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PROPERTIES OF SHRINKAGE ESTIMATORS IN
LINEAR REGRESSION WHEN DISTURBANCES
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Abstract

This paper considers a class of recently developed biased estimators
of regression coefficients and studies its sampling properties when the
disturbances are not normally distributed. It has been found that the
conditions of dominance of these estimators over the last squares estimator,
under non-normality, are quite different than their well-known dominance
conditions under normality. Some implications of the results are also

discussed.
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1. INTRODUCTION

The least squares estimator for the coefficients in a linear
regression model is well known for its unbiasedness and minimum variance.
1f we are prepared to sacrifice the unbiasedness property, the estimation
of coefficients can be improved; see, e.g., James and Stein (1961); Judge
and Bock (1978); Judge et al. (1980); Ullah et al. (1978) and Zellner and
Vandaele (1975). Properties of such improved estimators have generally
been analyzed under the assumption that disturbances are normally
distributed. Such an assumption, it is well recognized, is often
questionable and may have varying effects in a variety of situations;
see, e.g., Gnanadesikan (1977). This has motivated us to analyze the
properties of improved estimators when disturbances are not normal.
Some work in this direction has been reported by Brandwein (1979) and
Brandwein and Strawderman (1978, 1980) who considered a class of
spherically symmetric distributions for disturbances and obtained conditions
for minimaxity of an improved family. Their results again call for a
specification of distribution of disturbances. Such is not the case
with our set-up. We simply assume that disturbances are small and
possess moments of fourth order. Under this general specification, it
is found that the conditions for déminance of improved estimators over
least squares estimator are quite different as compared with those for
normal disturbances. The plan of the paper is as follows. In Section 2
we present the estimators and their properties under the non-normal

disturbances. Section 3 provides the proofs of the results in Section 2,



2. ESTIMATORS AND THEIR PROPERTIES

Consider a linear regression model:

2.1) y =XB +u

where y is a Tx 1 vector of observations on the variable to be explained,

\a

X is a Txp matrix, with full column rank, of observations on p explanatory
variables, B 1s a px 1 vector of regression coefficients and u is a Tx1
vector of disturbances.

It is assumed that the elements of u are independently and identically
distributed with first four finite moments as O, 02, 03v1 and 04(v2+ 3)
respectively. Thus for all t (t=1,2,...,T) we have

2
)

E(ut) =0 , E(ui)
(2.2)

1

4 4
E(u ) = U vy o E(Ut) g (\)2+ 3)
where v and v, are Pearson's measures of skewness and kurtosis of the

distribution of disturbances. Notice that ke 0 is implied by symmetry

of distribution while vy = 0 means that the distribution is mesokurtic.

The ordinary least squares (OLS) estimator of P in (2.1) is given
by
’ -1
2.3) b= (XZX) Xy
which is unbiased with variance-covariance matrix 02(){’}()'1

Assuming Q to be a symmetric positive definite matrix, the risk of

b is

2.4) E(-B)'Q(b-B) = o tr(X'X)" Q

where "tr" represents the trace of the matrix. *



Now consider a general class of shrinkage estimators as
A -1
(2.5) B = [IL+hD] D

where D is any known px p positive definite matrix and the stochastic

scalar h is

ks

(2.6) h=ops 8= (y -Xb)’ (y-Xb).

In (2.6), k is a positive constant and C is a known positive definite
matrix.

It may be observed that for D=1, é is a Stein-type estimator and
for D= (x'x)"l it is a ridge-type adaptive estimator; for the details

about these types of estimators, see Judge and Bock (1978), and Judge et al.

(1980).
N .
Before presenting the risk function of B we introduce the following
notations:
Max®x)lx 3 M=I-M , N=@X) ¥ @a0x
2.7) n=T-p » q=n@¥2) +v,tr (D)
_crN(x'X)"IQD 2
’ = -1 E) e -n _'_v
tr(X’X) QD 2

where "*" denotes the Hadamard product of matrices.l Note that I*M =Diag (mtt)’
t=1,...,T, where m . is the tth diagonal element of M.
Some observations about g and ¢ in (2.7) will be useful for the main

results. First we note that
(2.8) Osn*sys'n*sl

where T, and T*, respectively, are the minimum and the maximum characteristic

roots of the matrix N. The result (2.8) will be proved in Section 3.2.



