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This paper presents a number of fundamental results

on the existence and properties of expected value

maximizing

search rules for problems in which searchers may choose both

the number of samples taken and the size of each sample.

These rules include fixed-sample-size rules and sequential

rules as special cases. Also presented are conditions suffi-

cient for the optimal rules to reduce to sequential or fixed-

sample-size rules.
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1. INTRODUCTION

Since the seminal papers of Stigler [12], [l3], the literature on
search problems has concentrated upon two types of search strategies;
fixed-sample-size (fss) and sequential strategies. Two ideas which

appeared in this literature were that, ceteris paribus, a best (in the

sense of maximizing expecﬁed utility) sequential strategy dominated any
fss strategy and that an optimal search strategy was necessarily
sequential. Lately, several authors have shown these ideas are incorrect.
Benhabib and Bull [1], Gal, Landsberger and Levykson [5], Manning and
Morgan [9] and Morgan [10], [1l] have all noted that there is a class
of search strategies which dominate both fss and sequential strategies.
The purpose of this papervis to present a collection of fundamental
results on the existence and properties of these new search strategies.
The usual formulation of search problems views the searcher as
periodically drawing observations from a population and eventually taking
some terminal action which depends upon what he has observed. If he uses
a sequential straéegy, then the searcher is required to draw exactly one
observation at a time and to wait until that observation is received before
deciding if he should draw another (see DeGroot [4, p- 280]). The total
number of observations drawn is unknown until the moment the searcher
receives an observation which induces a halt to his search. The usual
view of a fss strategy is that it is a sequential strategy constrained in
a particular way. The fss searcher is thought of as choosing the total
number of obéervations ex ante and then doggedly drawing this number of

observations sequentially, irrespective of what he actually observes.



Naturally, such a fss strategy is dominated by a sequential strategy.

There are, however, other fss strategies. The authors of [l], [5],
[9], [10] and [11] all consider a fss strategy which allows the searcher
to draw only one sample but allows all the .observations in the sample to
be drawn simultaneously. This is a common practice in reality. For
example, a firm seeking another to undertake a project will often choose
to ask other firms to submit tenders together. A Ph.D. graduate seeking
an academic post will usually apply to several universities at once,
rather than wait for a reply to one application before sending out another.
The advantage of such a fss strategy is, of course, that it allows infor-
mation to be gathered quickly; in particular, more quickly than a
sequential strategy. Against this is the disadvantage that using a fss
strategy may result in overinvestment in information, a possibility avoided
by a sequential strategy. Which of these strategies is to be preferred,
therefore, depends upon the relative values of the advantage and disadvantage.
These values will vary from one type of search problem to another, making
fss strategies preferred to sequential strategies in some cases but not in
others.

The new class of optimal search strategies mentioned in the first
paragraph combines the flexibility of fss strategies to allow simultaneous
receipt of a number of observations with the flexibility of sequential strate-
gies to choose whether or not to sample again. In some cases these optimal
strategies will be fss strategies. In other cases they will be sequential
strategies. For a broad class of problems, howe&er, the optimal strategies

will be neither fss nor sequential strategies.
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Section 2 presents an example illustrating the remarks made in
this introduction. Section 3 presents a formal description of the class
of search problems considered. Section 4 explains why the optimal search
strategies dominate the best fss and best sequential search strategies.
The existence and form of a set of optimal search rules is established in
Section 5. Section 6 describes circumstances in which the best fss or
best sequential search strategies are optimal. Some concluding comments

arerffered in Section 7.

2. AN EXAMPLE

Deborah, Dolores and Dorothy Decisionmaker are three sisters. Each
needs her own house built before the winter snows arrive. Builders need
one month to prepare quotes and charge a standard fee of $1000 for each
quote when it is requested. Winter is only three months away and con-
struction requires one month so the sisters must select a quote in two
months or less from now. To avoid family rivalries the sisters have all
decided to build the same type of house, a dwelling for which builders will
quote either $50,000 or $60,000, with respective probabilities of 0.2 and
0.8. Total payment is made to the Builder when construction is begun
and a completed houée yields the occupier a stream of services with a present
value of $80,000. Each sister has a monthly rate of time preference
6 = 0.01. |

Deborah figures out that her best sequential strategy is to now ask
one builder for a quote. She will receive this quote in one month's time.
She should accept a quote for $50,000 but reject a quote of $60,000 in
favour of purchasing a second quote. The lower of the two quotes must be

accepted at the end of the second month so that the house can be built



before the winter snows arrive. Using the notation that p:in = min{pl,...,pn3
is the smallest of n received quotes, n 2 1, Deborah calculates that the

expected present value of this best sequential strategy is

1 min
2.1) wseq - 1000 + 775 E[max[l or 80000 - p, "7,
1 min; min ;
- 1000 + 355 E[1 0T 80000 - p, lpy
= $20623.70

Dolores was always the most spontaneous of the three sisters. She
decides to get all her quotations at once and asks four builders for quotes
simultaneously. To Deborah's surprise, Dolores' fss strategy has an
expected present value of

L 80000 - pyt?)

