
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-23-2015 12:00 AM

Computing in Algebraic Closures of Finite Fields Computing in Algebraic Closures of Finite Fields

Javad Doliskani
The University of Western Ontario

Supervisor

Eric Schost

The University of Western Ontario Joint Supervisor

Jan Minac

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Javad Doliskani 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Doliskani, Javad, "Computing in Algebraic Closures of Finite Fields" (2015). Electronic Thesis and
Dissertation Repository. 3282.
https://ir.lib.uwo.ca/etd/3282

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61685718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F3282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3282?utm_source=ir.lib.uwo.ca%2Fetd%2F3282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

Computing in Algebraic Closures of Finite Fields
Javad Doliskani

Supervisor
Eric Schost
The University of Western Ontario

Follow this and additional works at: http://ir.lib.uwo.ca/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation
Repository by an authorized administrator of Scholarship@Western. For more information, please contact jpater22@uwo.ca.

http://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jpater22@uwo.ca

Computing in Algebraic Closures of
Finite Fields

(Thesis format: Integrated-Article)
Javad Doliskani

Department of Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© J. Doliskani 2015

Abstract

We present algorithms to construct and perform computations in algebraic closures of finite
fields. Inspired by algorithms for constructing irreducible polynomials, our approach for con-
structing closures consists of two phases; First, extension towers of prime power degree are built,
and then they are glued together using composita techniques. To be able to move elements around
in the closure we give efficient algorithms for computing isomorphisms and embeddings. In most
cases, our algorithms which are based on polynomial arithmetic, rather than linear algebra, have
quasi-linear complexity.

Keywords: Algebraic closure, polynomial arithmetic, finite field.

ii

Co-Authorship

This document is based on the following joint works with Éric Schost and Luca Defeo.

Chapter 2 Taking roots over high extensions of finite fields. Mathematics of Computation, 83(285),
pp. 435-446, 2014.

Chapter 3 Computing in degree 2k-extensions of finite fields of odd characteristic. Des. Codes
Cryptography, 74(3), pp. 559-569, 2015.

Chapter 4 Fast algorithms for `-adic towers over finite fields. In Proceedings of the 38th Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM, New York,
NY, USA.

Chapter 5 Fast arithmetic for the algebraic closure of finite fields. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation (ISSAC ’14), ACM, New
York, NY, USA.

iii

List of Tables

2.1 Some special cases for square roots . 12
3.1 Costs for computations in Fqn , with n = 2k . 23
3.2 Timings for lifting 2k -torsion . 31
4.1 Summary of results . 35

iv

List of Figures

1.1 Algebraic closure of Fq . 5
2.1 Our square root algorithm vs. Cipolla’s and Tonelli-Shanks’ algorithms. 18
2.2 Our algorithm vs. Kaltofen and Shoup’s algorithm. 19
3.1 The new square root algorithm vs. the one in [6] . 30
4.1 The `-adic towers over Fq andK0. 36
4.2 The isogeny cycle of E0. 43
4.3 Times for building 3-adic towers on top of F2 (left) and F5 (right), in Magma (first

three lines) and using our code. 48
5.1 Timings in seconds, p = 5, n = m+ 1 . 66
5.2 Magma timings in seconds, p = 5, n = m+ 1 . 66

v

Contents

1 Introduction 2
1.1 Notations . 2
1.2 Our approach . 4
Bibliography . 7

2 Taking Roots over High Extensions of Finite Fields 9
2.1 Introduction . 9
2.2 Previous work . 12
2.3 A new root extraction algorithm . 14

2.3.1 An auxiliary algorithm . 15
2.3.2 Taking t -th roots . 16
2.3.3 Experimental results . 18

Bibliography . 20

3 Computing in Degree 2k -Extensions of Finite Fields of
Odd Characteristic 22
3.1 Introduction . 22
3.2 Proof of the complexity statements . 24

3.2.1 Representing the fields Lk . 25
3.2.2 Arithmetic operations . 26
3.2.3 Frobenius computation . 26
3.2.4 Trace, norm and quadratic residuosity test . 27
3.2.5 Taking square roots . 28
3.2.6 Computing embeddings . 29

3.3 Experiments . 30
Bibliography . 31

4 Fast Algorithms for `-adic Towers over Finite Fields 33
4.1 Introduction . 33
4.2 Quasi-cyclotomic towers . 35

4.2.1 Finding P0 . 37
4.2.2 Gm-type extensions . 37
4.2.3 Chebyshev-type extensions . 37
4.2.4 The general case . 38

4.3 Towers from irreducible fibers . 40

vi

4.3.1 Towers from algebraic tori . 40
4.3.2 Towers from elliptic curves . 43

4.4 Lifting and pushing . 45
4.4.1 Lifting . 45
4.4.2 Pushing . 46

4.5 Implementation . 47
Bibliography . 48

5 Fast arithmetic for the algebraic closure of finite fields 51
5.1 Introduction . 51
5.2 Preliminaries . 53

5.2.1 Polynomial multiplication and remainder . 53
5.2.2 Duality and the transposition principle . 54

5.3 Trace and duality . 55
5.4 Embedding and isomorphism . 57

5.4.1 Embedding and computing R . 58
5.4.2 Isomorphism . 60

5.5 The algebraic closure of Fp . 63
5.6 Implementation . 65
Bibliography . 67

Conclusion 70

A Finite Fields 71
A.1 Basic properties . 72
A.2 Irreducible polynomials . 73
A.3 Traces and Norms . 75
A.4 Algebraic closures . 76

1

Chapter 1

Introduction

The theory of finite fields has found much attention during recent decades, most notably due to
developments in the branches of computer science such as cryptography, coding theory, switch-
ing circuits, and combinatorics [18]. In applications, one almost always encounters finite fields
that are extensions of the so-called prime fields. For example, in public-key cryptography, there
are cryptosystems that are based on the group of points on an algebraic curve. To have a secure
system one must go through the process of choosing a random secure curve. A good class of
candidates for such curves are hyperelliptic curves. One of the efficient methods of choosing a
secure hyperelliptic curve requires counting the number of points on the curve, which in turn
requires building a large number of successive extensions over a small prime field [10, 11].
The natural need for extensions usually arises from the need for manipulating polynomials and
their roots. Once the extension are built, the next step is to be able to move elements from one
extension to the other. This is where algebraic closures come to the fore. From a computational
point of view, an algebraic closure of a given field can be seen as a large enough finite extension
that contains the roots of a given finite set of polynomials. Computation in algebraic closures
has been considered by others, e.g. [24] and references therein. In this chapter, we briefly review
some basic properties of finite fields, and discuss some notations on the running time complexities
of some basic arithmetics over them. At the end, we give an overview of our computational
approach to algebraic closures.

1.1 Notations
In this section, we give a very brief review of finite fields concepts and notations used in the
subsequent chapters. For a more detailed preliminary on finites fields we refer the reader to
Appendix A. Given a prime number p, we denote the prime finite field with p elements by Fp .
The prime number p is called the characteristic of the field.

Irreducible polynomials. The univariate polynomial ring over Fp is denoted by Fp[X]. The
elements of Fp[x] are of the form f (X) = anX n+an−1X n−1+ · · ·+a0 where ai ∈ Fp . The degree
of f , denoted by deg f , is n. We call f monic if its leading coefficient an is 1. The division
and remainder operation in Fp[X] is done using the usual polynomial arithmetic. A polynomial
f ∈ Fp[X] is reducible if it can be written as f = g h for polynomials g , h ∈ Fp[X] of degree> 0;

2

otherwise it is called irreducible. For a monic irreducible polynomials f of degree n the quotient
Fp[X]/〈 f 〉 is a finite field extension of Fp of degree n. We usually denote such an extension by
Fq where q = pn.

Operation complexities The nature of the algorithms presented in this document suggests an
algebraic complexity model. This means we will count operations {+,−,×,÷} in a based field
such as Fp or Fq . Consequently, we have to choose a representation for elements of field exten-
sions. For example, one could proceed implementing algorithms using normal basis represen-
tation, in which case the complexity estimates are stated differently. However, we shall use the
monomial basis representation, since in particular our implementations and result comparisons
are based on systems such as NTL [23], Magma [3], and FLINT [12]. In the monomial repre-
sentation, the finite field or even ring extension are represented by quotients. For example, the
finite field Fqn is represented by Fq[X]/〈 f 〉where f is a monic irreducible polynomial of degree
n in Fq[X]. So an element a ∈ Fqn is a polynomial of degree less than n in Fq[X].
One of the most fundamental operations in all algebraic systems is polynomial multiplication. We
denote the upper bound for the cost of multiplying two polynomials of degree n by M(n). This
means for a given field K and two polynomials f , g ∈ K[X] of degree n, f g can be computed
using M(n)multiplications in K . The best known upper bound for M(n) is O(n log(n) log log(n))
[19, 6]. This is done using Fast Fourier Transform. The idea is to reduce the polynomial multi-
plication to point-wise vector-vector multiplication using an invertible change of representation.
See [27, Chapter 8] for more details. We assume that M(n) is a super-linear function, i.e. not
bounded by any linear function.
Another fundamental operation is matrix multiplication. Given two square matrices of size n
over a field K we assume they can be multiplied using O(nω) multiplications in K , where ω is
called the linear algebra exponent. A naive implementation would give ω = 3. A slightly better
algorithm due to Strassen [25] gives a boundω ≤ 2.81. The algorithm uses a divide and conquer
approach to reduce the multiplication problem to sub-blocks of the given matrices. The smallest
known bound isω ≤ 2.37 due to Coppersmith and Winograd [7].
Given polynomials f , g , h ∈ K[X] of degree n, the modular composition problem is to com-
pute f (g) mod h. We denote the upper bound for modular composition by C(n). In a boolean
complexity model, in which bit or word operation are counted, there is an algorithm due to Ked-
laya and Umans [15, 26] that runs in O(n1+ε log(p)1+o(1)) operations. Since we do not follow a
boolean model, and there is still no competitive implementation of their algorithm that we know
of, we opt for the well-known algorithm of Brent and Kung [5]. Their algorithm gives the bound
O(n(ω+1)/2). We can takeω ≤ 2.37 using the Coppersmith and Winograd algorithm which gives
C(n) =O(n1.69). There is the slightly better bound C(n) =O(n1.67) due to Pan [13], which uses
rectangular matrix multiplication.

Algebraic closures. A field extension K ⊆ L is said to be algebraic if every element a ∈ L is a
root of a monic polynomial in K[X]. A field K is algebraically closed if L=K for every algebraic
extension of L. An algebraic closure of a field K , denoted by K , is an algebraically closed algebraic
extension of K .
Let E , F be extensions of K . Assume that E , F are contained in some larger field L. We define
the compositum of E , F , denoted by EF , to be the smallest subfield of L containing both E , F .

3

Generally, we can define the compositum of a family {Fi}i∈I of subfields of L to be the smallest
subfield of L containing all Fi . The compositum of E , F is not defined unless we have embeddings
of both fields into a common field L. Let m = [E : K] and n = [F : K]. We have the following
diagram of extensions:

L

EF

E F

K

≤ n ≤ m

m n

From the diagram [EF : K] ≤ mn and m | [EF : K] and n | [EF : K]. So if gcd(m, n) = 1
then [EF : K] = mn. Therefore, if E , F are finite fields Fpn ,Fp m with gcd(m, n) = 1 then the
compositum EF is the finite field Fp mn . This allows us to define the algebraic closure of Fp as the
union

Fp =
⋃

i≥1

Fp i .

1.2 Our approach

Let Fq be a finite field with q = pn a prime power. We divide the construction of Fq into two
major steps: building towers, and gluing towers. Let us explain what these mean. Let ` be a
prime number, and let

Fq ⊂ Fq` ⊂ Fq`2 ⊂ · · ·

a sequence of extensions each of degree `. We call this an `-adic tower. Define the `-adic closure
of Fq to be the union

F(`)q =
⋃

i≥0

Fq`i .

Assume we have build these towers for different prime `. Then we can glue them together to get
the algebraic closure. By gluing here we mean computing composita. Figure 1.1 shows the above
structure of Fq . The solid circles in the middle are the composita.

`-adic towers. Let Fi = Fq`i be the level i of the `-adic tower for an integer i > 0. The goal is
to be able to compute in Fi in quasi-linear time in the extension degree `i . For this we need first
to construct the tower, and then be able to move up and down to different levels of the tower
efficiently.
In many cases, building extensions and isomorphisms of finite fields requires taking roots of ele-
ments. In Chapter 2 we discuss taking arbitrary roots over extensions of finite fields. The idea is

4

Fq

Fq2

Fq4

F(2)q

Fq3

Fq9

F(3)q

Fq5

Fq25

F(5)q

Fq`

Fq`2

F(`)q

Figure 1.1: Algebraic closure of Fq

to reduce the problem to root extraction in subfields using trace-like computations. For example,
using our algorithm, the complexity of taking square roots in Fq is an expected O(M(n) log(p)+
C(n) log(n)) operations in Fp . Computing roots in finite fields was previously considered by oth-
ers like Cipolla [28] and Tonelli-Shanks [20]. Kaltofen and Shoup [14] give an Equal Degree
Factorization (EDF) algorithm that can be used for computing roots.
The case `= 2 of the `-adic towers, which is of particular interest, is treated separately in Chapter
3. Our algorithms presented there for construction of the tower and performing basic operations
inside the tower are all quasi-linear time. The following table summarizes the complexities of our
algorithms for some well-known operations for this case.

Operation Cost
addition / subtraction O(n)

multiplication M(n)+O(n)
inversion O(M(n))

quadratic residuosity O(M(n)+ log(q))
square root O(M(n) log(nq)) (expected)

isomorphism O(n+ log(n) log(q)) (expected)

Note the improvement of the square root complexity here compared to the one for general finite
fields which has a C(n) term. Another special case of the `-adic towers is `= p, called the Artin-
Schreier tower. The algorithms for this case were presented in [9].
Chapter 4 discusses the towers for a general `. The field Fq`i can be represented by two natural
bases over Fq . For a univariate representation of the form Fq[Xi]/〈Qi〉, where Qi ∈ Fq[Xi] is a
monic irreducible polynomial of degree `i , we get the monomial basis

Ui = (1, xi , x2
i , . . . , x`

i−1
i)

5

for Fq`i over Fq . Here xi is the residue class of Xi modulo Qi . But we can also consider Fq`i as a
degree ` extension over Fq`i−1 , i.e. as a bivariate quotient

Fq[Xi−1,Xi]/〈Qi−1(Xi−1),Ti (Xi−1,Xi)〉

where Ti is a monic polynomial of degree ` in Xi , and of degree less than `i−1 in Xi−1. This gives
the basis

Bi = (1, . . . , x`
i−1−1

i−1 , . . . , x`−1
i , . . . , x`

i−1−1
i−1 x`−1

i).
for Fq`i over Fq . The complexity of constructing the tower, which requires some initialization
and finding Qi ,Ti , is close to quasi-linear. Using the usual algorithms, basic operations like multi-
plication and inversion inFq[Xi]/〈Qi〉 are done using respectively O(M(`i)) and O(M(`i) log(`i))
operations in Fq . These are quasi-linear in the extension degree `i . Moving up and down in the
tower is done using repeated applications of two operations called lift and push. Lifting refers to
the change of basis from Bi to Ui while pushing is the inverse transformation. These operations
are also very close to being quasi-linear. The following table summarizes our main complexity
results.

Condition Initialization Qi ,Ti Lift, push

q = 1 mod ` Oe(log(q)) O(`i) O(`i)
q =−1 mod ` Oe(log(q)) O(`i) O(M(`i) log(`i))

− Oe(`
2+M(`) log(q)) O(M(`i+1)M(`) log(`i)2) O(M(`i+1)M(`) log(`i))

4`≤ q 1/4 O ẽ(` log5(q)+ `3) (bit) Oe(`
2+M(`) log(`q)+M(`i) log(`i)) O(M(`i) log(`i))

4`≤ q 1/4 O ẽ(` log5(q)) (bit)+Oe(M(`)
pq log(q)) Oe(log(q)+M(`i) log(`i)) O(M(`i) log(`i))

The probabilistic complexities with expected running time are denoted by Oe(). Also O ẽ()
indicates the additional omission of logarithmic factors. Although in some cases there are extra
factors of `, we have achieved quasi-linear time in the degree of the extension `i in most of the
cases. Our algorithm for constructing towers are inspired by the previous works of Shoup [21, 22]
and Lenstra /De Smit [16], and Couveignes / Lercier [8]. See the introduction of Chapter 4 for
more details.

Composita. In Chapter 5, we discuss the composita of fields. Let Fp m = Fp[x]/〈Qm(x)〉 and
Fpn = Fp[y]/〈Qn(y)〉 be two finite fields where Qm(x) ∈ Fp[x] and Qn(y) ∈ Fp[y] are irreducible
of comprime degrees m, n > 1 respectively. Define the composed product of Qm,Qn as

Qmn(z) =
∏

1≤i≤m
1≤ j≤n

(z − ai b j)

where (ai)1≤i≤m and (b j)1≤ j≤n are roots of Qm and Qn in the algebraic closure of Fp . The poly-
nomial Qmn is irreducible of degree mn in Fp[z], see [4]. The field Fp[z]/〈Qmn(z)〉 is the com-
positum of Fp m and Fpn , and there exists embeddings ϕx , ϕy , and an isomorphism Φ of the form

ϕx : Fp[x]/〈Qm〉 → Fp[z]/〈Qmn〉,
ϕy : Fp[y]/〈Qn〉 → Fp[z]/〈Qmn〉,
Φ : A= Fp[x, y]/〈Qm,Qn〉 → Fp[z]/〈Qmn〉

xy 7→z.

6

The goal is to compute ϕx , ϕy , and Φ and Φ−1 efficiently. We present algorithms for computing
ϕx and ϕy which run using O(nM(m)+mM(n)) operations in Fp . Assuming that m ≤ n, Φ and
Φ−1 can be computed using either O(m2M(n)) or O(M(mn)n1/2+M(m)n(ω+1)/2) operations in
Fp where ω is the linear algebra exponent. Therefore, computing embeddings ϕx ,ϕy is quasi-
linear in mn while computing the isomorphisms Φ,Φ−1 has an extra factor of m or n. Previous
algorithms such as the ones presented in [2], and [17, 1] also compute embeddings of finite fields.
They rely on linear algebra which results in complexities at least quadratic in the degree of the
extensions.

Bibliography
[1] B. Allombert. Explicit computation of isomorphisms between finite fields. Finite Fields

Appl., 8(3):332 – 342, 2002.

[2] W. Bosma, J. Cannon, and A. Steel. Lattices of compatibly embedded finite fields. J. Symb.
Comput., 24(3-4):351–369, 1997.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra system I: the
user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[4] J.V. Brawley and L. Carlitz. Irreducibles and the composed product for polynomials over a
finite field. Discrete Mathematics, 65(2):115 – 139, 1987.

[5] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal
of the Association for Computing Machinery, 25(4):581–595, 1978.

[6] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary alge-
bras. Acta Informatica, 28(7):693–701, 1991.

[7] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symb. Comp, 9(3):251–280, 1990.

[8] Jean-Marc Couveignes and Reynald Lercier. Fast construction of irreducible polynomials
over finite fields. To appear in the Israel Journal of Mathematics, July 2011.

[9] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields. Journal
of Symbolic Computation, 47(7):771–792, 2012.

[10] Luca De Feo. Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic. Journal of Number Theory, 131(5):873–893, May 2011.

[11] P. Gaudry and É. Schost. Point-counting in genus 2 over prime fields. J. Symbolic Comput.,
47(4):368–400, 2012.

[12] William Hart. Fast library for number theory: an introduction. Mathematical Software–
ICMS 2010, pages 88–91, 2010.

7

[13] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Com-
plexity, 14(2):257–299, 1998.

[14] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of
finite fields. In ISSAC’97, pages 184–188. ACM, 1997.

[15] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[16] Hendrick W. Lenstra and Bart De Smit. Standard models for finite fields: the definition,
2008.

[17] H. W. Lenstra Jr. Finding isomorphisms between finite fields. Math. Comp., 56(193):329–
347, 1991.

[18] Rudolf Lidl and Günter Pilz. Applied abstract algebra. Springer Science & Business Media,
2012.

[19] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–
292, 1971.

[20] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, pages 51–70, 1972.

[21] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. Math.
Comp., 54:435–447, 1990.

[22] Victor Shoup. Fast construction of irreducible polynomials over finite fields. J. Symbolic
Comput., 17(5):371–391, 1994.

[23] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl,
2003.

[24] Allan K. Steel. Computing with algebraically closed fields. Journal of Symbolic Computa-
tion, 45(3):342 – 372, 2010.

[25] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, 1969.

[26] C. Umans. Fast polynomial factorization and modular composition in small characteristic.
In STOC, pages 481–490, 2008.

[27] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
2003.

[28] H. C. Williams. Some algorithms for solving xq ≡ N (mod p). In Proceedings of the Third
Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1972), pages 451–462. Florida Atlantic Univ., 1972.

8

http://www.shoup.net/ntl

Chapter 2

Taking Roots over High Extensions of
Finite Fields

2.1 Introduction
Beside its intrinsic interest, computing m-th roots over finite fields (for m an integer at least equal
to 2) has found many applications in computer science. Our own interest comes from elliptic
and hyperelliptic curve cryptography; there, square root computations show up in pairing-based
cryptography [3] or point-counting problems [8].
Our result in this paper is a new algorithm for computing m-th roots in a degree n extension
Fq of the prime field Fp , with p a prime. Our emphasis is on the case where p is thought to be
small, and the degree n grows. Roughly speaking, we reduce the problem to m-th root extraction
in a lower degree extension of Fp (when m = 2, we actually reduce the problem to square root
extraction over Fp itself).

Our complexity model. It is possible to describe the algorithm in an abstract manner, indepen-
dently of the choice of a basis of Fq over Fp . However, to give concrete complexity estimates, we
have to decide which representation we use, the most usual choices being monomial and normal
bases. We choose to use a monomial basis, since in particular our implementation is based on the
library NTL [22], which uses this representation. Thus, the finite field Fq = Fpn is represented
as Fp[X]/〈 f 〉, for some monic irreducible polynomial f ∈ Fp[X] of degree n; elements of Fq are
represented as polynomials in Fp[X] of degree less than n. We will briefly mention the normal
basis representation later on.
The costs of all algorithms are measured in number of operations +,×,÷ in the base field Fp

(that is, we are using an algebraic complexity model) — at the end of this introduction, we discuss
how our results can be stated in the boolean model, in light especially of results by Umans [25]
and Kedlaya and Umans [13].
We shall denote upper bounds for the cost of polynomial multiplication and modular composition
by respectively M(n) and C(n). This means that over any field K, we can multiply polynomials
of degree n inK[X] in M(n) base field operations, and that we can compute f (g)mod h in C(n)
operations inK, when f , g , h are degree n polynomials. We additionally require that both M and

9

C are super-linear functions, as in [26, Chapter 8], and that M(n) =O(C(n)). In particular, since
we work in the monomial basis, multiplications and inversions in Fq can be done in respectively
O(M(n)) and O(M(n) log(n)) operations in Fp , see again [26].
The best known bound for M(n) is O(n log(n) log log(n)), achieved by using Fast Fourier Trans-
form [19, 5]. The most well-known bound for C(n) is O(n(ω+1)/2), due to Brent and Kung [4],
whereω is such that matrices of size n over any fieldK can be multiplied in O(nω) operations in
K; this estimate assumes that ω > 2, otherwise some logarithmic terms may appear. Using the
algorithm of Coppersmith and Winograd [6], we can takeω ≤ 2.37 and thus C(n) =O(n1.69); an
algorithm by Huang and Pan [10] actually achieves a slightly better exponent of 1.67, by means
of rectangular matrix multiplication.

Main result. We will focus in this paper on the case of t -th root extraction, where t is a prime
divisor of q−1; the general case of m-th root extraction, with m arbitrary, can easily be reduced
to this case (see the discussion after Theorem 20).
The core of our algorithm is a reduction of t -th root extraction in Fq to t -th root extraction in an
extension ofFp of smaller degree. Our algorithm is probabilistic of Las Vegas type, so its running
time is given as an expected number of operations. With this convention, our main result is the
following.

Theorem 1. Let t be a prime factor of q − 1, with q = pn , and let s be the order of p in Z/tZ.
Given a ∈ F∗q , one can decide if a is a t -th power in F∗q , and if so compute one of its t -th roots, by
means of the following operations:

• an expected O(sM(n) log(p)+C(n) log(n)) operations in Fp ;

• a t -th root extraction in Fp s .

