. Dev Biol. 

1984;104(2):428-33. 



39 

 

Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J 

Gastroenterol. 2007;13(22):3056-62.  

Wei Y, Speechley KN, Zou G, Campbell C. Factors Associated With Health-Related 

Quality of Life in Children With Duchenne Muscular Dystrophy. J Child Neurol. 

2016; pii: 0883073815627879. [Epub ahead of print] 

White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac 

sarcoidosis: first clinical experience of simultaneous positron emission tomography—

magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 

2013;127(22):e639-41. 

Xie T, Bolch WE, Lee C, Zaidi H. Pediatric radiation dosimetry for positron-emitting 

radionuclides using anthropomorphic phantoms. Med Phys. 2013;40(10):e102502. 

Yeung HD, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of F-FDG uptake in 

adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 

2003;441789-9. 

Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Simple quantification of skeletal 

muscle glucose utilisation by static 18F-FDG PET. J Nucl Med. 2003;44(10):1592-8. 

 

 



40 

 

Chapter 2  

 

Skeletal Muscle Fibrosis in the mdx/utrn+/- Mouse Validates Its 

Suitability as a Murine Model of Duchenne Muscular Dystrophy 2  
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2 Skeletal muscle fibrosis in the mdx/utrn+/- mouse 
validates its suitability as a murine model of DMD 

 

2.1 Chapter Summary 

The mdx mouse and X-linked canine muscular dystrophy are the two most widely used 

animal models of DMD. Given the ethical concerns regarding the use of canine models 

for basic research, the mdx mouse is by far the most commonly cited model in preclinical 

studies. Although the dystrophin-null mdx mouse genotypically mimics the human 

disease, recent focus on the importance of fibrosis in DMD highlights the importance of 

this aspect be represented in any suitable model. Since our research focus on the use of 

angiogenic factors as a treatment for DMD and other studies have suggested the ability of 

some angiogenic growth factors to induce fibrosis, using a model that is more prone to 

fibrosis is absolutely critical in the accurate assessment of therapeutic side effects. The 

presence of utrophin, a dystrophin analogue, inversely correlates with disease 

progression. Therefore, the mdx (utrophin +/+), heterozygous (mdx/utrn+/), and double 

knockout (mdx/utrn-/-) mice all represent varying degrees of disease severity. In the 

present study, we compare disease pathology in the mdx mouse with the other two 

models.  Importantly, we also compare disease pathology to the C57BL/6 wild type 

mouse to provide an accurate margin for classifying fibrotic from non-fibrotic muscle 

tissue. Using extent of collagen deposition and number of centrally nucleated myofibers 

as indicators of disease severity, we show that the heterozygous mdx/utrn+/- mouse is a 

superior model to the mdx mouse since extent of collagen deposition is greater by 7-8 

weeks of age compared to the wild-type or mdx models. This study established the best 

model and age to incorporate in the subsequent studies described in this thesis.  
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2.2 Introduction 

Treatment strategies for Duchenne muscular dystrophy (DMD), a severe neuromuscular 

degenerative disorder, have been ongoing for decades with little significant long-term 

efficacy reported (Pichavant et al. 2011). While scientific and technological 

advancements have enhanced patient quality of life, the disease remains invariably fatal. 

The majority of current research into treating DMD involves the restoration of the protein 

dystrophin, which is absent or non-functional in these patients. Of these, a number of 

studies in DMD patients have used cell therapy to replace dystrophin, reporting an 

increase in dystrophin-positive myofibers (Mendel et al. 1995; Skuk et al. 2004, 2006, 

2007; Rodino-Klapac et al. 2013; Cirak et al. 2012; Seto et al. 2014). While these studies 

have successfully reintroduced the protein to dystrophic skeletal muscle, improvements 

in function have been limited. A recent study by Hogrel et al. reported a potential long-

term effect of a myoblast transplant into an affected female carrier of the dystrophin 

mutation. Although long-term functional effects could not be definitively concluded from 

this study, the results suggest beneficial effects of cell therapy (Hogrel et al. 2013). To 

date, the most commonly used murine model to test cell replacement and other strategies 

in a pre-clinical setting has been the mdx mouse, which lacks dystrophin due to an X-

linked mutation in its gene (Partridge et al. 1989; Hindi et al. 2013). Although the mdx 

mouse is a genetic homolog of the human disease, it has been shown that this model does 

not mimic the pathology observed in patients because up-regulation of utrophin, a 

dystrophin analogue, partially compensates for the absence of the cytoplasmic protein 

(Grady et al. 1997). Additionally, the longer telomere length present in inbred laboratory 

mice confer a greater regenerative capacity of muscle progenitor cells in these animals 

compared to human skeletal muscle (Sacco et al. 2010). As a result of these differences, 

the disease does not manifest severely in mdx mice.  Specifically, fibrosis, a hallmark 

feature of DMD in patients, is not overt in mdx mice (Desguerre et al. 2014). A lack of 

dystrophin in skeletal muscle leads to decreased sarcolemma integrity, which causes an 

increase in cell membrane permeability. As a result, an influx of calcium ions causes 

increased protein degradation that eventually leads to muscle cell death. Inflammatory 

cells that infiltrate the site of necrosis are a rich source of transforming growth factor beta 

(TGFβ). TGFβ then exerts its pro-fibrotic effect on fibroblasts, which then increase 
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production of extracellular matrix (ECM) proteins. An excessive amount of ECM 

production leads to the eventual onset of fibrosis (Desguerre et al. 2009). The fact that 

DMD patients develop severe fibrosis whereas mdx mice do not may, in part, explain 

why treatments performed in murine studies have been ineffective in human trials. 

Fibrosis limits the amount of available muscle tissue to target with stem cell, gene or drug 

therapy (Bernasconi  et al. 1999). Thus, use of an appropriate model that more accurately 

reflects the histopathology of DMD fibrosis may better direct current research. Recent 

advances in exon-skipping have highlighted the importance of a suitable murine model in 

pre-clinical studies. In 2010, Goyenvalle demonstrated an increase in dystrophin 

expression in severely affected mice lacking both utrophin and dystrophin following 

multiple injections with a morpholino oligomer targeted to exon 23 of the dystrophin 

gene (Goyenvalle et al. 2010). Two years later, the same group modified their protocol to 

use an adeno-associated virus vector containing a small nuclear RNA specific to exon 23. 

A single treatment was sufficient to restore dystrophin in all muscles examined, including 

heart tissue, and dramatically increased life expectancy from 10 to 50 weeks of age 

(Goyenvalle et al. 2012). These studies have been crucial in highlighting the need for 

inclusion of a more accurate DMD mouse model with which to assess the efficacy of 

therapeutic strategies. 

Although utrophin-dystrophin-deficient (dko) mice were generated in 1997, they are 

scarcely used in current studies, perhaps in part due to their severe disease phenotype, 

which makes them difficult to include in longitudinal studies. While a select number of 

research groups have used this severely affected mouse model, the predominant model 

used in today’s research lab is still the mdx mouse. A few studies have suggested that 

haploinsufficiency of the utrophin gene (mdx/utrn+/-) may provide a more appropriate 

murine model of DMD (Huang et al. 2011). For example, it has been shown that 

diaphragm and quadriceps muscles of mdx/utrn+/- mice become fibrotic as early as 3 and 

6 months of age, respectively (Zhou et al. 2008). Many studies involving murine models 

of DMD have used mice younger than 6 months of age, thus the purpose of this study 

was to investigate extent of fibrosis in the mdx/utrn+/- mouse at an earlier age to 

determine its suitability as a more accurate representation of the human pathology. 

Additionally, since quadriceps and diaphragm muscles were the only groups examined in 
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the aforementioned study, we focused our study on the gastrocnemius muscle as it has 

often been used as a site of cell implant (Beckman et al. 2013). In the present study, we 

examine extent of fibrosis and muscle regeneration in 8 week-old mice as well as aged 10 

month-old mice and provide a comprehensive analysis of these parameters in various 

skeletal muscles that are used in DMD research.     

 

2.3 Materials and Methods 

2.3.1 Animal Care and Ethics Statement 

Experiments were performed at The Lawson Health Research Institute at St. Joseph’s 

Health Care (SJHC) in London, Ontario. Female C57BL/6 mice (5-7 weeks old upon 

arrival) were purchased from Charles Rivers and mdx/utrn+/- mice, originally generated 

by Dr.’s Mark Grady and Josh Sanes (Washington University, St. Louis) (Grady et al. 

1997), were generously provided to us by Dr. Robert Grange (Virginia Polytechnic and 

State University) and maintained in the Animal Care Facility at SJHC. Colonies were 

maintained under controlled conditions (19-23˚C, 12 hour light/dark cycles) and allowed 

water and food ad libitum. 7 to 8 week-old and 10 month-old male and female C57BL/6, 

mdx and mdx/utrn+/- mice were used in this study. Only 7-8 week-old dko mice were 

used since these mice do not tend to live past 20 weeks of age. For comparison of various 

skeletal muscles, twelve week-old mdx/utrn+/- male and female mice were used. All 

procedures involving animal experiments were carried out in strict accordance with the 

Canadian Council on Animal Care (CCAC) and were approved by the Animal Use 

Subcommittee at Western University. 

2.3.2 Genotyping 

Genomic DNA from tail snips or ear notch tissue was used for genotyping. Briefly, ear 

notch tissue was lysed in a proteinase K solution at 50° C overnight. DNA was diluted 

appropriately and polymerase chain reaction was used to amplify the utrophin gene using 

Platinum Taq polymerase. Presence of the utrophin gene was detected using the 

following set of primers (Sigma): 5’-TGCAGTGTCTCCAATAAGGTATGAAC-3’, 5’-
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TGCCAAGTTCTAATTCCATCAGAAGCTG -3’ (forward primers) and 5’-

CTGAGTCAAACAGCTTGGAAGCCTCC-3’ (reverse primer). 

2.3.3 Tissue Preparation and Histology 

For tissue collection, mice were sacrificed via gas euthanasia. Diaphragm and 

gastrocnemius (GM) muscles from 8 week-old and 10 month-old mice were dissected 

and immediately fixed in formalin for 24-48h and embedded in paraffin. For a more 

comprehensive analysis of disease manifestation in mdx/utrn+/- mice, diaphragm, 

quadriceps, soleus, tibialis anterior (TA) and gastrocnemius (GM) muscles were similarly 

isolated from 12 week-old mdx/utrn+/- mice. Extreme care was taken to ensure muscles 

were embedded in the same orientation across each muscle group. Tissue blocks were 

sectioned at 5um thickness and dried in an oven at 37˚C overnight. To achieve 

representative sections from the whole muscle tissue, serial sections were taken every 20 

slices, except for the diaphragm muscle where serial sections were taken every 3 slices. 

Tissue sections were then deparaffinised and rehydrated in a series of xylene and ethanol 

washes to prepare them for subsequent Masson’s Trichrome staining for collagen content, 

or haematoxylin and eosin staining to visualize regenerating myofibers. Serial sections 

were used for the two staining methods to ensure that analysis of both collagen content 

and muscle regeneration referred to the same samples. Following the staining step, slides 

were dehydrated, washed in xylene and mounted with Permount mounting medium.   

2.3.4 Microscopy and Image Analysis 

Histological images were acquired on a Zeiss Axioscope microscope under a 20x 

objective using Northern Eclipse software. Non-overlapping fields of view of the entire 

tissue were taken for each section. Five sections were imaged per tissue. For assessment 

of myofiber damage, percentage of centrally located nuclei was used as an indication of 

regeneration. All fields of view containing cross-sectional myofibers were imaged and 

manually analyzed. Collagen content was assessed across the entire tissue slice and 

automatically quantified using an in-house colour thresholding algorithm written in 

MATLAB 2010a (Mathworks, Natick, MA, USA). Briefly, all images were transformed 

into Lab colour space allowing the isolation of the colour and lightness components of 
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each pixel. A k-means clustering algorithm was then applied to the colour components of 

each individual image to partition the pixels into groups of relatively ‘red’ or ‘blue’ 

colour values (Appendix A). A uniform threshold was applied to all images to mask 

regions with high lightness (appearing as white). Finally, morphological closing 

operations were performed on the ‘red’ and ‘blue’ regions to fill any gaps less than 3 

pixels in radius. The percent of collagen present in each image was calculated as the area 

of the remaining ‘blue’ region divided by the area of the entire image. Automatic 

thresholds were manually verified with labeled colour overlays on the original histology 

images to ensure that collagen presence was accurately identified. 

2.3.5 Statistical Analysis 

For quantified images, a one-way ANOVA was performed followed by Tukey’s post-hoc 

test to determine difference between groups using GraphPad Prism. Differences between 

groups were considered significant at a p-value less than 0.05 (n=3 for wild-type and dko 

mice and n=5 for mdx and mdx/utrn+/- mice).  

2.4 Results 

2.4.1 Fibrosis is present at 10 months of age in mdx/utrn+/-, but 
not mdx, GM muscle 

At ten months of age, mdx gastrocnemius (GM) muscle did not differ in collagen content 

compared to GM muscle of wild-type mice (Figure 2.1). In contrast, haploinsufficiency 

of utrophin led to significant collagen deposition in GM tissue of aged mdx/utrn+/- mice 

(mean±SD: 12.76%±3.06, p=0.0033). There was no significant difference in collagen 

deposition between mdx and mdx/utrn+/- GM muscle. Although GM muscles of aged 

mdx mice did not show significant fibrosis compared to healthy wild-type controls, there 

was a large proportion of centrally-located nuclei in the myofibers indicative of muscle 

regeneration in both mdx (70.06%±7.6) and mdx/utrn+/- (58.86%±6.7) mice, respectively 

(p<0.0001, Figure 1D-F). 
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Figure 2.1: Muscle pathology in 10 month-old GM muscles of wild-type, mdx and 

mdx/utrn+/- mice.  

Extent of total collagen staining (blue) in 10 month-old wild-type (A), mdx (B) and 

mdx/utrn+/- (C) GM muscle was used as a marker of fibrosis. Proportion of centrally 

nucleated fibers in the same tissues (D, E, and F) was measured to assess extent of 

regeneration. Quantification of total collagen staining (G) and proportion of centrally-

nucleated myofibers (H) is represented as the mean +SD. ** represents p<0.01, and *** 

represents p<0.001 (scale bar=100μm). 
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2.4.2 DMD-associated fibrosis in present in both aged mdx and 
mdx/utrn+/- diaphragm muscle 

Both mdx and mdx/utrn+/- diaphragm muscles were significantly fibrotic in ten month-

old mice compared to age-matched wild-type controls (Figure 2A-C, p=0.026), indicated 

by an approximate 2.5 fold increase in collagen content. Both mdx and mdx/utrn+/- 

diaphragm muscle revealed a significantly higher percent of centrally located nuclei 

(34.65%±4.4 and 32.45%±5.6, respectively) compared to the age-matched wild-type 

mice (p<0.0001). There was no significant difference in number of centrally nucleated 

myofibers between mdx and mdx/utrn+/- mice (Figure 2.2). 

2.4.3 Young mdx/utrn+/- and dko, but not mdx, GM muscle 
develops fibrosis compared  to healthy GM muscle 

Fibrosis was assessed in 8 week-old GM muscles of wild type, mdx, mdx/utrn+/- and dko 

mice (Figure 2.3). There was no observed fibrosis in mdx GM (3.38%±0.9) compared to 

wild-type GM (3.40 ±0.2). There was a significantly higher amount of collagen 

deposition in mdx/utrn+/- GM (7.28%±2.2) compared to healthy wild-type and mdx 

tissue; however this difference was not significant between GM muscles of dko mice 

(9.49%±1.5). Overall, quantification of collagen content indicates that fibrosis is absent 

in wild-type and mdx GM muscle, but present in mdx/utrn+/- and dko GM muscle at a 

young age (p=0.0003). Muscle regeneration was significantly higher in all three murine 

models of DMD compared to the wild-type controls (Figure 3E-H). The proportion of 

centrally located nuclei did not differ, however, between mdx (50.41%±18.2), 

mdx/utrn+/- (49.78%±12.0) and dko GM muscle (45.44%±4.7, p=0.0007).  
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Figure 2.2: Muscle pathology in 10 month-old diaphragm muscles of wild-type, mdx 

and mdx/utrn+/- mice.  

Extent of total collagen staining (blue) in 10 month-old wild-type (A), mdx (B) and 

mdx/utrn+/- (C) diaphragms was used as a marker of fibrosis. Proportion of centrally 

nucleated fibers in the same tissues (D, E, and F) was measured to assess extent of 

regeneration. Quantification of total collagen staining (G) and proportion of centrally-

nucleated myofibers (H) is represented as the mean +SD. * represents p<0.05 and *** 

represents p<0.001 (scale bar=100μm). 
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Figure 2.3: Muscle pathology in 8 week-old GM muscles of wild-type, mdx, 

mdx/utrn+/- and dko mice.  