(2.2) wfss - 4000 + == 1.01 E[1 oL

$20863.29
Dorothy simply does what she expects to be best. ‘She decides to ask

three builders for quotes and to accept any offer for $50000 in one month's

L]

time. If all quotes are for $60000 then she will ask a further four builders
for quotes and, in one more month's time, will accept the lowest of ‘the seven
quotes received. Although she does not know it, the expected present value

of her (optimal) strategy is

* 1 min
(2.3) W= - 3000 + 7757 E[mx{l o1 80000 - p, =,
1 ming min

- 4000 + &= E[l 5T 80000 - p2"|p3 13

= $21688.58
Later, on a winter's evening when all three sisters are snug inside
their houses, they realise that Dorothy's strategy was best of .all because it

combined the freedom to choose her sample size at any decision point with ‘



(w

the freedom to stop or continue her search past the decision point. The
sequential strategy was suboptimal because it constrained Deborah to
purchasing only one quote at each of the two decision points. The fss
strategy was suboptimal because Delores was constrained to searching over

only one of the two months available.

3. THE SEARCH PROBLEM
Search consists of drawing observations from a population X C R.

At time t, where t =1,...,T and T 2 1, the searcher must decide whether

or not to continue his search. If he chooses to stop at t then he selects

the terminal action offering the highest utility from those currently
available to him. If he chooses to continue to search then he must decide
the size nt of the sampie of observations to make on X at t. It is assumed
that these observations become available to the searcher one period later,
at t+1;2 Search is costly and the searcher's problem is to determine the
search rule p*’which will maximize his expected utility.

At time t=l no observations on X have been received. Accordingly

define the singleton set

1 1
(3.1) Y :={y]
where y1 is the vector conditioning Fl, the searcher's initial estimate of

the c.d.f. over X. At times t the searcher can request nt observations on X.

t .
If n 21, then at t+l he will receive the vector of observations

t t t t
(3.2) X := (xl,...,x t) e X .
n }

x§ is the jth observation requested at t and Xt is the nt-fold Cartesian

product of X. The vector of all observations received by t is



y ] F if t = 1
(3.3) yt:= y':-1 , 1f nt 1 =0for2stsT
(Yt-l,xt-l): if nt-l 21 for2<ts<T
where
N S BT R S
3.4) y e Y := -1 t-1 t-1 ; for 2 <t < T,
Y XX ,ifn 21

. +
At time t the searcher will use yt to choose n® ¢ I » the set of non-

negative integers, and to decide

0, if search is to continue at t

3.5) G5 ={

1, if search is to stop at t.

T
Definition 1: A sequence of functions v:= {Vt}t=i where vt:Yt - I+ is called

a sample size rule.
T

Definmition 2: A sequence of functions §:= {gt]t==1 where §t:Yt - {0,1} is called

a stopping rule.

T
Definition 3: A sequence of functions p:= {pt}t=l where

t
pt;= (€ ,\,t);Yt - {0,1} x I+ is called a search rule.3

c(nt) denotes the financial cost to the searcher of drawing nt obser-
vations on X at any t. These accumulate across periods so that at t the
searcher's net wealth is
1 t-1 .
(3.6) w:i=w - Ze(nl), for t = 2.
j=l -
The searcher's preferences are represented by his (indirect) utility function

t
I(x,w ).4 Non-financial costs of search are represented at any t by K(nt),

the psychic cost of drawing a® observations on X at t (e.g., sampling X may

[



be physically fatiguing). Both the financial and psychic costs of sampling
at t are incurred at t. Unlike financial costs, psychic search costs need
not accumulate across periods.5

An expected utility maximizing search rule requires the searcher
to compare, at each t, the highest currently available utility from stopping
at t with the highest utility expected from continuing to search at t.
This comparison requires that these utilities be both well defined for each
yt e Yt and each t=l,...,T.

Let Gt denote the set of observations still available to the searcher
at time t. The composition of Gt will depend upon the seafcher's ability
to recall observations received prior to time t. For example, if the searcher

has no recall then

Wl g a > 0aa e 22
n

(3.7) G*=G%:= -
0] s 1f n =0ort =1.

Alternatively, if the searcher haé full recall then
t
(3.8)  Gf:= U T,
3=l
Clearly many forms of partial recall can be encompassed in this framework.6

Define u*t as the utility of the searcher's best terminal action at t; that is,

(3.9) .= max{I (W), max I(x,w5)}; tel,...,T.

xth

t, . t
I(x,w ) is the utility of choosing observation x with wealth w remaining and
%*
I (wt) is the utility at t of the searcher's best non-search generated

* * 1 '
alternative.7 u l:= I owl)»singe Gl = ¢.