Thus, we replace t -th root extraction in a degree n extension by a t -th root extraction in an
extension of degree s ≤ min(n, t). The extension degree s is the largest one for which t still
divides p s −1, so iterating the process does not bring any improvement: the t -th root extraction
in Fp s must be dealt with by another algorithm. The smaller s is, the better.
A useful special case is t = 2, that is, we are taking square roots; the assumption that t divides
q − 1 is then satisfied for all odd primes p and all n. In this case, we have s = 1, so the second
step amounts to square root extraction in Fp . Since this can be done in O(log(p)) expected oper-
ations in Fp , the total running time of the algorithm is an expected O(M(n) log(p)+C(n) log(n))
operations in Fp .
A previous algorithm by Kaltofen and Shoup [12] allows one to compute t -th roots in Fpn in
expected time O((M(t)M(n) log(p)+ tC(n)+C(t)M(n)) log(n)); we discuss it further in the next
section. This algorithm requires no assumption on t , so it can be used in our algorithm in the case
s > 1, for t -th root extraction in Fp s . Then, its expected running time is O((M(t)M(s) log(p) +
tC(s)+C(t)M(s)) log(s)).
The strategy of using Theorem 20 to reduce from Fq to Fp s then using the Kaltofen-Shoup algo-
rithm over Fp s is never more expensive than using the Kaltofen-Shoup algorithm directly over
Fq . For t =O(1), both strategies are within a constant factor; but even for the smallest case t = 2,

10

our algorithm has advantages (as explained in the last section). For larger t , the gap in our favor
will increase for cases when s is small (such as when t divides p − 1, corresponding to s = 1).

Finally, let us go back to the remark above, that for any m, one can reduce m-th root extraction
of a ∈ F∗q to computing t -th roots, with t dividing q − 1; this is well known, see for instance [1,
Chapter 7.3]. We write m = uv with (v, q − 1) = 1 and t | q − 1 for every prime divisor t of u,
and we assume that a is indeed an m-th power.

• We first compute the v-th root a0 of a as a0 = av−1 mod q−1 by computing the inverse ` of
v mod q − 1, and computing an `-th power in Fq . This takes O(nM(n) log(p)) operations
in Fp .

• Let u =
∏d

i=1 mαi
i be the prime factorization of u, which we assume is given to us. Then,

for k = 1, . . . ,α1, we compute an m1-th root ak of ak−1 using Theorem 20, so that aα1
is an

mα1
1 -th root of a0.

One should be careful in the choice of the m1-th roots (which are not unique), so as to
ensure that each ak is indeed an u/m i

1-th power: if the given ak is not such a power, we can
multiply it by a m1-th root of unity until we find a suitable one. The root of unity can be
found by the algorithm of Theorem 20.

Once we know aα1
, the same process can be applied to compute an mα2

2 -th root of aα1
, and

so on.

The first step, taking a root of order v, may actually be the bottleneck of this scheme. When v
is small compared to n, it may be better to use here as well the algorithm by Kaltofen and Shoup
mentioned above.

In a boolean model. In our algebraic model, when n grows, the bottleneck of our algorithm
(or of the Kaltofen-Shoup algorithm) is modular composition, since there is currently no known
algorithm with cost quasi-linear in n.
If we analyze running times in a boolean model (counting bit or word operations), much better
can be done: Kedlaya and Umans [13], following previous work by Umans [25], give an algo-
rithm with a boolean cost that grows like n1+ε log(p)1+o(1) for modular composition in degree n
over Fp , for any given ε > 0. They also show that minimal polynomial of elements of Fq = Fpn

can be computed for the same cost.
The algorithms of the following sections can be analyzed in the boolean model without difficulty
(for definiteness, over a boolean RAM with logarithmic access cost — the Kedlaya-Umans algo-
rithm uses table lookup in large tables). The only differences are in the cost of modular composi-
tion over Fp , as well as minimal polynomial computation in Fq , for which we use the results by
Kedlaya and Umans. Using the fact that arithmetic inFp can be done in boolean time log(p)1+o(1),
the running time reported in Theorem 20 then becomes O(sM(n) log(p)2+o(1)+n1+ε log(p)1+o(1))
bit operations, for any ε > 0; this admits the upper bound O(s n1+ε log(p)2+o(1)). With respect to
the extension degree n, this is close to being linear time.
From the practical point of view, however, we did not use the Kedlaya-Umans algorithm in our
experiments, since we do not have a competitive implementation of it (and currently know of no
such implementation).

11

Organization of the chapter. The next section reviews and discusses known algorithms; Sec-
tion 2.3 gives the details of the root extraction algorithm and some experimental results. In all
the paper, (F∗q)t denotes the set of t -th powers in F∗q .

Acknowledgments. We thank NSERC and the Canada Research Chairs program for financial
support. We also thank the referee for very helpful remarks.

2.2 Previous work
Let t be a prime factor of q−1. In the rest of this section, we discuss previous algorithms for t -th
root extraction, with a special focus on the case t = 2 (square roots), which has attracted most
attention in the literature. Note that our assumptions exclude the case of pth root extraction in
characteristic p.
We shall see in Section 2.3 that given a prime t as above, the cost of testing for t -th power is
always dominated by the t -th root extraction; thus, for an input a ∈ F∗q , we always assume that
a ∈ (F∗q)t .
All algorithms discussed below rely on some form of exponentiation in Fq , or in an extension of
Fq , with exponents that grow linearly with q . As a result, a direct implementation using binary
powering uses O(log(q))multiplications in Fq , that is, O(nM(n) log(p)) operations in Fp . Even
using fast multiplication, this is quadratic in n; alternative techniques should be used to perform
the exponentiation, when possible.

Some special cases of square root computation. If G is a group with an odd order s , then
the mapping f : G→G, f (a) = a2 is an automorphism of G; hence, every element a ∈G has a
unique square root, which is a(s+1)/2. Thus, if q ≡ 3 (mod 4), the square root of any a ∈ (F∗q)2 is
a(q+1)/4; this is because (F∗q)2 is a group of odd order (q − 1)/2.
More complex schemes allow one to compute square roots for some increasingly restricted classes
of prime powers q . The following table summarizes results known to us; in each case, the algo-
rithm uses O(1) exponentiations and O(1) additions /multiplications in Fq . The table indicates
what exponents are used in the exponentiations.

Table 2.1: Some special cases for square roots

Algorithm q exponent
folklore 3 (mod 4) (q + 1)/4
Atkin 5 (mod 8) (q − 5)/8

Müller [15] 9 (mod 16) (q − 1)/4 and (q − 9)/16
Kong et al. [14] 9 (mod 16) (q − 9)/8 and (q − 9)/16

As was said above, using a direct binary powering approach to exponentiation, all these algo-
rithms use O(nM(n) log(p)) operations in Fp . Some extensions to higher roots have appeared

12

in the literature, for example to cube roots in the case where q = 7 (mod 9) [17], with similar
running times.

Cipolla’s square root algorithm. To compute the square root of a ∈ (F∗q)2, Cipolla’s algorithm
uses an element b in Fq such that b 2− 4a is not a square in Fq . Then, the polynomial f (Y) =
Y 2 − bY + a is irreducible over Fq , hence K = Fq[Y]/〈 f 〉 is a field. Let y be the residue class
of Y modulo 〈 f 〉. Since f is the minimal polynomial of y over Fq , NK/Fq

(y) = a, ensuring that
p

a = Y (q+1)/2 mod (Y 2− bY + a).
Finding a quadratic nonresidue of the form b 2 − 4a by choosing a random b ∈ Fq requires an
expected O(1) attempts [1, page 158]. The quadratic residue test, and the norm computation take
O(M(n) log(n)+ log(p)) and O(nM(n) log(p))multiplications in Fp respectively. Therefore, the
cost of the algorithm is an expected O(nM(n) log(p)) operations in Fp .
Algorithms extending Cipolla’s to the computation of t -th roots in Fp , where t is a prime factor
of p − 1, are in [27, 28, 16].

The Tonelli-Shanks algorithm. We will describe the algorithm in the case of square roots, al-
though the ideas extend to higher orders. Tonelli’s algorithm [23] and Shanks’ improvement [20]
use discrete logarithms to reduce the problem to a subgroup of F∗q of odd order. Let q − 1= 2r`
with (`, 2) = 1 and let H be the unique subgroup of F∗q of order `. Assume we find a quadratic
nonresidue g ∈ F∗q ; then, the square root of a ∈ F∗q can be computed as follows: we can ex-
press a as g s h ∈ g s H by solving a discrete logarithm in F∗q/H ; s is necessarily even, so that
p

a = g s/2h (`+1)/2.
According to [18], the discrete logarithm requires O(r 2M(n)) multiplications in Fp ; all other
steps take O(nM(n) log(p)) operations in Fp . Hence, the expected running time of the algo-
rithm is O((r 2 + n log(p))M(n)) operations in Fp . Thus, the efficiency of this algorithm de-
pends on the structure of F∗q : there exists an infinite sequence of primes for which the cost is
O(n2M(n) log(p)2), see [24]. An extension to the computation of cube roots modulo p is in [17],
with a similar cost analysis.

Improving the exponentiation. All algorithms seen before use at best O(nM(n) log(p)) op-
erations in Fp , because of the exponentiation. Using ideas going back to [11], Barreto et al. [3]
observed that for some of the cases seen above, the exponentiation can be improved, giving a cost
subquadratic in n.
For instance, when taking square roots with q = 3 (mod 4), the exponentiation a(q+1)/4 can be
reduced to computing a1+u+···+u(n−3)/2

, with u = p2, plus two (cheap) exponentiations with expo-
nents p(p − 1) and (p + 1)/4. The special form of the exponent 1+ u + · · ·+ u (n−3)/2 makes it
possible to apply a binary powering approach, involving O(log(n))multiplications and exponen-
tiations, with exponents that are powers of p.
Further examples for square roots are discussed in [14, 9], covering the entries of Table 2.1. These
references assume a normal basis representation; using (as we do) the monomial basis and mod-
ular composition techniques (which will be explained in the next section), the costs become
O(M(n) log(p) + C(n) log(n)). Some cases of higher index roots are in [2]: if t is a factor of

13

p − 1, such that t 2 does not divide p − 1, and if gcd(n, t) = 1, then t -th root extraction can be
done using O(tM(n) log(p)+C(n) log(n)) operations in Fp .

Kaltofen and Shoup’s algorithm. Finally, we mention what is, as far as we know, the only
algorithm achieving an expected subquadratic running time in n (using the monomial basis rep-
resentation), without any assumption on p.
Consider a factor t of q − 1. To compute a t -th root of a ∈ (F∗q)t , the idea is simply to factor
Y t−a ∈ Fq[Y] using polynomial factorization techniques. Since we know that a is a t -th power,
this polynomial splits into linear factors, so we can use an Equal Degree Factorization (EDF)
algorithm.
A specialized EDF algorithm, dedicated to the case of high-degree extension of a given base field,
was proposed by Kaltofen and Shoup [12]. It mainly reduces to the computation of a trace-
like quantity b + b p + · · ·+ b pn−1

, where b is a random element in Fq[Y]/〈Y t − a〉. Using a
binary powering technique similar to the one of the previous paragraph, this results in an ex-
pected running time of O((M(t)M(n) log(p) + tC(n) + C(t)M(n)) log(n)) operations in Fp ; re-
mark that this estimate is faster than what is stated in [12] by a factor log(t), since here we only
need one root, instead of the whole factorization. In the particular case t = 2, this becomes
O((M(n) log(p)+C(n)) log(n)). This achieves a running time subquadratic in n.
This idea actually allows one to compute a t -th root, for arbitrary t : starting from the polynomial
Y t −a, we apply the above algorithm to gcd(Y t −a,Y q−Y); computing Y q modulo Y t −a can
be done by the same binary powering techniques.

2.3 A new root extraction algorithm
In this section, we focus on t -th root extraction in Fq , for t a prime dividing q − 1 (as we saw in
Section 3.1, m-th root extraction, for an integer m ≥ 2, reduces to taking t -th roots, where t is a
prime factor of m dividing q − 1).
The algorithm we present uses the trace Fq → Fq ′ , for some subfield Fq ′ ⊂ Fq to reduce t -th root
extraction in Fq to t -th root extraction in Fq ′ . We assume as before that the field Fq is represented
by a quotient Fp[X]/〈 f 〉, with f (X) ∈ Fp[X] a monic irreducible polynomial of degree n. We
let x be the residue class of X modulo 〈 f 〉.
Since we will handle both Fq and Fq ′ , conversions may be needed. We recall that the minimal
polynomial g ∈ Fp[Z] of an element b ∈ Fq can be computed in O(C(n) +M(n) log(n)) opera-
tions in Fp [21]. Then, Fq ′ = Fp[Z]/〈g 〉 is a subfield of Fq = Fp[X]/〈 f 〉; given r ∈ Fq ′ , written
as a polynomial in Z , we obtain its representation on the monomial basis of Fq by means of a
modular composition, in time C(n). We will write this operation Embed(r,Fq). Note that when
b is in Fp , all these operations are actually free.

14

2.3.1 An auxiliary algorithm
We first discuss a binary powering algorithm to solve the following problem. Starting from λ ∈
Fq , we are going to compute

αi (λ) = λ
1+p s
+λ1+p s+p2s

+ · · ·+λ1+p s+p2s+···+p i s

for given integers i , s > 0. This question is similar to (but distinct from) some exponentiations
and trace-like computations we discussed before; our solution will be a similar binary powering
approach, which will perform O(log(i)) multiplications and exponentiations by powers of p.
Let

ξi = x p i s
, ζi (λ) = λ

p s+p2s+···+p i s
and δi (λ) = λ

p s
+λp s+p2s

+ · · ·+λp s+p2s+···+p i s
,

where all quantities are computed in Fq , that is, modulo f ; for simplicity, in this paragraph, we
will write αi , ζi and δi . Note that αi = λδi , and that we have the following relations:

ξ1 = x p s
, ζ1 = λ

p s
, δ1 = λ

p s

and

ξi =

(

ξ p i s/2

i/2 if i is even

ξ p s

i−1 if i is odd,
ζi =

(

ζi/2ζ
p i s/2

i/2 if i is even

ζ1ζ
p s

i−1 if i is odd,
δi =

(

δi/2+ ζi/2δ
p i s/2

i/2 if i is even

δi−1+ ζi if i is odd.

Because we are working in a monomial basis, computing exponentiations to powers of p is not a
trivial task; we will perform them using the following modular composition technique from [7].
Take j ≥ 0 and r ∈ Fq , and let R and Ξ j be the canonical preimages of respectively r and ξ j in
Fp[X]; then, we have

r p j s
= R(Ξ j)mod f ,

see for instance [26, Chapter 14.7]. We will simply write this as r (ξ j), and note that it can be
computed using one modular composition, in time C(n). These remarks give us the following
recursive algorithm, where we assume that ξ1 = x p s

and ζ1 = λ
p s

are already known.

Algorithm 1 XiZetaDelta(λ, i ,ξ1,ζ1)
Input: λ, a positive integer i , ξ1 = x p s

, ζ1 = λ
p s

Output: ξi , ζi , δi
1. if i = 1 then
2. return ξ1, ζ1, ζ1
3. end if
4. j ←bi/2c
5. ξ j ,ζ j ,δ j ←XiZetaDelta(λ, j ,ξ1,ζ1)
6. ξ2 j ← ξ j (ξ j)
7. ζ2 j ← ζ j · ζ j (ξ j)
8. δ2 j ← δ j + ζ jδ j (ξ j)
9. if i is even then

15

10. return ξ2 j , ζ2 j , δ2 j

11. end if
12. ξi ← ξ2 j (ξ1)
13. ζi ← ζ1 · ζ2 j (ξ1)
14. δi ← δ2 j + ζi

15. return ξi , ζi , δi

We deduce the following algorithm for computing αi (λ).

Algorithm 2 Alpha(λ, i)
Input: λ, a positive integer i
Output: αi

1. ξ1← x p s

2. ζ1← λp s

3. ξi , ζi , δi ←XiZetaDelta(λ, i ,ξ1,ζ1)
4. return λδi

Proposition 2. Algorithm 2 computes αi (λ) using O(C(n) log(i s)+M(n) log(p)) operations in Fp .

Proof. To compute x p s
and λp s

we first compute x p and λp using O(log(p)) multiplications in
Fq , and then do O(log(s)) modular compositions modulo f . The depth of the recursion in Al-
gorithm 1 is O(log(i)); each recursive call involves O(1) additions, multiplications and modular
compositions modulo f , for a total time of O(C(n)) per recursive call.

As said before, the algorithm can also be implemented using a normal basis representation. Then,
exponentiations to powers of p become trivial, but multiplication becomes more difficult. We
leave these considerations to the reader.

2.3.2 Taking t -th roots
We will now give our root extraction algorithm. As said before, we now let t be a prime factor
of q − 1, and we let s be the order of p in Z/tZ. Then s divides n, say n = s`.
We first explain how to test for t -th powers. Testing whether a ∈ F∗q is a t -th power is equiv-

alent to testing whether a(q−1)/t = 1. Let ζ = a(p s−1)/t ; then a(q−1)/t = ζ 1+p s+···+p(`−1)s
. Com-

puting ζ requires O(sM(n) log(p)), and computing ζ 1+p s+···+p(`−1)s
using Algorithm 1 requires

O(C(n) log(n)+M(n) log(p)) operations inFp . Therefore, testing for a t -th power takes O(C(n) log(n)+
sM(n) log(p)) operations in Fp .
In the particular case when t divides p−1, we can actually do better: we have a(q−1)/t = res(f ,a)(p−1)/t ,
where res(·, ·) is the resultant function. The resultant can be computed using O(M(n) log(n)) op-
erations in Fp , so the whole test can be done using O(M(n) log(n)+ log(p)) operations in Fp .

16

In any case, we can now assume that we are given a ∈ (F∗q)t , with t -th root γ ∈ Fq . Defining
β= trFq/Fq′

(γ), where trFq/Fq′
: Fq → Fq ′ is the trace linear form and q ′ = p s , we have

β=
`−1
∑

i=0

γ p i s

= γ (1+ γ p s−1+ γ p2s−1+ · · ·+ γ p(`−1)s−1)

= γ (1+ a(p
s−1)/t + a(p

2s−1)/t + · · ·+ a(p
(`−1)s−1)/t). (2.1)

Let b = 1+ a(p s−1)/t + a(p2s−1)/t + · · ·+ a(p(`−1)s−1)/t , so that Equation 3.3 gives β = γ b . Taking
the t -th power in both sides results in the equation βt = ab t over Fq ′ . Since we know a, and we
can compute b , we can thus determineβ by t -th root extraction in Fq ′ . Then, if we assume that
b 6= 0 (or equivalently thatβ 6= 0), we deduce γ =βb−1; to resolve the issue thatβmay be zero,
we will replace a by a′ = ac t , for a random element c ∈ F∗q .
Computing the t -th root of a′b t in Fq ′ is done as follows. We first compute the minimal poly-
nomial g ∈ Fp[Z] of a′b t , and let z be the residue class of Z in Fp[Z]/〈g 〉. Then, we compute a
t -th root r of z in Fp[Z]/〈g 〉, and embed r in Fq . The computation of r is done by a black-box
t -th root extraction algorithm, denoted by r 7→ r 1/t .
It remains to explain how to compute b efficiently. Let λ = a(p s−1)/t ; then, one verifies that
b = 1+λ+α`−2(λ), so we can use the algorithm of the previous subsection. Putting all together,
we obtain the following algorithm

Algorithm 3 t -th root in F∗q
Input: a ∈ (F∗q)t
Output: a t -th root of a

1. s ← the order of p in Z/tZ
2. `← n/s
3. repeat
4. choose a random c ∈ Fq

5. a′← ac t

6. λ← a′(p
s−1)/t

7. b ← 1+λ+Alpha(λ,`− 2)
8. until b 6= 0
9. g ←MinimalPolynomial(a′b t)

10. β← z1/t in Fp[Z]/〈g 〉
11. return Embed(β,Fq)b

−1c−1

The following proposition proves Theorem 20.

Proposition 3. Algorithm 3 computes a t -th root of a using an expected O(sM(n) log(p)+C(n) log(n))
operations in Fp , plus a t -th root extraction in Fq ′ .

Proof. Note first thatβ= 0 means that trFq/Fq′
(γ c) = 0. There are q/q ′ values of c for which this

is the case, and hence the probability of having a zero trace is (q/q ′)/q = 1/q ′ ≤ 1/2. So we expect

17

to have to choose O(1) elements inFq before exiting the repeat . . .until loop. Each pass in the loop
uses O(sM(n) log(p)) operations in Fp to compute a′ and λ, and O(C(n) log(n) +M(n) log(p))
operations in Fp to compute b .
Given a′ and b , one obtains b t and a′b t using another O(sM(n) log(p)) operations in Fp ; then,
computing g takes time O(C(n)+M(n) log(n)).
After the black-box call to t -th root extraction modulo g , embedding β in Fq takes time C(n).
We can then deduce γ by two divisions in Fq , using O(M(n) log(n)) operations in Fp ; this is
negligible compared to the cost of all modular compositions.

2.3.3 Experimental results
We have implemented our root extraction algorithm, in the case m = 2 (that is, we are taking
square roots); our implementation is based on Shoup’s NTL [22]. The experiments in this section
were done for the “small” and “large” characteristics p = 449 and p = 3489756093814709256345
34573457497, and different values of the extension degree, on a 2.40GHz Intel Xeon. They show
that the behavior of our algorithm hardly depends on the characteristic.
Figure 3.1 compares our algorithm to Cipolla’s and Tonelli-Shanks’ algorithms over Fq , with
q = pn, for different values of the extension degree n. For each n, the running time is averaged
over five runs, with input being random squares in Fq .

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

ti
m

e
(s

e
c
)

extension degree

Cipolla
Tonelli-Shanks

New

(a) p = 449

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250 300 350 400 450 500

ti
m

e
(s

e
c
)

extension degree

Cipolla
Tonelli-Shanks

New

(b) p = 348975609381470925634534573457497

Figure 2.1: Our square root algorithm vs. Cipolla’s and Tonelli-Shanks’ algorithms.

Remember that the bottleneck in Cipolla’s and Tonelli-Shanks’ algorithms is the exponentiation,
which takes O(nM(n) log(p)) operation in Fp . As it turns out, NTL’s implementation of modu-
lar composition hasω = 3; this means that with this implementation we have C(n) =O(n2), and
our algorithm takes expected time O(M(n) log(p)+n2 log(n)). Although this implementation is
not subquadratic in n, it remains faster than Cipolla’s and Tonelli-Shanks’ algorithms, in theory
and in practice.

Next, Figure 2.2 compares our NTL implementation of the EDF algorithm proposed by Kaltofen
and Shoup, and our square root algorithm (note that the range of reachable degrees is much

18

larger that in the first figure). We ran the algorithms for five random elements for each extension
degree. At this scale, we observe irregularities in the averaged running time of the Kaltofen-Shoup
algorithm, due to its probabilistic behavior.
The vertical dashed lines and the green line respectively show the running time range, and the
average running time, of Kaltofen and Shoup’s algorithm. In the case of our algorithm (the red
graph), the vertical ranges are invisible because the deviation from the average is ≈ 10−2 seconds.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
(s

e
c
)

extension degree

New
Kaltofen-Shoup

(a) p = 449

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
(s

e
c
)

extension degree

New
Kaltofen-Shoup

(b) p = 348975609381470925634534573457497

Figure 2.2: Our algorithm vs. Kaltofen and Shoup’s algorithm.

This time, the results are closer. Nevertheless, it appears that the running time of our algorithm
behaves more “smoothly”, in the sense that random choices seem to have less influence. This is
indeed the case. The random choice in Kaltofen and Shoup’s algorithm succeeds with probability
about 1/2; in case of failure, we have to run to whole algorithm again. In our case, our choice of
an element c in F∗q fails with probability 1/p � 1/2; then, there is still randomness involved in
the t -th root extraction in Fp , but this step was negligible in the range of parameters where our
experiments were conducted.
Another way to express this is to compare the standard deviations in the running times of both
algorithms. In the case of Kaltofen-Shoup’s algorithm, the standard deviation is about 1/

p
2 of

the average running time of the whole algorithm. For our algorithm, the standard deviation
is no more than 1/

p
p of the average running time of the trace-like computation (which is the

dominant part), plus 1/
p

2 of the average running time of the root extraction in Fp (which is
cheap).
Finally, we mention that the crossover point between our algorithm and the previous ones varies
with p, but is usually small: around n = 20 to n = 30 for small p (say less than 500) and around
n = 10 to n = 20 for larger values of p. For very small degrees, the Tonelli-Shanks algorithm
was the fastest in our experiments. Note that for such small n, big-O analyses lose some signifi-
cance; this makes it difficult to get accurate theoretical estimates for the behaviour of the various
algorithms in this range of degrees.

19

Bibliography
[1] E. Bach and J. Shallit. Algorithmic Number Theory; Volume I: Efficient Algorithms. The MIT

Press, 1996.

[2] P. Barreto and J. Voloch. Efficient computation of roots in finite fields. Designs, Codes and
Cryptography, 39:275–280, 2006.

