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ABSTRACT 

Plants’ cell walls have unique chemical composition and features which enable them to 

play essential roles during plant development as shaping the cells and providing 

intercellular communication between adjacent cells. Polysaccharides, including callose, and 

glycoproteins are known as the main constituents of the cell wall. Callose, a linear β-1,3-

glucan polymer, is accumulated at the cell plate during cytokinesis, in plasmodesmata, 

where it regulates cell-to-cell communication, in dormant phloem, where it seals sieve 

plates after mechanical injury and pathogen attack, and in male and female gametophytes. 

GLUCAN SYNTHASE-LIKE (GSL) genes in Arabidopsis comprise a family of 12 

members. A new allele of GSL8, essp8, was identified as having seedling-lethal phenotype 

through a genetic screen for Arabidopsis mutants showing ectopic expression of seed 

storage proteins (essp). The gene responsible for the observed mutant phenotype was 

detected using a combination of bulked-segregant analysis, rough-mapping, and next-

generation mapping. An EMS-induced point mutation was identified at an intron splice site 

of GSL8, predicted to introduce a premature STOP-codon. essp8 seedlings exhibit 

pleiotropic phenotypic defects, including disruption of root tissue patterning, dwarfism and 

seedling lethality. Histochemical detection of callose and cell-to-cell diffusion assays 

showed reduction of callose deposition at the cell plates and plasmodesmata, cytokinesis 

defects and significant increase in size exclusion limit of plasmodesmata in essp8 

seedlings. Further investigation showed that the increase in size exclusion limit leads to an 

alteration in symplastic trafficking in primary roots of essp8 seedlings. Plasmodesmata 

defects in essp8 induce ectopic movement of two non-cell-autonomous factors, SHORT 

ROOT and microRNA165/6, both required for root radial patterning during embryonic root 

development. Attempts to identify the components of a hypothetical callose synthase 

complex revealed the interaction of GSL8 with two plasmodesmata-associated proteins, 

PLASMODESMATA-LOCALIZED PROTEIN 5 and β-1,3-GLUCANASE, as well as 

SUCROSE SYNTHASE 1, suggesting that they all might be parts of a single complex. The 

proposed putative complex might regulate callose deposition at the plasmodesmata and 

thereby determines the size exclusion limit. In summary, my findings suggest that GSL8 is 

required for cell wall integrity, maintaining the basic ploidy level and regulation of 

symplastic movement during early seedling development in Arabidopsis.  



 

iii 

 

KEYWORDS 

Arabidopsis thaliana, callose, GLUCAN SYNTHASE-LIKE 8, cytokinesis, 

plasmodesmata, β-1,3-GLUCANASE, PLASMODESMATA-LOCALIZED PROTEIN 5, 

intercellular signaling, symplastic trafficking, callose synthase complex  

  



 

iv 

 

ACKNOWLEDGMENTS  

Firstly, I would like to express my sincere gratitude to my supervisor and mentor Dr. 

Yuhai Cui for his immense knowledge and continuous support of my research. His 

guidance and patience helped me during my Ph.D. and writing of this thesis. I genuinely 

appreciate all the support and valuable advice from my co-supervisor Dr. Susanne 

Kohalmi, thanks for helping me to get through the hard times and frustrations. 

Beside my supervisors, I would like to thank the rest of my thesis committee Dr. Abdelali 

Hannoufa and Dr. Sashko Damjanovski for their insightful comments and encouragement 

which led me to widen my research from various perspectives. I also would like to thank 

Dr. Ryan Austin in Agriculture and Agri-Food Canada (AAFC) for assisting with the 

next-generation sequencing data analysis.  

I thank all my fellow labmates in Dr. Cui’s lab, Dr. Gang (Gary) Tian, Dr. Chenlong Li, 

Chen (Alex) Chen, Jie Shu, Dr. Shaomin Bian, Vi Nguyen, Md Jakir Hossan and Raj 

Thapa, for all their stimulating discussions and help. 

My sincere thanks go to Dr. Reza Saberianfar for all his helpful advice and comments on 

confocal microscopy, and his friendship.  

I am grateful to Ms. Dorothy Drew for proofreading this thesis. 

I also thank all my friends in AAFC and department of biology at Western, with special 

mention of Mandana Miri, Dr. Mehran Dastmalchi, Arun Angurajvadivel, Dr. Preetam 

Janakirama and Sara Abolhassani Rad, for all the joyful conversations during the last five 

years. In particular, I thank Dr. Nadia P. Morales for all her support and wonderful friendship. 

I specifically would like to thank Amir Beygi for all his endless support, encouragement 

and incredible patience. I could not have completed this project without him. Thanks for 

making my life shinier. 

Lastly, but definitely not the least, I thank my parents, Mohammad Hossein and 

Farzaneh, and my sister, Bita, for supporting me throughout my whole life and this 

journey. I am really grateful for everything that you have done for me.  



 

v 

 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

KEYWORDS ..................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

TABLE OF CONTENTS .................................................................................................... v 

LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES .......................................................................................................... xii 

LIST OF APPENDICES ................................................................................................... xv 

LIST OF ABBREVIATIONS .......................................................................................... xvi 

CHAPTER 1 ....................................................................................................................... 1 

1 INTRODUCTION ......................................................................................................... 2 

1.1 Plant cell wall: more than a physical barrier ......................................................... 2 

1.1.1 Callose......................................................................................................... 2 

1.1.2 Structure of callose ..................................................................................... 2 

1.1.3 Callose in fungi ........................................................................................... 4 

1.1.4 Callose in plants .......................................................................................... 4 

1.1.5 Role of callose in cytokinesis and cell plate formation .............................. 5 

1.1.6 Role of callose in plasmodesmata regulation.............................................. 7 

1.2 Callose biosynthesis .............................................................................................. 9 

1.2.1 Glucan synthase in fungi ............................................................................. 9 



 

vi 

 

1.2.2 Glucan synthase-like proteins in plants .................................................... 10 

1.2.3 GLUCAN SYTHASE-LIKE 8 ................................................................. 13 

1.2.4 Callose synthase complex ......................................................................... 15 

1.3 Regulatory role of plasmodesmata in development ............................................ 16 

1.4 Protein constituents of plasmodesmata ............................................................... 17 

1.4.1 Plasmodesmata-localized proteins ............................................................ 20 

1.4.2 β-1,3-Glucanases ....................................................................................... 21 

1.5 Symplastic movement of mobile factors through plasmodesmata ...................... 22 

1.5.1 Mobile transcription factors ...................................................................... 23 

1.5.2 SHORT ROOT.......................................................................................... 24 

1.5.3 WUSCHEL ............................................................................................... 25 

1.5.4 Movement of small RNAs through plasmodesmata ................................. 27 

1.6 Regulation of plasmodesmata size exclusion limit ............................................. 28 

1.7 Dynamic modulation of plasmodesmata connectivity ........................................ 30 

1.8 Identification of the essp8 mutant ....................................................................... 31 

1.9 Thesis objectives ................................................................................................. 32 

CHAPTER 2 ..................................................................................................................... 33 

2 MATERIAL AND METHODS ................................................................................... 34 

2.1 Plant materials and growth conditions ................................................................ 34 

2.2 Crossing of Arabidopsis plants ............................................................................ 34 



 

vii 

 

2.3 Histochemical assays ........................................................................................... 35 

2.3.1 GUS staining ............................................................................................. 35 

2.3.2 Sudan red staining ..................................................................................... 35 

2.3.3 Aniline blue staining ................................................................................. 35 

2.3.4 Propidium iodide staining ......................................................................... 36 

2.4 Next-generation mapping of essp8 ...................................................................... 36 

2.5 Plasmodesmata size exclusion limit assay .......................................................... 37 

2.6 Generation of stable transgenic plants ................................................................. 37 

2.6.1 Generation of transgenic constructs .......................................................... 38 

2.6.2 Generation of centromere-labeled transgenic plants................................. 39 

2.6.3 Generation of miRNA165/6-sensor line ................................................... 39 

2.6.4 Generation of artificial miRNA transgene constructs ............................... 40 

2.7 Polymerase chain reaction-based genotyping ..................................................... 40 

2.8 Gene expression analysis ..................................................................................... 41 

2.9 Förster resonance energy transfer ........................................................................ 41 

2.10 Microscopy and image analysis........................................................................... 42 

2.11 Statistical analysis ............................................................................................... 42 

CHAPTER 3 ..................................................................................................................... 43 

3 RESULTS .................................................................................................................... 44 

3.1 Map-based cloning of the essp8 mutation ........................................................... 44 



 

viii 

 

3.1.1 Morphological phenotype of essp8 seedlings ........................................... 44 

3.1.2 Next-generation mapping of essp8 locus .................................................. 50 

3.1.3 essp8 is allelic to GSL8 ............................................................................. 55 

3.2 Phylogenetic analysis of Arabidopsis GSLs........................................................ 59 

3.2.1 The cytoplasmic domains of Arabidopsis GSLs are highly conserved .... 59 

3.3 Callose deposition at both cell plate and PD is decreased in essp8 root ............. 61 

3.4 essp8 is a cytokinesis-defective mutant ............................................................... 61 

3.4.1 GSL8 is required for the completion of plant cytokinesis......................... 61 

3.4.2 Cytokinesis impairment in essp8 induces ectopic endomitosis ................ 65 

3.5 GSL8 regulates symplastic connectivity through plasmodesmata ...................... 68 

3.5.1 Loss of GSL8 induces an increase in plasmodesmata size exclusion limit

................................................................................................................... 68 

3.5.2 Dysregulation of SHORT ROOT movement through PD in the essp8   

roots........................................................................................................... 72 

3.5.3 The movement of miR165/6 is altered in the essp8 root .......................... 76 

3.5.4 WUSCHEL symplastic movement might be dysregulated in essp8 shoot 

apical meristem ......................................................................................... 76 

3.6 Attempts to rescue essp8 mutant phenotype ....................................................... 78 

3.6.1 Knocking out AtBG_PPAP cannot restore callose balance at the PD in 

essp8 .......................................................................................................... 78 

3.6.2 PDLP5 overexpression induces callose deposition at PD ........................ 81 



 

ix 

 

3.6.3 PDLP5 and AtBG_PPAP regulate PD’s SEL ........................................... 83 

3.7 Identification of GSL8 interacting partners ......................................................... 83 

3.7.1 GSL8 cytoplasmic domain is required for its interaction with SUS1, 

AtBG_PPAP, PDLP5 and SCD1 .............................................................. 89 

3.7.2 GSL10 might be part of the callose synthase complex ............................. 89 

CHAPTER 4 ..................................................................................................................... 93 

4 DISCUSSION .............................................................................................................. 94 

4.1 essp8 is a new allele of GSL8 .............................................................................. 94 

4.1.1 gsl8 mutation causes embryo defects and seedling lethality .................... 95 

4.2 gsl8 phenotypic defects are partially caused by cytokinesis impairment ............ 96 

4.2.1 Cytokinesis defects might cause lethality of essp8 seedlings ................... 97 

4.2.2 Cytokinesis-defective mutants do not exhibit severe tissue impairments 97 

4.3 Cell-to-cell communication is relaxed in essp8 hypocotyls ................................ 99 

4.3.1 GSL8 is required for highly-regulated trafficking of SHR ..................... 100 

4.3.2 Loss of GSL8 dysregulates symplastic movement of microR165/6 ....... 102 

4.4 PDLP5 function is likely to be GSL8-dependent .............................................. 103 

4.5 GSL8 forms a complex to synthesize callose and regulate its deposition ......... 106 

4.5.1 SUCROSE SYNTHASE 1, a provider of UDP-Glc to GSL8 ................ 106 

4.5.2 A PD-localized β-1,3-glucanase and PDLP5 regulate PD through GSL8

................................................................................................................. 107 

4.5.3 SCD1, an interacting partner of GSL8 .................................................... 108 



 

x 

 

4.5.4 GSL8 and GSL10 interplay might be required for proper function of 

callose synthase complex ........................................................................ 108 

4.5.5 GSL8 cytoplasmic loops are required for its interaction with the     

partners .................................................................................................... 109 

PERSPECTIVES ............................................................................................................ 111 

BIBLIOGRAPGHY ........................................................................................................ 113 

CURRICULUM VITAE ................................................................................................. 155 

 

  



 

xi 

 

LIST OF TABLES 

Table 1.1   List of a subset of proteins previously identified in the PD proteome. .......... 18 

Table 3.1   Segregation of homozygous essp8 seedlings in the progeny of selfed      

                  ESSP8/essp8 heterozygous plants ................................................................... 46 

Table 3.2   The percentage of defective seeds in one silique from selfed ESSP8/essp8   

                   heterozygous plants ........................................................................................ 47 

 



 

xii 

 

LIST OF FIGURES  

Figure 1.1     Chemical structure of callose. ....................................................................... 3 

Figure 1.2     Formation of defective cell plate can lead to abnormal mitosis. ................... 6 

Figure 1.3     Diagram of a simple primary PD. .................................................................. 8 

Figure 1.4     Diagram of SHR and miR165/6 intercellular movement in Arabidopsis       

                      root. ............................................................................................................. 26 

Figure 1.5     Callose deposition at the neck region regulates PD permeability. .............. 29 

Figure 3.1     Morphological phenotype of the essp8 mutant. .......................................... 45 

Figure 3.2     The essp8 mutation causes somatic embryo formation with an incomplete     

                      penetrance. .................................................................................................. 48 

Figure 3.3     essp8 mutant seedlings form somatic embryos. .......................................... 49 

Figure 3.4     Rough mapping of the essp8 mutation. ....................................................... 51 

Figure 3.5     Identification of the essp8 mutation using NGM. ....................................... 52 

Figure 3.6     Detection of SNPs within the candidate region for the essp8 mutation. ..... 53 

Figure 3.7     GLUCAN SYNTHASE-LIKE 8 (GSL8) genomic and protein structure. ...... 54 

Figure 3.8     Morphological phenotypes of gsl8 T-DNA mutant seedlings compared to     

                       essp8. ............................................................................................................ 56 

Figure 3.9     Analysis of the root morphological phenotype of gsl8 mutants showing      

                      severe defects in root tissue patterning........................................................ 57 

Figure 3.10   Allelism test confirms that ESSP8 is an allele of GSL8. ............................. 58 

Figure 3.11   Phylogenetic tree of Arabidopsis GSLs. ..................................................... 60 



 

xiii 

 

Figure 3.12   The predicted conserved domains of the GSL8 protein. ............................. 62 

Figure 3.13   Callose deposition in the primary roots of gsl8 mutants. ............................ 63 

Figure 3.14   Morphological phenotypes of cytokinesis-defective mutants. .................... 66 

Figure 3.15   Formation of binucleated cells in the primary roots of gsl8 and cytokinesis-     

                      defective mutants. ........................................................................................ 67 

Figure 3.16   Comparison of centromere numbers in the primary roots of wild-type          

                      Col-0 and gsl8 mutants shows an increase in gsl8 mutants. ....................... 69 

Figure 3.17   Comparison of polyploid cells in essp8 mutant at different ages shows an      

                       increase in ploidy level with age . ................................................................ 71 

Figure 3.18   Quantitative measurement of the fluorescent probes movement in essp8      

                      hypocotyl. .................................................................................................... 73 

Figure 3.19   Symplastic movement of SHR is altered in essp8. ...................................... 75 

Figure 3.20   Cell-to-cell movement of miR165/6 is dysregulated in essp8..................... 77 

Figure 3.21   Analysis of CLAVATA3 transcript levels by qRT-PCR. ............................. 79 

Figure 3.22   Phenotypes of atbg-1 gsl8 double mutants. ................................................. 82 

Figure 3.23   Phenotype of PDLP5-OE seedlings and PDLP5 subcellular localization. .. 84 

Figure 3.24   Measurement of symplastic movement in various genetic and transgenic       

                      backgrounds. ............................................................................................... 85 

Figure 3.25   A hypothetical interactome network for GSL8. .......................................... 87 

Figure 3.26   GSL8 interacts with sucrose synthase, AtBG_PPAP, PDLP5 and SCD1. .. 88 

Figure 3.27   The GSL8 cytoplasmic loop is required for its interaction with SUS1,       

                      AtBG_PPAP, PDLP5 and SCD1. ............................................................... 90 



 

xiv 

 

Figure 3.28   Morphological phenotype of XVE::aMIRGSL8/GSL10 seedling. ............... 92 

Figure 4.1     A proposed model for GSL8 role in PD regulation. .................................. 110 

  



 

xv 

 

LIST OF APPENDICES 

Appendix I      List of mutant lines and primers used for genotyping ............................ 138 

Appendix II     List of primers used for essp8 rough-mapping ....................................... 140 

Appendix III    List of primers used to generate expression, overexpression and FRET-      

                        related constructs .................................................................................... 141 

Appendix IV    T-DNA insertions-specific primers used for genotyping ....................... 142 

Appendix V     List of primers used for qRT-PCR .......................................................... 143 

Appendix VI   List of Arabidopsis GSLs accession numbers ........................................ 144 

Appendix VII  Alignment of the Arabidopsis GSL family amino acid sequence .......... 145 

 

  



 

xvi 

 

LIST OF ABBREVIATIONS 

ABRC Arabidopsis Biological Resource Center 

amiRNA Artificial microRNA 

AP2 APETALA 2 

ARF7 AUXIN RESPONSE FACTOR 7 

BAC Bacterial Artificial Chromosome 

BC Back Cross 

BG Endo-1,3-β-GLUCOSIDASE 

bHLH Basic Helix-Loop-Helix 

BSA Bulked-Segregant Analysis 

CALS Callose Synthase 

CaMV Cauliflower Mosaic Virus 

cDNA Complementary DNA 

CDS Coding Sequence 

CEI Cortex/Endodermis Initial 

CEID Cortex/Endodermis Initial Daughter Cell 

CENH3 Centromeric Histone H3 

CESA Cellulose Synthase Complex 

CFP Cyan Fluorescent Protein 

CLV CLAVATA 

 



 

xvii 

 

cM Centimorgan 

Col-0 Columbia Accession 

CZ Central Zone 

DMSO Dimethyl Sulfoxide 

DNA Deoxyribonucleic Acid 

dsRNAi Double-Stranded RNA Interference 

EDTA Ethylene Diamine Tetraacetic Acid 

EMS Ethyl Methanesulfonate 

ER Endoplasmic Reticulum 

essp Ectopic Expression of the Seeds Storage Protein 

et2 Enlarged Tetrad2 

FRET Förster Resonance Energy Transfer  

FT FLOWERING LOCUS T 

GAPDH GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 

GAT GFP ARRESTED TRAFFICKING 

gDNA Genomic DNA 

GFLV Grapevine Fan Leaf Virus 

GFP Green Fluorescent Protein 

GPI-AP Glycosylphosphatidylinositol-Anchored Protein 



 

xviii 

 

GSL Glucan Synthase-Like 

GTP Guanosine-5'-Triphosphate 

HD-ZIP III Class III Homeodomain Leucine Zipper 

HG Homogalacturonan 

KN1 KNOTTED1 

 KNOX KNOTTED 1-Like Homeobox  

KOB1 KOBITO 1 

LB Luria-Bertani Broth 

LCR LEAF CURLING RESPONSIVENESS 

Ler Landsberg erecta 

 LFY LEAFY 

MADS MCM1, AGAMOUS, DEFICIENS and SRF 

MC Middle Cortex  

miR165/6 MicroRNA165/6 

 miRNA MicroRNA 

MP Movement Protein 

MS Murashige and Skoog 

NCATF Non-Cell-Autonomous Transcription Factor  

NGS Next-Generation Sequencing 



 

xix 

 

OE Overexpression 

PCR Polymerase Chain Reaction 

PD Plasmodesmata 

PDLP PLASMODESMTA-LOCALIZED PROTEIN 

PHB PHABULOSA 

PI Propidium Iodide 

PLT2 PLETHORA 2 

PM Plasma Membrane 

PME Pectin Methylesterase 

PVX Potato Virus X 

QC Quiescent Center 

qRT-PCR Quantitative Reverse Transcription-PCR 

RAM Root Apical Meristem 

RGP Reversibly Glycosylated Polypeptide 

RLP Receptor-Like Protein 

RNA Ribonucleic Acid 

RNAi RNA Interference 

ROP RHO-LIKE GTPase 

ROS Reactive Oxygen Species 



 

xx 

 

SA Salicylic Acid 

SAM Shoot Apical Meristem 

SCD1 STOMATAL CYTOKINESIS-DEFECTIVE 1 

SCR SCARECROW 

SCW Secondary Cell Wall 

SDS Sodium Dodecyl Sulfate 

SEL Size Exclusion Limit  

SHR SHORT ROOT 

SIEL SHR-INTERACTING EMBRYONIC LETHAL 

siRNA Small Interfering RNA 

SNP Single Nucleotide Polymorphism 

SPCH SPEECHLESS 

SSLP Simple Sequence Length Polymorphism 

SSP Seed Storage Protein 

SuSy Sucrose Synthase 

tasiRNA Trans-acting siRNA 

TMD Transmembrane Domain 

TMV Tobacco Mosaic Virus 

TRX-m3 Type m Thioredoxin 



 

xxi 

 

TVCV Turnip Vein Clearing Virus 

UDP-Glc Uracil-Diphosphate Glucose  

UGT1 UDP Glucose Transferase 1 

UTR Untranslated Region 

 VRC Viral Replication Complex 

WT Wild Type  

WUS WUSCHEL 

YFP Yellow Fluorescent Protein 

 

All numerical units included in this thesis are standard SI units 

  



1 

 

CHAPTER 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



2 

 

1 INTRODUCTION 

1.1 Plant cell wall: more than a physical barrier 

Proper development of multicellular organisms is achieved through coordination of cell 

proliferation and differentiation. Different from animal systems, plant cells have rigid cell 

walls and, therefore, remain still after cell division. Plat cell walls have a unique chemical 

composition that enables them to perform several essential functions during plant 

development, such as shaping different types of cells, providing intercellular 

communication between adjacent cells and serving as a source of signaling molecules 

(Burton et al., 2010). Specialized cell walls in plants are responsible for shaping the cells 

Plant cell walls are mainly composed of polysaccharides such as cellulose and callose, 

and glycoproteins (Lerouxel et al., 2006). During the past two decades, due to the 

emergence of new cellular, molecular and genomics tools, an impressive progress has 

been made towards identification of callose structure and its important roles in plant 

development.  