At each t the searcher must compare u*t to the expected present valued
utility of continuing to search past t. In order to form such expectations

T
the searcher must be able to construct a sequence {Ft(x)}t=1 of marginal

ie

subjective probability measures Ft:X = [0,1] which, for any observed yt,
are his current estimates of the c.d.f. over X; t=l,...,T. Using Ft the -
searcher evaluates the expected present valued utility of continuing to
search past t using the search rule p = (E,v). Using (3.5) this can be

written as

(3:20) WG 0)im K@) + BB 18 T gt (pE M T (o EH ey

F

for t=l,...,T-1 with

(3.11) Wy(y',0):= BT GY).

= 1/(1+8) where 8 = 0 is the searcher's rate of time preference. (3.10)
states that the expected value of continuing to search at t is the discounted
expected value of the best terminal action available at t+l given search
stops at t+l (i.e., §t+1( t+1) =1), plus the discounted expected value of
continuing search at t+l given search continues (i.e., §t+1(yt+1) = 0), with
each possibility weighted by its respective probability of occurring.

(3.11) states that no search is possible past T and that any offers available
at T are unavailable past T, leaving the searcher after T with only the
action of allocating his remaining wealth wT to non-search generated alter-
natives. The expected present valued utility of any search rule p at time

t is therefore

t *t T, t
(3.12) V:(y sP) = mx[u 3W 6% :p)]; t=l,...,T.

(L4

Let } denote the set of all sample size rules and let S denote the set

of all stopping rules. Then P:=§ X T is the set of all search rules,
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befinition 4: A search rule p* is called optimal if and only if, for

any yt e Yt and any t=l,...,T
- t T, 6 t
(3.13) V:(y p*) 2 Vt(y ), YpeP.

This completes the description of the model. The following section
demonstrates that, when p* exists, it dominates both the best fss search
rule and the best sequential search rule. Section 5 shows p* exists in a

very wide class of problems.

4. DOMINATION OF THE FSS AND SEQUENTIAL RULES
By definition, any sequential search strategy constrains the searcher
to taking exactly one extra observation on X whenever he continues his search.

The set of all sequential search rules is therefore

t = =
A ”%wb)—IVtAVHJ}CR

(4.1) Pseq = L(E:Veq

For any given yt the expected value of the best sequential search rule pseq is

#.2) V3 pgeg) = max VerS,e) = max VIS, (g,v ).
‘ 1 pepgeq : geS 1

By definition, any fss seafch strategy constrains the searcher to
taking no more than one sample of observations from X by requiring search to
- cease at or before t=2. The set of all fss search rules is therefore

1

fes () = 1} c P.

“.3) P = {G W|E

fss

For any given yt the expected'value of the best fss search rule Pess is

44) V@ pggy) = max Vi(y©0) = max VIGT, (8, sv))

peF%ss velt

g . - *
For any given yt the expected value of the optimal search rule p

is
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“.5) VO e®) = max VG50 = mx vEGE, (8w
peP EeS,veM

Comparing (4.2), (4.4) and (4.5) shows
T, t T ¢t T, t
(4.6) V(v p®) 2 max{v (v Pgeq) Ve »Pggg)de

This establishes the following statement.

Proposition 1

%*
d .
p~ dominates both pse an pfss

q

In Section 6 some particular search models are discussed for which p*
is either pseq or Pess® The next section addresses the more immediate tasks
of establishing the existence and forms of p* in a wide class of problems.

5. THE OPTIMAL SEARCH RULES

This section begins by imposing a weak condition which ensures the
searcher is able to form expectations about the value of continued search.
The remainder of the section establishes that this weak condition is
sufficient for the existence of an optimal search rule. The supporting argu-
ment explains the notion of "regular" search rules. Then each member of a
non-empty subset of regular search rules is proved to be optimal by showing
it has an expected value equal to the supremum of the expected values of all
the search rules in P.

Consider any vector y = (xl,xz,...,xT) of observations on X. If the
searcher has full ex ante knowledge of y then the present valued utility of

searching out y cannot exceed -

t-1 . . .
(5.1) 2(y):= max{1*@e"), sup(- = 3" k(ndyrplman{r* sy, max TGewt)D)].

2<t<T j=1 oGt

It is assumed that

[
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(5.2)  Ellzn|l <~=.

This condition ensures the expected present valued utility of continued

search is always finite and, in particular, ensures

(5.3)  sup V:(yt,p) <o ¥y° e ¥°, Vesl,...,T.
peP

later (5.2) is shown to be sufficient for the existence of o*.

The idea of "regularity" is well established in the literature on
sequential decision making (see, for example,[4, pp. 289-290]). In essence,
any search rule in Péeq is called regular if it requires a further single
observation to be taken on X only when this is expected to increase the
searcher's utility. It is straightforward to extend the idea of regularity
from p;eq to P ; that is, to search rules which permit samples with sizes

different from unity to be drawn from X.