[3] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. In Advances in cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in
Comput. Sci., pages 354–368. Springer, 2002.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal
of the Association for Computing Machinery, 25(4):581–595, 1978.

[5] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary alge-
bras. Acta Informatica, 28(7):693–701, 1991.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symb. Comp, 9(3):251–280, 1990.

[7] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2(3):187–224, 1992.

[8] P. Gaudry and É. Schost. Genus 2 point counting over prime fields. Journal of Symbolic
Computation, 47(4):368 – 400, 2012.

[9] D.-G. Han, D. Choi, and H. Kim. Improved computation of square roots in specific finite
fields. IEEE Trans. Comput., 58:188–196, 2009.

[10] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Com-
plexity, 14(2):257–299, 1998.

[11] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in GF(2m) using
normal bases. Inform. and Comput., 78(3):171–177, 1988.

[12] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of
finite fields. In ISSAC’97, pages 184–188. ACM, 1997.

[13] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[14] F. Kong, Z. Cai, J. Yu, and D. Li. Improved generalized Atkin algorithm for computing
square roots in finite fields. Inform. Process. Lett., 98(1):1–5, 2006.

[15] S. Müller. On the computation of square roots in finite fields. Des. Codes Cryptogr.,
31(3):301–312, 2004.

20

[16] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo. A remark on the computation
of cube roots in finite fields. Cryptology ePrint Archive, Report 2009/457, 2009. http:

//eprint.iacr.org/.

[17] C. Padró and G. Sáez. Taking cube roots in Zm. Applied Mathematics Letters, 15(6):703 –
708, 2002.

[18] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over
gf(p) and its cryptographic significance. IEEE Transactions on Information Theory, IT-
24:106–110, 1978.

[19] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–
292, 1971.

[20] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, pages 51–70, 1972.

[21] V. Shoup. Fast Construction of Irreducible Polynomials over Finite Fields". Journal of
Symbolic Computation, 17(5):371–391, May 1994.

[22] V. Shoup. A library for doing number theory (NTL). http://www.shoup.net/ntl/, 2009.

[23] A. Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger
Nachrichten, pages 344–346, 1891.

[24] G. Tornaría. Square roots modulo p. In LATIN 2002: Theoretical Informatics, volume 2286
of Lecture Notes in Comput. Sci., pages 430–434. Springer, 2002.

[25] C. Umans. Fast polynomial factorization and modular composition in small characteristic.
In STOC, pages 481–490, 2008.

[26] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
2003.

[27] H. C. Williams. Some algorithms for solving xq ≡ N (mod p). In Proceedings of the Third
Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1972), pages 451–462. Florida Atlantic Univ., 1972.

[28] K. S. Williams and K. Hardy. A refinement of H. C. Williams’ qth root algorithm. Math.
Comp., 61(203):475–483, 1993.

21

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.shoup.net/ntl/

Chapter 3

Computing in Degree 2k-Extensions of
Finite Fields of Odd Characteristic

3.1 Introduction
Factoring polynomials and constructing irreducible polynomials are two fundamental operations
for finite field arithmetic. As of now, there exists no deterministic polynomial time algorithm
for these questions in general, but in some cases better answers can be found. In this chapter, we
discuss algorithmic questions arising in such a special case: the construction of, and computations
with, extensions of degree n = 2k of a base field, say Fq , with q a power of an odd prime p. In
other words, we are interested with the complexity of computing in the quadratic closure of Fq .
There exists a well-known construction of such extensions [11, Th. VI.9.1], which was already
put to use algorithmically in [15]: if q = 1 mod 4, then for any quadratic non-residue α ∈ Fq ,

the polynomial X 2k − α ∈ Fq[X] is irreducible for any k ≥ 0, and allows us to construct Fq2k .
If q = 3 mod 4, we first construct a degree-two extension Fq ′ of Fq , which will thus satisfy q ′ =
1 mod 4; this is done by remarking that X 2+ 1 ∈ Fq[X] is irreducible, so that we can construct
Fq ′ as Fq[X]/〈X 2+ 1〉.
In this note, taking this remark as a starting point, we give fast algorithms for operations such
as multiplication and inversion, trace and norm computation, and most importantly square root
computation in Fq2k (see below for our motivation), as well as isomorphism computation.
We do not make any assumption on the wayFq is represented: the running time of our algorithms
is estimated by counting operations (+,×,÷) in Fq at unit cost. The cost of most algorithms will
be expressed in terms of the cost of polynomial multiplication. Explicitly, we let M : N → N
be such that degree n polynomials over any ring R can be multiplied in M(n) operations in R,
and such that M(n)/n is non-decreasing (this will be referred to as super-linearity). Using the
algorithm of [3], we can take M(n) =O(n log(n) log log(n)).
In view of the discussion above, we will assume that q = 1 mod 4: if this is not the case, replac-
ing Fq by Fq ′ as explained above only induces a constant overhead, since all operations (+,×,÷)
in Fq ′ can be done using O(1) operations in Fq . Besides, we will assume that the non-quadratic
residue α is given; otherwise, such an α can be found by testing an expected O(1) random ele-
ments in Fq for quadratic residuosity. This remains a core non-deterministic component of the

22

construction, since finding α in a polynomial-time deterministic manner is a well-known open
question. Some algorithms below are non-deterministic (Las Vegas) as well; for such algorithms,
we give the expected running time.

Theorem 4. Suppose that q = 1 mod 4. Given a non-quadratic residue α ∈ Fq , for k ≥ 0 and
n = 2k , the running times for computations in Fqn reported in Table 3.1 hold.

Operation Cost
addition / subtraction O(n)

multiplication M(n)+O(n)
inversion O(M(n))
Frobenius O(n+ log(q))

norm O(M(n))
trace 1

quadratic residuosity O(M(n)+ log(q))
square root O(M(n) log(nq)) (expected)

isomorphism O(n+ log(n) log(q)) (expected)

Table 3.1: Costs for computations in Fqn , with n = 2k .

This paper can be seen as an analogue of [5], which discusses these questions for Artin-Schreier
extensions: the problems we consider, the techniques we use, and the applications (dealing with
torsion points of some genus 1 or 2 Jacobians; see below) are similar. More precisely, the recur-
sive techniques used here are similar to those in the reference in terms of exploiting the special
structure of the tower and the defining polynomials.
For some questions, such as Frobenius or isomorphism computation, we refer to the next section
for a precise description of the operation we perform; however, we mention that in all cases, we
use a polynomial basis representation for all computations. In all cases, the combined size of input
and output is O(n) elements in Fq , and using fast multiplication, all running times reported here
are quasi-linear1 in n.
Some results in the above table are straightforward (such as addition / subtraction or trace com-
putation) and some are well-known (such as multiplication). Our focus in this note is actually on
square root computation, and to the best of our knowledge, this is the first time that such results
appear.
The straightforward approaches to square root extraction, using for instance Cipolla’s or the
Tonelli-Shanks algorithms [16, 4, 13] require a number of multiplications in Fqn proportional
to log(qn); the cost is then O(nM(n) log(q)) operations in Fq , which is at best quadratic in n. It
is possible to compute square roots faster, using fast algorithms for modular composition, which
is the operation that consists in computing F (G)mod H , given some univariate polynomials
F ,G, H . Let us denote by C(n) the cost of this operation, when F ,G, H have all degree at most
n. Then, the algorithms of [9, 6] compute square roots in Fqn using O(M(n) log(q)+C(n) log(n))
operations in Fq .

1 An algorithm is quasi-linear time in n if it has complexity O(n logk n) for a constant k.

23

In our model, where operations in Fq are counted at unit cost, the best known bound on C(n) is
C(n) = O(

p
nM(n) + n(ω+1)/2), where 2 ≤ ω ≤ 3 is such that matrices of size m over Fq can be

multiplied in O(mω) operations [2]. Thus, depending onω, and neglecting logarithmic factors,
the cost (with respect to n) of the corresponding square root algorithms ranges between O(n3/2)
and O(n2). We remark however that, in a boolean model (on a RAM, using an explicit boolean
representation of the elements in Fq , and counting boolean operations at unit cost), Kedlaya and
Umans gave in [10] an algorithm of cost n1+ε log(q)1+o(1) for modular composition in Fq , for any
ε > 0. In that model, algorithms such as those in [9, 6] are thus close to linear time.
None of the algorithms mentioned above is dedicated to the specific case we consider, where the
extension degree n is a power of two; few references consider explicitly this particular case [7, 19].
The algorithm of [7] gives a quadratic residuosity test that uses O(log(n)) Frobenius computa-
tions and multiplications in Fqn , and O(log(q)) multiplications in Fq . This reference does not
specify how to represent the extensions of Fq , and what algorithms should be used for basic oper-
ations. Using the algorithms given below for arithmetic and Frobenius computations, the cost of
their quadratic residuosity test algorithm is O((M(n)+ log(q)) log(n))multiplications in Fq ; this
is slightly slower than our result. The authors of [7] also give algorithms for quadratic residuosity
and square root computation for degree 2k -extensions in their later work [19]. They removed the
computation overlap between quadratic residuosity test and square root, but the algorithms still
run in times quadratic in n (the quadratic residuosity test being the bottleneck).

This work was inspired by computations with Jacobians of curves of genus 2 over finite fields.
Given a genus 2 curve C defined over Fp , the algorithm of [8] computes the cardinality of the
Jacobian J of C , following Schoof’s elliptic curve point counting algorithm [12]. This involves
in particular the computation of successive divisors of 2k -torsion in J , by means of successive
divisions by two in J . Such a division by two boils down to several arithmetic operations, and
four square root extractions; thus, the divisors we are computing are defined over the quadratic
closure of Fp , or of a small extension of Fp .
In other words, for dealing with 2k -torsion, the algorithm of [8] relies entirely on the opera-
tions above, arithmetic operations and square root extraction. At the time of writing [8], the au-
thors relied on a variant of the Kaltofen-Shoup algorithm [9]with running time O(M(n) log(q)+
C(n) log(n)), which was a severe bottleneck; our new algorithms completely alleviate this issue.

After proving Theorem 20 in Section 3.2, we present in Section 3.3 some experiments that con-
firm that the practical interest of our quasi-linear algorithms for the point-counting problem
above.

Acknowledgements. The authors are supported by NSERC and the Canada Research Chairs
program. We wish to thank the reviewers for their helpful remarks and suggestions.

3.2 Proof of the complexity statements
In this section, we prove the results stated in Table 3.1. The tower of fields Fq ,Fq2 , . . .Fq2k , . . .
will be written

L0 ⊂L1 ⊂ · · · ⊂Lk ⊂ · · · ,

24

with Lk = Fq2k for all k.

3.2.1 Representing the fields Lk

The tower of fieldsL0,L1, . . . can be represented in two fashions, using univariate or multivariate
representations (see as well [5], for a similar discussion for Artin-Schreier extensions).
Let α ∈ Fq be a fixed non-quadratic residue. Define the sequence of polynomials T1,T2, . . . in
indeterminates X1,X2, . . . given by

T1 =X 2
1 −α and Tk =X 2

k −Xk−1 for k > 1,

as well as the polynomials P1, P2, . . . given by

Pk =X 2k

k −α for k ≥ 1.

The discussion in the introduction, as well as the one in [11], shows that for all k ≥ 0 we have
the equality between ideals

〈T1, . . . ,Tk〉= 〈Pk ,Xk−1−X 2
k , . . . ,X1−X 2k−1

k 〉, (3.1)

that this ideal (call it Ak) is prime, and that we have

Lk ' Fq[X1, . . . ,Xk]/Ak .

For k ≥ 1, let xk be the image of Xk in the residue class ringFq[X1, . . . ,Xk]/Ak . Due to the natural
embedding of Fq[X1, . . . ,Xk]/Ak into Fq[X1, . . . ,Xk+1]/Ak+1, xk can be unequivocally seen as an
element of Fq2` for `≥ k (and thus as an element of the quadratic closure of Fq).
On the left-hand side of (3.1), we have a Gröbner basis of Ak for the lexicographic order X1 <
· · ·<Xk , whereas on the right we have a Gröbner basis for the lexicographic order Xk < · · ·<X1.
Corresponding to these two bases of Ak , the elements of Lk can be represented as polynomials
in x1, . . . , xk of degree at most 1 in each variable (and coefficients in Fq), or as polynomials in xk

of degree less than 2k .
By default, we will use the univariate representation; an element γ of Lk will thus be written as
γ =G(xk), for some polynomial G ∈ Fq[Xk] of degree less than 2k .
We will not explicitly need to convert to multivariate polynomials, but we will often do one step
of such a conversion, switching between univariate and bivariate bases. Indeed, for all k ≥ 1, we
have

Lk ' Fq[Xk]/〈Pk(Xk)〉 ' Fq[Xk−1,Xk]/〈Pk−1(Xk−1),X 2
k −Xk−1〉.

The Fq -monomial basis of Fq2k associated to the left-hand side is

1, xk , . . . , x2k−1
k ,

whereas the one associated to the right-hand side is

1, xk−1, . . . , x2k−1−1
k−1 , xk , xk−1xk , . . . , x2k−1−1

k−1 xk .

25

The change-of-basis from the univariate basis to the bivariate one amounts to writing an expres-
sion G(xk), with G of degree less than 2k , as

G(xk) =G0(x
2
k)+ xkG1(x

2
k) =G0(xk−1)+ xkG1(xk−1),

with G0 and G1 of degrees less than 2k−1. This does not require any arithmetic operation; the
same holds for the converse change-of-basis. Continuing this way on G0 and G1, we could convert
between univariate and multivariate bases without arithmetic operations if needed.

3.2.2 Arithmetic operations
In this subsection, we discuss the cost of arithmetic operations (+,×,÷) in Lk , for some k ≥ 0.
In all that follows, we write n = [Lk : Fq], that is, n = 2k .
Addition and subtraction take time O(n). For multiplication, using the univariate basis leads to
a cost of M(n)+O(n) operations in Fq , where the O(n) term accounts for reduction modulo Pk

(this takes linear time, since Pk is a binomial). Note that a non-trivial (and slightly less efficient)
approach using the multivariate representation is in [1].
For inversion, in the univariate basis, a natural idea is to use the fast extended GCD algorithm
for univariate polynomials [17, Ch. 11], resulting in a running time O(M(n) log(n)). However,
better can be done by using the tower structure of the fieldsLk . Indeed, consider γ =G(xk) ∈L×k .
Then, writing G(xk) =G0(xk−1)+ xkG1(xk−1), we have

1
G(xk)

=
1

G0(xk−1)+ xkG1(xk−1)

=
G0(xk−1)− xkG1(xk−1)

G0(xk−1)2− xk−1G1(xk−1)2
.

Therefore, computing an inverse inLk amounts to O(1) additions and multiplications inLk , and
one inversion in Lk−1. This gives a recursive algorithm with cost T (k) = T (k − 1) +O(M(2k));
the super-linearity of M implies that the running time is O(M(2k)) =O(M(n)) operations in Fq .

3.2.3 Frobenius computation
Let γ be in Lk , and let r = qd for some positive integer d . We explain here how to compute
γ r ∈Lk ; as above, we write n = 2k .
We start with the case γ = xk : writing r = nu + v with 0 ≤ v < n, and using the fact that
xn

k = α, we obtain x r
k = α

u xv
k . The constant αu = αu mod (q−1) can be computed in O(log(q))

multiplications in Fq by repeated squaring. Although our focus is on counting Fq -operations,
we also mention how to compute u mod (q − 1) and v efficiently: first of all, we compute ρ =
r mod n(q−1) by repeated squaring; then, u mod (q−1) and v are respectively the quotient and
remainder in the division of ρ by n. They can be computed with a boolean cost polynomial (and
actually, quasi-linear) in log(d) log(nq), since the bottleneck is an exponentation with exponent
O(d log(q)), modulo an integer of bit size O(log(nq)).

26

For a general γ of the form γ =G(xk), writing G(xk) = gn−1xn−1
k + · · ·+ g1xk + g0, we have

γ r = gn−1(x
r
k)

n−1+ · · ·+ g1(x
r
k)+ g0

= gn−1(α
u xv

k)
n−1+ · · ·+ g1(α

u xv
k)+ g0.

Knowing αu and v, computing γ r amounts to compute the first n powers of αu xv
k and substi-

tuting them in G. Since xn
k = α, these powers are all monomials in xk , and can be computed

successively in O(n) multiplications in Fq . Therefore, computing the Frobenius takes a total of
O(n+ log(q)) operations in Fq .

3.2.4 Trace, norm and quadratic residuosity test
The norm NLk/Fq

and the trace trLk/Fq
are easy to compute, using transitivity. Indeed, for γ ∈Lk ,

we have
NLk/Fq

(γ) =NL1/Fq
(NL2/L1

(· · ·NLk/Lk−1
(γ)))

and
trLk/Fq

(γ) = trL1/Fq
(trL2/L1

(· · · trLk/Lk−1
(γ))).

Write as before γ =G(xk) and G =G0(xk−1)+ xkG1(xk−1). Then, we have

NLk/Lk−1
(γ) =G0(xk−1)

2− xk−1G1(xk−1)
2

and
trLk/Lk−1

(γ) = 2G0(xk−1),

since in the quadratic extension Lk of Lk−1 generated by x2
k − xk−1, the norm (resp. trace) of γ is

the product (resp. sum) of γ and its conjugate γ ′ =G0(xk−1)− xkG1(xk−1).
To compute the norm of γ , this gives a recursive algorithm using one recursive call and O(1)
multiplications in each extension; using the super-linearity of M (as for inversion), the total is
O(M(n)) operations in Fq . For the trace, by transitivity, we obtain trLk/Fq

(γ) = n g0 where g0 is
the constant term of G; this could also have been deduced from the fact that the trace of γ =G(xk)
in the extension Lk = Fq[Xk]/〈Pk〉 is the coefficient of X n−1

k in GP ′k mod Pk . At any rate, the
trace is computed using 1 multiplication in Fq

Finally, to check if γ is a quadratic residue we compute γ (q
n−1)/2 = NLk/Fq

(γ)(q−1)/2; this takes
O(M(n)+ log(q)) operations in Fq (using repeated squaring for the exponentiation).
Let us briefly comment on alternative derivations of the norm and the trace; they are slightly
less efficient, but these ideas will allow us to compute square roots in the next subsection (the
underlying idea is not new; it appears for instance in [18, 7]). Fix n and γ as above and for m ≥ 0,
define

Nm(γ) = γ
1+q+q2+···+q m−1

to be the m-norm of γ . Similarly, the m-trace of γ is defined to be Tm(γ) = γ + γ
q + · · ·+ γ q m−1

(this is called a pseudo-trace in [5]). For m = n, we recover the standard norm and trace.
Writing

ζm = γ
q+q2+···+q m

,

27

we have Nm(γ) = γζm−1. The element ζm can be computed efficiently by means of the formulas

ζ1 = γ
q and ζm =

(

ζm/2ζ
q m/2

m/2 if m is even

ζ1ζ
q

m−1 if m is odd.
(3.2)

(We could compute Nm(γ) directly using a similar recurrence, but we will reuse the ζm in the next
subsection.) Computing ζ1 is done by means of one Frobenius computation. Deducing ζm from
either ζm/2 or ζ(m−1)/2 takes O(1) Frobenius and multiplications. Thus, the total for ζm, and thus
Nm(γ), is O(log(m)) Frobenius and multiplications in Lk , which amounts to O(M(n) log(m) +
log(q) log(m)) operations in Fq .
If needed, the m-trace can be computed similarly to the m-norm by the following recursion:

T1 = γ and Tm =

(

Tm/2+T q m/2

m/2 if m is even

T1+T q
m−1 if m is odd.

Therefore, Tm(γ) can be computed using O(log(m)) Frobenius and additions, hence the overall
running time O(n log(m)+ log(q) log(m)).

3.2.5 Taking square roots
In this subsection, we review the idea presented in [6] to compute square roots, and adapt it to
our situation, where computing a Frobenius is cheap.
Let δ ∈L×k be given, assume that δ is a square and let γ ∈Lk be an (unknown) square root of it.
Define β ∈ Fq as the (unknown) quantity

β= trLk/Fq
(γ) =

n−1
∑

i=0

γ q i
= γ (1+ γ q−1+ γ q2−1+ · · ·+ γ qn−1−1)

= γ (1+δ (q−1)/2+δ (q
2−1)/2+ · · ·+δ (qn−1−1)/2)

= γη,

(3.3)

with
η= 1+δ (q−1)/2+δ (q

2−1)/2+ · · ·+δ (qn−1−1)/2.

We may assume η 6= 0; otherwise, we can replace δ by δ ′ = δc2 for a random element c ∈ L×k .
We expect to have trFq/Fq′

(γ c) 6= 0 after O(1) trials: There are q2k
/q values of c for which the trace

is zero, and hence the probability of having a non-zero trace is 1− (q2k
/q)/q2k = 1− 1/q ≥ 1/2.

Squaring both sides of Eq. (3.3) results in the quadratic equation β2 = δη2 over Fq .
Provided η is known, β can be deduced from this quadratic equation, and finally γ as γ =βη−1.
Computing β from the above quadratic equation takes an expected O(log(q)) operations in
Fq [17, Ch. 14.5], so that computing η is the key to computing γ efficiently. This can be done as
follows.
Let λ ∈Lk be defined by λ= δ (q−1)/2; then, η is given by

η= 1+λ+λ1+q +λ1+q+q2
+ · · ·+λ1+q+q2+···+qn−2

.

28

For m ≥ 0, define
εm = λ

q +λq+q2
+ · · ·+λq+q2+···+q m

,

so that η= 1+ λ+ λεn−2, and recall as well the definition of ζm = λ
q+q2+···+q m

. Then, similar to
the recurrence relation given in (3.2) for ζ , the following holds for ε:

ε1 = λ
q and εm =

(

εm/2+ ζm/2ε
q m/2

m/2 if m is even

εm−1+ ζm if m is odd
(3.4)

Computing λ takes O(M(n) log(q)) operations in Fq ; then, we obtain the initial values ζ1 and
ε1 using O(1) Frobenius. Assume, inductively, that we have computed εm, ζm. Then, using
Eqs. (3.2) and (3.4), ζ2m and ε2m, or ζ2m+1 and ε2m+1, can be computed using O(1) Frobenius
and O(1) multiplications in Fqn . Therefore, εn, and altogether η = 1+ λ+ λεn−2 can be com-
puted using O(M(n) log(q) +M(n) log(n)) = O(M(n) log(nq)) operations in Fq . We have seen
that deducing β takes an expected O(log(q)) operations in Fq , and the cost of computing γ is
negligible compared to the computation of η. Thus, the overall running time is an expected
O(M(n) log(nq)) operations in Fq .

3.2.6 Computing embeddings
We finally consider the problem of computing embeddings and isomorphisms between two dif-
ferent “towers” defining the quadratic closure of Fq . Consider Lk = Fq[Xk]/〈Pk〉 and L′j =
Fq[Y j]/〈Q j 〉, k , j positive integers, where we write

Pk =X 2k

k −α and Q j = Y 2 j

j −β,

for some non-quadratic residuesα,β inFq . Assuming for instance that k ≤ j ,Lk can be identified
as a subfield of L′j ; we show how to compute an embedding φ : Lk ,→ L′j efficiently. As before,
we denote by xk the image of Xk in Lk , and by y j the image of Y j in L′j ; we write n = 2k and
m = 2 j .
The idea is straightforward: we first find a root ρ of Pk in L′j ; then, the mapping φ : Lk → L′j
given byφ(G(xk)) =G(ρ)mod Q j is well-defined and gives an isomorphism ofLk onto its image.
To find the root ρ of Pk in L′j , one has to take k successive square roots of α in L′j . For this, we
could use the algorithm of the previous subsection, but since we start from α ∈ Fq , better can be
done.
Let us look at a slightly more general question: given µ ∈ Fq and an even integer `≥ 0, compute
a square root of µy`j :

• if µ is a square in Fq , say µ= ν2, νy`/2j is a square root of µy`j ;

• else, µ/β is a square in Fq , say µ/β= ν2; then νy2 j−1+`/2
j is a square root of µy`j .

Since we start with ` = 0, we can repeat the process at least j times, and thus in particular at
least k times; the cost is thus that of O(k) = O(log(n)) quadratic residuosity tests, square-root

29

computations and arithmetic operations in Fq ; this uses an expected O(log(q) log(n)) operations
in Fq . Since the root ρ we obtain is of the form ρ = µy`j for some ` < m, computing G(ρ)
mod Q j , for some G of degree less than n (and thus than m), takes O(m) multiplications in Fq

(as was the case for Frobenius computation).
For isomorphism computation, taking k = j , and thus m = n, gives the claimed bound O(n+
log(q) log(n)) operations in Fq .

