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Abstract 

Climate change can affect the performance of the only two vascular plant species found 

in Antarctica, Deschampsia antarctica and Colobanthus quitensis. I investigated the 

response of these two species to warming and elevated CO2 in terms of photosynthesis 

and leaf anatomy. While photosynthesis increased directly with rising temperature and 

CO2, it showed no acclimation to changes in growth temperature, and a small degree of 

acclimation to growth under elevated CO2. Likewise, leaf anatomy displayed little 

plasticity in response to changes in the growth environment, although D. antarctica’s 

stomatal groove structure was modified under warming, likely to reduce water loss. 

Biomass accumulation in both species increased at elevated growth CO2; however, 

warming suppressed growth in the warmest treatments in D. antarctica, and under all 

warming treatments in C. quitensis. My results proposed mechanisms for past trends of 

expanding population in both species and predictions of their performance in future 

climates. 
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CHAPTER 1: INTRODUCTION 

1.1 Climate change 

Human activities since the Industrial Revolution, including burning of fossil fuels and 

land use change, have significantly increased atmospheric CO2 concentration. As a result, 

atmospheric CO2 concentration has risen from 280 ppm in the 19th century to 400 ppm in 

2014, as 2000 Gt CO2 from anthropogenic sources were released into the atmosphere 

during this period (IPCC 2014). The increases in atmospheric CO2, as well as other 

greenhouse gases from anthropogenic sources, have resulted in a global rise in 

temperature. Global average temperature, integrated between land and sea, has risen by 

between 0.65 and 1.08 ºC from 1880 to 2012. As a result, there have been significant 

declines in sea ice, and a rise in sea level, as well as other major changes in the climate 

system (IPCC 2014). 

The Intergovernmental Panel on Climate Change (IPCC) has issued five assessment 

reports since 1990 to synthesize scientific research surrounding the evidence of climate 

change and predictions of future climates. Predictions are usually grouped into four 

emission scenarios, with the best case scenario predicting zero emissions of greenhouse 

gases globally before 2100, and the worst case scenario being “business-as-usual”. 

Because of the long residence time of CO2 in the atmosphere, the warming trend is 

expected to continue, even under the zero emission scenario, due to cumulative past 

emissions (IPCC 2014). Under the business-as-usual emission scenario, by 2100, annual 

greenhouse gas emissions are expected to more than double the current level of emissions 

(IPCC 2014); in this worst-case scenario, global mean surface temperature will increase 

by over 4 ºC by 2100. This trend of rising temperature and atmospheric CO2 can have 

major implications for many biological systems. 

 

1.2 Terrestrial environment in Antarctica 

1.2.1 Physical conditions in Antarctica 
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Antarctica occupies one-tenth of the Earth’s land surface, mostly south of the 60 ºS 

latitude (Kennedy 1995). The continent consists of three main zones: the mainland south 

of the Antarctic Circle, the Maritime Antarctic (which includes the Antarctic Peninsula 

and its associated islands), and the sub-Antarctic islands north of the 60 ºS latitude 

(Alberdi et al. 2002). The difference in climate among these three zones is the result of 

correlated variation in latitude, distance from the sea, day length, and thereby temperature 

and precipitation (Holdgate 1977). Antarctica experiences the coldest conditions on 

Earth. The climate on the continent varies greatly among the sub-Antarctic, Maritime 

Antarctic, and continental Antarctic, generally growing milder with decreasing latitude. 

Temperature can be above freezing for at least 6 months per year in the sub-Antarctic 

islands, above 0 ºC in mid- austral summer and just above -15 ºC in the Maritime 

Antarctic, or below freezing even in the austral summer and dropping well below -25 ºC 

in the austral winter in the continental Antarctic (Holdgate 1977).  

Despite holding 90% of the Earth’s freshwater, Antarctica is the driest continent on 

Earth. Its climate ranges from arid to semiarid, and the continental Antarctic is 

considered a desert. This paradox exists because the vast majority of fresh water on the 

continent is either frozen or sporadic in distribution and transient in timing, mostly due to 

fluctuations in temperature between day and night and between austral summer and 

winter (Kennedy 1993). Annual precipitation ranges from 100-200 cm in the sub-

Antarctic islands to insignificant amounts in the continental Antarctic (Holdgate 1977). 

While temperature might limit the distribution of species on a regional scale, moisture 

availability might determine the distribution of life forms at the microhabitat level 

(Kennedy 1993).  

The extreme thermal and moisture conditions in 98% of Antarctica’s land surface are too 

inhospitable for most terrestrial life forms, leaving approximately 2 ∙ 105 km2 of land 

available for colonization by vegetation, mostly in the Maritime Antarctic and on sub-

Antarctic islands (Alberdi et al. 2002). Even in these regions, colonization is challenged 

by subsurface permafrost, and constrained by microclimate effects from wind speed, 

surface features, and moisture availability (Beyer et al. 2000). Soils in Antarctica have 

very low moisture, C:N ratios, and pH (Beyer et al. 2000). 
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1.2.2 Antarctic terrestrial biota 

The harsh climate in Antarctica, as well as its isolation from other continents, results in 

extremely low biodiversity in the terrestrial biota compared to the same latitude in the 

Arctic (Convey 2010). The continent separated from the Gondwana landmass over 25 

million years ago, carrying with it the terrestrial fauna and flora typical of the south 

temperate rainforests (Convey et al. 2008). Since then, several periods of climate cooling 

and glacial advances wiped out the majority of the terrestrial biota until the Last Glacial 

Maximum twenty thousand years ago (Ellis-Evans and Walton 1990, Convey et al. 

2008). Additionally, the Antarctic Circumpolar Current creates a natural boundary at the 

Antarctic Polar Front Zone and prevents most terrestrial biota exchange between 

Antarctica and other continents. The isolation of Antarctica on a multi-million year 

timescale presents a major barrier for colonization, so the terrestrial biota consists of both 

relict species that survived the glacial periods in refugia, and a few colonizers that arrived 

after the Last Glacial Maximum (Convey et al. 2008, Convey 2010). 

Generally, species richness and ecosystem complexity increase with decreasing latitude 

and proximity to the sea, but there is also a high level of regionalization within a given 

biogeographic region (Bergstrom and Chown 1999, Convey et al. 2008). Terrestrial flora 

in the Continental Antarctic consists of mostly lichens and mosses (Holdgate 1977). 

Maritime Antarctic and the sub-Antarctic islands, on the other hand, host a more diverse 

community of mosses, liverworts, lichens, and two species of vascular plants, Antarctic 

hair grass, Deschampsia antarctica Desv. (Poaceae) and Antarctic pearlwort, 

Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae).  

1.2.3 Warming trends  

Climate change has caused significant warming in Antarctica. Patterns of warming are 

highly regional; while some meteorological stations on the continent have not reported 

significant warming, others recorded a steep rate of increase in mean annual temperature, 

particularly over the second half of the 20th century (Vaughan et al. 2003). For example, 

the Faraday/Vernadsky Station in the Maritime Antarctic reported a 3.7 ºC temperature 

increase per century since 1946 (Vaughan et al. 2003); Byrd Station on the Central West 
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of the Continental Antarctic also experienced a rapid rate of warming of 2.3 ºC from 

1958 to 2010 (Bromwich et al. 2012). Overall, data from across the continent 

demonstrates a trend of moderate warming despite large spatial and interannual 

variability, and more extreme warming in the austral winter than summer (Chapman and 

Walsh 2007).   

Rising temperatures potentially alter thermal and moisture regimes, impacting both 

physical and biological systems on the continent. For example, aerial photographs from 

the British Antarctic Survey from 1940 to 1999 showed a steady loss of snow cover on 

the Antarctic Peninsula (Fox and Cooper 1998). Additionally, the warming trend results 

in a 74% increase in the number of days with temperature above 0 ºC (Vaughan et al. 

2003), and an expansion of ice-free areas (Fowbert and Smith 1994). The ice retreat not 

only alters the hydrology of the terrestrial ecosystem, but also exposes bare soils to 

colonization by bryophytes and lichens (Smith 1994). Similarly, there has been a 

subsequent increase in the population size of the two vascular plant species, Deschampsia 

antarctica and Colobanthus quitensis, on the Argentine Islands on the Antarctic 

Peninsula between 1964 and 1990, following a warming rate of 0.056 ºC per year 

(Fowbert and Smith 1994). Monitoring the population of these two vascular species on 

Argentine and Signy Islands, Smith (1994) suggested they could be bioindicators of the 

thermal environment in the Maritime Antarctic.  

 

1.3 Deschampsia antarctica and Colobanthus quitensis 

1.3.1 Ecology of the species 

Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. 

(Caryophyllaceae) are the only two vascular plant species found in Antarctica. Both 

species are distributed throughout the sub-Antarctic islands and the Maritime Antarctic to 

as far south as the Terra Firma Islands, approximately 68 º 42 ’ South, but do not enter 

the continental Antarctic (Komáková 1985). Outside Antarctica, D. antarctica can be 

found in Argentina, Chile, and Tierra del Fuego, while the range of C. quitensis extends 

to Mexico, Ecuador, Bolivia, Peru, Argentina, Chile, and Tierra del Fuego (Moore 1970). 
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Studies trying to unravel the “enigma” of why these are the only two successful vascular 

species on the continent suggested that they might be migratory relicts dispersed to the 

continent before Antarctica completely separated from the Gondwanan landmass. (Smith 

2003, Parnikoza et al. 2007, 2011). The two species might have survived the glaciation 

periods in warmer refugia, and thrived and spread throughout the continent by bird 

dispersal once the glaciers retreated (Parnikoza et al. 2007).  

The distributions of D. antarctica and C. quitensis are influenced more by climate than 

soil conditions (Parnikoza et al. 2011). The two species are most commonly found 

together in north-facing coastal areas, and at low altitude sites (Smith 2003). The 

microclimate of these sites insulates the plants under the snow during the austral winter 

and shelters them from the wind year-round (Smith 2003). Additionally, both species 

inhabit areas that receive maximal sunlight, creating radiation traps that capture 

irradiance and heat (Edwards 1972). Neither species are constrained by specific soil 

conditions; in fact, the vascular vegetation cover with a true root structure improves the 

organic carbon status of the soil (Beyer et al. 2000).  

Deschampsia antarctica Desv. is a perennial grass, and is closely related to a number of 

species in the same genus in South America (Parnikoza et al. 2011). D. antarctica forms 

densely packed tufts; leaf blades are 0.5 to 1.5 mm wide, wiry, and frequently roll 

inwards (Moore 1970). The species spreads clonally through tillers, forming large 

colonies up to several hundred square meters, and disperses with the assistance of birds, 

as it can re-establish itself after being uprooted (Smith 2003). In harsher sites, the species 

invests instead in reproductive biomass, producing bisexual flowers that self-pollinate 

(Convey 1996a). The production of both inflorescence and seeds depends on 

photoperiod, but the rates of inflorescence production, seed production, and germination 

depend on temperature (Holtom and Greene 1967).  

Colobanthus quitensis (Kunth) Bartl. is a perennial pearlwort that can live up to 35-40 

years. The genus Colobanthus is distributed throughout the Southern Hemisphere, but 

even in the same species, there is a lot of variability in morphology among populations 

(Moore 1970). The plant consists of linear leaves growing into a rosette around a simple 
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stem, with a long taproot (Moore 1970). Individuals tend to form a compact, 

hemispherical cushion up to a few centimeters in diameter, which assists in the capture of 

heat (Smith 2003). In contrast to D. antarctica, C. quitensis is unable to reproduce 

vegetatively; instead, its sexual reproductive output is much higher than that of D. 

antarctica (Convey 1996a). Flowering in C. quitensis is not photoperiod-dependent, and 

can occur multiple times in the same season if favorable conditions persist. Seed 

production also increases in warmer summers (Convey 1996a), and germination success 

increases with seed age (Holtom and Greene 1967). As a result, warming experiments 

have shown increases in seed production that could account for the expanding population 

of C. quitensis as the climate warms (Fowbert and Smith 1994).  

1.3.2 Adaptations to an extreme environment 

Survival in Antarctica requires all life forms to have a strategy to cope with the below-

freezing temperatures for most of the year. These cold-resistance strategies differ 

between the two species: D. antarctica tolerates freezing, while C. quitensis avoids 

freezing by supercooling (Bravo et al. 2001). D. antarctica individuals, after a period of 

cold hardening and long photoperiod, accumulate proline and sucrose (Bravo et al. 2001), 

as well as antifreeze proteins, which lower the freezing point of cells and slow down the 

rate of ice crystal formation (Bravo and Griffith 2005). D. antarctica, therefore, can 

survive freezing down to -26 ºC. C. quitensis, on the other hand, avoids freezing by 

accumulating sucrose and supercooling, and experiences freezing at -4 ºC (Bravo et al. 

2001). D. antarctica and C. quitensis also rely on snow cover for insulation and their 

tufted or cushion-like growth forms to retain heat when exposed (Smith 1994).  

Being able to tolerate extreme temperatures is a beneficial, but costly, strategy. As typical 

stress-adapted species, D. antarctica and C. quitensis have very slow growth rates 

(Convey et al. 1996b). The two species also have photosynthetic machinery typical of 

cold-acclimated plants. Both species are photosynthetically active at freezing 

temperatures, and the lower temperature compensation point, where photosynthesis is 

equivalent to respiration, is -3 ºC for D. antarctica, and -2 ºC for C. quitensis (Xiong et 

al. 1999). In addition, D. antarctica is very tolerant of high irradiance, allowing it to 
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efficiently photosynthesize during the short austral summer (Montiel et al. 1999); 

however, high temperature (above 20 ºC) presents a challenge due to high respiration 

rates which consume the carbon fixed in photosynthesis (Xiong et al. 1999). D. 

antarctica also possesses high water use efficiency, with efficiency values well above 

other C3 grasses and more comparable to a CAM (Crassulacean Acid Metabolism) 

species (Montiel et al. 1999). 

A changing thermal environment is likely to have major implications for the growth and 

performance of D. antarctica and C. quitensis. The aforementioned expanding population 

size of both species is extensive, yet poorly understood. Populations of D. antarctica on 

the Argentine Islands archipelago increased by 25 times from 1964 to 1990, whereas C. 

quitensis more than quadrupled their population size over the same period (Fowbert and 

Smith 1994). The greater population expansion of D. antarctica could be attributed to its 

ability to reproduce vegetatively through tillers, and its tolerance of disturbed habitat: the 

grass is one of the first species to colonize a newly exposed area when the ice retreats 

(Fowbert and Smith 1994). C. quitensis, on the other hand, takes advantage of the 

increased number of days above freezing (Vaughan et al. 2003), which offers more 

favorable conditions for flowering and seed germination (Day et al. 1999). More recent 

surveys of these species have shown a stabilization in both populations from 1990 to 

2008, attributed to a slower warming trend on the continent over this period and a lack of 

available habitat (Parnikoza et al. 2009). Hence, more information is needed to 

understand the mechanisms underlying past increased growth in D. antarctica and C. 

quitensis and to predict the performance of the two species in future climates. 

 

1.4 Photosynthesis in C3 plants 

Photosynthesis is one of the most important processes on the planet, harvesting the 

energy from sunlight and fixing CO2 into sugar molecules that fuel metabolism and 

growth. Photosynthesis occurs in the chloroplast, an organelle present in all 

photosynthetic eukaryotes. Photosynthesis involves two separate but interconnected 

phases, the photosynthetic electron transport and the Calvin-Benson cycle (Fig. 1.1). The 
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photosystems absorb light energy, and through an electron transport chain, energy (ATP) 

and reducing power (NADPH) are produced. This energy and reducing power then fuel 

the Calvin-Benson cycle, an enzyme-dependent process that fixes CO2 and produces 

sugar (Fig. 1.1). (Hopkins and Hüner 2008).  

1.4.1 Photosynthetic electron transport 

The energy from light is absorbed by chlorophyll, a pigment that absorbs red and far-red 

light while reflecting green light, giving leaves and other photosynthetic tissues their 

green color. This pigment forms two pigment-protein complexes in the thylakoid 

membranes responsible for light harvesting, photosystems I and II (PSI and PSII) (Fig. 

1.1). The two reaction centers at the center of each photosystem absorb light at slightly 

different wavelengths, with PSI absorption peaking at 700 nm, and PSII at 680 nm; the 

first electron donors of each photosystem, therefore, are named P700 and P680 

(Anderson 1986).  

Photosynthesis begins when the light energy from a photon is gathered by the antennae 

and light harvesting complexes, and funneled to the chlorophyll molecules in the reaction 

center of PSII. This energy causes a charge separation, oxidizing P680 in PSII to P680+, 

and raises the energy level of an electron in this molecule to an excited state (Hopkins 

and Hüner 2008). This electron is unstable, and can be either used to fuel photochemistry, 

emitted as fluorescence, or dissipated as heat (Maxwell and Johnson 2000). In 

photochemistry, the excited electron is passed from PSII through a series of redox 

reactions along the transport chain to PSI through the plastoquinone pool (PQ), a 

cytochrome complex (b6f), and plastocyanin (PC) (Fig. 1.1). The last electron acceptor at 

PSI is ferredoxin (Fd), which reduces NADP+ to NADPH. At PSII, water is also 

oxidized, releasing O2 and generating electrons to reduce P680+ to P680, opening the 

reaction center for the next photochemical reaction. Meanwhile, the thylakoid lumen is 

also acidified with the H+ produced from the PQ pool and the oxidation of water. The 

difference in pH between the two sides of the thylakoid membrane allows the production 

of ATP from ADP, facilitated by the ATP-synthase coupling factor (Hopkins and Hüner 

2008) (Fig. 1.1).  
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Figure 1.1 A model of photosynthesis. The light reactions harvest lights and produces 

ATP and NADPH from the photosynthetic electron transport chain (a). In the thylakoid 

membranes are two photosystems (PSII and PSI), a cytochrome complex (Cytochrome 

b6-f), and an ATP synthase. Energy from light excites an electron, which is passed from 

PSII to the plastoquinone pool (PQ), Cytochrome b6-f, plastocyanin (PC), and PSI. 