Definition 5: A search rule p ¢ P is said to be regular if

T, 1 1
(5.3a) VG sp) 2 I¥W)
and if, for any yt e Yt,
*t

t ' T, t
(5.35) E°(") = Oonly if u't < W,y ,p), Vesl,...,T.

That is, a search rule is regular only if its expected value is at least as
great as the utility of not searching and if it commands the searcher to
continue only when continuing is expected to improve his utility. Definition 5
does not restrict n® =1 for any t=L,...,T-1.

Let R CP denote the set of regular search rules. A moment's reflection
upon definition 5 will provide the reader with the intuition that, if an
optimal search rule p* exists, then there must exist a regular search rule

which is "as good as" p* and is, therefore, optimal also. Lemmas 1, 2 and 3
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prove this intuition correct and, thereby, allow the question of the

existence of optimal search rules to be confined to R since, 1f R contains

no optimal search rules then, necessarily, neither does F.

lemma 1:

If there exists a non-regular search rule p' then there exists a

regular search rule p” such that

T, t T, t t .t
V(v 0') SV (y7,0") for any y© e ¥°; e<l,...,T.

Proof: The argument given here closely follows an argument provided by

DeGroot [4, p. 289] for sequential decision procedures. There are two

possibilities.

EITHER ol = (€' ,v') is such that, for all yt € Yt and any t=l,...,T

5.4 FRrH =0 ad W 2 ulG50).

Together, (5.4) and (3.5) imply
T, t T, t
(5.5) Ve 0') =W (v .00
Let p”:= (€°,v') where ¢’(.) =1 andv'%(.) = 0 Ve=l,...,T.

o’ exists, is regular and, from (3.5), (5.4) and (5.5),

*t

T, t T, ¢t T, 6t
(5:6) V) =ut 2w (v ,e") =V (r",e').

OR p':= (§',v') is such that, for some t and some yt € Yt,

*t

.7 €N =0 am <G50,

Together, (5.7) and (3.5) imply
T, t T, t
(5.8)  Vr ') =W (v 0 ).
Let p”:= p’. Then p” exists, is regular and
t T, 6t
5.9 VG5 = vLote").

(5.6) and (5.9) together establish the result.

Q.E.D.

0

"

»
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Lemma 2

R, the set of regular search rules, is not empty.
Proof: Let p:= (E,v) where £-(+) = 1 and v*(.) = 0 for all t<l,...,T.
" p exists. If pe R, thenR # ¢. If p # R, then R # ¢ by Lemma 1.
’ Q.E.D.
Lemma 3

If an. optimal search rule exists, then there exists an optimal search

rule which is regular.

Proof: Suppose p' is an optimal search rule. The proof is trivial if p' € R.

Suppose p' # R. Then, by Lemma 1, there exists p” € R such that
T ¢t t
(5.10) (AN I Vi(y "),

(5.10) contradicts the optimality of o' unless (5.10) is an equality. But

then p” is also an optimal search rule. ‘
: Q.E.D.

Corollary 1

An optimal search rule exists if and only if a regular optimal search

‘rule exists.

 Pfoof: If p' eP is optimal then, by Lemma 3, there exists the optimal

. rule p” ¢ R. If p” € R is optimal then o’ ¢ P also since R CP.
' : QoEoDa

This result jusﬁifies devoting the remainder of the argument presented
in this section to exploring only R for optimal search rules. A consequence

of Lemma 3 which is useful in this exploratioﬁ is the following remark.
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Remark 1: For amy t=l,...,T and for any yt e Yt,

t t
(5.11) sup VT(y »0) = sup VT(y s0).
peP t peR t

Iwo existence results are now established. First of all s the
existence of an optimal sample size rule v* is proved for any stopping rule
€ €S. Then a particular subset of stopping rules is combined with v* to
give a particular subset of regular search rules. Each of these search

rules is proved to be optimal.

Definition 6

A sample size rule v* is optimal for § ¢S if and only if, for any

yt € Yt and any t=1,...,T,
t T, t
(5.12) e ", (8,9%) 2 WL(r5,(8,v)) for all v e M.

Theorem 1
If E[IZ(y)I] < @, then there exists a sample size rule v* which is

optimal for any stopping rule E¢ S.
Proof: For any t=l,...,T, for any yt € Yt and for any § ¢ S, let

(5.13) W ,8) = sup WL(y", (8, v)).
ve

ﬁf(yt,g) exists since M # ¢ and since
t
(5.14) V.58 < Ellz)]] < =,
<«
Let {vi] 4= De a sequence of sample size rules such that
(5.15) Lim W 5, (8,v,)) = WG58, .
b )
For any i 2 1, define Gi € {vl,... ,vi) as the sample size rule which provides

the highest expected present valued utility of continued search; that is, 31

is such that, for any i 2 1,

"

1"

»
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(Sv.1,6). }W:(Yt,(g,ai)) = W{Wi(yt,(g,vl))un,W;E(Yt,('i:vi))}o

;. From (5.16) and (5.15),

(517) lim WG 5(8:9)) = Wo5e).

j_-—ocn
Let .