1.1.1 Callose 

The chemical structure of callose was characterized for the first time in 1957 by Aspinall 

and Kessler (1957). Callose is formed by β-glucan polysaccharides and known as a 

component of cell walls in yeasts, plants, fungi, and lichens. β-glucans usually form local 

depositions at the cell wall and can also act as an energy reservoir in living organisms 

(Piršelová and Matušíková, 2013).  

1.1.2 Structure of callose 

Callose is a linear β-1,3-glucan with some 1,6 branches formed by hundreds of glucose 

residues bound by β-1,3-glycosidic bridges (Fig. 1.1). The structure and chemical 

composition of callose, such as the number of branches, can differ slightly depending on 

the cell wall type. The callose structure is not well characterized compared to cellulose, 

which is a linear long (>1,000 glucose units) chain of unbranched β-1,4-glucan with a 

crystal-like structure. Callose seems to form more of a helical structure (Piršelová and 

Matušíková, 2013).   
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Figure 1.1 Chemical structure of callose. 

Callose is a polymer of glucose formed by hundreds of glucose residues bound via         

β-1,3-glycosidic bridges. A Few 1,6 branches can also be found in callose structure. 

Figure modified from Chen and Kim (2009). 
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1.1.3 Callose in fungi 

Glucan is known as the major structural polysaccharide in the cell wall of fungi which 

constitutes approximately 50-60% of its dry weight (Kapteyn et al., 1999). Glucan 

polymers are formed through assembly of repeating glucose residues into chains using 

different types of chemical linkages. Around 65-90% of the fungi cell wall glucan is      

β-1,3-glucan, with a lower ratio of other glucans, such as β-1,6-, mixed β-1,3- and α-1,4-, 

α-1,3-, and -1,4-linked glucans (Bernard and Latgé, 2001; Klis et al., 2001; Grün et al., 

2005). β-1,3-glucan has been characterized as the most important component of fungi cell 

walls which forms a platform for the other components to attach covalently. Therefore,  

β-1,3-glucan synthesis is required for cell wall formation and normal development of 

fungi (Bowman and Free, 2006). Polymers of β-1,3-glucan are synthesized by                

β-1,3-glucan synthase complexes, which are associated with the plasma membrane.        

β-1,3-glucan polymers are expelled into the extracellular space after synthesis (Shematek 

et al., 1980; Douglas, 2001). Glucan chains are integrated within the cell wall at points of 

active cell wall synthesis.  

Glucan synthase complexes are mainly localized to areas of cell growth, budding, or 

branching (Qadota et al., 1996; Beauvais et al., 2001). Long linear chains of glucan 

have approximately 1,500 glucose residues which are connected via β-1,3-linkages. In 

every 40-50 glucose residues, the carbon-6 positions become sites for attachment of 

additional β-1,3-glucans to generate a branched structure (Manners et al., 1973; Fontaine 

et al., 2000). Branched glucans provide mechanical strength and integrity to the cell wall 

by cross-linking with each other, as well as with mannoproteins (Kollár et al., 1997). 

1.1.4 Callose in plants 

In contrast to extensive studies on cellulose, a similar linear polysaccharide that accounts 

for 15-30% of the dry mass of all primary cell walls, research on callose and the 

molecular mechanism of its synthesis in plants has begun relatively recently (Verma and 

Hong, 2001; Dong et al., 2005; 2008; Dhugga, 2012). Callose is synthesized in the cell 

walls of specialized cells during specific stages of development.  
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Even though callose is accumulated in the cell wall at a lower level compared to 

cellulose, it is biologically significant as it plays crucial roles in various biological 

processes during plant growth, development, and also plant defense in response to 

adverse environmental stimuli (Chen and Kim, 2009). Callose is required for cell plate 

formation during cell division and cytokinesis, and is an important part of vascular 

bundles, pollen wall exine, and trichomes (Piršelová and Matušíková, 2013). Callose 

deposition at plasmodesmata (PD) and its subsequent degradation are critical for the 

regulation of symplastic movement of various substances. It is also important for 

formation and closing of sieve plate pores. Thus, callose plays an important role in cell-

to-cell communication, and is required for proper development at different stages (Levy 

et al., 2006; Lucas et al., 2009; Xu and Jackson, 2010; Maule et al., 2011; Zavaliev et al., 

2011; Xie et al., 2012). Most of the recent knowledge regarding the function of callose in 

plant development has been generated through studying Arabidopsis thaliana knockout 

lines for genes encoding callose synthases (Piršelová and Matušíková, 2013).  

1.1.5 Role of callose in cytokinesis and cell plate formation 

Cytokinesis in plants is different from that in animals because of some unique properties 

which can be considered as a type of polarized secretion (Assaad, 2001). At the end of 

anaphase of cell division, the components required for cell wall formation are carried to 

the equator of the dividing cell by secretory vesicles that are derived from Golgi. Later, 

these vesicles will fuse to form a membrane-attached structure, called the tubulovesicular 

network, which will give rise to the cell plate (Söllner et al., 2002). The cell plate will 

keep expanding until it binds to the mother cell wall at the division site. Callose deposition 

at the tubulovesicular network enforces widening and consolidation of tubules leading to 

conversion of the network into a fenestrated sheet (Samuels et al., 1995) to prevent the 

swelling of this structure (Verma, 2001). Cell plate maturation will proceed by callose 

replacement with cellulose and pectin that will eventually form the cell wall (Kakimoto and 

Shibaoka, 1992; Samuels et al., 1995). Therefore, a delay or absence of callose 

biosynthesis, as well as its overproduction can cause alteration of the cell plate composition 

and generate daughter cells with different ploidy levels (Verma, 2001) (Fig. 1.2).   
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Figure 1.2 Formation of defective cell plate can lead to abnormal mitosis. 

(A) Abortion of cell division after formation of nuclear envelope causes packaging of two 

newly formed nuclei into one cell and generation of binucleated cell and, therefore, 

ectopic polyploidization. (B) If the cell division abortion occurs before nuclear envelope 

formation, even though the sister chromatids have already been separated, they will be 

encapsulated into the same nucleus and, therefore, cells with different ploidy levels, 

which is known as ectopic endomitosis, will be generated. 
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Defects in cytokinesis can induce ectopic endopolyploidy which has been reported for 

several organisms and cell types (Hatzfeld and Buttin, 1975; Thompson and Lindl, 1976; 

Karess et al., 1991; Castrillon and Wasserman, 1994; Neufeld and Rubin, 1994; Liu et al., 

1997; Spielman et al., 1997; Lordier et al., 2008; Pampalona et al., 2012; Serres et al., 

2012). Cell plate-destructive conditions can also mimic ectopic endopolyploidization 

(Röper and Röper, 1977; De Storme et al., 2012). The cytological mechanism responsible 

for nuclear fusion in cell-plate defective mutants, resulting in enlarged cells with either 

multi-nucleated or polyploid nuclei, is not yet clear. 

1.1.6 Role of callose in plasmodesmata regulation 

Unlike animal cells, plant cells have stiff cell walls and do not move after cell division. 

Therefore, determination of a plant cell identity is highly dependent on positional cues. 

Accordingly, exchange of information between cells is required. Intercellular signaling 

processes occur through either apoplastic signaling using ligands and transmembrane-

localized receptors, or symplastic movement of molecules (Stahl and Simon, 2013). Plant 

cells are interconnected via narrow channels of PD that facilitate symplastic movement of 

nutrients and signaling molecules (Rinne and van der Schoot, 1998) (Figure 1.3).  

The PD pores that are formed between cells, allowing macromolecular trafficking 

through the cell wall barrier, are more than fixed passive channels. Instead, they 

dynamically allow passing of molecules of different sizes and are regulated by the 

production and/or degradation of callose (Vatén et al., 2011; Zavaliev et al., 2011). It 

has been proposed that callose is accumulated in the apoplastic neck of the PD to 

regulate its connectivity (Kitagawa et al., 2015).  

Reversible deposition of callose seems to be an important mechanism to control PD 

permeability and regulates the PD’s size exclusion limit (SEL) (Yadav et al., 2014). 

SEL determines the size of the PD pores and is typically defined based on the size of 

the largest molecule that can pass through PD aperture. The PD SEL is mostly shown 

by kDa as its unit (Kempers and van Bel, 1997; Oparka and Cruz, 2000). For example, 

in poplar and birch, PD in shoot apical meristems (SAMs) are closed during the dormancy  
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Figure 1.3 Diagram of a simple primary PD. 

Primary PD consist of a narrow cytoplasmic channel which extends across the cell wall 

with an appressed endoplasmic reticulum (ER) tubule passing through its middle 

connecting two neighboring cells. It has been suggested that callose deposition at the 

neck of the PD modulates the SEL of PD and its permeability. PD facilitate symplastic 

movement of nutrients and different signaling molecules including mobile transcription 

factors and miRNAs. Figure modified from Morgan et al. (2010).  
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dormancy period via the deposition of callose. However, after induction of dormancy 

release by chilling, open PD are restored through degradation of callose by activity of 

β-1,3-glucanases (Rinne et al., 2001; 2011a). Although genetic, molecular, and 

biochemical studies during the last decades have implicated the important role of callose 

equilibration at the PD in regulation of PD SEL and symplastic movement, the molecular 

mechanism(s), which can clearly link the identified players for endogenous signaling to 

callose homeostasis, is not well-known yet (De Storme and Geelen, 2014). 

1.2 Callose biosynthesis 

Uracil-diphosphate glucose (UDP-glucose) is  the precursor for callose biosynthesis 

(Chen and Kim, 2009). Biochemical and molecular studies in several plant species 

have shown that callose is synthesized by a class of enzymes, termed callose/ glucan 

synthases (Verma and Hong, 2001; Brownfield et al., 2007; Brownfield et al., 2008). 

1.2.1 Glucan synthase in fungi 

Synthesis of (1,3)-D-glucan polymer in fungi is catalyzed by UDP-glucose β(1,3)-D-

glucan β(3)-D-glucosyltransferases (Douglas, 2001). These enzymes are known to form 

membrane-associated complexes that use UDP-glucose as a substrate and produce a 

linear polysaccharide. Several lines of evidence have suggested that the reaction is 

progressive. Chains of polysaccharide with increasing length are produced by adding one 

mole of glucose for hydrolyzing each mole of UDP-glucose (Shematek et al., 1980). 

Even though more than a hundred β-1,3-glucan synthase genes in fungi are available in 

public databases (Yang et al., 2014), only a few fungal genes encoding a β-1,3-glucan 

synthase have been characterized (Park et al., 2014). In Saccharomyces cerevisiae, three 

homologues of FKSs, which encode the enzymes forming a complex with β-1,3-glucan 

synthase activity, have been identified. FKS1 is active in the cell during the vegetative 

growth phase of yeast. β-1,3-glucan required during sporulation is synthesized by FKS2 

(Douglas et al., 1994; Mazur et al., 1995), while FKS3 is needed for spore wall formation 

(Ishihara et al., 2007). In contrast to S. cerevisiae, only one homologous gene for FKS1 

(fksA) has been identified and isolated from Aspergillus nidulans (Kelly et al., 1996). The 



10 

 

subcellular localization of the β-1,3-glucan synthases and their regulatory interactors in 

filamentous fungi remain to be investigated. 

1.2.2 Glucan synthase-like proteins in plants 

Glucan synthases in Arabidopsis were first identified through their sequence similarity 

with the β-1,3-glucan synthase catalytic subunit FKS1 of yeast (Hong et al., 2001a). The 

homologs of glucan synthase in yeast, FKS1 and FKS2, are regulated by Rho1 GTPase 

that modifies their phosphorylation status. In plants, however, the activity of glucan 

synthases is usually dependent on Ca
+2

 (Qadota et al., 1996; Calonge et al., 2003).  

The Arabidopsis genome has 12 genes encoding GLUCAN SYNTHASE-LIKE (GSL) 

(Richmond and Somerville, 2001), also called CALLOSE SYNTHASE (CALS) (Verma 

and Hong, 2001). GSL genes mostly have 40-50 exons except for GSL1 and GSL5 that 

only have two and three exons, respectively (Enns et al., 2005). GSLs code for large 

integral membrane proteins with multiple predicted transmembrane helices. The 

transmembrane domains are clustered into two regions (N-terminal and C-terminal), 

leaving a large hydrophilic cytoplasmic loop in between (Töller et al., 2008). The 

hydrophilic loop region possesses several glycosylation and phosphorylation sites. 

Therefore, it might act as an interaction and catalytic site for several regulatory proteins 

and substrates such as UDP-glucose (Verma and Hong, 2001). However, no specific 

domain containing a binding site for UDP-glucose has been identified yet (Brownfield et 

al., 2009; Zavaliev et al., 2011). 

GSLs are known as enzymes synthesizing callose in response to different developmental, 

physiological, and environmental signals and in various tissues in plants (Verma and 

Hong, 2001). GSL isoforms play various roles during plant development. The actual 

organization of these enzymes, their stoichiometry and regulation are not well 

understood. Several studies have shown that a series of intracellular and extracellular 

factors and signals might be required to regulate GSLs’ enzyme activity (Hayashi et al., 

1987; Andrawis et al., 1993; Li et al., 1997, 1999a; Cui et al., 2001).  
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In Arabidopsis, GSL1 and GSL5, differ from the other 10 genes of the family with having 

fewer and shorter introns. GSL1 and GSL5 are both located on chromosome 4, being 

about 8 centimorgan (cM) apart from each other. They also show similar expression 

patterns in roots, rosette leaves, stems, and flowers (Enns et al., 2005). Both genes have 

been shown to be involved in sporophytic development in Arabidopsis, where GSL5 

plays a more substantial role. Studies indicate that GSL1 and GSL5 are required for 

callose formation in the cell wall that separates the tetraspores, but are not needed for 

callose deposition at the wall surrounding the pollen mother cells. Since GSL2 is highly 

expressed in the pollen, it might be the one that is involved in callose biosynthesis in the 

wall of pollen tubes (Doblin et al., 2001; Becker et al., 2003). 

GSL2 was shown to be localized to the plasma membrane and Golgi-associated 

endomembrane structures (Xie et al., 2012) (Doblin et al., 2001; Becker et al., 2003). 

However, callose deposition was detected only in the cell wall and not in the Golgi 

vesicles. It is predicted that the plasma-membrane localized GSL2 might be the ‘active’ 

form of the enzyme whereas the endomembrane-associated GSL2 may be the ‘inactive’ 

form. It is still not clear what function the inactive form of the enzyme contributes in this 

intracellular compartment (Xie et al., 2012).  

There are no studies available on GSL3 and its role in plant development. According to 

microarray data (Schmid et al., 2005), GSL3 is highly expressed during embryo 

development. At the amino acid sequence level, GSL3 shows the highest similarity to GSL6.  

GSL4 mutations were shown to have no substantial impact on the plant phenotype or 

deposition of callose, indicating that GSL4 enzyme activity does not play a major role 

during plant development (Maeda et al., 2014). 

GSL5 is the best characterized member of the GSLs family in Arabidopsis and is known 

as a callose synthase that is required for formation of callose in response to fungal 

pathogens (Wawrzynska et al., 2010; Ellinger et al., 2013; Kopischke et al., 2013; 

Ellinger et al., 2014). A GSL5 knockdown line, generated by a double-stranded RNA 

interference (dsRNAi) approach, showed absence of papillary callose deposition after 

inoculation of leaves with the fungal pathogens. Although the typical round wall 
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appositions, which is formed beneath fungal appressoria, was indistinguishable from wild 

type, the cell walls lacked callose in the gsl5 knockdown lines (Jacobs et al., 2003). It has 

been suggested that GSL5 plays a role in stimulating the activity of pre-existing callose 

synthase enzyme, as well as specifically targeting the newly synthesized enzyme to the 

cellular “stress site” (Jacobs et al., 2003). It has been recently suggested that tocopherols, 

a family of vitamin E compounds, might be required for post-translational activation of 

GSL5 through a mechanism which is unlikely to be dependent on the wound-signaling 

pathway (Maeda et al., 2014).  

GSL6 is a cell plate-specific callose synthase localized at the cell plate of cells during 

cytokinesis and has been suggested to form a complex with a UDP-glucose transferase 

(Hong et al., 2001a; Hong et al., 2001b). GSL6 expression is up-regulated in response to 

salicylic acid (SA), indicating that, similar to GSL5, it might be involved in callose 

deposition after pathogen attack. gsl6 mutant plants do not show any detectable 

phenotypic defects under regular growth conditions (Dong et al., 2008).    

GSL7 is only expressed in the vascular system and more specifically in the phloem sieve 

elements and companion cells, indicating that GSL7-mediated callose synthesis is highly 

tissue-specific (Xie et al., 2011). In support of this, gsl7 mutants do not display any 

obvious macroscopic phenotypic defects, suggesting that GSL7 has no biological 

function other than phloem-specific PD callose synthesis (Huang et al., 2009). GSL7 is 

highly and specifically expressed in phloem during root development, when a large 

number of symplastic connections are required (Vatén et al., 2011). 

According to a promoter analysis (Dong et al., 2008) and microarray data (Schmid et al., 

2005), GSL9 is poorly expressed in most of the tissues and organs compared to the other 

GSLs. At the amino acid sequence level, GSL9 is most closely related to GSL12, but 

there is no evidence available yet to show their functional redundancy. 

Although among all members of the GSL family, GSL10 is most closely related to GSL8, 

with 63.7% DNA and 63.4% protein sequence identity, respectively, it acts independently 

from GSL8 in different sporophytic tissues and organs, and during plant growth 

(Zimmermann et al., 2004; Töller et al., 2008). It has been shown that GSL8 and GSL10 
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are independently required during pollen development. In gsl10 mutants, entry of 

microspores into mitosis is prevented (Töller et al., 2008), therefore, efforts to obtain 

homozygous knockouts have not been successful. 

Similar to gsl4, gsl6 and gsl7, gsl11 mutant plants do not show any noticeable growth 

defects compared to wild-type plants. Loss of enzyme activity does not reduce callose 

deposition (Maeda et al., 2014), suggesting that GSL11 does not play a major role and 

probably is not required for plant development. The possibility of having a more 

specialized role cannot be ruled out.  

GSL12 synthesizes callose at certain sites in the cell walls surrounding the PD and, 

therefore, can determine PD size and control molecular trafficking through PD. During 

plant development, GSL12 is highly expressed in the phloem, stele and root meristem 

(Vatén et al., 2011). Expression of GSL12 in a gsl7 background can complement the 

mutant phenotype (Xie et al., 2011). GSL7 is responsible and required for callose 

biosynthesis in the phloem and during phloem development (Barratt et al., 2011). These 

observations led to the proposal that these two proteins are, at least partially, if not 

completely, redundant regarding their function during sieve elements development, 

(Vatén et al., 2011). 

1.2.3 GLUCAN SYTHASE-LIKE 8 

GLUCAN SYNTHASE-LIKE 8 (GSL8) is known as one of the few members of the GSL 

family with ubiquitous expression in most of the tissues and organs during plant 

development with the highest expression in vasculature (Schmid et al., 2005). Since most 

of the callose in the vasculature is deposited at the PD to reduce SEL of PD, GSL8 has 

been suggested to be associated with PD regulation. According to genomic and amino 

acid sequence, GSL8 is most closely related to GSL10, and is also required during pollen 

development with an important role in sporophyte (Töller et al., 2008). 