Extent of total collagen staining (blue) in 8 week-old wild-type (A), mdx (B), mdx/utrn+/- 

(C) and dko (D) GM muscles was used as a marker of fibrosis. Proportion of centrally 

nucleated fibers in the same tissues (E, F, G, and H) was measured to assess extent of 

regeneration. Quantification of total collagen staining (I) and proportion of centrally-

nucleated myofibers (J) is represented as the mean +SD. * represents p<0.05, ** 

represents p<0.01, and *** represents p<0.001 (scale bar=100μm). 

  



51 

 

 

2.4.4 Fibrosis is present in diaphragm muscle at a young age in all 
three murine models of DMD 

Collagen content in the diaphragm muscle was not determined to be significantly 

different between mdx mice (11.04%±2.3) and the two more severely affected animal 

models or between healthy wild-type and mdx mice (Figure 4A-D). Collagen deposition 

was significantly higher in the diaphragm of both dko (14.17%±4.4) and mdx/utrn+/- 

(13.32%±2.5) mice at 8 weeks of age compared to age-matched wild-type diaphragm 

muscle (7.1%±0.3, p=0.0235). Myofiber regeneration was significantly higher in the 

diaphragm muscles of mdx (41.48%±6.6) mdx/utrn+/- (39.39%±10.18) and dko 

(30.95%±6.4) mice compared to diaphragm muscle in wild-type mice (Figure 2.4, 

p<0.0001).  

2.4.5 Extent of fibrosis differs between muscle groups in the 
mdx/utrn+/- mouse 

Diaphragm, quadriceps, soleus, tibialis anterior (TA) and gastrocnemius (GM) muscles 

were analyzed from 12 week-old mdx/utrn+/- mice (Figure 2.5). Collagen content in 

diaphragm muscle was significantly higher than all other muscles assessed (p<0.0001). 

Both the quadriceps (8.31%±0.1) and GM muscles (9.89%±2.4) were higher in collagen 

content than the soleus muscle (2.80%±1.0) at this age. Extent of fibrosis was not 

significantly different in the TA muscle (5.85%±1.1) compared to the quadriceps, GM or 

soleus muscles. Myofiber regeneration, indicated by centrally located nuclei, was 

significantly higher in all four lower limb muscles compared to myofibers in the 

diaphragm, which only had 35.1% of myofibers in a regenerative state (p<0.0001).  
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Figure 2.4: Muscle pathology in 8 week-old diaphragm muscle of wild-type, mdx, 

mdx/utrn+/- and dko mice.  

Extent of total collagen staining (blue) in 8 week-old wild-type (A), mdx (B), mdx/utrn+/- 

(C) and dko (D) diaphragms was used as a marker of fibrosis. Proportion of centrally 

nucleated fibers in the same tissues (E, F, G, and H) was measured to assess extent of 

regeneration. Quantification of total collagen staining (I) and proportion of centrally-

nucleated myofibers (J) is represented as the mean +SD. * represents p<0.05, ** 

represents p<0.01, and *** represents p<0.001 (scale bar=100μm) 
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Figure 2.5: Comparison of histopathology of 12 week-old mdx/utrn+/- diaphragm, 

quadriceps, soleus, tibialis anterior and gastrocnemius muscles.  

Extent of collagen staining (A,C,E,G,I) and muscle regeneration (B,D,F,H,J)  in 12 week-

old mdx/utrn+/- mice. Quantification of total collagen staining (K) and centrally-

nucleated myofibers (CNF, L) is represented as the mean ±SD. * represents p<0.05, ** 

represents p<0.01, and *** represents p<0.001 (scale bar=100μm). TA= tibialis anterior, 

GM= gastrocnemius. 
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2.5 Discussion 

Fibrosis is a hallmark feature of Duchenne muscular dystrophy (DMD), yet the most 

widely- used murine model for the disease, the mdx mouse, does not model this aspect of 

DMD until an advanced age (Desguerre et al. 2002). Consistent with previous reports 

(Ishizaki et al. 2008), this study demonstrates that while the diaphragm muscle becomes 

fibrotic in aged mdx mice hind limb muscle does not. Many studies that investigate the 

potential use of stem cell or gene therapy for DMD use hind limb muscles, such as the 

gastrocnemius muscle (GM), for sites of injection (Qu-Petersen et al. 2002). Here, we 

demonstrate that neither young nor aged mdx mice develop a significant amount of 

fibrosis in the GM muscle compared to healthy wild-type controls of the same age. The 

fact that mdx mice lack this excessive deposition of extracellular matrix proteins may 

lead researchers to overestimate treatment efficacy in this murine model since there is a 

lack of environmental hostility when testing their therapeutic agents. Alternatively, the 

mdx/utrn+/- mouse exhibits hind limb fibrosis at 10 months of age. Interestingly, a large 

proportion of regenerating myofibers, indicative of damage, was measured in both aged 

animal models. Centrally located nuclei are a hallmark of muscle regeneration, and are 

often used as an indicator of muscle pathogenesis (Anderson et al. 1987). Indeed, while 

centric nuclei are prominent in the mdx mouse model of DMD, other aspects of the 

disease in humans, particularly fibrosis, are not phenocopied. This may be due, at least in 

part, to the up regulation of utrophin in the mdx mouse. As a result, overall muscle 

damage is significantly less in mdx mice than in utrophin heterozygotes and double 

knockout animals. Interestingly, we have further shown that in muscle tissues exhibiting 

higher levels of collagen (e.g. diaphragm), proportions of centric nuclei are lower. In 

contrast, the GM muscle in mdx mouse exhibits a significantly higher number of centric 

nuclei, but little deposition of collagen. These findings are consistent with earlier reports 

hypothesizing that centrally-nucleated myofibers are more resistant to mechanical stress, 

which may in part explain for the differences in the pathology observed in diaphragm 

versus hind limb skeletal muscles (Narita et al. 1999). 

Since DMD manifests at a young age in humans and because most DMD research is 

performed in younger animals, we also investigated extent of fibrosis in eight week-old 
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mice. Although the GM muscles in young mdx mice are in a regenerative state as 

evidenced by the presence of centrally located nuclei, we did not measure a significant 

degree of fibrosis in them. In comparison, there was a higher level of collagen measured 

in both moderately affected mdx/utrn+/- and severely affected dko mice relative to their 

healthy counterparts, suggesting fibrotic progression in these animals. Upon validating 

the mdx/utrn+/- mouse as more fibrotic compared to mdx littermates, we sought to 

further characterize extent of fibrosis in various muscle groups isolated from the 

heterozygous mouse model. As expected, the diaphragm muscle was highly fibrotic 

compared to the quadriceps, soleus, tibialis anterior and GM muscles. In comparison, 

there was no detectable difference in collagen deposition between the quadriceps, TA or 

GM muscles; this is an important finding considering that all three muscles are used in 

current research and therefore should display signs of fibrosis (Fletcher et al. 2006, 

Church et al. 2014). Interestingly, we measured a lower amount of collagen content in the 

slow-twitch soleus muscle than the fast-twitch quadriceps and GM muscles.  The fact that 

fibrotic progression is not equal between individual skeletal muscles is an important 

factor to consider in future studies. 

Taken together, this study supports previous literature that argues for the replacement of 

the mdx mouse with more severely affected models of DMD, such as the mdx/utrn+/- or 

dko mouse (Deconinck et al. 1997a,b). Although dko mice develop debilitating fibrosis at 

a young age, these animals do not tend to live past twenty weeks and thus are not 

generally used in studies examining the long-term efficacy of a therapeutic intervention.  

Similarly, although the diaphragm muscle in all three murine models develops fibrosis at 

some point, a more accurate model of DMD should reflect disease manifestation in axial 

limbs as well. Nevertheless, it would be optimal for any therapeutic drug under 

investigation to show efficacy in the diaphragm muscle since failure of this respiratory 

organ is a common cause of death in DMD patients (Bushby et al. 2009, Gilgoff et al. 

1989). Since the mdx/utrn+/- mouse develops fibrosis in both hind limb and respiratory 

skeletal muscles at a young age while not being so affected such that it dies prematurely, 

we provide further evidence here that it may be an appropriate and useful model of DMD. 

Furthermore, we report here that this increased disease severity in the mdx/utrn+/- mouse 

compared to its mdx counterpart is apparent by two months of age. The mdx/utrn+/- 
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mouse is also a suitable precursor model for scaling studies to large animal models of 

DMD such as the golden retriever model (GRMD), which exhibits signs of increased 

endomysial fibrosis as early as 15 days after birth, with severe fibrosis by 9 months of 

age (Passerini et al. 2002; Willmann 2009; Kornegay et al. 2012).  
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Chapter 3  

VEGF induces stress fiber formation in fibroblasts isolated from 

dystrophic muscle3 

  

                                                 

3
 This chapter includes content reproduced with permission from: 

Gutpell KM, Hoffman LM (2015). VEGF induces stress fiber formation in fibroblasts isolated from 

dystrophic muscle. J Cell Commun Signal, 9(4), 353–360. doi:10.1007/s12079-015-0300-z 
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3 VEGF induces stress fiber formation in fibroblasts 
isolated from dystrophic muscle 

 

3.1 Chapter Summary 

Although vascular endothelial growth factor (VEGF) has been widely studied as a 

possible therapeutic drug to treat DMD, recent work in other fibrotic disease such as 

idiopathic pulmonary fibrosis, has revealed a potential role for the growth factor in 

exacerbating fibrosis. No study to date has investigated whether VEGF elicits a fibrotic 

response in DMD, thus we sought to determine if such an effect might be exerted on 

DMD-derived fibroblasts. In this study, we isolated fibroblasts from severely affected 

diaphragm and moderately affected gastrocnemius muscles of mdx/utrn+/- mice. The 

effect of exogenous VEGF administration on expression of pro-fibrotic genes was 

assessed in vitro. The effect of VEGF on stress fiber formation was also assessed. We 

used transforming growth factor beta as a positive control in this study since it is a well-

known inducer of a fibrotic response. VEGF did not increase expression of the genes for 

type-1 collagen or connective tissue growth factor in either GM- or diaphragm-derived 

fibroblasts. Administration of the growth factor did lead to an increase in gene expression 

of alpha-smooth muscle actin, but this effect was only observed in diaphragm-derived 

fibroblasts and not GM fibroblasts. We also show that VEGF treatment leads to induction 

of alpha-smooth muscle actin-positive stress fiber formation indicative of myofibroblast 

differentiation. Stress fiber formation occurred in both GM and diaphragm fibroblasts but 

the response was more pronounced in diaphragm fibroblasts. The findings of this study 

reveal a potential role of VEGF in promoting a fibrotic response in DMD.  
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3.2 Introduction 

Angiogenic therapy has been proposed as a potential therapeutic agent for treating 

skeletal muscle ischemia inherent to Duchenne muscular dystrophy (DMD) (Shimizu-

Motohashi et al. 2014).  To this end, a number of studies have now used a potent inducer 

of angiogenesis, vascular endothelial growth factor (VEGF), as a therapeutic agent in the 

mdx mouse (Messina et al. 2007; Gregorevic et al. 2004; Beckman et al. 2013). 

Importantly, enhanced vascularization in dystrophic muscle has been shown to enhance 

the efficacy of regeneration through cell therapy (Bouchentouf et al. 2005). One aspect of 

these studies that has not been directly addressed is the effect of exogenous VEGF on 

skeletal muscle fibroblasts. Indeed, recent studies indicate that high doses of VEGF 

induce fibrosis in inflammatory and non-inflammatory stages of systemic scleroderma 

(SSc) (Maurer et al. 2014). Similarly, fibroblasts isolated from patients with idiopathic 

pulmonary fibrosis exhibit a decreased fibrotic response following treatment with a 

VEGF receptor blocker, nintedanib (Hostettler et al. 2014). The findings in the SSc study 

are particularly important because they highlight the differential effect observed with low 

levels of circulating VEGF versus high doses of VEGF typically associated with 

exogenous treatment. In contrast, studies utilizing murine models of DMD have shown 

that a loss of endogenous VEGF may have deleterious effects on regeneration. 

Additionally, results from studies that have administered VEGF to dystrophic muscle 

have suggested an anti-fibrotic role of the growth factor in this disease.  While the latter 

findings highlight the immense therapeutic potential of VEGF to treat DMD, there is 

currently a lack of studies that directly investigate the effect of exogenous VEGF 

treatment on progression of fibrosis (Miyazaki et al. 2011; Rhoads et al. 2013).  

 

Fibrosis develops in DMD patients and is largely responsible for disease fatality 

(Desguerre et al. 2009; Chen et al. 2005; Bernasconi et al. 1995). Since the mdx mouse 

model does not develop fibrosis to the same extent as is observed in patients, studying the 

effect of VEGF on the fibrotic response in this model may lead to an underestimation of 

its effect on fibrosis (Desguerre et al. 2012; Zhou et al. 2008). More recent studies have 

used a double knockout mutant that lacks both dystrophin and utrophin (dko), but this 

mouse is severely affected and does not live past 20 weeks of age (Deconinck et al. 1997; 
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Goyenvalle et al. 2010 and 2012; van Putten et al. 2012). We and others have 

demonstrated that the heterozygous mdx/utrn+/- mouse develops hind limb skeletal 

muscle fibrosis earlier in life than its mdx counterpart, but maintains a longer lifespan of 

approximately two years in laboratory conditions (Zhou et al. 2008; Gutpell et al. 2015). 

Isolation of primary fibroblasts from this mouse model thus provides a means to directly 

assess the effect of exogenous VEGF treatment on the expression of pro-fibrotic genes 

(Mezzano et al. 2007). Another important consideration for angiogenic therapy is the 

effect of treatment on different muscles affected by DMD. Indeed, all three murine 

models of DMD - mdx, mdx/utrn+/- and dko - develop fibrosis in the diaphragm muscle, 

and to a greater extent than what is observed in the hind limb musculature of any of these 

mice (Stedman et al. 1991; Huang et al. 2011). The underlying mechanism for this 

differential progression of fibrosis has not been thoroughly investigated.  Therefore, this 

study also investigated whether the effect of VEGF treatment differs in diaphragm-

derived fibroblasts versus gastrocnemius-derived fibroblasts. 

 

3.3 Materials and Methods 

3.3.1 Animal Care and Ethics Statement 

All experiments were performed at Lawson Health Research Institute at St. Joseph’s 

Health Care (SJHC) in London, Ontario.  The mdx/utrn+/- mice, originally generated by 

Dr.’s Mark Grady and Josh Sanes (Washington University, St. Louis) (Grady et al. 1997), 

were generously provided by Dr. Robert Grange (Virginia Polytechnic and State 

University) and maintained in the Animal Care Facility at SJHC. Colonies were 

maintained under controlled conditions (19–23˚C, 12 hour light/dark cycles) and allowed 

water and food ad libitum. Only 10 week-old mdx/utrn+/- mice were used in this study. 

All procedures involving animal experiments were carried out in strict accordance with 

the Canadian Council on Animal Care (CCAC) and were approved by the Animal Use 

Subcommittee at Western University. 
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3.3.2 Genotyping 

Genomic DNA from tail snips or ear notch tissue was used for genotyping. Briefly, ear 

notch tissue was lysed in a proteinase K solution at 50° C overnight. DNA was diluted 

appropriately and polymerase chain reaction was used to amplify the utrophin gene using 

Platinum Taq polymerase. Presence of the utrophin gene was detected using the 

following set of primers (Sigma): 5’-TGCAGTGTCTCCAATAAGGTATGAAC-3’, 5’-

TGCCAAGTTCTAATTCCATCAGAAGCTG -3’ (forward primers) and 5’-

CTGAGTCAAACAGCTTGGAAGCCTCC-3’ (reverse primer). 

 

3.3.3 Primary Fibroblast Isolation 

Gastrocnemius and diaphragm tissue samples were isolated from 10-week old 

mdx/utrn+/- mice. The isolation protocol was adapted from a method previously 

described by others (Mezzano et al. 2007). Briefly, mice were sacrificed via gas 

euthanasia and dissected muscles were placed in sterile phosphate-buffered saline (PBS) 

and transferred to a cell culture hood. Tissues were minced into 1-2mm3 pieces and 

placed on a gelatin-coated 10cm dish with sterile tweezers. Approximately 20-25 pieces 

were plated per dish. The tissue was then covered with primary fibroblast isolation 

medium (DMEM/F12 supplemented with 20% FBS plus penicillin and streptomycin) and 

incubated at 37°C. By day 4, fibroblasts began exiting the tissue explants. Fibroblast 

medium (DMEM/F12 supplemented with 20% FBS and penicillin and streptomycin) was 

changed every other day from this point. Cells were passaged at day 7 using 0.25% 

trypsin-EDTA. Tissue explants were removed by passing cells through a 100µm nylon 

filter. Only cells in passages 2-4 were used for experimental purposes. Fibroblast 

population was confirmed by expression of vimentin and matricellular protein CCN2 

(Appendix B). 