(5.18) v*:= lim Gi
. s

and notice that, together, (5.13) and (5.14) imply

T ¢t A
(5:19) WG »(8:9)) <=

(5.14), (5. 18) and (5.19)

for all i = 1.

<]

show {v satisfies the conditions of Lesbesgue's

Domlnated Convergence Theorem. It follows from that theorem, (5.17) and (5.18)

that

(5.20) Wr",(8,v) = WL, (6t ) = Lim WG, (8,50 = TGS, D).

" That is, v* satisfies (5.12).

b i-

Q'E. D‘

Since v¥ exists, subject to (5 2), it remains to combine v* with the

following stopping rules and to prove the optimality of the resulting search rules.

) -
Definition 7

(5.21);s*i= {ges|et(y5) =

-

0;if u ;<,w“t-‘<y »(§,v))

0 with probability pt(yt) and
~ T, t
; if Ut = W (75 (8,v))
1 with probability 1 - pb(y%)

1; if o' > W (5, (8,

Yt=l,...,T and Vyt‘ € Y" and VW e} .
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Denote the general element of S* by £* so that p¥:= (E*,v*) is the general

element of the set P*: =$* X {v*}; that is, P* is the set of all the

i

search rules formed by pairing v¥ with each of the stopping rules in 3*.

It is clear from a comparison of (5.21), (5.3a) and (5.3b) that each p*

Q)

is regular. Hence P*C R. A consequence of this and Remark 1 is the

following remark.

Remark 2

(5.22) For any t=l,...,T and for any yt € Yt,

T, t T t T, t
sup V. (y ,p) < sup V. (y ,p) = sup V.(y ,p).
*
peP pER peP

The last part remaining of the argument of this section is to show that

any p* ¢ P* is an optimal search rule.

Theorem 2 -

If E[lZ(y)l] < o then P* is a non-empty set of optimal search rules.

Proof: P¥*:= S8* x {v*} # ¢ since S* # ¢ and {v*} # ¢.
The rest of the proof must establish two points. These are that, for all
t=l,...,T and for all yt € Yt,
t t
(5.23) Vﬁ(y p') = V:CY 0°)s Vo' 0" e P%,

and that, for any p* ¢ pP*,

t t
(5.26) V.G ,0*) 2 sup V5" ,p)
peP

since (5.24) and (5.22) will together establish (3.13) for p*. It is
convenient to begin by establishing (5.24) first.

Take any p* ¢ P¥. Using (3.12) and Theorem 1 shows that, for any

(]

t=l,...,T and for any yt € Yt,
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(5.25) Vo0 = V.65, (8%,v0) = max w65, (5%, vF))

= max{u*t,W§(yt,(§*,v))] = Vz(yt,(g*,v)) for all ve .

. " ) . *
Using (3.10), (3.11) and (3.12) Vf(yt,(g »V)) can be expanded, for any

veR as

(5.26) ViGN v) = TN + <1-§*<y?)'>vr§(yt, &, )

= N -2t ") (k) +eE t[§ g

-t oty (k@ )+5Etﬂ[§vu(r&)*ua .
F

t

T A DYE YU Y= N [y
F

Jeooly

Comparing each of the terms nested in (5.26) to (5.21) shows (5.26) is

5-27) Vit (E,v)) =max{u™t, K@) +pE , [max(u*

F
R S R - I A P R M TP B

F

2 fot" -f o5 (Ra®) +pe t[ﬁﬂ GEHLy FEHL
(1- §t+1( ))(-K(n )-fﬁE t+1[=t+2 t+2)u*t+2+,,, +
| ] .
1,11, — |
T T~ leT 1] L. lyt+1] ‘yt]

SR O R DY K(n )'+BE'T-1[“
: . F
- =B Vt(y »>(§,v)) for all § ¢S .
. Combining (5.25) and (5.27) shows
e T, t * T, t
(5.28) vt(y P )2 Vt(y sP)> Vpe P
ihat is, p* is Optimai. Finaliy, (5.23) is easily established by noting that,

since both o’ and p” are optimal,

T, t T, t T, t T, t
Vo (y 50') 2V (v p") and V7 ,0') S V(v 0.

*
K@) +pE | (max(u®t
F

+2
b

Q.E.D.
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This establishes the existence and form of each of the optimal
search rules p* ¢ P*. At each t the searcher deduces the size of the sample
he should draw from X at t in order to maximize the expected present
value of continued search. Having deduced this expected value, he
continues his search by drawing this sample if the expectation exceeds
the best terminal utility currently available, stops if the expectation
is smaller than the best terminal utility and is indifferent between
stopping and continuing when the expectation and the best terminal utility
are equal. This procedure is well defined if (5.2) is satisfied.