Finally, ferredoxin (Fd) reduces NADP+ to generate NADPH in the stroma. The proton 

gradient created by the cycling of the plastoquinone pool and oxidation of water at PSII is 

used to generate ATP at the ATPase. The Calvin-Benson cycle (b) includes CO2 fixation 

by enzyme Rubisco, the production of sugar and starch, and the regeneration of RuBP 

using ATP and NADPH produced from the photosynthetic electron transport chain. 

Image a) was taken from Lamers et al. 2008 with permission from Elsevier. 
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1.4.2 The Calvin-Benson cycle 

The energy and reducing power produced from the light reactions, in the form of ATP 

and NADPH, is then used in the Calvin-Benson cycle, which occurs in the stroma of the 

chloroplast. The fixation of CO2 using the substrate RuBP (Ribulose-1,5-biphosphate) is 

catalyzed by the enzyme Rubisco (Ribulose-1,5-biphosphate carboxylase oxygenase). 

Rubisco is the key enzyme in the Calvin-Benson cycle, and represents the most abundant 

protein on earth. The CO2 fixation reaction produces phosphoglyceric acid (PGA), which 

is then reduced, using ATP and NADPH from the light reaction, into triose-phosphate 

(triose-P). The pool of triose-P is split among the production of sucrose and other 

metabolites, the synthesis of starch, and the regeneration of RuBP (Farquhar et al. 1980) 

(Fig. 1.1). Sucrose and other metabolites are usually exported into the cytosol, and loaded 

into the phloem for transport to the rest of the plant to fuel metabolism and growth, while 

starch tends to be stored in the chloroplast. The process of regenerating RuBP completes 

the Calvin-Benson cycle (Farquhar et al. 1980).  

Rubisco is activated by light, as are other enzymes in the Calvin-Benson cycle. Rubisco 

perceives the increase in pH and Mg2+ concentration in the stroma due to the proton 

gradient generated across the thylakoid membranes from the photosynthetic electron 

transport (Salvucci and Ogren 1996). Additionally, CO2 acts as an activator of the 

enzyme, in addition to its direct role as a substrate. However, full activation of Rubisco in 

vivo requires Rubisco activase, an enzyme that makes the active site on Rubisco available 

for CO2 fixation (Salvucci and Ogren 1996). 

Rubisco is a dual-function enzyme that has the capacity to fix O2 instead of CO2 in a 

process called photorespiration. When O2 is fixed by Rubisco, it produces the toxic 

molecule phosphoglycolate, which needs to be transported to the peroxisome and then 

mitochondria, and finally back to the chloroplast as glycerate to produce PGA. 

Photorespiration consumes ATP and NADPH, and releases previously fixed CO2. 

Rubisco’s affinity for CO2 compared to O2 depends on temperature and the relative 

concentration of the two gases (Farquhar et al. 1980). 
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1.4.3 Modelling photosynthesis 

Because photosynthesis ultimately draws CO2 from the atmosphere, plant physiologists 

measure the exchange of CO2 flux in leaves to assess net photosynthetic rates, using 

infrared gas analyzers (Field et al. 1982). A common parameter used to assess 

photosynthetic performance is net CO2 assimilation rate (Anet), measured at standard 

conditions of saturating light, a leaf temperature of 25 ºC, ambient CO2 concentration, 

and constant humidity. Anet accounts for CO2 fluxes at the leaf-level deriving mainly from 

photosynthesis, mitochondrial respiration and photorespiration. 

In 1980, Farquhar, von Caemmerer, and Berry developed a model for CO2 assimilation 

based on the biochemical components of photosynthesis (Farquhar et al. 1980). The 

model synthesizes knowledge of the enzyme kinetics of Rubisco, taking into account its 

carboxylation and oxygenation capacity. From this model, physiologists can derive a 

number of photosynthetic parameters from a series of measurements of Anet across a 

range of intercellular CO2 concentrations (Ci), producing an A-Ci curve. They defined 

three main limitations to net photosynthesis at the chloroplast: Rubisco carboxylation, 

which depends on the quantity and activity of Rubisco; RuBP regeneration, which 

depends on the rate of photosynthetic electron transport and its ability to produce ATP 

and NADPH; and inorganic phosphate (Pi) regeneration, which depends on the 

consumption rate of products of photosynthesis to release Pi (Farquhar et al. 1980).  

The Farquhar et al. model (1980) parameterizes Anet as the balance between the rate of 

carboxylation (Vc) and oxygenation (Vo) of Rubisco, and mitochondrial respiration in the 

light (Rlight), with one molecule of CO2 produced for every molecule of O2 oxygenated, 

producing Equation (1): 

𝐴𝑛𝑒𝑡 = 𝑉𝑐 − 0.5𝑉𝑜 − 𝑅𝑙𝑖𝑔ℎ𝑡 (1) 

The rates of carboxylation and oxygenation can be described by Michaelis-Menten 

kinetics, with Kc and Ko being the Michaelis-Menten constants for carboxylation and 

oxygenation, respectively. However, when both substrates are present, they compete with 

each other to bind to Rubisco. The specificity of Rubisco, Km, therefore, takes into 
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account the concentration of oxygen (O), following Equation (2): 

𝐾𝑚 = 𝐾𝑐 (1 +
𝑂

𝐾𝑜
)  (2) 

For a given quantity of activated Rubisco, the model identified two types of limitations: 

Rubisco-limitation, when CO2 concentrations relative to O2 are low, and RuBP-

limitation, when Rubisco is CO2-saturated but photosynthesis is limited by RuBP 

regeneration, or the rate of electron transport producing ATP and NADPH. When CO2 is 

limited, the rate of carboxylation depends on the competition between carboxylation and 

oxygenation, and the specificity of Rubisco for CO2 vs O2. Equation (1), therefore, 

becomes Equation (3): 

𝐴𝑛𝑒𝑡 = 𝑉𝑐𝑚𝑎𝑥 ∙
𝐶−Γ∗

𝐶+𝐾𝑚
− 𝑅𝑙𝑖𝑔ℎ𝑡   (3) 

where Vcmax describes the maximum carboxylation rate of Rubisco, C and O are the 

partial pressures of CO2 and O2 at the site of carboxylation or oxygenation, respectively, 

and Γ* is the CO2 compensation point when photosynthesis is equivalent to 

photorespiration in the absence of mitochondrial respiration. 

Alternatively, when Rubisco is CO2-saturated and RuBP limited, the rate of electron 

transport is maximal and constant (Jmax), assuming CO2 is the only electron sink. 

Assuming four electrons are required for each carboxylation and oxygenation reaction, 

Equation (1) becomes Equation (4): 

𝐴𝑛𝑒𝑡 = 𝐽𝑚𝑎𝑥 ∙
𝐶−Γ∗

4(𝐶+2Γ∗)
− 𝑅𝑙𝑖𝑔ℎ𝑡  (4) 

Using this model, plant physiologists can measure leaf-level gas exchange, specifically 

A-Ci curves, to derive meaningful parameters such as maximum Rubisco carboxylation 

rates (Vcmax) and maximum electron transport rates (Jmax) from different regions of the A-

Ci curve using Equations (3) and (4) (Sharkey et al. 2007). These parameters are 

commonly used to assess photosynthetic capacity. 
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1.4.4 CO2 diffusion 

The Farquhar et al. (1980) model describes the biochemical demand of photosynthesis 

under varying intercellular CO2 concentration (Ci). Whether this demand is met depends 

on the diffusion of CO2 from the atmosphere, which is regulated by stomata. While being 

key to the CO2 supply for photosynthesis, stomata are also the site of evaporative plant 

water loss; as a result, changes to the stomatal conductance influence both CO2 diffusion 

into the leaf for carbon gain, and water out of the leaf through transpiration. Stomata 

close when vapor pressure deficit (VPD) increases to avoid water loss, or close upon 

receiving signals of low soil water potential in the form of abscisic acid (Turner et al. 

1984, Farquhar and Sharkey 1982). How stomatal conductance is regulated to balance the 

trade-off between water loss and carbon gain, however, continues to be under study. 

Therefore, assessments of photosynthesis should also include CO2 diffusion limitations, 

which can be altered by changes to the growth environment. 

Most infrared gas exchange systems used to evaluate photosynthesis can also assess 

stomatal conductance (gs), although values of gs are highly transient (Field et al. 1982). 

Another commonly used measure of stomatal behavior is the Ci/Ca ratio. This parameter 

measures the ratio of intercellular (Ci) to atmospheric CO2 concentrations (Ca), and 

reflects the balance between CO2 demand and supply (Sage 1994). It integrates both the 

ability of CO2 to diffuse from the atmosphere to the intercellular air space, and the usage 

of this internal CO2 concentration in photosynthesis. Combined Anet, the Ci/Ca ratio can 

inform of any physical limitations hindering CO2 diffusion, and the mechanisms 

determining changes in photosynthesis in a new growth environment. 

Another resistance in the CO2 diffusion pathway is at the mesophyll level. The Farquhar 

et al. (1980) model assumes the CO2 diffusion from the intercellular air space to the 

chloroplast is large enough to not affect photosynthesis. As a result, the chloroplast CO2 

concentration (Cc) is presumably equivalent to the CO2 concentration at the intercellular 

air space (Ci). However, Bernacchi et al. (2002) demonstrated that this diffusion pathway 

is, in fact, significant. Termed mesophyll conductance, CO2 diffusion along this pathway 

is influenced by the leaf cell density, the diffusion of CO2 at aqueous phase, the transport 
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through aquaporins, and the conversion to HCO3
- by carbonic anhydrase (Bernacchi et al. 

2002). Mesophyll conductance responds to changes in environmental conditions, and can 

therefore affect photosynthesis.  

1.4.5 Chlorophyll fluorescence 

As previously mentioned, when a photon is absorbed by chlorophyll and excites an 

electron, this energy can be passed on to other molecules to fuel photochemistry, be 

dissipated as heat, or be emitted at a longer wavelength as fluorescence. Plant 

physiologists use the fluorescent property of chlorophyll to evaluate the photochemical 

performance of photosystem II (PSII) (Maxwell and Johnson 2000). When a leaf is 

incubated in darkness for a sufficient period of time (> 20 minutes), all the reaction 

centers are open, and ready to accept the energy of a new photon (Fig. 1.2). When 

measured with a low-intensity red light, a leaf at this state returns a stable minimal 

fluorescence level (Fo), indicating all reaction centers are open and ready for 

photochemistry. Then, upon exposure to a saturating pulse of light, the fluorescence 

emitted rises to a maximal level (Fm), as all reaction centers close (Fig. 1.2). The ratio of 

the difference between Fm and Fo to Fm, also known as Fv/Fm (Equation 5), is used to 

assess the maximal photochemical efficiency of PSII.  

𝐹𝑣 𝐹𝑚⁄ =
𝐹𝑚−𝐹𝑜

𝐹𝑚
  (5) 

The Fv/Fm in a healthy leaf ranges between 0.75 and 0.82, and lower Fv/Fm ratios indicate 

some form of stress affecting the photochemical efficiency of PSII (Maxwell and Johnson 

2000). 
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Figure 1.2 Chlorophyll fluorescence trace. Dark-incubated leaves yield minimum 

fluorescence (Fo) under a measuring light (MB), and after a saturating pulse (SP), give a 

maximal fluorescence value (Fm). After a period of time under actinic light (AL), the 

fluorescence signal stabilizes at Ft, and the same saturating flash (SP) will result in a 

fluorescence Fm’ lower than Fm. Under this condition, exposure to a brief dark period (AL 

off) will yield a minimal fluorescence (Fo’) higher than Fo. Figure was taken from 

Maxwell and Johnson 2000, with permission from Oxford University Press. 

When the leaf has been exposed to its natural light environment, however, the 

fluorescence signal gradually reaches a steady state (Ft) (Fig. 1.2). This steady state of 

fluorescence is higher than the minimal fluorescence, because under an actinic light, not 

all reactions centers are open. At this point, the same exposure to a pulse of high intensity 

light will not result in a maximal fluorescence as high as Fm, but instead reaches Fm’ level 

(Fig. 1.2). This is because under steady-state photosynthesis, the electron transport chain 

and the consumption of ATP and NADPH in the Calvin-Benson cycle operate at a much 

lower rate than PSII (Hopkins and Hüner 2008). Not all photons absorbed can be used in 

photochemistry, and instead can be partially dissipated as heat. The ratio of the difference 

between maximal and baseline fluorescence to the baseline fluorescence level is 

calculated as the realized photochemical efficiency of PSII, or photochemical quantum 

yield of PSII, (ΦPSII, Equation 6):  
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Φ𝑃𝑆𝐼𝐼 =
𝐹𝑚′−𝐹𝑡

𝐹𝑚′
 (6) 

Because the quantum yield of PSII positively correlates with electron transport rate 

(ETR), the latter can be calculated from the former (Equation 7), with a known absorbed 

photon flux density (PFDa) and the partitioning of absorbed photons between PSII and 

PSI (often assumed to be 0.5) (Maxwell and Johnson 2000):  

𝐸𝑇𝑅 = ΦPSII ∗ PFDa ∗ 0.5 (7) 

 

1.5 Leaf anatomy  

Leaves are the main photosynthetic and transpiratory organ in plants; therefore, their 

structure is optimized for harvesting light and absorbing CO2 while preventing excessive 

water loss. A leaf is bound by the upper (adaxial) and lower (abaxial) epidermis (Fig. 

1.3). Embedded within the epidermal layers are stomata, which are pores that allow gas 

exchange between the leaf and the environment. A transverse section of the leaf reveals a 

number of typical tissue types (Fig. 1.3). Between the epidermis lies the mesophyll cells, 

which are the main photosynthetic tissues and occupy the largest proportion of the leaf 

cross-sectional area (Fig. 1.3). The arrangement of mesophyll cells allows CO2 to diffuse 

to the site of carboxylation from the stomata through the intercellular air space. In many 

species, the mesophyll cells are differentiated into palisade mesophyll and spongy 

mesophyll. Mesophyll cells also need to be in the proximity of the vascular bundle, which 

includes xylem, which supplies water to the rest of the tissues, and phloem, which 

transport products of photosynthesis to the rest of the plant (Fig. 1.3) (Lambers et al. 

2008). 
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Figure 1.3 Cross section of a typical C3 leaf reveals an upper and lower epidermis, 

palisade and spongy mesophyll, stomata, intercellular air space, and vascular bundle 

(comprised of xylem and phloem).  

In grasses and other monocotyledon plants, leaves tend to be long, narrow and linear, 

with parallel veins. Additionally, grasses from dry habitats tend to be inwardly folded 

towards the adaxial side. In these arid-adapted grass species, the adaxial epidermis 

consists of ribs where the vascular bundles occur, and furrows between these ribs. 

Stomata occur on the adaxial side of the leaf, and along the wall of these furrows, 

forming stomatal grooves (Ellis 1976). The in-rolling of the leaf blade along these 

grooves is facilitated by the shrinking of bulliform cells, very thin-walled cells along the 

epidermis that easily lose water from turgor loss. When these cells shrink due to dry 

conditions, the leaf folds. This xeromorphic feature produces an additional air pocket 

with higher humidity compared to the ambient atmosphere, lowering water loss.  
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1.6 Photosynthetic and leaf anatomical responses to climate change parameters 

1.6.1 Warming 

1.6.1.1 Acute temperature responses 

Net CO2 assimilation rates (Anet), when measured across a range of leaf temperatures, 

typically show an increase up to an optimum temperature (Topt) followed by a decrease 

above the optimal temperature (Fig. 1.4). This response is because components of 

photosynthesis, including the maximum Rubisco carboxylation rate (Vcmax), maximum 

electron transport rate (Jmax), photorespiration, and respiration, increase exponentially 

with increasing leaf temperature, peak at an optimal temperature, and then decline. These 

responses follow an Arrhenius function, which describes the temperature dependence of 

enzyme reaction rates (Medlyn et al. 2002). Vcmax tends to be more responsive to 

temperature changes compared to Jmax, due to the temperature sensitive parameters used 

to derive Vcmax, including the Michaelis constant for carboxylation (Km) and CO2 

compensation point (Γ*) (see Equation 3) (Medlyn et al. 2002).  

Temperature affects both Rubisco carboxylation and oxygenation: at higher temperature, 

Rubisco’s specificity for CO2 relative to O2 decreases, and the solubility of CO2 

decreases more rapidly than that of O2 (Jordan and Ogren 1984). As a result, greater 

photorespiration at high leaf temperatures increases the CO2 compensation point in the 

absence of light respiration (Γ*), raising the cost of carboxylation. At non-saturating CO2 

concentrations, therefore, an increase in Vcmax at warmer leaf temperature is offset by the 

increase in oxygenation rate (Vomax), resulting in little change in net CO2 assimilation rate 

(Sage and Kubien 2007).  