3.3 Experiments
We conclude this section with experiments using an implementation of our algorithms based on
NTL [14]. All running times are obtained on an Intel Xeon CPU. In all cases, we start from the
base field Fp .
First, we consider square root computation. For computing square roots in an extension Fpn ,
without assumption on n, we used in [6] modular polynomial composition, resulting in the
running time O(M(n) log(p) + C(n) log(n)). In cases where n is a power of two, the results in
this paper are superior in terms of complexity; Figure 3.1 confirms that this is also the case in
practice. In that figure, we take the “random” prime p = 348975609381470925634534573457497
already used in [6], and different values of the extension degree n, that are always powers of two;
see below for the reasons behind our choice of such a large value of p.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ti
m

e
(s

e
c
)

extension degree

Old
New

Figure 3.1: The new square root algorithm vs. the one in [6]

Table 3.2 gives timings (in seconds) for the genus 2 point-counting application described in the
introduction. The table describes the various ingredients involved in computing successive 2k -
torsion divisors in the Jacobian of the (randomly chosen) curve C :

y2 = x5+ 67412365472663169119085380769732137727 x4

+132706051439871719391705031627238584248 x3

+150906984006321211274278480789580538770 x2

+5602222826077482782805347307759926224 x
+157456212652423046465778673243920804193.

30

over Fp with p = 2127 − 1 (this 127 bit prime is the one used in the records described in [8]).
Once these divisors are known, they are used to compute the cardinality of the Jacobian J of C
modulo 2k (more exactly, we compute the image modulo 2k of the characteristic polynomial of
the Frobenius endomorphism on J); this last step is not detailed here, we will refer to it as the
search step.
In Table 3.2, the degree ek is the degree of the field extension over which the successive divisors
are defined. There are two main rows: the first one gives the timings for computing all required
square roots (which give us the required 2k -torsion divisors); the second row gives the timing
for the search step, which involves arithmetic operations in the current extension of Fp . For a
more precise profiling, each of the two main rows is divided into three subrows labelled with I,
II, and III: I denotes the original Gaudry and Schost implementation [8]; II and III denote the
same implementation but using the algorithm in [6] and the one in Section 3.2.5 respectively.
All square root algorithms in this table are probabilistic.
In previous implementations, square root computation was a clear bottleneck; with our new
algorithm, it has now become a minor component of the running time.

index 2k 26 27 28 29 210 211 212 213 214 215 216 217

degree ek 25 26 27 28 29 210 211 212 213 214 215 216

square
roots

I 0.2 0.4 1.2 3.5 11 33 109 365 1262 4466 16246 60689
II 0.2 0.5 1.2 2.9 8 23 73 232 734 2309 7368 23604
III 0.1 0.2 0.5 1.1 2 5 11 25 53 114 246 523

search step
I 0.5 1.1 2.8 6.5 14 32 73 164 368 816 2020 4827
II 0.4 1.0 2.3 5.4 12 27 62 139 309 657 1609 3740
III 0.4 0.9 2.0 4.5 11 24 53 119 267 598 1402 3297

Table 3.2: Timings for lifting 2k -torsion

Bibliography

[1] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and É. Schost. Homotopy methods for
multiplication modulo triangular sets. Journal of Symbolic Computation, 46(12):1378–1402,
2011.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal
of the Association for Computing Machinery, 25(4):581–595, 1978.

[3] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary alge-
bras. Acta Informatica, 28(7):693–701, 1991.

[4] M. Cipolla. Un metodo per la risoluzione della congruenza di secondo grado. Napoli Rend.,
9:153–163, 1903.

31

[5] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields. Journal
of Symbolic Computation, 47(7):771–792, 2012.

[6] J. Doliskani and É. Schost. Taking roots over high extensions of finite fields. Mathematics
of Computation, 2012. To appear.

[7] W. Feng, Y. Nogami, and Y. Morikawa. A fast square root computation using the Frobenius
mapping. In Information and Communications Security, volume 2836 of Lecture Notes in
Computer Science, pages 1–10. Springer, 2003.

[8] P. Gaudry and É. Schost. Genus 2 point counting over prime fields. Journal of Symbolic
Computation, 47(4):368 – 400, 2012.

[9] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of
finite fields. In ISSAC’97, pages 184–188. ACM, 1997.

[10] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[11] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York,
third edition, 2002.

[12] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.

[13] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, pages 51–70, 1972.

[14] V. Shoup. A library for doing number theory (NTL). http://www.shoup.net/ntl/.

[15] V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Symbolic
Computation, 17(5):371–391, 1994.

[16] A. Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger
Nachrichten, pages 344–346, 1891.

[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
second edition, 2003.

[18] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2(3):187–224, 1992.

[19] Feng Wang, Yasuyuki Nogami, and Yoshitaka Morikawa. An efficient square root com-
putation in finite fields GF (p2d). IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
E88-A(10):2792–2799, October 2005.

32

http://www.shoup.net/ntl/

Chapter 4

Fast Algorithms for `-adic Towers over
Finite Fields

4.1 Introduction
Building arbitrary finite extensions of finite fields is a fundamental task in any computer algebra
system. For this, an especially powerful system is the “compatibly embedded finite fields” imple-
mented in Magma [2, 3], capable of building extensions of any finite field and keeping track of
the embeddings between the fields.
The system described in [3] uses linear algebra to describe the embeddings of finite fields. From
a complexity point of view, this is far from optimal: one may hope to compute and apply the
morphisms in quasi-linear time in the degree of the extension, but this is usually out of reach
of linear algebra techniques. Even worse, the quadratic memory requirements make the system
unsuitable for embeddings of large degree extensions. Although the Magma core has evolved
since the publication of the paper, experiments in Section 4.5 show that embeddings of large
extension fields are still out of reach.
In this paper, we discuss an approach based on polynomial arithmetic, rather than linear algebra,
with much better performance. We consider here one aspect of the question, `-adic towers; we
expect that this will play an important role towards a complete solution.
Let q be a power of a prime p, let Fq be the finite field with q elements and let ` be a prime.
Our main interest in this paper is on the algorithmic aspects of the `-adic closure of Fq , which is
defined as follows. Fix arbitrary embeddings

Fq ⊂ Fq` ⊂ Fq`2 ⊂ · · · ;

then, the `-adic closure of Fq is the infinite field defined as

F(`)q =
⋃

i≥0

Fq`i .

We also call an `-adic tower the sequence of extensions Fq ,Fq` , . . . In particular, they allow us to
build the algebraic closure F̄q of Fq , as there is an isomorphism

F̄q
∼=
⊗

` prime

F(`)q , (4.1)

33

where the tensor products are overFq ; we will briefly mention below the algorithmic counterpart
of this equality.
We present here algorithms that allow us to “compute” in the first levels of `-adic towers (in a
sense defined hereafter); at level i , our goal is to be able to perform all basic operations in quasi-
linear time in the extension degree `i . We do not discuss the representation of the base field Fq ,
and we count operations {+,−,×,÷} in Fq at unit cost.
Our techniques are inspired by those in [4, 5, 8], which dealt with the Artin-Schreier case `= p
(see also [9], which reused these ideas in the case ` = 2): we construct families of irreducible
polynomials with special properties, then give algorithms that exploit the special form of those
polynomials to apply the embeddings. Because they are treated in the references [8, 9], we exclude
the cases `= p and `= 2.
The field Fq`i will be represented as Fq[Xi]/〈Qi〉, for some irreducible polynomial Qi ∈ Fq[Xi].
Letting xi be the residue class of Xi modulo Qi endows Fq`i with the monomial basis

Ui = (1, xi , x2
i , . . . , x`

i−1
i). (4.2)

Let M :N→N be such that polynomials in Fq[X] of degree less than n can be multiplied in M(n)
operations in Fq , under the assumptions of [33, Ch. 8.3]; using FFT multiplication, one can take
M(n) ∈O(n log(n) log log(n)). Then, multiplications and inversions in Fq[Xi]/〈Qi〉 can be done
in respectively O(M(`i)) and O(M(`i) log(`i)) operations in Fq [33, Ch. 9-11]. This is almost
optimal, as both results are quasi-linear in [Fq`i : Fq] = `

i .
Computing embeddings requires more work. For this problem, it is enough consider a pair of
consecutive levels in the tower, as any other embedding can be done by applying repeatedly this
elementary operation. Following again [8], we introduce two slightly more general operations,
lift and push.
To motivate them, remark that for i ≥ 2, Fq`i has two natural bases as a vector space over Fq .
The first one is via the monomial basis Ui seen above, corresponding to the univariate model
Fq[Xi]/〈Qi〉. The second one amounts to seeing Fq`i as a degree ` extension of Fq`i−1 , that is, as

Fq[Xi−1,Xi]/〈Qi−1(Xi−1),Ti (Xi−1,Xi)〉, (4.3)

for some polynomial Ti monic of degree ` in Xi , and of degree less than `i−1 in Xi−1. The corre-
sponding basis is bivariate and involves xi−1 and xi :

Bi = (1, . . . , x`
i−1−1

i−1 , . . . , x`−1
i , . . . , x`

i−1−1
i−1 x`−1

i). (4.4)

Lifting corresponds to the change of basis from Bi to Ui ; pushing is the inverse transformation.
Lift and push allow us to perform embeddings as a particular case, but they are also the key
to many further operations. We do not give details here, but we refer the reader to [8, 9, 18]
for examples such as the computation of relative traces, norms or characteristic polynomials, and
applications to solving Artin-Schreier or quadratic equations, given in [8] and [9] for respectively
`= p and `= 2.
Table 4.1 summarizes our main results. Under various assumptions, it gives costs (counted in
terms of operations in Fq) for initializing the construction, building the polynomials Qi and

34

Condition Initialization Qi ,Ti Lift, push

q = 1 mod ` Oe(log(q)) O(`i) O(`i)
q =−1 mod ` Oe(log(q)) O(`i) O(M(`i) log(`i))

− Oe(`
2+M(`) log(q)) O(M(`i+1)M(`) log(`i)2) O(M(`i+1)M(`) log(`i))

4`≤ q 1/4 O ẽ(` log5(q)+ `3) (bit) Oe(`
2+M(`) log(`q)+M(`i) log(`i)) O(M(`i) log(`i))

4`≤ q 1/4 O ẽ(` log5(q)) (bit)+Oe(M(`)
pq log(q)) Oe(log(q)+M(`i) log(`i)) O(M(`i) log(`i))

Table 4.1: Summary of results

Ti from Eq.(4.3), and performing lift and push. Oe() indicates probabilistic algorithms with
expected running time, and O ẽ() indicates the additional omission of logarithmic factors. Two
entries mention bit complexity, as they use an elliptic curve point counting algorithm.
In all cases, our results are close to being linear-time in `i , up to sometimes the loss of a factor
polynomial in `. Except for the (very simple) case where q = 1 mod `, these results are new, to
the best of our knowledge. To otbain them, we use two constructions: the first one (Section 4.2)
uses cyclotomy and descent algorithms; the second one (Section 4.3) relies on the construction
of a sequence of fibers of isogenies between algebraic groups.
These constructions are inspired by previous work due to respectively Shoup [27, 28] and Lenstra
/De Smit [21], and Couveignes / Lercier [6]. We briefly discuss them here and give more details
in the further sections.
Lenstra and De Smit [21] address a question similar to ours, the construction of the `-adic clo-
sure of Fq (and of its algebraic closure), with the purpose of standardizing it. The resulting algo-
rithms run in polynomial time, but (implicitly) rely on linear algebra and multiplication tables,
so quasi-linear time is not directly reachable. References [27, 28, 6] discuss a related problem,
the construction of irreducible polynomials over Fq ; the question of computing embeddings is
not considered. The results in [6] are quasi-linear, but they rely on an algorithm by Kedlaya and
Umans [14] that works only in a boolean model.
To conclude the introduction, let us mention a few applications of our results. A variety of com-
putations in number theory and algebraic geometry require constructing new extension fields
and moving elements from one to the other. As it turns out, in many cases, the `-adic con-
structions considered here are sufficient: two examples are [7, 11], both in relation to torsion
subgroups of Jacobians of curves.
The main question remains of course the cost of computing in arbitrary extensions. As showed
by Eq. (4.1), this boils down to the study of `-adic towers, as done in this paper, together with
algorithms for computing in composita. References [27, 28, 6] deal with related questions for
the problem of computing irreducible polynomials; a natural follow-up to the present work is to
study the cost of embeddings and similar changes of bases in this more general context.

4.2 Quasi-cyclotomic towers
In this section, we discuss a construction of the `-adic tower over Fq inspired by previous work
of Shoup [27, 28], Lenstra-De Smit [21] and Couveignes-Lercier [6]. The results of this section
establish rows 1 and 3 of Table 4.1.
The construction starts by building an extensionK0 = Fq[Y0]/〈P0〉 obtained by adjoining an `th

35

root of unity to Fq , such that the residue class y0 of Y0 is a non `-adic residue in K0 (we discuss
this in more detail in the first subsection); we let r be the degree of P0. By [17, Th. VI.9.1], for
i ≥ 1, the polynomial Y `i

i − y0 ∈K0[Yi] is irreducible, so Ki =K0[Yi]/〈Y `i

i − y0〉 is a field with
q r`i

elements. Letting yi be the residue class of Yi in Ki , these fields are naturally embedded in
one another by the isomorphismKi+1 'Ki[Yi+1]/〈Y `

i+1− yi〉; in particular, we have y`i+1 = yi .
In order to build Fq`i , we apply a descent process, for which we follow an idea of Shoup’s. For
i ≥ 0, let xi be the trace of yi over a subfield of index r :

xi =
∑

0≤ j≤r−1 yq`
i j

i .

Then, [27, Th. 2.1] proves that Fq(xi) = Fq`i (see Figure 4.1). In particular, the minimal polyno-
mials of x1, x2, . . . over Fq are the irreducible polynomials Qi we are interested in.

Fq

K0 = Fq(y0)
Fq` = Fq(x1)

K1 =K0(y1)
Fq`2 = Fq(x2)

K2 =K1(y2)
F(`)q

K(`)0

r `

r `
`

r`

r

Figure 4.1: The `-adic towers over Fq andK0.

We show here how to compute these polynomials, the polynomials Ti of Eq. (4.3) and how to
perform lift and push. To this effect, we will define more general minimal polynomials: for
0≤ j ≤ i , we will let Qi , j ∈ Fq(x j)[Xi] be the minimal polynomial of xi over Fq(x j), so that Qi , j

has degree `i− j , with in particular Qi ,0 =Qi and Qi ,i−1 = Ti (xi−1,Xi).
In Subsections 4.2.2 and 4.2.3, we discuss favorable cases, where ` divides respectively q − 1 and
q + 1. The first case is folklore; it yields the fastest and simplest algorithms. Our results for the
second case are related to known facts about Chebyshev polynomials [30, § 6.2], but, to the best
of our knowledge, are new. We will revisit these cases in Section 4.3 and account for their naming
convention. Our results in the general case (Subsection 4.2.4) are slower, but still quasi-linear in
`i , up to a factor polynomial in `.
Shoup used this setup to compute Qi in time quadratic in `i [28, Th. 11]. It is noted there that
using modular composition techniques [33, Ch. 12], this could be improved to get a subquadratic
exponent in `i , up to an extra cost polynomial in `. For ` = 3 (where we are in one the first
two cases), Couveignes and Lercier make a similar remark in [6, § 2.4]; using a result by Kedlaya
and Umans [14] for modular composition, they derive for any ε > 0 a cost of 3i(1+ε)O(log(q)) bit
operations, up to polynomial terms in log log(q).

36

In this section, and in the rest of this paper, if L/K is a field extension, we write trL/K , NL/K and
GalL/K for the trace, norm and Galois group of the extension.

4.2.1 Finding P0

To determine P0, we compute the `-th cyclotomic polynomial Φ` ∈ Z[X0] and factor it over
Fq[X0]: by [28, Th. 9], this takes Oe(M(`) log(`q)) operations in Fq .
Over Fq[X0], Φ` splits into irreducible factors of the same degree r , where r is the order of q in
Z/`Z (so r divides `− 1); let F0 be one of these factors. By construction, there exist non `-adic
residues in Fq[X0]/〈F0〉. Once such a non-residue y0 is found, we simply let P0 be its minimal
polynomial over Fq (which still has degree r); given y0, computing P0 takes O(r 2) operations in
Fq [28, Th. 4].
Following [27, 28, 6], we pick y0 at random: we expect to find a non-residue after O(1) trials;
by [28, Lemma 15], each takes Oe(M(`) log(r) +M(r) log(`) log(r) +M(r) log(q)) operations in
Fq . An alternative due to Lenstra and De Smit is to take iterated `-th roots of X0 mod F0 until we
find a non-residue: this idea is helpful in making the construction canonical, but more costly, so
we do not consider it.

4.2.2 Gm-type extensions
We consider here the simplest case, where ` divides q−1; the (classical) facts below give the first
row of Table 4.1. In this case, Φ` splits into linear factors over Fq (so r = 1). The polynomial P0

is of the form Y0−y0, where y0 is a non `-adic residue in Fq ; since we can bypass the factorization
of Φ`, the cost of initialization is Oe(log(q)) operations in Fq . Besides, no descent is required: for
i ≥ 0, we haveKi = Fq`i and xi = yi ; the families of polynomials we obtain are

Qi =X `i

i − y0 and Ti =X `
i −Xi−1. (4.5)

Lift and push use no operation in Fq , only exponent arithmetic. Lift takes F =
∑

0≤ j<`i+1 f j x
j
i+1

and rewrites it as a bivariate polynomial in xi , xi+1 and push does the converse operation, using
the rules

x j
i+1 = x j div `

i x j mod `
i+1 and x e

i x f
i+1 = x e`+ f

i+1 .

4.2.3 Chebyshev-type extensions
Consider now the case where ` divides q + 1: then, Φ` splits into quadratic factors over Fq and
r = 2. We also require that y0 has norm 1 over Fq (see below for a discussion); we deduce an
expression for the polynomials Qi , j ∈ Fq(x j)[Xi].

Proposition 5. For 1≤ j < i , Qi , j satisfies

Qi , j (Xi) = Y `i− j
+Y−`

i− j − x j mod Y 2−Xi Y + 1. (4.6)

37

Proof. Since NK0/Fq
(y0) = 1, NKi/Fq (xi)

(yi) is an `i -th root of unity. But ` does not divide q − 1,
so 1 is the only such root in Fq , and by induction on i it also is the only root in Fq(xi); hence,
the minimal polynomial of yi over Fq(xi) is Y 2

i − xi Yi + 1. By composition, it follows that the
minimal polynomial of yi over Fq(x j) is Y 2`i− j

i − x j Y
`i− j

i + 1. Taking a resultant to eliminate Yi

between these two polynomials gives the following relation between x j and xi :

Qi , j (Xi)
2 =ResYi

(Y 2`i− j

i − x j Y
`i− j

i + 1, Y 2
i −Xi Yi + 1).

By direct calculation, this is equivalent to Eq. (4.6).

As a result, we can compute Qi , j in time O(M(`i− j)) by repeated squaring, but we give a better
algorithm in Section 4.3.1 (and show how to find a y0 satisfying the hypotheses); we leave the
algorithms for lift and push to Section 4.4.

4.2.4 The general case
Finally, we discuss the general case, with no assumption on the behavior of Φ` in Fq[X]. This
completes the third row of Table 4.1, using the bound r ∈ O(`). Because r = [K0 : Fq] divides
`− 1, it is coprime with `. Thus, Qi remains the minimal polynomial of xi over K0, and more
generally Qi , j remains the minimal polynomial of xi overK j ; this will allow us to replace Fq by
K0 as our base field. We will measure all costs by counting operations inK0, and we will deduce
the cost over Fq by adding a factor O(M(r) log(r)) to account for the cost of arithmetic inK0.
For i ≥ 0, sinceKi =K0[Yi]/〈Y `i

i − y0〉, we represent its elements on the basis {y e
i | 0≤ e < `i};

e.g., xi is written as

xi =
∑

0≤ j≤r−1 yq`
i j mod `i

i yq`
i j div `i

0 .

Our strategy is to convert between two univariate bases ofKi , {y e
i | 0≤ e < `i} and {x e

i | 0≤ e <
`i}. In other words, we show how to apply the isomorphism

Ψi :Ki =K0[Yi]/〈Y
`i

i − y0〉→K0[Xi]/〈Qi ,0〉

and its inverse; we will compute the required polynomials Qi ,0 and Qi ,i−1 as a byproduct. In a
second time, we will use Ψi to perform push and lift between the monomial basis in xi and the
bivariate basis in (xi−1, xi).
We will factor Ψi into elementary isomorphisms

Ψi , j :K j [Xi]/〈Qi , j 〉→K j−1[Xi]/〈Qi , j−1〉, j = i , . . . , 1.

To start the process, with j = i , we let Qi ,i =Xi− xi ∈Ki[Xi], so thatKi =Ki[Xi]/〈Qi ,i〉. Take
now j ≤ i and suppose that Qi , j is known. We are going to factor Ψi , j further as Φ′′i , j ◦Φ

′
i , j ◦Φi , j ,

by introducing first the isomorphism

ϕ j :K j →K j−1[Y j]/〈Y
`
j − y j−1〉.

38

The forward direction is a push from the monomial basis in y j to the bivariate basis in (y j−1, y j)
and the inverse is a lift; none of them involves any arithmetic operation (see Subsection 4.2.2).
Then, we deduce the isomorphism

Φi , j :K j [Xi]/〈Qi , j 〉→K j−1[Y j ,Xi]/〈Y
`
j − y j−1,Q?

i , j 〉,

where Q?
i , j is obtained by applying ϕ j to all coefficients of Qi , j . Since Φi , j consists in a coefficient-

wise application of ϕ j , applying it or its inverse costs no arithmetic operations.
Next, changing the order of Y j and Xi , we deduce that there exists Si , j in K j−1[X j] and an iso-
morphism

Φ′i , j :K j−1[Y j ,Xi]/〈Y
`
j − y j−1,Q?

i , j 〉→K j−1[Xi ,Y j]/〈Qi , j−1,Y j − Si , j 〉,

where deg(Q?
i , j ,Xi) = `

i− j and deg(Qi , j−1,Xi) = `
i− j+1.

Lemma 6. From Q?
i , j , we can compute Qi , j−1 and Si , j in O(M(`i+1) log(`i)) operations inK0. Once

this is done, we can apply Φ′i , j or its inverse in O(M(`i+1)) operations inK0.

Proof. We obtain Qi , j−1 and Si , j from the resultant and degree-1 subresultant of Y `
j − y j−1 and

Q?
i , j with respect to Y j , computed over the polynomial ring K j−1[Xi]. This is done by the algo-

rithms of [24, 22], using O(M(`i+1) log(`)) operations in K0 (for this analysis, and all others in
this proof, we assume that we use Kronecker’s substitution for multiplications). To obtain Si , j ,
we invert the leading coefficient of the degree-1 subresultant modulo the resultant Qi , j−1; this
takes O(M(`i) log(`i)) operations inK0.
Applying Φ′i , j amounts to taking a polynomial A(Y j ,Xi) reduced modulo 〈Y `

j − y j−1,Q?
i , j 〉 and

reducing it modulo 〈Qi , j−1,Y j −Si , j 〉. This is done by computing A(Si , j ,Xi), doing all operations
modulo Qi , j−1. Using Horner’s scheme, this takes O(`) operations (+,×) inK j−1[Xi]/〈Qi , j−1〉,
so the complexity claim follows.
Conversely, we start from A(Xi) reduced modulo Qi , j−1; we have to reduce it modulo 〈Y `

j −
y j−1,Q?

i , j 〉. This is done using the fast Euclidean division algorithm with coefficients inK j−1[Y j]/〈Y `
j −

y j−1〉 for O(M(`i+1)) operations inK0.

The last isomorphism Φ′′i , j is trivial:

Φ′′i , j :K j−1[Xi ,Y j]/〈Qi , j−1,Y j − Si , j 〉→K j−1[Xi]/〈Qi , j−1〉

forgets the variable Y j ; it requires no arithmetic operation.
Taking j = i , . . . , 1 allows us to compute Qi ,i−1 and Qi ,0 for O(i 2M(`i+1) log(`)) operations inK0.
Composing the maps Ψi , j , we deduce further that we can apply Ψi or its inverse for O(iM(`i+1))
operations inK0.
We claim that we can then perform push and lift between the monomial basis in xi and the
bivariate basis in (xi−1, xi) for the same cost. Let us for instance explain how to lift.
We start from A written on the bivariate basis in (xi−1, xi); that is, A is inK0[Xi−1,Xi]/〈Qi−1,Ti〉.
Apply Ψi−1 to its coefficients in x0

i , . . . , x`−1
i , to rewrite A as an element of

K0[Yi−1,Xi]/〈Y
`i−1

i−1 − yi−2,Ti〉=Ki−1[Xi]/〈Qi ,i−1〉.

Applying Ψ−1
i ,i gives us the image of A inKi , and applying Ψi finally brings it toK0[Xi]/〈Qi〉.