3.3.4 Growth Factor Supplementation 

1 x 105 fibroblasts were seeded per well onto a 12-well plate and incubated overnight. 

The next day, cells were serum-deprived in reduced-serum fibroblast medium 

(DMEM/F12 5% FBS plus penicillin and streptomycin) for 6 hours. Following serum 
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deprivation, cells were treated with 50ng/ml recombinant mouse VEGF164 (R&D 

Systems), 50ng/ml transforming growth factor–beta (TGFβ), or untreated. Growth factor 

doses were determined from previous pilot studies in our lab. TGFβ treatment served as a 

positive control for inducing a fibrotic response and the untreated fibroblasts served as a 

negative control. Cells were harvested 6 and 18 hours later for subsequent RNA 

extraction and 48 hours later for protein extraction.  

3.3.5 Quantitative Real-Time Polymerase Chain Reaction 

RNA was extracted using a QIAGEN RNeasy Plus Mini Kit. RNA concentration and 

quality was assessed using a Nanodrop Spectrophotometer ND-1000. 1-2µg of high-

quality RNA was reverse-transcribed using the High-Capacity RNA-to-cDNA Kit (Life 

Technologies). Following primer validation, Taqman Gene Expression Assays were used 

to measure Ctgf/ccn2 (Mm01192932_g1), Col1a1 (Mm00801666_g1), Acta2 

(Mm01546133_m1) and Fn1 (Mm01256744_m1) mRNA expression relative to Gapdh 

endogenous control (Mm99999915_g1) levels using the ΔΔCT method on a Real-Time 

PCR Applied Biosystems Inc. Prism 7500 under the following conditions: Initial 

denaturation at 95ºC for 5 min followed by 40 cycles of denaturation (95ºC for 15 sec), 

primer annealing (60ºC for 1 min) and transcript extension (50ºC for 2 min). All samples 

were run in triplicate. 

3.3.6 Immunohistochemistry 

Fibroblasts were processed for immunocytochemistry by fixing in 2-4% 

paraformaldehyde for 20 minutes. Fibroblasts were then washed three times with 

phosphate-buffered saline (PBS), and incubated at room temperature in blocking buffer 

(1% BSA, 10% goat serum in PBS) for 45 minutes. Fibroblasts were incubated with anti-

α-SMA (Abcam, 1:100) primary antibody. Following thorough washing with PBS, 

Alexafluor 488-IgG (Life Technologies, 1:1000) secondary antibody was used to 

visualize the primary antibody, and ProLong Gold anti-fade with DAPI (Life 

Technologies) was added to visualize the nuclei and to mount the coverslips onto glass 

slides. Fluorescent images were acquired at a twenty times magnification on a Nikon 

Eclipse microscope. 
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3.3.7 Western Blot 

Cells were collected in Phosphosafe lysis buffer containing a protease inhibitor cocktail 

and lysed via sonication. Cell culture supernatants were collected and lyophilized for 210 

minutes at 45°C and re-suspended in PBS. Protein was quantified using the bicinchoninic 

acid assay (Pierce). 50μg of protein was heat denatured and loaded onto a TGX stain-free 

SDS gel. Protein was transferred onto a PVDF low fluorescence membrane using the 

Transblot Turbo machine (Bio-Rad) and total protein was visualized on the Bio-Rad Gel 

Doc system. Membranes were blocked with 5% bovine serum albumin in tris-buffered 

saline containing 0.05% tween 20 for 1 hour. Blots were then incubated with primary 

anti-fibronectin antibody (1:1000, Abcam) at 4°C overnight.  Following thorough 

washing in TBS-T, blots were incubated with anti-rabbit HRP secondary antibody 

(1:5000) for 1 hour. Bands were visualized via chemiluminescence using ImageLab 

software (Bio-Rad) and normalized to total protein signal from the stain-free blots 

(Taylor et al. 2013). Bands from cell culture supernatants are shown for qualitative 

purposes only since normalization to total protein was not possible given the signal 

saturation from the serum.  

3.3.8 Statistical Analysis 

Gene expression data was analyzed using a two-way analysis of variance (ANOVA) to 

determine simple main effects of treatment and time point followed by individual one-

way ANOVA to assess differences within the 6- and 18-hour time points. Differences 

between groups were determined using Tukey’s post-hoc test. A p-value less than 0.05 

was considered significant (n=6 and n=4 for gene expression and protein experiments, 

respectively). 

 

3.4 Results 

3.4.1 Effect of VEGF on Fibrotic Gene Expression 

Expression of multiple genes involved in dysregulated tissue repair was measured to 

investigate whether VEGF induces a fibrotic response in fibroblasts derived from 

dystrophic muscle. Specifically, changes in mRNA levels of Ctgf/ccn2, Col1a1, Fn1, and 
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Acta2, were assessed in diaphragm and GM-derived fibroblasts. TGFβ increased 

expression of Ctgf/ccn2 in both GM- and diaphragm-derived fibroblasts. Six hours 

following administration, a 4.6- and 14.2-fold increase in expression of the gene was 

measured in GM (p<0.0001) and diaphragm fibroblasts (p=0.0002), respectively (Figure 

3.1). This level of Ctgf/ccn2 expression was significantly higher than expression in either 

control fibroblasts or VEGF-treated fibroblasts. There was no measureable increase in 

Ctgf/ccn2 transcript level following VEGF treatment in either diaphragm or GM 

fibroblasts. The gene that encodes the pro-alpha(I) chain of type-1 collagen, was assessed 

to represent changes in collagen expression (Figure 3.2). TGFβ led to significantly higher 

expression of Col1a1 in GM fibroblasts compared to either control or VEGF-treated GM 

fibroblasts. In diaphragm fibroblasts Col1a1 expression was higher in TGFβ-treated 

fibroblasts compared to controls, but not higher than in VEGF-treated fibroblasts. 
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Figure 3.1: VEGF does not increase expression of Ccn2/ctgf in fibroblasts derived 

from GM or diaphragm muscle of mdx/utrn+/- mice.  

Fibroblasts isolated from gastrocnemius (top) or diaphragm muscles (bottom) of 

mdx/utrn+/- mice were treated with VEGF164 for 6 or 18 hours. Treatment with TGFβ, a 

known-inducer of pro-fibrotic gene expression, was used as a positive control. Ctgf/ccn2 

expression levels were measured relative to Gapdh (n=6). * and † denote significant 

difference between groups within the 6 and 18 hour time points, respectively. **p<0.01, 

***p<0.001, ****p<0.0001 +SD. 
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Figure 3.2: VEGF does not increase expression of Col1a1 in fibroblasts derived from 

GM or diaphragm muscle of mdx/utrn+/- mice.  

Fibroblasts isolated from gastrocnemius (top) or diaphragm muscles (bottom) of 

mdx/utrn+/- mice were treated with VEGF164 for 6 or 18 hours and expression of 

Col1a1 was assessed via qPCR.  Treatment with TGFβ, a known-inducer of pro-fibrotic 

gene expression, was used as a positive control. Col1a1 expression levels were measured 

relative to Gapdh (n=6), * and † denote significant difference between groups within the 

6 and 18 hour time points, respectively **p<0.01, ***p<0.001, +SD 
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3.4.2 Effect of VEGF on fibronectin expression 

 

To determine if VEGF stimulates expression of genes that encode the extracellular matrix 

protein fibronectin, we assessed changes in mRNA expression of Fn1. Neither TGFβ nor 

VEGF altered expression of Fn1 by any time points assessed in this study (Figure 3.3). 

Conversely, Western blot analysis of fibronectin protein (FN) confirmed that VEGF, but 

not TGFβ, increased expression of the protein by 1.9-fold in diaphragm fibroblasts 

(p=0.029) and by 1.5-fold in GM fibroblasts (p=0.001). Similar qualitative trends were 

observed in FN levels in the supernatant (Figure 3.4).  

3.4.3 Changes in αSMA Expression Following VEGF Treatment 

 

Acta2 expression significantly increased in GM-derived fibroblasts 1.8-fold following 

TGFβ treatment, but not following VEGF treatment (Figure 3.5). Acta2 expression in 

diaphragm-derived fibroblasts, on the other hand, responded to both TGFβ treatment as 

well as VEGF treatment. TGFβ induced a 1.5-fold increase compared to control cells as 

early as 6 hours after administration of the growth factor. By 18 hours, Acta2 expression 

was 1.9- and 1.5-fold higher in fibroblasts treated with TGFβ and VEGF, respectively 

(p<0.0001). Immunocytochemical analysis revealed minimal αSMA expression in both 

GM and diaphragm fibroblasts. While all αSMA protein expressed in untreated GM-

fibroblasts was located in the cytoplasm (Figure 3.6), some untreated αSMA-positive 

diaphragm fibroblasts expressed the protein within stress fibers (Figure 3.7).  TGFβ 

induced a robust response in diaphragm fibroblasts resulting in high levels of αSMA 

expression. Myofibroblast differentiation in these cells was evident by stress fiber 

formation. A similar, but less striking, response was observed in diaphragm fibroblasts 

treated with VEGF, as a large portion of these cells also underwent stress fiber formation. 

GM-derived fibroblasts appeared to respond to both TGFβ and VEGF, although the 

response was more subdued compared to the one observed in diaphragm fibroblasts. 
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Figure 3.3: Fn1 expression in is not altered by VEGF or TGFβ in fibroblasts 

isolated from either GM or diaphragm muscles of  mdx/utrn+/- mice.  

Fibroblasts isolated from gastrocnemius (top) or diaphragm muscles (bottom) of 

mdx/utrn+/- mice were treated with VEGF164 for 6 or 18 hours. Treatment with TGFβ, a 

known-inducer of pro-fibrotic gene expression, was used as a positive control. Fn1 

expression levels were measured relative to Gapdh (n=6), *significant difference between 

treatment groups within the 6 hour time point, †significant difference between groups 

within the 18 hour time point. 
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Figure 3.4: FN levels are increased following treatment of diaphragm and GM 

fibroblasts with VEGF.  

Western blot analysis (A) reveals an increased level of intracellular FN and extracellular 

FN located in the cell culture supernatant following 48 hours in the presence of VEGF164. 

FN levels from cell lysates of diaphragm (B) and GM (C) fibroblasts were measured 

relative to total protein (n=4, *p<0.05, **p<0.01). 
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Figure 3.5: VEGF increases Acta2 expression in diaphragm, but not in GM 

fibroblasts derived from mdx/utrn+/- mice.  

Fibroblasts isolated from gastrocnemius (top) or diaphragm muscles (bottom) of 

mdx/utrn+/- mice were treated with VEGF164 for 6 or 18 hours. Treatment with TGFβ, a 

known-inducer of pro-fibrotic gene expression, was used as a positive control. Acta2 

expression levels were measured relative to Gapdh (n=6), *significant difference between 

treatment groups within the 6 hour time point, †significant difference between groups 

within the 18 hour time point. *p<0.05, **p<0.01, ±SD. 
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Figure 3.6: VEGF induces stress fiber formation in GM fibroblasts indicative of 

myofibroblast differentiation.  

GM fibroblasts were treated with VEGF164 for 48 hours. Treatment with TGFβ, a known-

inducer of pro-fibrotic protein expression, was used as a positive control. Alpha-smooth 

muscle actin (αSMA), a marker of myofibroblasts, is shown in green. DAPI (blue) was 

used as a counterstain (scale bar= 50µm). 
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Figure 3.7: VEGF induces stress fiber formation in diaphragm fibroblasts indicative 

of myofibroblast differentiation.  

Diaphragm fibroblasts were treated with VEGF164 for 48 hours. Treatment with TGFβ, a 

known-inducer of pro-fibrotic protein expression, was used as a positive control. Alpha-

smooth muscle actin (αSMA), a marker of myofibroblasts, is shown in green. DAPI 

(blue) was used as a counterstain (scale bar= 50µm). Although some untreated control 

fibroblasts are αSMA-positive, treatment with either TGFβ or VEGF led to greater 

expression of the protein in stress fibers.  
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3.5 Discussion 

Therapeutic approaches to slow or attenuate the degenerative effects of DMD include 

attempts to restore dystrophin, the cytoskeletal protein that is missing or aberrant in DMD 

patients (Pessina et al. 2014). Gene and stem cell therapies are but two approaches 

currently under intense investigation to serve this purpose, but both of these are limited 

by the hostile microenvironment where regenerative therapy needs to occur. Skeletal 

muscle in both patients and animal models of DMD is poorly vascularized, leading to 

studies exploring the use of pro-angiogenic therapies to enhance the ischemic 

microenvironment (Arsic et al. 2004; Borselli et al. 2010). VEGF is a particularly 

attractive candidate for such a therapy since it is a well-known, potent inducer of 

angiogenesis. Although the literature currently suggests that VEGF enhances cell 

engraftment in the mdx mouse (Messina et al. 2007; Deasy et al. 2009), it remains to be 

determined whether VEGF induces a fibrotic response in DMD. In fact, a reduction in 

fibrosis following delivery of muscle-derived stem cells overexpressing VEGF has been 

shown in the mdx GM muscle (Deasy et al. 2009). The main motivation for this study 

was the findings from recent studies that examined the effect of VEGF in other fibrotic 

diseases such as SSc and idiopathic pulmonary fibrosis, whereby elevated levels of 

VEGF increased markers of fibrosis. In contrast, inhibition of VEGF was shown to have 

an anti-fibrotic effect (Maurer et al. 2014; Hostettler et al. 2014). These studies highlight 

the need to assess angiogenic therapy for the treatment of DMD in an animal model that 

develops significant fibrosis. Since the mdx mouse does not develop fibrosis as severely 

and early as DMD patients (Konieczny et al. 2013), our study focused on investigating 

the effect of VEGF on fibroblasts derived from a more fibrotic mouse model of DMD, 

the mdx/utrn+/- mouse (Zhou et al. 2008). Furthermore, since most studies to date have 

focused on the effect of VEGF on the hind limb muscles, our second objective was to 

determine whether there is a differential response to VEGF in diaphragm and 

gastrocnemius fibroblasts. To this end, gene expression analyses in the present study have 

indicated that VEGF treatment may alter expression of some genes involved in the 

fibrotic response, specifically Acta2, the gene that encodes αSMA. Expression of the 

genes that encode CTGF/CCN2 and collagen were not altered by VEGF, however these 

findings were inconclusive since we did not further investigate the levels of these two 
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proteins following treatment. Visualization of αSMA expression in VEGF-treated cells 

suggests a role for this growth factor in promoting differentiation of these fibroblasts, 

particularly ones derived from the diaphragm, into myofibroblasts.  

 

Although Fn1 levels were not affected by either treatment, protein levels of FN increased 

in the presence of VEGF, but not TGFβ. It is perhaps not surprising that exogenous TGFβ 

did not stimulate increased FN levels compared to the control treatment since all cells in 

this study were derived from mdx/utrn+/- mice. Previous work has demonstrated that 

conditioned media from mdx fibroblasts stimulates a fibrotic response, including 

increased FN, in wild-type fibroblasts (Mezzano et al. 2007). Given these findings, it may 

be that untreated fibroblasts in the present study also secreted pro-fibrotic factors into the 

culture medium, leading to an increase in FN even in the absence of exogenous TGFβ. 

Thus, the finding that exogenous VEGF treatment increased FN levels in our study is 

particularly intriguing. Since VEGF treatment resulted in increased FN protein but did 

not alter mRNA expression, it appears that VEGF may act translationally or post-

translationally to enhance FN expression in mdx/utrn+/- fibroblast cultures.  The fact that 

VEGF treatment led to increased FN both in cell lysates and cell culture supernatant 

warrants further investigation. This finding is consistent with work in other animal 

models of disease such as preclinical diabetic retinopathy whereby exogenous VEGF 

injection to a rat retina induced expression of FN as well as other fibrotic markers 

(Kuiper et al. 2007). That VEGF only affected protein, but not mRNA, levels in the 

present study also warrants further analysis. Since only two time points were assessed 

here, looking at FN mRNA expression over a time course may yield different results than 

those attained in this study.  Interestingly, work over the past decade has revealed binding 

sites for VEGF on full length fibronectin and these studies have suggested that, in this 

case, the binding of these two proteins in the ECM act to increase the biological activity 

of VEGF (Wijelath et al. 2002, 2004; Goerges and Nugent 2004; Vempati et al. 2014). 

Further, it is well known that loss of FN negatively impacts vasculogenesis and 

angiogenesis due, in part, to the decrease in VEGF activity (Astrof and Hynes 2009). 

Although previous work highlights an important interaction between FN and VEGF, our 

results are the first to show a potential effect of VEGF on FN expression. As such, the 
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role of this interaction in the context of angiogenesis in dystrophic muscle also warrants 

further detailed investigation. 