Next, regarding @ in (2.7) we observe that

O<cohel, whenv2>0
(2.9) <0, when \a2<0andn22
=0, whenv2=0.

The inequality O <« §p <« 1 is obvious. When v, < 0, we note from a result

2

in Rao (1973, p. 57) that 2+y, > 0. Hence § < 0 holds for all n > 2.

2
When n=1, g < 0 provided -1 < vy < 0.2

Using (2.7) and assuming disturbances to be small, we can now
present the small-disturbance approximation for the risk of é. These
results are asymptotic by nature and require disturbances to be small;
for details see Kadane (1971). It will be indicated later in this section
that, under the normality of disturbances, the dominance conditions of B
based on its exact risk are the same as those obtained by a small-disturbance
approximation [also see Ullah (1980)]. We therefore use a small-disturbance
approximation for the non-normal case where the exact expressions of risk
would be difficult to obtain.

THEOREM. Under the assumptions (2.2) the risk of é, up to order 64, is

2.10)  E@-BYQ@-) = o’r,- I’ry- o'r,

where

-1 -
" =1 (A4 ¢ ’
(2.11) 1'2= tr(X'X) qQ, r3= Zk\)l g'D Q(XBEC(?:B X (]_:*M)'G ;

¢ denotes a column unitary vector, and

)



2(n-l-v )
(2.12) 1, = -k M[k €8 11 - eg) er(¥x) tqp .
(8 cp)? D qop

- gex) op DB(1 . o g en x)”t g Byi1.

pep B c® x) Loop

The result (2,10) is derived in Section 3.1.3

Observing from (2.4) that the risk of b is

(2.13)  EG- BYQ - ) = o’r,

it follows from (2.10) that

- 0'4::

2.14) BB - BYQB - B) - E® - BYQE® - B) = - o,

4"

We shall analyze (2.14) for the cases v

I. Results for Non-normal Symmetrical Distributions (vl =

Let us write the expression (2.14) for symmetrical distributions

= 0 and v ‘# 0 separately.

(vl = 0) of disturbances as

@.15)  EG- pYQB - B) - E® - BYQ® - B) = - o'z,

Now using (2.8), (2.9) and (2.12) we can easily verify the results in the

following corollaries.

COROLIARY 1. For symmetrical leptokurtic disturbances (vl =0 and vy >0)

(2.16) E(B- B)YQ( - B) - E(b - B Qb - B) < 0

When4
2(n+v )
(2.17) 0<k S——-—' S u*[(L - 8g)d - 2(1 - 8N )];

1

d=*

tr (x' X)-]'QD >24+4

€



-1
where 5*|ggg 1, are the minimum characteristic roots of the matrices c(p’qp)

-1
and N, respectively, and p* is the minimum characteristic root of Ql' X) Qb
along withd

(2.18) 4 = T%%$(¢ - 1) >o.

COROLIARY 2. For symmetrical platykurtic disturbances (v; =0 and v, < 0)
E(B - BYQB - B) - E(b - BY Qb - B) < 0
holds for n 2 2, and for n = 1 provided 1 + v, > 0, so long as

2(otv, )

q

(2.19) 0<k= S u*[(L - 69)d ~ 2(1L - OT)]; d>2 44

2

where T* is the maximum characteristic root of N,

20
(2.20) 8, T:55(¢ - M%) >0

and the other terms are as given before.

Remarks: The following observations can now be made about the results in
Corollaries 1 and 2.

(1) For a normal distribution (v2 = 0), the conditions of dominance of é
over b in (2.17) and (2.19) reduce to the following:

26, %

2.21) 0<ks——

d-2); d =;—* tr(X’X)-lQD > 2

which tally with the conditions given in Judge and Bock (1978, chap. 10,
P. 234) on the basis of an exact risk function.6 When D = Q-lex and C = X'X,
(2.21) compares with the result in Strawderman (1978, Theorem 6).