39

4.3 Towers from irreducible fibers
In this section we discuss another construction of the `-adic tower based on work of Couveignes
and Lercier [6]. The results of this section are summarized in rows 2, 4 and 5 of Table 4.1. This
construction is not unrelated to the ones of the previous section, and indeed we will start by
showing how those of Sections 4.2.2 and 4.2.3 reduce to it.
Here is the bottom line of Couveignes’ and Lercier’s idea. Let G,G′ be integral algebraic Fq -
groups of the same dimension and let φ : G′ → G be a surjective, separable algebraic group
morphism. Let ` be the degree of φ; then, the set of points x ∈G with fiber G′x of cardinality `
is a nonempty open subset U ⊂ G. If the induced homomorphism G′(Fq)→ G(Fq) of groups
is not surjective then there are points of G(Fq) with fibers lying in algebraic extensions of Fq .
Assume that we are able to chooseφ so that we can find one of these points contained in U , with
an irreducible fiber, and apply a linear projection to this fiber (e.g., onto an axis). The resulting
polynomial is irreducible of degree dividing ` (and expectedly equal to `). If we can repeat the
construction with a new map φ′ : G′′ → G′, and so on, the sequence of extensions makes an
`-adic tower over Fq .

4.3.1 Towers from algebraic tori
In [6], Couveignes and Lercier explain how their idea yields the tower of Section 4.2.2. Consider
the multiplicative groupGm: this is an algebraic group of dimension one, andGm(Fq) has cardi-
nality q − 1. The `-th power map defined by φ : X 7→ X ` is a degree ` algebraic endomorphism
ofGm, surjective over the algebraic closure.
Suppose that ` divides q−1, and let η be a non `-adic residue inFq (η plays here the same role as y0

in Section 4.2). For any i > 0, the fiberφ−i (η) is defined by X `i −η: we recover the construction
of Subsection 4.2.2.
More generally, following [26, 34], we let k = Fq , L= Fqn and k ⊂ F (L. The Weil restriction
ResL/kGm is an algebraic torus, and the norm NL/F induces a map ResL/kGm→ResF /kGm. Define
the maximal torusTn as the intersection of the kernels of the maps NL/F for all subfields F . Then

Tn has dimensionϕ(n), is isomorphic toGϕ(n)m over the algebraic closure, and its k-rational points
form a group of cardinality Φn(q):

Tn(k)∼= {α ∈ L∗ | NL/F (α) = 1 for all k ⊂ F (L}. (4.7)

We now detail how the construction of Section 4.2.3 can be obtained by considering the torus
T2; this will allow us to start completing the second row in Table 4.1.

Lemma 7. Let ∆ ∈ Fq be a quadratic non-residue if p 6= 2, or such that trFq/F2
(∆) = 1 otherwise.

Let δ =
p
∆ or δ2+δ =∆ accordingly. The maximal torus T2 is isomorphic to the Pell conic

C :

¨

x2−∆y2 = 4 if p 6= 2,
x2∆+ xy + y2 = 1 if p = 2.

(4.8)

40

Multiplication in T2 induces a group law on C . The neutral element is (2,0) if p 6= 2, or (0,1) if
p = 2. The sum of two points P = (x1, y1) and Q = (x2, y2) is defined by

P ⊕Q =

� x1x2+∆y1y2

2
,

x1y2+ x2y1

2

�

if p 6= 2,

(x1x2+ x1y2+ x2y1, x1x2∆+ y1y2) if p = 2.

Proof. The isomorphism follows by Weil restriction toFq(δ)/Fq with respect to the basis (1/2,δ/2)
if p 6= 2, or (δ, 1) if p = 2. Indeed, by virtue of Eq. (4.7), an element (x, y) of Fq(δ) belongs to
T2 if and only if its norm over Fq is 1. Let σ be the generator of GalFq (δ)/Fq

. For p 6= 2, clearly
δσ =−δ. For p = 2, by Artin-Schreier theory, trFq (δ)/Fq

(δ) = trFq/F2
(∆) = 1, hence δσ = 1+δ.

In both cases, Eq. (4.8) follows. The group law is obtained by direct calculation.

Pell conics are a classic topic in number theory[20] and computer science, with applications to
primality proving, factorization [19, 12] and cryptography [25].
As customary, we denote by [n](x, y) the n-th scalar multiple of a point (x, y). [n] is an endo-
morphism of C of degree n, separable if and only if (n, p) = 1.

Lemma 8. Let P = (α,β) be a point of C . The abscissa of [n]P is given by Cn(α), where Cn ∈Z[X]
is the n-th Chebyshev polynomial, defined by C0 = 2, C1 =X , and

Cn+1 =XCn −Cn−1. (4.9)

Proof. Induction on n. A detailed proof can be found in [30, Prop. 6.6].

Theorem 9. Let η ∈ Fq(δ) be a non `-adic residue in T2, and let P = (α,β) be its image in C/Fq .
For any i > 0, the polynomials C`i −α are irreducible. Their roots are the abscissas of the images in
C/Fq`i of the `i -th roots of η.

Proof. By [17, Th. VI.9.1], the polynomial X `i − η is irreducible. Its roots correspond to the
fiber [`i]−1(P), and the Galois group of Fq`i /Fq acts transitively on them.
Two points of C have the same abscissa if and only if they are opposite. But η is a non `-adic
residue, hence η 6= η−1, and all the points in [`i]−1(P) have distinct abscissa. By Lemma 8, C`i−α
vanishes precisely on those abscissas and is thus irreducible.

We can now apply our results to the computation of the polynomials Qi and Ti of Section 4.2.3.

Corollary 10. The polynomials Qi , j of Prop. 5 satisfy

Qi , j (Xi) =C`i− j (Xi)− x j .

Proof. We have already shown that NK j /Fq (x j)
(y j) = 1 for any j , thus y j is a non `-adic residue

in T2/Fq(x j). Independently of the characteristic and of the element ∆ ∈ Fq(x j) chosen, the
abscissa of the image of y j in C/Fq(x j) is trK j /Fq (x j)

y j = x j . The statement follows from the
previous theorem.

41

There is a folklore algorithm computing the n-th Chebyshev polynomial using O(n) operations
in Z [15]. We shall need a slightly better algorithm working modulo p.

Corollary 11. The polynomials Qi , j can be computed using O(`i− j) operations in Fp .

Proof. Let Cn =
∑

i cn,i X
n−i . It is well known that |cn+k ,2k | are the coefficients of the (1,2)-Pascal

triangle, also called Lucas’ triangle (see [30, Prop. 6.6] and [1]). It follows that

cn,2k+2

cn,2k

=−
(n− 2k)(n− 2k − 1)
(n− k − 1)(k + 1)

,

which immediately gives the algorithm. Indeed, since we know the cn,2k ’s are the image mod p
of integers, we compute them using multiplications and divisions in Qp with relative precision
1.

We are left with the problem of finding the non `-adic residue η to initialize the tower. As before,
this will be done by random sampling and testing.

Lemma 12. Let P = (α,β) be a point on C . For any n, there is a formula to compute the abscissa of
[±n]P, using O(log n) operations in Fq , and not involving β.

Proof. Observe that if n = 2, the abscissa of [±2]P is α2 − 2 (for any p). Let P ′ = (α′,β′),
and let γ be the abscissa of P 	 P ′. By direct computation we find that the abscissa of P ⊕ P ′ is
αα′−γ (for any p); this formula is called a differential addition. Thus, O(1) operations are needed
for a doubling or a differential addition. To compute the abscissa of [±n]P , we use the ladder
algorithm of [23], requiring O(log n) doublings and differential additions.

Proposition 13. The abscissa of a point P ∈ C/Fq satisfying the conditions of Theorem 9 can be
found using Oe(log q) operations in Fq .

Proof. We randomly select α ∈ Fq and test that it belongs to C . If p 6= 2, this amounts to testing
that α2− 4 is a quadratic non-residue in Fq , a task that can be accomplished with O(log q) oper-
ations. If p = 2, by Artin-Schreier theory this is equivalent to trFq/F2

(1/α2) = 1, which can be
tested in O(log q) operations in Fq .
Then we check that P is a non `-adic residue by verifying that [(q + 1)/`]P is not the group
identity. By Lemma 12, this computation requires O(log q) operations. About half of the points
of Fq are quadratic non-residues, and about 1− 1/` of them are the abscissas of points with the
required order, thus we expect to find the required element after Oe(1) trials.

It is natural to ask whether a similar construction could be applied to any `. If r is the order
of q modulo `, the natural object to look at is Tr , but here we are faced with two problems.
First, multiplication by ` is now a degree `ϕ(r) map, thus its fibers have too many points; instead,
isogenies of degree ` should be considered. Second, it is an open question whether Tr can be
parameterized using ϕ(r) coordinates; but even assuming it can be, we are still faced with the
computation of a univariate annihilating polynomial for a set embedded in a ϕ(r)-dimensional
space, a problem not known to be feasible in quasi-linear time. Studying this generalization is
another natural follow-up to the present work.

42

E0 E1

E2

E3

E4

φ0

φ1

φ2φ3

φ4

Figure 4.2: The isogeny cycle of E0.

4.3.2 Towers from elliptic curves
Since it seems hard to deal with higher dimensional algebraic tori, it is interesting to look at other
algebraic groups. Being one-dimensional, elliptic curves are good candidates. In this section, we
quickly review Couveignes’ and Lercier’s construction, referring to [6] for details, and point
out the modifications needed in order to build towers (as opposed to constructing irreducible
polynomials).
Let ` be a prime different from p and not dividing q − 1. Let E0 be an elliptic curve whose
cardinality over Fq is a multiple of `. By Hasse’s bound, this is only possible if `≤ q+2pq+1.
An isogeny is an algebraic group morphism between two elliptic curves that is surjective in the
algebraic closure. It is said to be rational over Fq if it is invariant under the q -th power map; such
an isogeny exists if and only if the curves have the same number of points over Fq . An isogeny
of degree n is separable if and only if n is prime to p, in which case its kernel contains exactly n
points. Because of the assumptions on `, there exists an e ≥ 1 such that, for any curve E isogenous
to E0, the Fq -rational part of E[`] is cyclic of order `e .
Suppose for simplicity, that p 6= 2,3 and let E0 be expressed as the locus

E0 : y2 = x3+ ax + b , with a, b ∈ Fq , (4.10)

plus one point at infinity. We denote by H0 the unique subgroup of E0/Fq of order `, and by
φ0 the unique isogeny whose kernel is H0; we then label E1 the image curve of φ0. We go on
denoting by Hi the unique subgroup of Ei/Fq of order `, and by φi : Ei → Ei+1 the unique
isogeny with kernel Hi . The construction is depicted in Figure 4.2.

Lemma 14. Let E0, E1, . . . be defined as above, there exists n ∈O(pq log(q)) such that En is isomor-
phic to E0.

Proof. It is shown in [6, § 4] that the isogenies φi are horizontal in the sense of [16], hence they
necessarily form a cycle. Let t be the trace of E0, the length of the cycle is bounded by the class
number ofQ[X]/(X 2− tX − q), thus by Minkowski’s bound it is in O(pq log(q)).

In what follows, the index i is to be understood modulo the length of the cycle. This is a slight
abuse, because En is isomorphic but not equal to E0, but it does not hide any theoretical or com-
putational difficulty.

43

Under the former assumptions, it is proved in [6, § 4] that if P is a point of Ei of order divisible
by `e , if ψ = φi−1 ◦φi−2 ◦ · · · ◦φ j , then the fiber ψ−1(P) is irreducible and has cardinality `i− j .
Knowing Ei , VÃl’lu’s formulas [32] allow us to express the isogenies φi as rational fractions

φi : Ei → Ei+1,

(x, y) 7→
�

fi (x)
gi (x)

, y
�

fi (x)
gi (x)

�′�

,
(4.11)

where gi is the square polynomial of degree `− 1 vanishing on the abscissas of the affine points
of Hi , and fi is a polynomial of degree `.
There is a subtle difference between our setting and Couveignes’ and Lercier’s. The goal of [6]
is to compute an extension of degree `i of Fq for a fixed i : this can be done by going forward
i times, then taking the fiber of a point of Ei by the isogenies φi−1, . . . ,φ0. In our case, we are
interested in building extensions of degree `i incrementally, i.e. without any a priori bound on i .
Thus, we have to walk backwards in the isogeny cycle: if η ∈ Fq is the abscissa of a point of E0 of
order `e 6= 2, we will use the following polynomials to define the `-adic tower:

T1 = f−1(X1)−ηg−1(X1),
Ti = f−i (Xi)−Xi−1 g−i (Xi).

The following theorem gives the time for building the tower; lift and push are detailed in the next
section.

Theorem 15. Suppose 4` ≤ q 1/4, and under the above assumption. Initializing the `-adic tower
requires O ẽ(` log5(q)+`3) bit operations; and building the i -th level requires Oe(`

2+M(`) log(`q)+
M(`i) log(`i)) operations in Fq .

Proof. For the initialization, [6, § 4.3] shows that if 4`≤ q 1/4, a curve E0 with the required number
of points can be found in O ẽ(` log5(q)) bit operations. We also need to compute the `th modular
polynomial Φ` mod p; for this, we compute it overZwith Õ(`3) bit operations [10], then reduce
it modulo p.
To build the i -th level, we first need to find the equation of E−i . For this, we evaluate Φ` at
j (E−i+1), using O(`2) operations. Lemma 14 implies that this polynomial has only two roots
in Fq , namely j (E−i) and j (E−i+2). We factor it using Oe(M(`) log(`q)) operations [33, Ch 14],
and we take an arbitrary curve with j -invariant j (E−i). Then we find an `-torsion point using
Oe(log q) operations, and apply VÃl’lu’s formulas to compute φ−i . We deduce the polynomial
Ti , and Qi is obtained using O(M(`i) log(`i)) operations using Algorithm 4 given in the next
section.

Remark. Instead of computing the cycle step by step, we could compute it entirely during the
initialization phase, by using VÃl’lu’s formulas alone to compute E1, E2, . . . until we hit E0 again.
By doing so, we avoid using the modular polynomial Φ` at each new level. By Lemma 14, this
requires Oe(`

pq log(q)) operations. This is not asymptotically good in q , but for practical values
of q and ` the cycle is often small and this approach works well. This is accounted for in the last
row of Table 4.1.

44

4.4 Lifting and pushing
The previous constructions of `-adic towers based on irreducible fibers share a common structure
that allows us to treat lifting and pushing in a unified way. Renaming the variables (Xi−1,Xi) as
(X ,Y), the polynomials (Qi−1,Qi ,Ti) as (R, S,T), the extension at level i is described as

Fq[Y]/〈S(Y)〉 and Fq[X ,Y]/〈R(X),T (X ,Y)〉,

with R of degree `i−1, S of degree `i , and where T (X ,Y) has the form f (Y)− X g (Y), with
deg(f) = `, deg(g) < ` and gcd(f , g) = 1; possibly, g = 1. In all this section, f , g and their
degree ` are fixed.
Lift is the conversion from the bivariate basis associated to the right-hand side to the univariate
basis associated to the left-hand side; push is the inverse. Using the special shape of the polynomial
T , they reduce to composition and decomposition of rational functions, as we show next. These
results fill in all missing entries in the lift / push column of Table 4.1.

4.4.1 Lifting
Let P be in Fq[X ,Y] and n be in N, with deg(P,X)< n. We define P [f , g , n] as

P [f , g , n] = g n−1P
�

f
g

,Y
�

∈ Fq[X ,Y].

If P =
∑n−1

i=0 pi (Y)X
i , then P [f , g , n] =

∑n−1
i=0 pi f i g n−1−i . We first give an algorithm to compute

this expression, then show how to relate it to lifting; when g = 1, Algorithm 4 reduces to a well
known algorithm for polynomial composition [33, Ex. 9.20].

Algorithm 4 Compose
Input: P ∈ Fq[X ,Y], f , g ∈ Fq[Y], n ∈N

1. if n = 1 then
2. return P
3. else
4. m←dn/2e
5. Let P0, P1 be such that P = P0+X mP1
6. Q0← Compose(P0, f , g , m)
7. Q1← Compose(P1, f , g , n−m)
8. Q←Q0 g n−m +Q1 f m

9. return Q
10. end if

Theorem 16. On input P, f , g , n, with deg(P,X) < n and deg(P,Y) < `, Algorithm 4 computes
Q = P [f , g , n] using O(M(`n) log(n)) operations in Fq .

45

Proof. If n = 1, the theorem is obvious. Suppose n > 1, then P0 and P1 have degrees less than m
and n−m respectively. By induction hypothesis,

Q0 = P0[f , g , m] =
m−1
∑

i=0

pi f i g m−1−i ,

Q1 = P1[f , g , n−m] =
n−m−1
∑

i=0

pi+m f i g n−m−1−i .

Hence,

Q =
m−1
∑

i=0

pi f i g n−1−i +
n−m−1
∑

i=0

pi+m f i+m g n−m−1−i = P [f , g , n].

The only step that requires a computation is Step 8, costing O(M(`n)) operations in Fq . The
recursion has depth log(n), hence the overall complexity is O(M(`n) log(n)).

Corollary 17. At level i , one can perform the lift operation using O(M(`i) log(`i)) operations in
Fq .

Proof. We start from an element α written on the bivariate basis, that is, represented as A(X ,Y)
with deg(A,X) < n = `i−1 and deg(A,Y) < ` (note that `n = `i). We compute the univariate
polynomials A? = A[f , g , n] and γ = g n−1 using O(M(`i) log(`i)) operations in Fq ; then the lift
of α is A?/γ modulo S. The inverse of γ is computed using O(M(`n) log(`n)) operations, and
the multiplication adds an extra O(M(`n)).

4.4.2 Pushing
We first deal with the inverse of the question dealt with in Theorem 16: starting from Q ∈ Fq[Y],
reconstruct P ∈ Fq[X ,Y] such that Q = P [f , g , n]. When g = 1, Algorithm 5 reduces to
Algorithm 9.14 of [33].

Algorithm 5 Decompose
Input: Q, f , g , h ∈ Fq[Y], n ∈N

1. if n = 1 then
2. return Q
3. else
4. m←dn/2e
5. u← 1/g n−m mod f m

6. Q0←Q u mod f m

7. Q1← (Q −Q0 g n−m) div f m

8. P0← Decompose(Q0, f , g , h, m)
9. P1← Decompose(Q1, f , g , h, n−m)

10. return P0+X m P1
11. end if

46

Theorem 18. On input Q, f , g , h, n, with deg(Q) < `n and h = 1/g mod f , Algorithm 5 com-
putes a polynomial P ∈ Fq[X ,Y] such that deg(P,X)< n, deg(P,Y)< ` and Q = P [f , g , n] using
O(M(`n) log(n)) operations in Fq .

Proof. We prove the theorem by induction. If n = 1, the statement is obvious, so let n > 1. The
polynomials Q0 and Q1 verify Q = Q0 g n−m +Q1 f m. By construction, Q0 has degree less than
`m. Since deg(g)< `, this implies that Q0 g n−m has degree less than `n; thus, Q1 has degree less
than `(n−m). By induction, P0 and P1 have degree less than m, resp. n−m, in X , and less than
` in Y , and

Q0 = P0[f , g , m] =
m−1
∑

i=0

p0,i f i g m−1−i ,

Q1 = P1[f , g , n−m] =
n−m−1
∑

i=0

p1,i f i g n−m−1−i .

Hence, P = P0+X mP1 has degree less than n in X and less than ` in Y , and the following proves
correctness:

P [f , g , n] =
m−1
∑

i=0

p0,i f i g n−1−i +
n−1
∑

i=m

p1,i−m f i g n−1−i

= P0[f , g , m]g n−m + P1[f , g , n−m] f m

=Q.

At Step 5, we do as follows: starting from h = 1/g mod f , we deduce 1/g n−m mod f in time
O(M(`) log(n)) by binary powering mod f . We also compute g n−m in time O(M(`n)) by binary
powering, and we use Newton iteration (starting from 1/g n−m mod f) to deduce 1/g n−m mod
f m in time O(M(`n)). All other steps cost O(M(`n)); the recursion has depth log(n), so the total
cost is O(M(`n) log(n)).

Corollary 19. At level i , one can perform the push operation using O(M(`i) log(`i)) operations in
Fq .

Proof. Given α represented by a univariate polynomial A(Y) of degree less than `n, with n =
`i−1. We compute g n−1 and A? = g n−1A mod S using O(M(`i)) operations. Then, we compute
h = 1/g mod f in time O(M(`) log(`)) and apply Algorithm 5 to A?, f , g , h and n. The re-
sult is a bivariate polynomial B , representing α on the bivariate basis. The dominant phase is
Algorithm 5, costing O(M(`i) log(`i)) operations in Fq .

4.5 Implementation
To demonstrate the interest of our constructions, we made a very basic implementation of the
towers of Sections 4.3.1 and 4.3.2 in Sage [31]. It relies on Sage’s default implementation of
quotient rings of Fp[X], which itself uses NTL [29] for p = 2 and FLINT [13] for other primes.
Towers based on elliptic curves are constructed using the algorithm described in Remark 4.3.2.
The source code is available at http://defeo.github.io/towers

47

http://defeo.github.io/towers

We compare our implementation to three ways of constructing `-adic towers in Magma. First,
one may construct the levels from bottom to top using the finite field constructor GF(). For
the parameters we used, Magma uses tables of precomputed Conway polynomials and auto-
matically computes embeddings on creation, see http://magma.maths.usyd.edu.au/magma/

releasenotes/2/14. The second approach constructs the highest level of the tower first, then
all the lower levels using the sub<> constructor. The last one constructs the levels from bottom
to top using random dense polynomials and calls the Embed() function; we do not count the time
for finding the irreducible polynomials.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4 5 6 7 8 9 10 11

se
co

n
d
s

height

GF()
sub<>

Embed()
Chebyshev

 4 5 6 7 8 9 10 11

GF()
sub<>

Embed()
Chebyshev

Elliptic

Figure 4.3: Times for building 3-adic towers on top of F2 (left) and F5 (right), in Magma (first
three lines) and using our code.

We ran tests on an Intel Xeon E5620 clocked at 2.4 GHz, using Sage 5.5 and Magma 2.18.12. The
time required for the creation of 3-adic towers of increasing height is summarized in Figure 4.3;
the timings of our algorithms are labeled Chebyshev and Elliptic. Computations that took more
than 4GB RAM were interrupted.
Despite its simplicity, our code consistently outperforms Magma on creation time. On the other
hand, lift and push operations take essentially no time in Magma, while in all the tests of Fig-
ure 4.3 we measured a running time almost perfectly linear for one push followed by one lift,
taking approximately 70µs per coefficient (this is in the order of a second around level 10). Nev-
ertheless, the large gain in creation time makes the difference in lift and push tiny, and we are
convinced that an optimized C implementation of the algorithms of Section 4.4 would match
Magma’s performances.

Acknowledgments. We acknowledge support from NSERC, the CRC program, and ANR through
the ECLIPSES project under Contract ANR-09-VERS-018. De Feo would like to thank Antoine
Joux and Jérôme Plût for fruitful discussions. We are grateful to the reviewers for their remarks.

Bibliography
[1] Arthur T. Benjamin. The Lucas triangle recounted. In Congressus Numerantium, volume

200, pages 169–177, 2010.

48

http://magma.maths.usyd. edu.au/magma/releasenotes/2/14
http://magma.maths.usyd. edu.au/magma/releasenotes/2/14

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra system I: the
user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[3] Wieb Bosma, John Cannon, and Allan Steel. Lattices of compatibly embedded finite fields.
J. Symbolic Comput., 24(3-4):351–369, 1997.

[4] David G. Cantor. On arithmetical algorithms over finite fields. J. Combin. Theory Ser. A,
50(2):285–300, 1989.

[5] Jean-Marc Couveignes. Isomorphisms between Artin-Schreier towers. Math. Comp.,
69(232):1625–1631, 2000.

[6] Jean-Marc Couveignes and Reynald Lercier. Fast construction of irreducible polynomials
over finite fields. To appear in the Israel Journal of Mathematics, July 2011.

[7] Luca De Feo. Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic. Journal of Number Theory, 131(5):873–893, May 2011.

[8] Luca De Feo and Éric Schost. Fast arithmetics in Artin-Schreier towers over finite fields. J.
Symbolic Comput., 47(7):771–792, 2012.

[9] J. Doliskani and É. Schost. A note on computations in degree 2k -extensions of finite fields,
2012. Manuscript.

[10] Andreas Enge. Computing modular polynomials in quasi-linear time. Math. Comp.,
78(267):1809–1824, 2009.

[11] P. Gaudry and É. Schost. Point-counting in genus 2 over prime fields. J. Symbolic Comput.,
47(4):368âĂŞ400, 2012.

[12] Samuel A. Hambleton. Generalized Lucas-Lehmer tests using Pell conics. Proceedings of
the American Mathematical Society, 140:2653–2661, 2012.

[13] William Hart. Fast library for number theory: an introduction. Mathematical Software–
ICMS 2010, pages 88–91, 2010.