 

Given that diaphragm and GM muscles in mdx/utrn+/- mice display different abilities to 

develop fibrosis, we investigated whether fibroblasts from these different muscles also 

respond differently to VEGF treatment. Although the two cell types showed similar gene 

expression profiles following treatment, there were a few key differences observed here. 

First, untreated diaphragm fibroblasts appear to be more myofibroblast-like than GM 

fibroblasts, as evidenced by the presence of αSMA stress fibers, which were rare in the 

GM fibroblast cultures. Further, TGFβ stimulated a more drastic response in diaphragm 

fibroblasts compared to GM fibroblasts, evidenced by higher αSMA expressed and more 

prominent stress fiber formation. A similar trend was observed following VEGF 

treatment, although not to the same extent as observed following TGFβ administration. 

These findings suggest that fibroblasts from different muscles may respond in a unique 

way to various growth factors. As such, further work will be needed to determine whether 

diaphragm-derived fibroblasts indeed respond differently to VEGF treatment than do 

hind limb muscles. Since the pathology progression is more rapid in the diaphragm than 

hind limb muscles, considering the effect of treatment on both of these muscles will be 

crucial for future work.  
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4 Vascular-targeted therapy attenuates ischemia and 
fibrosis in DMD mice 

4.1 Chapter Summary 

A number of limitations currently surround the use of vascular-targeted therapy to treat 

DMD. The previous chapters describe the use of a murine model that develops more 

fibrosis than the mdx mouse. Results from chapter 2 indicate the mdx/utrn+/- mouse, a 

model that lacks dystrophin and is heterozygous for utrophin, exhibits more collagen 

deposition at an early age compared to its mdx counterpart. Using the mdx/utrn+/- mouse, 

chapter 3 demonstrated a potential role of VEGF in eliciting a fibrotic response in vitro in 

fibroblasts derived from the diaphragm and, to a lesser extent, the gastrocnemius muscles 

from this murine model. It is not well known whether VEGF alone induces functional 

changes in perfusion in a relevant murine model of DMD or if another factor, 

angiopoietin-1 (ANG1), is also necessary. Further, whether VEGF exerts a pro-fibrotic 

effect has not been confirmed in vivo. Using dynamic contrast-enhanced computed 

tomography (DCE-CT) to measure perfusion, we show that functional perfusion 

decreases over a two week period and that blood flow and blood volume are unaffected 

by localized delivery of VEGF alone compared to sham-injected controls. In contrast, 

mice treated with a combination of VEGF and ANG1, exhibit reduced progression of 

ischemia over the treatment period, evidenced by a lesser reduction in blood volume 

compared to either the sham- or VEGF-treated mice. These vascular differences are 

validated histologically by increased vessel maturation in hind limb muscles that received 

the combination treatment. There is also histological evidence that VEGF and ANG1 

treatment resulted in reduced infiltration of leukocytes into the muscle tissue and reduced 

deposition of collagen in the endomysium.  
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4.2 Introduction 

Vascular-targeted therapy to treat Duchenne muscular dystrophy (DMD) has been 

investigated since the early 2000’s (Shimizu-Motohashi et al 2014). The proposed 

mechanisms by which angiogenic therapy may alleviate the pathophysiology associated 

with DMD are numerous. Previous work has provided evidence of compromised 

vasculature in the disease, including impaired angiogenesis (Palladino et al 2013) and 

decreased vascular density in the mdx mouse, the most widely used murine model of 

DMD (Loufrani et al 2004), as well as in the gold-retriever model of (Nguyen et al 2005). 

As such, many groups have attempted to increase vascular density in dystrophic muscle 

by treating it with vascular endothelial growth factor (VEGF), a well-known and potent 

inducer of angiogenesis (Messina et al. 2007; Gregorevic et al. 2004; Beckman et al. 

2013). Histological markers of endothelial cells, cells that make up the luminal wall of 

vessels, demonstrate increased vascular density following VEGF treatment. Other studies 

have also shown that VEGF levels are decreased in some muscle groups in mdx mice as 

well as in patients (Abdel-Salam et al 2009). These findings are somewhat inconclusive, 

though, as others have shown that VEGF levels are increased in dystrophic muscle tissue. 

This discrepancy is likely due to a temporally dependent alteration in VEGF expression 

at various stages of the disease. Interestingly, hypoxia-inducible factor-1 alpha (HIF1-α) 

is increased in DMD patients (Abdel-Salam et al 2010) and others have shown that 

increases in HIF1-α in the mdx mouse brain correspond to elevated levels of VEGF (Nico 

et al 2007).  

Although promising results have been shown regarding the use of VEGF to 

alleviate ischemia, there are a number of questions that remain unanswered. First, it has 

been widely proposed that VEGF, while inducing angiogenesis, creates only immature 

and “leaky” vessels that do not confer significant functional benefit to the muscle 

(Gavard et al 2008). Although histological analyses have revealed an increase in vascular 

density following VEGF treatment, whether these newly formed vessels are functional 

has not been rigorously investigated. Groups have therefore begun to use VEGF in 

combination with other factors, particularly angiopoietin-1 (ANG1), to induce vascular 

maturation (Chae et al 2000; Shyu et al 2003; Yamauchi, et al 2003 Chen et al 2007).  
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Binding of ANG1 to the Tie2 receptor on endothelial cells activates the receptor’s 

tyrosine kinase activity, producing a cellular response that results in vessel survival and 

stabilization (Fukuhara et al 2010). Receptor activation increases phosphatidylinositol 3-

kinase (PI3K) activity, leading to stimulation of AKT, a cell survival signaling molecule 

that inhibits transcription factors essential in vascular destabilization (Daly et al., 2004). 

Activation of the PI3K pathway also increases expression of survivin, an inhibitor of 

apoptosis in endothelial cells (Papapetropoulos et al., 2000). Upon Tie2 activation, 

vascular-endothelial cadherin increases adhesion between endothelial cells, lending to an 

increase in overall vessel stability (Gamble et al., 2000; Gavard et al 2008). Importantly, 

ANG1 recruits vascular smooth muscle cells by signaling through endothelial cells 

(Iivanainen et all 2003, Kobayashi et al 2006). This vascular smooth muscle lining 

ultimately confers functional maturity to newly formed vasculature (Brudno et al 2013).  

Given the role of VEGF and ANG1 in angiogenesis, various groups have 

attempted to exploit their function as a vascular-targeted approach to treating ischemia in 

DMD (Mofarrahi et al 2015).  Indeed, VEGF administration has been shown to increase 

endogenous repair and enhance the efficacy of transplanted cell populations. Still, 

questions remain regarding the reality of using these factors to treat DMD. Importantly, 

very little data exists describing the functional efficacy these factors exert in a 

longitudinal manner in DMD models. Position emission tomography demonstrates that 

blood flow is not affected by VEGF treatment alone in the rat skeletal muscle, but is 

significantly increased when VEGF is combined with ANG1 (Zaccigna et al 2007). Thus, 

the objective of the present study is to non-invasively assess the effect of VEGF 

treatment alone or in combination with ANG1 on functional angiogenesis in dystrophic 

murine hind limb skeletal muscle. Our group has previously reported the use of dynamic 

contrast-enhanced computed tomography (DCE-CT) to monitor disease progression in 

murine models of DMD (Ahmed et al 2011), but no study to date has attempted to assess 

therapeutic intervention in preclinical studies using this imaging modality. Further, we 

utilize the mdx/utrn+/- mouse, a model that lacks dystrophin and is heterozygous for 

utrophin, a dystrophin analogue. Previous studies have suggested the heterozygous mouse 

as a superior model for DMD research since this mouse develops fibrosis to a greater 

extent compared to the dystrophin-null mdx mouse (Zhou et al 2008). Using the 
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mdx/utrn+/- mouse, which is more prone to fibrosis, is of particular importance given 

recent findings showing a potential role of VEGF in exacerbating disease severity in 

other fibrotic diseases such as scleroderma and idiopathic pulmonary fibrosis (Maurer et 

al. 2014 & Hostettler et al. 2014). Additionally, long-term overexpression of VEGF 

promotes fibrosis in skeletal muscle in the ischemic hind limb rabbit model (Karvinen et 

al 2011). 

4.3 Materials and Methods 

4.3.1 Animal Care and Ethics Statement 

Experiments were performed at The Lawson Health Research Institute at St. Joseph’s 

Health Care (SJHC) in London, Ontario. Heterozygous mdx/utrn+/- mice, originally 

generated by Dr.’s Mark Grady and Josh Sanes (Washington University, St. Louis) [12], 

were generously provided to us by Dr. Robert Grange (Virginia Polytechnic and State 

University) and maintained in the Animal Care Facility at SJHC. Colonies were 

maintained under controlled conditions (19-23˚C, 12 hour light/dark cycles) and allowed 

water and food ad libitum. Nine to ten week-old male mice were used in this study. All 

procedures involving animal experiments were carried out in strict accordance with the 

Canadian Council on Animal Care (CCAC) and were approved by the Animal Use 

Subcommittee at Western University. 

4.3.2 Genotyping 

Genomic DNA from tail snips or ear notch tissue was used for genotyping. Briefly, ear 

notch tissue was lysed in a proteinase K solution at 50° C overnight. DNA was diluted 

appropriately and polymerase chain reaction was used to amplify the utrophin gene using 

Platinum Taq polymerase. Presence of the utrophin gene was detected using the 

following set of primers (Sigma): 5’-TGCAGTGTCTCCAATAAGGTATGAAC-3’, 5’-

TGCCAAGTTCTAATTCCATCAGAAGCTG -3’ (forward primers) and 5’-

CTGAGTCAAACAGCTTGGAAGCCTCC-3’ (reverse primer). 
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4.3.3 Enzyme-linked immunosorbent assays  

To determine endogenous levels of VEGF and ANG1, we used a Quantikine Mouse 

VEGF kit (R&D Systems) and a Mouse ANG1 ELISA kit (Lifespan Biosciences). 10 

week-old mdx/utrn+/- mice (n=6) and C57Bl10 (n= 6) were euthanized. Dissected tissue 

was placed in ice cold PBS, homogenized and stored overnight at -20 ° C to ensure 

complete lysis of homogenates. Samples were then centrifuged at 5000xg for 5 minutes 

and only the supernatant assayed. Total protein was quantified using the BCA Assay 

(Pierce) prior to ELISA assay. All samples were run in duplicate and absorbance was 

measured at 450nm.  

4.3.4 Local Delivery of Growth Factors 

Affi-Gel Blue Beads (BioRad) were air-dried in a cell culture hood under sterile 

conditions overnight. The next day, beads were resuspended in 10μl of: sterile phosphate-

buffered saline (PBS), 0.5μg recombinant mouse VEGF, 5μg recombinant human ANG1, 

or a combination of VEGF and ANG1. Beads were incubated in the growth factors 

overnight. The next day, beads were centrifuged for 5 minutes at 12,000rpm, the 

supernatant was removed and the beads were re-suspended in 10μl sterile PBS. Hind limb 

hair was gently plucked and the exposed skin was wiped with isopropyl alcohol to ensure 

sterility. The beads were implanted intramuscularly into the posterior compartment of the 

hind limb (lateral head of the gastrocnemius muscle) as follows: mice in the “sham” 

group received PBS-soaked beads in both hind limbs, “VEGF” mice received PBS-

soaked beads in the right hind limb and VEGF-coated beads in the left, and the 

“VEGF+ANG1” group received VEGF-coated beads in the right hind limb and 

VEGF+ANG1-coated beads in the left. Injections took place before the anatomical axial 

CT scan while the mouse was anesthetized. 

4.3.5 Dynamic Contrast-Enhanced Computed Tomography 

Mice were scanned at baseline and 2 weeks post-injection (time point based on pilot 

studies previously conducted in our lab, Appendices C,D). During each imaging session, 

anesthesia was induced with 3% isofluorane and maintained with a 1.5% oxygen-

balanced isofluorane mixture, delivered at a constant rate of 1L/min. DCE-CT protocol 
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was adapted from a previous study (Ahmed et al. 2011). Briefly, following an anatomical 

axial scan, each mouse received 200 μL of Conray 43 contrast agent (diluted 1:2 with 

saline) at an injection rate of 2.0 ml/min with an infusion pump (New Era Pump Systems 

Inc) via tail vein catheter. CT Perfusion software (GE Healthcare) was used to quantify 

blood flow (BF) and blood volume (BV) based on functional maps from the acquired 

series of CT images (Cenic A, et al., 1999). Perfusion data acquired for each mouse was 

normalized to baseline values to minimize biological variability between animals, thus 

allowing us to assess longitudinal changes between groups. Regions of interest were 

drawn around the whole cross-sectional slice of the hind limb, excluding the tibia and 

fibula, and three slices covering the leg were included in each calculation (Appendix E). 

4.3.6 Tissue Preparation  

At the end of the imaging study, mice were sacrificed via gas euthanasia followed by 

cervical dislocation. Gastrocnemius and diaphragm muscles were dissected, immediately 

fixed in formalin, and embedded in paraffin. Extreme care was taken to ensure muscles 

were embedded in the same orientation across each muscle group. Tissue blocks were 

sectioned at 5um thickness and dried in an oven at 37˚C overnight. To achieve 

representative sections from the whole muscle tissue, serial sections were taken every 20 

or 5 slices for the GM and diaphragm muscles, respectively. Tissue sections were then 

deparaffinised and rehydrated in a series of xylene and ethanol washes to prepare them 

for subsequent Masson’s Trichrome staining for collagen content (performed at the 

Pathology Department at University Hospital, London, ON), or haematoxylin and eosin 

staining to visualize inflammation. Serial sections were used for the two staining methods 

to ensure that analysis of both collagen content and inflammation referred to the same 

samples. Following the staining step, slides were dehydrated, washed in xylene and 

mounted with Permount mounting medium.   

4.3.7 Immunohistochemistry 

Tissue sections were processed for immunocytochemistry by deparaffinising and 

rehydrating sections followed by heat-mediated antigen retrieval in a citrate buffer for 20 

minutes.  Slides were then cooled slowly to room temperature and incubated in blocking 
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buffer (1% BSA, 10% goat serum in PBS) for one hour. Sections were incubated with 

anti-αSMA (Abcam, 1:100) or anti-CD45 (Abcam, 1:50) primary antibodies at 4°C 

overnight. Following thorough washing with PBS, Alexa Fluor IgG (Life Technologies, 

1:1000) secondary antibodies were used to visualize the primary antibodies, and ProLong 

Gold anti-fade with DAPI (Life Technologies) was added to visualize the nuclei and to 

mount the coverslips onto glass slides. Fluorescent images were acquired on a Nikon 

Eclipse microscope. 

4.3.8 Microscopy and Image Analysis 

For Masson’s Trichrome sections, colour histological images were acquired on a Zeiss 

Axioscope microscope under 10x objective using Northern Eclipse software. Non-

overlapping fields of view of the entire tissue were taken for each section. Collagen 

content was assessed across the entire tissue slice and automatically quantified using an 

in-house colour thresholding algorithm written in MATLAB 2015b (Mathworks, Natick, 

MA, USA) designed to separate red and blue image components as previously described 

(Gutpell et al. 2015). The percentage of each slide area positive for collagen presence was 

calculated, and automatic thresholds were manually verified with labeled colour overlays 

on the original histology images to ensure that collagen presence was accurately 

identified.  

For αSMA and CD45 sections, grey scale fluorescence images were acquired on a Nikon 

Eclipse Microscope using NIS Elements Microscope Image Software. Non-overlapping 

fields of view of the entire tissue were taken for each section. A semi-automatic grey 

scale thresholding algorithm was implemented in MATLAB 2015a to quantify the area of 

each slide positive for αSMA or CD45 while mitigating variations due to image exposure 

and auto-fluorescence; referred to as “background” intensity variations. The three major 

steps of the algorithm are 1) background intensity estimation, 2) stain identification, and 

3) stain area calculation. These steps are briefly described as follows. 1) The intensity 

gradient magnitude of each slide was calculated, and contiguous regions with a gradient 

magnitude less than a constant threshold were assigned as background. This background 

threshold was empirically selected as 40 intensity units, or roughly 8% of the maximum 

signal intensity gradient observed across slides. 2) All closed non-background regions 
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with maximum signal intensity greater than a stain threshold were assigned positive for 

stain presence. The stain threshold was manually selected as either 4× or 5× times the 

mean background signal intensity of each slide. 3) Within each closed non-background 

region considered positive for stain presence, the final stained area was determined by 

applying a threshold of 25% of the maximum intensity in that region. The percentage of 

total area positive for stain was calculated for each slide. Again, automatic thresholds 

were manually verified using labeled colour overlays on the original images, and any 

features incorrectly identified as positive for stain were manually edited. 