The above existence proof is conceptually different from the
proofs of existence of best sequential search rules given by Chow and
Robbins [3], De Groot [4], Kohn and Shavell [7] and Yahav [l4]. Their
proofs utilize the fact that v:eq(-) =1 for all t to establish that a best
sequential search rule is the "most regular" sequential rule in that,
for any given vector of observations, the best sequential rule extends
search over at least as many periods as does any other regular sequential
rule. The optimal search rule described above does not generally extend
search over at least as many periods as any other regular search rule
and, consequently, the above existence proof differs in its structure from
those cited above. The reason that optimal search may last for fewer
periods than best sequential search is that optimal search permits the
searcher to gather observations more rapidly than does sequential search.
This makes it more likely that an acceptable offer will be discovered

sooner.

(L]

(U]

It

"

»w
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6. WHEN ARE THE BEST FSS AND SEQUENTIAL STRATEGIES OPTIMAL?

Since the fss and'sequential search strategies have each received con-

- siderable attehtidn in the literafure, it is useful to discover ééts of
conditions which constrain p* to either the fss strategy or the sequential
strategy. In at least two-insténces, éll three strategies are indistinguishabie.

The optimal search,ruleé contained in p* are distinguished from éach
other only by fhe probability;pt(yt),with which they order a éontinuation of
search at t in the event of a tie between u*t and Wi(yt,p*) (see (5.21)), The
previous iiteratu:e has concentrated upon the particular best sequential
sea:ch’rﬂle for which pt(-) =0Vt i.e. always stop in the event of a tie, For
comparability to the previous literature, this'section confines its discussion
to the optimal search rule p** € P* for which pt(°) =E0Vt, This is merely
a convenience since all the optimal rules in P* have the same expected value.

The conditions which are necessary and sufficient for p** = Pggg aTE

the conditions under which search will never continue past t=2,

. ) 2. T 2 Ak .2 2
(6.1) max{I (w), max I(x,u)]} ng-(y 0 ), Vy €Y.
x€Q '

.1 (w) is the opportunity cost of searching. If it is low enough (the value of
' liVing through the winter in a cave for the three sisters of section 2) then
 search will occur at téﬂ even in the face of high search costs or high rates

of time preference, provided the searched for commodity (e.g. shglter) is

, éﬁfficient;y valuable, However, onég any observation taken on X is received, at
" t=2, then the searcher gains the opportunity of obtaining the commodity., If

" marginal search costs or discounting are large enough to make the value of
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continuing to search no greater than the value of obtaining the commodity, then

search stops at t=2, This is the meaning of (6.1)., For example, with

{®

6 = 0,01 the sisters will always choose to stop searching at t=2 if the cost of
each quotation exceeds $1790 since, under these conditions, the value of >

accepting even a quotation of $60000 is §$8%$9.- $60000 = $19207.9 while

the expected value of continuing to search Wg(-,p**) < $19207,9. A little
arithmetic shows that under these conditions the optimal sample size V*(yT) at
t=1 is unity, so that optimal search consists of taking just one observation
at t=1 and then stopping at t=2, Under these conditions, therefore, all
three (optimal, fss and sequential) search strategies are indistinguishable,
The same indistinguishability arises in the (trivial) case where it is sub-

* * *
optimal to search at all since, if'[(w‘) 2 ﬁ?(y1,p ) then'[(w1) 2Wér(y],pseq)

n

* 1 T 1
andI(w) = W,(y ,Dfss) also,

Condition (6.1) may be forced upon a searcher in ways other than the

"

above, For example, firms often search by asking for tenders because preparing
tenders for commercial projects is usually a time consuming exercise., If

the searching firm's contractural opportunities will vanish before a second
sample of firms could supply further tenders, then the optimal search strategy
is directly constrained to being the best fss strategy. Condition (6.1) is also
more likely to arise when the searcher does not enjoy any recall privileges
since, while Wg(yz,p**) decreases as recall privileges are withdrawn,

* 2 2 .
max{I (W), max I(x,w )} is unaffected.
2
xeC -

(w

Sequential search is the most time intensive of the three search strategies

discussed in this paper. Consequently Pee will usually be sub-optimal when T

v

q
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,,;ie}small or 6 is largeQJ.Fof?example,‘when T=2 and quotations cost $1000 each,

,beborah's sequential strategy has an expected value'strictly below that of

Dolores' fss strategy for any. 6 2 0 Conversely, large T, small 6 and large

marginal 1ntraper10d samp11ng costs for observations additional to the first

seq toWerds optimality., The following proposition confirms this

 intuition.