Jmax is less sensitive to acute increases in temperature, and reaches a lower temperature 

optimum, than Vcmax (Medlyn et al. 2002). The positive response of Jmax to leaf 

temperature is commonly attributed to a stimulated energy or electron flow through PSII, 

PSI, or the cytochrome b6/f complex (Sage and Kubien 2007), which is also reflected in 

an increase in ΦPSII with increasing leaf temperature (Bernacchi et al. 2003).  The 

stability of PSII (Fv/Fm), on the other hand, is not affected by leaf temperature, except at 

very high leaf temperature (above 40 ºC) (Bernacchi et al. 2003).  
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The higher photosynthetic capacity (Vcmax and Jmax) that occurs at warmer leaf 

temperatures does not always translate to an increase in Anet. Most capacity 

measurements are done at conditions that maximize diffusion of CO2 to the chloroplast 

(such as moderate relative humidity), which is not always the case in the natural growth 

environment. An increase in air temperature with constant humidity generates an increase 

in vapor pressure deficit (VPD), which can cause stomata to close to conserve water 

(Berry and Bjorkman 1980). Similarly, high respiration and photorespiration rates at high 

leaf temperatures will also decrease Anet. 

 

Figure 1.4 Net CO2 assimilation rate (Anet) in response to acute changes in leaf 

temperature. The two curves represent a plant grown at a cooler growth temperature 

(solid curve) and one acclimated to a warmer growth temperature (long dashed curve). 

Two vertical lines indicate the cooler (solid line) and warmer growth temperature (short 

dash). Thermal acclimation of photosynthesis from a cooler grown plant to a warmer 

grown individual could include a shift in Anet at a common measurement temperature (1) 

or an increase in Anet at the respective growth temperatures (2). Filled symbols represent 

Anet from a cool-grown plant, and empty symbols from a warm-grown plant. Circles 

represent Anet measured at a common, cool temperature. Figure was modified from Way 

and Yamori (2013).  
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1.6.1.2 Acclimation to warmer growth temperature 

Long-term exposure to a new growth conditions, including warmer temperatures, can 

result in adjustments in the photosynthetic apparatus. However, these thermal 

adjustments of photosynthesis do not always result in improved plant performance at the 

new growth condition. Berry and Bjorkman (1980), in their well-cited review, defined 

acclimation of photosynthesis as adjustments in the photosynthetic machinery that 

enhances performance at the new growth temperature. More recently, Way and Yamori 

(2013) outlined a number of ways to assess thermal adjustments, and demonstrated that 

thermal adjustments of photosynthesis can be constructive (i.e. increasing Anet at the new 

growth condition, as seen in Fig. 1.4) or detractive (i.e. reducing Anet at the new growth 

temperature). In addition to changes in mechanistic parameters such as Vcmax and Jmax at a 

common basal temperature (usually 25 ºC), thermal adjustment of photosynthesis usually 

results in the shift in temperature response curve of photosynthesis towards the new 

growth temperature (Fig. 1.4). The assessment of thermal acclimation of photosynthesis, 

therefore, include both the adjustments in the photosynthetic apparatus, assessed at a 

common set of conditions (Anet at a common leaf temperature, (1) in Fig. 1.4), and 

photosynthetic performance at the growth conditions (Anet at the respective growth 

temperature, (2) in Fig. 1.4), when the direct effects of leaf temperature are also included.  

In this study, the term acclimation refers to any adjustments in photosynthesis under a 

new suite of growth conditions, and is assessed by measuring Anet and photosynthetic 

capacity (Vcmax, Jmax) under a common set of conditions and again at the growth 

conditions. 

Both Vcmax and Jmax have the capacity to acclimate to warmer growth temperature, as 

evidenced by an upward shift in the Topt of both parameters in 36 plant species (Kattge 

and Knorr 2007). Acclimation to a warmer growth temperature usually involves an 

increase in electron transport capacity to supply the greater capacity of the dark reactions, 

and the production of a more heat-stable isoform of Rubisco activase in some species 

(Sage and Kubien 2007). When measured at, or extrapolated to, a leaf temperature of 

25 ºC, however, Vcmax and Jmax in warm-grown plants do not always show an increase 

compared to cool-grown counterparts (Kattge and Knorr 2007, Way and Oren 2010, Way 
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and Yamori 2013). Meanwhile, there is little evidence of Fv/Fm, ΦPSII, and ETR 

acclimating to increases in growth temperature (Bernacchi et al. 2003).  

1.6.1.3 Plant growth and leaf structural responses to warming 

Another challenge in plant physiology is scaling leaf-level fluxes to whole-plant carbon 

gain. All else being equal, biomass accumulation is the difference between the carbon 

gained from whole-canopy CO2 assimilation and the carbon lost through respiration, 

photorespiration, root exudation, and volatile organic compounds. However, leaf-level 

photosynthesis, respiration, and transpiration also influence biomass allocation, plant 

water status, and canopy structure, among other processes, all of which can in turn affect 

the whole-plant growth pattern and act as feedbacks to leaf-level processes (Reynolds et 

al. 1993). A new growth condition can alter leaf-level processes and these interactions 

differently, causing a discrepancy between measurements of leaf-level photosynthesis 

and whole-plant biomass accumulation.  

An example of the link between leaf-level and whole-plant performance is the response 

to growth at warmer temperatures. For example, warmer temperatures can stimulate leaf-

level photosynthesis, but a lack of acclimation in respiration means higher respiratory 

losses could offset the increased carbon gain (Atkin et al. 2007). Warming experiments 

tend to have a positive effect on growth in deciduous species, although little change has 

been seen in biomass allocation in evergreen species (Way and Oren 2010). However, 

severe warming usually decreases total biomass due to the larger respiratory losses that 

occurs at high temperatures (Atkin et al. 2007). In terms of leaf morphology, while 

acclimation to low temperature results in thicker leaves, or a decrease in specific leaf area 

(SLA), warming has little effect on SLA, or any other leaf structural parameters (Poorter 

et al. 2009). 

1.6.2 Elevated CO2  

1.6.2.1 Acute response to elevated CO2 

An increase in CO2 concentration significantly stimulates photosynthesis for two reasons. 

First, elevated atmospheric CO2 raises the intercellular CO2 concentration, increasing the 
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supply of substrate for photosynthesis, which, under current ambient conditions, operates 

under CO2 limitation. Thus, high CO2 increases the rate of carboxylation, thereby 

increasing photosynthesis (Ainsworth and Rogers 2007). Secondly, an increase in CO2 

concentration also alters the relative concentrations of CO2 and O2, which inhibits 

photorespiration and further enhances Anet (Ainsworth and Rogers 2007). Exposure to 

elevated CO2, therefore, tends to stimulate photosynthesis. 

1.6.2.2. Acclimation to elevated growth CO2  

Longer-term exposure of plants to elevated CO2 (weeks or longer) can result in an 

acclimation response (Curtis and Wang 1998). The stimulation of photosynthesis at high 

CO2 generates a buildup of carbohydrates, which elicits a feedback inhibition that down-

regulates photosynthesis (Arp 1991). Since CO2 enrichment shifts the limitation of 

photosynthesis away from Rubisco, fewer resources, particularly N, are invested in 

Rubisco, resulting in a decrease in Vcmax (Medlyn et al. 2001). Overall, despite this down-

regulation, the direct stimulation of photosynthesis under CO2 enrichment via increases in 

substrate supply and suppressed photorespiration rates usually increases Anet, and 

therefore growth, although the magnitude of the stimulation varies among functional 

groups (Ainsworth and Long 2005). The acclimation response of photosynthesis is more 

pronounced in small-pot experiments (Arp 1991), or when N is limited (Ainsworth and 

Long 2005). In both cases, photosynthetic sink capacity is limited, eliciting a stronger 

feedback inhibition.  

A decrease in stomatal conductance is also frequently observed in plants grown at 

elevated CO2. Stomatal behavior is regulated by the CO2 concentration in the intercellular 

air space; as a result, direct exposure to elevated CO2 decreases stomatal opening 

(Ainsworth and Roger 2007). In addition, plants grown under elevated CO2 may develop 

fewer stomata, decreasing stomatal conductance further. Thus, at elevated CO2, water 

loss is reduced, and instantaneous water use efficiency (photosynthesis/transpiration) 

improves (Ainsworth and Long 2004). 
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1.6.2.3 Plant growth and leaf structural responses to elevated CO2 

Growth is commonly stimulated in plants grown under elevated CO2, and this response 

can be sustained over multiple years (Ainsworth and Long 2005). Biomass allocation also 

shifts to belowground, increasing the root: shoot ratio (Curtis and Wang 1998), and leaf 

nitrogen concentrations decrease (Curtis 1996). Since the CO2 diffusion limitation is 

reduced at high CO2, leaves generally become thicker from either more starch 

accumulation or thicker mesophyll tissues (Arp 1991). As a result, SLA is usually 

reduced in leaves that develop under elevated CO2 (Ainsworth and Long 2005).  

1.6.3 Warming and elevated CO2  

Based on our separate understanding of photosynthetic response to warming and elevated 

CO2, theoretically, the combination of the two factors is expected to stimulate 

photosynthesis. While high temperatures increase the rate of Rubisco oxygenation 

relative to carboxylation and increase photorespiration, elevated CO2 alleviates this effect 

by increasing the concentration of CO2. This interaction potentially modifies the response 

of photosynthesis to temperature, including increasing Topt of net photosynthesis and Anet 

itself (Long 1991). Even when the down-regulation of Anet to elevated CO2 is taken into 

account, a combination of increased growth temperature and elevated CO2 is expected to 

result in higher photosynthetic rates. In addition, because sink capacity increases at 

warmer temperatures, the feedback inhibition that down-regulates photosynthesis at 

elevated CO2 is reduced (Morison and Lawlor 1999). In a meta-analysis by Wang et al. 

(2012), Anet was indeed higher in plants grown at warmer temperature and elevated CO2; 

however, the magnitude of this response was variable among plant functional groups.  

It is difficult to generalize whole-plant growth responses to high temperature and elevated 

CO2 from leaf-level photosynthesis. Stomatal behavior, whole-plant respiration rates, 

plant developmental stage, and partitioning of carbohydrates can influence biomass 

accumulation in plants grown under warming and elevated CO2 (Morison and Lawlor 

1999). The interactive effect of temperature and CO2 on these processes, therefore, is not 

often characterized in meta-analyses (Morison and Lawlor 1999, Wang et al. 2012).  
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1.7 Photosynthesis and leaf anatomy in D. antarctica and C. quitensis 

1.7.1 Photosynthesis in D. antarctica and C. quitensis 

Studies of photosynthesis in the two Antarctic vascular plant species began only recently. 

Overall, these studies highlight the two species’ ability to operate at sub-zero 

temperatures and their poor performance at temperatures above 20 ºC. Xiong et al. (1999) 

demonstrated that both D. antarctica and C. quitensis could carry out photosynthesis at 

0 ºC, and that they had a temperature compensation point below freezing. Long-term 

exposure (60-85 days) to either sub-optimal (7 ºC), near-optimal (12 ºC), or supra-

optimal (20 ºC) temperatures produced no shift in the Topt of Anet, although Anet in plants 

grown at 20 ºC was suppressed compared to plants grown at 12 ºC (Xiong et al. 2000). 

The direct stimulation of photosynthesis by increasing leaf temperature, as well as the full 

thermal acclimation of dark respiration, resulted in an increase in biomass and leaf 

production at warmer temperatures in both species (Xiong et al. 2000). However, both 

species performed poorly, with negligible Anet on warm, sunny days when air temperature 

was above 20 ºC (Xiong et al. 1999). 

Antarctica is directly affected by ozone depletion and increased UV radiation; therefore, 

many studies have investigated the effects of UV-A and UV-B on photosynthesis in D. 

antarctica and C. quitensis (Rozema et al. 2005). These studies found decreased growth 

under UV-B, but no direct effect on Anet (Day et al. 1999, Montiel et al. 1999, Ruhland 

and Day 2000, Xiong and Day 2001). In response to the damage on PSII of the upper 

mesophyll cells from UV-B, Antarctic plants produce thicker, denser leaves to maintain 

the same Anet for the same leaf area (Xiong and Day 2001).  

1.7.2 Leaf anatomy of D. antarctica and C. quitensis  

1.7.2.1 D. antarctica 

The leaf epidermal structure of D. antarctica is very typical of xerophytic plants from 

polar regions, with a thick cuticle layer on the abaxial (outside) epidermis, small 

epidermal cells, and high stomatal density (Romero et al. 1999). Stomata concentrate in 

stomatal grooves, sunken areas between ribs that run along the length of the leaf blade. 

Leaves of D. antarctica are usually inwardly folded towards the adaxial, or inner, 
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epidermis. The folding is also typical of grasses grown in dry habitats, and facilitated by 

large bulliform cells on the adaxial epidermis. Cross sections of leaves reveal high cell 

density, and two layers of cells surrounding the vascular bundle. Above the abaxial 

epidermis are bundles of sclerenchymatic fibers, which are small cells with thick cell 

walls (Romero et al. 1999, Gielwanowska and Szczuka 2005).  

D. antarctica leaf morphology and anatomy vary with changes in habitat, despite a lack 

of genetic variation, indicating a high degree of plasticity (Chwedorzewska et al. 2008). 

Comparisons of leaf structure among plants from different habitats, either naturally-

occurring or in experiments, show plasticity in leaf shape, thickness, size, cell shapes and 

density. For example, bulliform cells are smaller or completely absent in plants from 

drier habitats, and this is directly associated with more folded leaf blades (Gielwanoska et 

al. 2005, Chwedorzewska et al. 2008). Very dry conditions result in a smaller leaf 

surface, smaller and denser epidermal cells, the absence of the second layer around the 

vascular bundle, and thicker leaves with denser mesophyll cells (Romero et al. 1999). 

The leaf ultrastructure also shows plasticity with environmental factors, including the 

organization and shape of the chloroplast, mitochondria, and endoplasmic reticulum 

inside mesophyll cells (Gielwanowska et al. 2005).  

1.7.2.2 C. quitensis 

C. quitensis leaves are thick and anatomically typical of dicotyledon leaves. Stomata 

occur on both sides of the leaves, but are more prevalent on the adaxial side. Underneath 

the adaxial epidermis are rectangular palisade mesophyll cells, arranged into rows with 

extensive intercellular air space to facilitate CO2 diffusion through the stomata to 

mesophyll cells. Stomata on the abaxial side are mostly close to the leaf margins. Unlike 

D. antarctica, C. quitensis shows little sign of xeromorphy, with no wax layer on the 

epidermis and no tight enclosure of the vascular bundle (Mantovani and Vieira 2000). 

The cushion-like growth form of C. quitensis potentially moderates the cold and dry 

growth conditions, alleviating the pressure to develop xeromorphic leaf structures 

(Gianoli et al. 2004). In addition, the leaf structure of C. quitensis is under stronger 

genetic control, with plants forming different ecotypes in Antarctica compared to the 
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Andes. Plants collected from Antarctica have shorter and wider leaves, thicker 

mesophyll, and larger chloroplasts compared to plants from the Andes when both are 

grown in the same conditions (Gianoli et al. 2004, Bascuñán-Godoy et al. 2010).  

1.8 Objectives 

Deschampsia antarctica and Colobanthus quitensis are the only vascular plant species 

native to Antarctica, and they have existed in a very stable climate since the Last Glacial 

Maximum. The recent rise in temperature is correlated with a positive effect on growth in 

both species, and Smith (1994) suggests using these species as bioindicators of the abiotic 

changes on the continent. However, the mechanisms underlying the positive effect of 

climate change on both species are still not fully understood, and certainly not enough to 

predict future performance of the two species as temperatures and atmospheric CO2 

concentrations continue to rise.  

In addition, the growing population size of these species has been mostly attributed to 

warming, with little consideration of the rise in atmospheric CO2 over the same time 

period. There have been no studies to date investigating the effect of elevated CO2 on 

photosynthesis and growth of D. antarctica or C. quitensis. Since CO2 enrichment can 

also stimulate photosynthesis, understanding the response of these two species to elevated 

CO2, as well as the interaction between warming and elevated CO2, can provide useful 

insights into the plasticity of the photosynthetic apparatus of the two species. In addition, 

this knowledge could strengthen our understanding of the mechanisms underlying the 

improved performance of the two species in the field, and improve predictions of their 

performance in future climates.  

Commonly found in the same area, D. antarctica and C. quitensis possess some similar 

strategies to survive the harsh conditions of Antarctica. However, each species still 

differs in growth form, cold resistant strategies, leaf morphological structure, and other 

traits that could potentially influence its response to future climates. Therefore, 

comparing and contrasting the responses of the two species to elevated temperatures and 

CO2 will also inform predictions of their relative success, the success of non-native 
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species introduced to the continent, and potential shifts in the terrestrial ecosystem of 

Antarctica. 

My thesis investigates the responses of D. antarctica and C. quitensis to warming and 

elevated CO2, including the acclimation potential of photosynthesis, leaf-level 

photosynthetic performance, as well as modifications in leaf structure under a range of 

future growth conditions. I aim to answer two key questions:  

1) How does photosynthesis of D. antarctica and C. quitensis respond to elevated growth 

temperature and CO2?  

2) How does leaf anatomy of D. antarctica and C. quitensis respond to elevated growth 

temperature and CO2?  