4.3.9 Western Blot 

Tissue was collected in Phosphosafe lysis buffer (EMD Millipore) containing a protease 

inhibitor cocktail (EMD Millipore) and homogenized. Protein was quantified using the 

bicinchoninic acid assay (Pierce). 25 μg of protein was heat denatured and loaded onto a 

TGX stain-free SDS gel. Protein was transferred onto a PVDF low fluorescence 

membrane using the Transblot Turbo machine (Bio-Rad) and total protein was visualized 

on the Bio-Rad Gel Doc system. Membranes were blocked with 5% bovine serum 

albumin in Tris-buffered saline containing 0.05% Tween 20 for 1 hour. Blots were then 

incubated with primary αSMA (1:1000, Abcam) or anti-CD45 (1:500, Abcam) primary 

antibodies at 4°C overnight.  Following thorough washing in TBS-T, blots were 

incubated with anti-rabbit or anti-mouse horseradish peroxidase secondary antibodies 

(1:5000) for 1 hour. Bands were visualized via chemiluminescence using ImageLab 

software (Bio-Rad) and normalized to total protein signal from the stain-free blots 

(Taylor et al. 2013). 

4.3.10 Statistical Analysis 

Data was analyzed using Student’s t-test for ELISA results and an analysis of variance 

(ANOVA) for the perfusion and histology results. Differences between groups were 

determined using Tukey’s post-hoc test. A p-value less than 0.05 was considered 

significant. Replicate values for each experiment are presented with the results.  
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4.4 Results 

4.4.1 Endogenous levels of both VEGF and ANG1 are significantly 
reduced in severely fibrotic diaphragm tissue, but not weakly 
affected GM tissue of the mdx/utrn+/- mouse 

Endogenous expression of VEGF and ANG1 was measured in the diaphragm and GM 

muscles at 9-10 weeks of age (Figure 4.1). The level of VEGF in GM muscle of 

mdx/utrn+/- mice (19.6pg/ml) was similar to that measured in wild-type mice 

(19.3pg/ml, p=0.93). However, compared to healthy diaphragm muscle (63.0pg/ml), the 

concentration of VEGF in dystrophic diaphragm muscle (39.2pg/ml) was significantly 

reduced (p=0.0049). A similar trend was observed for the endogenous concentration of 

ANG1 in healthy versus dystrophic diaphragm and GM muscles. Specifically, ANG1 

expression in healthy and dystrophic GM muscles was 85.3 and 54.1 pg/ml, respectively, 

but these values were not determined to be significantly different from one another 

(p=0.09). In contrast, a marked reduction of ANG1 expression was measured in the 

diaphragm of dystrophic mice relative to wild-type controls (148.3 and 365.6 pg/ml, 

respectively; p<0.0001). 
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Figure 4.1: VEGF and ANG1 are decreased in dystrophic diaphragm and murine 

muscles.   

ELISA analysis of VEGF and ANG1 in 9 to 10 week-old mdx/utrn+/- diaphragm and 

GM muscles compared to healthy wild type controls. A. VEGF was lower in mdx/utrn+/- 

diaphragm muscles compared to healthy wild-type controls. VEGF expression was not 

significantly different between dystrophic and healthy GM muscles. B. ANG1 was lower 

in mdx/utrn+/- diaphragm muscles compared to healthy wild-type controls. ANG1 

expression was not significantly different between dystrophic and healthy GM muscles.   

n = 6 per group, *P < 0.05, by Student’s t-test. Error bars represent SD. 

 

A 

B 
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4.4.2 Effect of VEGF and ANG1 on perfusion 

Blood flow (BF) and blood volume (BV) were assessed as parameters of perfusion in this 

study. There was no significant difference measured between the two hind limbs, 

regardless of treatment. BF and BV are therefore presented as fold change averages 

between the two limbs after 16 days of growth factor treatment (Figure 4.2).  Absolute 

values for BF and BV indicate that measurements were not significantly different among 

mice in different treatment groups at baseline (Table 4.1). Baseline values also indicate 

the degree of variability between mice. BF decreased in all mice, regardless of treatment, 

over the course of the study (Figure 4.3). There was no significant difference in BF fold 

change between sham-injected (0.417±0.26), VEGF-treated (0.408±0.17), and 

VEGF+ANG1-treated mice (0.979±0.64; p= 0.0614). BV also decreased over the two-

week period, but the change was less marked in mice that received the combination 

treatment of VEGF+ANG1 (0.847±0.40) compared to either the sham-injected control 

(0.284±0.12) or VEGF-treated groups (0.398±0.16; p= 0.0109). No significant difference 

in BV fold change was measured between the sham-injected and VEGF-treated mice 

(Figure 4.4). 

4.4.3 VEGF and ANG1 increase vessel maturation in 
gastrocnemius muscle of mdx/utrn+/- mice 

Western blot analysis was employed to assess total alpha-smooth muscle actin (αSMA) in 

GM tissue homogenates following the two-week treatment period (Figure 4.5). Total 

αSMA expression was increased in GM muscles from VEGF+ANG1 treated mice 

compared to controls. Since αSMA identifies both blood vessels as well as 

myofibroblasts, we further employed IHC analysis to determine αSMA expression only 

in vessels (Appendix F). While no significant differences were measured between the 

sham-injected (0.18% ±0.033) and the VEGF-treated mice (0.23% ±0.066), we did 

measure a significant increase in αSMA-positive vessels in hind limb muscles treated 

with both VEGF and ANG1 (0.36% ±0.054) relative to either sham or VEGF-treated 

mice (p<0.0001). Many newly formed αSMA-positive vessels were detected at the 

injection area in VEGF+ANG1-treated hind limbs. Very few mature vessels were 

observed at the injection site of VEGF-treated hind limbs.   
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Figure 4.2: Perfusion measured at endpoint is not significantly different between 

hind limbs, regardless of treatment. 

(A) Schematic representation of treatment groups. “Sham” group mice received PBS-

soaked beads in both hind limbs. “VEGF” mice received PBS-soaked beads in the right 

hind limb and VEGF-coated beads in the contralateral limb. VEGF+ANG1 mice received 

VEGF-coated beads in the right hind limb and VEGF+ANG1-coated beads in the 

contralateral limb. (B) Blood flow and blood volume did not differ between hind limbs, 

allowing for perfusion measurements to be assessed based on the averaged BF and BV 

following treatment. n=5 for sham, n=6 for VEGF, n=5 for VEGF+ANG1, P < 0.05, by 

Wilcoxon signed-rank test.  
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Table 4.1: Mean absolute values (mean ± SD) of blood flow (BF) and blood volume 

(BV) for each experimental group at baseline.  

P-values to the right of each mean column indicate that no significant difference existed 

between treatment groups at baseline. n=5 for sham, n=6 for VEGF, n=5 for 

VEGF+ANG1, P < 0.05, by one-way ANOVA. 

 

Treatment Absolute BF 

±SD 
BF 

p-value 
Absolute BV 

±SD 
BV 

p-value 

Sham 59.8 ± 25.1 

0.1008 

7.1 ± 3.1 

0.1007 VEGF 51.6 ± 8.3 4.7 ± 2.2 

VEGF+ANG1 36.8 ± 9.8 3.8 ± 1.6 
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Figure 4.3: Low dose delivery of pro-angiogenic growth factors does not affect blood 

flow 18 days post-treatment in mdx/utrn+/- hind limb skeletal muscle.   

A. Representative blood flow maps of sham-injected, VEGF- and VEGF+ANG1-treated 

hind limbs attained from dynamic contrast-enhanced computed tomography. Display 

field of view = 5cm.  B. Blood flow decreased in all but two mice over the course of the 

study. Blood flow was not affected by either treatment groups compared to the sham 

controls. n=5 for sham, n=6 for VEGF, n=5 for VEGF+ANG1, by one-way ANOVA. 

Error bars represent SD. 
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Figure 4.4: Ischemia-related reduction in blood volume is circumvented by 

VEGF+ANG1 treatment in mdx/utrn+/- hind limb skeletal muscle. 

A. Representative blood volume maps of sham-injected, VEGF- and VEGF+ANG1-

treated hind limbs attained from dynamic contrast-enhanced computed tomography. 

Display field of view = 5cm. B. Blood volume decreased in all but two mice over the 

course of the study. Blood volume was not significantly different in sham-injected and 

VEGF-treated hind limbs. VEGF+ANG1 treatment resulted in significantly higher fold-

change in blood volume compared to the VEGF and sham group. n=5 for sham, n=6 for 

VEGF, n=5 for VEGF+ANG1, *P < 0.05, by one-way ANOVA. Error bars represent SD. 
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Figure 4.5: VEGF+ANG1 increases vessel maturation following treatment in 

mdx/utrn+/- GM muscle. 

A. Western blot analysis of total alpha smooth muscle actin (αSMA) expression in GM 

tissue homogenates following treatment. B. Immunohistochemical analysis of αSMA-

positive vessels, represented as percent image area. n=6 for all groups **P < 0.01, ***P < 

0.001, by one-way ANOVA. Error bars represent SD. C. Representative 

immunofluorescence images of αSMA expression in sham-injected, VEGF- and 

VEGF+ANG1-treated GM muscles. D. Growth factor-coated beads are visible at the 

injection site. More αSMA-positive vessels are detected at the injection site of 

VEGF+ANG1-treated hind limbs compared to VEGF-treated hind limbs. Scale bar=100 

μm. 
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4.4.4 VEGF and ANG1 reduce leukocyte infiltration and 
inflammation in gastrocnemius muscle of mdx/utrn+/- mice  

To assess the effect of VEGF alone, or in combination with ANG1, on vascular 

permeability, we measured the level of CD45 expression, indicative of leukocyte 

infiltration (Gordon et al. 2013). Expression was assessed via Western blot and IHC 

analyses (Figure 4.6). While muscle treated with VEGF alone (0.35 ±0.03%) did not 

exhibit significantly different levels of CD45 compared to the sham-injected controls 

(0.29 ±0.04%), co-administration of VEGF and ANG1 did significantly reduce leukocyte 

infiltration (0.15 ±0.04%, p= 0.0084). Since CD45 only identifies infiltrating leukocytes 

and not resident macrophages already present in the skeletal muscle, H&E staining was 

employed to qualitatively assess the general degree of inflammation following treatment. 

Both the sham-injected and VEGF-treated muscles were observed to have diffuse clusters 

of inflammatory cells throughout the muscle. In contrast, muscle treated with 

VEGF+ANG1 exhibited little inflammation, with the majority of tissue devoid of 

inflammation.  

4.4.5 VEGF and ANG1 decrease collagen deposition compared to 
VEGF alone in gastrocnemius muscle of mdx/utrn+/- mice  

To assess the effect of VEGF alone or a combination of VEGF and ANG1 on muscle 

fibrosis, we measured collagen deposition using Masson’s Trichrome stain (Figure 4.7). 

There was no significant difference in collagen deposition between either the sham-

injected (9.82 ± 3.1%) or VEGF-treated (12.61 ± 3.1%) hind limb muscles. In contrast, 

hind limb muscle treated with the combination of VEGF and ANG1 exhibited only 

7.6±2.2% collagen deposition, and this difference was determined to be significantly 

lower than the amount of collagen deposition measured in VEGF-treated muscle 

(p=0.0247). 
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Figure 4.6: VEGF+ANG1 decreases leukocyte infiltration following treatment in 

mdx/utrn+/- GM muscle.    

A. Western blot analysis of CD45 expression in GM tissue homogenates following 

treatment. B. Immunohistochemical analysis of CD45, represented as percent image area. 

n=6 for all groups **P < 0.01 by one-way ANOVA. Error bars represent SD. C. 

Representative immunofluorescence images of a-CD45 expression in sham-injected, 

VEGF- and VEGF+ANG1-treated GM muscles D. H&E staining was used to 

qualitatively assess the extent of inflammation following treatment. Inflammatory foci 

are present in all groups, but only small, sparse clusters are present in muscle that 

received the VEGF+ANG1 treatment. Scale bar=100 μm 
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Figure 4.7: VEGF+ANG1 decreases collagen deposition following treatment in 

mdx/utrn+/- GM muscle.    

A. Representative Masson’s Trichrome-stained tissue sections of sham-injected, VEGF- 

and VEGF+ANG1-treated GM muscles. Scale bar=100 μm B. Quantification of collagen 

deposition (blue), represented as percent image area. n=6 for all groups *P < 0.05 by one-

way ANOVA. Error bars represent SD. 
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4.5 Discussion 

Vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG1) are 

increasingly being considered for their potential role in reducing or attenuating the 

muscle ischemia observed in patients with Duchenne muscular dystrophy (DMD) 

(McClung et al 2015). While prior studies suggest a potential role for these factors in 

enhancing endogenous repair and cell therapy, studies remain to directly investigate the 

effects of either factor on functional perfusion in a non-invasive manner. Therefore, in 

the present study, we utilized the mdx/utrn+/- mouse, a murine DMD model more prone 

to fibrosis than the commonly used mdx mouse, to measure functional perfusion via 

dynamic contrast-enhanced computed tomography (DCE-CT). The short-term effect of 

VEGF alone or in combination with ANG1 was assessed following a low dose, localized 

delivery for 16 days.  Given the high degree of variability between animals with respect 

to baseline perfusion parameters, the ability to monitor vascular-targeted therapy over 

time in the same animal is particularly valuable. DCE-CT is a safe and effective means to 

monitor both disease progression and therapeutic efficacy and shows promise for scaling 

preclinical studies directly to patients (Stewart et al 2006, Sahani et al 2007). Importantly, 

we provide the first evidence that VEGF alone is not sufficient to affect functional 

perfusion parameters in the hind limb skeletal muscle at the dose and duration 

investigated. In comparison, co-administration of VEGF and ANG1 reduced muscle 

ischemia over the course of the treatment period, as evidenced by a less marked reduction 

in blood volume relative to control groups. This finding also highlights the importance of 

investigating perfusion parameters other than blood flow alone, since the physiological 

variability of this measurement can overshadow key observations. Blood flow is subject 

to a number of environmental cues that vastly change flow measurements, such as 

temperature, fasting, exercise, and stress. While blood volume may also be affected by 

these factors, it is a more stable function that has the ability to represent changes in the 

intravascular compartment, or the space that can be perfused during the flow of blood. In 

addition to the functional measurements observed in this study, we further report that 

VEGF+ANG1 significantly reduced muscle inflammation related to either sham-injection 

or VEGF treatment alone, as well as fibrosis, relative to VEGF treatment alone.  



105 

 

The findings from this study highlight the importance of considering the stage of 

disease progression in assessing vascular therapy. During the first weeks of life, murine 

models of DMD display classic signs of rapid degeneration and regeneration, 

accompanied by a robust inflammatory response. This phase is accompanied by a 

transient increase in perfusion as assessed by DCE-CT (Ahmad et al 2011).  By nine-ten 

weeks of age, the disease evolves to a more degenerative state and fibrosis begins to 

predominate, coinciding with a progressive decrease in perfusion. Having critically 

identified a window of opportunity to intervene with therapeutics, the present study 

aimed to assess the ability of a combination of VEGF and ANG1 to slow or attenuate 

chronic inflammation, ischemia and fibrosis in DMD mice.  Our data on endogenous 

expression of the two growth factors further points to differences in the vasculature at 

different phases of disease progression. Although we did not measure differences in 

either growth factor in the hind limb (gastrocnemius) muscle, there was a significant 

reduction in both VEGF+ANG1 in the diaphragm. Since the diaphragm develops overt 

fibrosis and muscle degeneration much earlier than hind limb muscles, these differences 

may point to possible differences in expression of VEGF+ANG1 in the hind limb at later 

time points. Overall, having well-defined margins between the different disease states 

could reveal valuable information regarding the effects of VEGF+ANG1 on perfusion, 

vascular permeability, and fibrosis.  

Given that we did not measure any beneficial functional effects from a low dose 

of VEGF under the conditions used here, it would be worth investigating whether 

exogenous VEGF treatment is even necessary or if ANG1 alone may be sufficient to 

affect change, particularly at earlier stages of disease pathogenesis prior to the onset of 

overt fibrosis. Since both growth factors were decreased in the more severely affected 

diaphragm muscle, exogenous administration of these factors at a later disease stage may 

have an even greater impact on ischemia than what we observed here. In addition to its 

role in promoting vascular maturity, previous work by others has shown that ANG1 

promotes satellite cell self-renewal and inhibits apoptosis (Abou-Khalil et al 2013). 

Research in other vascular-related diseases such as cardiac ischemia and sepsis have 

uncovered the deleterious effect that low circulating levels of ANG1 may play in these 

states (Novotny et al 2008, Lee et al 2011). In human microvascular endothelial cells 
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(HMVECs), serum from sepsis patients induced intercellular gap formation, and this 

effect was reversed by supplementation with ANG1 (Parikh et al 2006). 