GSL8 callose biosynthesis activity is required for proper cell plate formation during 

cytokinesis. massue, a mutant allele of GSL8, showed significant delay in cell plate 

formation, similar to that reported for cytokinesis defective mutants such as knolle and 
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keule  (Thiele et al., 2009). Although a direct link between callose deposition at the cell 

plate and cytokinesis defects was not confirmed, the incomplete cell walls and multi-

nucleated cells in massue were explained as downstream effects of defects in callose 

deposition (Thiele et al., 2009). A substantial role of GSL8 in proper cell plate 

constitution during cytokinesis was further confirmed using an inducible RNA 

interference (RNAi) line of GSL8 (Chen et al., 2009). gsl8 mutant seedlings showed stubs 

in their cell walls, two nuclei in one cell, excessive cell proliferation at the epidermis, and 

clusters of stomata (Chen et al., 2009). A weak mutant allele of GSL8, called enlarged 

tetrad2 (et2), showed induction of endomitotic polyploidization in different tissues due to 

defects in cytokinesis and cell wall establishment, indicating that callose is required for 

retaining the ploidy level. Different from other gsl8 mutant alleles, in et2 plants 

cytokinesis impairments do not induce serious damage on the plant’s vegetative growth 

and its normal development, therefore, et2 plants appear similar to the wild type (De 

Storme et al., 2013). Even though several indirect lines of evidence have already 

confirmed callose requirement for cell plate growth and cytokinesis, no direct functional 

evidence is yet available.  

Guseman et al. (2010) showed that CHORUS, another allele of GSL8, is required for 

formation of normal stomatal patterns and organizing stomatal cell lineage initiation. The 

numbersof stomatal-lineage cells were significantly increased in chorus mutant plants, 

and this increase was mediated by SPEECHLESS (SPCH) (Guseman et al., 2010), a basic 

helix-loop-helix (bHLH) protein that specifically initiates stomatal lineage (Lampard et 

al., 2008). In chorus, there was also an increase in symplastic movement of 

macromolecules between epidermal cells, and larger molecules which would normally 

not pass through the PD could diffuse to the neighboring cells, suggesting that in addition 

to cytokinesis defects, gsl8 mutants exhibit PD defects as well (Guseman et al., 2010). 

The gsl8 mutant’s pleiotropic phenotype suggests that GSL8 might have important 

regulatory roles during plant development, rather than just being an enzyme responsible 

for callose biosynthesis at the cell plate to complete cytokinesis and at the PD to regulate 

their SEL. 
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1.2.4 Callose synthase complex 

Highly regulated synthesis and deposition of callose indicates that an extremely-

specialized protein complex is involved in this process (De Storme and Geelen, 2014). It 

is predicted that GSLs might be integrated into a complex, hypothetically named the CalS 

complex. Based on the genetic evidence obtained from studying de novo cell plate 

formation, pollen tube tip growth and cotton fiber elongation, there are at least four 

proteins which can potentially comprise the CalS complex, including at least one of the 

GSLs, UDP glucose transferase1 (UGT1), Rho-like GTPase (ROP), and sucrose synthase 

(SuSy) (Andrawis et al., 1993; Amor et al., 1995; Shin and Brown, 1999; Hong et al., 

2001a; 2001b; Verma and Hong, 2001). Degradation of sucrose is catalyzed by UDP-

glucose:D-fructose 2-alpha-D-glucosyltransferase (SuSy), a sugar metabolic enzyme 

which has been characterized as a critical part of cellulose synthase complexes to provide 

UDP-Glc. Since GSLs also use UDP-Glc as the precursor for β-1,3-glucan polymer 

synthesis, it is tempting to speculate that SuSy might provide the supply of UDP-Glc to 

GSLs as well. Supporting this hypothesis, UDP-Glc transfer from SuSy to GSLs occurs 

in presence of UGT1 activity (Hong et al., 2001a; 2001b). UGT1 interacts with Rho-like 

GTPase 1 (ROP1) and this interaction only takes place in GTP-bound state of UGT1, 

indicating that UGT1-dependent activity of ROP1 might regulate GSLs by restricting 

their substrate supply (Li et al., 1999b; Verma and Hong, 2001). UGT1, ROP1 and SuSy 

lack transmembrane domains. Therefore, if there is any sort of interactions between these 

proteins and GSLs, it should be through their association with the hydrophilic loop of 

GSLs (De Storme and Geelen, 2014).  

Although the significance of a CalS complex and its components required for callose 

deposition at the cell plate during cytokinesis has been well studied and characterized, it 

is not clear if all of these subunits are needed for synthesizing callose at the PD. It has 

been suggested that CalS complex composition likely differs depending on the tissue and 

process that it is involved in (Verma and Hong, 2001). Hence further research is required 

to reveal if the CalS complex at the PD is closely-related to the one at the cell plate.  
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1.3 Regulatory role of plasmodesmata in development   

During plant development and in response to biotic and abiotic stresses, cell walls 

undergo structural modifications that are predicted to introduce changes in PD structure 

(Knox and Benitez-Alfonso, 2014). Genetic screening to identify mutants defective in 

intercellular communications has confirmed that PD components are required for 

viability as functional or structural PD mutants are mostly lethal (Wu et al., 2002). The 

number and SEL of PD vary depending on the tissue and developmental state (Wu et al., 

2002). SEL restricts passage of those molecules with sizes larger than SEL through PD 

(Crawford and Zambryski, 2000). 

Cell wall PD can be primary or secondary. Primary PD are formed during cell division 

when the cell plate is forming, while secondary PD are formed in localized breaks in the 

established cell walls. Both primary and secondary PD contain a membranous channel 

and a desmotubule that is connected to the ER of both cells (Fig. 1.3) (Burch-Smith and 

Zambryski, 2012). PD plasma membrane has a distinct lipid composition compared to the 

other regions. It consists of complex sphingolipids, sterols and glycerolipids, suggesting 

that they may have a role in signaling for a variety of receptor proteins, some of which 

have shown specialized localization and/or activity at either PD or plasma membrane 

(Kitagawa et al., 2015).    

While PD were previously considered to be channels used for passive movement of 

water, nutrients, and ions based on their concentration gradients, newer research has 

shown PD’s function is not restricted to passive diffusion. It is now well known that 

movement of larger molecules is also facilitated by PD and is more selective than a 

gradient-based movement (Burch-Smith and Zambryski, 2012). Transcription factors, 

metabolites, and small RNAs, which are responsible for cell-to-cell communication 

during plant development and for plant defense upon virus infection, are transported 

through PD (Stahl and Simon, 2013).  

PD are required for symplastically restricted movement of plant virus pathogens and their 

invasion to neighboring cells (Lucas, 2006). Virus transport upon infection is affected by 

formation of complex PD and callose biosynthesis at the PD which are regulated by SA 
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(Wang et al., 2013). A range of molecular interactions between host and pathogen are 

required by viruses to access PD. Two models have been suggested to describe the 

movement of viruses via PD. In the first model, viral replication complexes (VRCs) can 

be translocated, i.e. Tobacco mosaic virus (TMV), in which VRCs are formed 

intracellularly via its interaction with ER-microtubule junctions at PD (Heinlein, 2015). 

In the second model, encapsulated viral RNA movement plays an important role. Potato 

virus X (PVX) cap proteins have been detected on both sides of PD, suggesting that viral 

replication occurs at PD and this seems to be required for intercellular movement of PVX 

(Tilsner et al., 2014). Biotrophic fungi invasion into plant tissues has also been suggested 

to be facilitated by PD (Kankanala et al., 2007). All of these macromolecules and 

organisms have sizes above the normal SEL of PD, indicating the importance of PD 

regulation to recognize and transport highly specific molecules between cells (Thomas et 

al., 2008). 

1.4 Protein constituents of plasmodesmata 

Secondary PD are formed de novo (Faulkner et al., 2008). Twined, Y- and H-shaped 

(branched) PD are probably the intermediates during the process of PD de novo 

formation (Maule, 2008). PD are known as complex structures. Attempts to purify PD 

have not been successful. Therefore, their molecular composition and the mechanisms 

that regulate them are not well understood. Since cell-to-cell communication is required 

for survival, PD mutants exhibit severe developmental defects as early as embryogenesis 

(Burch-Smith and Zambryski, 2012). In recent years, by taking advantage of improved 

methods, attempts towards isolating cell wall fractions harboring PD have become more 

successful. More than a thousand PD-associated candidate proteins have been identified 

using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer in 

combination with using Arabidopsis cell cultures as plant material (Fernandez-Calvino et 

al., 2011).  

Distinguishing PD proteins from other plasma membrane proteins has remained a 

challenge due to lack of a specific motif/domain. PD proteome analyses revealed 

association of several cell wall remodeling enzymes, as expected (Table 1.1). This set of 

enzymes is involved in cell wall modification and remodeling primarily with a role in   
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Table 1.1 List of a subset of proteins previously identified in the PD proteome. 

The identified proteins have putative functions important for cell wall modifications and 

remodeling (Brecknock et al., 2011; Fernandez-Calvino et al., 2011).   

Gene name Gene ID Function 

GLUCAN SYNTHASE-LIKE 3 AT2G31960 Callose metabolism 

GLUCAN SYNTHASE-LIKE 5 AT4G03550 Callose metabolism 

GLUCAN SYNTHASE-LIKE 6 AT1G05570 Callose metabolism 

GLUCAN SYNTHASE-LIKE 8 AT2G36850 Callose metabolism 

GLUCAN SYNTHASE-LIKE 10 AT3G07160 Callose metabolism 

GLUCAN SYNTHASE-LIKE 12 AT5G13000 Callose metabolism 

β-1,3-GLUCANASE AT1G64760 Callose metabolism 

β-1,3-GLUCANASE AT3G07320 Callose metabolism 

β-1,3-GLUCANASE AT3g55430 Callose metabolism 

β-1,3-GLUCANASE AT4G31140 Callose metabolism 

β-1,3-GLUCANASE (ATBG_PPAP) AT5G42100 Callose metabolism 

β-1,3-GLUCANASE AT5G58090 Callose metabolism 

PECTIN METHYLESTERASE 1 AT1G53840 Pectin modification 

PECTIN METHYLESTERASE 26 AT3G14300 Pectin modification 

PECTIN METHYLESTERASE INHIBITOR 1 AT4G12390 Pectin modification 

POLYGALACTURONASE/PECTINASE AT1G65570 Pectin modification 

GLYCOSYL TRANSFERASE ACTIVITY AT1G02730 Biosynthesis of cell wall 

polysaccharides   

UDP-GLYCOSYL TRANSFERASE AT3G46650 Biosynthesis of cell wall 

polysaccharides   

PLASMODESMATA-LOCATED PROTEIN 1 AT5G43980 Plasmodesmal structural protein 

PLASMODESMATA-LOCATED PROTEIN 6 AT2G01660 Plasmodesmal structural protein 

ACTIN 1 AT2G37620 Structural constituent of cytoskeleton 

ACTIN 7 AT5G09810 Structural constituent of cytoskeleton 

ACTIN 8 AT1G49240 Structural constituent of cytoskeleton 

MYOSIN VIII A AT1G50360 Glucuronoxylan metabolism 

MYOSIN XI K AT5G20490 Actin filament-based movement 
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callose biogenesis and homeostasis, including glucan synthase-likes (GSLs) and β-1,3-

glucanases (BGs) (Gaudioso-Pedraza and Benitez-Alfonso, 2014). Even though pectin 

metabolism-related proteins have been detected in PD proteome, there is not enough 

information on how these enzymes might be involved in regulating symplastic 

intercellular communication. Pectin seems to be important for stabilizing PD anchorage 

to cell walls. Therefore, lack of pectin can presumably destabilize PD channel structure 

(Yu et al., 2004).  

PD proteome revealed other enzymes involved in general cell wall biosynthesis and 

assembly, including glycosyl transferases and reversibly glycosylated polypeptides 

(RGPs). It is not known yet how expression of these proteins can modify PD structure 

and function (Pagant et al., 2002; Kong et al., 2012). An independent study revealed 
binding of RGPs class 1 family members to PD (Sagi et al., 2005). Reversible 

glycosylation of these proteins with UDP-sugars makes them a potential substrate   

for the enzymes involved in the biosynthesis of cell wall components. Overexpression of 

these proteins can increase callose accumulation which consequently restricts virus 

spreading and photoassimilates transport to sink tissues (Zavaliev et al., 2010; Burch-

Smith et al., 2012). A novel regulator of symplastic trafficking was identified during a 

genetic screen for stomata differentiation mutants and was named KOBITO 1 (KOB1) 

(Kong et al., 2012). KOB1 encodes a glycosyl transferase-like protein and is involved in 

cellulose biosynthesis (Pagant et al., 2002). However, it is not clear how cellulose 

biosynthesis and PD permeability might be linked (Kong et al., 2012). It has been 

hypothesized that KOB1 might regulate cell-to-cell connectivity at the PD by providing 

carbohydrates supply for the CalS complex. To address this hypothesis, subcellular 

localization of KOB1 and its interaction with other protein constituents of PD should be 

further investigated (De Storme and Geelen, 2014). 

The identity of the proteins detected in the PD proteome analyses, mostly with roles in 

biosynthesis and modification of cell wall components, needs to be further studied. 

Independent modification of these cell wall microdomains can potentially provide more 

detailed information on their specific role in regulating PD aperture and its SEL (Knox 

and Benitez-Alfonso, 2014). 
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1.4.1 Plasmodesmata-localized proteins  

PLASMODESMATA-LOCALIZED PROTEIN 1 (PDLP1) to PDLP8 belong to a small 

subfamily of the RECEPTOR-LIKE PROTEINs (RLPs) family with two conserved Cys-

rich repeats and two extracellular DUF26 domains. PDLPs have a distinct N-terminal 

domain that is exposed to the apoplast and can act as a receptor for extracellular signals 

(Thomas et al., 2008). Since PDLPs have extremely short cytoplasmic domains (less than 

20 amino acids) with no known signaling capacity, it has been proposed that the 

extracellular domains of PDLPs are their interacting domains with other proteins. PDLPs’ 

interaction with other modifying enzymes, which are localized at the PD, can 

theoretically initiate signal transduction (Thomas et al., 2008). PDLP1-overexpression 

lines exhibit a reduction in GFP cell-to-cell diffusion, suggesting that PDLP1 is a 

negative regulator of trafficking through PD (Thomas et al., 2008). None of the PDLPs 

single knockouts show either phenotypic defects or changes in symplastic movement, 

which suggests that members of the PDLP family are highly redundant (De Storme and 

Geelen, 2014). Thomas et al. (2008) demonstrated that PDLPs’ transmembrane domain 

(TMD) is required and sufficient for their localization to the PD, while the C-terminal 

cytoplasmic domain is less likely to be required for their intercellular targeting. The 

receptor-like targeting of PDLPs and their localization at the PD suggest that extracellular 

signaling can also have a role in controlling symplastic trafficking (De Storme and 

Geelen, 2014). Therefore, PDLPs might play a role during plant development, and in 

response to both internal and external signals (Lee et al., 2011).  

PDLPs might negatively regulate PD SEL by inducing callose deposition at the PD, 

which might be mediated through their interaction with callose homeostasis proteins such 

as GSLs (De Storme and Geelen, 2014). Key evidence supporting this hypothesis was 

obtained from PDLP5-overexpression plants, in which an increase in callose deposition 

at the PD and concomitant reduction in cell-to-cell movement of viral genome movement 

proteins (MPs) was observed. This finding suggested that PDLP5 controls PD size 

exclusion limit through modification of callose accumulation at the PD in response to 

pathogen invasion, also confirmed by strong up-regulation of PDLP5 upon bacterial 

infection (Lee et al., 2008; 2011). A recent study has shown that callose accumulation at 
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PD is mediated by PDLP5 and is dependent on both the presence and an increase in SA. 

This finding suggested that both PDLP5 and SA are required and are likely to act 

interdependently to reduce cell-to-cell permeability and symplastic movement (Wang et 

al., 2013).  

Interestingly, contrary to PDLPs’ negative regulation of PD, under specific conditions 

PDLPs can also positively regulate cell-to-cell communication through PD. It has been 

recently reported that the MPs from tubule-forming Grapevine fan leaf virus (GFLV) can 

physically interact with all PDLPs isoforms (Amari et al., 2010). Additionally, MPs 

targeting to the PD, MP tubule assembly and GFLV PD-mediated movement require this 

interaction with PDLPs (Amari et al., 2010). Hence, further research is required to 

identify the molecular mechanisms and factors underlying these two different functions 

of PDLPs: induction of callose deposition in response to pathogens, and facilitation of the 

viral genome spreading. 

1.4.2 β-1,3-Glucanases 

β-1,3-glucanases or glucan endo-1,3-β-glucosidases (BGs) are enzymes that hydrolyze 

the linkages in 1,3-β-D-glucosidic polymers and generate single β-1,3-glucan subunits. 

These enzymes are not restricted to plant species and can also be found in bacteria, fungi, 

metazoa and viruses (Bachman and McClay, 1996; Sun et al., 2000).  

BGs were first identified due to their role in protecting plants against pathogens 

(Kauffmann et al., 1987; Bowles, 1990; Sela-Buurlage et al., 1993; Stintzi et al., 1993; 

Jach et al., 1995; Douglas, 2001). BGs in Arabidopsis are a family with 50 members 

(Levy et al., 2007), and belong to glycosylphosphatidylinositol-anchored proteins (GPI-

APs) (Elortza et al., 2003). GPI-APs have a specific plasma membrane localization 

pattern known for the absence of TMDs. BGs bear a cleavable hydrophobic N-terminal 

secretion signal peptide for translocation into the ER, and a hydrophobic C-terminal tail, 

which most likely forms a transient TMD, for targeting them to PM (Elortza et al., 2003). 

Three members of the BG family, ATBG_PPAP, PdBG1, and PdBG2, were shown to 

have a role in callose degradation at the PD (Benitez-Alfonso et al., 2013). 



22 

 

Genetic characterization of PD-localized enzymes which degrade callose suggests their 

requirement for balancing callose level at the PD. In support of this hypothesis, 

atbg_ppap mutants show an increase in callose accumulation at the PD as well as 

decrease in the systematic spread of the TMV and Turnip vein clearing virus (TVCV) 

(Levy et al., 2007; Zavaliev et al., 2013).  

PdBG1 and PdBG2 localization at the PD was confirmed by their punctate distribution 

pattern at the cell periphery (Benitez-Alfonso et al., 2013). Although single mutants do 

not exhibit any phenotypic defects, most likely due to functional redundancy, double 

mutants (pdbg1 pdbg2), show an increase in callose accumulation at the PD as well as 

restricted cell-to-cell transport of macromolecules. PdBG1-overexpression plants show 

the opposite effect. Therefore, it can be concluded that callose accumulation at the PD 

and symplastic movement in the developing roots are negatively regulated by two 

redundant β-1,3-glucanases (PdBG1 and PdBG2) (Benitez-Alfonso et al., 2013). 

Involvement of β-1,3-glucanases in PD regulation has also been observed in other plants. 

For example, in Populus, two closely-related genes encoding PD-located BGs were 

identified with roles in mediating FLOWERING LOCUS T (FT) movement into the bud 

during the dormancy release period (Rinne et al., 2011b). BGs’ involvement in 

intercellular trafficking regulation has been identified mostly in permanent processes, 

suggesting that callose turnover mechanisms are used by plants for longer-lasting closure 

of PD (Levy et al., 2007). It needs to be further investigated whether plants employ other 

mechanisms for short-term changes in the PD channels.  

1.5 Symplastic movement of mobile factors through plasmodesmata 

PD connect almost all plant cells providing selective passage of macromolecules 

(Crawford and Zambryski, 2000; Lucas and Lee, 2004). There are a number of 

transcription factors, in shoot and root apical meristems (SAMs and RAMs, respectively), 

which are expressed in different cells from where they are localized and have functions, 

known as non-cell-autonomous transcription factors (Kurata et al., 2005a; Lee et al., 

2006). Transcription factors that are involved in development, particularly KNOTTED 1-

LIKE HOMEOBOX (KNOX) and MCM1, AGAMOUS, DEFICIENS and SRF (MADS) 
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family members, exhibit intercellular movement, potentially through PD (Xu and 

Jackson, 2010; Burch-Smith et al., 2011). Similar to transcription factors, some small 

RNAs, particularly those playing roles in RNA silencing pathways, also show non-cell-

autonomous activity (Dunoyer et al., 2005).  

1.5.1 Mobile transcription factors 

Plants, similar to animals, use signal peptides, hormones, and microRNAs (miRNAs) for 

intercellular signaling. They are, however, additionally equipped with a collection of 

mobile transcription factors to deliver intercellular signals (Han et al., 2014a). Since plant 

cells are surrounded by rigid cell walls, the movement of most of the mobile proteins is 

facilitated via PD, which provides a direct route for protein movement between cells 

(Oparka, 2004). 

Co-operation and co-ordination of individual cells is required for the development of 

multicellular organisms. Intercellular communication between cells is mandatory to co-

ordinate proliferation, differentiation, and programmed cell death during tissue formation. 

Precise control of intercellular signaling during development is the key to generate a 

multicellular organism (Long et al., 2015). Movement of molecular signals plays 

important roles in many highly regulated cell proliferation and specification phenomena. 

However, the molecular context of all these signals is not yet entirely known. Regulation 

of trichome and root-hair patterning (Bouyer et al., 2008; Digiuni et al., 2008; Pesch and 

Hülskamp, 2009; Wester et al., 2009), RAM and SAM development (Lucas et al., 1995; 

Kim et al., 2003; Schlereth et al., 2010; Xu et al., 2011), and the patterning and 

development of the mature root (Nakajima et al., 2001; Gallagher et al., 2004; Kurata et 

al., 2005b; Cui et al., 2007) are all mediated by mobile transcription factors.  