. Propogition 2

'If (1) 6 =r0’ T = @,
(ii) the searcher has full recall,
(iid) g(ﬁ),K(n) 2 0, convex and non-decreasing, and

(iv) I(e,w) is strictly increasing w.r.t. w,

_ then the optimal search rule is sequential,

Proof:

" See the Appendix,

The “set of sufflclent condltlons described 1n the above proposition is,

Ii of course, only a subset of the set of condltions sufficient for the best
' Ag_sequential strategy to be optlmal Nevertheless, the result suggests that
'Igsequentlal strategles may be sub-optimal in'a wider class of search problems

'7}f-than seems to be céﬁmonly supposed, . Simulation studies conducted by the authors

eq 1S particularly likely to be sub-optimal-wheh'the future is

o dlscounted, .even, at low rates, On the other hand, the removal of fu11 reca11

' seems to have only a small effect on the expected value of Py when T is not

seq

small. Establlshlng»condltlons sufficient for p to be optimal seems to be an

seq
elusive task unless particular functional forms are assumed.
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7, CONCLUDING REMARKS

This paper has presented a number of fundamental results on the existence

[0

and properties of optimal search strategies for a wide class of problems in

which the searcher may choose both the number of samples taken and the size of .
each sample. These results are of considerable generality but do not, of

course, extend to problems outside the set of search problems considered here.,

While the more important aspects of search are captured by the problems addressed,
some search phenomena have been excluded e.g. uncertain récall, uncertain

decision horizons and consumption of rewards as search proceeds, Finally,

the degree of suboptimality of sequential and fixed-sample-size search rules

is not described here for every problem considered. Results concerning the

degree of suboptimality will be specific to the functional forms and parameter

values of each problem, Simulation studies conducted by the authors show .

the expected value of the optimal variable sample size strategies can substantially

(L]

exceed the expected values of the best sequential and best fixed-sample-size

strategies in important cases.

[
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FOOTNOTES

1This article was written while Morgan was on sabbatical leave from

the Flinders University of South Australia at the University of Western Ontario.
The  authors wish to acknowledge helpful comments received from Noel Cressie,
John Darroch, Alan Harrison, John McDonald, John McMillan and Victoria

Zinde-Walsh. Any errors.reméin our responsibility,

2Other'ﬁ;ssumptions are pos@ible, For example, it may take more thamn
one period for observétions';o be received. In such cases the decision to
stop or to continue search will be made in partial ignorance of the outcomes
of previously taken search decisions. The model presented here extends

‘ naturaily to such cases.

3A point of potential confusion should be avoided here. If, for
éome yt, vt(yt) =nt >0 then.the searcher is committed to taking nt
furtﬁer observations on X qnly if §?(yt) = 0 also. After all, if §t(yt) =1
.(i.e.‘seayéh‘stopsAat t)'it is cleafly not welfare improving:to obtain another
: .“nt_"..ﬂ(value«l;e'ss) .ebs'et"-vatiot-tsvon X, | .

4‘SI.‘his utility function shoﬁld be interpreteé aé £hé direct or indirect
utility fuﬁétion appropriate to whichever more specific formulation of the’
* ‘probiem is of interest to the reader. For an example of one such formulation
see [9].

5It is straightforward, but of little economic interest, to allow
c(*) and K(°*) to differ across periods. -

‘GUncertain recall is not admitted in this model. -For sequential search

models with uncertain recall see [6] and [8].
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7With one exception (see [1]), previous search models assume the
"fall-back reward" I*(wt) is independent of the search activity. In many
cases this is not so. For instance, if search is wealth reducing then the
search activity reduces the wealth available for purchases of other than

*
searched for commodities--in which case I (wt) is decreasing w.r.t, t,

1

.

\®
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APPENDIX

This appendix contains the proofs of Proposition 2 and Lemma A-1,

a result used in the proof of Proposition 2,

Lemma A-1
Let a, b, ¢, ‘be random variables defined over R1 with c.d.f.'s F, G, H

respectively. Then.
EFGH[max{max(a,b),c}] < EF[max{a,EGH[max{mx(a,b),c]la]}].
Proof

EFGH[max{max(g,b) sc}] $-£ Egy [max{max(a,b) ,c}|aldF(a)

) max{a,E [max{max(a,b),c}|al}dF(a).

QOE.D.

" Proof of Proposition 2
The result is trivial if c¢(n) = K(n) = 6 =0 since then any regular
“search strategy will continue search until a terminal 4utility level of

o *
: max{I (w1), max I(x,wl)} is achieved, i.e., for any yt eyt and any t 21,
x€eX

(A0 Vz(yt,p) = max{1"(4'), max I(x,w)}, ¥ p e,
’ : xeX

. * - . - o -
Since pseq €R and P‘ C R, (A1) implies Peeq 18 optimal,

q
Now suppose either c(n) 20 or K(n) 2 0 with > for n 21, The

following argument establishes that if optimal search is continued at t then

* s
n t= 1. The argument begins by establishing that if optimal search is continued

' . *¢ - % .
at t then n t 2y . Suppose instead that n t - 0. Then, since he has full

‘recall, the searcher's problem at t+1 :i.s'exactly the same as at t, so
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*t+l .. . P *t
n = 0 also, Continuing this argument ad infinitum shows n =0
g gu