Prior studies have suggested that VEGF treatment decreases fibrosis (Deasy et al 

2009; Beckman et al 2013), whereas we reported an increase in collagen deposition 18 

days post-treatment compared to VEGF+ANG1 treated hind limbs. This finding is in line 

with our previous work showing that VEGF induces stress fiber formation in fibroblasts 

derived from the GM and diaphragm muscles of mdx/utrn+/- mice. We have also 

demonstrated an increase in expression of alpha-smooth muscle actin mRNA in 

diaphragm fibroblasts following VEGF treatment. Importantly, studies in other fibrotic 

diseases including idiopathic pulmonary fibrosis and scleroderma have shown that VEGF 

exacerbates disease pathology (Maurer et al. 2014 & Hostettler et al. 2014). Still, 

previous work in the DMD field has pointed to an anti-fibrotic role of VEGF. A few 

variables could account for this discrepancy. The use of the mdx/utrn+/- mouse rather 

than the mdx mouse, which our group has validated as a more suitable model due to its 

increased development of fibrosis, may be more responsive to VEGF than its mdx 

counterpart. This hypothesis speaks to the seed and soil theory whereby the mdx/utrn+/- 

tissue may be “primed” to respond to VEGF and develop fibrosis, relative to the mdx 

mouse. Another important consideration that may account for the differences between our 

findings and those of others with respect to fibrosis is the disease stage assessed in the 

current study. A number of studies use either young (5 to 7 week-old) or aged (6 month 

old) mdx mice (Messina et al 2007). It is therefore possible that VEGF plays a reduced 

pro-fibrotic role in both the early phase of the disease when acute inflammation 

predominates and in later phases of the disease when overt fibrosis has occurred in the 

muscle. Lastly, the dose used in this study is much lower than some doses cited in 

previous studies and may account for differential effects on collagen deposition following 

treatment. Regardless, a study in rabbit skeletal muscle has also indicated that long-term 

delivery of VEGF increases collagen deposition. Cumulatively, these findings suggest 

that the effect of VEGF on fibrosis may significantly impede its use as a therapeutic 

factor in DMD. Based on the results presented here, the pro-fibrotic effect of VEGF is 

circumvented when co-administered with ANG1. 
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There is a critical need to detect disease changes such as ischemia in early stages 

so that therapies can be developed before damage, i.e., fibrosis, is extensive and 

irreversible. Advanced non-invasive imaging technologies have immense potential to 

achieve this; we have used dynamic contrast-enhanced computed tomography (DCE-CT) 

and positron emission tomography (PET) to identify transient “spikes” in perfusion and 

18F-fluorodeoxyglucose (18F-FDG) uptake, respectively, in the hind limb muscles of 

preclinical mouse models of DMD (Ahmad et al 2011). Intensity of these spikes 

correlates with disease severity, degree of inflammation, and development of muscle 

fibrosis. Importantly, these studies identified a window of opportunity to intervene with 

therapeutics aimed at slowing/attenuating the inflammatory/ischemic/fibrotic process, as 

demonstrated in the present study. Further use of these technologies to delineate how 

vascular therapies augment either endogenous muscle repair or cell replacement therapy 

represent an innovative and critical approach to the treatment of muscle degenerative 

disorders. 

Future directions will aim to develop methods to better control the delivery of 

angiogenic factors. Although it is well accepted that cell-based delivery systems 

effectively deliver high payloads, there remains concerns regarding their potential pro-

tumorigenic side effects, particularly with regards to VEGF administration (Lee et al). 

Additionally, although we focused on the hind limb muscles in the current study, vascular 

therapy will need to be effective in other muscles involved in disease progression, 

particularly the diaphragm and cardiac muscles. Indeed, fibrosis and degeneration in 

these tissues account for a majority of fatalities in DMD, and therefore any promising 

treatment will need to affect these muscles as well. The fact that the combination 

treatment of VEGF+ANG1 resulted in a significant effect that was detected not only 

histologically but also functionally supports further investigation for the use of these 

factors in long term management of DMD-related ischemia, inflammation, and fibrosis. 
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5 General Discussion 

 

5.1 Chapter Summary 

The research described in this thesis includes studies that advance current knowledge of 

vascular-targeted therapy for the treatment of Duchenne muscular dystrophy. 

Importantly, very little has been reported on whether vascular-targeted therapy may 

confer functional benefits to the muscle and how angiogenic growth factors may affect 

fibrosis. This research is novel in that it investigates the effect of VEGF, alone or in 

combination with ANG1, in the mdx/utrn+/- mouse, a clinically relevant murine model 

that mimics the manifestation of DMD in patients. We focused our studies on the phase 

of disease progression when acute and rapid inflammation transitions into fibrotic 

deposition and muscle degeneration, which is around 8-10 weeks of age in the 

mdx/utrn+/- mouse. Given this tightly controlled timeline, we have elucidated some key 

findings that have not been previously reported (Table 5.1). An important consideration is 

that findings presented in this thesis include work conducted in a murine model of 

Duchenne muscular dystrophy and therefore conclusions made here may not fully 

translate to human DMD patients. Additionally, there are specific limitations to each 

study that are discussed in the following section. Overall, this chapter will summarize the 

important conclusions drawn from each study, discuss key limitations to the research, and 

propose future investigative directions that will be crucial prior to moving vascular 

therapy into patients.  
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Table 5.1: Summary of findings from studies described in chapters 2, 3, and 4.  

DM: Diaphragm muscle; GM: gastrocnemius muscle; dko: double knockout (mdx/utrn-/-

); : increased; : decreased 

 

 

  

Chapter 2 
Comparison of three murine 

models of DMD 

Chapter 3 
Effect of VEGF on DMD 

fibroblasts in vitro 

Chapter 4 
Effect of VEGF & ANG1 in vivo 

Young & aged mdx/utrn+/- mice 

exhibit more GM fibrosis than mdx 

mice 

VEGF does not affect collagen or 

Ctgf/ccn2 gene expression in DM or 

GM fibroblasts 

Endogenous [VEGF] and [ANG1]: 

mdx/utrn+/- < wild-type 

Fibrosis: 

GM << diaphragm (for all 3 models) 

VEGF ! αSMA gene expression 

DM fibroblasts 

VEGF+ANG1 " hind limb ischemia 

Extent of fibrosis is not different 

among hind limb muscle groups 

VEGF ! fibronectin in DM and GM 

fibroblasts 

VEGF+ANG1, but not VEGF alone, 

! vessel maturation 

Disease severity:  

mdx < mdx/utrn+/- << dko 

VEGF ! differentiation of GM and 

DM fibroblasts into myofibroblasts 

VEGF+ANG1 " leukocyte 

infiltration, inflammation 

mdx/utrn+/- is the most suitable 

model for assessing longitudinal 

effects of vascular therapy  

DM fibroblasts are more responsive 

to pro-fibrotic cues than GM 

fibroblasts 

VEGF+ANG1 " fibrosis 
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5.2 Conclusions by chapter 

5.2.1 Chapter 2- Selection of the mdx/utrn+/- mouse for DMD 
research 

The aim of Chapter 2 was to determine which murine model would be best suited to our 

research goals for investigating vascular-targeted therapy for DMD. Disease progression 

in mdx, mdx/utrn+/-, and dko mice was compared to that of healthy wild type controls. 

We demonstrate that, by as early as seven to eight weeks of age, the heterozygous 

mdx/utrn+/- mouse exhibits more collagen deposition (indicative of fibrosis) than age-

matched mdx littermates. Another important finding from this study was that collagen 

deposition in the mdx mouse was not determined to be significantly higher than that 

observed in healthy hind limb muscle. Other groups have shown that mdx skeletal muscle 

is fibrotic compared to healthy muscle, so the discrepancy between the literature and our 

findings may lie in that fact that fibrosis was compared on a spectrum along with 

mdx/utrn+/- and dko muscle tissue and the effect size in our study is larger than that 

comparing only mdx and wild-type.  

Since our research focuses heavily on the effects on fibrosis of angiogenic growth factors, 

particularly VEGF, this study allowed us to make intelligent decisions regarding the age 

and model best suited to assess these effects. As a result, we incorporated 9-10 week-old 

male mdx/utrn+/- mice in all subsequent studies as these mice are in the “post’ fibrotic 

phase where significant collagen deposition has occured. This is a key consideration for 

all DMD research. There are a number of studies that utilize young mdx mice and 

subsequently report decreases in fibrosis (Deasy et al., 2009; Beckman et al., 2013). 

Using an animal that is pre-fibrotic and drawing such conclusions may lead to 

misinterpretation of the results and could explain some differences in our results 

compared to those found in the literature. 

Although use of the mdx/utrn+/- mouse allows us to offer conclusions regarding the 

effect of angiogenic growth factors on fibrosis, it is clear from the findings of our study 

that the dko mouse remains, by far, the most severely affected and perhaps most accurate 

model of DMD. Since mdx/utrn+/- mice, like their mdx counterparts, may live up to 1-2 
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years of age in a laboratory setting, the disease severity is not considered fatal as it is in 

the dko mouse. As such, future studies assessing functional efficacy of treatment should 

also seek to assess effects in the dko mouse prior to scaling studies to large animals or, 

especially, to patients.  

Overall, the findings from this study have a profound impact in the field of DMD 

research, but some limitations did exist. Disease severity in mdx, mdx/utrn+/- and dko 

gastrocnemius (GM) and diaphragm muscles was compared to healthy wild type 

gastrocnemius and diaphragm muscles of C57BL/6 mice. Although C57BL/6 mice are 

the most commonly used inbred strain, C57BL/10 mice should have been used in this 

study since the mdx mouse was generated on this background and not the Bl6 

background. A few studies have investigated whether behavioural and immunological 

differences exist between these two strains (Deacon et al. 2007, McClive et al. 1994, 

Slingsby 1995). While the differences appear to be minor, the results from these studies 

highlight the need to properly select control strains. Although we would not anticipate 

this discrepancy to affect conclusions drawn from the study, for the purpose of scientific 

soundness, C57BL/10s were included for wild type controls in all subsequent studies.  

Although collagen deposition occurs earlier in this model compared to the mdx mouse, 

whether or not the difference between the two is sufficient to affect function is not 

known. We used the term “collagen deposition” synonymously with “fibrosis,” but there 

may in fact be a certain degree of collagen deposition that does not exert a negative 

impact on muscle function. Therefore, our finding that increased collagen deposition by 

7-8 weeks of age classifies the mdx/utrn+/- mouse as “more fibrotic” is an important 

assumption and should be kept in mind when referring to both models in terms of 

fibrogenesis.  

Our use of C57Bl6 mice as the healthy control model and use of a limited definition of 

fibrosis still revealed importance differences between the mdx and mdx/utrn+/- murine 

models. The limitations discussed here, if addressed, would only bolster the key findings 

observed in Chapter 2. Since there is increasing focus on the importance of fibrosis in 

DMD, many groups are looking for superior murine models to the mdx mouse, and the 
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work in this study is the first to show that phenotypic differences in collagen deposition 

arise at a young age between mdx and mdx/utrn+/- mice. One of the most important 

initial steps in designing a study is selection of a suitable animal model in which to 

challenge hypotheses. This study rigorously tested the murine models available to us and 

allowed us to definitively decide to incorporate the mdx/utrn+/- mouse in all subsequent 

studies described in this thesis. This decision thus allows us to tie a number of findings 

that contrast previously reported findings to the use of a model that is not commonly 

cited in the literature, opening the door for a new understanding of the effects of vascular 

therapy in DMD. 

 

5.2.2 Chapter 3- Role of VEGF in eliciting a fibrotic response 

The aim of the studies described in Chapter 3 was to investigate whether exogenous 

levels of VEGF may exacerbate the fibrotic response in fibroblasts derived from the 

mdx/utrn+/- mouse. In other fibrotic diseases, particularly idiopathic pulmonary fibrosis, 

elevated VEGF levels correlate with more rapid disease progression. Whether this 

relationship is causative or correlated is not fully understood. Studies in rodents indicate 

that blocking VEGF signaling can reduce fibrosis in mice and administering VEGF 

exogenously can exacerbate fibrosis in rats (Hamada et al. 2005; Farkas et al. 2009). 

Given these observations in other pathologies, we sought to determine whether VEGF 

might play a role in increasing fibrosis in DMD fibroblasts. Although we did not observe 

robust induction of a fibrotic response following VEGF treatment, as we did following 

TGFβ treatment, there were multiple findings that may point to a possible role of the 

growth factor in exacerbating fibrosis. Collagen and Ccn2/ctgf gene expression were 

unaffected by VEGF treatment. Interestingly, we did not measure an increase in 

fibronectin  (Fn1) gene expression following treatment with either VEGF or TGFβ. 

When we assessed protein expression, FN levels increased following VEGF but not 

TGFβ treatment. This is a particularly interesting finding since TGFβ is well known to 

induce FN production in fibroblasts derived from lung and other fibrotic tissues, and we 

did not observe such a response here (Torr et al. 2015; Serini et al. 1998). VEGF binding 

domains have been identified on FN, and it has been shown that VEGF binding to FN 
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increases the biological activity of VEGF by promoting a physical interaction between 

the type 2 VEGF receptor (VEGFR-2) and its integrin α5β1 receptor (Wijelath et al. 

2002). Given the role of this interaction, it is plausible that VEGF treatment resulted in 

increased protein levels, but not as part of a fibrotic response. VEGF expression has been 

shown to increase following FN administration, but not the other way around, as we 

observed in this study. This is a finding that warrants further exploration. 

One of the most intriguing findings from this study is that VEGF increased gene 

expression of alpha smooth muscle actin (Acta2) in diaphragm fibroblasts. Gene 

expression increased to a level similar to that following TGFβ treatment. Although VEGF 

led to a 1.4-fold increase in Acta2 expression in GM fibroblasts, this change was not 

considered significant given the high variability in this data set. As such, it should not be 

fully accepted that VEGF does not induce αSMA gene expression in fibroblasts derived 

from the GM muscle. In both GM and diaphragm fibroblasts, we observed formation of 

αSMA-positive stress fibers, a hallmark feature of myofibroblasts, following VEGF 

treatment. Myofibroblasts are a major cellular contributor to fibrotic tissue and 

differentiation of fibroblasts into this more contractile phenotype is suggestive of 

induction of the fibrotic response. These findings point to a potential role of VEGF in 

exacerbating fibrosis in DMD, which is a finding that contradicts previous studies 

showing a decrease in fibrosis following VEGF treatment in mdx mice. 

There are some areas for improvement that could be addressed in future studies. Previous 

research in the past decade has highlighted the importance of an appropriate substrate for 

culturing and investigating fibroblasts in vitro (Hinz et al. 2015).  Mimicking 

physiological substrate stiffness relevant to the tissue of interest is key in reproducing 

cellular responses that accurately reflect the in vivo scenario. Although the differences in 

our findings between diaphragm and GM-derived fibroblasts indicate their fibrotic 

phenotypes were maintained in culture, some changes might have resulted due to our 

culturing on a collagen skim coat rather than a three-dimensional matrix. In vivo, tissues 

range from very soft, such as bone marrow, to very hard, such as bone. Muscle tissue is 

mid-range, but moderately stiff compared to many other tissues. The culture conditions 

should attempt to mimic the stiffness of skeletal muscle ECM since others have shown 
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that matrix stiffness determines the biological activity of TGFβ available to cells. Thus, if 

our culture conditions were “too stiff,” there may have been an abundance of TGFβ 

available to produce a basal fibrotic response in all treatment groups. This explanation 

may account for the relatively low fold increase in gene expression observed in the TGFβ 

treatment group. Although this is a possibility in our study, we do not believe it played a 

major role in affecting our data since our immunocytochemistry results reveal little 

differentiation in the untreated control fibroblasts compared to either TGFβ- or VEGF-

treated cells. If our culture conditions were severely affecting TGFβ levels, we would 

have expected to see a high degree of differentiation in the fibroblasts, indicated by 

αSMA-positive stress fibers.  

Although resident fibroblasts are the most studied cell type involved in fibrogenesis, 

recent work by others has revealed a possible role for others cells in the process as well. 

Pericytes, which are located around the endothelium and are surrounded by basal lamina, 

have been shown to differentiate into myofibroblasts and contribute to ECM production 

(Schrimpf et al. 2011).  The exact role of pericytes in healthy and diseased skeletal 

muscle has not been well defined, and this is in part due to the fact that different sub-

populations of pericytes may have different roles in skeletal muscle repair, angiogenesis, 

innervation, adipogenesis, and fibrosis (Dellavalle et al. 2007, Birbrair et al. 2013a,b,c). 

Thus, without proper isolation of specific subtypes, information gleaned from pericyte 

studies could under- or overestimate their role in fibrosis. For example, only a specific 

subpopulation of Nestin-NG2+ pericytes has been shown to have myogenic properties 

capable of regenerating muscle. Another sub-population of nestin+NG2+ pericytes, 

termed type 1 pericytes, participates in fibrogenesis in aged skeletal muscle. These type 1 

pericytes, when stimulated with TGFβ, produce collagen and are positive for fibroblast-

specific protein 1. It should be noted, though, this fibrogenic capacity of type 1 pericytes 

is more pronounced in aged mice, and it has not be fully determined whether these cells 

play a role in non-age related fibrotic disease such as DMD (Birbrair et al. 2013d). 