[14] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[15] Wolfram Koepf. Efficient computation of chebyshev polynomials in computer algebra.
Computer Algebra Systems: A Practical Guide., pages 79–99, 1999.

[16] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University
of California at Berkley, 1996.

[17] Serge Lang. Algebra. Springer, 3rd edition, January 2002.

[18] R. Lebreton and É. Schost. Algorithms for the universal decomposition algebra. In IS-
SAC’12, pages 234–241. ACM, 2012.

49

[19] Franz Lemmermeyer. Conics - a Poor Man’s Elliptic Curves, 2003.

[20] Hendrick W. Lenstra. Solving the Pell equation. Notices of the AMS, 49(2):182–192, 2002.

[21] Hendrick W. Lenstra and Bart De Smit. Standard models for finite fields: the definition,
2008.

[22] T. Lickteig and M.-F. Roy. SylvesterâĂŞhabicht sequences and fast cauchy index computa-
tion. J. Symbolic Comput., 31(3):315 – 341, 2001.

[23] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Math. Comp., 48(177), 1987.

[24] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC, pages 233–240.
ACM, 1997.

[25] Karl Rubin and Alice Silverberg. Torus-Based cryptography. In Dan Boneh, editor, Ad-
vances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 349–365, Berlin, Heidelberg, 2003. Springer Berlin /Heidelberg.

[26] Karl Rubin and Alice Silverberg. Algebraic tori in cryptography. In In High Primes and
Misdemeanours: Lectures in Honour of the 60th birthday of Hugh Cowie Williams, volume 41
of Fields Institute Communications. AMS, 2004.

[27] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. Math.
Comp., 54:435–447, 1990.

[28] Victor Shoup. Fast construction of irreducible polynomials over finite fields. J. Symbolic
Comput., 17(5):371–391, 1994.

[29] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl,
2003.

[30] Joseph H Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts in
Mathematics. Springer, 2007.

[31] William A. Stein and Others. Sage Mathematics Software (Version 5.5). The Sage Develop-
ment Team, 2013.

[32] Jean Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de
Paris, 273:238–241, 1971.

[33] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[34] Valentin E. Voskresenskĭi. Algebraic groups and their birational invariants, volume 179.
American Mathematical Society, 1998.

50

http://www.shoup.net/ntl

Chapter 5

Fast arithmetic for the algebraic closure of
finite fields

5.1 Introduction
Several computer algebra systems or libraries, such as Magma [3], Sage [39], NTL [37], PARI [31]
or Flint [24], offer built-in features to build and compute in arbitrary finite fields. At the core
of these designs, one finds algorithms for building irreducible polynomials and algorithms to
compute embeddings and isomorphisms. The system used in Magma (one of the most complete
we know of) is described in [4].
Previous algorithms typically rely on linear algebra techniques, for instance to describe embed-
dings or isomorphisms (this is the case for the algorithms in [4], but also for those in [28, 1]).
Unfortunately, linear algebra techniques have cost at least quadratic in the degree of the exten-
sions we consider, and (usually) quadratic memory requirements. Our goal here is to replace
linear algebra by polynomial arithmetic, exploiting fast polynomial multiplication to obtain al-
gorithms of quasi-linear complexity. As we will see, we meet this goal for several, but not all,
operations.

Setup. Let p be a prime (that will be fixed throughout this paper). We are interested in describ-
ing extensions Fpn of Fp ; such an extension has dimension n over Fp , so representing an element
in it involves n base field elements.
It is customary to use polynomial arithmetic to describe these extensions (but not necessary:
Lenstra’s algorithm [28] uses a multiplication tensor). For an extension degree n, a first step is to
construct an irreducible polynomial Qn of degree n in Fp[x]. Identifying Fpn with Fp[x]/〈Qn〉,
operations (+,×,÷) in Fp[x]/〈Qn〉 all take quasi-linear time in n.
However, this is not sufficient: we also want mechanisms for e.g. field embeddings. Given irre-
ducible polynomials Qm and Qn over Fp , with deg(Qm) = m dividing deg(Qn) = n, there exist
algorithms to embed Fp[x]/〈Qm〉 in Fp[x]/〈Qn〉 (for the system to be consistent, these embed-
dings must be compatible [4]). However, most algorithms use linear algebra techniques.
To bypass these issues, we use an approach inspired by Shoup’s algorithm for computing irre-
ducible polynomials [35, 36] (see also [16, 29]): first reduce to the case of prime power degrees,

51

then use composita techniques, in a manner that ensures compatibility of the embeddings auto-
matically.

Background: towers. Suppose that for any prime `, an `-adic tower over Fp is available. By
this, we mean a family of polynomials (T`,i)i≥1, with T`,i ∈ Fp[x1, . . . , xi], monic of degree ` in
xi , such that for all i the ideal 〈T`,1, . . . ,T`,i〉 is maximal in Fp[x1, . . . , xi]. Our model of the field
with p`i

elements could then be K`i = Fp[x1, . . . , xi]/〈T`,1, . . . ,T`,i〉. Arithmetics in this type of
representation can be performed using the triangular-set techniques, see [30], but we prefer to
work with univariate polynomials (the cost of arithmetic operations is generally higher in the
multivariate basis).
For 1 ≤ i ≤ n, let then Q`,i be the minimal polynomial of xi in the extension K`n/Fp . This
polynomial does not depend on n, but only on i ; it is monic, irreducible of degree `i in Fp[xi]
and allows us to defineFp`i asFp[xi]/〈Q`,i〉. For 1≤ i ≤ j ≤ n, let further Q`,i , j−i be the minimal
polynomial of x j in the extension Fp[xi]/〈Q`,i〉 ,→K`n (as above, it does not depend on n). This
polynomial is monic, irreducible of degree ` j−i in Fp`i [x j] = Fp[xi]/〈Q`,i〉[x j].
Thus, Fp[x j]/〈Q`, j 〉 and Fp[xi , x j]/〈Q`,i ,Q`,i , j−i〉 are two models for Fp` j . Provided conversion
algorithms between these representations are available, we can perform embeddings (that will
necessarily be compatible) between different levels of the `-adic tower, i.e. extensions of degrees
(`i)i≥1.
Such towers, together with efficient conversion algorithms, were constructed in the cases `= p
in [13, 15, 19], `= 2 in [21], and for other values of ` in [18]. Thus, it remains to give algorithms
to “glue” towers defined for different values of `. This is the purpose of this paper.

Our contribution. The algorithms used to construct towers are inspired by those used in [35,
36, 16] to build irreducible polynomials. Also used in these references is the following idea: let
Qm(x) and Qn(y) be irreducible polynomials overFp , with coprime degrees m, n > 1, and having
respectively (ai)1≤i≤m and (b j)1≤ j≤n as roots in an algebraic closure of Fp . Then their composed
product Qmn =

∏

1≤i≤m,1≤ j≤n(z − ai b j) is irreducible of degree mn in Fp[z].
In this paper, we use an algebraic complexity model, where the cost of an algorithm is counted in
terms of the number of operations (+,×,÷) inFp . If the goal is building irreducible polynomials,
then computing Qmn is enough: an algorithm given in [6] has quasi-linear cost in mn. Our
goal here is to give algorithms for further operations: computing embeddings of the form ϕx :
Fp[x]/〈Qm〉 → Fp[z]/〈Qmn〉 or ϕy : Fp[y]/〈Qn〉 → Fp[z]/〈Qmn〉, and the isomorphism Φ :
Fp[x, y]/〈Qm,Qn〉→ Fp[z]/〈Qmn〉 or its inverse.
Standard solutions to these questions exist, using modular composition techniques: once the image
S = Φ(x) is known, computing ϕx(a) amounts to computing a(S)mod Qmn; similarly, comput-
ing Φ(b), for b in Fp[x, y]/〈Qm,Qn〉, amounts to computing b (S,T)mod Qmn, with T = Φ(y).
This can be done using the Brent and Kung algorithm [11]: the resulting cost is O(mn(ω+1)/2)⊂
O(mn1.69) for ϕx (see the analysis in [36]) and O((mn)(ω+1)/2) ⊂ O(m1.69n1.69) for Φ or its in-
verse [33]. Here, we denote byω a constant in (2,3] such that one can multiply matrices of size
m over any ring A using O(mω) operations (+,×) in A; using the algorithms of [14, 40], we can
takeω ≤ 2.38.

52

Our main result improves on these former ones. We denote by M : N→ N a function such that
for any ring A, polynomials in A[x] of degree at most n can be multiplied in M(n) operations
(+,×) in A, and we make the usual super-linearity assumptions on M [22, Chapter 8].

Theorem 20. One can applyϕx (resp.ϕy) to an element ofFp[x]/〈Qm〉 (resp.Fp[x]/〈Qn〉), or invert
it on its image, using O(nM(m)+mM(n)) operations in Fp .
Suppose that m ≤ n. Then one can apply Φ to an element of Fp[x, y]/〈Qm,Qn〉 or invert it using
either O(m2M(n)) or O(M(mn)n1/2+M(m)n(ω+1)/2) operations in Fp .

Using the O˜ notation to neglect polylogarithmic factors, we can take M(n) ∈O (̃n). Our algo-
rithm for embeddings and their inverses has quasi-linear cost O (̃mn). Those for Φ or Φ−1 have
respective costs O (̃m2n) and O (̃mn(ω+1)/2); the minimum of the two is in O (̃(mn)2ω/(ω+1)); for
ω ∈ (2,3], the resulting exponent is in (1.333 . . . , 1.5].
If S = Φ(x) and T = Φ(y) are known, a result by Kedlaya and Umans [25] for modular composi-
tion, and its extension in [32], yield an algorithm with bit complexity essentially linear in mn and
log(p) on a RAM. Unfortunately, making these algorithms competitive in practice is challeng-
ing; we are not aware of any implementation of them. It is also worth noting that our algorithms
apply in a more general setting than finite fields (mild assumptions are required).

Outline. Section 5.2 presents basic algorithms for polynomials and their transposes. Section 5.3
introduces the main idea behind our algorithms: the trace induces a duality on algebras of the
form Fp[x]/〈Q〉, and some conversion algorithms are straightforward in dual bases; the algo-
rithms are detailed in Section 5.4. Section 5.5 explains how the results in this paper can be used
in order to construct the algebraic closure of Fp . We conclude with experimental results.

5.2 Preliminaries
We recall first previous results concerning polynomial arithmetic and transposition of algorithms.
In all this section, a ground field k, not necessarily finite, is fixed. For integers m, n, we denote
by k[x]m (resp. k[x, y]m,n) the set of polynomials P in k[x] with deg(P)< m (resp. P in k[x, y]
with deg(P, x)< m and deg(P, y)< n).

5.2.1 Polynomial multiplication and remainder
We start with some classical algorithms and their complexity. For all the algorithms that follow,
all polynomials are written on the canonical monomial basis (this is innocuous for the moment,
but other bases will be discussed below).
The product of two polynomials of respective degrees at most m and n can be computed in
M(max(m, n)) operations in k. If P is a monic polynomial of degree m in k[x], for n ≥ 1, we let
rem(., P, n) be the operator

rem(., P, n) : k[x]n → k[x]m
a 7→ a mod P.

For n ≤ m, this is free of cost. For n > m, this can be computed in time O(nM(m)/m) using the
Cook-Sieveking-Kung algorithm and blocking techniques [5, Ch. 5.1.3]. Defining A= k[x]/〈P 〉,

53

and choosing a fixed b ∈ A, we can then define the mapping mulmod(., b , P), which maps a ∈ A
to ab mod P ; it can be computed in time O(M(m)). Finally, given an integer m, the reversal
operator in length m is

rev(., m) : k[x]m → k[x]m
a 7→ x m−1a(1/x).

5.2.2 Duality and the transposition principle
The transposition principle is an algorithmic result which states that, given an algorithm that
performs a matrix-vector product u 7→ M u, one can deduce an algorithm with essentially the
same cost which performs the transposed matrix-vector product v 7→M t v [12, Ch. 13].
Following [20], we give here a more abstract presentation of the transposition principle, using
the algebraic theory of duality (see [9, Ch. IX.1.8]). The added level of abstraction will pay off
by greatly simplifying the proofs of the next sections.
Let E and F be k-vector spaces, with dim(E) = dim(F)<∞, and suppose that 〈., .〉 : E × F → k
is a non-degenerate bilinear form. Then, to any vector space basis ξ = (ξi)i of E , we can associate
a unique dual basis ξ ∗ = (ξ ∗i)i of F such that 〈ξi ,ξ

∗
j 〉 = δi , j (the Kronecker symbol). In other

words, given a in F , the coefficients (ai) of a on the basis ξ ∗ are given by ai = 〈ξi ,a〉.
For example, denote by E∗ the dual space of E , i.e. the k-linear forms on E . The bilinear form
on E×E∗ defined by with 〈v,`〉= `(v) for all v ∈ E and ` ∈ E∗ is non-degenerate. This is indeed
the canonical example, and any non-degenerate form, is isomorphic to this one. We will see in
the next section another family of examples, with E = F .
Let E ′, F ′ be two further vector spaces, with dim(E ′) = dim(F ′) <∞ and let 〈., .〉′ be a bilinear
form E ′×F ′→ k. Then, to any linear mapping u : E → E ′, one associates its dual (with respect to
〈., .〉 and 〈., .〉′), which is a linear mapping u t : F ′→ F characterized by the equality 〈u(a), b ′〉′ =
〈a, u t (b ′)〉, for all a ∈ E and b ′ ∈ F ′.
Let as above ξ be a basis of E , and let ξ ∗ be the dual basis of F ; consider as well a basis υ of E ′

and its dual basis υ∗ of F ′. If M is the matrix of u in the bases (ξ ,υ), the matrix of u t in the bases
(υ∗,ξ ∗) is the transpose of M .
As presented in [8, 20], the transposition principle is an algorithmic technique that, given an
algorithm to compute u : E → E ′ in the bases (ξ ,υ), yields an algorithm for the dual map u t :
F ′ → F in the bases (υ∗,ξ ∗). The two algorithms have same cost, up to O(dim(E) + dim(E ′)).
In a nutshell, starting from an algorithm relying on a few basic operations (such as polynomial
or matrix multiplication), its transpose is obtained by transposing each basic subroutine, then
reversing their order.
Let us briefly review the transposes of operations described in the previous subsection. The
transpose of polynomial multiplication is described in [8]; it is closely related to the middle prod-
uct [23]. Let next P be monic of degree m, and define A= k[x]/〈P 〉. As shown in [8], the dual
map of rem

remt (., P, n) : A∗ → k[x]∗n
is equivalent to linear sequence extension: it takes as input the initial m values of a linear re-
curring sequence of minimal polynomial P , and outputs its first n values. The transposed ver-
sion of the Cook-Sieveking-Kung fast Euclidean division algorithm yields an algorithm with cost
O(nM(m)/m) operations in k [41, 38].

54

For a fixed b ∈A, the transpose of mulmod is the map

mulmodt (., b , P) : A∗ → A∗

` 7→ b · `,

where b · ` is defined by (b · `)(a) = `(ab). Algorithms for mulmodt have been subject to much
research (for instance, Berlekamp’s bit serial multiplication [2] is a popular arithmetic circuit for
mulmodt in the case k = F2); algorithms of cost O(M(m)) are given in [38, 8].
Lastly, the reversal operator on k[x]m is its own transpose.

5.3 Trace and duality
Next, we discuss some classical facts about the trace form, and give algorithms to change between
monomial bases and their duals. In all this section, k is a perfect field. General references for the
following are [26, 17].

Traces in reduced algebras. Let s be a positive integer and I a zero dimensional radical ideal
in k[x1, . . . , xs]. Thus, A= k[x1, . . . , xs]/I is a reduced k-algebra of finite dimension d , where d
is the cardinality of V =V (I)⊂ k

s
(in general, A is not a field).

Let a be in A. As we did in the case of one variable, we associate to a the endomorphism of
multiplication-by-a Ma : A→ A given by Ma(b) = ab . Even though A may not be a field, we
still define the minimal polynomial of a as the minimal polynomial of Ma; since I is radical, this
polynomial is squarefree, with roots a(x), for x in V . Similarly, the trace of a is the trace of Ma,
and denote it by τI (a). Because I is radical, the trace defines a non-degenerate bilinear form on
A×A, given by 〈a, b 〉I = τI (ab).
Thus, to any basis ξ = (ξi)0≤i<d of A, one can associate a dual basis ξ ∗ = (ξ ∗i)0≤i<d , such that
〈ξi ,ξ

∗
j 〉I = δi , j for all i , j . It will be useful to keep in mind that for a ∈ A, its expression on the

dual basis ξ ∗ is a =
∑

0≤i<d 〈a,ξi〉Iξ ∗i .
We now describe algorithms for converting between the monomial basis and its dual, in two
particular cases, involving respectively univariate and bivariate polynomials. In both cases, our
conclusion will be that such conversions have quasi-linear complexity.

Univariate conversion. Let P be monic of degree m and squarefree in k[x], and define A =
k[x]/〈P 〉. We denote by P ′ its derivative and by τP the trace modulo the ideal 〈P 〉.
The k-algebra A is endowed with the canonical monomial basis ξ = (x i)0≤i<m. In view of what
was said in the previous subsection, the coefficients of an element a ∈ A on the dual basis ξ ∗ are
the traces τP (ax i)0≤i<m. The following lemma shows that the generating series of these traces is
rational, with a known denominator; this will be the key to the conversion algorithm. This is a
restatement of well-known results, see for instance the proof of [34, Theorem 3.1].

Lemma 21. For a in A, the following holds in k[[x]]:

∑

i≥0

τP (ax i)x i =
rev(P ′a mod P, m)

rev(P, m+ 1)
.

55

Some well-known algorithms to convert between ξ and ξ ∗ follow easily. In these algorithms,
and all that follows, input and output are vectors (written in sans serif font).

Algorithm 6 MonomialToDual(a, P)
Input: a= (ai)0≤i<m ∈ k m, P monic squarefree in k[x] of degree m
Output: (τP (ax i))0≤i<m, with a =

∑

0≤i<m ai x i

1. T = 1/rev(P, m+ 1)mod x m

2. b = rev(P ′
∑

0≤i<m ai x i mod P, m)T mod x m

3. return (coe�cient(b , x i))0≤i<m

Algorithm 7 DualToMonomial(b, P)
Input: b= (bi)0≤i<m ∈ k m, P monic squarefree in k[x] of degree m
Output: (ai)0≤i<m such that τP (

∑

0≤i<m ai x i+ j) = b j for all j
1. S = 1/P ′ mod P
2. b = rev(P, m+ 1)

∑

0≤i<m bi x i mod x m

3. c = rev(b , m)
4. d = c S mod P
5. return (coe�cient(d , x i))0≤i<m

Lemma 22. Algorithms 6 and 7 are correct. The former uses O(M(m)) operations in k, the latter
O(M(m) log(m)). If the polynomial S = 1/P ′ mod P is known, the running time of Algorithm 7
drops to O(M(m)).

Proof. Correctness follows from Lemma 21. Once we point out that power series inversion mod-
ulo x m can be done in time O(M(m)), the running time analysis of the former is straightforward.
For Algorithm 7, the dominant part is the computation of S, which takes time O(M(m) log(m))
by fast XGCD; all other steps take O(M(m)) operations in k.

Bivariate conversions. Now we consider two monic squarefree polynomials P in k[x] of de-
gree m, and Q in k[y] of degree n. We define A = k[x, y]/I , with I = 〈P,Q〉, then A has the
canonical monomial basis (x i y j)0≤i<m,0≤ j<n. We denote by τI the trace modulo I , and by τP and
τQ the traces modulo respectively 〈P 〉 and 〈Q〉.
In addition to its monomial basis, A can be endowed with a total of four natural bases, which are
described as follows. Let ξ = (x i)0≤i<m and υ= (y i)0≤ j<n be the monomial bases of respectively
k[x]/〈P 〉 and k[y]/〈Q〉; let ξ ∗ and υ∗ be their respective dual bases, with respect to τP and τQ .
The monomial basis seen above is ξ ⊗ υ; the other combinations ξ ∗⊗ υ, ξ ⊗ υ∗ and ξ ∗⊗ υ∗ are
bases of A as well. After a precomputation of cost O(M(m) log(m) +M(n) log(n)), Lemma 22
shows that conversions between any pair of these bases can be done using O(nM(m) +mM(n))
operations in k (by applying the univariate conversion algorithms n times x-wise and / or m
times y-wise). Using fast multiplication, this is quasi-linear in the dimension mn of A.
The following easy lemma will help us exhibit the duality relationships between these bases; it
follows from the fact that A is the tensor product of k[x]/〈P 〉 and k[y]/〈Q〉.
Lemma 23. Let b be in k[x]/〈P 〉 and c in k[y]/〈Q〉. Then we have τI (b c) = τP (b) τQ(c).

This lemma implies that ξ ⊗ υ and ξ ∗⊗ υ∗ are dual to one another with respect to 〈., .〉I , as are
ξ ∗⊗υ and ξ ⊗υ∗.

56

5.4 Embedding and isomorphism
This section contains the main algorithms of this paper. We consider two squarefree polynomials
P (x) and Q(y) of respective degrees m and n, with coefficients in a perfect field k. Let us then
set A= k[x, y]/I , where I is the ideal 〈P (x),Q(y)〉 in k[x, y]. In all this section, we assume that
xy is a generator of A as a k-algebra.
The main example we have in mind is the following: k is a finite field and both P and Q are
irreducible, with gcd(m, n) = 1. Then our assumption is satisfied and in addition A is a field,
namely, the compositum of the fields k[x]/〈P 〉 and k[y]/〈Q〉, see [10]. More generally, if we let
(ri)i<m be the roots of P in an algebraic closure of k, and let (s j) j<n be the roots of Q, then as
soon as the products ri s j are pairwise distinct, xy generates A as a k-algebra.
Let R ∈ k[z] be the minimal polynomial of xy in the extension A/k (equivalently, the roots of
R are the products ri s j); this polynomial is known as the composed product of P and Q, and we
will denote it R = P �Q. As k-algebras, we have A' k[x]/〈R〉, so there exist embeddings ϕx ,
ϕy , and an isomorphism Φ of the form

ϕx : k[x]/〈P 〉 → k[z]/〈R〉,
ϕy : k[y]/〈Q〉 → k[z]/〈R〉,
Φ : A= k[x, y]/〈P,Q〉 → k[z]/〈R〉

xy 7→z.

In this section, we give algorithms for computing R, applying ϕx , ϕy and their sections, and
finally Φ and its inverse. Except from the computation of R, these are all linear algebra problems.
If R and the images S = Φ(x),T = Φ(y) are known, then as was explained in the introduction,
direct solutions are available for both ϕx (or ϕy) andΦ – modular composition – but none of these
approaches have a quasi-linear running time.
We take a different path. Our algorithms have quasi-linear running time for ϕx and ϕy and im-
prove on the Brent-Kung algorithm for Φ. Put together, Lemmas 25 to 29 below prove Theo-
rem 20. One of the key aspects of these algorithms is that some are written in the usual mono-
mial bases, whereas others are naturally expressed in the corresponding dual bases. From the
complexity point of view, this is not an issue, since we saw that all change-of-bases can be done
in quasi-linear time.
In what follows, we write τP ,τQ ,τR,τI for the traces modulo the ideals 〈P 〉 ⊂ k[x], 〈Q〉 ⊂ k[y],
〈R〉 ⊂ k[z] and I = 〈P,Q〉 ⊂ k[x, y]; the corresponding bilinear forms are denoted by 〈., .〉P , . . .
We let ξ = (x i)0≤i<m, υ = (y i)0≤ j<n and ζ = (z i)0≤i<mn be the monomial bases of respec-
tively k[x]/〈P 〉, k[y]/〈Q〉 and k[z]/〈R〉. We also let ξ ∗ = (ξ ∗i)0≤i<m, υ∗ = (υ∗i)0≤i<n and ζ ∗ =
(ζ ∗i)0≤i<mn be the dual bases, with respect to respectively 〈., .〉P , 〈., .〉Q and 〈., .〉R.
Finally, we denote by uP ∈ k m the vector of the coordinates of 1 ∈ k[x]/〈P 〉 on the dual basis ξ ∗;
the vector uQ is defined similarly. These vectors can both be computed in quasi-linear time, since
we have, for instance, uP = MonomialToDual((1,0, . . . , 0), P). Thus, in what follows, we assume
that these vectors are known.

57

5.4.1 Embedding and computing R
We first show how to compute the embeddings ϕx and ϕy , and their inverses in quasi-linear time
in mn. We actually give a slightly more general algorithm, which computes the restriction of Φ
to the set

Π= {b c | b ∈ k[x]/〈P 〉, c ∈ k[y]/〈Q〉} ⊂ k[x, y]/〈P,Q〉.
We will use the following lemma, which results from the base independence of the trace (the
second equality is Lemma 23).

Lemma 24. Let b be in k[x]/〈P 〉 and c in k[y]/〈Q〉. Then we have τR(Φ(b c)) = τI (b c) =
τP (b) τQ(c).