(ii) Comparing (2.17) and (2.19) with (2.21), it is clear that the con-
ditions of dominance of é over b for symmetrical leptokurtic and platykurtic
distributions are different than the conditions for normal distribution of

disturbances.
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(iii) When D = I and C = X'X, f is the James and Stein (1961) Stein-
type estimator. Its condition of dominance over b, for the symmetrical
leptokurtic disturbances, can be written from Corollary 1 as (considering
Q =1),

2(ntv, ) -1
(2.22) O0<ks——=[(1 - 8g)d - 21 - 8T )]; d = A, zx >2+8

1 1
where Al is as given in (2.18), ¢ = tr N(X'x)- /tr(x'x)' from (2.7) and
A, 1s the minimum of the characteristic roots xl,...,xp of X'X. Similarly
we can write the dominance condition for symmetrical platykurtic dis-
turbances from Corollary 2. It is clear that in the non-normal symmetric
distribution cases the range of dominance depends on the magnitude as well
as direction of Vo5 and on the data matrix. When v, = 0, (2.22) reduces
to the dominance condition in the normal case, viz. 0 < k < -——(d 2); d > 2,
see, for example, Judge and Bock (1978).

These results indicate that the estimator E is useful compared to

P
the OLS if the degree of collinearity measured here by d = A X hil is greater
1

than 2 for the normal case and greater than 2 + Alfor the non-normal case.
For the non-normal case the usefulness of these estimators will crucially
depend on the magnitude of Al' It is likely that d > 2 + Al may not be
satisfied for the highly collinear data.

The dominance conditions for the ridge-type (D= (X'X)-l) estimators,
and for other choices of C, D and Q can be easily written from the

Corollaries 1 and 2.

(iv) In general, if we choose C, Q and D such that

(2.23) C(D'QD)-]' =1 and (x’x)'lqn =1
then we get estimators B from (2.6) whose dominance condition for vy > 0 will be

2(mriv,)
(2.24) 0<k< [(1-91])1:-2(1-91]*)] P>2+4
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where A, =281 - 6T (T-1,) > 0 from (2.18) and T 1s the simple average of
the characteristic roots of N. For vy < 0, we replace T]* with T* in (2.24)

and note, from (2.9) that © < 0 in this case. Further, when v

y = 0 (nor11'1a1

disturbances) then the dominance condition reduces to
(2.25) 0<k< L(p-Z) P~ 2.
* o2 ’

It is clear from (2.24) and (2.25) that the range of k as well as the
condition on p are free from the data matrix in the normal case, but it is
not so in the non-normal case. This restricts the applicability of the
shrinkage type estimators for the non-normal case. For example, in the non-
normal case we require that the number of exogenous variables, p, be greater

than 2 + by, where A]_ depends on the data matrix through T] In addition,

”

.

both the range of k and the condition on p depend upon the shape of distribution
through 6. Since 5 is greater than zero, it is clear that in general p would
be required to be greater than or equal to four. The exact numbers of p would,
of course, depend upon A1 For the case of multivariate mean vector Brandwein
(1979) and Brandwein and Strawderman (1980) have developed shrinkage estimators
for p 2 4.

We now look into the choices of C, Q and D which satisfy (2.23).
For a given Q in the loss function, (B - ]3)'Q(ﬁ - B), (2.23) gives
c=X XQ'lx' Xand D = Q-lx' X. Substituting these values of C and D in (2.5)
and (2.6) we get the following estimator

1

B =l1+ B’x’xzflx’Xb XXl b

whose dominance condition is given by (2.24). Similarly, for a given choice
of D, (2.23) gives Q = X'XD-]' and ¢ = D' X' X. Using this value of C in (2.6)
we get the estimator

- ks -1
Rp=ll+yrym Dl P

whose dominace condition is (2.24) for the loss function (éz-a)'x' XD.]'(BZ-B).