Fibro/adipogenic progenitor cells (FAPs) have also been identified recently as a cell type 

contributing to fibrogenesis (Joe et al. 2010, Uezumi et al. 2010, 2011, Judson et al. 2013, 

Contreras et al. 2016). Like pericytes, these cells can undergo myogenesis and repair 

injured muscle or during the aging process. These integrin-α7−Sca1+PDGFR-α+ cells 
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have been identified as a major source of extracellular matrix production in repair 

mechanisms of healthy skeletal muscle. In normal repair processes, these FAPS 

proliferate upon injury, heal the damaged muscle, and then become quickly quiescent 

until once again needed. In the mdx mouse, this normal process appears to be affected 

and FAP numbers do not sufficiently reduce during the repair process and therefore 

contribute to the fibrogenic pool of cells (Lemos et al. 2015).  

It is well accepted that myofibroblasts are the major source of fibrosis in DMD and other 

diseases (Klingler et al., 2012). The knowledge gap that currently exists lies in not fully 

understanding the origin of these myofibroblasts. Work by others has demonstrated a role 

for pericytes and FAPs in the fibrogenic response. The study described in chapter 3  

assessed the effect of vascular therapy on resident fibroblasts. Whether VEGF elicits a 

fibrotic response in these other cell types is not currently known and we cannot 

extrapolate our conclusions to apply to FAPS and pericytes. Thus, given the potency of 

these cells in promoting fibrogenesis, future studies should address the possibility of off-

target effects of VEGF on these cell populations as well. 

Though these other cell populations remain to be explored, VEGF elicited some 

components of a fibrotic response in resident DMD fibroblasts, which is a novel finding 

that has not been previously reported. Additionally, we show that fibroblasts derived 

from environments that differ in disease severity (i.e. diaphragm and GM muscles), are 

phenotypically distinct and respond differently to pro-fibrotic cues. Taken together, these 

results reveal unexplored territory for future work and could drastically alter our 

understanding of the interplay between fibrosis and angiogenesis in DMD.   

 

5.2.3 Chapter 4- Effect of VEGF and ANG1 on Functional 
Perfusion 

The aim of chapter 4 was to determine what effect, if any, pro-angiogenic factors exert on 

functional perfusion in vivo in the mdx/utrn+/- mouse. Specifically, we sought to 

determine whether VEGF alone, when delivered locally, was sufficient to affect 

functional perfusion or if another factor is required. In this study, we tested VEGF alone 
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or in combination with angiopoietin-1 (ANG1). Dynamic contrast-enhanced computed 

tomography (DCE-CT) was employed to assess the efficacy of vascular-targeted therapy 

in dystrophic murine skeletal muscle in affecting blood flow and blood volume. DCE-CT 

is a novel way to examine muscle perfusion because it can assess global blood flow 

throughout the hind limb, a benefit not afforded by other modalities such as laser Doppler 

imaging. Although perfusion decreased over the duration of the study, consistent with 

progression of ischemia, the degree to which blood volume decreased was less marked in 

mice that received VEGF+ANG1 in combination. We did not measure a significant effect 

using VEGF alone when compared to the sham-injected group. Assessment of vessel 

maturation, indicated by αSMA-positive vessels, validated the imaging findings.  In 

addition to vessel maturation, the combination VEGF+ANG1 treatment resulted in 

reduced collagen deposition and leukocyte infiltration compared to either the sham or 

VEGF group, suggesting a potential anti-fibrotic and anti-inflammatory role of 

VEGF+ANG1 in DMD.  

Because the previous study, described in chapter 3, suggested VEGF may enhance the 

fibrotic response in DMD, we investigated the effect of VEGF with and without ANG1 

on fibrosis in vivo. Our statistical analysis determined that collagen deposition was not 

significantly different between sham-injected and VEGF-treated hind limbs, but the 3% 

difference in collagen deposition should not be overlooked, as this may be sufficient to 

have a biological effect in muscle function. Lastly, the only measure of fibrosis we 

assessed in this study was collagen deposition via Masson’s Trichrome stain. Even 

though VEGF did not exacerbate collagen deposition compared to the sham control, 

further analysis of other fibrotic markers such as FN and CCN2/CTGF could reveal 

different findings.  

Since we showed that vessel maturation was increased following VEGF+ANG1 

treatment and leukocyte infiltration was decreased, we concluded this reduction in 

inflammatory cells at the site of muscle injury could play a role in reducing fibrosis. 

Since inflammatory cells are the major source of TGFβ (which then acts on fibroblasts to 

induce extracellular matrix production) reducing the number of these cells in muscle 

tissue may be an effective way to reduce chronic inflammation that lays the foundation 
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for the eventual fibrosis. Although we quantitatively assessed infiltration of CD45-

positive leukocytes, we only performed a qualitative analysis of total inflammation using 

the hematoxylin and eosin stain. Infiltrating leukocytes are not the only cellular player 

involved in skeletal muscle inflammation, so analysis of resident macrophages may 

reveal an even further role of ANG1 in reducing inflammation. 

The delivery system used to administer growth factor treatment to mdx/utrn+/- hind limb 

muscle in chapter 4 represents one of the most important limitations to this study. 

Alginate beads were coated with VEGF or a combination of VEGF and ANG1. Beads 

prepared for sham injection were soaked in PBS. Although we performed proof-of-

principle studies to confirm presence of growth factor up to a minimum of 14 days post-

implant (Appendix C), we were unable to calibrate the actual dose of growth factor 

delivered. Insulin syringes were used for injections and some beads always remained in 

the hub of the needle following implant. Further, we did not determine the variability in 

coating efficiency for either growth factor. Given these considerations, we cannot 

ascertain that a consistent dose of either VEGF or ANG1 was administered each time. 

Further, although the alginate beads are relatively small, ranging in size from 50 to 

100um, the bolus of beads (approximately 100 per injection) remained at the injection 

site for as little as 4 weeks post-implant. Given this observation, the beads themselves 

may have induced a minor chronic inflammatory response, which may have contributed 

to overall disease progression. Although we attempted to deliver just a localized dose, our 

analyses reveal that the GFs likely exerted systemic effects, as evidenced by a lack of 

difference in perfusion between control and treated contralateral hind limbs.  Localized 

drug delivery can often be beneficial, particularly in cases where potent or toxic drugs are 

administered, but systemic delivery may be the ideal outcome here given the systemic 

effects of disease progression. Overall, the limitations involved with this bead delivery 

system highlight the need to deliver a targeted dose of growth factor, ideally 

systemically, to account for these sources of variability in this study.  

Use of DCE-CT has drastically improved patient care for other ischemic diseases such as 

stroke (d’Esterre et al. 2012). Whether it is the optimal non-invasive imaging modality 

for assessing vascular targeted therapy deserves further consideration.  The reduction in 
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perfusion observed in this study correlates to the time when fibrosis begins to contribute 

to a significant portion of the skeletal muscle. Thus, an assumption made here is the 

ischemia observed functionally is, at least in part, due to the progression of fibrosis. Since 

fibrotic and non-fibrotic muscle tissue does not differ sufficiently in density, these tissues 

cannot be well delineated on an anatomical CT scan. It would therefore be valuable to use 

another imaging modality capable of measuring fibrotic tissue to validate this decline in 

perfusion and corresponding increase in fibrosis. Since MRI can distinguish tissues 

composed of differing water content, fibrotic tissue appears as a lower signal area than 

surrounding skeletal muscle (McIntosh et al., 1998; Chen et al. 2006). Combining MRI 

perfusion with anatomical imaging of fibrotic areas could strengthen the findings we 

attained from CT perfusion. Other groups have used MRI to assess vasomodulation in 

humans following exercise with and without taking vasoregulating compounds. 

Assessing vasodilation and blood oxygenation could be another useful tool in further 

clarifying assumptions made in our study (Bulte et al. 2006; Towse et al. 2005). 

While taking into account these limitations, this study described a novel way to assess the 

functional effects of vascular therapy for DMD using a non-invasive, clinically relevant 

approach. In addition, in contrast to other reports, we do not observe an anti-fibrotic 

effect of VEGF following treatment, a finding that could be partially explained by our 

unique use of the mdx/utrn+/- murine model. Building on the findings from Chapter 3, 

we demonstrate potential deleterious effects of VEGF alone as a treatment for DMD and 

show these effects can be avoided when combined with ANG1.   

 

5.3 Future directions 

The conclusions drawn from this thesis examining vascular therapy in the mdx/utrn+/- 

mouse have resulted in a number of questions that remain to be answered. Some of our 

unanticipated findings have generated new avenues to explore and may eventually 

expedite the use of vascular therapy in DMD patients. There are also a number of 

findings from our in vivo work that may be extended to other fibrotic and vascular-related 

diseases. 
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Given the increasing attention that fibrosis is receiving for its devastating effects in 

DMD, future research that explores this aspect of the disease could reveal new insights to 

this process. Our in vitro work assessing the effect of VEGF on the fibrogenic response in 

resident fibroblasts pointed to altered fibrotic phenotypes based on the muscle from 

which these cells were derived. Since we demonstrate that diaphragm fibroblasts are 

more responsive to TGFβ and VEGF while GM fibroblasts appear to be more resistant to 

these cues, we hypothesize altered signaling occurring in these different populations. 

Future work in our lab will focus on performing microarray gene analysis to determine if 

there is a novel gene or combination of genes that is/are up- or down-regulated in fibrotic 

cells. Work in Dupuytren’s disease, a fibrotic disease of the palmar fascia, reveals 

differential gene expression in fibroblasts isolated from the lesion versus fibroblasts 

parallel to the lesion (Satish et al. 2008). These findings suggest that similar profile 

differences could exist in diaphragm versus GM fibroblasts to reveal potentially novel 

molecular targets for future treatments.   

 One of the most encouraging findings attained from this research was that VEGF+ANG1 

treatment prevents overt ischemia, as was observed with VEGF treatment alone. Future 

studies should aim to determine whether VEGF is even necessary to achieve the desired 

effects from vascular therapy or if ANG1 treatment alone is sufficient. Given that VEGF 

produces leaky vasculature and it is implicated in hemangioma formation when 

administered at a sufficiently high dose, avoiding exogenous use of this growth factor 

might be ideal in DMD (Lee et al. 2000). Use of ANG1 in other disease models such as 

acute lung injury and sepsis suggest that protecting against vascular leakage is a powerful 

approach for attenuating undesired downstream consequences (Huang et al. 2008; Fang et 

al. 2015). Future studies in our lab should also seek to use cartilage oligomeric matrix 

protein (COMP)-ANG1, a soluble ANG1 derivative that has more potent effects on the 

Tie2 receptor than does ANG1 (Cho et al. 2004, 2005, Ryu et al. 2015).  

Although work in other fields point to the possibility of using ANG1 alone as a treatment, 

further work is required to assess whether the effect of VEGF on endogenous repair and 

cell therapy is ultimately a justified use of the growth factor as a treatment. Since prior 

studies have shown that VEGF enhances efficacy of cell therapy by optimizing paracrine 
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effects, VEGF may still play an important therapeutic role that is independent of its effect 

on perfusion (Beckman et al. 2013). Having now identified a disease time point whereby 

intervention might be optimal, future studies in our lab will investigate whether vascular-

targeted therapy will enhance survival of satellite cell transplants. Since it is well 

accepted that transplanted cells exert their effects by way of paracrine signaling, 

increasing their survival post-transplant may be an effective way of enhancing their 

function. Future studies in our lab will use other non-invasive imaging modalities to 

target satellite cells post-implant (Appendices G-I). Satellite cells expressing luciferase 

and/or a mutant herpes simplex virus type 1 sr39 thymidine kinase can be non-invasively 

targeted using bioluminescence or positron emission tomography imaging, respectively 

(Ray et al., 2007. Thus, we can directly assess the effect of VEGF on cell transplant 

survival in longitudinal manner that circumvents the need for repeated ex vivo analysis.   

A promising new avenue for vascular therapy is development of a targeted delivery 

system. Targeted drug delivery is a rapidly emerging in the field of cancer research for 

delivering chemotherapy drugs and radioligands for tumour treatment and imaging, 

respectively (Khaw et al., 2014). Use of a targeted drug delivery system could have a 

number of benefits for vascular therapy in DMD. A targeted system would circumvent 

the use of viral delivery as well as allow for systemic delivery to all damaged muscle, 

especially ones that are difficult to reach via intramuscular injection such as the 

diaphragm. This ability to target the diaphragm may be the most important factor since 

disease progression in the respiratory muscles is the major contributing factor to DMD 

mortality (Khirani et al., 2014). In all three murine models of DMD discussed in this 

thesis, fibrosis and muscle degeneration in the diaphragm far exceeds that observed in the 

hind limb muscles. Thus, regardless of the animal model used, any study that reports 

efficacy in the diaphragm represents more potential than efficacy reported elsewhere in 

the body. Systemic delivery would also allow for administration of low doses with little 

off target effects, addressing the issues related to hemangioma formation following 

VEGF treatment.  In order to develop a targeted drug delivery system, a marker specific 

to damaged muscle will need to be identified. Markers that would be up regulated in the 

inflammatory response, such as CCR2 and E-selection, or markers up regulated in the 

fibrotic response, such as CCN2/CTGF or ADAM12, are attractive candidates 
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(Mojumder et al. 2014, Farini et al. 2007). A key consideration here is targeting a 

biomarker without affecting function, if function is still desired. On the other hand, 

neutralizing the activity of some of these markers with the use of an antibody might have 

synergistic effects that add to the benefits of vascular therapy. 

Overall, the research described in this thesis links two-dimensional histological effects of 

vascular therapy to non-invasive, global changes following treatment. Future work should 

answer questions relating to vascular therapy that we did not investigate within the body 

of this work. Three-dimensional histopathology reconstruction and intravital video 

microscopy may describe parameters of angiogenic therapy not answered by DCE-CT. 

Such parameters include vessel enlargement, tortuosity, blood oxygenation, and degree of 

branching/bifurcation following treatment (Xu et al., 2015; Frontini et al., 2011; Novielli 

& Jackson, 2014). Combining our findings with these techniques may have profound 

impacts on the way we utilize vascular-targeted therapy in the context of DMD. 

Despite tremendous advances in care for patients living with DMD, the disease remains 

invariably fatal. Vascular-targeted therapy is just one therapeutic approach currently 

under investigation. While the findings described in this thesis support the use of pro-

angiogenic growth factors for DMD, it is the prevalent opinion in the field that any 

eventual cure will involve a multifaceted approach. Thus, our long-term goal is to work 

in concert with groups investigating ways to reintroduce dystrophin to DMD patients, a 

combinatorial approach that may truly extend life expectancy and, importantly, improve 

quality of life.  
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Appendix A: Colour thresholding to analyze collagen content in histological sections 

stained with Masson’s Trichrome. 

 

Quantifying collagen deposition in Masson’s Trichrome stained tissue sections. 5um 

sections of gastrocnemius tissue were stained with Masson’s Trichrome (A,B) on 

separate days and imaged on a Zeiss Microscope using different exposure windows, 

producing different hues of blue (collagen) and orange (muscle).  Images were 

transformed into Lab colour space allowing the isolation of the colour and lightness 

components of each pixel. A k-means clustering algorithm was then applied to the colour 

components of each individual image to partition the pixels into groups of relatively ‘red’ 

or ‘blue’ colour values (C,D).  
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Appendix B: Fibroblasts isolated from dystrophic mdx/utrn+/- mice. 

 

Primary fibroblasts isolated from mdx/utrn+/- muscle. Fibroblasts migrate away from 

tissue explants (shown above: diaphragm fibroblasts). Immunocytochemistry confirms 

presence of fibroblasts by assessing vimentin and CCN2 expression. Scale bar=50μm.  
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Appendix C: ELISA analysis demonstrates that localized delivery of vascular 

endothelial growth factor (VEGF165) results in slow release of the growth factor for 

up to two weeks post-injection. 

 

VEGF164 levels following intramuscular implantation of VEGF164-coated beads. 

Alginate beads were coated with 0.5ug of recombinant human VEGF165 and injected into 

the lateral head of the gastrocnemius muscle of mdx mice. At 3, 7, and 14 days post-

injection, mice were sacrificed and tissue was collected for ELISA analysis (n=2 per time 

point). Tissue was collected from four different regions to indicate how far VEGF 

treatment diffused (tissue directly surrounding and including the injection site [black], 

tissue less than 5mm from the injection site [dark grey], tissue more than 1cm from the 

injection site [medium grey], and tissue from the contralateral limb [light grey]). VEGF 

was still measured 14 days post-implant. Note: No cross-reactivity with mouse VEGF164 

was detected using this assay. 
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injection site 

Very distal 
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Distal 
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Appendix D: Results from initial perfusion study using 5-7 week-old mdx mice  

 

Blood flow and blood volume perfusion maps acquired from DCE-CT scans at 

baseline and two weeks following treatment with pro-angiogenic growth factors. 