The literature regarding the acclimation potential of photosynthesis and leaf anatomy in 

D. antarctica and C. quitensis to changes in the growth conditions does not provide 

enough background to predict the response of these two species to warming and elevated 

CO2.   
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CHAPTER 2: MATERIAL AND METHODS 

2.1 Experimental design 

Three hundred individual plants of each of two species, Deschampsia antarctica Desv. 

(Antarctic hairgrass) and Colobanthus quitensis (Kunth) Bartl. (Antarctic pearlwort), 

were initially collected from King George Island (62 ° 09 ´ S; 58 ° 28 ´ W), where 

average austral summer and winter temperatures are 1.09 ºC and -7 ºC, respectively 

(Ferron et al. 2004). Collected plant specimen were maintained in growth chambers at the 

Universidad de la Frontera, in Temuco, Chile before being transported to the University 

of Western Ontario in November 2014. Plants were wrapped in moist paper towels, 

sealed in Ziploc bags, and transported in Styrofoam boxes kept cool with ice packs. 

Leaves from D. antarctica individuals were trimmed at 1 cm above the base to facilitate 

leaf regrowth, and individuals from both species were weighed for pre-treatment mass. 

Plants were then transplanted into 20-cm diameter pots (2.42 L) (20 individuals of one 

species per pot) in a medium made of 3:1:1 (v:v:v) black loam: peat moss: vermiculite. 

Plants were kept in a walk-in growth chamber (Environmental Growth Chambers, 

Chagrin Falls, OH) at 12 ºC and 350 µmol photons m-2 s-1 and 10-hour daylight to 

establish under conditions that minimized the stress incurred during the transport and 

handling period.  

One week later, five individuals of each species were planted into 10-cm diameter pots 

(0.5 L) with a medium of 3:1:1 (v:v:v) black loam: peat moss: perlite. Ten pots of each 

species were placed in one of six experimental rooftop greenhouses in the Biotron Center 

for Experimental Climate Change Research (Fig. 2.1). The experiment was a full-

factorial design with three target temperatures (11.5 ºC, 15.5 ºC, and 19.5 ºC, referred to 

as 12 ºC, 16 ºC, or 20 ºC treatments) in combination with either an ambient (400 ppm 

CO2, referred to as AC) or elevated (750 ppm CO2, referred to as EC) atmospheric CO2 

concentrations. The six treatments are referred to from now on as 12/AC, 16/AC, 20/AC, 

12/EC, 16/EC, and 20/EC. The humidity was maintained between 60 and 80%, facilitated 

by misters. The greenhouses received natural light, with a set of curtains that engaged 

from 10 am to 2 pm daily, reducing light intensity by 50-80% compared to outside to 

maintain temperature control. Therefore, light levels reached a maximum of 2450 µmol 
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photons m-2 s-1 during April, with an average midday light levels of 650 µmol photons m-

2 s-1 over the six-month period. Temperature, CO2 concentrations, and humidity were 

controlled and monitored by an Argus Control System (Argus Control System Ltd, 

Surrey, BC), and measured every minute. Pots were placed in a net box built with a 

wooden frame and white net to prevent insect attack. The netting reduced the light 

intensity by 16%. Plants were watered as needed to maintain a moist medium, and 

fertilized with half-strength Hoagland’s solution once a week. 

 

2.2 Gas exchange measurements 

After six months in the experimental conditions, gas exchange measurements were 

performed on new, fully expanded leaves of both species using a LI-6400 XT portable 

photosynthesis system (LiCor, Lincoln, NE). Net CO2 assimilation rate (Anet) was 

measured across a range of intercellular CO2 concentrations (Ci) (producing an A-Ci 

curve) at a saturating light level of 1000 µmol photons m-2 s-1, and a vapor pressure 

deficit between 1.2 and 1.6 kPa. Measurements were sequentially made at the following 

CO2 concentrations: 400, 300, 200, 100, 50, 400, 750, 900, 1200, 1500, 2000, and 2200 

ppm. For each species in each treatment, six A-Ci curves were measured at 16 ºC, and in 

the case of the 12 ºC and 20 ºC treatments, another six A-Ci curves were assessed at their 

growth temperatures (12 ºC or 20 ºC, respectively). This allowed gas exchange 

parameters to be assessed across treatments both at a common temperature of 16 ºC (to 

determine the degree of acclimation) and at the growth temperature (to determine 

performance in the growth environment).   

During the A-Ci measurements, Anet was recorded at each CO2 concentration, and a high-

intensity short flash of irradiance was applied to the leaf to measure light-adapted 

chlorophyll fluorescence. At the end of each A-Ci curve, the leaf material was kept in the 

dark at 400 ppm CO2 to minimize post-illumination bursts of CO2 release (Atkin et al. 

1998). After 20 minutes, dark-adapted chlorophyll fluorescence and dark respiration rates 

were assessed at 400 ppm CO2, then again at 750 ppm CO2. After the gas exchange 

measurements were complete, the leaf material in the gas exchange cuvette was 

harvested, images of the leaves laid out on a white surface were taken, and leaf samples 
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were dried at 60 ºC until they reached a constant mass for assessment of dry mass. The 

leaf images were analyzed using ImageJ software (US National Institutes of Health, 

Bestheda, MD) for leaf area. Specific leaf area (SLA, leaf area/ leaf dry mass) was also 

calculated. 

Measured Anet values were corrected for diffusion due to differences in the CO2 

concentration between the ambient atmosphere and inside the cuvette (as per Bruhn et al. 

2002). A-Ci curves were used to derive maximum Rubisco carboxylation rates (Vcmax) 

and maximum electron transport rates (Jmax) using the Farquhar et al. (1980) 

photosynthetic model. The model assumed infinite mesophyll conductance and used the 

Michaelis-Menten constants for Rubisco carboxylation (Kc) and oxygenation (Ko) and the 

CO2 compensation point in the absence of mitochondrial respiration (Γ*) from tobacco 

(von Caemmerer et al. 1994); these parameters were adjusted for leaf temperature based 

on the equations of Bernacchi et al. (2002).   

Anet values at 400 ppm CO2 and growth CO2 were also extracted from the gas exchange. 

Using the chlorophyll fluorescence data, the maximal efficiency of photosystem II 

(Fv/Fm), photochemical quantum yield of photosystem II (ΦPSII), and electron transport 

rate (ETR) were determined at both 400 and 750 ppm CO2 to allow a comparison of these 

parameters at a common CO2 concentration of 400 ppm and at the growth CO2 

concentration. Dark respiration rates (Rdark) are only reported at 400 ppm CO2, as short-

term changes in CO2 concentration do not affect Rdark (Amthor 2000), and diffusion 

artifacts in measurements made at elevated CO2 conditions resulted in unrealistic values.  

 

2.3 Biomass and C/N analysis 

At the end of the measurement campaign, all plant material was harvested. Since the 

cushion-like growth form of C. quitensis did not allow for distinguishing individual 

plants from each other, aboveground and belowground biomass were harvested, dried at 

60 ºC to a constant mass and weighed for each individual pot. For D. antarctica, 

aboveground biomass was obtained for individual plants, but belowground biomass was 

assessed per pot because the root biomass could not be allocated to individual plants. 
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Biomass analysis was pooled on a pot basis for both species, because analysis of D. 

antarctica biomass on an individual plant basis yielded the same results as the pot level 

aggregated data (data not shown). 

Dried leaves from five plants per species per treatment were sampled for carbon and 

nitrogen analysis. Leaf samples were ground with a Wiley mill (Thomas Scientific, 

Swedesboro, NJ), weighed, and sent to Duke Environmental Stable Isotope Laboratory to 

obtain foliar percentage of carbon (C) and nitrogen (N) using a Carlo Erba NA 1500 

Elemental Analyzer (CE Elantech, Inc., Lakewood, NJ). Leaf C:N ratios were then 

calculated. 

 

      

Figure 2.1. Images of Deschampsia antarctica (left) and Colobanthus quitensis (right) in 

the experiment. Lines at bottom right indicate 1 cm.  

 

2.4 Light microscopy 

Fresh leaf samples were collected in May 2015 for light microscopy from five plants per 

species per treatment. For D. antarctica, 1 cm sections of the leaf blade from the middle 
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of the leaf length were collected; for C. quitensis, entire, fully developed leaves were 

harvested. Leaf samples were fixed in 90:5:5 (v:v:v) FAA (formaldehyde: acetic acid: 

alcohol) for 48 hours, washed in Sorensen’s phosphate buffer (0.1 M, pH 7.2), and stored 

in 70% ethanol. Once ready for processing, samples were rehydrated through a series of 

solutions with decreasing ethanol concentrations. Individual leaf sections were placed in 

a plastic mold with 1% agarose to help orient the samples in a paraffin mold. Each 

sample was cut into 2-3 mm sections, placed in paraffin cassettes submerged in 70% 

ethanol, and embedded in paraffin wax.  

After being paraffin-embedded and sectioned with a rotating microtome, sections were 

mounted on slides, deparaffinized with xylene, rehydrated to water, and stained with 

0.05% toluidine blue O. After briefly dehydrating in ethanol and clearing in xylene, 

stained slides were mounted with PermountTM mounting medium. Slides were then 

viewed under a light microscope (Nikon Eclipse Ci, Melville, NY), and images captured 

with a digital camera (Nikon DS Ri2, Melville, NY) and analyzed using ImageJ software 

(US National Institutes of Health, Bestheda, MD). 

Images were analyzed for the proportional area of the leaf cross-section accounted for by 

mesophyll cells, vascular bundles, abaxial and adaxial epidermal cells, and intercellular 

air space. These proportional measurements were performed using a system of randomly 

generated points projected onto the captured image. The proportion of points falling on 

each type of tissue corresponds to the proportion of area in the cross-section occupied by 

the type of tissue (Parkhurst 1982). In order to verify the accuracy of the random point 

method, a subset of six images per species was also analyzed by tracing out and 

measuring the area of each tissue type on the cross-sectional area. Fig. 2.2 illustrates the 

comparison between measurements from the random point method and those taken from 

manually tracing each tissue type. Because the random point method produced similar 

estimates to the traced proportion above 579 points/mm2 in D. antarctica, and above 434 

points/mm2 in C. quitensis (Fig. 2.2), images of D. antarctica cross-sections were 

analyzed at 600 points/mm2, and C. quitensis images at 450 points/mm2. 

In addition to the proportional estimates of the tissue types, each image from both species 

was measured for leaf thickness, width, and thickness to width ratio. On images of D. 
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antarctica, stomatal grooves were also characterized. Stomatal grooves are sunken areas 

on the leaf surface that run longitudinally along the length of the grass blade and contain 

a high concentration of stomata. They serve to reduce water loss by increasing the 

tortuosity of the diffusion path for water from the intercellular airspaces into the air 

outside the leaf boundary layer. Each stomatal groove was measured for the width of the 

opening, groove depth, and the ratios of groove area to groove perimeter were calculated, 

assuming each groove is a half-ellipse with groove depth being the major axis, and width 

the minor axis. 

 

 

Figure 2.2. Ratios of random point proportional estimates of leaf cross-sectional area 

filled by a given tissue type to the true proportion taken from tracing individual tissues in 

a) Deschampsia antarctica and b) Colobanthus quitensis.  Data reported are ratios of 

proportional estimates of each tissue type using random point method to their 

individually traced proportions. Bars depict means ± SE, N = 6. Different bar colors 

indicate different point densities. Dashed line indicates a ratio of 1, where the two 
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methods yield the same results. Based on these data, image analyses were done using 600 

points/mm2 for D. antarctica, and 450 points/mm2 for C. quitensis. 

 

2.5 Aphid attack 

In late March 2014, an aphid outbreak occurred in the 12/AC greenhouse. The aphids 

specifically targeted C. quitensis, and a pyrethrin-based insecticide was used to control 

the outbreak (Schultz Houseplant and Garden Insecticide, Spectrum Brands, Madison, 

WI). However, by the time gas exchange measurements were performned, C. quitensis 

individuals from this treatment still looked unhealthy, and gas exchange measurements 

showed 40-50% higher photosynthetic capacities (Vcmax, Jmax, ΦPSII, ETR) than the 

remaining treatments. This appears to be a compensatory response common in plants 

under insect attack, rather than a treatment response. Remaining leaves of plants attacked 

by insects show greater photosynthetic capacity as a result of changes in the source-sink 

balance (Trumble et al. 1993; Thomson et al. 2003; Franzen et al. 2007). As a result, all 

data of C. quitensis from the 12/AC treatment were removed from the rest of the analysis.  

 

2.5 Statistical analysis 

For each species, two-way ANOVAs were performed on individual variables of interest 

against temperature, CO2, and the interaction of temperature and CO2. A Tukey’s HSD 

posthoc test was performed when there was a significant treatment effect. In the case of 

C. quitensis, the elimination of one treatment resulted in an unbalanced design, so the 

two-way ANOVAs were run using Type II sum of square calculations. Statistical 

analyses were performed using R software. 
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CHAPTER 3: RESULTS 

Fig. 3.1 shows the air temperature and CO2 concentrations recorded in the six treatment 

chambers over the experimental period. From November 2014 to April 2015, temperature 

control in each treatment was consistently within 7% of the target temperature, except for 

the 12 ºC treatments, where temperature was slightly more variable (Fig. 3.1a). CO2 

control in the ambient CO2 (AC) and elevated CO2 (EC) treatments remained consistently 

within 15% of the target CO2 concentration, except for a brief period in early January 

when CO2 control failed in all EC treatments (Fig. 3.1b). 

 

3.1 Photosynthetic response to warming and elevated CO2  

Net CO2 assimilation rates at saturating light (Anet) were used as a proxy for 

photosynthetic rate, and were measured under various combinations of conditions (data 

shown in Fig. 3.2) to assess D. antarctica’s photosynthetic performance. First, Anet 

measured at a common temperature of 16 ºC and CO2 concentration of 400 ppm (Fig. 

3.2a) allows assessment of acclimation of photosynthesis to the treatment conditions 

through any statistically significant response to growth temperature or CO2. Anet in D. 

antarctica measured at this set of conditions showed a 25.6% decrease in response to 

elevated growth CO2 (p = 0.009) and no response to growth temperature (p = 0.61, Fig. 

3.2a), suggesting a down-regulation of photosynthesis at elevated CO2, but no thermal 

acclimation. The significant response to elevated CO2, however, did not manifest in the 

Tukey’s HSD post-hoc test due to the smaller sample size of the individual treatments 

compared to that used to evaluate treatment effects. The interpretation of the treatments 

effects in this chapter, therefore, will focus on the temperature or CO2 response from the 

ANOVA, and the Tukey’s post-hoc test will be highlighted when a significant interaction 

is identified. 

Because Anet was also expected to respond to direct changes in measurement temperature, 

the response of Anet measured at the growth temperature and a common CO2 

concentration demonstrated the combined effects of acclimation to growth temperature 

and the direct response to leaf temperature. Fig. 3.2b showed a marginally significant 
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effect of temperature on Anet in D. antarctica (p = 0.06) due to the stimulation of 

photosynthesis at high leaf temperature alone, as Anet showed no acclimation to growth 

temperature (p = 0.61, Fig. 3.2a). Likewise, Anet is known to also respond to 

measurement CO2; therefore, comparing treatment effects, especially the CO2 response of 

photosynthesis, among plants measured at a common temperature of 16 ºC and their 

growth CO2 concentration allowed evaluation of the combined effects of acclimation to 

growth CO2 and the direct response to high measurement CO2 on Anet. This comparison 

showed that the down-regulation of Anet in EC treatments (Fig. 3.2a) was overwhelmed 

by the direct stimulatory effect of high measurement CO2 on photosynthesis, resulting in 

a 54% increase in Anet in leaves grown and measured at EC treatments compared to AC 

(p < 0.001, Fig. 3.2c). Finally, all plants could be measured at their growth temperature 

and growth CO2 to assess their actual performance in the treatment conditions. In their 

growth environment, Anet was stimulated by 57.7% at elevated growth CO2 (p < 0.001), 

mostly due to the direct CO2 effects on photosynthesis, in addition to a positive 

temperature response that was due to high measurement temperature (p = 0.014, Fig. 

3.2d). The same pattern is used to summarize the trends in Anet, Vcmax, Jmax, and ETR in 

both species. 

In C. quitensis, Anet measured at a common condition of 16 ºC and 400 ppm CO2 showed 

a small degree of acclimation to growth temperature (p = 0.027) and no acclimation to 

growth CO2 (p = 0.13, Fig. 3.3a). The acclimation to growth temperature in Anet resulted 

in 16 ºC treatments having the highest Anet (Fig. 3.3a). However, this response was offset 

by the positive response of Anet to increasing measurement temperature, as there were no 

longer temperature effects in Anet measured at the growth temperature (p = 0.14, Fig. 