* *
=n t+ =n 42 = ,ee =0, Hence

Viate ) =dt e teh =1

*
i.e, if n t- 0, optimal search stops at t. This establishes that optimal

search continues at t only if

*t

(A2) n~ 21

The residue of the proof shows that if optimal search continues at t then
* *
nt s 1, from which, with (A,2), n © = 1 follows immediately.
T t %% _ T ¢t k% k%
Writing Vt(y 0 )= Vt(y > (§ v )) in the form of (5.27) with §

and T = ® shows, for any yt eYt and any t =1,

* * *
max{u t, -K(n t) + E 1:[mau-:{u t'H, - K(

F

*
n t:+1) +

T t %%
A.3) V(3.0 )

EFt 4 [max{u" %2, ... Hy" T 13 |yt 1)

*
K(n t

* * * *
max{u tE t[max{u e+ -K(n t) E o1 [max{u t2

F F

...}Iyt+]]]lyt]}.

)

It is notationally convenient to normalize the searcher's utility function

that K(0) = 0, K(n) is non-negative, convex and non-decreasing so

K(1) + K(n-1) < K(n), for n 21,

Using this in (A.3) gives

n
o

-K(

SO

*t+1
n

)>

()
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Wt e * % *t o
Toasy Vo ) < max{u 5B [maxfu t _KA) -K@ E-1),
. . R -
L . ' + o
'3 t_'_l[max[ t+2 - k(1) -K(n ey - K( ),...}lyt 1}yt13.
. F o
- . _A »".A ';. " - .-‘v ;_" . . t 1 t-] *. ' .
+ At time t 2 2 the searcher's wealth isw =w - Z c(n Jy, e(n) is non-negative,
. ’ L j=1
~ convex and non-decreasing so-
N
(A5) c(1) +e@ t-1) <e@ D).
A S‘ub.st'ituting from (3.9) and (A.5) into (A.4) gives
' T K% '
A.6) v, 0 )
: ' t *t -
% rnax[u ,E t:[max{max(l (w -c (1) -c(n t1)), max I(x,w -c(l)-c(n ~-1))) -K(1) -K(n ~-1),
+ .
F xeG 1
E. t+1[méx'[max(1*(wt-c 1)-c (n*tal-);c (n*t+ )), max I(x,wt-c (1) fc(n*t-l) -c(n*t+1)))
SRS ' ’ t+2

x el

K(1) -K(n"E-1) -K(n*':”l),...}|yt‘+1]}|yt]]

o No't'e: that Gt'ﬂ Gt u {x1 ,...,xt*t}‘ Rewriting (A.6) in the form of the expectation
descrlbed in Lemma A- 1 g:.ves

(A 7) v (y P )smax{u ,E

:  toax{max(1” (sE-c (1) e (1)),
t max{max

max I(x,wt-c(1)-e(n t-1)))
— xeu Ufx} A
! a

. fi;.,'vi((v1)“-'K'(;t-1)., max.(ii*(tét-:?ﬁi)-#(n*t-l)), max I(xsw" -c(1)-c(n £y
: o . L xe(.!-tU{x1,..ux *t}

] L : L : : . n

(1) -K(n E-1), E e (13513 E
. . : F ‘ .
. - ) ¢t v J

C

i . Apply Lemma A-1 to E gleee]l in (A.7) as indicated to show
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(A.8) Vi(yt,p**) smaxfu*t,E t[tlrraxfmax(I*(wt-c(1)-c(n*t-l)) » max I(x,wt-c(1)-c(n*t-1)))
F t . t
xeQ U{x]}

-K(1) -K(@ E-1), E [max{max (I (wt-c(1)-c(n t-1)),
F

[{ ]

max L(xswt-c()-e(@ t-13)) -KM K@ 1), B o (11 6513y 1
XGGtU{X-tl:: coo;xt*t} F
n

Sm.ax{v.x’kt,E t_.[maxfma:v:(I*(wt-c(i)), max L(x,wt=-c(1))) -K(1),

F xGGtU{x:'}
E. [max{max(I" (@E-c(1)-c(n E-1)),  max L(x,wi-e(1)-c(n t-1)))
F xthU{x::, ces ,xt*}
0

K() -K@' 1), EFHz[-l}l(yt,x{)] Hyt,

Suppose n*t 22, Then the second inequality in (A.8) is strict since then n*t-1 =1 and

so either c(n*t-1) >0 or K(n*t-1) >0, ﬁut this means the (assumed optimal) sampling
strategy of taking n*t 22 observations on X at t has an expected value strictly less

than the sampling strategy of taking exactly one observation on X with the option of *
taking the remaining n*t-1 observations at t+l., This contradicts the optimality of

p** (and of all other rules p* € P* since all the rules in P:!r have the same expected

value) ., Hence

t

*
(A9 n =1,

(A.2) and (A.9) together establish '

*
(AJ10) n © =1
i.e., optimal search continues at t if and only if it is optimal to draw exactly ome

additional observation on X at t: the optimal strategy is sequential, e
Q.E.D.
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