Root tissue patterning is determined by a group of pluripotent cells in the meristematic 

tissue surrounding the quiescent center (QC) cells (Dolan et al., 1993; Van den Berg et 

al., 1997). Communication between these cells and those around them is achieved by 

different mobile signals, including the phytohormone auxin and mobile proteins or 

peptides (Sabatini et al., 1999; Stahl et al., 2009; Matsuzaki et al., 2010; Schlereth et al., 
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2010). Although the concept of mobile transcription factor signaling seems to be simple, 

several pieces of evidence have revealed an astonishing complexity of this process.  

Since KNOTTED 1 (KN1), a homeodomain protein from Zea mays, was characterized as 

the first mobile transcription factor (Hake and Freeling, 1986; Lucas et al., 1995), the list 

of mobile transcription factors, also called non-cell-autonomous transcription factors 

(NCATFs), has been growing continuously. Some of the proteins with confirmed 

regulatory roles in plant development include LEAFY (LFY), a regulator of flower 

development (Sessions et al., 2000); SHORT-ROOT (SHR), a GRAS-domain 

transcription factor regulating stem cell activity and radial patterning of the Arabidopsis 

root (Nakajima et al., 2001); FT, a long-distance signal inducing floral transition 

(Corbesier et al., 2007); WUSCHEL (WUS), a homeodomain transcription factor 

maintaining stem cell homeostasis in the SAM (Yadav et al., 2011); PLETHORA 2 

(PLT2), an APETALA 2 (AP2) transcription factor driving auxin-dependent root 

zonation (Mähönen et al., 2014); and many more (Han et al., 2014a).  

Depending on the type of NCATF, the movement pattern can be different. If the protein 

size is smaller than the SEL of plasmodesmata, like LFY, the movement takes place via 

diffusion between plant cells similar to what happens with free green fluorescent protein 

(GFP) (Wu et al., 2003). However, cell-to-cell movement of most NCATFs is highly 

controlled, and is tightly linked to their activities and role in development.   

1.5.2 SHORT ROOT 

Intercellular movement of endogenously encoded SHR is essential for a plant’s normal 

growth and development (Nakajima et al., 2001; Gallagher and Benfey, 2009; Yadav et 

al., 2011). SHR is required for cell division, endodermis specification (Benfey et al., 

1993; Helariutta et al., 2000) and turning on microRNA165/6 (miR165/6) in the 

endodermis (Carlsbecker et al., 2010). shr mutants show reduced root length, loss of a 

ground tissue layer and endodermal cell fate (Benfey et al., 1993; Scheres et al., 1995; 

Helariutta et al., 2000).  
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SHR protein is a transcription factor which has the ability to move from the stele cells, its 

domain of transcription, to a single layer of adjacent cells including QC, the 

cortex/endodermis initial (CEI) and daughter cells (CEIDs), as well as to all endodermis 

cells (Fig. 1.4) (Nakajima et al., 2001; Wu and Gallagher, 2013). SHR movement acts 

both as a signal from the stele and an activator of endodermal cell identity determination 

and cell division through the transcriptional activation of SCARECROW (SCR) (Nakajima 

et al., 2001). Ectopic expression of SHR in adjacent layers induces an increased number 

of cell layers and cell identity change (Cui et al., 2007). The protein’s subcellular 

localization differs depending on the tissue. In the stele cells, SHR is localized in both the 

nucleus and cytoplasm, while in the neighboring cell layer, including the QC, CEI, and 

endodermis, it specifically resides in the nucleus (Nakajima et al., 2001). SHR movement 

needs to be carefully regulated to guarantee both up- and down-regulation of asymmetric 

cell divisions in the endodermis (Vatén et al., 2011).  

SHR moves through PD (Vatén et al., 2011). This movement is mediated through SHR 

interaction with the SHR binding protein, SHR-INTERACTING EMBRYONIC 

LETHAL (SIEL) (Gallagher et al., 2004; Gallagher and Benfey, 2009; Koizumi et al., 

2011). Recent study showed that the movement of SHR is facilitated by endosomes (Wu 

and Gallagher, 2014). SHR can be localized to early and late endosomes. However, it is 

not clear how this localization can promote SHR movement. Two models have been 

proposed to explain endosome-mediated movement of SHR. In the first model, 

endosomes can interact with SIEL to facilitate SHR movement towards the plasma 

membrane and then diffuses to PD. In the second model, endosomes act as a platform 

where SHR can associate with SIEL as well as other proteins that can directly or 

indirectly facilitate its movement between cells (Wu and Gallagher, 2014). 

1.5.3 WUSCHEL 

Intercellular communication between different cell types within plants’ stem cell niches 

is required for both stem cells maintenance and their differentiation (Spradling et al., 

2008; Rieu and Laux, 2009). Several studies have shown that WUSCHEL (WUS), a 

homeodomain transcription factor produced in the organizing center cells of SAM, is 

required and sufficient for stem cell specification (Laux et al., 1996). WUS transcription  
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Figure 1.4 Diagram of SHR and miR165/6 intercellular movement in Arabidopsis root. 

After expression in the stele cells, SHR moves from stele into the neighboring cells 

including endodermis where it transcriptionally activates SCR. SHR-SCR complex 

activates miR165/6 in the endodermis. After activation, the mature miR165/6 move from 

endodermis to stele as well as from endodermis to cortex. miR165/6 suppress the family 

of HD-ZIP III genes in stele by targeting their transcripts.  
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is restricted to cells of the SAM organizing center, which is known to be critical for 

keeping the number of stem cells constant (Yadav et al., 2011). The CLAVATA (CLV) 

signaling pathway mediates this process (Fletcher et al., 1999; Brand et al., 2002). WUS 

can move laterally in the SAM for at least two cell layers (Yadav et al., 2011).  

WUS is synthesized in the organizing center cells of the SAM from which it can then 

move to adjacent cell layers. Studies have shown that interference with WUS movement 

does not hinder its biological activity, but inhibits SAM regular function (Yadav et al., 

2011). WUS protein directly activates CLV3 transcription through binding to its promoter 

after migrating to surrounding cells of SAM central zone. Misexpression of WUS in 

adjacent cells of SAM central zone (CZ) causes expansion of the stem cells and meristem 

proliferation (Brand et al., 2002; Yadav et al., 2010). Cell-to-cell communication via PD 

in the CZ of the SAM is required for stem cell activity. Analysis of endogenous WUS 

has shown that WUS trafficking through PD is more possible than via either secretion or 

endocytosis. Since WUS degradation in SAM stem cells causes meristem termination, it 

can be concluded that WUS might be one of the critical signals derived from the stem cell 

niche (Daum et al., 2014). However, more studies are required to characterize WUS 

function and its molecular mechanisms in regulating cell division and differentiation of 

stem cells, which are crucial for stem cell maintenance. 

1.5.4 Movement of small RNAs through plasmodesmata 

It has been shown that in plants and animals small RNAs, including miRNAs, small 

interfering RNAs (siRNAs) and trans-acting siRNAs (tasiRNAs) have the potential to 

move between cells and mediate cell-to-cell communication. Although several pieces of 

evidence have indicated the movement of siRNAs, tasiRNAs and miRNAs, the 

mechanism(s) of this movement remains to be uncovered (Juarez et al., 2004; Dunoyer et 

al., 2007; Lin et al., 2008; Tretter et al., 2008; Chitwood et al., 2009; Nogueira et al., 2009).  

miR165/6, two very closely related miRNAs that differ by only one single nucleotide in 

their sequence, regulate plant development by targeting the family of class III 

homeodomain leucine zipper (HD-ZIP III) genes including PHABULOSA (PHB) (Jung 

and Park, 2007; Zhou et al., 2007; Liu et al., 2009). It has been reported that the 
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transcription of HD-ZIP III family genes is mostly restricted to the vascular cylinder (Lee 

et al., 2006) whereas miR165/6 is produced in the endodermis and targets HD-ZIP III 

mRNA in the stele (Fig. 1.4) (McConnell et al., 2001; Emery et al., 2003; Prigge et al., 

2005). Hence, a mobile signal should exist to assist miR165/6 to accomplish its goal. 

Several studies have shown that miR165/6 movement plays critical roles in both shoot 

apical meristem and in root patterning (Juarez et al., 2004; Chitwood et al., 2009; 

Nogueira et al., 2009; Carlsbecker et al., 2010). 

miR394 was identified as another mobile miRNA (Knauer et al., 2013). miR394 is 

produced in the protoderm and represses the transcript encoding the F box protein LEAF 

CURLING RESPONSIVENESS (LCR) by moving to the distal meristem. This repression 

is critical for maintaining stem cell pluripotency by synergistically increasing the signaling 

from beneath the stem cell generated by WUS. miR394, similar to WUS, can move for a 

distance of about three cell layers (L1-L3) in the SAM (Knauer et al., 2013). 

1.6 Regulation of plasmodesmata size exclusion limit 

Although the detailed process of SEL regulation is still under debate, several lines of 

evidence support callose turnover as an important mechanism for regulation of PD and 

symplastic trafficking through it (Levy et al., 2007; Vatén et al., 2011; Sevilem et al., 

2013). Deposition of callose at the PD can physically constrict the channel. Therefore, 

reducing the SEL or even blocking the PD results in blockage of symplastic trafficking 

(Sevilem et al., 2013; Kitagawa et al., 2015). The SEL of the PD cytosolic space is 

decreased through callose deposition in the neck of the PD channel. On the other hand, 

callose removal from the PD increases PD SEL and hence, allows larger molecules to 

either passively or actively traffic via PD. It has been suggested that the amount of 

callose accumulated at the PD is regulated by a balance between the activity of enzymes 

synthesizing callose (GSLs) and those degrading the β-1,3-glucan polymer (BGs)      

(Fig. 1.5) (Benitez-Alfonso et al., 2009; Chen and Kim, 2009; Vatén et al., 2011; 

Zavaliev et al., 2011). 
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Figure 1.5 Callose deposition at the neck region regulates PD permeability. 

Proper regulation of PD is achieved through a balance between the activity of the 

enzymes synthesizing callose and the ones degrading it, called β-1,3-glucanases. Callose 

turnover at the PD determines the status of the PD to be open (left) or closed (right), 

resulting in free or blocked symplastic movement between cells, respectively. Figure 

modified from Maule et al. (2012). 
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1.7 Dynamic modulation of plasmodesmata connectivity 

Given that PDs are membranous structures facing the cytoplasm, cell wall, and apoplast, 

their function and development can be modified under the effect of any cytoplasmic 

and/or apoplastic change (Knox and Benitez-Alfonso, 2014). Studies on protein 

composition of PD have shown that these membrane-embedded structures are enriched in 

receptor and receptor-like proteins with roles in signaling pathways that are important for 

regulation of cell-to-cell communication (Jo et al., 2011; Faulkner, 2013; Faulkner et al., 

2013; Stahl et al., 2013). These receptors, such as PDLP5 (see section 1.4.1), receive the 

signals from environmental changes or cell wall composition at the PD, and will respond 

to them by adjusting PD SEL.  

Recent studies have shown that reactive oxygen species (ROS) can modulate 

plasmodesmal structure through affecting callose accumulation at PD (Benitez-Alfonso et 

al., 2009; Zavaliev et al., 2011). An earlier study had also proposed that the apoplastic 

ROS may act as an agent for loosening cell walls, which can then physically affect    

PD formation and function (Gapper and Dolan, 2006). The dependence of PD structure on 

ROS was further confirmed in gfp arrested trafficking (gat) mutant. The gat mutants 

exhibit reduced transport of GFP from the phloem to surrounding tissues and 

hyperaccumulation of ROS in their root meristems with approximately doubled level of 

callose at PD (Benitez-Alfonso et al., 2009). GAT1 encodes a type m thioredoxin (TRX-

m3) expressed in plastids of meristems and organ primordia.  

Another molecule that has been shown to regulate PD formation and callose 

biosynthesis through interaction with redox signaling pathway is SA (Wang et al., 

2013). Studies indicate that SA regulates PD indirectly via induction of PDLP5 

expression. This induction will positively affect callose metabolic enzyme activity and, 

therefore, can regulate symplastic movement and response to pathogens (Fitzgibbon et 

al., 2013; Wang et al., 2013). 

Interestingly, several reports in recent years have implicated phytohormones as another 

factor influencing symplastic communication. For example, auxin has been shown to be 

related to cell wall and PD changes. During the phototropic response, callose plays a role 
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in auxin gradient formation. Auxin can positively regulate GSL8 expression through a 

pathway in which the auxin response factor 7 (ARF7) is involved (Han et al., 2014b). 

Symplastic transport can be regulated by auxin through targeting several other callose 

metabolic genes. The expression of PLASMODESMATA CALLOSE-BINDING PROTEIN 

1 (PDCB1) is up-regulated in lateral root after auxin treatment (Maule et al., 2013). 

PDCB1 is also involved in callose deposition at the PD (Simpson et al., 2009). During 

later stages of lateral root emergence, PDCB1 function is required for callose deposition 

around the primordium to isolate it from the overlying tissue (Maule et al., 2013). It has 

been proposed that auxin-imposed modification of the PD might be through changes in 

pectin structure or distribution. An early study reported that auxin can induce pectin 

methylesterase (PME) activity (Bryan and Newcomb, 1954). PME, which was previously 

identified in the PD proteome (Table 1.1), is known as an enzyme that demethylesterifies 

homogalacturonan (HG) in the cell wall (Mohnen, 2008). Therefore, it is plausible that 

auxin affects cell wall-related mechanisms by interfering with pectin esterification, and 

ultimately causes alterations in PD transport (Knox and Benitez-Alfonso, 2014).           

Further evidence supports the potential role of other small molecules, such as the amino 

acid tryptophan and phytohormone gibberellin in PD regulation (Rinne et al., 2011a; 

Rutschow et al., 2011). However it is still not clear how these molecules can modify PD, 

which pathway(s) are involved, and how specific they are compared to the other PD 

regulators.   

1.8 Identification of the essp8 mutant 

The essp8 mutant was isolated in an unrelated genetic screen developed to identify the 

gene(s) repressing the expression of seed storage protein (SSP) genes in vegetative 

tissues (Tang et al., 2008; Lu et al., 2010; Tang et al., 2012a; 2012b; Li et al., 2015). 

Transgenic Arabidopsis plants, expressing the β-GLUCURONIDASE (GUS) reporter 

gene under the control of a seed-specific gene (coding for the β-CONGLYCININ β-

subunit) promoter from soybean, were generated (pβCG:GUS) (Tang et al., 2008). It was 

previously reported that the promoter can direct seed-specific gene expression in tobacco 

(Lessard et al., 1993) and Arabidopsis (Hirai et al., 1994). Analysis of the pβCG:GUS 
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transgenic line confirmed specific expression of the GUS reporter gene only in the 

embryo with no detectable activity in the vegetative tissues (Tang et al., 2008).  

Ethyl methanesulfonate (EMS) was used for mutagenizing seeds from the homozygous 

pβCG:GUS plants. These seeds represented the M1 generation. M2 plants were screened 

for mutations causing the ectopic expression of GUS in the leaves as an indication of the 

ectopic expression of the seed storage proteins (essp) (Tang et al., 2008). Several mutant 

lines were isolated in this screen and were characterized (Tang et al., 2008; Lu et al., 

2010; Tang et al., 2012a; 2012b). essp8 is one of the mutants isolated and was used in 

this study. The major goal of this thesis was the molecular characterization of essp8 

mutant. 

1.9 Thesis objectives 

Considering the severe developmental defects and cell identity changes observed in the 

essp8 mutant seedlings, it was hypothesized that GSL8 plays critical role(s) in 

cytokinesis and plasmodesmata regulation and is required during early seedling 

development in Arabidopsis. To test this hypothesis, the following specific objectives 

were proposed. Please note that some of these goals were developed during the course of 

this study, as the role of GSL8 became more apparent: 

1. To confirm that the GSL8 mutation is indeed the cause of developmental defects 

and cell identity changes observed in essp8 seedlings. 

2. To confirm GSL8 involvement and requirement for cytokinesis and 

plasmodesmata regulation and to demystify how these functions are linked to the 

essp8 mutant phenotype. 

3. To partially/completely rescue the essp8 mutant phenotype through restoring the 

callose balance at plasmodesmata using two candidate genes, PDLP5 and 

AtBG_PPAP. 

4. To generate an interactome network for GSL8 by identifying proteins which 

physically interact with GSL8 in vivo. 
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2 MATERIAL AND METHODS 

2.1 Plant materials and growth conditions 

Arabidopsis thaliana lines were either in Columbia (Col-0) or Landsberg erecta (Ler) 

background. Seeds for wild-type Col-0 and Ler were originally obtained from 

Arabidopsis Biological Resource Center (ABRC). Different T-DNA lines used in this 

study (Appendix I) were ordered either from ABRC or the European Arabidopsis Stock 

Center (NASC).  

Seeds were sterilized in 70% ethanol for 45 sec, followed by 20% bleach with 0.1% 

sodium dodecyl sulfate (SDS) for 10 min with gentle shaking. Sterilized seeds were then 

rinsed with sterile distilled water four times and stored at 4°C in the dark for 48 h for 

stratification before sowing in soil, or after placing on Murashige and Skoog (MS) 

(Murashige and Skoog, 1962) agar.   

For growing plants in soil after stratification, seeds were sowed into pots containing 

ProMix-BX (Premier Horticulture, Québec) soil. Plants were grown in either the growth 

room or chamber for 16 h light at 22°C followed by 8 h dark at 18°C. 

For growing plants on MS agar, after surface sterilization, seeds were placed on MS agar 

containing 1X MS salts; 0.05% 2-N-morpholino-ethanesulfonic acid (MES); 3% sucrose; 

0.8% agar; pH 5.8. Appropriate antibiotics or chemicals were added for selection or 

induction where necessary. 

Nicotiana benthamiana seeds were obtained from Agriculture and Agri-Food Canada, 

London, Ontario, and grown in pots containing ProMix-BX under the same growth 

condition as described for Arabidopsis plants. 

2.2 Crossing of Arabidopsis plants 

To cross Arabidopsis plants from different genetic backgrounds, flower buds with their 

petals barely visible were used as pollen recipients. Using fine point tweezers, all the 

floral organs were carefully removed except for the carpel, which needs to be intact 

(Altmann et al., 1992). Plants were allowed to recover for 16-24 h. Then the stigma of the 
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recipient plant was pollinated by placing the pollen from the donor plant on the recipient 

stigma. The fertilized inflorescence was labeled and seeds from the corresponding silique 

were collected after being matured. These seeds represent the F1 generation. 

2.3 Histochemical assays 

2.3.1 GUS staining 

Two-week-old Arabidopsis seedlings were used for detection of ectopic GUS activity. 

Seedlings were immersed in GUS staining solution (80% distilled water; 20% methanol; 

1 mM 5-bromo-4-chloro-3-indolyl glucuronide cyclohexylammonium salt (X-GLUC; 

Inalco); pH 7-7.5) and vacuumed for 15 min, then incubated at 37°C overnight. 

Destaining was performed with 75% ethanol followed by incubating at 37°C. Destaining 

process was repeated, if needed, to achieve a clear background.  

2.3.2 Sudan red staining 

Sudan red staining for visualizing fatty acid accumulation was performed by incubating 

three-week-old Arabidopsis seedlings with somatic embryo-like structures in a saturated 

solution of Sudan red 7B (Sigma) in 70% ethanol at 37°C overnight. Samples were rinsed 

with 70% ethanol at least three times to obtain a clear background (Bratzel et al., 2010; 

Tang et al., 2012b). 

2.3.3 Aniline blue staining 

Aniline blue fluorochrome (Biosupplies Australia PTY Ltd.) is a chemically synthesized 

fluorochrome which reacts with β-1,3-glucans to give a brilliant fluorescence under UV 

light. A stock solution of 0.1 mg/ml was prepared in distilled water. Stock solution can be 

stored at 4°C in the dark for at least one year. Prior to use, the stock solution was diluted 

1:3 with 0.1 M K3PO4, pH 12.0. Roots of five- or seven-day-old Arabidopsis seedlings 

were incubated with fluorochrome staining solution (20 µl/root) for 30 min at room 

temperature then washed with 0.1 M K3PO4, pH 12.0 buffer and imaged on a Zeiss 

Axioscope 2 (Zeiss, Germany) compound fluorescence microscope using a UV laser. The 
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microscope was integrated with a Nikon DS-Ri2 digital camera using the ACT-1 

software (Nikon, Japan).  

2.3.4 Propidium iodide staining 

Propidium iodide (PI) is a fluorescent intercalating agent with a molecular mass of         

668.4 Da that can be used to stain cell walls and nuclei. PI binds to DNA between the 

bases, with little or no sequence preferences, and with a stoichiometry of one molecule 

per 4-5 base pairs of DNA. When PI is bound to nucleic acids, the fluorescence excitation 

and emission maximum are 535 nm and 617 nm, respectively. PI is the most commonly 

used dye to quantitatively assess DNA content (Suzuki et al., 1997). A typical use of PI 

in plant biology is to stain the cell wall. Cell membrane is impermeable to PI. Therefore, 

at low concentration, it is mostly used to identify dead cells. However, by increasing the 

concentration, it will diffuse into the cell and stains both the cell wall and nuclei.  