3.3b). In contrast, the direct effect of high CO2 concentration led to a 46% stimulation of 

Anet in EC treatments measured at their growth CO2 (p = 0.012, Fig. 3.3c). As a result, 

when all treatments were measured at their growth temperature and CO2, Anet 

significantly increased in EC plants as a result of the direct CO2 effect on photosynthesis 

(p < 0.001, Fig. 3.3d). 
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Figure 3.1 Average a) air temperature and b) atmospheric CO2 concentrations every two 

days in six treatments from November 2014 to May 2015. Circles represent 12 ºC 

treatments, triangles represent 16 ºC treatments, and squares represent 20 ºC treatments 

(20). Empty symbols represent treatments experiencing ambient CO2 concentration (400 

ppm, AC), and filled symbols represent elevated CO2 concentration (750 ppm, EC). 
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Figure 3.2 Net CO2 assimilation rate (Anet) of Deschampsia antarctica at saturating light 

measured at: a) 400 ppm CO2 and leaf temperature of 16 ºC; b) 400 ppm CO2 and growth 

temperature; c) growth CO2 concentration and leaf temperature of 16 ºC; and d) growth 

CO2 concentration and growth temperature. Bars depict means ± SE, N = 6. White bars 

represent growth temperature of 12 ºC, grey bars represent growth temperature of 16 ºC, 

and dark grey bars represent growth temperature of 20 ºC. Empty bars represent ambient 

growth CO2 (400 ppm CO2, AC) and hashed bars represent elevated growth CO2 (750 

ppm CO2, EC). For each graph, the effect of growth temperature (T), growth CO2 (CO2) 

and the interaction of temperature and CO2 (T x CO2) is shown: ns indicates no 

significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 

0.001. Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.3 Net CO2 assimilation rate (Anet) of Colobanthus quitensis at saturating light 

measured at: a) 400 ppm CO2 and 16 ºC; b) 400 ppm CO2 and growth temperature; c) 

growth CO2 and 16 ºC; and d) growth CO2 and growth temperature. Bars depict means ± 

SE, N = 6. White bars represent growth temperature of 12 ºC, grey bars represent growth 

temperature of 16 ºC, and dark grey bars represent growth temperature of 20 ºC. Empty 

bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent 

elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown: ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 

0.01, and *** indicates p < 0.001. Means with different letters are significantly different 

(Tukey’s HSD, p < 0.05). 
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Maximum Rubisco carboxylation rates (Vcmax) and maximum electron transport rates 

(Jmax) were derived over a range of CO2 concentrations to highlight changes in either 

carboxylation or RuBP regeneration capacities under the new growth environment. In D. 

antarctica, neither Vcmax nor Jmax acclimated to growth temperature (p > 0.35 for both) or 

growth CO2 (p = 0.5 for both), as assessed at a common temperature (Figs. 3.4a, c). The 

ratio of these two highly correlated parameters (the Vcmax:Jmax ratio), on the other hand, 

gives insights into the balance between carboxylation and RuBP regeneration. The 

Vcmax:Jmax ratios did not acclimate to either growth temperature (p = 0.57) or growth CO2 

(p = 0.90, Fig. 3.4e). However, growth temperature stimulated both Vcmax (p < 0.001) and 

Jmax (p = 0.006), implying a direct effect of measurement temperature on photosynthetic 

capacity (Figs. 3.4b, d). The Vcmax: Jmax ratio increased with increasing measurement 

temperature (p = 0.004, Fig. 3.4f), due to the larger magnitude of the response in Vcmax 

(103.5%) than Jmax (72.5%) across an 8 ºC change in measurement temperature. 

Photosynthetic capacity in C. quitensis also showed no acclimation to growth temperature 

or CO2 in Vcmax (p > 0.61 for both, Fig. 3.5a), Jmax (p > 0.67 for both, Fig. 3.5c), the 

Vcmax:Jmax ratio (p > 0.11 for both, Fig. 3.5e). There was no direct effect of growth 

temperature on Vcmax or Jmax (p > 0.27 for both, Figs. 3.5b, d); however, Vcmax:Jmax 

responded positively to growth temperature (p = 0.019), implying Vcmax responded to 

increasing leaf temperature to a greater extent than did Jmax (Fig. 3.5f). 

The maximal photochemical efficiency of PSII (Fv/Fm) was obtained from chlorophyll 

fluorescence measurements of dark-incubated leaves. Fv/Fm values between 0.76 and 0.82 

indicate healthy leaves, and values below this range suggest leaves under stress (Maxwell 

and Johnson 2000). D. antarctica showed no effect of growth temperature (p = 0.39) or 

growth CO2 (p = 0.25) on the maximal photochemical efficiency (Table 3.1). The values 

of Fv/Fm, however, were between 0.70 and 0.77, suggesting that photochemical efficiency 

of PSII generally operated at less-than optimal levels, but was not affected by the 

treatment conditions (Table 3.1). In C. quitensis, Fv/Fm values were significantly lower in 

the 20/EC treatment, resulting in a significant interaction between growth temperature 

and CO2 (p = 0.001), but all Fv/Fm values were still within the range of healthy leaves 

(Table 3.1). The variations, therefore, likely had no biological significance. 
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Figure 3.4 a-b) Maximum Rubisco carboxylation rate (Vcmax), c-d) maximum electron 

transport rate (Jmax), and e-f) Vcmax to Jmax ratio of D. antarctica measured at leaf 

temperature of 16 ºC (a, c, e) and growth temperature (b, d, f). Bars depict means ± SE, N 

= 6, except for 12/EC (N = 5), and 16/AC (N = 4). White bars represent growth 

temperature of 12 ºC, grey bars represent growth temperature of 16 ºC, and dark grey 

bars represent growth temperature of 20 ºC. Empty bars represent ambient growth CO2 

(400 ppm CO2, AC) and hashed bars represent elevated growth CO2 (750 ppm CO2, EC). 
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For each graph, the effect of growth temperature (T), growth CO2 (CO2) and the 

interaction of temperature and CO2 (T x CO2) is shown: ns indicates no significant 

difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 

Means with different letters are significantly different (Tukey’s HSD, p < 0.05).  
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Figure 3.5 a-b) Maximum Rubisco carboxylation rate (Vcmax), c-d) maximum electron 

transport rate (Jmax), and e-f) Vcmax to Jmax ratio of C. quitensis measured at leaf 

temperature of 16 ºC (a, c, e) and growth temperature (b, d, f). Bars depict means ± SE, N 

= 6. White bars represent growth temperature of 12 ºC, grey bars represent growth 

temperature of 16 ºC, and dark grey bars represent growth temperature of 20 ºC. Empty 

bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent 

elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 
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is shown: ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 

0.01, and *** indicates p < 0.001. Means with different letters are significantly different 

(Tukey’s HSD, p < 0.05). 
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Table 3.1 Mean ± SE of maximal photochemical capacity of PSII (Fv/Fm) measured at 

leaf temperature of 16 ºC and 400 ppm CO2 (N = 6). The last 3 rows denote treatment 

effect from growth temperature (T), CO2 concentration (CO2), and their interaction (T x 

CO2): ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 0.01, 

and *** indicates p < 0.001. Different letters in brackets suggest significant differences 

between treatments within a species (Tukey’s HSD, p < 0.05).  

Treatment D. antarctica C. quitensis 

12/AC 
0.70 ± 0.028 

(a) 
 

16/AC 
0.73 ± 0.018 

(a) 

0.78 ± 0.003 

(ab) 

20/AC 
0.71 ± 0.024 

(a) 
0.80 ± 0.005 

(a) 

12/EC 
0.77 ± 0.006 

(a) 

0.79 ± 0.006 

(ab) 

16/EC 
0.74 ± 0.022 

(a) 
0.79 ± 0.004 

(ab) 

20/EC 
0.70 ± 0.026 

(a) 

0.77 ± 0.005 

(b) 

T 

CO2 

T x CO2 

ns 

ns 

ns 

ns 

ns 

*** 
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The electron transport rate measured with chlorophyll fluorescence (ETR) demonstrated 

the performance of the electron transport chain independent of the Calvin-Benson cycle. 

This parameter was calculated from measurements of quantum yield of PSII (ΦPSII), the 

trends in both ETR and ΦPSII were therefore very similar, and only data for the former 

were presented. In D. antarctica, ETR showed evidence of a weak down-regulation in 

response to increased growth temperature (p = 0.04) and elevated growth CO2 (p = 0.04) 

when measured at a common leaf temperature and CO2 concentration (Fig. 3.6a). ETR, 

therefore, decreased at higher growth temperatures and CO2. The down-regulation under 

higher temperatures, however, was fully compensated for by the positive effect of 

increasing leaf temperature on ETR, because there was no longer a significant 

temperature effect when ETR was measured at the growth temperature (p = 0.30, Fig. 

3.6b). On the other hand, measurements at growth CO2 showed a small but significant 

positive CO2 effect, suggesting that the direct effect of higher CO2 concentrations on 

ETR overwhelmed the down-regulation of ETR at elevated CO2 (p = 0.016, Fig. 3.6c). 

Consequently, when measured at the growth conditions (growth temperature and growth 

CO2), ETR in D. antarctica leaves showed no response to either temperature (p = 0.40) or 

CO2 (p = 0.13, Fig. 3.6d). 

In C. quitensis, measurements at a leaf temperature of 16 ºC and CO2 concentration of 

400 ppm indicated a 14% down-regulation in ETR (p = 0.008, Fig. 3.7a) in the 20 ºC 

treatments. The effect, however, was more than offset by the direct effect of higher leaf 

temperature, as ETR in the warmest treatments was 18% greater (p = 0.02, Fig. 3.7b) than 

the 12 ºC treatment when both were assessed at the growth temperatures. Measurements 

at a common leaf temperature and CO2 concentration did not show any acclimation to 

growth CO2 (p = 0.44), but direct exposure to high measurement CO2 resulted in a small 

increase in ETR (p = 0.013, Fig. 3.7c). The ETR of C. quitensis measured at the growth 

conditions was, therefore, stimulated under warming (p = 0.003) and elevated CO2 

treatments (p = 0.011, Fig. 3.7d), mostly due to the direct effects of higher leaf 

temperature and CO2 level.  

The ratios of intercellular to atmospheric CO2 concentrations (Ci/Ca) can inform us of the 

stomatal behavior in response to both acute temperature and CO2 effects and long-term 
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acclimation to the new growth temperature or CO2 level. In D. antarctica, Ci/Ca 

measured at a common temperature and CO2 concentration showed no acclimation to 

growth temperature (p = 0.22), but there was an increased ratio in plants grown in 

elevated CO2 (p = 0.021, Fig. 3.8a). When the ratio in each treatment was evaluated at the 

respective growth temperature, there was no response to growth temperature (p = 0.64, 

Fig. 3.8b), implying that the Ci/Ca ratio was not affected by acute temperature changes. 

When measured at the growth CO2, Ci/Ca was significantly higher in elevated CO2 

treatments (p = 0.018, Fig. 3.8c), suggesting that increasing the measurement CO2 

concentration did not alter stomatal behavior of D. antarctica leaves grown at elevated 

CO2. Under the growth temperature and CO2, the Ci/Ca ratio in D. antarctica showed no 

CO2 response (p = 0.22), but a significant temperature effect (p = 0.025), with decreasing 

ratios at higher temperatures (Fig. 3.8d). 

In C. quitensis, Ci/Ca ratios generally followed the same trends as in D. antarctica. Under 

a common leaf temperature of 16 ºC and CO2 concentration of 400 ppm, Ci/Ca was higher 

in plants grown under elevated CO2 (p = 0.012, Fig. 3.9a). Measured under the same CO2 

concentration and the growth temperatures, the Ci/Ca ratio decreased as leaf temperature 

increased (p = 0.034, Fig. 3.9b). The increased Ci/Ca ratio under elevated CO2 was 

magnified when plants were measured at their growth CO2 (p < 0.001, Fig. 3.9c), as a 

strong CO2 effect was found. When all plants were measured at their growth temperature 

and CO2, the CO2 response was no longer observed (p = 0.14); instead, the Ci/Ca ratio 

decreased with rising growth temperatures (p = 0.04) and was particularly low in the 

20/EC treatment (Fig. 3.9d).  

Dark respiration (Rdark) offered an estimate of the CO2 released from leaf mitochondrial 

metabolism. In D. antarctica, Rdark assessed at a common measurement temperature 

showed no response to either growth temperature (p =0.32) or growth CO2 (p = 0.26, Fig. 

3.10a), nor did Rdark measurements at growth temperature show any response to 

temperature (p = 0.21) or CO2 (p = 0.66) (Fig. 3.10b). However, the variance between 

individuals and among measurements was high. Similarly, Rdark in C. quitensis showed 

neither acclimation to growth temperature or CO2 (p > 0.19 for both, Fig. 3.11a) nor did it 

respond to changes in leaf measurement temperature (p > 0.16 for both, Fig. 3.11b). 
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Figure 3.6 Electron transport rate (ETR) of D. antarctica measured at: a) 400 ppm CO2 

and leaf temperature of 16 ºC; b) 400 ppm CO2 and growth temperature; c) growth CO2 

concentration and leaf temperature of 16ºC; and d) growth CO2 concentration and growth 

temperature. Bars depict means ± SE, N = 6. White bars represent growth temperature of 

12 ºC, grey bars represent growth temperature of 16 ºC, and dark grey bars represent 

growth temperature of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, 

AC) and hashed bars represent elevated growth CO2 (750 ppm CO2, EC). For each graph, 

the effect of growth temperature (T), growth CO2 (CO2) and the interaction of 

temperature and CO2 (T x CO2) is shown: ns indicates no significant difference, * 

indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Means with 

different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.7 Electron transport rate (ETR) of C. quitensis measured at: a) 400 ppm CO2 

and leaf temperature of 16 ºC; b) 400 ppm CO2 and growth temperature; c) growth CO2 

concentration and leaf temperature of 16ºC; and d) growth CO2 concentration and growth 

temperature. Bars depict means ± SE, N = 6. White bars represent growth temperature of 

12 ºC, grey bars represent growth temperature of 16 ºC, and dark grey bars represent 

growth temperature of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, 

AC) and hashed bars represent elevated growth CO2 (750 ppm CO2, EC). For each graph, 

the effect of growth temperature (T), growth CO2 (CO2) and the interaction of 

temperature and CO2 (T x CO2) is shown: ns indicates no significant difference, * 

indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Means with 

different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.8 Intercellular (Ci) to atmospheric (Ca) CO2 concentrations ratio (Ci/Ca) of D. 

antarctica measured at: a) 400 ppm CO2 and leaf temperature of 16 ºC; b) 400 ppm CO2 

and growth temperature; c) growth CO2 concentration and leaf temperature of 16 ºC; and 

d) growth CO2 concentration and growth temperature. Bars depict means ± SE, N = 6. 

White bars represent growth temperature of 12 ºC, grey bars represent growth 

temperature of 16 ºC, and dark grey bars represent growth temperature of 20 ºC. Empty 

bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent 

elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown: ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 

0.01, and *** indicates p < 0.001. Means with different letters are significantly different 

(Tukey’s HSD, p < 0.05). 
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Figure 3.9 Intercellular to atmospheric CO2 concentrations ratio (Ci/Ca) of C. quitensis 

measured at: a) 400 ppm CO2 and leaf temperature of 16 ºC; b) 400 ppm CO2 and growth 

temperature; c) growth CO2 concentration and leaf temperature of 16 ºC; and d) growth 

CO2 concentration and growth temperature. Bars depict means ± SE, N = 6. White bars 

represent growth temperature of 12 ºC, grey bars represent growth temperature of 16 ºC, 

and dark grey bars represent growth temperature of 20 ºC. Empty bars represent ambient 

growth CO2 (400 ppm CO2, AC) and hashed bars represent elevated growth CO2 (750 

ppm CO2, EC). For each graph, the effect of growth temperature (T), growth CO2 (CO2) 

and the interaction of temperature and CO2 (T x CO2) is shown: ns indicates no 

significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 

0.001. Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.10 Dark respiration rate (Rdark) of D. antarctica measured at: a) 400 ppm CO2 

and leaf temperature of 16 ºC and b) 400 ppm CO2 and growth temperature. Bars depict 

means ± SE, N = 6. White bars represent growth temperature of 12 ºC, grey bars 

represent growth temperature of 16 ºC, and dark grey bars represent growth temperature 

of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars 

represent elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown: ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 

0.01, and *** indicates p < 0.001. Means with different letters are significantly different 

(Tukey’s HSD, p < 0.05). 
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Figure 3.11 Dark respiration rate (Rdark) of C. quitensis measured at: a) 400 ppm CO2 and 

leaf temperature of 16 ºC and b) 400 ppm CO2 and growth temperature. Bars depict 

means ± SE, N = 6. White bars represent growth temperature of 12 ºC, grey bars 

represent growth temperature of 16 ºC, and dark grey bars represent growth temperature 

of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars 

represent elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown: ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 

0.01, and *** indicates p < 0.001. Means with different letters are significantly different 

(Tukey’s HSD, p < 0.05). 
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3.2 Leaf structure and biomass accumulation 

Specific leaf area (SLA) is the ratio of leaf area to dry mass, and reflects the structural 

investment of plants in photosynthetic tissue, with a lower SLA suggesting thicker leaves. 

The SLA in D. antarctica was higher as growth temperature increased (p = 0.020), and 

lower at higher growth CO2 (p = 0.020), although the magnitude of the change was small 

(Fig. 3.12a). C. quitensis, in contrast, showed no significant treatment effects on SLA (p 

> 0.11 for temperature and CO2, Fig. 3.12b). 

Biomass of both D. antarctica and C. quitensis was affected by the treatments (Figs. 