An easy consequence is that τR(z
i) = τP (x

i)τQ(y
i). From this lemma, we also immediately

deduce Algorithm 8, which computes the image in k[z]/〈R〉 of any element of Π, with inputs
and outputs written on dual bases.

Algorithm 8 Embed(b,c, r)
Input: b = (bi)0≤i<m ∈ k m, c = (ci)0≤i<n ∈ kn an optional integer r ≥ mn set to r = mn by

default
Output: a= (ai)0≤i<r ∈ k r

1. (ti)0≤i<r = remt (b, P, r)
2. (ui)0≤i<r = remt (c,Q, r)
3. return (ti ui)0≤i<r

Lemma 25. Let b ∈ k[x]/〈P 〉 and c ∈ k[y]/〈Q〉. Given the coefficients b and c of respectively
b and c in the bases ξ ∗ and υ∗, Embed(b,c, r) computes ai = τR

�

Φ(b c)z i
�

for 0 ≤ i < r in time
O(r (M(m)/m+M(n)/n)). If r = mn, (ai)0≤i<mn are the coefficients of Φ(b c) in the basis ζ ∗.

Proof. Recall that for 0≤ i < m, bi = τP (b x i), and that for 0≤ i < n, ci = τQ(cy i). By definition
of remt , the sequences (ti) and (ui) encode the same traces, but up to index r . By Lemma 24, the
algorithm correctly computes

�

τP (b x i)τQ(cy i)
�

i<r
=
�

τR(Φ(b c)z i))
�

i<r
.

For r = mn, this is indeed the representation of Φ(b c) on the dual basis ζ ∗ of k[z]/〈R〉. The
cost of the calls to remt is in Section 5.2.2; the last step takes r multiplications in k.

In particular, the map ϕx is computed as Embed(·,uQ), and the map ϕy as Embed(uP , ·). Another
interesting consequence is that, when A is known to be a field, Embed allows us to compute R,
using the Berlekamp-Massey algorithm.

Algorithm 9 ComputeR(P,Q)
Input: P in k[x], Q in k[y]
Output: R in k[z]

1. (ti)0≤i<2mn = Embed(uP ,uQ , 2mn),
2. return BerlekampMassey((ti)0≤i<2mn)

58

Indeed, in this case, Embed(uP ,uQ , 2mn) computes the sequence (τR(z
i))0≤i<2mn. If we know that

A is a field, R is irreducible, so the minimal polynomial of this sequence (which is computed by
the Berlekamp-Massey algorithm) is precisely R. A fast variant of Berlekamp-Massey algorithm
gives the running time of O(M(mn) log(mn)) operations in k. This algorithm for computing
R is well-known; see for instance [6] for a variant using power series exponentials instead of
Berlekamp-Massey’s algorithm (that applies in large enough characteristic) and [7] for the specific
case of finite fields of small characteristic.
For the inverse of say ϕx , we take a in k[z]/〈R〉 of the form a = ϕx(b), and compute b . Using the
equality of Lemma 24 in the form τP (b x i) = τR(az i)/τQ(y

i) would lead to a simple algorithm,
but some traces τQ(y

i)may vanish.
We take a different path. Let c be a fixed element in k[y]/〈Q〉 such that τQ(c) = 1; we will take
for c the first element υ∗0 of the dual basis of k[y]/〈Q〉, but this is not necessary. Let us denote
by ε : k[x]/〈P 〉 → k[z]/〈R〉 the mapping defined by ε(b) = Φ(b c), and let εt : k[z]/〈R〉 →
k[x]/〈P 〉 be its dual map with respect to the bilinear forms 〈., .〉P and 〈., .〉R. Then, for b and b ′

in k[x]/〈P 〉, we have

〈b , b ′〉P = τP (b b ′) = τP (b b ′)τQ(c) = τR(Φ(b b ′c)) = 〈ε(b),Φ(b ′)〉R = 〈b ,εt (Φ(b ′))〉P ,

where the third equality comes from Lemma 24. Using the non-degeneracy of 〈., .〉P , we get
εt (Φ(b ′)) = b ′, that is, εt (ϕx(b

′)) = b ′. Thus, εt is an inverse of ϕx on its image.
Writing c = (1,0, . . . , 0), we remark that Embed(.,c) precisely computes the mapping b 7→ ε(b).
Since Embed is written in the dual bases, the discussion of Section 5.2.2 shows that transposing
this algorithm (with respect to b) yields an algorithm for εt written in the monomial bases.

Algorithm 10 Project(a)
Input: a= (ai)0≤i<mn ∈ k mn

Output: b= (bi)0≤i<m ∈ k m

1. c= (1,0, . . . , 0)
2. (ui)0≤i<mn = remt (c,Q, mn)
3. d =

∑mn−1
i=0 ai ui x i mod P

4. return (coe�cient(d , i))0≤i<m

Lemma 26. Let b ∈ k[x]/〈P 〉 and a = ϕx(b). Given the coefficients a of a in the basis ζ =
(z i)0≤i<mn , Project(a) computes the coefficients of b in the basis ξ = (x i)0≤i<m using O(nM(m) +
nM(n)) operations in k.

Proof. We show correctness using transposition techniques as in [8]. For fixed c, Embed(b,c)
is linear in b and can be written as π

c
◦ remt , where π

c
is the map that multiplies a vector in

k mn coefficient-wise by (τQ(cy i))i<mn, for c =
∑

0≤i<n ciυ
∗
i ; hence, its transpose is rem ◦πt

c
. It is

evident that πt
c
=π

c
(since π

c
is a diagonal map), whereas rem is just reduction modulo P . These

correspond to steps 3 and 4. The discussion above now proves that the output is εt (a). The cost
analysis is similar to the one in Lemma 25.

59

5.4.2 Isomorphism
We are not able to give an algorithm for Φ that would be as efficient as those for embedding;
instead, we provide two algorithms, with different domains of applicability. In what follows,
without loss of generality, we assume that m ≤ n.
Recall that ξ ⊗ υ, ξ ∗ ⊗ υ, ξ ⊗ υ∗ and ξ ∗ ⊗ υ∗ are four bases of A, with (ξ ⊗ υ,ξ ∗ ⊗ υ∗) and
(ξ ∗⊗υ,ξ ⊗υ∗) being two pairs of dual bases with respect to 〈., .〉I . Our algorithms will exploit all
these bases; this is harmless, since conversions between these bases have quasi-linear complexity.
Before giving the details of the algorithms, we make an observation similar to the one we did
regarding the transpose of Embed. Let Φt be the dual map of Φ with respect to 〈., .〉I and 〈., .〉R.
Then, for any b , b ′ ∈ k[z]/〈R〉, we have:

〈b , b ′〉I = τI (b b ′) = τR(Φ(b b ′)) = 〈Φ(b),Φ(b ′)〉R = 〈b ,Φt (Φ(b ′))〉I ;

hence, Φt = Φ−1. If b and b∗ are two bases of A= k[x, y]/I , dual with respect to 〈., .〉I (such as
the ones seen above) and if c and c∗ are two bases of k[z]/〈R〉, dual with respect to 〈., .〉R, the
previous equality, together with the transposition principle, shows the following: if we have an
algorithm for Φ, expressed in the bases (b, c), transposing it yields an algorithm for Φ−1, expressed
in the bases (c∗,b∗).

First case: m is small. We start by a direct application of the results in the previous subsection,
which is well-suited to situations where m is small compared to n.
Let b be in k[x, y]/I and let a = Φ(b). Writing b =

∑

0≤i<m bi x i , with all bi in k[y]/〈Q〉, we
obtain a straightforward algorithm to compute a: compute all Φ(bi x i) using Embed, then sum.
Since Embed takes its inputs written on the dual bases, the algorithm requires that all bi be written
on the dual basis of k[y]/〈Q〉 (equivalently, the input is given on the basis ξ ⊗ υ∗ of A). We also
use the fact that the expression of x i on the dual basis ξ ∗ is uP shifted by i positions to give a
more compact algorithm, called Phi1.
Transposing this algorithm then gives an algorithm for Φ−1. Its input is given on the monomial
basis (z i)0≤i<mn of k[z]/〈R〉; the output is written on the basis ξ ∗⊗υ of A.

Algorithm 11 Phi1(b)
Input: b= (bi , j)0≤i<m,0≤ j<n ∈ k m×n

Output: a= (ai)0≤i<mn ∈ k mn

1. (ui)0≤i<m(n+1)−1 = remt (uP , P, m(n+ 1)− 1)
2. (ai)0≤i<mn = (0, . . . , 0)
3. for 0≤ i < m do
4. (t j)0≤ j<mn = remt ((bi , j)0≤ j<n,Q, mn)
5. (a j)0≤ j<mn = (a j + t j ui+ j)0≤ j<mn

6. end for
7. return (ai)0≤i<mn

Algorithm 12 InversePhi1(a)
Input: a= (ai)0≤i<mn ∈ k mn

Output: b= (bi , j)0≤i<m,0≤ j<n ∈ k m×n

60

1. (ui)0≤i<m(n+1)−1 = remt (uP , P, m(n+ 1)− 1)
2. for i = m− 1, . . . , 0 do
3. d =

∑

0≤ j<mn a j ui+ j y
j mod Q

4. (bi , j)0≤ j<n = (coe�cient(d , j))0≤ j<n

5. end for
6. return (bi , j)0≤i<m,0≤ j<n

Lemma 27. Let b ∈ k[x, y]/I . Given the coefficients b of b in the basis ξ ⊗ υ∗, Phi1(b) computes
the coefficients of Φ(b) in the basis ζ ∗ using O(m2M(n)) operations in k.
Let a ∈ k[z]/〈R〉. Given the coefficients a of a in the basis ζ = (z i)0≤i<mn , InversePhi1(a) computes
the coefficients of Φ−1(a) in the basis ξ ⊗υ∗ using O(m2M(n)) operations in k.

Proof. Correctness of Phi1 follows from the previous discussion; the most expensive step is m
calls to remt , for a cumulated cost of O(m2M(n)).
The correctness of the transposed algorithm is proved as in Lemma 26, observing that it con-
sists of the line-by-line transposition of Phi1. The running time analysis is straightforward: the
dominant cost is that of m remainders, each of which costs O(mM(n)).

Second case: m is not small. The previous algorithms are most efficient when m is small;
now, we propose an alternative solution that does better when m and n are of the same order of
magnitude (with still m ≤ n).
This approach is based on baby steps / giant steps techniques, as in Brent and Kung’s modular
composition algorithm, but uses the fact that z = Φ(xy) to reduce the cost. Given b in A =
k[x, y]/〈P,Q〉, let us write

b =
m−1
∑

i=0

n−1
∑

j=0

bi , j x
i y j

=
m−1
∑

i=0

n−1
∑

j=0

bi , j x
i y i y j−i

=
n−1
∑

h=−m+1

m−1
∑

i=0

bi ,i+h(xy)i y h

=
1

y m−1

m+n−2
∑

h=0

ch(xy)y h ,

with ch(z) =
∑

0≤i<m bi ,i+h−m+1z i for all h (undefined indices are set to zero). Hence a = Φ(b)
has the form

a =
1

T m−1
ea mod R with ea =

m+n−2
∑

h=0

chT h ,

where T = Φ(y). We use baby steps / giant steps techniques from [27] (inspired by Brent and
Kung’s algorithm) to compute a, reducing the problem to polynomial matrix multiplication.
Let n′ = m + n − 1, p = d

p
n′e and q = dn′/pe, so that n ≤ n′ ≤ 2n − 1 and p ' q '

p
n. For

baby steps, we compute the polynomials Ti = T i mod R, which have degree at most mn−1; we

61

write Ti =
∑

0≤ j<n T ′i , j z
j m, with T ′i , j of degree less than m, and build the polynomial matrix MT ′

with entries T ′i , j . We define the matrix MC = [ci q+ j]0≤i<p,0≤ j<q containing the polynomials ch

organized in a row-major fashion, and compute the product MV =MC MT . We can then construct
polynomials from the rows of MV , and conclude with giant steps using Horner’s scheme.
The previous discussion leads to Algorithm 13. Remark that input and output are written on the
monomial bases.

Algorithm 13 Phi2(b)
Input: b= (bi , j)0≤i<m,0≤ j<n ∈ k m×n

Output: a= (ai)0≤i<mn ∈ k mn

1. n′ = m+ n− 1, p = d
p

n′e, q = dn′/pe
2. y=MonomialToDual((0,1,0, . . . , 0),Q)
3. T = DualToMonomial(Embed(uP ,y), R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q

6. MT ′ = [T
′

i , j]0≤i<q ,0,≤ j<n {T
′

i , j are defined in the text}
7. MC = [ci q+ j]0≤i<p,0≤ j<q {ch are defined in the text}
8. MV =MC MT ′

9. V = [
∑

0≤ j<n MV i , j z
j m]0≤i<p

10. V ′ = [Vi mod R]0≤i<p
11. a = 0
12. for i = p − 1, . . . , 0 do
13. a = T ′q a+V ′

i mod R
14. end for
15. a = a U m−1 mod R
16. return (coe�cient(a, i))0≤i<mn

Algorithm 14 InversePhi2(a)
Input: a= (ai)0≤i<mn ∈ k mn

Output: b= (bi , j)0≤i<m,0≤ j<n ∈ k m×n

1. n′ = m+ n− 1, p = d
p

n′e, q = dn′/pe
2. y=MonomialToDual((0,1,0, . . . , 0),Q)
3. T = DualToMonomial(Embed(uP ,y), R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q

6. MT ′ = [T
′

i , j]0≤i<q ,0,≤ j<n {T
′

i , j as defined above}
7. a=mulmodt (a, U m−1, R)
8. for i = 0, . . . , p − 1 do
9. V ′

i = a

10. a=mulmodt (a,T ′q , R)
11. end for
12. V = [remt (V ′

i , R, mn+m− 1)]0≤i<p

13. MV = [(Vi) j m,..., j m+2m−2]0≤i<p,0≤ j<n

62

14. MC =mult (MV , MT ′ , m− 1, m)
15. c = [MC 0,0, . . . , MC 0,q−1, . . . , MC p−1,q−1]
16. return [coe�cient(ci− j+m−1, i)]0≤i<m,0≤ j<n

Lemma 28. Let b ∈ k[x, y]/I . Given the coefficients b of b in the basis ξ ⊗υ= (x i y j)0≤i<m,0≤ j<n ,
Phi2(b) computes the coefficients ofΦ(b) in the basis ζ = (z i)0≤i<mn in O(M(mn)n1/2+M(m)n(ω+1)/2)
operations in k.

Proof. Correctness follows from the discussion prior to the algorithm. As to the cost analysis, re-
mark first that n′ =O(n), and that p and q are both O(

p
n). Steps 4 and 15 cost O(M(mn) log(mn))

operations. Steps 5 (the baby steps) and the loop at Step 12 (the giant steps) cost O(
p

nM(mn)).
The dominant cost is the matrix product at Step 8, which involves matrices of size O(

p
n)×

O(
p

n) and O(
p

n)×O(n), with polynomial entries of degree m: using block matrix multipli-
cation in size O(

p
n), this takes O(M(m)n(ω+1)/2) operations in k.

As before, writing the transpose of this algorithm gives us an algorithm for Φ−1, this time written
in the dual bases. The process is the same for the previous transposed algorithms we saw, involving
line-by-line transposition. The only point that deserves mention is Step 14, where we transpose
polynomial matrix multiplication; it becomes a similar matrix product, but this time involving
transposed polynomial multiplications (with degree parameters m − 1 and m). The cost then
remains the same, and leads to Lemma 29.

Lemma 29. Let a ∈ k[z]/〈R〉. Given the coefficients a of a in the basis ζ ∗, InversePhi2(a) computes
the coefficients of Φ−1(a) in the basis ξ ∗⊗υ∗ in O(M(mn)n1/2+M(m)n(ω+1)/2) operations in k.

5.5 The algebraic closure of Fp

In this section, we explain how the algorithms of Section 5.4 can be used in order to construct
and work in arbitrary extensions of Fp , when used in conjunction with algorithms for `-adic
towers over Fp . Space constraints prevent us from giving detailed algorithms, so we only out-
line the construction. We reuse definitions given in the introduction relative to `-adic towers:
polynomials T`,i , Q`,i and Q`,i , j−i and fieldsK`i = Fp[x1, . . . , xi]/〈T`,1, . . . ,T`,i〉. We also assume
that algorithms for embeddings or change of basis in `-adic towers are available (as in [18] and
references therein).

Setup. For ` prime and i ≥ 1, the residue class of xi in K`i will be written x`i . For a positive
integer m = `e1

1 · · ·`
er
r , with `i pairwise distinct primes and ei positive integers, Km denotes the

tensor productK`e1
1
⊗· · ·⊗K`er

r
; this is a field with p m elements. If m divides n, thenKm embeds

inKn. Taking the direct limit of allKm under such embeddings, we get an algebraic closureK of
Fp . The residue classes written x`e inK`e all lie inK and are still written x`e .
For any integer m of the form m = `e1

1 · · ·`
er
r with `i ’s pairwise distinct primes, we write xm =

x`e1
1
· · · x`er

r
∈K.

63

Minimal polynomials. We discuss first minimal polynomials of monomials inK over Fp .
Take x`e inK, with ` prime. By construction, its minimal polynomial overFp is Q`,e , irreducible
of degree `e in (say) Fp[z]. Next, consider a term xm, with m = `e1

1 · · ·`
er
r , with `i ’s pairwise

distinct primes. It equals x`e1
1
· · · x`er

r
, so it is a root of the composed product Qm =Q`1,e1

� · · · �
Q`r ,er

. In Section 5.4, we pointed out that Qm is irreducible of degree m = `e1
1 · · ·`

er
r in Fp[z],

so it must be the minimal polynomial of xm over Fp . In particular, this implies that Fp(xm) is a
field with p m elements, and that if we consider terms xm and xn, with m dividing n, then xm is
in Fp(xn).
Note that this process of constructing irreducible polynomials over Fp is already in [35, 36, 16].

Embedding and change of basis. Consider a sequence e = (e1, . . . , et) of positive integers, and
let n = e1 · · · et . The set

Be = {x
a1
e1

xa2
e1e2
· · · xat

e1···et
| 0≤ ai < ei for all i}

is a basis of Fp(xn). Important examples are sequences of the form e = (e1), with thus n = e1,
for which Be is the univariate basis (x i

n)0≤i<n. Also useful for us are sequences e = (e1, e2); letting
m = e1 and n = e1e2, Be is the bivariate basis (x i

m x j
n)0≤i<m,0≤ j<n/m.

Consider sequences d = (d1, . . . , ds) and e = (e1, . . . , et), with m = d1 · · ·ds and n = e1 · · · et , and
suppose that m divides n. The linear mapping Fm

p → Fn
p that describes the embedding Fp m →

Fpn in the bases Bd and Be is denoted by Φe ,d ; when m = n, it is an isomorphism, with inverse
Φd ,e . More generally, as soon as this expression makes sense, we have Φ f ,d = Φ f ,e ◦Φe ,d , so these
mappings are compatible.
To conclude this section, we describe how the algorithms of this paper can be used in this frame-
work to realize some particular cases of mappings Φd ,e (more general examples can be deduced
readily).

Embedding. Consider two integers m, n with m dividing n. We describe here how to embed
Fp(xm) in Fp(xn), that is, how to compute Φ(n),(m). Without loss of generality, we may assume
that n = m`, with ` prime.
Assume first that gcd(m,`) = 1. Since then xn = xm x`, and we have access to the polynomials
Qm, Q` and Qn (see above), we just apply the embedding algorithm of Section 5.4.
Suppose now that ` divides m, so m = m′`k , with m′,` coprime. Using one of the inverse
isomorphism algorithms of Section 5.4, we can rewrite an element given on the basis (x i

m)0≤i<m

on the basis (x i
m′x

j
`k)0≤i<m′,0≤ j<`k . Using an algorithm for embeddings in the `-adic tower, we can

then embed on the basis (x i
m′x

j
`k+1)0≤i<m′,0≤ j<`k+1 ; applying our isomorphism algorithm, we end

up on the basis (x i
m`)0≤i<m`, since xm` = xm′x`k+1 .

Further operations. Without entering into details, let us mention that further operations are
feasible, in the same spirit as the embedding algorithm we just described.
For instance, for arbitrary integers m and n, it is possible to compute the relative minimal poly-
nomial of xmn over Fp(xm); it is obtained as a composed product, with factors deduced from the
decomposition of m and n into primes.

64

As another example, we can compute Φ(m,n),(mn), that is, go from the univariate basis (x i
mn)0≤i<mn

to the bivariate basis (x i
m x j

mn)0≤i<m,0≤ j<n. This can be used to compute for instance relative traces,
norms or minimal polynomials of arbitrary elements of Fp mn over Fp m .

5.6 Implementation
To demonstrate the practicality of our algorithms, we made a C implementation and compared it
to various ways of constructing the same fields in Magma. All timings in this section are obtained
on an Intel Xeon E5620 CPU at 2.40GHz, using Magma V2.18-12, Flint 2.4.1 and Sage 6.
Our implementation is limited to finite fields of word-sized characteristic. It is based on the C
library Flint [24], and we make it available as a Sage module in an experimental fork at https:
//github.com/defeo/sage/tree/ff_compositum. We plan to make it available as a standard
Sage module, as well as a separate C library, when the code has stabilized.
Based on the observation that algorithms Embed and Project are simpler than conversion algo-
rithms between monomial and dual bases, we chose to implement a lazy change of basis strategy.
By this we mean that our Sage module (rather than the C library itself) represents elements on ei-
ther the monomial or the dual basis, with one representation computed from the other only when
needed. For example, two elements of the same field can be summed if both have a monomial
or if both have a dual representation. Similarly, two elements can be multiplied using standard
multiplication if both have a monomial representation, or using transposed multiplication if one
of the two has a monomial representation. In all other cases, the required representation is com-
puted and stored when the user input prompts it. To implement this strategy efficiently, our Sage
module is written in the compiled language Cython.
We focus our benchmarks on the setting of Section 5.4: P and Q are two irreducible polynomials
of coprime degrees m and n, and R = P �Q. We fix the base field Fp and make m and n grow
together with n = m + 1. We measure the time to compute R, to apply the algorithms Embed,
Phi1, etc., and to compute the changes of bases. We noticed no major difference between different
characteristics, so we chose p = 5 for our demonstration. As shown in Figure 5.1, the dominating
phase is the computation of R (line labeled R). Surprisingly, transposed modular multiplication
is slightly faster than ordinary modular multiplication. The cost of Embed is about the same as
that of multiplication, while DualToMonomial is about 50% slower. Project and MonomialToDual

have, respectively, similar performances (only slightly faster) hence they are not reported on the
graph. This justifies our design choice of lazy change of basis.
Unsurprisingly, the isomorphism algorithms take significantly more time than the computation
of R; for our choices of degrees, Phi2 is asymptotically faster than Phi1 and the crossover between
them happens around m = 70.
We compare our implementation to four different strategies available in Magma. For each of
them we measure the time to construct the finite fields and embedding data, as well as the time
to do operations equivalent to Embed, resp. inverse isomorphism.
Figure 5.2 reports on the following experiments. In irred, we supply directly P , Q and R to
Magma’s finite field constructor, then we call the Embed routine to compute the embedding data.
In P R, we use Magma’s default constructor to compute P and R (Magma chooses its own poly-
nomials), then we call the Embed routine to compute the embedding. In P Q, we use Magma’s
default constructor to compute P and Q (Magma chooses its own polynomials), then use the

65

https://github.com/defeo/sage/tree/ff_compositum
https://github.com/defeo/sage/tree/ff_compositum

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 30 60 90 120 150 180

m

R

mulmod

tmulmod

Embed

D2M

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 30 60 90 120 150 180

m

R

Phi1

Phi2

Figure 5.1: Timings in seconds, p = 5, n = m+ 1

 0

 200

 400

 600

 800

 1000

 0 30 60 90 120 150 180

m

irred
P R
P Q
ext

 0

 0.01

 0.02

 0.03

 0.04

 0 30 60 90 120 150 180

m

embedding
inverse isomorphism

Figure 5.2: Magma timings in seconds, p = 5, n = m+ 1

CommonOverfield routine to compute R, then Embed to compute the embedding data. In ext, we
use Magma’s default constructor to compute P , then the ext operator to compute an extension
of degree n of Fp[x]/〈P 〉 (Magma chooses its own polynomials).
Timings for constructing the extension and the embedding vary from one method to the other;
once this is done, timings for applying embeddings or (inverse) isomorphisms are the same across
these methods.
The Magma implementation cannot construct the embedding data in large cases (m = 150) in
less than 1000 seconds, while our code takes a few seconds. Once the embedding data is known,
Magma can apply the embeddings or isomorphisms extremely fast; in our case, one may do the
same, using our algorithms to compute the matrices of Φ and Φ−1, when precomputation time
and memory are not a concern.