Depending on the purpose, PI staining can be used for visualizing just cell walls or both 

cell walls and nuclei. A stock solution of 2 mg/ml of PI (Life Technologies) was prepared 

in distilled water. The stock solution was stored at 4°C in dark. To stain the cell walls, 

Arabidopsis roots were dipped in 1 µg/ml PI at room temperature for 3 min and then 

rinsed with distilled water. To visualize both the cell walls and nuclei, 100 µg/ml PI 

solution was used. Roots were stained for at least 5 min at room temperature and rinsed 

twice with distilled water. PI-stained roots were imaged on a Leica TCS SP2 Laser 

Scanning confocal microscope (Leica, Germany) using 543 nm excitation and            

610-630 nm emission.  

2.4 Next-generation mapping of essp8 

For genetic mapping of the essp8 mutation, M2 plants from Col-0 background were 

crossed with wild-type plants of the Ler accession. A total of 100 two-week-old seedlings 

with essp8 dwarf phenotype were selected from the F2 segregating population and used 

for bulked-segregant analysis (BSA) and rough-mapping. Genomic DNA (gDNA) 

extracted from these seedlings were pooled and used for BSA with 22 pairs of simple 

sequence length polymorphism (SSLP) markers (Lukowitz et al., 2000). After 
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identification of markers linked to the mutation using BSA, gDNA from individual plants 

were used for PCR-based rough-mapping to narrow down the genomic interval of essp8 

mutation (Appendix II). Pooled gDNA extracted from 64 seedlings were used as template 

for next-generation sequencing (NGS). NGS library was generated using NGS library 

preparation kit (Zymo Research). Sequencing was performed on the Illumina MiSeq 

(Illumina, USA) using 300 nt paired-end sequencing.     

2.5 Plasmodesmata size exclusion limit assay 

For PD SEL assay, wild-type (WT) Col-0 and essp8 seeds were sown on MS agar plates. 

Seeds were allowed to germinate and grow in the dark for four or seven days. The 

hypocotyls of four- or seven-day-old seedlings were used for the assay. Dextran, Alexa 

Fluor
®

 488; 3,000 MW, Anionic (ThermoFisher Scientific) and Dextran, Fluorescein, 

10,000 MW, Anionic (ThermoFisher Scientific) were dissolved in tris-ethylene diamine 

tetraacetic acid (Tris-EDTA) buffer, pH 8 at concentrations of 100 mg/ml and 50 mg/ml, 

respectively. Aqueous solution of dextrans were stored at -20°C and protected from light. 

Prior to use, the stocks were diluted in Tris-EDTA buffer at a ratio of 1:10.  

The hypocotyls were obtained by cutting the seedlings at the hook. For each sample, 1 µl 

of the diluted probe was injected into the hypocotyl at the cut site using a Hamilton 

Gastight syringe (Hamilton). Movement of the probe was analyzed right after injection 

by imaging on a Leica TCS SP2 Laser Scanning confocal microscope (Leica) using     

488 nm excitation and 515 to 530 nm emissions. 

2.6 Generation of stable transgenic plants 

Stable transgenic Arabidopsis plants were generated via Agrobacterium-mediated 

transformation using the floral dip method (Zhang et al., 2006). Plants with the genetic 

background of interest were allowed to bolt. The bolts were then removed to encourage 

more secondary inflorescences to proliferate from the axillary buds of the rosette. To 

increase the transformation efficiency, the older siliques were removed right before using 

the plants for transformation. A single fresh colony of Agrobacterium tumefaciens strain 

GV3101 (Koncz and Schell, 1986), harboring the binary vector, carrying the gene of 
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interest, was inoculated into 3 ml liquid Luria-Bertani broth (LB) medium (Bertani, 1951) 

containing the appropriate antibiotics. Cells were grown for 16-24 h at 28°C shaking at 

225 rpm. This feeder culture can be stored at 4°C up to one month and was used to 

inoculate the transformation cultures. After preparation of liquid LB with appropriate 

antibiotics, 1 ml of feeder culture was used to inoculate 250 ml LB and grown at 28°C for 

16-24 h, shaking at 225 rpm until the bacterial culture reached stationery phase      

(OD600: 1.5-2.0). Agrobacterium cells were harvested by centrifugation at 4,000 g for    

12 min at room temperature. Next, the cells were resuspended in one volume of freshly 

prepared 5% (wt/vol) sucrose solution. Just before dipping, Silwet L-77 (Lehle Seeds) 

was added to the transformation solution at a concentration of 0.02% (vol/vol) and mixed 

well. The plants were inverted and the aerial parts of the plants were dipped into the 

Agrobacterium cell suspension for 30 sec. The treated plants were gently drained. Dipped 

plants were wrapped with plastic bags to maintain high humidity. Covered plants were 

laid down horizontally and kept in the dark for 16-24 h. The cover was removed the next 

day. The treated plants were transferred back to the growth room. Seeds were collected 

after 4-5 weeks when the siliques tuned brown. These seeds were called T1. Primary 

transformants were screened on selection media containing cefotaxime (100 µg/ml) and 

the appropriate amount of selection marker. Cefotaxime was used to inhibit 

Agrobacterium growth on the plate since harvested seeds are heavily covered with 

Agrobacteria. For each selective media plate (150 × 150 × 25 mm), around 2500 seeds 

were spread. After 7-10 days, transformants could be easily distinguished by their 

developing healthy green cotyledons, true leaves and roots which extended into the 

selective medium. Potential transformants were transferred to soil, and confirmed by 

genotyping (see section 2.7) for their corresponding transgene.   

2.6.1 Generation of transgenic constructs 

All transgenic constructs were generated using the Gateway™ system (Invitrogen) 

(Hartley et al., 2000). To create the translational construct for SHR, a 3 kb fragment 

upstream of the 5’ untranslated region (UTR), the 5’-UTR and the genomic sequence 

except from the STOP codon was amplified from Arabidopsis gDNA (Appendix III), and 

cloned into the pMDC107 destination vector which does not have a promoter and carries 
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GFP reporter for C-terminal fusion (Curtis and Grossniklaus, 2003). PDLP5 

overexpression construct was generated by amplification of its coding sequence (CDS) 

from Arabidopsis cDNA (Appendix III), and its cloning into the pEarleyGate103 

containing CaMV35S promoter and C-terminally-fused GFP reporter (Earley et al., 2006).  

After confirming the constructs by DNA sequencing, the corresponding vectors were 

transferred to Agrobacterium GV3101 using electroporation (Nagel et al., 1990), and later 

transformed to plants with floral dipping (Zhang et al., 2006). Transgenic 

pSHR::SHR:GFP plants were selected on MS agar media containing 50 µg/ml 

hygromycin B. p35S::PDLP5:GFP overexpression plants were screened on MS agar 

media containing 12 µg/ml glufosinate. At least ten independent transformants from T1 

generation were propagated to generate T2 generation. Progeny of individual T1 plants 

were screened for the segregation ratio of the transgene. Only T2 populations which 

showed a 3:1 segregating ratio, indicating a single insertion of the transgene, were used 

for further analysis.  

2.6.2 Generation of centromere-labeled transgenic plants 

Transgenic seeds expressing the centromere labeling construct (pSDS::CENH3:GFP) 

were obtained from Ghent University (De Storme et al., 2013). Centromeric histone H3 

(CENH3) replaces histone H3 in the nucleosomes of active centromeres in all eukaryotic 

cells (Lermontova et al., 2006). SDS encodes a mitotic cyclin-like protein and is 

constitutively expressed throughout the whole plant (De Muyt et al., 2009). Therefore, 

pSDS::CENH3:GFP construct is expressed in all plant cells. The labeling of the 

centromeres in gsl8 mutants was carried out by crossing GSL8/essp8, GSL8/gsl8-2 and 

GSL8/gsl8-4 genotypes with homozygous plants expressing pSDS::CENH3:GFP. The F2 

population was used for imaging and quantifying the number of centromeres in different 

gsl8 mutants. 

2.6.3 Generation of miRNA165/6-sensor line  

Homozygous seeds for miRNA165/6-sensor line were obtained from Seoul National 

University (Carlsbecker et al., 2010). The construct used to generate the sensor line 
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harbors miR165/6 target sequence from PHB under the control of U2 promoter, 

providing ubiquitous expression, and C-terminally fused to GFP. To test the GFP 

expression in gsl8 mutants, transgenic plants were crossed with heterozygous GSL8/essp8 

plants and F2 seedlings were used for analysis and imaging.   

2.6.4 Generation of artificial miRNA transgene constructs 

The Web Micro Designer (WMD, http://wmd3.weigelworld.org/cgi-bin/webapp.cgi) was 

used for designing artificial miRNA (amiRNA) against both GSL8 and GSL10 genes. To 

generate the XVE::aMIRGSL8/GSL10 construct, first the amiRNA sequence was 

introduced into pRS300 (Schwab et al., 2006) vector, containing the Arabidopsis 

miR319a precursor, as the backbone to create aMIRGSL8/GSL10. Then, aMIRGSL8/ 

GSL10 was subcloned into the pDONR221 vector (Invitrogen), and then recombined into 

pMDC7 Gateway-compatible destination vector (Curtis and Grossniklaus, 2003). In 

pMDC7, the aMIRGSL8/GSL10 transgene is controlled by an estradiol-inducible 

promoter. Wild-type Col-0 plants were transformed with the construct using floral dip 

method (Zhang et al., 2006). Transgenic plants were selected for hygromycin B 

resistance (see section 2.6.1). T2 transgenic seeds were sown on MS agar media 

containing 100 µM β–estradiol or Dimethyl sulfoxide (DMSO) as a mock control.   

2.7 Polymerase chain reaction-based genotyping 

PCR-based genotyping was used to identify homo and heterozygous plants for all T-DNA 

insertion lines. gDNA was isolated using a modified plant gDNA extraction protocol with 

cetyltrimethyl ammonium bromide (CTAB) (Tang et al., 2008). PCR was performed 

using both allele-specific and T-DNA insertion-specific primers (Appendix I and IV). 

EMS-based mutants were genotyped by PCR followed by sequencing to detect the single 

nucleotide polymorphism (SNP) of interest. Heterozygous plants were used for further 

analysis if homozygous mutations were lethal.   

Transgenic plants were confirmed by testing the integration of the transgene by PCR with 

gene-specific and vector-specific primers.  

http://wmd3.weigelworld.org/cgi-bin/webapp.cgi
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2.8 Gene expression analysis 

For quantitative reverse transcription-PCR (qRT-PCR), total RNA was isolated from       

~ 100 mg of plant tissue using the RNeasy Mini Kit (Qiagen). The High Capacity cDNA 

Reverse Transcription kit (ABI) was used to reverse transcribe the total RNA into cDNA 

with random primers from the kit. qRT-PCR was performed using the SsoFast EvaGreen 

Supermix kit (Bio-Rad Laboratories, Inc.) with the Bio-Rad CFX96 real-time PCR 

detection system (Bio-Rad Laboratories, Inc. USA). The data shown in the figure are the 

average of three technical and three biological replicates. GLYCERALDEHYDE-3-

PHOSPHATE DEHYDROGENASE (GAPDH) was used as the internal reference 

(Czechowski et al., 2005). PCR primers used in qRT-PCR are listed in Appendix V. 

2.9 Förster resonance energy transfer  

Förster resonance energy transfer (FRET) is one of the best methods available to identify 

and quantify protein-protein interactions. In FRET, the energy from an excited state 

donor fluorophore is transferred to a nearby acceptor, and it occurs only if the emission 

band of the donor displays overlapping spectra with the absorption band of the acceptor 

(Kaminski et al., 2014). FRET level can be quantified from potentially-interacting 

proteins using different methods including acceptor photobleaching, fluorescence lifetime 

and polarization resolving imaging (Van Munster and Gadella, 2005; Jares-Erijman and 

Jovin, 2006; Lakowicz, 2006).   

To test the interaction of GSL8 with candidate partners, their CDSs were amplified from 

Arabidopsis cDNA and cloned into pEarleyGate101 and pEarleyGate102 (Earley et al., 

2006) using Gateway system (Invitrogen) to generate YFP- and CFP-fusion proteins, 

respectively (Appendix III). Four-week-old N. bentamiana leaves were co-infiltrated, as 

described previously (Sparkes et al., 2006), with two constructs expressing GSL8-YFP 

and the candidate interactor fused to CFP. The reciprocal combinations were also tested. 

Three days post infiltration (dpi), the FRET between two proteins was quantified using 

acceptor photobleaching method by imaging on a Leica TCS SP2 Laser Scanning 

confocal microscope (Leica). Images of the CFP fluorescent, for donor protein, and YFP 

fluorescent images, for acceptor proteins, were captured using 458 nm excitation and 465 
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to 505 nm emissions, and 514 nm excitation and 525 to 600 nm emission, respectively. 

The fluorescence of the CFP and YFP channels were scanned before and after bleaching. 

Bleaching of the acceptor protein fluorescence was performed using 100% excitation of 

514 nm beam for 50 frames. The energy transfer efficiency between the two potentially-

interacting proteins was measured based on the fluorescence intensity change in the 

donor and acceptor, before and after photobleaching using following equation: 

FRET efficiency% = (Donor postbleaching - Donor prebleaching) / Donor postbleaching 

0 < FRET efficiency < 100 

Three independent experiments with at least three biological replicates for each were 

used to calculate FRET efficiency. 

2.10 Microscopy and image analysis 

Images were captured by a Nikon SMZ1500 (Nikon) dissecting or Zeiss Axioscope 2 

(Zeiss) compound light microscopes which were integrated with a Nikon DS-Ri2 digital 

camera using the ACT-1 software (Nikon). Nikon dissecting scope optical ranges varied 

between 0.75 and 11.5X, and the compound Zeiss microscope was used with 20 and 40X 

objectives. TIFF format at a resolution of 3840 x 3072 pixels was used for capturing all 

images.  

2.11 Statistical analysis 

In all cases, no less than three plants of each genotype per treatment were used to 

calculate the means. Pair-wise comparison of the means was done using a Student’s        

t-Test assuming unequal variance. Unless otherwise stated, in all cases “*” and “**” 

symbols represent the 95% and 99% confidence interval of the means, respectively.  
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3 RESULTS 

3.1 Map-based cloning of the essp8 mutation 

As mentioned in section 1.8, the essp8 mutant was identified in an unrelated genetic 

screen of an EMS mutant population that was intended to identify repressors of SSPs in 

Arabidopsis seedlings. The M2 segregating population was screened to isolate mutant 

lines showing distinct ectopic GUS expression pattern in their vegetative tissues (Tang et 

al., 2008; Lu et al., 2010; Tang et al., 2012a; 2012b; Li et al., 2015). 

3.1.1 Morphological phenotype of essp8 seedlings 

The essp8 mutant was accidently identified in a screen for mutations affecting repression 

of seed storage protein genes. essp8 seedlings exhibit an interesting phenotype with 

several developmental defects including dwarfism, formation of abnormally-developed 

cotyledons and true leaves, reduced growth of the root and hypocotyl, and generally 

delayed development compared to wild-type Col-0 (Fig. 3.1A-D). Segregation analysis 

showed reduced transmission of the mutant allele in essp8 resulted in deviation from the 

expected 25% homozygous mutant seedlings for a normal recessive single locus 

Mendelian segregation (Table 3.1). Reduced transmission of the mutant allele can be due 

to embryo lethality as ~5% of the homozygous seeds were aborted and failed to 

germinate (Table 3.1). The abortion of essp8 embryos was further confirmed by 

phenotypic analysis of the siliques from a heterozygous parent where ~25% of the seeds 

displayed defective phenotype as being smaller, darker and shrunk compared to wild-type 

seeds (Table 3.2) (Fig. 3.1E-F). 

The essp8 mutation is lethal in most of the mutant seedlings (~90%), leading to complete 

death of the seedlings after three weeks (Fig. 3.2A-C). However, it can induce formation of 

somatic embryo-like structures in the seedlings which survive longer at a low penetrance 

(~10%) (Fig. 3.2D-F). The somatic embryo-like structures were confirmed to be true 

embryos using GUS staining for ectopic GUS expression (Fig. 3.3A-B), and Sudan red 

staining for accumulation of seed storage-specific triacylglycerols (Fig. 3.3C-D). Screening 

different segregating population for essp8 mutation, including F2 and back cross 2 (BC2),   
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Figure 3.1 Morphological phenotype of the essp8 mutant. 

(A-D) Comparison of seedling phenotypes of wild-type Col-0 (A) and essp8 mutants (B-

D). (B-C) Fifteen-day-old essp8 seedlings are very small and exhibit abnormally shaped 

true leaves (B) (white arrowheads). The surface of the essp8 cotyledon epidermis is 

undulated (C) (white arrowheads). (D) The essp8 roots and hypocotyls are shorter and 

thicker compared to the WT Col-0 (white arrowheads). (E-F) Morphological analysis of 

siliques from a heterozygous parent showed that the essp8 mutation can cause formation 

of defective seeds (white arrowheads) (E) and seed lethality (F). Scale bars: A-E = 1 mm,        

F = 500 µm   
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Table 3.1 Segregation of homozygous essp8 seedlings in the progeny of selfed 

ESSP8/essp8 heterozygous plants 

 
Number of 

plants 

tested 

Percentage of 

homozygous 

seedlings 

Percentage of     

non-germinating 

seeds 

essp8-1 132 15.9 9.1 

essp8-2 112 21.4 8 

essp8-3 142 16.2 4.9 

essp8-4 132 19.7 5.3 

essp8-5 125 20 4.8 

essp8-6 123 22.8 4.1 
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Table 3.2 The percentage of defective seeds in one silique from selfed ESSP8/essp8 

heterozygous plants 

 Number of 

seeds in one 

silique 

Percentage of 

defective  

seeds 

essp8-1 34 23.5 

essp8-2 34 26.4 

essp8-3 18 22.2 

essp8-4 28 21.4 

essp8-5 23 21.7 

essp8-6 27 25.9 
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Figure 3.2 The essp8 mutation causes somatic embryo formation with an incomplete 

penetrance.  

(A-C) Developmental defects are observed in essp8 mutant seedlings during the first 

three weeks after germination. It was also revealed that the essp8 mutation is lethal in 

~90% of the seedlings and leads to seedlings’ death. (D-F) Around 10% of essp8 

seedlings show ectopic cell proliferation and formation of somatic embryo-like structures 

(red arrowheads) after two (E) and three weeks (F). Scale bars = 1 mm 
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Figure 3.3 essp8 mutant seedlings form somatic embryos. 

(A-B) Histochemical GUS assay and (C-D) Sudan red staining confirmed ectopic GUS 

expression (red arrowheads) and accumulation of seed storage-specific triacylglycerols 

(white arrowheads), respectively, in four-week-old essp8 seedlings showing somatic 

embryo-like structures. Scale bars = 1 mm  
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showed the same results (data not shown), confirming that essp8 is a single recessive 

mutation inducing dwarfism, somatic embryo formation and seed abortion. 

3.1.2 Next-generation mapping of essp8 locus 

In order to map the essp8 mutation, M2 essp8 heterozygous plants were crossed with WT 

plants of the Ler accession to generate a segregating F2 mapping population. Using a 

small mapping population of 100 F2 plants, BSA was performed with 22 pairs of SSLP 

markers (Lukowitz et al., 2000). BSA successfully located the essp8 mutation on the 

bottom arm of chromosome II between the nga1126 and nga168 markers (Fig. 3.4A). 

Further mapping using more SSLP markers (Appendix II) roughly narrowed down the 

essp8 mutation to a genomic interval of about 729 kb, covered by the F11F19 and 

F13M22 BAC clones (Fig. 3.4B). 

To identify the SNP, caused by EMS in essp8, an NGM approach was used (Austin et al., 

2011). After sequencing the pooled genomic DNA isolated from 64 two-week-old essp8 

F2 seedlings, a SNP desert region, a non-recombinant block caused by linkage to the 

recessive mutation of interest, was detected on the bottom arm of chromosome II       

(Fig. 3.5). This result was consistent with both the BSA and rough mapping data. By 

combining the results from rough-mapping and NGS, all non-synonymous SNPs, caused 

by EMS, were identified within the candidate region on chromosome II using a web-

based tool (http://bar.utoronto.ca/NGM/). Only one EMS-induced point mutation (GC to 

AT) (Kim et al., 2006) in the AT2G36850 (GSL8) was detected. The mutation disrupts a 

splice site of GSL8 (Fig. 3.6). 

According to gene structure modeling, GSL8 is a large gene spanning a genomic region 

of 14,433 bp, consisting of 50 exons, and a coding sequence of 5712 bp (Fig. 3.7A). In 

essp8, the GC to AT substitution disrupts the splice site at intron 22. The retention of 

intron 22 alters the GSL8 cDNA and results in introduction of a premature STOP-codon 

(Fig. 3.7B).  

GSL8 encodes a large integral membrane protein with 1904 amino acids and is predicted to 

form sixteen transmembrane helices (Tsirigos et al., 2015). The transmembrane domains   

http://bar.utoronto.ca/NGM/


51 

 

 

 

 

Figure 3.4 Rough mapping of the essp8 mutation. 