3.13-14). In D. antarctica, aboveground and belowground biomass increased by 46.2% 

under elevated growth CO2 (p < 0.001, Figs. 3.13a-c). Growth was also enhanced at 

higher growth temperatures (p < 0.001, Figs. 3.13a-c), but only under moderate warming 

(from 12 to 16 ºC), since the biomass in 20 ºC treatments was equivalent to that in the 

coolest treatment. The direction and magnitude of the growth response to temperature 

and CO2 were consistent between aboveground and belowground biomass, therefore, 

there were no treatment effects on the root:shoot ratios in D. antarctica (p > 0.10 for 

both, Fig. 3.13d). Similar to D. antarctica, CO2 stimulated root and shoot growth in C. 

quitensis (p < 0.001, Figs. 3.14a-c). In contrast, increasing temperature negatively 

affected biomass accumulation at both CO2 levels (p < 0.001, Figs. 3.14a-c). Root to 

shoot ratios were not affected by growth temperature (p = 0.75), but elevated CO2 tended 

to promote root growth more than shoot growth in C. quitensis (p = 0.04, Fig. 3.14d). 

Across all treatments, D. antarctica showed a consistent leaf carbon content of 40% (p > 

0.16 for both temperature and CO2, Table 3.2). Foliar nitrogen, however, was lower in 

plants grown at elevated CO2 (p = 0.001), although there was no growth temperature 

effect (p = 0.32, Table 3.2). The C:N ratio, therefore, was reflective of the treatment 

response to nitrogen, i.e higher C:N ratios in elevated CO2-grown plants (p < 0.001, 

Table 3.2). C. quitensis leaves grown at the warmer treatments had a lower percentage of 

carbon than cool-grown plants, but the effect was small (p = 0.010, Table 3.2). Elevated 

CO2, on the other hand, reduced foliar N in C. quitensis leaves by 11.5% (p = 0.046, 

Table 3.2), resulting in an increase in the C:N ratio in elevated CO2-grown plants (p = 

0.041, Table 3.2). 
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Figure 3.12 Specific leaf area of a) D. antarctica and b) C. quitensis. Bars depict mean ± 

SE, N = 12, except for 16/AC and 16/EC (N = 6). White bars represent growth 

temperature of 12 ºC, grey bars represent growth temperature of 16 ºC, and dark grey 

bars represent growth temperature of 20 ºC. Empty bars represent ambient growth CO2 

(400 ppm CO2, AC) and hashed bars represent elevated growth CO2 (750 ppm CO2, EC). 

For each graph, the effect of growth temperature (T), growth CO2 (CO2) and the 

interaction of temperature and CO2 (T x CO2) is shown: ns indicates no significant 

difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 

Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Figure 3.13 a) Aboveground biomass, b) belowground biomass, c) total biomass, and d) 

root to shoot ratio of D. antarctica on a pot basis. Bars depict means ± SE, N = 10, except 

for 20/AC (N = 8) and 20/EC (N = 9). White bars represent growth temperature of 12 ºC, 
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grey bars represent growth temperature of 16 ºC, and dark grey bars represent growth 

temperature of 20 ºC. Empty bars represent ambient growth CO2 (400 ppm CO2, AC) and 

hashed bars represent elevated growth CO2 (750 ppm CO2, EC). For each graph, the 

effect of growth temperature (T), growth CO2 (CO2) and the interaction of temperature 

and CO2 (T x CO2) is shown: ns indicates no significant difference, * indicates p < 0.05, 

** indicates p < 0.01, and *** indicates p < 0.001. Means with different letters are 

significantly different (Tukey’s HSD, p < 0.05).
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Figure 3.14 a) Aboveground biomass, b) belowground biomass, c) total biomass, and d) 

root to shoot ratio of C. quitensis on a pot basis. Bars depict means ± SE, N = 10. White 
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bars represent growth temperature of 12 ºC, grey bars represent growth temperature of 16 

ºC, and dark grey bars represent growth temperature of 20 ºC. Empty bars represent 

ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent elevated growth CO2 

(750 ppm CO2, EC). For each graph, the effect of growth temperature (T), growth CO2 

(CO2) and the interaction of temperature and CO2 (T x CO2) is shown: ns indicates no 

significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 

0.001. Means with different letters are significantly different (Tukey’s HSD, p < 0.05). 
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Table 3.2 Mean ± SE of leaf carbon, nitrogen, and carbon to nitrogen ratio of D. 

antarctica and C. quitensis (N = 5). The last 3 rows denote treatment effects from growth 

temperature (T), CO2 concentration (CO2), and their interaction (T x CO2): ns indicates 

no significant difference, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p 

< 0.001. Different letters in brackets suggest significant differences between treatments 

within a species (Tukey’s HSD, p < 0.05). 

 D. antarctica C. quitensis 

Treat-

ment 

%C %N C:N %C %N C:N 

12/AC 40.93 ± 0.24 

(a) 

2.74 ± 0.15 

(a) 

15.14 ± 0.88 

(b) 

   

16/AC 41.44 ± 0.25 
(a) 

2.42 ± 0.17 
(ab) 

17.44 ± 1.14 
(b) 

36.98 ± 0.40 
(ab) 

2.56 ± 0.18 
(a) 

14.77 ± 1.14 
(a) 

20/AC 41.36 ± 0.25 

(a) 

2.63 ± 0.21 

(a) 

16.12 ± 1.32 

(b) 

35.60 ± 0.19 

(b) 

2.81 ± 0.12 

(a) 

12.77 ± 0.62 

(a) 

12/EC 40.84 ± 0.30 
(a) 

1.75 ± 0.10 
(b) 

23.53 ± 1.05 
(a) 

38.93 ± 0.16 
(a) 

2.49 ± 0.16 
(a) 

15.87 ± 0.92 
(a) 

16/EC 41.47 ± 0.47 

(a) 

2.15 ± 0.21 

(ab) 

19.87 ± 1.43 

(ab) 

37.46 ± 1.08 

(ab) 

2.33 ± 0.24 

(a) 

16.89 ± 2.07 

(a) 

20/EC 40.59 ± 0.25 

(a) 

2.34 ± 0.16 

(ab) 

17.65 ± 1.20 

(b) 

36.59 ± 0.46 

(ab) 

2.30 ± 0.14 

(a) 

16.15 ± 1.05 

(a) 

T ns ns ns * ns ns 

CO2 ns ** *** ns * * 

T x CO2 ns ns * ns ns ns 
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3.3 Leaf anatomy 

Analysis of leaf anatomy provides an additional method to assess acclimation to the new 

growth environments. While modifications in the mesophyll cells, the main 

photosynthetic tissue, could help explain thermal or CO2 acclimation of photosynthesis, 

other structures revealed by the cross-sectional analysis, such as stomata, vascular 

bundles, and epidermis, can also inform of the plant water status and allocation of 

resources that contribute to photosynthetic performance. 

All 30 samples of leaf cross-sections across treatments of D. antarctica showed a leaf 

blade folded towards the adaxial epidermis (Fig. 3.15a). Leaves from all treatments had a 

thick-walled abaxial epidermis and a thinner-walled adaxial side (Fig. 3.15a). Vascular 

bundles were well-differentiated, and wrapped inside a layer of mestome with thick 

internal walls. The number of vascular bundles ranged from 3 to 5, resulting in 3 to 5 

stomatal grooves, where most stomata occurred. Bulliform cells, which are usually 

located at the bottom of each stomatal groove to facilitate leaf folding or unfolding, were 

missing in all treatments. Mesophyll cells were undifferentiated, and did not follow any 

particular arrangements. 

Transverse sections of C. quitensis were typical of dicotyledon plants. Stomata occurred 

on both sides of the leaf, but there were significantly more stomata on the adaxial side, 

and only near the leaf margin on the abaxial side (Fig. 3.15b). Mesophyll cells were 

differentiated into palisade mesophyll on the adaxial side and spongy mesophyll on the 

abaxial side. There was one main vascular bundle at the center of the cross-section where 

the central vein was, in addition to three to four smaller vascular bundles surrounded by a 

sheath of cells without chlorophyll (Fig. 3.15b).  

D. antarctica cross-sectional images showed no significant treatment responses in leaf 

thickness (p > 0.48 for temperature and CO2, Table 3.3) or width (p > 0.43 for 

temperature and CO2, Table 3.3). C. quitensis leaf thickness also did not vary among 

treatments (p > 0.10 for temperature and CO2, Table 3.3). However, leaf width in C. 

quitensis decreased by up to 39% as temperature increased at ambient growth CO2 (p = 

0.001), and this response to temperature was much less pronounced in the elevated CO2 

treatments (p = 0.03, Table 3.3). Analyses of the cross-sectional areas occupied by 
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different types of tissue showed that intercellular air space in D. antarctica was 

significantly reduced at 16 ºC growth temperature (p = 0.042, Table 3.3). There was no 

treatment response in the cross-sectional areas filled by mesophyll cells, vascular 

bundles, or any other non-photosynthetic tissues in D. antarctica (p > 0.13 for all, Table 

3.3). The same analyses on C. quitensis showed no significant treatment effects in any 

tissue types (p > 0.13 for all, Table 3.3). 

Stomatal grooves, a unique anatomical feature in grasses, were characterized in D. 

antarctica in terms of width, depth, area, and perimeter, assuming a half-ellipse shape 

(Fig. 3.16). Groove width was smallest in plants grown at 20/AC, but the groove 

significantly widened at higher growth CO2 (p = 0.37 for temperature, p = 0.005 for CO2, 

p = 0.012 for the interaction, Fig. 3.16a). Grooves also became shallower as growth 

temperature increased (p = 0.030), with no CO2 effect on groove depth (p = 0.40, Fig. 

3.16b). Analysis of groove area to perimeter ratio allowed an estimate of the balance 

between the size of the diffusion surface (perimeter) and the pocket of air with high 

humidity (area). Most notably, the perimeter to area ratio of the stomatal groove was 

lowest in the warmest treatment at ambient CO2 concentration (20/AC), but significantly 

increased in the same growth temperature at elevated CO2 (p = 0.005 for CO2, p = 0.014 

for the interaction, Fig. 3.16c). This suggested that very high evaporative demand at the 

20/AC treatment resulted in a groove structure that minimized diffusion to prevent water 

loss, and that elevated CO2 concentrations alleviated the negative effect of high 

temperature. 
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Figure 3.15 Cross sections of a) D. antarctica and b) C. quitensis stained with Toluidine 

blue O. Tissue types shown include mesophyll cells (Me), vascular bundles (Vb), 

intercellular air space (IAS), stomata (St), abaxial epidermis (Ab), adaxial epidermis 

(Ad), and stomatal groove (Sg). Scale bars indicate 50 µm. 
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Table 3.3 Proportion of cross-sectional images of D. antarctica and C. quitensis filled 

with mesophyll cells, intercellular air space, vascular bundles, and other non-

photosynthetic tissues (abaxial and adaxial epidermis, fiber bundles), as well as leaf 

thickness and width. Data are means ± SE, N = 5. The last 3 rows denote treatment 

effects from growth temperature (T), CO2 concentration (CO2), and their interaction (T x 

CO2): ns indicates no significant difference, * indicates p < 0.05, ** indicates p < 0.01, 

and *** indicates p < 0.001. Different letters in brackets suggest significant differences 

between treatments within a species (Tukey’s HSD, p < 0.05). 

 

 
Treat-

ment 

Mesophyll 

cells 

Inter-

cellular air 

space 

Vascular 

bundles 

Other 

tissues 

Thickness 

(µm) 

Width 

(µm) 

D
. 

a
n

ta
rc

ti
ca

 

12/AC 
0.50 ± 

0.043 (a) 

0.16 ± 

0.013 (a) 

0.049 ± 

0.004 (a) 

0.29 ± 

0.032 (a) 

202.8 ± 

13.8 (a) 

1487.9 ± 

129.0 (a) 

16/AC 
0.58 ± 

0.024 (a) 

0.07 ± 

0.025 (a) 

0.047 ± 

0.010 (a) 

0.29 ± 

0.017 (a) 

213.1 ± 

11.1 (a) 

1542.7 ± 

126.2 (a) 

20/AC 
0.49 ± 

0.040 (a) 
0.14 ± 

0.032 (a) 
0.072 ± 

0.017 (a) 
0.30 ± 

0.026 (a) 
196.0 ± 
7.2 (a) 

1272.2 ± 
92.5 (a) 

12/EC 
0.57 ± 

0.030 (a) 

0.11 ± 

0.028 (a) 

0.061 ± 

0.020 (a) 

0.26 ± 

0.045 (a) 

197.0 ± 

12.3 (a) 

1448.7 ± 

150.9 (a) 

16/EC 
0.58 ± 

0.025 (a) 
0.07 ± 

0.025 (a) 
0.040 ± 

0.013 (a) 
0.30 ± 

0.029 (a) 
213.0 ± 
9.3 (a) 

1524.2 ± 
123.8 (a) 

20/EC 
0.53 ± 

0.043 (a) 

0.14 ± 

0.030 (a) 

0.056 ± 

0.010 (a) 

0.26 ± 

0.034 (a) 

219.9 ± 

20.5 (a) 

1447.4 ± 

151.9 (a) 

T ns * ns ns ns ns 

CO2 ns ns ns ns ns ns 

T x CO2 ns ns ns ns ns ns 

C
. 
q

u
it

en
si

s 

12/AC 
0.44 ± 

0.049 (a) 

0.31 ± 

0.052 (a) 

0.017 ± 

0.005 (a) 

0.23 ± 

0.051 (a) 

412.7 ± 

39.7 (a) 

1362.6 ± 

160.5 (a) 

16/AC 
0.47 ± 

0.019 (a) 

0.21 ± 

0.026 (a) 

0.064 ± 

0.020 (a) 

0.25 ± 

0.024 (a) 

345.1 ± 

21.5 (a) 

829.3 ± 

76.8 (b) 

20/AC 
0.49 ± 

0.034 (a) 

0.27 ± 

0.048 (a) 

0.026 ± 

0.012 (a) 

0.22 ± 

0.021 (a) 

352.9 ± 

36.6 (a) 

872.2 ± 

35.5 (b) 

12/EC 
0.45 ± 

0.033 (a) 

0.28 ± 

0.028 (a) 

0.066 ± 

0.021 (a) 

0.21 ± 

0.020 (a) 

355.2 ± 

25.6 (a) 

1123.9 ± 

32.4 (ab) 

16/EC 
0.52 ± 

0.050 (a) 
0.22 ± 

0.027 (a) 
0.059 ± 

0.030 (a) 
0.20 ± 

0.026 (a) 
349.1 ± 
18.6 (a) 

980.7 ± 
66.7 (b) 

20/EC 
0.52 ± 

0.028 (a) 

0.22 ± 

0.031 (a) 

0.023 ± 

0.007 (a) 

0.24 ± 

0.019 (a) 

299.1 ± 

16.0 (a) 

1066.2 ± 

54.5 (ab) 

T ns ns ns ns ns ** 

CO2 ns ns ns ns ns ns 

T x CO2 ns ns ns ns ns * 
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Figure 3.16 a) Average stomatal groove width, b) depth, and c) area to perimeter ratio of 

Deschampsia antarctica. Bars depict means ± SE, N = 5, except for 12/AC (N = 4). 

White bars represent growth temperature of 12 ºC, grey bars represent growth 
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temperature of 16 ºC, and dark grey bars represent growth temperature of 20 ºC. Empty 

bars represent ambient growth CO2 (400 ppm CO2, AC) and hashed bars represent 

elevated growth CO2 (750 ppm CO2, EC). For each graph, the effect of growth 

temperature (T), growth CO2 (CO2) and the interaction of temperature and CO2 (T x CO2) 

is shown, with ns indicates no significant difference, * indicates p < 0.05, ** indicates p 

< 0.01, and *** indicates p < 0.001. Means with different letters are significantly 

different (Tukey’s HSD, p < 0.05). 
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CHAPTER 4: DISCUSSION 

This study set out to investigate the effects of warming and elevated CO2 concentration 

on the two species of vascular plants in Antarctica, Deschampsia antarctica and 

Colobanthus quitensis. Both species were assessed in terms of the capacity of the 

photosynthetic apparatus to acclimate to the new growth conditions, as well as any 

modifications in leaf morphology and biomass in response to the treatments. Overall, 

both species showed very little plasticity in the photosynthetic apparatus under different 

growth conditions. Maximum Rubisco carboxylation rates (Vcmax), maximum electron 

transport rates (Jmax), and net CO2 assimilation rates (Anet) did not show thermal 

acclimation to an 8 ºC increase in growth temperatures in either D. antarctica or C. 

quitensis. In contrast, D. antarctica displayed a 25% down-regulation of Anet at elevated 

growth CO2, while C. quitensis did not. Photosynthesis in both species was stimulated by 

higher CO2 concentration, but in D. antarctica Anet was more responsive to increasing 

measurement temperatures than was C. quitensis. There was evidence of adjustments in 

leaf morphology of D. antarctica to the treatments, specifically a narrowing of the 

stomatal groove, to conserve water loss at very high temperatures, which could introduce 

CO2 diffusion limitations under severe warming. However, similar to photosynthesis, leaf 

anatomy in both species also showed very little plasticity under a range of growth 

conditions. At the whole-plant level, elevated CO2 stimulated growth in both species, 

while warming promoted growth only in D. antarctica at the moderate warming 

treatments (16 ºC). Biomass accumulation decreased in the warmest treatments in D. 

antarctica, and in all warming treatments in C. quitensis.  