Acknowledgements. We would like to thank the referees for their insightful remarks. Part of
this work was financed by NSERC, the CRC program and the ANR project ECLIPSES (ANR-
09-VERS-018).

66

Bibliography
[1] B. Allombert. Explicit computation of isomorphisms between finite fields. Finite Fields

Appl., 8(3):332 – 342, 2002.

[2] E. R. Berlekamp. Bit-serial Reed-Solomon encoders. IEEE Trans. Inf. Theory, 28(6):869–874,
1982.

[3] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra system I: the user language.
J. Symb. Comput., 24(3-4):235–265, 1997.

[4] W. Bosma, J. Cannon, and A. Steel. Lattices of compatibly embedded finite fields. J. Symb.
Comput., 24(3-4):351–369, 1997.

[5] A. Bostan. Algorithmes rapides pour les polynômes, séries formelles et matrices, volume 1 of
Les cours du CIRM. 2010.

[6] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation of special resultants. J.
Symb. Comput., 41(1):1–29, 2006.

[7] A. Bostan, L. González-Vega, H. Perdry, and É. Schost. From Newton sums to coefficients:
complexity issues in characteristic p. In MEGA’05, 2005.

[8] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03, pages
37–44. ACM, 2003.

[9] N. Bourbaki. Éléments de mathématique. Springer, 2007. Algèbre. Chapitre 9.

[10] J. V. Brawley and L. Carlitz. Irreducibles and the composed product for polynomials over
a finite field. Discrete Math., 65(2):115–139, 1987.

[11] R. P. Brent and H.-T. Kung. Fast algorithms for manipulating formal power series. Journal
of the ACM, 25(4):581–595, 1978.

[12] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer,
February 1997.

[13] D. G. Cantor. On arithmetical algorithms over finite fields. J. Combin. Theory Ser. A,
50(2):285–300, 1989.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symb. Comput., 9(3):251–280, 1990.

[15] J.-M. Couveignes. Isomorphisms between Artin-Schreier towers. Math. Comp.,
69(232):1625–1631, 2000.

[16] J.-M. Couveignes and R. Lercier. Fast construction of irreducible polynomials over finite
fields. Israel J. Math., 194(1):77–105, 2013.

[17] D. A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag, 2005.

67

[18] L. De Feo, J. Doliskani, and É. Schost. Fast algorithms for `-adic towers over finite fields.
In ISSAC’13, pages 165–172. ACM, 2013.

[19] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields. J. Symb.
Comput., 47(7):771–792, 2012.

[20] Luca De Feo. Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies. PhD thesis,
École Polytechnique X, December 2010.

[21] J. Doliskani and É. Schost. Computing in degree 2k -extensions of finite fields of odd char-
acteristic. Des. Codes Cryptogr., to appear.

[22] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
New York, NY, USA, 1999.

[23] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm I. Appl.
Algebra Engrg. Comm. Comput., 14(6):415–438, 2004.

[24] William Hart. Fast library for number theory: an introduction. Mathematical Software-
ICMS 2010, pages 88–91, 2010.

[25] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SICOMP, 40(6):1767–1802, 2011.

[26] E. Kunz. Kähler differentials. Friedr. Vieweg & Sohn, 1986.

[27] R. Lebreton, E. Mehrabi, and É. Schost. On the complexity of solving bivariate systems:
The case of non-singular solutions. In ISSAC’13, pages 251–258. ACM, 2013.

[28] H. W. Lenstra Jr. Finding isomorphisms between finite fields. Math. Comp., 56(193):329–
347, 1991.

[29] H. W. Lenstra Jr. and B. De Smit. Standard models for finite fields: the definition, 2008.

[30] Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: from the-
ory to practice. In ISSAC ’07: Proceedings of the 2007 international symposium on Symbolic
and algebraic computation, pages 269–276, New York, NY, USA, 2007. ACM.

[31] The PARI Group, Bordeaux. PARI/GP, version 2.7.0, 2014.

[32] A. Poteaux and É. Schost. Modular composition modulo triangular sets and applications.
Comput. Complexity, 22(3):463–516, 2013.

[33] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional trian-
gular sets. J. Symb. Comput., 50:110–138, 2013.

[34] F. Rouillier. Solving Zero-Dimensional systems through the Rational Univariate Represen-
tation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[35] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math.
Comp., 54:435–447, 1990.

68

[36] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb. Comput.,
17(5):371–391, 1994.

[37] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl.

[38] Victor Shoup. Efficient computation of minimal polynomials in algebraic extensions of
finite fields. In ISSAC’99, pages 53–58. ACM, 1999.

[39] William A. Stein and Others. Sage Mathematics Software (Version 5.5). The Sage Develop-
ment Team, 2013.

[40] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
STOC’12, pages 887–898. ACM, 2012.

[41] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2:187–224, 1992.

69

http://www.shoup.net/ntl

Conclusion

We have presented algorithms to construct and perform computations in algebraic closures of
finite fields. Most of our algorithms are quasi-linear in the degree of the extension. Experiments
show that our algorithms and implementations, which use monomial representation, are superior
to those based on linear algebra. Future directions of this work would include: (i) Designing more
efficient algorithms for computing isomorphisms, and (ii) Making the construction of towers
quasi-linear in all cases.

70

Appendix A

Finite Fields

In this appendix, we briefly review the theory of finite fields1. A field K is a set equipped with
two operations + : K ×K → K , and × : K ×K → K called addition and multiplication. The
following conditions are imposed for all a, b , c ∈K :

1. Associativity: a× (b × c) = (a× b)× c ,a+(b + c) = (a+ b)+ c

2. Commutativity: a× b = b × a,a+ b = b + a

3. Identity: there exist elements denoted by 0,1 in K such that a× 1= a, and a+ 0= a.

4. Inverse: for a 6= 0, there exist −a,a−1 ∈K such that a+(−a) = 0, and a× a−1 = 1.

5. Distributivity: a× (b + c) = a× b + a× c .

We usually use familiar notations for the above two operations, e.g. the multiplication symbol
is often skipped. It is apparent from the above conditions that the elements K∗ = K\0 form a
multiplicative group. The multiplicative order of an element a ∈ K is a the smallest positive
integer n (if exists) such that an = 1. The characteristic of a field K , denoted by char(K), is the
smallest positive integer n (if exists) such that

1+ · · ·+ 1
︸ ︷︷ ︸

n times

= 0.

If such integer does not exists, the characteristic is∞. For any field K , char(K) is either∞ or a
prime number. A homomorphism ϕ : E → F of fields is a homomorphism of E , F considered
as rings. It preserves addition and multiplication. More precisely, ϕ(ab) = ϕ(a)ϕ(b), and ϕ(a+
b) = ϕ(a)+ϕ(b) for a, b ∈ E .

Polynomial ring. Given a ring R, the set of univariate polynomial with coefficients in R is a
ring denoted by R[X]. The ring of bivariate polynomials is defined by R[X ,Y] = R[X][Y],
and polynomial rings with higher number of variables are defined inductively. When R is a field
K then every ideal of K[X] is of the form 〈 f 〉, i.e. it is generated by a polynomial f ∈ K[X].
A polynomial f ∈ K[X] is irreducible if it cannot be written as f = g h with deg g , deg h > 0.
The ideal 〈 f 〉 is prime if and only if the polynomial f is irreducible. In that case the quotient

1We assume the reader has a very basic knowledge of some algebraic objects like Groups, Rings, and Ideals.

71

K[X]/〈 f 〉 is a field. An element a in some extension F of K is a root of f ∈K[X] if (X − a) is a
factor of f in F [X] or equivalently if f (a) = 0. Each term of a polynomial is called a monomial.
The monomial of the highest degree is called the leading term, and it coefficient is called the
leading coefficient. A monic polynomial is a polynomial with leading coefficient equal to 1.
Over a field every polynomial can be made monic by multiplying it by the inverse of its leading
coefficient.

A finite field is a field with a finite number of elements. The most familiar finite fields are the
prime fields. Given a prime number p, a prime finite field, denoted by Fp , is a field consisting of
numbers {0,1, . . . , p − 1}. The operations are done module p, and p is called the modulus. Any
field K with char(K) = p contains a copy of Fp . In other words, K is a vector space over Fp . This
means the cardinality of a finite field is always a prime power, namely p[K :Fp], where [K : Fp] is
the degree of the extension Fp ⊆K .

A.1 Basic properties
Assume a finite field F has a subfield E ⊆ F of size q . If the degree of the extension E ⊆ F is
n then F has qn elements. Indeed, the elements of F can be represented as unique sums a1x1+
a2x2+ · · ·+an xn where ai ∈ E and {xi}i is a basis of E over F as a vector space. We shall denote a
finite field of size q , where q = pn is a prime power, by Fq . Every element a ∈ Fq satisfies aq = a,
since the multiplicative group F∗q has size q − 1. In other words, every element of Fq is a root of
the polynomial g (X) =X q −X ∈ Fp[X]. We say that Fq is a splitting field of g (X). In general,
the a splitting field of a polynomial f over a field K is a the smallest field L⊇K containing all the
roots of f . Splitting fields always exists, and they are unique up to isomorphisms. This yields
the following result.

` For any given prime p and positive integer n there exists a finite field of size q = pn . Any two
such finite field are isomorphic to the splitting field of X q −X over Fp .

Therefore, we can always talk about the finite field of a given size. Since char(Fq) = p it is easy
to check that (a+ b)p = a p + b p . This yields the famous automorphism

φp : Fq → Fq

a 7→ a p

called Frobenius automorphism. Different powers of the Frobenius are defined by composition,
e.g. φ2 = φ ◦φ. In fact we have a cyclic group G = {1,φ,φ2, . . . ,φn−1} of order n. This group
is called the Galois group of the extension Fp ⊆ Fq , and is denoted by Gal(Fq/Fp). For every
element σ ∈G there is a subset F ⊆ Fq such that σ(a) = a for all a ∈ F . One can check that F is a
field. We call F the fixed field of σ . Similarly, every subgroup of G has a fixed field. In fact, it can
be shown that there is a one-to-one correspondence between the subgroups of G and subfields of
Fq . The subgroups of G are unique and correspond to the divisors of n. This translate, via the
above correspondence, to the following result.

` For ever divisor m | n there is exactly one subfield of Fq of size p m . Conversely, every subfield of
Fq is of size p m with m | n.

72

Let K be an arbitrary field, and let G ⊆ K∗ be a finite subgroup of size n. Let a ∈ G be an
element with maximal order m. Then the order of every other element divides m. In fact, if
m1 > 1 is the order of an element b ∈ G, and m1 is coprime to m then ab has order m1m > m
which contradict the assumption of maximality of m. Therefore, every element of G is a root of
g (X) = X m − 1. Since, over a field, g (X) can have at most m roots we have m = n. So we have
found a generator for G, hence G is cyclic.

` The multiplicative group F∗q is cyclic.

A generator of the group F∗q is called a primitive element of Fq . If a ∈ Fq is a primitive element
then a r is also a primitive element for all r coprime to q − 1. Therefore, Fq has exactly ϕ(q − 1)
primitive elements, where ϕ is the Euler’s totient function.

A.2 Irreducible polynomials
Let F ⊆ E be an extension of finite fields. We say that the extension is algebraic if for every
element a ∈ E there exists a polynomial g over F such that g (a) = 0. We define the minimal
polynomial of an element a ∈ E to be a monic polynomial g over F of minimal degree with
g (a) = 0. The minimality condition on the degree implies that minimal polynomials are always
irreducible. Indeed, if g = h1h2 with deg h1, deg h2 > 0 then g (a) = h1(a)h2(a) = 0, and hence say
h1(a) = 0 with deg h1 < deg g which is a contradiction.
Another way of introducing minimal polynomials is as follows. As mentioned before, every
ideal in F [X] can be written as 〈 f 〉 for some f ∈ F [X]. This is, in fact, the result of F [X] being
an Euclidean domain; i.e. for every a, b ∈ F [X] with g 6= 0, there are q , r ∈ F [X] such that
a = b q + r and either r = 0 or deg r < deg b . Let I ⊂ F [X] be an ideal, and let f ∈ I be a
polynomial with lowest degree. We can assume that f is monic. Given g ∈ F [X] we can write
g = f q+ r . If r 6= 0 then r then r = g = f q ∈ I and it has a lower degree than f a contradiction.
Therefore, f divides every polynomial in I , and hence I = 〈 f 〉. Now, given a ∈ E let I be the
set of all g ∈ F [X] such that g (a) = 0. One readily checks that I is an ideal. Write I = 〈 f 〉, and
define f as the minimal polynomial of a. From this we see that minimal polynomials are unique.
It is easy to check that the above two definitions are equivalent. The latter yields the following
result.

` Let F ⊆ E be finite field extensions, and let f ∈ F [X] be the minimal polynomial of an element
a ∈ E. Then for any g ∈ F [X] we have g (a) = 0 if and only if f | g .

One of the interesting polynomials over Fq is g (X) = X q r − X for a given r > 0. Suppose
that an irreducible polynomial f ∈ Fq[X] of degree m divides this polynomial. The the two
polynomials have a common root a in the splitting field of f over Fq . Since aq r = a we have the
extensions Fq ⊆ Fq m ⊆ Fr

q hence m | r . Conversely, if m | r then we have the above extensions
and Fq m is the splitting field of f . So f and g have a common root a ∈ Fq r . But f is the minimal
polynomial of a over Fq hence f | g . So we have proved the following.

` Let f be an irreducible polynomial of degree m over Fq , and let g (X) =X q r −X . Then f | g if
and only if m | r .

73

The above result say that for a given r > 0, g is a the product of all irreducible polynomials
who’s degrees divide r . An immediate application of this result is testing for irreducibility. A
polynomial f of degree m is irreducible if and only if

i . f divides X q m −X ,

ii . gcd(X q m/t −X , f) = 1 for all prime divisors t of m.

An interesting observation about irreducible polynomials over finite fields is that any extension
containing one root of an irreducible polynomial contains all the other roots as well. More pre-
cisely, if f (X) = X m + am−1X m−1 + · · ·+ a0 is an irreducible polynomial over Fq , and b ∈ Fq m

is a root of f then we have b m + am−1b m−1+ · · ·+ a0 = 0. Raising both sides to the power of q i

for any 1≤ i ≤ m− 1 we get (b q i)m + am−1(b
q i)m−1+ · · ·+ a0 = 0. One checks that the distinct

elements b , b q , . . . , b q m−1
are all the roots of f . These elements are called the conjugates of b .

More generally, given an extension Fq ⊆ Fq m , and an element a ∈ Fq m we define the conjugates of
a with respect to Fq as a,aq , . . . ,aq m−1

. The terminology comes from the action of the elements
of Gal(Fq m/Fq) = {1,σ ,σ2, . . . ,σm−1}, where σ i (x) = xq i

, on a. From the above we also see that
Fq m is the splitting field of f over Fq . Therefore, two irreducible polynomials of the same degree
have isomorphic splitting fields.
From the beginning we have implicitly assumed that the Galois group Gal(Fq m/Fq), which is
defined to be the group of all automorphisms α : Fq m → Fq m over Fq , consists only of σ i defined
above. This is always the case for finite fields. In fact, let α be an arbitrary automorphism of Fq m

over Fq . Also letβ be a primitive element of Fq m , and let f be its minimal polynomial of Fq . So
0 = α(f (β)) = f (α(β)) hence α(β) is also a root of f . Since all other roots of f are conjugates
of β we must have α(β) =βq i

for some 0 ≤ i ≤ m− 1. Also since β is a primitive element we
have α(a) = aq i

for all a ∈ Fq m .

Cyclotomic polynomials. Let r be a positive integer such that r | q − 1. Then there is an
element ζ ∈ Fq of order r , namely g (q−1)/r for some generator g ∈ F∗q . The element ζ is called a
primitive r th root of unity. Also for all 1 ≤ i < r coprime to r , ζ i is also a primitive r th root
of unity. Define the r th Cyclotomic polynomial as

Φr (X) =
∏

1≤i<r
gcd(i ,r)=1

(X − ζ i).

we obviously have degΦr = φ(r) where φ is the Euler function. The polynomial Φr is square-
free by definition. Let f be the minimal polynomial of ζ over Fp , and let d be the order of p
in the multiplicative group Z/rZ. Then we know that d | φ(r) by group theory. As before,
ζ p i

is also a root of f for all 0 ≤ i < φ(r). But only d of these elements are distinct, namely
A = {ζ ,ζ p1

, . . . ,ζ pd−1}. So f has degree d . We can repeat the same process for the minimal
polynomial of an element ζ p i

not in A, and append the next set of distinct powers to A, and so
on. All these minimal polynomials divide Φr . This yields the following.

` Let r be a positive integer such that r | q−1, and let d be the order of q inZ/rZ. Then Φr factors
into φ(r)/d irreducible polynomials of the same degree d .

74

A.3 Traces and Norms
Let F = Fq , and E = Fq m be an extension of F . The trace map from E to F is defined as

trE/F : E → F
a 7→ a+ aq + · · ·+ aq m−1

.

So the trace of an element is simply the sum of its conjugates. One hidden fact in the above
definition is that the image of the trace is actually contained in F . This is a direct consequence of
the fact that trace is fixed by all σ ∈Gal(E/F). Indeed,

trE/F (a)
q = (a+ aq + · · ·+ aq m−1

)q

= aq + · · ·+ aq m−1
+ a

= trE/F (a).

One can easily check that trE/F is a linear map over F , or an F -linear map, considering both E , F
as vector spaces over F ; i.e.

trE/F (aα+ bβ) = a trE/F (α)+ b trE/F (β) a, b ∈ F and α,β ∈ E .

This mean trE/F (a) = ma for all a ∈ F . An element a ∈ E is in the kernel K of the trace map if it
is a root of the polynomial X +X q+ · · ·+X q m−1

. But this polynomial has at most q m−1 roots. So
#K ≤ q m−1 hence the image of trE/F has size larger than q . Therefore, the trace map is surjective.
We saw before that every automorphism of Fq m is of the form x 7→ xq i

for some 0≤ i ≤ m− 1.
This extends to the case of trace maps as follows. Define `b (a) = trE/F (ab) for b ∈ E and all
a ∈ E . If a 6= a′ then `a − `a′ = trE/F (ab)− trE/F (ab) = trE/F ((a − a′)b) which is not zero for
some b as the trace in onto. Therefore, `a 6= `a′ . Also there are only a finite number of F -linear
maps E → F . In fact, every such linear map is determined by assigning elements of a given basis
of E to elements of F . So there are q m of such maps. But there are the same number of maps `b
as well. Therefore, every F -linear map E → F is of the form `b for some b ∈ E .
Let E , F be as above. The norm map from E to F is defined as

NE/F : E → F
a 7→ aaq · · ·aq m−1 = a(q m−1)/(q−1).

Again the image of NE/F is always in F . From the definition we have

NE/F (ab) =NE/F (a)NE/F (b) a, b ∈ E .

This means that norm is a homomorphism E∗→ F ∗ of groups. We also have NE/F (a) = am for all
a ∈ F . Like trace, norm is also onto: the kernel of NE/F is a subset of the roots of the polynomial
X (q m−1)/(q−1). So the kernel has size smaller than (q m−1)/(q−1) hence the image of the map has
size larger than q − 1. The norm and trace maps are both transitive in the following sense.

` For a chain of extensions F ⊂K ⊂ E of finite fields

trE/F (a) = trK/F (trE/K(a)), NE/F (a) =NE/K(NK/F (a))

for all a ∈ E.

75

A.4 Algebraic closures
In this section, we discuss the basic concepts of algebraic closures and their construction. We will
also discuss our computational approach to dealing with algebraic closures of finite fields.
A field L is said to be algebraically closed if every non-constant polynomial in L[X] has a root
in L. This is equivalent to saying that every non-constant polynomial splits into linear factors
over L. An algebraic closure of a field K , denoted by K , is an algebraic extension of K that is
algebraically closed.
Given a field K one can build an algebraically closed filed containing K as follows. We first build a
field K1 such that every polynomial in K[X] has a root in K1. LetS be the set of all polynomials
f ∈ K[X], and let X be the set of variables {X f } f ∈S . So we have introduced a variable for
each polynomial. Now form the ring K[X], and let I ⊂ K[X] be the ideal generated by all
the polynomials f (X f). We claim that I is not the unit ideal. If it is, then there is a finite linear
combination

g1 f1(X f1
)+ · · ·+ gn fn(X fn

) = 1, gi ∈K[X].

This equation involves only a finite number of variables, say X f1
, . . . ,X fN

. Therefore, rewriting
the equation gives

n
∑

i=1

gi (X f1
, . . . ,X fN

) fi (X fi
) = 1.

There exists a finite extension E of K in which each fi has a root. Let ai ∈ E be a root of fi .
Then substituting ai for X fi

in the above equation will give 0= 1 in E , which is a contradiction.
So a simple application of Zorn’s lemma gives I ⊆ m for some maximal ideal m of K[X]. So
K1 = K[X]/m is a field containing K . Also every polynomial f ∈ K[X] has a root in K1 by
construction. Repeating the same process for K1, and so on, we obtain a tower

K =K0 ⊆K1 ⊆K2 ⊆ · · ·

in which every non-constant polynomial in Kn[X] has a root in Kn+1 for all n ≥ 0. Now define
K∞ to be the union of all these extensions. One can easily check that K∞ is a field. Let f ∈
K∞[X]. Then the coefficients of f are in Kn for a large enough n. So f has a root in Kn+1 ⊆K∞,
hence K∞ is algebraically closed.
So given a field K there is an algebraically closed extension K ⊆ E . Define F ⊆ E as the union
of all subfields of E that are algebraic over K . It is easy to check that F is algebraic over K and it
is algebraically closed. Therefore, F is an algebraic closure of K . It can be shown that algebraic
closures are unique up to isomorphism of fields.

Finite fields. It is a simpler and more intuitive situation for algebraic closures over finite fields.
Starting from Fp , we know that every irreducible polynomial f ∈ Fp[X] of degree n has a root
in Fpn . So adapting the above general construction of adding roots of polynomials we see that we
only need to consider extensions Fp2 ,Fp3 ,Fp4 , From previous sections we know that Fp m ⊆
Fpn if and only if m | n. So, there are inclusions Fpn1 ⊆ Fpn1n2 and Fpn2 ⊆ Fpn1n2 for every
n1, n2 > 0. So the above set of finite fields is partially ordered by inclusion, and we can talk about

76

the union of any two finite fields. Then we have

Fp =
⋃

i≥1

Fp i .

In fact, let K = ∪i≥1Fp i , and let a ∈ K . Then a ∈ Fpn for some n, hence a is algebraic over Fp .
Also every irreducible polynomial f ∈ K[X] has coefficients in Fpn for a large enough n. Then
f has a root in Fpn[X]/〈 f 〉 ∼= Fp mn ⊆K where m = deg f .

77

VITA

Javad Doliskani

Ontario Research Center for Computer Algebra (ORCCA)
Department of Computer Science, University of Western Ontario

London, Ontario, Canada, N6A 5B7

Education

2003-2008 Tarbiat Moallem University,
Tehran, Tehran, Iran,
Software Engineering, B.S.

2009-2011 University of Western Ontario,
London, Ontario, Canada,
Computer Algebra, MSc.

2011-2015 University of Western Ontario,
London, Ontario, Canada,
Computer Algebra, PhD.

	Computing in Algebraic Closures of Finite Fields
	Recommended Citation

	Western University
	Scholarship@Western
	

	Computing in Algebraic Closures of Finite Fields
	Javad Doliskani

	Introduction
	Notations
	Our approach
	Bibliography

	Taking Roots over High Extensions of Finite Fields
	Introduction
	Previous work
	A new root extraction algorithm
	An auxiliary algorithm
	Taking t-th roots
	Experimental results

	Bibliography

	Computing in Degree 2k-Extensions of Finite Fields of Odd Characteristic
	Introduction
	Proof of the complexity statements
	Representing the fields Lk
	Arithmetic operations
	Frobenius computation
	Trace, norm and quadratic residuosity test
	Taking square roots
	Computing embeddings

	Experiments
	Bibliography

	Fast Algorithms for -adic Towers over Finite Fields
	Introduction
	Quasi-cyclotomic towers
	Finding P0
	Gm-type extensions
	Chebyshev-type extensions
	The general case

	Towers from irreducible fibers
	Towers from algebraic tori
	Towers from elliptic curves

	Lifting and pushing
	Lifting
	Pushing

	Implementation
	Bibliography

	Fast arithmetic for the algebraic closure of finite fields
	Introduction
	Preliminaries
	Polynomial multiplication and remainder
	Duality and the transposition principle

	Trace and duality
	Embedding and isomorphism
	Embedding and computing R
	Isomorphism

	The algebraic closure of Fp
	Implementation
	Bibliography

	Conclusion
	Finite Fields
	Basic properties
	Irreducible polynomials
	Traces and Norms
	Algebraic closures