(A) Using BSA, the essp8 mutation was located on the bottom arm of chromosome II 

between the nga1126 and nga168 markers (green square). (B) The position of the essp8 

mutation was narrowed down to a genomic interval of 729 kb, covered by the BAC 

clones F11F19 and F13M22, on chromosome II. The numbers of recombination events 

out of the total number of chromosomes examined (200) are indicated. 
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Figure 3.5 Identification of the essp8 mutation using NGM. 

NGM revealed one SNP desert region on the bottom arm of chromosome II (red star). 

The bars represent the natural polymorphism between wild-type Col-0 and Ler 

accessions, used to generate the F2 mapping population. 
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Figure 3.6 Detection of SNPs within the candidate region for the essp8 mutation. 

The combination of rough mapping and NGM results identified one SNP caused by EMS 

within the candidate region (between the red lines) on chromosome II. The GC to AT 

mutation is located at an intron splice site of AT2G36850 (GSL8). 
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Figure 3.7 GLUCAN SYNTHASE-LIKE 8 (GSL8) genomic and protein structure. 

(A) GSL8 consists of 50 exons and has a coding region of 5712 bp (GenBank Accession 

number GQ373182). The position of T-DNA insertions (yellow triangles) and EMS-

induced mutation (red triangle) are indicated. (B) The splice site at intron 22 is disrupted 

in essp8. The retention of intron 22 in essp8 establishes a premature STOP-codon 

downstream of exon 22. (C) GSL8 encodes a large transmembrane protein. GSL8 has a 

large cytoplasmic central loop between the transmembrane domains. The essp8 mutation 

results in the truncation of the GSL8 protein at the fifth cytoplasmic helix, indicated by 

the red line. (D) GSL8 secondary structure is predicted to mostly consist of helices and 

loops (Källberg et al., 2012). 
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are clustered into two N-terminal and C-terminal regions leaving a large hydrophilic 

central loop within cytoplasm (Fig. 3.7C). In essp8, introduction of the premature 

STOP-codon results in the truncation of the GSL8 protein at the fifth cytoplasmic 

helix (Fig. 3.7C). Based on RaptorX protein modeling (Källberg et al., 2012), GSL8 

protein secondary structure is predicted to consist of 62% helices, 8% beta sheets and 

29% loops (Fig. 3.7D).  

3.1.3 essp8 is allelic to GSL8 

To confirm that ESSP8 is indeed allelic to GSL8, four different T-DNA insertion lines, 

SALK_11500 (gsl8-1), SALK_109342 (gsl8-2), SAIL_21_B02 (gsl8-3) and 

SALK_098374 (gsl8-4), where the T-DNA is located either upstream or downstream of 

the essp8 EMS mutation, were obtained from ABRC (Fig. 3.7A) (Appendix I).  

Heterozygous plants were identified by PCR-based genotyping, and the segregation ratio 

of the homozygous plants with essp8-like phenotype was determined. Homozygous       

T-DNA mutant seedlings for all four insertion lines exhibited dwarfism as that of essp8. 

Similarly, the cotyledon and true leaves were thick and abnormally-developed (Fig. 3.8). 

Analysis of the root morphological phenotype in gsl8 mutants revealed severe defects in 

their root tissue patterning as they have stunted roots with bloated cells, as well as short, 

swollen and often branched root hairs (Fig. 3.9). Similar to essp8, the segregation ratio of 

homozygous T-DNA mutants showed deviation from the expected 25% (data not shown), 

providing initial evidence that gsl8 mutation can cause embryo lethality.  

To further confirm that ESSP8 is an allele of GSL8, an allelism test was performed. 

Heterozygous plants for three different T-DNA insertion lines (GSL8/gsl8-1, 

GSL8/gsl8-3 and GSL8/gsl8-4) were crossed with essp8 heterozygous plants 

(GSL8/essp8). F1 seedlings that were heterozygous for two different mutant alleles of 

GSL8, i.e., one of the T-DNA insertions and the EMS mutation (gsl8-1/essp8, gsl8-

3/essp8 and gsl8-4/essp8), recapitulated the morphological phenotype of homozygous 

gsl8 and essp8 mutants (Fig. 3.10). The genotype of the seedlings was confirmed using 

PCR-based genotyping for T-DNA insertion and sequencing for EMS mutation (data not 

shown). The genotyping results proved that the seedlings with essp8-like phenotype were   
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Figure 3.8 Morphological phenotypes of gsl8 T-DNA mutant seedlings compared to essp8. 

(A) Ten-day-old essp8 seedling phenotype, (B-E) phenotypes for gsl8 T-DNA mutants of 

the same age: SALK_11500 (gsl8-1) (B), SALK_109342 (gsl8-2) (C), SAIL_21_B02 

(gsl8-3) (D) and SALK_098374 (gsl8-4) (E).Each of the mutant lines contains a T-DNA 

insert upstream or downstream of the essp8 mutation. gsl8 T-DNA insertion mutants 

exhibited similar phenotypes by forming dwarf seedlings, developing thick cotyledon and 

true leaves as well as short and thick hypocotyl and roots. (F) Ten-day-old wild-type   

Col-0 seedling is shown as control. Scale bars = 500 µm 
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Figure 3.9 Analysis of the root morphological phenotype of gsl8 mutants showing severe 

defects in root tissue patterning. 

(A) Ten-day-old gls8 mutant seedlings (essp8, gsl8-1 and gsl8-2) develop stunted roots 

compared to the wild type. (B-I) Comparison of the root phenotype between five-day-old 

wild-type and gsl8 mutant seedlings at the root tip and elongation zone of the root. (C-E) 

gsl8 mutants showed abnormally-developed root tips with having bloated cells. (G-I) 

Morphological phenotype of the elongation zone of the primary roots in gsl8 mutants 

revealed formation of short, swollen, and often branched root hairs. Scale bars:                

A = 200 µm, B-I = 50 µm   
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Figure 3.10 Allelism test confirms that ESSP8 is an allele of GSL8.  

(A) GSL8/essp8 seedlings show no recognizable phenotypic defects. (B-D) Ten-day-old 

seedlings that were heterozygous for two different mutant alleles of GSL8, essp8 

mutation and gsl8-1 (B), gsl8-3 (C) and gsl8-4 (D) T-DNA insertions, respectively, 

exhibited a phenotype similar to that of homozygous gsl8 mutants. Scale bars = 500 µm 
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heterozygous for both mutant alleles. Taken together, the morphological phenotype of 

four different T-DNA insertion lines for GSL8 and the allelism test demonstrated that 

ESSP8 is indeed a new allele of GSL8 (AT2G35850) and, therefore, the cause of the 

developmental defects in Arabidopsis seedlings. 

3.2 Phylogenetic analysis of Arabidopsis GSLs  

To comprehend the relationship among the twelve members of the GSL family in 

Arabidopsis, a phylogenetic tree of the family was generated. Putative protein sequences 

of Arabidopsis GSL1-12 and callose synthase from Phytophthora infestans, as outgroup, 

were obtained from the national center for biotechnology information (NCBI) at the time 

(Appendix VI). A phylogenetic tree was generated with MEGA6 (Tamura et al., 2013) 

program, using the maximum likelihood method. Alignment of all twelve Arabidopsis 

GSLs positioned these proteins into three distinct groups (Fig. 3.11). According to the 

phylogenetic analysis, GSL8 is more closely related to GSL10 as they are clustered into 

the same subfamily and share 63.7% and 63.4% identities at the DNA and protein 

sequences levels, respectively. Although there are several lines of evidence suggesting a 

partial redundancy between the members which belong to the same subfamily (Jacobs et 

al., 2003; Nishimura et al., 2003; Enns et al., 2005), GSL8 and GSL10 have not yet been 

shown to be functionally redundant. As was previously predicted (see section 1.2.2), 

GSL1 and GSL5 were positioned into a different group, reconfirming that GSL1 and 

GSL5 are different from the other member of the Arabidopsis GSL family. 

3.2.1 The cytoplasmic domains of Arabidopsis GSLs are highly conserved 

To predict which domain(s) in the GSL proteins are responsible for their enzymatic 

activity, the amino acid sequences from all twelve members in Arabidopsis were further 

analyzed by performing an alignment using PRALINE, a web-based tool for multiple 

sequence alignment (Simossis and Heringa, 2005). It has been classically assumed that 

the cytoplasmic domain of GSLs contains the catalytic site (Cui et al., 2001; Doblin et al., 

2001; Hong et al., 2001a; Østergaard et al., 2002). Multiple sequence alignment of GSLs 

shows that GSLs’ amino acid sequences are mostly semi- to fully-conserved among all   
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Figure 3.11 Phylogenetic tree of Arabidopsis GSLs.  

The unrooted tree is based on an amino acid alignment of full-length sequences from 

Arabidopsis (Appendix VII).The evolutionary history was inferred by using the 

maximum likelihood method. The tree with the highest log likelihood (-62692.0592) is 

shown. The percentage of trees in which the associated taxa clustered together is shown 

next to the branch points. The tree is drawn to scale, with branch lengths reflecting the 

number of substitutions per site. There were a total of 1768 positions in the final dataset. 

The phylogenetic tree was generated with MEGA6 using a bootstrap value of 500. 
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twelve members of the family with very short non-conserved regions (Appendix VII). As 

has been predicted, the conserved residues are mainly found in the cytoplasmic domains. 

The largest number of conserved residues was found in the ninth cytoplasmic loop of 

GSL8, suggesting that this domain can potentially act as a catalytic and/ or interacting 

site of these enzymes with other proteins or co-factors (Fig. 3.12). 

3.3 Callose deposition at both cell plate and PD is decreased in essp8 root 

As GSL8 has been suggested to be involved in callose biosynthesis, the effect of the gsl8 

mutation on callose deposition at the cell plate and PD was further investigated. Callose 

accumulation was visualized using a callose-specific dye, aniline blue fluorochrome, in 

WT Col-0 and essp8 roots. Two T-DNA insertion lines (gsl8-1 and gsl8-2), which 

contain insertion sites upstream and downstream of the EMS mutation, respectively   

(Fig. 3.7A), were also analyzed (Fig. 3.13). In the WT Col-0 root tip, bright, linear 

signals represent the callose deposited at the cell plate in dividing cells (Fig. 3.13A). 

Furthermore, punctate fluorescent signals were detected on the cell walls in the 

elongation zone of the roots, root hairs and vascular tissues, which indicate characteristic 

callose deposition at the PD (Fig. 3.13E). In contrast to the WT Col-0, essp8, as well as 

gsl8-1 and gsl8-2 roots showed almost no signal from callose either at the cell plate in the 

root tip (Fig. 3.13B-D) or PD in the elongation zone of the root (Fig. 3.13F-H). Absence 

of callose deposition was also noticed in the root hairs and vasculature tissues in gsl8 

mutants. Based on these findings, it can be concluded that GSL8 is required for proper 

deposition and accumulation of callose at the cell walls, cell plates and plasmodesmata. 

3.4 essp8 is a cytokinesis-defective mutant 

Formation of defective cell plate during cytokinesis can cause abortion of cell division. 

Depending on the stage that mitosis is aborted, separation of the newly-formed nuclei or 

duplicated chromosomes is disrupted, resulting in generation of multi-nucleated cells or cells 

with doubled number of chromosomes (Joubès and Chevalier, 2000) (Fig. 1.2). 

3.4.1 GSL8 is required for the completion of plant cytokinesis 

Callose has already been characterized as an essential component of the cell plate (see   
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Figure 3.12 The predicted conserved domains of the GSL8 protein. 

According to the alignment result (Appendix VII), the conserved residues are mainly 

located in the cytoplasmic domains. The longest conserved stretch of residues 

corresponds to the ninth cytoplasmic loop in GSL8, shown in red. The numbers indicate 

the predicted number of amino acids forming different domains. 
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Figure 3.13 Callose deposition in the primary roots of gsl8 mutants. 

Callose accumulation was visualized using aniline blue staining in five-day-old seedlings 

of WT Col-0, essp8, and two T-DNA insertion lines, gsl8-1 and gsl8-2. (A-D) Bright 

lines (white arrowhead) at the root tip represent callose deposition at the cell plate in WT 

Col-0 (A) and gsl8 mutants. (E-H) In the elongation zone of the primary root, callose 

deposition at plasmodesmata is detected as dots (white arrowheads) in the root hairs, cell 

wall and vascular tissue in the WT Col-0 (E) and gsl8 mutants. Scale bars = 100 µm. 
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section 1.1.5). To investigate if severe phenotypic defects in essp8 seedlings are caused 

by incomplete cytokinesis, different known cytokinesis-defective mutants including 

hinkel (Strompen et al., 2002), knolle (Touihri et al., 2011), keule (Waizenegger et al., 

2000), korrigan (Sato et al., 2001) and stomatal cytokinesis-defective 1 (scd1) (Falbel et 

al., 2003) were screened for their morphological phenotypes.  

Previous studies have shown that mutations in genes that are required for cytokinesis 

execution, such as HINKEL, KNOLLE and KEULE, induce formation of multi-nucleated 

cells which are characterized by having gapped or incomplete cell walls (Assaad, 2001). 

HINKEL encodes a kinesin-like protein which is required for cytoskeletal formation 

(Strompen et al., 2002). KNOLLE and KEULE encode a syntaxin and a Sec1/Munc18 

proteins, respectively, and are required when vesicles are fusing to form the cell plate 

(Lukowitz et al., 1996; Waizenegger et al., 2000). KORRIGAN belongs to a different 

class of genes required for cytokinesis. It encodes a membrane-bound endo-1,4-β-

glucanase (Sato et al., 2001). Cell wall formation is disrupted in korrigan mutants whose 

mutant seedlings are identified as having cell-wall stubs and swollen cells (Söllner et al., 

2002). SCD1 is involved in vesicle trafficking during cytokinesis (Falbel et al., 2003). 

Epidermal and guard cells in scd1 mutants are binucleated and have cell wall stubs, 

indicating that scd1 plants are cytokinetically defective (Falbel et al., 2003).  

T-DNA insertion lines for all five selected cytokinesis genes were obtained from ABRC 

(Appendix I). After germinating seeds on MS agar media, the phenotypes of the 

homozygous seedlings were compared to that of essp8. Two of the mutants, hinkel and 

scd1, showed more similar phenotype to essp8 by having small seedlings, fairly short 

roots and thicker leaves (Fig. 3.14A-C). However, even though knolle, keule and 

korrigan also form tiny seedlings, they develop fused cotyledons and fail to form true 

leaves, which are different characteristics compared to essp8 seedlings (Fig. 3.14D-F). 

The possibility of somatic embryo formation by cytokinesis-defective mutants was also 

investigated. Despite the fact that hinkel and scd1 show elevated cell proliferation, and 

form somatic embryo-like structures, none of them were confirmed to be true somatic 

embryos by Sudan red staining (data not shown).  
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To explore if essp8 mutant seedlings show any secondary effects of cytokinesis defects 

such as formation of binucleated cells, PI staining was used to visualize the cell wall and 

nuclei of cells in the elongation zone of roots. Analysis of these cells was performed by 

confocal microscopy to detect bi- or multi-nucleated cells in which two daughter nuclei 

do not seem to be separated by a cross-wall. As expected, confocal imaging confirmed 

the presence of binucleated cells in cytokinesis-defective mutants including scd1, keule, 

korrigan and knolle (Fig. 3.15E-H). Similar to cytokinesis-defective mutants, gsl8 mutant 

seedlings including essp8, gsl8-1 and gsl8-2 have cells with more than one nucleus, 

suggesting that gsl8 can also be defined as a cytokinesis-defective mutant (Fig. 3.15B-D). 

A very frequent defect observed in essp8 roots was enlarged disorganized cells with 

abnormal shapes, compared to the WT Col-0, which could not be detected in the 

cytokinesis mutants, indicating that essp8 morphological and developmental defects are 

only partially caused by cytokinesis impairments. 

3.4.2 Cytokinesis impairment in essp8 induces ectopic endomitosis 

Identification of binucleated cells in somatic tissue of essp8 root organs prompted me to 

assess the possibility of another cytokinesis-related defect. To investigate whether essp8 

mutation also induces ectopic endomitosis in the root, the expression of a centromere-

labeling construct, pSDS::CENH3:GFP (De Storme et al., 2013), in the gsl8 background 

was analyzed. Since this construct is expressed in all plant tissues and organs, the 

absolute number of chromosomes can be quantified in vivo by detection of fluorescent 

GFP in the tissue of interest.  

The primary roots of homozygous essp8, gsl8-2 and gsl8-4 mutant seedlings expressing 

pSDS::CENH3:GFP were used for analysis. The diploid status of the root cells in WT 

Col-0 was confirmed by detection of 5 to 10 centromeric dots (Fig. 3.16A). Interestingly, 

the espp8, gsl8-2 and gsl8-4 root cells have nuclei carrying higher number of chromosomes 

(ranging from 11 to 15), indicating the presence of triploid, and potentially polyploid cells 

in these mutants (Fig. 3.16B-D). A comparison of the distribution pattern as well as 

number of centromeres between WT Col-0 and gsl8 mutants revealed a significant 

difference for all three gsl8 mutants (essp8, gsl8-2 and gsl8-4) compared to WT, 

whereas the difference among the gsl8 mutants was found not to be significant (Fig. 3.16E).   
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Figure 3.14 Morphological phenotypes of cytokinesis-defective mutants. 

(A-F) Comparison between essp8 (A) and cytokinesis-defective mutant seedlings: hinkel 

(B), scd1 (C), knolle (D), keule (E) and korrigan (F). All cytokinesis-defective mutants 

develop dwarf seedlings, but hinkel and scd1 are morphologically more similar to essp8 

with having abnormally-developed cotyledons and true leaves (B), and thicker roots and 

hypocotyls (C) (red arrowheads). Scale bars = 1 mm 
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Figure 3.15 Formation of binucleated cells in the primary roots of gsl8 and cytokinesis-

defective mutants. 

(A-D) Comparison of the number of nuclei per cell in the elongation zone of the root 

between wild-type Col-0 (A) and gsl8 mutants: essp8 (B), gsl8-1 (C), gsl8-2 (D). (E-H) 

The primary roots of cytokinesis-defective mutants harbor binucleated cells: scd1 (E), 

keule (F), korrigan (G) and knolle (H). Examples of binucleated cells are indicated by 

white arrowheads in gsl8 and cytokinesis-defective mutants. Propidium iodide was used 

to stain both nuclei and cell walls. Scale bars = 20 µm 
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Therefore, it was concluded that the essp8 mutation can induce not only ectopic 

endomitosis in reproductive cells (previously shown by De Storme et al., 2013), but also 

in the somatic cells in the root at early stages of development. 

Ectopic polyploidization and endomitosis in essp8 seedlings were further confirmed by 

detection of enlarged cells. In contrast to wild-type roots which always show 

homogeneously sized cells containing equally sized single diploid nuclei (Fig. 3.15A), 

gsl8 roots have enlarged abnormally-shaped cells with polyploid nuclei (Fig. 3.15B-D). 

Interestingly, the frequency of these enlarged polyploid cells increases with age. Analyzing 

the root cells and nuclei at five and ten days using the centromere labeling construct 

revealed that, at five days, essp8 root tissues often contained scattered single enlarged 

endomitotic and/or polyploid cells, as only five days later, clusters of enlarged polyploid 

cells could be found (Fig. 3.17A-D). This result indicates that with age, as the seedlings 

start deteriorating, the polyploidization defects significantly increase (Fig. 3.17E). 

3.5 GSL8 regulates symplastic connectivity through plasmodesmata 

Plant cells are interconnected with each other via narrow channels of PD, facilitating cell-

to-cell communication (Rinne and van der Schoot, 1998). Callose deposition at the PD 

plays an important role in symplastic movement of various substances (see section 1.1.6) 

(Levy et al., 2006; Lucas et al., 2009; Xu and Jackson, 2010; Maule et al., 2011; Zavaliev 

et al., 2011; Xie et al., 2012). Callose deposition is a highly-regulated dynamic process, 

which is required for adjustment of PD SEL in response to endogenous and exogenous 

signals (De Storme and Geelen, 2014).   

3.5.1 Loss of GSL8 induces an increase in plasmodesmata size exclusion limit 

Since aniline blue staining results have already indicated the requirement of GSL8 for 

callose deposition at both cell-plate and PD (Fig. 3.13), it was postulated that lack of 

callose deposition at the PD in essp8 causes an increase in SEL of the PD. To test this 

hypothesis, alteration of cell-to-cell symplastic movement was investigated in the 

essp8 hypocotyls. Two different fluorescent probes, Alexa Flour and fluorescein (see 

section 2.5), with different sizes (3 kDa and 10 kDa, respectively) were used as markers  
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Figure 3.16 Comparison of centromere numbers in the primary roots of wild-type   Col-0 

and gsl8 mutants shows an increase in gsl8 mutants. 