 

4.1 Photosynthesis in both species showed little thermal acclimation  

Thermal acclimation of photosynthesis is often defined as adjustments in the 

photosynthetic machinery that result in an enhanced performance at the new growth 

temperature (Berry and Bjorkman 1980). Additionally, both photosynthesis and 

respiration are known to respond to a direct increase in measurement temperatures, 

which, once combined with the photosynthetic and respiratory adjustments, can result in 

either an enhancement or a reduction in performance at the new growth conditions 
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(termed constructive or detractive acclimation by Way and Yamori (2013)). Therefore, 

this experiment evaluated thermal acclimation of photosynthesis by assessing 

photosynthetic parameters (Anet, Vcmax, Jmax, and ETR) across treatments at both a 

common leaf temperature (16 ºC) and at the growth temperature. One of the most 

prominent findings of my work is the lack of photosynthetic acclimation to an 8 ºC 

increase in growth temperature in both D. antarctica and C. quitensis. The direct 

temperature response varied between species, and was ultimately responsible for the 

increased performance in their growth environment. 

4.1.1 Neither species showed thermal acclimation of photosynthesis across an 8 ºC 

increase in growth temperature 

Photosynthetic performance, evaluated by the net CO2 assimilation rate (Anet), showed no 

acclimation to growth temperatures in either D. antarctica or C. quitensis: measurements 

at a common set of conditions showed no significant temperature response. This is 

coupled with a lack of acclimation in both maximum Rubisco carboxylation rate (Vcmax) 

and the maximum electron transport rate (Jmax) to growth temperature. Photosynthetic 

capacity (Vcmax and Jmax) and the balance between carboxylation and RuBP regeneration 

(Vcmax:Jmax ratio) are usually responsible for thermal acclimation of photosynthesis 

(Hikosaka et al. 2006); therefore, the consistent response of these three parameters to the 

8 ºC range in growth temperature all pointed towards minimal plasticity in photosynthetic 

capacity in both species. 

A lack of thermal adjustment in photosynthesis has been previously documented in these 

two species by Xiong et al. (2000). When grown at 7, 12, or 20 ºC, neither D. antarctica 

nor C. quitensis showed a shift in the thermal optimum of photosynthesis, despite the 

demonstrated full thermal acclimation of respiration. The lack of photosynthetic plasticity 

in an Antarctic population of C. quitensis has been demonstrated (Sierra-Almeida et al. 

2007). A change in growth temperature from 4 to 15 ºC resulted in a much larger shift in 

the thermal optimum (Topt) of photosynthesis in C. quitensis from the Andes, where 

temperature is both higher and more variable, compared to the population from the 

Maritime Antarctic. Additionally, the lower plasticity in the Antarctic population also 



69 

 

 

suggests that the evolutionary history on the continent (i.e. a cold but stable climate) 

might contribute to the lack of acclimation potential of photosynthesis in both species.  

Measurements of Anet include photosynthesis, photorespiration, and mitochondrial 

respiration. The thermal acclimation of respiration could therefore influence the 

acclimatory response, or lack thereof, of Anet to growth temperature. Xiong et al. (1999), 

for example, demonstrated that on sunny and warm days (average temperature above 20 

ºC), it was the high respiratory losses that resulted in poor net carbon gain in both D. 

antarctica and C. quitensis. In my experiment, dark respiration rates (Rdark) did not 

acclimate to increasing growth temperature or show a direct increase in response to 

measurement temperature; the treatment response of Anet, therefore, is not caused by 

respiratory shifts.  

Many studies find respiration acclimates more readily to a change in growth temperature 

than does photosynthesis, and the positive response of Rdark to increasing measurement 

temperature is well established (Atkins and Tjoelker 2003, Way and Oren 2010). 

Therefore, the lack of acclimation of Rdark in my experiment was unexpected. This could 

be either a result of large variability in the data, or a true lack of plasticity in respiration 

of the two species. Regarding the first point, given the small absolute value of the 

respiration rates (approximately 1-3 µmol CO2 m
-2 s-1), the magnitude of the variability 

inherent to the gas exchange system (approximately 1 µmol CO2 m
-2 s-1), and the sample 

size of six, the values produced would be much more variable. In fact, Xiong et al. (2000) 

conducted gas exchange measurements on the whole canopy, which produced larger 

fluxes, found full thermal acclimation of Rdark in both species. On the other hand, 

Larigauderie and Körner (1995), Loveys et al. (2003), and Atkin et al. (2006) all found 

large variations in the degree of thermal acclimation of respiration among species. 

Specifically, both Larigauderie and Körner (1995) and Atkin et al. (2006) found alpine 

plants to possess much less plasticity in both respiration and photosynthesis when grown 

under warmer conditions compared to lowland species, and it is likely that the same 

applies to D. antarctica and C. quitensis, which are adapted to cold, extreme conditions.  

Thermal acclimation of Rubisco carboxylation (Vcmax) and RuBP regeneration (Jmax) is 

often considered the mechanism of thermal acclimation in photosynthesis (Hikosaka et al. 
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2006), and thus is often used to evaluate thermal acclimation of photosynthesis (Way and 

Yamori 2013). Thermal acclimation of Vcmax and Jmax usually includes an upward shift in 

the thermal optima of these two parameters (Kattge and Knorr 2007), as well as a shift in 

the Vcmax:Jmax ratio when both are extrapolated to (or measured at) a common temperature 

(Hikosaka et al. 2006). In this study, neither D. antarctica or C. quitensis showed a 

change in Vcmax or Jmax when measured at a common temperature, providing further 

evidence supporting the lack of thermal plasticity in both Antarctic species.  

Even though this experiment was not set up to evaluate the thermostability of the 

thylakoid membranes, measurements of the maximal photochemical efficiency (Fv/Fm), 

PSII quantum yield (ΦPSII) and electron transport rate (ETR) from chlorophyll 

fluorescence could inform us of the performance of PSII photochemistry and electron 

transport. Fv/Fm did not show any biologically meaningful changes across treatments in 

either species. Meanwhile, ETR was down-regulated at high growth temperatures in both 

species, which, once combined with the positive effect of measurement temperature, 

resulted in either the same (in D. antarctica) or improved ETR (in C. quitensis) under the 

growth temperature. This trend suggests the ability of PSII electron transport in D. 

antarctica to acclimate to changes in growth temperature.  

Mawson and Cummins (1989), Yamasaki et al. (2002), and Xu and Zhou (2006) have 

suggested that the thermal acclimation of ETR and ΦPSII could contribute to the 

acclimation of Anet to changes in growth temperature. However, this experiment saw an 

uncoupling of these two processes: there was thermal acclimation of ETR without an 

accompanying trend in Anet in either species. Jmax, derived from gas exchange 

measurements, reveals electron transport rate assuming CO2 is the only acceptor, while 

ETR, measured with chlorophyll fluorescence, reflects electron transport from PSII, 

which could be used in CO2 fixation or other alternative sinks. The thermal acclimation 

of ETR in both D. antarctica and C. quitensis without an accompanied acclimatory 

response in Jmax suggests that while PSII electron transport had the capacity to acclimate 

to a higher growth temperature, the rate of electron transport to CO2 was largely 

unaffected by growth temperature. 
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The lack of thermal acclimation of photosynthesis in both Antarctic vascular plant 

species was a surprising, but not irregular, finding. The potential of photosynthesis to 

thermally acclimate greatly varies among species (Yamori et al. 2014). Cool-adapted 

plants are thought to have much less thermal acclimation potential in photosynthesis 

compared to warmer-adapted species. For example, Atkin et al. (2006) demonstrated that 

the alpine Plantago euryphylla showed little thermal acclimation of photosynthesis and 

respiration compared to two lowland congeners when grown under warm temperatures. 

Similarly, while desert clones of Atriplex lentiformis fully acclimated and had enhanced 

photosynthetic performance at high temperature, their coastal counterparts did not show 

any plasticity to temperature and suffered thermal damage (Pearcy 1977). In this case, 

neither D. antarctica or C. quitensis specimens collected from Antarctica showed thermal 

plasticity of photosynthesis, while there has been evidence that populations living outside 

of Antarctica have a larger acclimation potential (Sierra-Almeida et al. 2007). Hence, one 

could postulate that the long evolutionary history of the Antarctic ecotype in the stable 

and thermally extreme environment of Antarctica largely contributes to the limited 

plasticity in photosynthesis when both species is grown in a new environment. 

4.1.2 Photosynthetic performance at growth temperature was driven by direct responses 

to measurement temperature 

Direct temperature response of photosynthetic parameters has been well established: net 

CO2 assimilation rate (Anet), maximum Rubisco carboxylation rate (Vcmax), and maximum 

electron transport rate (Jmax) all respond positively to rising measurement temperature 

(Berry and Bjorkman 1980, Medlyn et al. 2002, Way and Oren 2010). The thermal 

optimum of Anet tends to be lower than that of Vcmax or Jmax, and correlates with the 

growth temperature of the species (Medlyn et al. 2002, Yamori et al. 2014). The positive 

response of these parameters to measurement temperature is expected, and needs to be 

considered when evaluating photosynthetic performance across treatments. 

In D. antarctica, net CO2 assimilation rates (Anet) increased linearly with measurement 

temperature, which correlated with a direct temperature stimulation of the maximum 

Rubisco carboxylation rates (Vcmax) and maximum electron transport rates (Jmax). The 

linear rise in Anet with rising leaf temperature suggested that 12, 16, and 20 ºC all fell 
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below the thermal optimum of Anet. While this finding contradicts the findings by Xiong 

et al. (2000), who reported an optimal temperature for photosynthesis of approximately 

10 ºC in D. antarctica, it matches the temperature response curve data from the same 

experimental plants (Sanhueza et al., unpublished data). Overall, the lack of thermal 

acclimation and the strong response to measurement temperature resulted in an enhanced 

photosynthetic performance at elevated growth temperatures. 

In contrast with D. antarctica, C. quitensis photosynthesis showed no response to 

increasing measurement temperature. Neither Vcmax nor Jmax showed any temperature 

sensitivity and, as a result, Anet did not respond to increases in measurement temperature. 

This lack of response is uncommon, and may not reflect a true lack of temperature 

sensitivity in the species. Instead, the missing 12/AC treatment, the low sample size, or 

the narrow range of temperature exposure could make it difficult to detect small but 

significant temperature response. The temperature response curve of Anet from the same 

experiment saw very little change in Anet between 12 and 20 ºC (Sanhueza et al., 

unpublished data), although a positive response to measurement temperatures from 5 to 

35 ºC still existed. Additionally, limitations in CO2 diffusion could offer another 

explanation. In C. quitensis, the Ci/Ca ratio, an indicator of CO2 diffusion from the 

atmosphere to the intercellular air space, showed a decline at high leaf temperatures, 

suggesting that CO2 uptake was limited at high measurement temperature, potentially due 

to stomatal closure. Overall, photosynthesis in C. quitensis did not acclimate to warmer 

growth temperature, and demonstrated little response to increasing measurement 

temperature; consequently, C. quitensis photosynthetic performance remained fairly 

constant across the temperature changes in this experiment. 

 

4.2 Enhanced photosynthesis at elevated CO2 is mostly due to the direct CO2 effect 

4.2.1 Photosynthesis in both species was enhanced by direct exposure to elevated CO2  

Because CO2 is the main substrate for photosynthesis, increasing CO2 concentrations lead 

to higher net CO2 assimilation rates (Anet) by providing more substrate for carboxylation. 

Additionally, a higher internal CO2 concentration also inhibits photorespiration, further 

enhancing the efficiency of Rubisco (Drake et al. 1997). This short-term response has 
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been well-established when plants are exposed to elevated CO2 concentrations, although 

the magnitude of the response might vary (Ainsworth and Roger 2007). In fact, under 

elevated atmospheric CO2 (a higher Ca), both D. antarctica and C. quitensis saw an 

increase in Ci/Ca ratio, which suggests the CO2 supply for carboxylation was enhanced. 

As a result, the increased Anet in both D. antarctica and C. quitensis when exposed to 

their growth CO2 is expected. 

4.2.2 Photosynthesis was down-regulated at elevated CO2 in D. antarctica  

After longer exposure to elevated CO2, the stimulation of photosynthesis results in a 

larger quantity of carbohydrates synthesized through the Calvin cycle. The buildup of 

carbohydrates in the leaf elicits a sink feedback inhibition that down-regulates 

photosynthesis, a common response in plants grown at elevated CO2. The down-

regulation of photosynthesis at elevated growth CO2 is usually manifested as a decrease 

in Anet when measured under a common CO2 concentration. In fact, D. antarctica grown 

under elevated CO2 did show a 25% down-regulation in Anet, but C. quitensis did not. 

The down-regulation of photosynthesis at elevated CO2 is usually attributed to a 

reduction in Rubisco activation state, Rubisco content, or leaf nitrogen allocated to 

Rubisco (Ainsworth and Rogers 2007). These responses are not mutually exclusive, but 

ultimately result in a decrease in maximum Rubisco carboxylation rate (Vcmax). A 

decrease in Vcmax, however, was not observed in D. antarctica. Stitt (1991) discussed the 

possibility of a direct feedback inhibition of photosynthesis from accumulation of 

carbohydrates and inorganic phosphate (Pi) limitation, instead of a regulation through 

Rubisco. Additionally, excess accumulation of starch could also damage the chloroplast 

and decrease CO2 assimilation rates (Stitt 1991). However, evidence for these responses 

in the literature is rare, and data from my study do not allow for such interpretation. 

Meanwhile, in D. antarctica, the acclimation of stomatal conductance to elevated CO2 

was unlikely to cause the decrease in Anet. The Ci/Ca ratio in D. antarctica was higher in 

elevated CO2 plants when measured at a common CO2 concentration, which suggests that 

there was sufficient CO2 in the intercellular air space, and that the decrease in Anet is a 

response of a lower CO2 assimilation rate itself.  
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Additionally, CO2 diffusion from the intercellular air space to the chloroplast could 

potentially account for the lack of Vcmax and Jmax responses. My photosynthetic model 

assumed no resistance along this pathway in the calculation of apparent Vcmax and Jmax. 

However, this assumption might not always hold, as mesophyll conductance has been 

demonstrated to decrease with elevated CO2 as leaves become thicker and denser (Luo et 

al. 1994). Anatomically, there was no change in the density of mesophyll cells or 

intercellular air space in D. antarctica under elevated CO2 that could suggest any 

physical changes to the diffusion pathway. Nevertheless, mesophyll conductance could 

also change via shifts in biochemistry, such as the diffusion of CO2 in the aqueous phase, 

transport through aquaporins, or conversion by carbonic anhydrase (Bernacchi et al. 

2002), none of which could be estimated in this experiment. 

While there was no decrease in Vcmax, D. antarctica still had other responses typical of 

plants grown under elevated CO2, including a decrease in leaf nitrogen (N) and specific 

leaf area (SLA), which could have implications for photosynthesis. The decrease in leaf 

N content was likely a result of N dilution through increasing leaf mass. As plants grown 

at elevated CO2 accumulate more carbohydrates, their SLA decreases as leaf mass 

increases; as a result, the same amount of N is now expressed against a larger leaf dry 

mass, leading to lower leaf N content (Luo et al. 1994).  

4.2.3 There was no CO2 acclimation in C. quitensis  

Elevated CO2 directly stimulated Anet in C. quitensis, but no down-regulation was 

observed in Anet, Vcmax, or Jmax. Additionally, the Ci/Ca ratio was higher in elevated CO2 

plants when measured at a common ambient CO2 level, implying no diffusion limitations 

as a result of an acclimatory decline in stomatal conductance. In fact, with a higher Ci/Ca 

ratio at a common measurement CO2, one would expect the observed direct stimulation 

of Anet by elevated CO2. The lack of acclimation to elevated CO2 in C. quitensis is 

therefore less likely an idiosyncratic response, and more likely suggests the presence of 

alternate carbohydrate sinks. 

As previously mentioned, a down-regulation of photosynthesis at elevated CO2 usually 

originates from an imbalance between production and consumption of carbohydrates 

(Drake et al. 1997). While Anet in C. quitensis was enhanced under elevated growth CO2, 
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which suggests a larger capacity to produce carbohydrates, there was no change in SLA 

in plants grown under elevated CO2, implying the excess photosynthates were not stored 

in the leaf. It can be postulated that consumption of carbohydrates could be enhanced 

elsewhere in the plant, removing the source-sink imbalance that would otherwise down-

regulate photosynthesis. One possible explanation is the observed presence of flowers in 

C. quitensis during the measurement period: flower production could be one of the 

additional carbohydrate sinks that increased carbohydrate consumption. In fact, Lewis et 

al. (2002) also found no photosynthetic down-regulation in the period leading up to 

flowering and during fruit production in Xanthium strumarium.  

Overall, D. antarctica exhibited an approximately 25% down-regulation of 

photosynthesis in plants grown at elevated CO2, while no acclimation was observed in C. 

quitensis. Photosynthesis in both species, on the other hand, responded positively to high 

CO2 levels. Together, under elevated growth CO2, the direct CO2 effect overwhelmed any 

down-regulation of photosynthesis, if any, and resulted in a higher capacity to assimilate 

CO2 in both species. Ultimately, the enhancement of photosynthesis at elevated CO2 had 

significant implications for the growth and performance of both D. antarctica and C. 

quitensis.  

 

4.3 Leaf anatomy showed little plasticity, except in D. antarctica stomatal grooves 

4.3.1 There were no major changes in leaf morphology in either species 

While photosynthetic parameters are very sensitive to measurement conditions, leaf 

anatomy directly reflects effects of the growth conditions. In this experiment, there were 

no changes in the proportions of measured tissues in the leaf cross-sections in either D. 

antarctica or C. quitensis under the various treatments, which offers additional evidence 

for the small degree of acclimation of photosynthesis to variations in growth conditions. 