-
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This result gives the values of Q and C for the choices of D = I and D = (X'X)-l
in Stein-type and Ridge-type estimators, respectively. Remember that the choice

of D is such that Q = X ! is positive definite.

II. The Case of Skewed Distributions (v; # 0)

Let us write the expression (2.14) as
EB - 8)QE - B) - E(® - BY'Q(b - B) = - o’ry - o'x,

where T, is as given in (2.12) and r, from (2.11) is

3

/D’ ¥’ x)"1¥ (1M ! p’ -
r3=2k\:1u-(—5rcﬁ;(—&=2kn%%g‘;a=cw(b,s)

where 8 = u'Mu/n = y'My/n is the disturbance variance estimator and

- -1 - -1 -
o = n cov(b,s) = (X'X) X E[u'Mu-u] = \)1(X'X) X (IM)¢ is a px1 vector
of covariance between b and s. We note that if all the elements of

a = cov(b,g) and B are of the same (opposite) sign, then r., is positive

3

(negative), otherwise the sign of ry is not clear.

Recall that r4 is positive under the conditions (2.17) when v,
(2.19) when v, < 0 and (2.21) when v, = 0. Thus under the ranges of k implied

by these conditions, f dominates b for the skewed distribution of disturbances,

>O’

i.e.,
E(B-B) Q(-B) - E(b-B) Q(b-p) < O,
when B and O = cov(b,§) are of the same sign. This is a sufficient condition.
Thus we observe from above and the results in I that for the better per-
formance of the class of estimators defined by (2.5) with respect to the least
squares estimator, the set of conditions for non-normal distributions of

disturbances may be quite different from those for normal distribution.
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3. DERIVATIONS OF RESULTS

In this section we derive the risk function of é given in (2.10) of

Section 2 and provide the proof of the inequality in (2.8).

3.1 Risk Function of ﬁ
ILet us rewrite the model (2.1) as
(3.1) y = XB + ov (u = ov)
so that as o approaches 0, the disturbance term tends to be small. The ele-
ments of v are independently and identically distributed.
Thus from (2.2) we have for all t and t* (t,t* =1,2,...,T)

E(vt)=0 R E(v,v_ ) =1 if t = t*

tt*
3.2) =0 if t # t¥

3 4
E(vt) =V, E(vt) = v, + 3.
Now we have the following lemma:

LEMMA: If A is any nonstochastic matrix of order T X T, then

(3.3) EW Av) =tr A
(3.4) EV Avey) = v, (T*) e

(3.5) E(v' Avew') = vz(I*A) + (tr A)I + A + A’

where © is a T X 1 vector with all elements unity.

\e

"

[2]



1

Proof: Owing to independence and identical distribution of the elements

: of v, we observe that

. 3.6) EG Av)

trA- E(wW)

trA-1

which gives (3.3).

Next, the t*-th element of EW Av.v) is given by

= Bpkex Vg

because the expectation term is nonzero only when L, =t, = t*, This

leads ut to (3.4).

Similarly, the (t*,t**)-th element of E(W' Av. v ) is

T

(3.8) Z a EV, V., V_x Vi gx)
tgst, Gty T Ep BE

When t* = t** it is easy to verify that (3.8) is equal to
3.9 trA + (v2+2)at*t*
and when t* # t**, it is equal to

(3.10) at*t** + at**t* .



12

Combining (3.9) and (3.10) we obtain (3.5) from (3.8).
Now for the derivation of the result in (2,10) we first substitute

zv’ﬁw/b’cb is at least of =

(3.1) in (2.6) and note that h = ks/b’Cb = ko'
order 02. Thus, for sufficiently small ¢ in Kadane's (1971) sense, we

can write (2.5) as

= (I+hD) Y = (I-hD)b + ...