Mdx mice were injected with either PBS and VEGF-coated beads (A,C,E,G) or VEGF 

and VEGF+ANG1-coated beads (B,D,F,H) . Mice were scanned at baseline (A,B,E,F) 

and two weeks post-implant (C,D,G,H). Blood flow (A,B,C,D,I) and blood volume 

(E,F,G,H,J) were measured using CT Perfusion 5 software (n=5, p<0.05). 



139 

 

 

Appendix E: Dynamic contrast-enhanced CT scans acquire data that can be used to 

attain functional perfusion maps. 

 

An anatomical and functional map acquired from DCE-CT scans. An axial 

anatomical scan (A) yields cross-sectional images. Bony landmarks such as the tail, 

fibula and tibia are easily identified. A black void is visible after injection of Affi-Gel 

Blue Gel beads (either soaked in PBS or coated with growth factor). Following a bolus of 

iodinated contrast agent, a series of one-second scans are taken to acquire functional data. 

CT Perfusion 5 software is used to generate perfusion maps (B).     



140 

 

 

Appendix F: Quantifying fluorescence images to include αSMA+ blood vessels and 

exclude αSMA+ myofibroblasts 

 

An anti-αSMA primary antibody marks both mature vasculature and 

myofibroblasts in dystrophic muscle. To accurately quantify mature blood vessels 

(green arrows) on histological sections, extreme care must be taken to exclude αSMA+ 

myofibroblasts (pink brackets). Implementation of a semi-automatic grey scale 

thresholding algorithm detects presence of vessels only (pink signal in segmented image).    

Raw immunofluorescence image  

Green arrows 
identify vessels 

Pink brackets 
identify 
myofibroblasts 

Segmented image 
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Appendix G: Molecular Imaging to Target Transplanted Muscle Progenitor Cells4 

Introduction 

Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that 

affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration (Emery 

2002; Blake et al. 2002). In patients, the ability of resident muscle satellite cells (SCs) to 

regenerate damaged myofibers becomes increasingly inefficient4. Therefore, 

transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a 

promising therapeutic approach to DMD. A major limitation to the use of stem cell 

therapy, however, is a lack of reliable imaging technologies for long-term monitoring of 

implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, 

real-time approach to evaluate the success of myoblast transplantation. This method takes 

advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], 

monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose 

expression can be imaged with different imaging modalities (Ray et al. 2004, 2007). A 

variety of imaging modalities, including positron emission tomography (PET), single-

photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), 

optical imaging, and high frequency 3D-ultrasound are now available, each with unique 

advantages and limitations (Massoud & Gambhir 2003). Bioluminescence imaging (BLI) 

studies, for example, have the advantage of being relatively low cost and high-

throughput. It is for this reason that, in this study, we make use of the firefly luciferase 

(fluc) reporter gene sequence contained within the fusion gene and bioluminescence 

imaging (BLI) for the short-term localization of viable C2C12 myoblasts following 

implantation into a mouse model of DMD (Sicinski 1989; Mattson 2001; Anderson et al. 

                                                 

4
 This appendix includes content reproduced with permission from 

Gutpell K, McGirr R, Hoffman L (2013). Molecular Imaging to Target Transplanted Muscle Progenitor 

Cells. J Vis Exp (73), e50119, doi:10.3791/50119. 
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1988). Importantly, BLI provides us with a means to examine the kinetics of labeled 

MPCs post-implantation, and will be useful to track cells repeatedly over time and 

following migration. Our reporter gene approach further allows us to merge multiple 

imaging modalities in a single living subject; given the tomographic nature, fine spatial 

resolution and ability to scale up to larger animals and humans (Massoud & Gambhir 

2003), PET will form the basis of future work that we suggest may facilitate rapid 

translation of methods developed in cells to preclinical models and to clinical 

applications. 

 

Keywords: Molecular Biology, Issue 73, Medicine, Biophysics, Biomedical Engineering, 

Cellular Biology, Anatomy, Physiology, Genetics, Surgery, Diseases, Musculoskeletal 

Diseases, Analytical, Diagnostic and Therapeutic Techniques and Equipment, 

Therapeutics, Bioluminescence imaging (BLI), Reporter Gene Expression, Non-invasive 

Targeting, Muscle Progenitor Cells, Myoblasts, transplantation, cell implantation, MRI, 

PET, SPECT, BLI, imaging, clinical techniques, animal model 

Protocol 

Maintenance and Propagation of C2C12 Myoblasts 

1. Plate C2C12 myoblasts in a 75 cm2 flask and maintain cells in high glucose 

Dulbecco's Modified Eagle's Serum (HG-DMEM) supplemented with fetal bovine 

serum (FBS) to a final concentration of 10%. Do not allow cells to become confluent 

at any time, as this will deplete the myoblast population. Medium should be changed 

every other day. Note: always warm medium to 37 °C in a water bath prior to use. 

2. When myoblasts become approximately 80% confluent, passage cells to a new flask. 

Aspirate culture medium. Wash cells with 4-5 ml Hanks Balanced Salt Solution 

(HBSS) to remove all traces of culture medium, which contains trypsin-inhibiting 

serum. Briefly rinse the cell layer with 2-3 ml 0.25% (w/v) trypsin-EDTA solution to 

dissociate the adherent myoblasts from the flask. Aspirate trypsin and place flask in 

incubator at 37 °C for 5 min. 
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3. During this incubation, prepare a new flask with 9 ml of HG-DMEM/10% FBS 

medium. After trypsinization, add 10 ml of complete medium to cells and pipette 4-5 

times to ensure collection of all cells in the medium. Add 1 ml of cell suspension to 

the new flask and incubate in 5% CO2 at 37 °C. 

C2C12 Cell Transfection 

1. Once cells have reached 50% confluency, transfect according to manufacturer's 

instructions from Invitrogen. Briefly, combine 90 μl Lipofectamine 2000 reagent with 

4.5 ml OPTI-MEM medium. In another tube, combine 36 μg CMV-trifusion reporter 

gene DNA with 4.5 ml OPTI-MEM. Flick each tube to combine and wait 5 min. 

Combine contents of both tubes, mix gently and incubate at room temperature for 

exactly thirty minutes. Note: A second flask should also be set up for untransfected 

cells that only receive Lipofectamine and OPTI-MEM to serve as a negative control. 

2. Remove medium from C2C12 cells and add 15.5 ml of fresh HG-DMEM/10%FBS 

medium. Add transfection medium to bring total volume to 20 ml. 

3. Allow cells to transfect overnight for at least 20 hr at 37 °C. 

4. Next day, aspirate transfection medium and add 10 ml HG-DMEM/10%FBS. 

5. View cells under an inverted fluorescent microscope. Capture both bright field and red 

fluorescence images (using a TRITC filter cube; mrfp ex/em: 584/607 nm). Count the 

number of RFP-expressing cells viewed under fluorescence divided by total number of 

cells viewed under bright field for multiple fields of view to generate transfection 

efficiency. 

Assessment of Cell Survivability/MTT Assay 

1. One day prior to transfection, plate 1x105 C2C12 cells into each well in a 24-well 

plate. Cells should be plated in 500 μl volumes in HG-DMEM/10%FBS . 

2. Next day, transfect myoblasts overnight as previously described. Follow 

manufacturer's suggestions for transfection reagent volumes for a 24-well plate. 
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Incubate a set of wells with Lipofectamine only (no DNA) as a control. View cells 

under fluorescence to ensure that proper transfection has occurred. 

3. Remove transfection medium and incubate myoblasts with 5 mg/ml thiazolyl blue 

tetrazolium bromide (MTT) in HG-DMEM/10% FBS. Add D-luciferin to eight of the 

transfected wells, and incubate at 37 °C for four hours. 

4. Remove medium from wells. Solubilize blue formazan crystals by adding 180 μl 

isopropanol to each well. Shake at 37 °C for 15 min. 

5. Avoiding any precipitate, pipette solution into a 96-well plate and read absorbance at 

575 nm. 

Preparation of Myoblasts for Transplant 

1. Remove medium, wash myoblasts with HBSS, and trypsinize cells as outlined in 1.1. 

2. Re-suspend cells in 4 ml of complete medium. 

3. Using a hemocytometer, count cells to generate volumes containing 106 myoblasts. 

Pipette volume into sterile 1.5 ml microtubes. With a transfection efficiency of ~10%, 

these values indicate that 100,000 luciferase-expressing cells are detectable on the GE 

ExploreOptix scanner after transplant. 

4. Attain a final injection volume of 15 μl, containing 106 C2C12 cells. If necessary, 

centrifuge microtubes at 2,000 rpm for one minute. Carefully aspirate supernatant with 

a pipette. Re-suspend cells in 15 μl of HG-DMEM lacking FBS. 

Cell Implantation 

1. Anesthetize mouse with 2% isoflurane/2%O2. Pluck hair from the dorsal hind limb 

area. Maintain anesthesia at 1.5%isoflurane/2%O2. 

2. Ensure C2C12 myoblasts are well suspended. With the mouse in a prone position, 

extend the hind limb and use an insulin syringe to inject cells directly into the lateral 



145 

 

head of the gastrocnemius muscle at a 30 ° angle. Inject transfected myoblasts into the 

right hind limb and untransfected myoblasts into the contralateral (left) hind limb. 

3. Perform a baseline bioluminescence scan: Quickly transfer mouse to stage in the 

optical scanner, laying the mouse in a prone position. Hook up the anesthetic line. To 

ensure the mouse remains anesthetized, a second person should be present to hook up 

the anesthetic line while the other places the animal in the scanner. 

4. Gently extend the hind limb so the area of injection is visible. Tape hind limbs in place 

with a gentle adhesive such as medical tape. 

5. Close the chamber and ensure that no light can access the interior of the scanner, as 

this will increase the background signal detected. The scanner should be set to 

parameters included in your manufacturer's instructions for bioluminescence imaging. 

Specifically, ensure "no laser" is selected. 

6. Draw a region of interest (ROI) around the plucked area and start scan. 

Injection of Fluc Substrate, D-luciferin, into Mdx Mouse 

1. While the mouse is anesthetised intraperitoneally inject 150 mg/kg of firefly luciferase 

substrate, D-luciferin (from a 40 mg/ml stock solution, made up according to 

manufacturer's instructions). 

2. Recover mouse and allow a 15 min uptake period before preparing mouse for the next 

scan. 

BLI to Target Luc-expressing MPCs Following Implant into Mouse Models of DMD 

1. After the uptake period, anesthetise mouse again, as described in 5.1. 

2. Transfer the mouse back to the optical scanner and perform another bioluminescence 

scan in the same manner as the background scan. 

3. Although a 20 min uptake period should provide maximal signal intensity, a 

subsequent scan may be performed. 
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4. Upon completion of image acquisition, sacrifice the mouse according to guidelines set 

by your Institutional Animal Ethics Committee and the Canadian Council on Animal 

Care (CCAC). Isolate hind limb muscle and place immediately in 10% formalin to fix 

for paraffin embedment. Perform immunohistochemistry staining for luciferase to 

confirm intramuscular injection of myoblasts. 

Representative Results 

Upon 50-60% confluency, C2C12 myoblasts were transiently transfected with the above-

mentioned fusion reporter gene construct composed of firefly luciferase [fluc], 

monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk](Figure 1A). 

Transfection efficiency was calculated via fluorescence microscopy (Figures 1B,C), 

making use of the mrfp sequence in our reporter construct. Cell survivability was not 

affected by labeling with the BLI substrate, D-luciferin (Figure 1D). Following 

transfection, approximately 100,000 mrfp-expressing myoblasts were implanted 

intramuscularly into the gastrocnemius muscle of mdx mice (determined previously); 

100,000 untransfected cells were similarly implanted into the contralateral hind limb as a 

control. Immediately following cell implantation, mice were injected intraperitoneally 

(IP) with 150 mg/kg D-luciferin. Following an uptake period of ~20 min, mice were 

imaged on a small animal optical scanner (GE ExplorOptix black box that is equipped for 

live animal bioluminescence and fluorescence). As previously demonstrated, both in vitro 

and post-implantation (manuscript submitted) uptake of D-luciferin were specific to fluc-

expressing myoblasts, with no detectable bioluminescence in untransfected cells (Figure 

2). Immunohistochemistry confirmed intramuscular transplantation of myoblasts. 
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Figure 1. Schematic of CMV-trifusion reporter construct (A); brightfield/fluorescence 

images of C2C12 myoblasts transfected with the trifusion reporter plasmid (B,C); MTT 

assay to assess C2C12 cell survivability following labeling with BLI substrate, D-

luciferin (D). 
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Figure A2. Bioluminescence imaging (BLI). BLI targets luciferase-expressing cells 

following transplant (A). A region of interest is drawn to enclose the plucked hind limb 

area where myoblasts are injected. Bioluminescence is not detected during a background 

scan. At 23 min after injection of D-luciferin, a clear signal is detected from the right 

hind limb where luciferase-expressing myoblasts are injected. No bioluminescence is 

detected in the contralateral hind limb injected with untransfected myoblasts. IHC using a 

firefly luciferase antibody confirms intramuscular implantation of transfected C2C12 

cells (B). DAPI was used as a counterstain. Scale bar= 50um. 

  

A

B
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Discussion 

In this study, we have described a fast and reliable molecular imaging, reporter gene 

approach to non-invasively target myoblasts/MPCs following transplantation. While this 

study demonstrates the short-term localization of transplanted MPCs via bioluminescence 

imaging (BLI), the manner in which cells are targeted can, in fact, be easily applied to a 

longitudinal assessment of cell engraftment, through the implantation of cells that stably 

express the reporter gene. To this end, our group has generated transgenic mouse lines 

that harbour the unified reporter gene. Only cells expressing the reporter gene oxidize D-

luciferin to produce photons for visualization using BLI. Since oxidation of D-luciferin is 

dependent on gene expression, this is a powerful technology with which to non-

invasively image viable transplanted cells. Muscle tissue harvested from these transgenic 

mice and satellite cells (SCs) isolated via FACS can indeed be targeted following 

implantation into mdx mice. Additionally, we can track their differentiation status 

through the use of a muscle-specific promoter, further heightening the usefulness and 

importance of molecular imaging technologies, such as presented herein, to the field of 

DMD research. In addition to its rapidity and low-cost, BLI is non-toxic, making it an 

attractive choice for frequent imaging of small animals. This feature, as well as its high 

specificity, will be invaluable in refining myoblast replacement therapies in pre-clinical 

disease models of Duchenne muscular dystrophy before advancing to clinically 

applicable studies involving technologies such as PET. 
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Appendix H: C2C12 myoblasts expressing the trifusion reporter under control of 

the myogenin promoter can be targeted ex vivo following injection   

Immunohistochemistry confirms intramuscular implantation of myogenin-FMT-

expressing C2C12 myoblasts. Differentiated C2C12 myoblasts transiently transfected 

with myogenin-FMT DNA express mRFP (A). Bright field and fluorescence images 

reveal an expression level of less than 1% (A, B) scale bar=50µm. One million C2C12 

cells (10,000 luciferase-expressing) are transplanted into the hind limb muscle of an mdx 

mouse. Immunohistochemistry confirms intramuscular implant (C-E). 
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Appendix I: Fluorescence activated cell sorting of satellite cells from transgenic 

mice expressing a trifusion imaging reporter driven by the muscle-specific promoter 

myogenin 

 

 

Satellite cells FACS-isolated from a transgenic myogenin-FMT mouse. Satellite cells 

are sorted based on positive staining of alpha-7 integrin, negative staining of the lineage 

markers CD31, CD45, CD11b and Ly6A/E, and a forward-scatter high profile (A). After 

7 days in culture, satellite cells differentiate into myogenin-expressing myocytes that 

express the mRFP reporter (B,C). Immunocytochemistry confirms differentiation along 

the myogenic pathway, as indicated by the expression of MyoD and myogenin. MyoD, an 

early indicator of myoblast activation, is not expressed in more differentiated cells where 

myogenin is expressed (scale bar=50µm). 
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Appendix K: Animal Use Protocol Approval 

  

 

2008-067::7: 

AUP Number: 2008-067 

AUP Title: Non-Invasive Imaging of Therapeutics in Mouse Models of DMD 

 

 

Yearly Renewal Date: 12/01/2015 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2008-067 has been approved, 

and will be approved for one year following the above review date. 

1. This AUP number must be indicated when ordering animals for this project. 

2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared through the ACVS 

office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 

Please ensure that individual(s) performing procedures on live animals, as described in this 
protocol, are familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 

components (biosafety, radiation safety, general laboratory safety) comply with institutional 

safety standards and have received all necessary approvals. Please consult directly with 

your institutional safety officers. 

Submitted by: Kinchlea, Will D  

on behalf of the Animal Use Subcommittee 
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