The general lack of acclimation to warming and elevated CO2 in photosynthetic 

parameters was coupled with a lack of change in the quantity of the photosynthetic 

tissues. Furthermore, the aphid attack resulted in the loss of the 12/AC treatment in all 

comparisons of photosynthetic parameters. Here, because leaf structure of C. quitensis in 

12/AC likely remained the same despite the aphid attack, the lack of structural response 
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across all six treatments further reinforced the conclusion that little acclimation occurred 

in C. quitensis under either warming or elevated CO2. 

4.3.2 Modified stomatal groove structure in D. antarctica suggests high moisture stress 

at high temperature 

Anatomical features in D. antarctica leaves mostly reflect their growth environment, 

regardless of the level of genetic diversity (Chwedorzewska et al. 2008). The most 

prominent change in leaf anatomy was the modifications in stomatal groove structure in 

D. antarctica. Grass blades of D. antarctica tended to roll inward towards the adaxial 

side, creating stomatal grooves. This is where a high concentration of stomata occur, 

supposedly creating an air pocket with high humidity and preventing water loss (Ellis 

1976). At warmer growth temperatures, both stomatal groove depth and width decreased 

as a direct response the larger evaporative demand in warmer treatments. This study, like 

most warming experiments, did not control for vapor pressure deficit; therefore, at 

constant relative humidity, VPD increased with temperature, resulting in larger 

evaporative demand (Oishi et al. 2010). Therefore, the shift in the stomatal groove 

towards a more xeromorphic structure in warmer treatments served to recapture water 

lost through transpiration, likely limiting water loss to the atmosphere. This 

morphological acclimation came with a trade-off, however. A more tightly packed 

groove, while preventing water from escaping the leaf, also prevented CO2 from diffusing 

into the intercellular air space, evidenced by a significant decrease in Ci/Ca ratio when 

measured at the growth conditions.  

Qualitatively, leaf cross-sections also showed an absence of bulliform cells in D. 

antarctica. Bulliform cells are very large, thin-walled cells located on the epidermis at 

the bottom of the stomatal grooves to facilitate the folding and unfolding of the leaf blade 

through changes in stomatal groove width (Fig. 4.1). These cells lose water easily under 

dry conditions, and as they do, stomatal grooves shrink in size, the leaf blade folds, and 

water loss is minimized. The loss of this tissue has been previously observed in D. 

antarctica grown at a drier habitat compared to those developing at a coastal site in 

Antarctica (Chwedorzewska et al. 2008), as well as in greenhouse plants grown at 16-

18 ºC, compared to those grown at 2 ºC or 13 ºC (Romero et al. 1999, Gielwanowska et 



77 

 

 

al. 2005). The lack of bulliform cells in D. antarctica plants shown here suggests leaf 

unrolling was not regulated in their growth environment, and that the dry conditions in 

my experiment forced the leaf blades to stay constantly rolled. The absence of bulliform 

cells in the D. antarctica specimen in this experiment further supports a previous 

interpretation of the stomatal groove dimensions: without bulliform cells to facilitate leaf 

rolling or unrolling, stomatal groove dimensions were developmentally set. Hence, 

stomatal groove depth and width reflect the effects of the long-term exposure to the 

experimental growth conditions rather than the transient condition at the time of sample 

collection. 

 

4.4 Leaf-level photosynthetic responses did not always translate to growth 

While neither D. antarctica and C. quitensis displayed thermal acclimation of 

photosynthesis, and both showed some degree of acclimation to elevated CO2, 

photosynthesis in both species was stimulated by a direct effect of high temperature and 

high CO2. These measurements also allow an assessment of D. antarctica and C. 

quitensis photosynthetic performance in their treatment conditions that, when 

extrapolated to the whole-plant level, should correlate with the trends in biomass 

accumulation. A mismatch between leaf-level photosynthesis and whole-plant growth 

response can reveal either patterns in the partitioning of photosynthates towards other 

sinks, or changing variables and processes under the new growth environment.  

4.4.1 Biomass accumulation was enhanced at elevated CO2 in both species 

In both species, photosynthesis was stimulated by elevated CO2 in the growth 

environment, even when the down-regulatory response was accounted for. This trend 

directly translated to larger aboveground and belowground biomass in both D. antarctica 

and C. quitensis. This response is quite common (Ainsworth and Long 2005): while the 

magnitude of the stimulation of growth under elevated CO2 is variable (Curtis and Wang 

1998), D. antarctica biomass increased by 46%, and C. quitensis by 33% under elevated 

CO2, both slightly higher than the average for C3 plants (approximately 20%) as compiled 

by Ainsworth and Long (2005).  
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4.4.2 Warming did not consistently enhance growth  

In contrast, the effect of warming on growth is more complex than that of elevated CO2, 

due to the integrated temperature responses of various processes involved in growth and 

biomass accumulation. Since photosynthesis did not thermally acclimate in either D. 

antarctica or C. quitensis, performance at the growth condition reflects a direct response 

to high measurement temperature. While D. antarctica responded positively, C. quitensis 

was not responsive to increases in measurement temperature. The capacity to assimilate 

CO2 at the growth conditions should translate to a similar trend in biomass accumulation; 

however, this is not always the case.   

In D. antarctica, the accumulation of both aboveground and belowground biomass was 

enhanced under moderate warming (+4 ºC), as suggested by the greater Anet at the growth 

conditions. This result agrees with most moderate warming experiments across 

ecosystems, which observe a stimulation of plant productivity by 19-20% (Rustad et al. 

2001, Lin et al. 2010). However, under a growth temperature of 20 ºC, the stimulation of 

photosynthesis did not translate to higher biomass. Meanwhile, photosynthesis in C. 

quitensis did not acclimate to growth temperature or respond to measurement 

temperature. Under the growth conditions, 20 ºC treatments had a lower Anet 

(approximately 35% the rate of a cooler-grown plant at the same CO2 level); however, 

the poor photosynthetic performance of plants grown in warmer treatments was quite 

evident in biomass. Total biomass in the warmest treatments was 30 to 60% lower than 

that produced by a cooler-grown plants at the same growth CO2, a response that could not 

be accounted for by the poor photosynthetic performance alone.  

There could be a number of explanations for the mismatch in whole-plant biomass 

accumulation and leaf-level photosynthesis in warmer treatments in D. antarctica and C. 

quitensis. First of all, in D. antarctica, the aforementioned modifications in stomatal 

groove structure at high growth temperature could potentially account for the suppression 

of growth in the warmest treatments. As stomatal grooves became smaller to minimize 

water loss, CO2 diffusion becomes more limiting. Gas exchange measurements of 

photosynthetic parameters were performed at a relatively constant vapor pressure deficit, 

which served to assess the capacity of the photosynthetic machinery itself. Under the 
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growth condition, however, this measured capacity was not realized due to the high VPD 

at warmer treatments. As evidenced by the decline in the Ci/Ca ratio in both species and 

changes in stomatal groove structure in D. antarctica, in warmer treatments, the pressure 

to conserve water was high enough that CO2 diffusion was reduced, resulting in lower 

CO2 assimilation and as a result, reduced growth. Likewise, the aforementioned 

decreasing Ci/Ca in C. quitensis at high temperature could also suggest CO2 diffusion 

limitations, which could be amplified under extended exposure to the growth conditions, 

and resulted in lower biomass accumulation under warming. 

Atkin et al. (2007) suggested that short-term changes in photosynthesis (A) and 

respiration (R) and more importantly, the balance between the two (the R:A ratio), play a 

key role in whole-plant CO2 exchange. While some studies suggest the R:A ratio reaches 

homeostasis regardless of the intrinsic growth rate (Loveys et al. 2003), both acclimation 

and short-term response to temperature might disrupt this homeostasis (Campbell et al. 

2007, Way and Yamori 2014). In species with little thermal plasticity in photosynthesis 

or respiration, such as Plantago euryphylla (Atkin et al. 2007), high growth temperatures 

suppress daily net carbon gain, as night time respiratory losses are a higher proportion of 

the carbon gained during the day. On the other hand, full thermal acclimation of 

respiration to a higher growth temperature and a lower night temperature could enhance 

biomass accumulation even though photosynthesis does not acclimate (Xiong et al. 

2000). In the cases of D. antarctica and C. quitensis, while photosynthesis was stimulated 

under high leaf temperature, respiration rates did not show any thermal acclimation. 

Because growth temperatures were constant between day and night in this experiment, 

respiratory losses at night could be especially high in the warmest treatment.  

4.4.3 D. antarctica and C. quitensis performance in future climates 

Fowbert and Smith (1994) reported significant expansion in the populations of both D. 

antarctica and C. quitensis over the second half of the 20th century, which was attributed 

to the rapid warming in Antarctica over the same period. Enhanced growth has previously 

been observed in both species under warmer growth temperatures in the field (Day et al. 

1999) and greenhouse (Xiong et al. 2000). My work has demonstrated that increasing 

growth temperatures by 4 ºC in fact promoted growth in D. antarctica. Additionally, 
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elevated CO2 promoted growth in both species, without any interaction between warming 

and elevated CO2. Consequently, population growth in D. antarctica from 1960 to 2000 

could have been a result of both warmer growth temperature and the increasing 

atmospheric CO2, considering warmer temperatures over this period were coupled with 

rising CO2. However, both moderate and severe warming suppressed growth in C. 

quitensis. One could postulate that the slower population growth in the second half of the 

20th century in C. quitensis compared to D. antarctica could therefore have been due to 

the poor performance of the species at warm temperatures, without ruling out the 

differences in growth habits between the two species.   

Although D. antarctica benefited from moderate warming, the trend of increasing plant 

productivity might not hold if warming intensifies. This experiment has also shown that 

growth was suppressed in both species at a growth temperature of 20 ºC. This decrease in 

growth is not from a limitation in the photosynthetic machinery itself, but may be linked 

to either higher respiratory losses, CO2 diffusion limitations, or other causes. Therefore, 

changes in other environmental conditions in Antarctica, such as the extent of night 

warming or the plant water status in future climates, could also alter the growth response 

of the two vascular plants. Based on my findings, under very high greenhouse gas 

emission scenarios, severe warming might decrease growth in both vascular plant species 

in Antarctica, which could potentially alter the carbon budget and nutrient dynamics of 

the terrestrial ecosystem of the continent. 

Both D. antarctica and C. quitensis are key inputs of C and N to the intrinsically poor 

Antarctic soils (Beyer et al. 2000). Therefore, changes in the population sizes of these 

two species could affect the future carbon stocks in Antarctica, especially when the two 

species are differentially affected under future climates. The warming trend and altered 

species composition could impact the carbon pool in the soil and indirectly affect the 

growth of nonvascular vegetation (Day et al. 2008). 
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4.5 Future directions 

To better evaluate the temperature and CO2 response of D. antarctica and C. quitensis, 

future studies could use chlorophyll fluorescence to estimate mesophyll conductance 

(Harley et al. 1992). This method characterizes changes to the diffusion pathway of CO2 

from the intercellular air space to the site of carboxylation in the chloroplast, arriving at 

an estimate of mesophyll conductance. In this experiment, mesophyll conductance was 

assumed to be infinite, although studies have shown that it can vary with temperature and 

CO2 (Bernacchi et al. 2002). Additionally, having an estimate of mesophyll conductance 

would allow calculations of the CO2 concentration at the chloroplast (Cc), which is the 

CO2 concentration used in carboxylation, and would offer a better estimate of Vcmax and 

Jmax. 

Thermal acclimation of photosynthesis in this study was evaluated by measuring gas 

exchange parameters under the growth temperature and again at a common temperature 

of 16 ºC. This method, however, did not allow estimates of the optimal temperature of 

Anet, or any actual shifts in the temperature response curve. Future studies, therefore, 

should investigate the short-term temperature response of photosynthesis over a larger 

range of temperature and use the thermal optimum to evaluate thermal acclimation. 

Similarly, the acclimation response to elevated CO2, or the lack thereof, is often linked to 

the pool of carbohydrates. Having an estimate of total non-structural carbohydrates, and 

soluble sugars, would allow a more established link between feedback inhibition and 

down-regulation of photosynthesis.  

Future studies can design warming experiments that control vapor pressure deficit, which 

affects stomatal regulation. With a constant relative humidity, VPD increased with 

temperature and became a confounding factor in this experiment. As a result, CO2 

diffusion decreases when stomatal conductance is reduced by a high VPD. Although 

allowing VPD to fluctuate better reflects future climates, constant VPD experiments lend 

to better understanding of the underlying mechanism of temperature response of 

photosynthesis. Additionally, it would be interesting to emulate the daily temperature 

fluctuation in Antarctica, and potentially look at its effect on photosynthetic acclimation 

compared to a constant growth temperature. While the experimental period coincided 
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with the austral summer, exposure of D. antarctica and C. quitensis to a photoperiod 

much shorter than their summer could have unanticipated effects. Considering the very 

short growing season and long photoperiod in their native habitat, it would also be 

interesting to investigate the interplay of increasing temperature and constant photoperiod 

on the ability of plants to take advantage of the longer photosynthetic time and shorter 

period of respiratory losses. 

While this study provided some insights into the response of D. antarctica and C. 

quitensis in future climates, extrapolating the result to the performance of the two species 

in Antarctica on a larger scale should be conducted with care. First of all, performance of 

plants grown in the lab could differ from that in the field, especially in terms of leaf 

anatomy (Romero et al. 1999) and photochemical efficiency (Casanova-Katny et al. 

2010). Additionally, this experiment investigated vegetative growth only, leaving out the 

effects of temperature and CO2 on the reproductive output of the two species. Even if 

only vegetative growth was considered, other factors such as the availability of ice-free 

surface, as well as suitable microhabitat including nutrients, light availability, or wind, 

could hinder the spread of both species despite the favorable temperature and CO2 

conditions. Future studies should investigate these topics to arrive at a better prediction of 

the performance of these two species under climate change. 

 

4.6 Conclusions 

This study investigated the photosynthetic and morphological responses of two Antarctic 

vascular plants, Deschampsia antarctica and Colobanthus quitensis, to warming and 

elevated CO2. Overall, neither species showed thermal plasticity of the photosynthetic 

apparatus to increasing growth temperatures. D. antarctica showed some down-

regulation of photosynthesis to elevated CO2, but C. quitensis did not acclimate to 

elevated CO2. In their growth environment, photosynthesis was stimulated by short-term 

increases in leaf temperature and atmospheric CO2 in D. antarctica, and by elevated CO2 

in C. quitensis. However, these trends did not translate directly to growth. Biomass 

accumulation in both species was enhanced at elevated CO2, but was suppressed under 

warming of +8 ºC in D. antarctica and at all warmer temperatures in C. quitensis. Leaf 



83 

 

 

structures of D. antarctica were modified at high growth temperatures to prevent 

moisture stress, but this also presents a challenge for CO2 diffusion that could potentially 

limit biomass accumulation at high growth temperature.  

I have proposed physiological mechanisms that may help explain the documented 

enhanced growth in both Antarctic vascular species. My results also suggest that in future 

climates, both vascular species in Antarctica will benefit from elevated CO2; however, 

severe warming can potentially suppress growth in both species, not due to damage to the 

photosynthetic apparatus, but likely from either enhanced respiratory losses or CO2 

diffusion limitations under warmer conditions. The study also offers useful insights for 

climate models predicting the carbon cycling of Antarctica under climate change. Scaling 

leaf-level gas exchange parameters to whole-plant performance to predict the 

performance of D. antarctica and C. quitensis needs to consider other abiotic factors, 

such as moisture availability. 
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Appendix 

Appendix A. Mean ± SE of CO2 gas exchange, chlorophyll fluorescence, leaf chemical 

and structural parameters, and biomass of C. quitensis grown in the 12/AC treatment. The 

treatment was under an aphid attack, which was likely to confound with the treatment 

effect. Data for this treatment were therefore removed from the thesis. 

 

 

  

Parameters Measured at 16 ºC Measured at growth 

temperature (12 ºC) 

Vcmax (µmol m-2 s-1) 57.57 ± 4.69 28.86 ± 5.82 

Jmax (µmol m-2 s-1) 148.85 ± 7.56 82.04 ± 12.24 

Anet (µmol m-2 s-1) 10.81 ± 1.27 6.79 ± 1.59 

Fv/Fm 0.80 ± 0.004  

ETR (µmol m-2 s-1) 144.01 ± 4.34 92.10 ± 12.30 

Ci/Ca 0.76 ± 0.02 0.82 ± 0.05 

Rdark (µmol m-2 s-1) 4.63 ± 0.28 2.27 ± 0.34 

SLA (mm2/g) 0.022 ± 0.002 

Aboveground biomass (g/pot) 0.63 ± 0.14 

Belowground biomass (g/pot) 0.23 ± 0.03 

Total biomass (g/pot) 0.84 ± 0.14 

%C 36.83 ± 0.48 

%N 3.00 ± 0.10 
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Appendix B. Permission to reuse images from the copyright holders. a) Permission from 

Elsevier to use a figure from Lamers et al. 2008, (Trends in Biotechnology, 26(11):631-

638) as Figure 1.1 in this thesis; b) Permission from Oxford University Press to use a 

figure from Maxwell and Johnson 2000 (Journal of Experimental Botany, 51:659–668) as 

Figure 1.2 in this thesis. 

a) 
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