(A-D) The number of centromeres per nucleus in the primary roots in the WT Col-0 (A) 

and gsl8 mutants: essp8 (B), gsl8-2 (C) and gsl8-4 (D). Quantification revealed up to ten 

centromeres per nucleus in the WT Col-0, reflecting a basic diploid status, whereas all 

three gsl8 mutants have more centromeric dots indicating the occurrence of endomitotic 

polyploidization. Sample nuclei are marked by circles. (E) Quantification of centromere 

numbers in the WT Col-0 and gsl8 mutants shows a significant difference. The boxes 

signify the upper (purple) and lower (green) quartiles, and the median is represented by a 

short black line within the box for each plant line. The upper and lower “whiskers” 

represent the entire spread of the data. Data were acquired from at least ten cells in an 

individual seedling and three seedlings per genetic background were examines. Dotted 

lines show which samples were compared pairwise and significant differences at P ˂ 0.01 

using Student’s t-Test are indicated by **. Scale bars = 10 μm  
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Figure 3.17 Comparison of polyploid cells in essp8 mutant at different ages shows an 

increase in ploidy level with age . 

(A-B) The number of centromeres in the primary root cells of five- and ten-day-old wild-

type Col-0, and (C-D) essp8, respectively. (E) In essp8, the number of endomitotic cells 

significantly increases with age and clusters of polyploid cells with higher number of 

chromosomes are formed in ten-day old (D) compared to five-day-old primary roots (C). 

(E) Quantification of centromere numbers shows no significant difference in WT Col-0 

seedlings. The data obtained from at least ten cells in each individual seedling with three 

biological replicates. Dotted lines show pairwise significant differences at **P ˂ 0.01 using 

Student’s t-Test. Scale bars = 10 μm  



72 

 

to monitor passive cell-to-cell diffusion.  

Fluorescent probes were separately injected to the hypocotyls after the seeds have been 

germinated for four days in the dark (Fig. 3.18A-B). Diffusion of fluorescent signal, from 

the point of initial injection, was assayed by measuring their distance between the 

injection site and the furthest detected signal. For the smaller probe, in both WT and 

essp8, the fluorescent signal was detected at the site of injection and surrounding cells 

(Fig. 3.18C-D); however, the distance of its movement was significantly longer in essp8 

(Fig. 3.18G). In contrast, the larger probe (fluorescein) was only detected at the site of 

injection in nearly all cases in WT. Only a few surrounding cells showed a dim 

fluorescent signal, indicating its minor diffusion in the WT hypocotyls (Fig. 3.18E). 

Contrary to the WT, essp8 hypocotyl cells showed strong fluorescent signal in many 

more surrounding cells (Fig. 3.18F) as well as significantly longer distance of movement 

(Fig. 3.18G). 

Diffusion patterns of Alexa Fluor in both WT and essp8 hypocotyls indicate that its size   

(3 kDa) is below the SEL. Lack of fluorescein diffusion in the WT suggests that 10 kDa is 

possibly beyond the SEL of hypocotyl. On the contrary, the fluorescent signal in surrounding 

cells in essp8 was detected significantly further away from the injection sites compared to 

the WT, which indicates that larger molecules were able to spread into neighboring cells 

in the essp8 hypocotyl. These results suggest that in the essp8 mutants, reduction of 

callose deposition at the PD is likely to be associated with an increase in SEL and, 

therefore, alteration of symplastic connectivity between hypocotyl cells.  

3.5.2 Dysregulation of SHORT ROOT movement through PD in the essp8 roots 

Arabidopsis root is composed of concentric cell layers including epidermis, cortex 

and endodermis, which surround the stele that comprises the vascular tissues and 

pericycle (Dolan et al., 1993). To gain a better understanding of the downstream 

effects of PD defects in the essp8 mutants on PD-mediated intercellular signaling during 

root development, SHR, an important developmental regulators in roots, was used as a 

molecular marker (see section 1.5.2). During root development in Arabidopsis, the 

endodermis, middle cortex (MC), and cortex are formed by timely and spatially regulated   
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Figure 3.18 Quantitative measurement of the fluorescent probes movement in essp8 

hypocotyl. 

(A-B) The hypocotyls of wild-type (A) and essp8 (B) etiolated seedlings were used for 

the assay. (C-F) Using two fluorescent probes, Alexa Fluor (3 kDa) (C-D) and 

fluorescein (10 kDa) (E-F), the symplastic connectivity was quantitatively measured in 

wild-type (C and E) and essp8 (D and F) hypocotyls. The injection sites are shown by 

single asterisks. (G) For both the Alexa Fluor and fluorescein probes, the distance of the 

probes’ movement in WT Col-0 was significantly less than that in essp8. In all cases, 

values reported are the mean ± S.E (n = 5). The double asterisks denote significant 

differences (Student’s t-Test, **P < 0.01). Scale bars: A-B = 1 mm, C-F = 100 µm  
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periclinal cell divisions. The formation of endodermis and cortex occurs continuously 

by parallel division of the cells surrounding the QC at the root tip, and is mediated by 

the activity of two transcription factors SHR and SCR (Di Laurenzio et al., 1996; 

Helariutta et al., 2000; Wysocka-Diller et al., 2000). It has been previously suggested that 

the intercellular movement of SHR is PD-mediated (Vatén et al., 2011). 

essp8 mutant seedlings display severe defects in root tissue patterning with cell identity 

change and increased number of cell layers resembling the phenotype of SHR ectopic 

expression. Since it was already shown that the essp8 mutation causes reduced callose 

accumulation at the PD (Fig. 3.13E-H) accompanied by an increase in PD SEL          

(Fig. 3.18G), it was hypothesized that the movement of SHR is altered during root 

development as a consequence of the PD defects in essp8.  

To determine whether the root phenotype in essp8 is, at least partially, SHR-dependent, 

the pSHR::SHR:GFP expression construct was introduced into WT Col-0 and essp8 

heterozygous plants. In five-day-old WT seedlings, SHR is localized into nuclei and 

cytoplasm in the stele cells, while in the neighboring cell layers including the QC, CEI, 

and endodermis, SHR specifically resides in the nucleus (Fig. 3.19A). Contrary to the 

WT, in essp8 five-day-old seedlings, SHR-GFP fusion protein signal was detected in both 

nucleus and cytoplasm in the stele cells and the neighboring layers including the QC, CEI 

and endodermis, as well as cortex (Fig. 3.19B). Although severe defects in root tissue 

patterning in ten-day-old essp8 roots make the recognition of different cell layers and 

tissues challenging, the SHR-GFP fusion protein signal was detected in the outer cell 

layers, indicating an increase in intercellular movement of SHR in the essp8 roots 

compared to the wild type (Fig. 3.19C-D).  

This result reconfirms that SHR cell-to-cell trafficking is PD-mediated. Defects in PD 

aperture in the gsl8 mutants interfere with the highly-regulated movement of SHR. 

Dysregulation of SHR symplastic movement leads to its ectopic localization to the cortex 

and outer cell layers, as well as ectopic subcellular localization into the cytoplasm in the 

embryonic roots of gsl8 mutant. Similar results were obtained using two other gsl8 

mutants (gsl8-1 and gsl8-2) (data not shown), which further confirmed that gsl8 mutants 

are PD-defective.   
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Figure 3.19 Symplastic movement of SHR is altered in essp8.  

(A-B) Localization of SHR-GFP fusion proteins in five-day-old wild-type Col-0 (A) and 

essp8 (B) primary roots. SHR movement and subcellular localization are dysregulated in 

essp8 roots as early as five days. (C-D) Localization of SHR-GFP fusion protein in the 

root tips of ten-day-old wild-type Col-0 (C) and essp8 (D). Dysregulation of SHR 

movement and its localization become more severe over time as the root tissue pattern 

deteriorates with age. Roots were stained with PI to visualize the cell wall.                    

Scale bars = 20 µm  
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3.5.3 The movement of miR165/6 is altered in the essp8 root 

It has been shown that the miR165/6 species (see section 1.5.4) are transcribed in the 

endodermis outside of the stele, where SHR is required for their transcription, and then 

move from the endodermis into the stele where they target the transcripts of class III 

homeodomain leucine zipper (HD-ZIP III) family genes (Carlsbecker et al., 2010; 

Miyashima et al., 2011). To further understand if the defective root tissue patterning in 

essp8 is, at least partially, the result of an increase in PD SEL and impaired symplastic 

signaling, miR165/6 activity in the endodermis and stele in essp8 roots was investigated 

using a ‘miRNA-sensor’ system (Carlsbecker et al., 2010). In this system, lower GFP 

signal is an indicator of higher miR165/6 activity (see section 2.6.3). 

In WT Col-0 roots, the detected GFP signal was weak but consistent in the stele and 

endodermis in both five- and ten-day-old seedlings, indicating miR165/6 activity in these 

cell layers as expected (Fig. 3.20A and C). The GFP signal was more obvious in the QC 

as well as lateral and collumella root cap, confirming the absence of miR165/6 activity. 

In five-day-old essp8 roots, the miR165/6 activity pattern was similar to that of the WT 

with weak GFP signal in the stele and endodermis (Fig. 3.20B). However, the detected 

signal in the QC, lateral and collumella root cap was weaker compared to WT Col-0, 

suggesting that miR165/6 might also be present and active in these cell layers             

(Fig. 3.20B). In the ten-day-old essp8 seedlings, miR165/6 was found to be ectopically 

active in the outer cell layers, which was confirmed by the detection of very weak GFP 

signals in the stele, endodermis, epidermis, as well as lateral and collumella root cap cells 

(Fig. 3.20D). Taken together, these results suggest that lack of callose accumulation at 

the PD in essp8 possibly dysregulates PD-mediated intercellular signaling and, therefore, 

results in ectopic activity of miR165/6 in the outer cell layers of the root in essp8 mutant.  

3.5.4 WUSCHEL symplastic movement might be dysregulated in essp8 shoot 

apical meristem  

WUS (see section 1.5.3) is required for stem cell specification (Laux et al., 1996). WUS 

activates CLV3 transcription in the adjacent cell layers of SAM by directly binding its  
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Figure 3.20 Cell-to-cell movement of miR165/6 is dysregulated in essp8. 

miR165/6 activity in five-day-old wild-type Col-0 (A-B) and ten-day-old seedlings (C-D) 

in wild-type Col-0 (A, C) and essp8 (B, D) primary roots, respectively. In the WT, the 

activity of miR165/6 in the stele and endodermis cells shows a weak GFP signal, whereas 

in the root cap, absence of miR165/6 activity results in a strong GFP signal (A). In five-

day-old essp8 roots (B), the GFP signal in the root cap is weaker compared to the WT. 

The detected GFP signal in the ten-day-old essp8 root cap is noticeably weaker compared 

to the WT (C and D). Scale bars = 20 µm 
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genomic region (Yadav et al., 2011). Restricted movement of WUS for two cell layers in 

SAM is critical for stem cell activity and specification. Mislocalization of WUS in the 

neighboring cells of SAM induces expansion of the stem cells and proliferation of 

meristematic cells (Yadav et al., 2010). There is supporting evidence that WUS 

trafficking is more likely to occur through PD (Daum et al., 2014). Given the possibility 

that movement of WUS in SAM is mediated through PD and the observation of defective 

PD in essp8 mutants, it was postulated that WUS is mislocalized into adjacent cell layers 

of SAM in espp8 mutants, leading to up-regulation of CLV3 in the essp8 seedlings 

compared to the WT. 

To address this hypothesis, the expression level of CLV3 was determined by qRT-PCR in 

wild-type and essp8 seedlings at two different ages (five- and 10-day-old). Interestingly, 

a significant increase was found in expression of CLV3 in essp8 in both five- and ten-

day-old seedlings, with being more significant in ten-day-old seedlings (Fig. 3.21). 

Taking into consideration that WUS activates CLV3 transcription, the up-regulation of 

CLV3 in essp8 seedlings indirectly indicates the possibility of WUS ectopic movement 

and, therefore, ectopic activation of CLV3 transcription. This result suggests that in SAM, 

similar to RAM, PD defects may cause an alteration in intercellular communication. 

3.6 Attempts to rescue essp8 mutant phenotype 

To examine whether the reduced callose at the PD and consequently increased SEL of the 

PD are related to the essp8 defective mutant phenotype, genetic approaches were used to, 

at least partially, rescue the essp8 phenotype. Based on our current understanding of the 

PD regulation and identified proteins in PD proteome (Table 1.1), two candidates, 

AtBG_PPAP (Levy et al., 2007; Zavaliev et al., 2013) and PDLP5 (Lee et al., 2008; 

Thomas et al., 2008; Lee et al., 2011; Wang et al., 2013) were chosen for the tests to 

rescue the espp8 mutant phenotype and, specifically, its PD defects. 

3.6.1 Knocking out AtBG_PPAP cannot restore callose balance at the PD in essp8 

Deposition of callose is a reversible process which occurs both during developmental 

processes (Rinne and van der Schoot, 1998; Ruan et al., 2004) and in response to stress  
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Figure 3.21 Analysis of CLAVATA3 transcript levels by qRT-PCR. 

The expression level was normalized to that of GAPDH. Error bars indicate standard 

deviation for three biological replicates. The asterisks denote significant differences using 

Student’s t-Test, * P < 0.05, ** P < 0.01. 
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(Radford et al., 1998; Sivaguru et al., 2000). AtBG_PPAP encodes a β-1,3-glucanase (see 

section 1.4.2) which is associated with PD and is localized to the cell membrane (Levy et 

al., 2007). It has been previously shown that knocking out β-1,3-glucanase results in an 

increase in callose accumulation around PD and reduces SEL. Based on these results, it 

has been proposed that callose turnover, as a result of its synthesis vs. hydrolysis, is 

responsible for regulating PD SEL (Levy et al., 2007). Therefore, a balance between the 

activities of β-1,3-glucanases and callose synthases (GSLs) is required to variably 

deposit callose at the neck of PD, and regulate PD’s symplastic flow by adjusting the 

channel size (Fig. 1.5) (Maule et al., 2012).  

essp8 is a GSL8 loss-of-function mutant. Therefore, it was assumed that the balance 

between callose synthases and β-1,3-glucanases is disrupted in essp8, presumably with 

higher callose hydrolysis activity than callose synthesis. It was hypothesized that 

knocking out AtBG_PPAP partially restores the balance between the activity of the 

enzymes hydrolyzing and synthesizing callose, and, consequently, rescues essp8 mutant 

phenotype and PD defects moderately. To address this hypothesis, a T-DNA insertion 

line for AtBG_PPAP, atbg-1, was ordered from ABRC (Appendix I). After genotyping, 

individual plants that were homozygous for the T-DNA insertion were crossed with 

heterozygous GSL8/essp8
 
and GSL8/gsl8-1 plants, and F2 population was screened to 

identify the double mutants (atbg-1 essp8 and atbg-1 gsl8-1). Double mutants were 

identified using PCR-based genotyping and sequencing to confirm the atbg-1, gsl8-1 and 

essp8 genotypes. atbg-1 essp8 and atbg-1 gsl8-1 double mutants were identified at the 

ratios of around 5% and 6% in the F2 population, respectively.   

Interestingly, knocking out AtBG_PPAP in essp8 and gsl8-1 genetic backgrounds could 

not rescue the morphological defects of gsl8 mutants (Fig. 3.22A-D). To investigate 

whether the atbg-1 mutation can rescue PD defects, the callose accumulation was 

visualized using aniline blue staining. Callose visualization showed an increase in the 

amount of callose deposited at PD in atbg-1 compared to the WT, and in atbg-1 essp8 

double mutant compared to essp8 single mutant (Fig. 3.22E-H). No obvious change was 

detected at the cell plate (data not shown). This result indicates that only a minor 
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elevation of the callose deposited at PD is not sufficient to rescue the PD defects and 

subsequently, the gsl8 mutant phenotype.   

3.6.2 PDLP5 overexpression induces callose deposition at PD 

It was been previously suggested that PDLPs (see section 1.4.1) can induce callose 

deposition at PD and, therefore, might negatively regulate SEL of PD (De Storme and 

Geelen, 2014). PDLP5 overexpression can elevate plants’ resistance against viral 

infection, which is achieved through an increase in callose deposition at PD and thus, 

restricts the symplastic movement of the viral genome MPs (Lee et al., 2008; 2011). It 

was previously shown that in essp8, callose deposition at PD is reduced (Fig. 3.13F-H), 

and cell-to-cell communication is impaired (Fig. 3.18), supposedly due to an increase in 

SEL of PD. Thus, it was hypothesized that PDLP5 overexpression in gsl8 mutant 

background partially rescues PD defects and, therefore, the altered symplastic signaling.  

To test my hypothesis, the p35S::PDLP5:GFP expression construct was introduced into 

WT Col-0 and GSL8/essp8 heterozygous plants to generate PDLP5-overexpression lines 

(PDLP5-OE). Wild-type seedlings overexpressing PDLP5 exhibited yellowish color 

compared to the wild-type Col-0 (Fig. 3.23A-B), consistent with a previously published 

observation (Lee et al., 2011). PDLP5 overexpression did not rescue the gsl8 

phenotypic defects in essp8 background (Fig. 3.23C). To confirm that PDLP5 in 

transgenic plants is indeed localized at the PD, its localization was examined in the roots 

of five-day-old seedlings. PDLP5-GFP signals were detected at punctate particles at the 

cell membrane of root cells, suggested to be associated with the PD apertures, which is 

consistent with previous reports on PDLP5 (Lee et al., 2011) and its homolog, PDLP1 

(Thomas et al., 2008) (Fig. 3.23D-E). Additionally, in essp8 PDLP5-OE root cells, 

PDLP5-GFP signal could occasionally be detected inside the cell periphery             

(Fig. 3.23F), suggesting that PDLP5 localization might be disrupted in essp8 plants. 

To determine if PDLP5 can induce callose deposition at the PD, aniline blue staining was 

used to visualize the callose accumulated at the PD in the PDLP5-OE lines in wild type 

and essp8 backgrounds. Staining of the primary roots in seven-day-old seedlings showed   
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Figure 3.22 Phenotypes of atbg-1 gsl8 double mutants. 

(A-D) The morphological phenotypes of atbg-1 (A), essp8 (B), atbg-1 essp8 (C) and 

atbg-1 gsl8-1 (D) two-week-old seedlings. atbg-1 seedlings do not exhibit distinguishable 

phenotypic defects. Knocking out AtBG_PPAP in the gsl8 background does not rescue 

the defective phenotype of gsl8 mutants compared to an essp8 single mutant. (E-H) 

Visualization of callose deposition at the PD using aniline blue staining in seven-day-old 

primary roots of wild-type Col-0 (E), atbg-1 (F), essp8 (G) and atbg-1 essp8 (H) 

seedlings. Callose deposited at the PD is indicated by white arrowheads. Scale bars:      

A-D = 1mm, E-H = 50 µm   
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that PDLP5 overexpression in the WT background induces an increase in callose 

accumulation at the PD (Fig. 3.23G-H), while no change was detected in                   

essp8 PDLP5-OE roots (Fig. 3.23I).  

3.6.3 PDLP5 and AtBG_PPAP regulate PD’s SEL 

To further elucidate if modulation of callose deposition at the PD, induced by PDLP5 

overexpression and/or knocking out AtBG_PPAP, can indeed affect the SEL, cell-to-cell 

communication was tested using the SEL assay (see section 2.7). Measuring the extent of 

fluorescein probe movement in seven-day-old hypocotyls confirmed that an increase in 

callose deposition, induced by AtBG_PPAP knockout or PDLP5 overexpression, 

modulates the SEL in atbg-1 and PDLP5-OE compared to wild-type Col-0. Cell-to-cell 

movement of probe showed a reduction in both atbg-1 and PDLP5-OE hypocotyls 

compared to wild-type Col-0, with PDLP5-OE displaying a significant decrease. 

Knocking out AtBG_PPAP in essp8 background could significantly decrease the SEL. 

However, no difference could be detected between essp8 PDLP5-OE and essp8 seven-day-

old hypocotyls (Fig. 3.24). This result confirms that knocking out AtBG_PPAP slightly 

restores the accumulation of callose at the PD in both WT and gsl8 hypocotyls, similar to 

what was observed in primary roots (Fig. 3.22). Moreover, PDLP5 overexpression induces 

callose deposition at the PD in WT, but, surprisingly, not in the gsl8 mutant.     

3.7 Identification of GSL8 interacting partners  

It has been predicted that GSL might be part of a complex called CalS complex (see 

section 1.2.4). At least four potential candidates have been suggested as components of 

this complex including at least one of the GSLs, UGT1, ROP and SuSy (Andrawis et al., 

1993; Shin and Brown, 1999; Hong et al., 2001a; Hong et al., 2001b).  

Additionally, it has been indicated that a balance between β-1,3-glucan synthase and 

glucanase activities is required to achieve a dynamic modulation of callose deposition at the 

PD, and consequently regulate the SEL of the PD in response to exogenous and endogenous 

stimuli (Fig. 1.5) (Yadav et al., 2014). PDLPs have also been characterized as PD-

localized proteins and, in theory, they can interact with other proteins that are similarly-  
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Figure 3.23 Phenotype of PDLP5-OE seedlings and PDLP5 subcellular localization. 

(A-C) Morphological phenotypes of wild-type Col-0 (A), PDLP5-OE (B) and essp8 

PDLP5-OE (C) two-week-old seedlings. PDLP5-OE seedlings show chlorosis compared 

to the WT. essp8 seedlings overexpressing PDLP5 display a similar phenotype as essp8.            