or
A - ! M
B =000 XY - c-r:kv " 1 ST
g’ CB+20p' C(X'X) X' v+ VXX X) CcX'X) X'v
(B+o ) X' v} + ...
(3.11) .
-1
- 1,  2kv'My B'c(x’x)'lx’ 2 Y X(X’X) o) ¥y
cX'X) X'v-¢ : cB[1+2° 57 CB 57 Cp 1%,
D{B+0X'X) v} + ...
Expanding the expression in square brackets and retaining terms to
order 0(03), we find
(3.12) B - B = OE, + 0%E + o°F
1 2 3
where
@.13) g = @ Xy
h’l =
(.14) g, = Feor DB
- Icv’Mv ) & C(X'X) Ity *
(3.15) g, TR [DX'X)” lyy o CB DBl .
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Thus we have, to order 0(04),
(3.16)  E@- )’ QB - B) = 0PE(E[QE;) +207E(E|QE,) +0 E(E)QE, +2E,QE,).
Using (3.3), (3.4) and (3.5), it is easy to verify that

E[v XX X)'lq(x’ x)'lx' v] = tr(X'X)-]'Q |

(3.17)  E(§Qg))

(.18)  E(EQE) = ze; CB X gy x) W - Elv i v]

- . B )Y (1l
V1 B'CB

(3.19)  E(E)QE,) = K2 E’ME@ trM - E[v' Mv v’ ]
(8’ CB)

= K2[n(n +2) +v, trH(T+M) ] glgp_g
(3 CB)

- 1% & D’ gnzg
(8’ cp)
(3.20)  E(E'QE.) = - =5 trX (X X)"1QD{I - 2= pp' C} X' X)X EV v - w' ]
. 153 57 CB B’ CB

- ner @0 T+, er 0 oow

- F"ZEE {ng’ c(x’ %) qDp +v,8’ CN (X’ x) Topp1]
where ¥ = (X' X) IX' (I¥DX = I- N by using
(3.21) (I#M) = 1 - (T*M) .

Substituting (3.17) - (3.21) in (3,16), we obtain the expression (2.10)

for the risk, to order 0(04), of E after a little algebraic manipulation,
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3.2 Proof of the Inequality in 2,8

Let us write from equation (2.7)

_tr v @x)lop _tr NL
er %) lop tr L

where N = (x'x)'lx' (IsM)X; M x(x'X)’lx’, and L = (X’X)'IQD. We require

to show that (see (2.8))
O<Ths<gsi <l

where T and T* are the minimum and maximum characteristic roots,
respectively, of the matrix N,

First let us note that N is at least positive semidefinite, see
Rao (1973, p. 77, problem 32), Further L is positive definite., Thus

tr NL/tr L is a non-negative quantity, and using Anderson and Gupta (1963,

p. 524)
tr NL g
(3.22) 0 <M < il < 7.

Now let P be a non-singular matrix such that P"X’XP = I or

X'x = (PP')'l. Thus M = x(x’X)'lx' = XPP' X’

2z’ (Z = XP) and

N = (x'X)'lx' (I*M)X = PZ’ (I*zz')ZP'l. Since P is non-singular, characteristic
roots of p-lNP = characteristic roots of N = characteristic roots of Z'(I*ZZ')Z.
But Z'Z = I and 2Z' is idempotent. Therefore using Poincaré separation

theorem [Rao (1973), p. 64] characteristic roots of N are < 1, Using this

in (3.22), the inequality in (2,8) follows,

.

o

i
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FOOTNOTES

llf A= ((aij)) and B = ((bij)) are two matrices with i,j =1,...,n,

then the Hadamard product is defined as AxB = ((aij bij))’ see Rao (1973,
p. 30).

2When n=0, s =0 and ﬁ from (2.5) is equal to b, This value of n
is therefore excluded in our study.
3Whe.n the disturbances are normal (vz = 0), the result in (2,10)
compares with that of Ullah and Ullah (1978) for D = I = Q and C = X'X,
Also see Srivastava and Upadhyaya (1977).
4Note that d > 2 implies p = 3.

5In obtaining this result we note from Rao (1973, p. 74) that if A and

4 .
B are two matrices then minégr%g) is the minimum root of IA - kB] = 0,
B .

6Notice from Section 3 that the risk function of (I + hD)-lb is
identical to the risk function of (I - hD)b up to the order of approximation

considered, Judge and Bock have considered the estimators (I - hD)b.
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