(D-F) Subcellular localization of PDLP5 in PDLP5-OE (D) and essp8 PDLP5-OE (E and 

F) five-day-old primary roots. In the WT background, PDLP5 is localized at the cell 

membranes in a dotted pattern. In the essp8 background, the PDLP5-GFP signal can also 

be detected inside the cell periphery (white arrowhead). (G-I) Visualization of callose 

deposition at the PD (white arrowheads) using aniline blue staining in WT Col-0 (G), 

PDLP5-OE (H) and essp8 PDLP5-OE (I). Scale bars: A-C = 1 mm, D-F = 20 µm,           

G-I = 50 µm 

  



85 

 

 

 

 

**

**

Wild-type background essp8 background
 

Figure 3.24 Measurement of symplastic movement in various genetic and transgenic 

backgrounds. 

Cell-to-cell communication was quantified in hypocotyls of seven-day-old seedlings 

using a 10 kDa fluorescent probe (fluorescein) in corresponding genetic backgrounds as 

indicated. In all cases, values represent the mean ± S.E. (n = 5) and dotted lines indicate 

which samples were pairwise compared. Significant differences at P ˂ 0.01 using 

Student’s t-Test are shown with **.   
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localized (Thomas et al., 2008). The receptor-like characteristics of PDLPs suggests that 

they might be involved in the regulation of symplastic trafficking. Additionally, earlier 

reports demonstrated that GSL8 is required for cytokinesis completion and proper callose 

deposition during cell plate formation (see section 3.4) (Chen et al., 2009; Thiele et al., 

2009). SCD1 has been known to function in membrane trafficking during cytokinesis and 

cell expansion and, together with SCD2, is associated with clathrin-mediated membrane 

transport and plasma membrane endocytosis (McMichael et al., 2013). SCD1 was chosen 

as one of the candidate to investigate its possible interaction with GSL8 at cell plate 

and/or plasma membrane. 

To determine the components of the callose synthase complex, firstly a hypothetical 

interactome was generated for GSL8 using a web-based tool (Franceschini et al., 2013)    

(Fig. 3.25). By combining the results from the hypothetical interactome and previous 

studies, six candidates, SUCROSE SYNTHASE 1 (SUS1), UDP-GLYCOSYL 

TRANSFERASE (UDPG), ROP4, PDLP5, AtBG_PPAP and SCD1, were chosen to 

investigate their physical interaction with GSL8 in vivo.  

FRET was used to test these protein-protein interactions. The acceptor photobleaching 

approach (see section 2.9) was used to quantify FRET efficiency. FRET analysis showed 

an in vivo interaction between GSL8 and SUS1, AtBG_PPAP, PDLP5 and SCD1. 

However, no direct interaction could be detected between GSL8 and UDPG or ROP4 (Fig. 

3.26). Testing the swapped fluorophores, in which GSL8 was used as the donor, generated 

similar results (data not shown), confirming the observed molecular interactions. 

These results suggest that, similar to cellulose synthase complex, SuSy is likely to 

provide the UDP-Glc for callose synthase, e.g. GSL8, confirmed by identification of 

their interaction. The interaction of PD-localized β-1,3- glucanase (AtBG_PPAP) with 

GSL8 provides evidence that the balance between the activity of enzymes synthesizing 

and degrading callose might occur through their direct interaction. Based on our results 

as well as the previous prediction (De Storme and Geelen, 2014), induction of callose 

deposition at the PD by PDLP5 is suggested to be mediated by GSL8 as shown by their 

interaction. An earlier study had predicted the possible interaction of SCD1 and callose 

synthase during cell plate formation (Hong et al., 2001a) as was confirmed here.   
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Figure 3.25 A hypothetical interactome network for GSL8. 

Potential interactors of GSL8 were identified using a web-based tool (Franceschini et al., 

2013). Different line colors represent the type of evidence used to identify the 

association. Functional partners of GSL8 were identified based on co-expression (grey), 

experimental data (pink), database (blue), text mining (green) and sequence homology 

(purple) (Franceschini et al., 2013).  
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Figure 3.26 GSL8 interacts with sucrose synthase, AtBG_PPAP, PDLP5 and SCD1. 

The acceptor photobleaching FRET showed an interaction between GSL8 and SUS1, PD-

localized callose degrading enzyme (AtBG_PPAP), PDLP5 and SCD1. According to the 

FRET results, no direct interaction could be identified between GSL8 and UDPG, and 

ROP4. Free CFP was used as the negative control. The data used for FRET efficiency 

calculation and statistical analyses were obtained from at least three independent 

experiments and three biological replicates for each experiment. In all cases values 

reported are the mean ± S.E., n = 9.   
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3.7.1 GSL8 cytoplasmic domain is required for its interaction with SUS1, 

AtBG_PPAP, PDLP5 and SCD1 

The alignment of GSLs’ amino acid sequence revealed that the conserved residues mostly 

belong to the cytoplasmic domain with the longest conserved region located on the               

C-terminal end of the cytoplasmic loop in GSL8 (Appendix VII, Fig. 3.12). Based on the 

GSLs’ alignment, it was hypothesized that the cytoplasmic loop of GSL8 acts as its 

catalytic site and is required for the interaction with its identified partners. Therefore, 

truncation of GSL8 in essp8, leading to the absence of the cytoplasmic loop, should 

negatively affect GSL8 function. To assess this hypothesis, YFP and CFP fusions were 

made with the truncated version of GSL8 to use for interaction analysis. The interaction 

of truncated GSL8 with SUS1, AtBG_PPAP, PDLP5 and SCD1, which was proved with 

full-length GSL8, was investigated using FRET. For all four interactions, FRET 

quantification revealed significant decrease compared to the full length version           

(Fig. 3.27). Thus, it can be concluded that the GSL8 cytoplasmic loop is indeed required 

for its interaction with its partners and, therefore, for its activity.   

3.7.2  GSL10 might be part of the callose synthase complex     

GSL8 and GSL10 are the most closely-related members of the GSL family, at both their 

genomic and amino acid sequence levels, and clustered into the same subfamily in the 

phylogenetic tree of the Arabidopsis GSL family (Fig. 3.11). Additionally, their loss-of-

function mutants show similar phenotypes during microspore mitosis and sporophyte 

development (Töller et al., 2008). The hypothetical interactome for GSL8 also suggested 

high likelihood of its interaction with GSL10 (Fig. 3.25). These results led to the 

speculation that GSL8 and GSL10 form a heterodimeric complex, in which the absence 

of one member disrupts the complex functionality. This is similar to what has been 

shown for cellulose synthase (CESA) complexes which consist of three different CESA 

proteins (Taylor et al., 2000; Gardiner et al., 2003). 

A previous study reported dwarf phenotypes for both gsl8 and gsl10 knockdown lines, 

generated using dsRNAi approach, with gsl10 exhibiting more severe dwarfism (Töller 

et al., 2008). Therefore, it was hypothesized that gsl8 gsl10 double mutants show similar  
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Figure 3.27 The GSL8 cytoplasmic loop is required for its interaction with SUS1, 

AtBG_PPAP, PDLP5 and SCD1. 

Using a truncated GSL8 as the acceptor in FRET quantification for GSL8 showed 

significant reduction of FRET efficiency for all four interactions with SUS1, 

AtBG_PPAP, PDLP5 and SCD1 compared to full-length GSL8. The data used for FRET 

efficiency calculation and statistical analysis were obtained from at least three 

independent experiments and three biological replicates for each experiment. In all cases 

values reported are the mean ± S.E., n = 9. The double asterisks denote significant 

differences using Student’s t-Test, P < 0.01. 
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phenotype to that of gsl8 or gsl10 single mutants if GSL8 and GSL10 indeed form a 

heterodimeric complex.  

Due to the essential role of GSL10 in gametophytic development, no homozygous gsl10 

mutants could be recovered after screening several T-DNA insertion lines for GSL10 

(Appendix I). Therefore, gsl8 gsl10 double mutant was generated using an artificial 

miRNA under the control of an estradiol-inducible promoter (see section 2.6.4). 

XVE::aMIRGSL8/GSL10 transgenic seeds were germinated and induced on MS media 

containing 100 µM β-esteradiol or mock-treated on MS media containing DMSO. The 

mock treated fourteen-day-old XVE::aMIRGSL8/GSL10 transgenic seedlings did not 

show any obvious defects compared to the WT Col-0 (Fig. 3.28A-B), whereas the 

transgenic seedlings treated with β-esteradiol phenocopied the phenotype of gsl8-1 

mutant seedlings. Similar to gl8-1, XVE::aMIRGSL8/GSL10 transgenic seedlings show 

dwarfism and develop abnormally-shaped true leaves. Additionally, the primary 

roots and root hairs of XVE::aMIRGSL8/GSL10 seedlings are shorter, thicker, and the 

root tips are swollen compared to the wild-type, but similar to those of gsl8-1       

(Fig. 3.28C-D).  

This result suggested that GSL8 and GSL10 are unlikely to be functionally-redundant, 

as their single mutants have strong phenotypes, although it is possible that they become 

functional by forming a complex. Hence, the XVE::aMIRGSL8/GSL10 seedlings do not 

exhibit more severe defects compared to gsl8 single mutants. Further investigation is 

required to determine whether GSL8 and GSL10 physically interact in vivo.  
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Figure 3.28 Morphological phenotype of XVE::aMIRGSL8/GSL10 seedling. 

Comparing the morphological phenotypes of two-week-old WT Col-0 (A), mock-treated 

(B), XVE::aMIRGSL8/GSL10 transgenic (C) and gsl8-1 (D) seedlings. 

XVE::aMIRGSL8/GSL10 transgenic seedlings phenocopy the gsl8-1 single mutant 

developmental defects: dwarf seedlings with short and thick roots (white arrowhead), and 

abnormally-shaped true leaves (red arrowhead). Scale bars = 1 mm  
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4 DISCUSSION 

4.1 essp8 is a new allele of GSL8  

In this study, an Arabidopsis mutant named essp8, initially identified through an 

unrelated genetic screen (see section 1.8), was discovered to have an interesting 

phenotype. essp8 mutant forms tiny seedlings, having short and thick roots and 

hypocotyls. The cotyledons and true leaves are thicker and undulated in essp8 seedlings 

compared to the WT. In addition, the essp8 mutation can ectopically induce somatic 

embryo formation with incomplete penetrance. The first evidence for the biological role 

of essp8 was discovered when essp8 was identified as a novel allele of Arabidopsis 

GSL8. GSL8 has been characterized as a callose synthase. Callose plays important roles 

in cell division, growth and differentiation in plants (Piršelová and Matušíková, 2013), 

and accounts for up to 80% of the plant cell walls’ dry mass (Xie and Hong, 2011). 

Hence, this study was focused on characterization of essp8 mutant. 

The observed essp8 seedling phenotype is similar to the defects previously reported for 

the other GSL8 alleles, such as showing dwarfism, short roots with defects in root tissue 

patterning (Chen et al., 2009; Thiele et al., 2009; Guseman et al., 2010), swollen, 

branched root hairs (Guseman et al., 2010), and disorganized epidermal cells in cotyledon 

and true leaves (Chen et al., 2009). However the ectopic somatic embryo phenotype had 

not been documented for gsl8 mutants. An elevation of cell proliferation in the root cap 

collumella, hypocotyl cortex, endodermis and phloem (Chen et al., 2009), stomatal-

lineage cells (Guseman et al., 2010), and cotyledon and first leaves (De Storme et al., 

2013) was mentioned in previously characterized alleles of GSL8. My different 

observation might be due to the unique mutation site in essp8 leading to the truncation of 

GSL8. Alternatively, it cannot be excluded that it might be simply caused by slightly 

different growth conditions such as difference in sucrose concentration in the growth 

media compared to what were used in other studies (3% vs. 1%). Dependence of aerial 

and root morphological phenotype, and cell expansion on external sucrose level has been 

previously reported (Benfey et al., 1993; Roldán et al., 1999; Caño-Delgado et al., 2000; 

Takahashi et al., 2003). This study also showed the dependence of somatic embryo 

phenotype induction on the sucrose concentration. As such, essp8 seedlings develop 
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somatic embryos only on MS media containing 3% sucrose (Fig. 3.3), whereas, no 

somatic embryo could be identified when the sucrose content was decreased to 1.5% 

(data not shown). This is the first report on induction of somatic embryo formation and 

cell identity change in a gsl8 mutant. The somatic embryo phenotype of essp8 mutant 

provides new insight into GSL8 requirement during early seedling development in 

Arabidopsis.  

4.1.1 gsl8 mutation causes embryo defects and seedling lethality 

Poor germination was observed, regardless of sucrose concentration, in all the GSL8 

mutants studied, including gsl8-1, gsl8-2, gsl8-3, gsl8-4 and essp8. Germination failure in 

about 5% of the homozygous essp8 seeds resulted in a segregation ratio of approximately 

20%, instead of 25% (Table 3.1), the ratio expected in the case of Mendelian segregation 

for a recessive mutation at a single locus. The morphological analysis of the siliques from 

a heterozygous parent showed that homozygous gsl8 seeds are reduced in size compared 

to the WT and carry defective embryos (Fig. 3.1E-F), which is consistent with previous 

reports (Chen et al., 2009; Thiele et al., 2009).   

The lethality for the gsl8 knockout lines has already been documented (Töller et al., 

2008; Chen et al., 2009; Thiele et al., 2009; Guseman et al., 2010). The lethal 

phenotype of essp8 mutant seedlings excludes the possibility of GSL8 functional 

redundancy with the other eleven identified GSLs in Arabidopsis, at least at the 

seedling stage. Additionally, it indicates that GSL8 plays a specific and substantial role 

in callose biosynthesis during plant growth and development. High correlation of GSL8 

and GSL10 expression profiles and their similar mutant phenotypes during microspore 

mitosis and sporophyte development have raised the question of whether they are 

functionally-related, or have overlapping roles (Töller et al., 2008). It still needs to be 

further investigated if GSL8 and GSL10 can form a heteromeric callose synthase 

complex, similar to what have been shown for cellulose synthase complexes (Taylor et 

al., 2000; Gardiner et al., 2003). The existence of such a complex can potentially 

explain their similar mutant phenotypes, caused by disruption of the complex activity in 

the absence of one component (see section 4.5.4). 
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4.2 gsl8 phenotypic defects are partially caused by cytokinesis impairment 

Endopolyploidization, defined as the cell-specific nuclear DNA content multiplication, in 

both plants and animals is either the result of endomitosis or endoreduplication during 

mitotic cell cycle processes (Joubès and Chevalier, 2000). In endoreduplication, due to a 

complete absence of mitotic chromosomes condensation and their subsequent division, 

while the total number of the chromosomes won’t be affected, polytenal chromosomes 

are generated (Edgar and Orr-Weaver, 2001; Lee et al., 2009). In endomitosis, in contrast 

to endoreduplication, cells enter mitosis but do not complete the process. Depending on 

the stage when the M-phase is aborted, division of the duplicated chromosomes and 

cytokinesis might be missing, resulting in the generation of cells that will have doubled 

absolute number of chromosomes (D’Amato, 1984). 

Although callose biosynthesis occurs in different species, accumulation of callose at the 

cell plate during cell division is plant-specific, and has been confirmed for all plant taxa 

(Scherp et al., 2001). Callose is known as a major component of cell plate and cell wall 

and, therefore, is required for completing plant cytokinesis and proper cell wall formation 

(Verma, 2001; Chen and Kim, 2009; Vatén et al., 2011; Piršelová and Matušíková, 

2013). It has been shown that loss-of-function mutations in GSL8 cause defects in cell 

plate and cell wall formation (Töller et al., 2008; Chen et al., 2009; Thiele et al., 2009; 

Guseman et al., 2010; De Storme et al., 2013). Thiele et al. (2009) for the first time 

reported severe cell division defects and a significant decrease in callose deposition at the 

cell plates in a GSL8 knockdown line. This result provided the evidence supporting the 

important role of GSL8 in callose biosynthesis during cytokinesis. Additionally, defects 

in the cell walls accompanied with formation of endomitotic cells were detected in flower 

tissues of et2, a weak allele of GSL8 (De Storme et al., 2013). Taken together, callose 

biosynthesis by GSL8 plays a substantial role during cell plate formation and is thus 

required for maintaining the basic ploidy level, especially in reproductive tissues. My 

findings are in agreement with the previous studies and reconfirm the cytokinesis defects 

in the newly identified allele of GSL8, essp8. The essp8 mutation causes reduction of 

callose deposited at the cell plates in actively dividing cells in the RAM. Determination 

of the ploidy level in the root cells of three different gsl8 mutants, essp8, gsl8-1 and  
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gsl8-2 revealed that gsl8 mutation induces ectopic polyploidization and endomitosis, both 

in the meristematic tissue and elongating cells of the root (Fig. 3.15 and 3.16). This 

result, for the first time, provides the evidence that cytokinesis defects in gsl8 mutants are 

beyond the reproductive tissues and affect both somatic and reproductive cells.  

4.2.1 Cytokinesis defects might cause lethality of essp8 seedlings 

The cause(s) of gsl8 knockout mutants’ lethality is still under debate. Loss of proper 

chromosome condensation and segregation during successive cell divisions has been 

suggested as one of the potential reasons leading to growth arrest (De Storme et al., 

2013). Segregation of the replicated chromosomes becomes too complicated in polyploid 

or endomitotic nuclei as they go through consecutive cell divisions (Sugimoto-Shirasu 

and Roberts, 2003). Therefore, it is expected that with progression of gsl8 seedling 

development, the number of polyploid and/or endomitotic cells and the ploidy level 

increases. Comparing essp8 seedlings at different ages confirmed that more cells display 

cytokinesis defects as the number of polyploid and/or endomitotic cells significantly 

increases in older seedlings (Fig. 3.17). It is plausible that accumulative polyploidization 

caused by defects in cell plate formation induces a premature arrest of cell division in 

proliferating tissues and, consequently, cell death. Death through mitotic catastrophe and 

polyploidization has already been reported in different species (Doelling et al., 2001; 

Tzafrir et al., 2002; Castedo et al., 2004; McCall, 2004; Vakifahmetoglu et al., 2008; 

Pritchett et al., 2009).  

4.2.2 Cytokinesis-defective mutants do not exhibit severe tissue impairments 

Ectopic polyploidization is known as a general characteristic of cytokinesis-defective 

mutants and has been detected in different organisms and cell types (Hatzfeld and Buttin, 

1975; Thompson and Lindl, 1976; Karess et al., 1991; Castrillon and Wasserman, 1994; 

Neufeld and Rubin, 1994; Liu et al., 1997; Spielman et al., 1997; Lordier et al., 2008; 

Pampalona et al., 2012; Serres et al., 2012; De Storme and Geelen, 2013). Through 

forward genetic screens, several cytokinesis-defective mutants have been isolated. 

Comparing the phenotypic defects of three gsl8 alleles to five different cytokinesis-

defective mutants including hinkel, scd1, knolle, keule and korrigan showed that 
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dwarfism is shared among all the analyzed mutants. As was expected, all cytokinesis-

defective mutants induce ectopic polyploidization in the root somatic cells similar to that 

observed for gsl8 mutants. However; root tissue patterning and root-hair morphogenesis 

do not exhibit severe impairments as seen in gsl8 (Fig. 3.14 and 3.15). For example, the 

keule mutant roots are stunted (Söllner et al., 2002; Thiele et al., 2009), but bloated cells 

and branched swollen root hairs, characteristic for essp8, could not be detected in keule 

seedlings. Additionally, none of the cytokinesis-defective mutants showed somatic 

embryo formation.  

With the exception of KORRIGAN, the remaining cytokinesis-defective mutants analyzed 

in this study are required for vesicles transport and fusion, known as the first step of cell-

plate formation (Samuels et al., 1995; Lukowitz et al., 1996; Waizenegger et al., 2000; 

Strompen et al., 2002). Callose deposition, however, mainly occurs during the second 

step of cell-plate formation where the cell wall is assembled within the network generated 

in the first step as a result of vesicle fusion (Thiele et al., 2009). Therefore, part of the 

phenotypic differences might be caused by the disparate timing of their involvement 

during cytokinesis completion. KORRIGAN encodes a membrane-bound endo-1,4-β-

glucanase that plays a role during the second step (Sato et al., 2001). Surprisingly, in 

spite of their related functions during cytokinesis, GSL8 and KORRIGAN mutants display 

different phenotypes. My findings suggest that essp8, similar to the other reported GSL8 

alleles (Chen et al., 2009; Thiele et al., 2009; De Storme et al., 2013), is a cytokinesis-

defective mutant, as indicated by its lack of callose deposition at the cell plates and 

ectopic induction of multi-nucleated and endomitotic somatic cells. Nevertheless, essp8 

phenotypic defects and seedling lethality are likely to be caused only 'partially' by 

cytokinesis impairments.    

It was previously proposed that GSL6 is a cell plate-specific callose synthase (see section 

1.2.2). In tobacco BY-2 cells, GFP-GSL6 fusion proteins are localized to the cell plate 

when expressed under the control of the CaMV35S promoter (Hong et al., 2001a; Hong et 

al., 2001b). Interestingly, gsl6 knockout lines do not show any phenotypic and/or 

cytokinesis defects (Dong et al., 2008; Chen et al., 2009). Therefore, considering the 

severity of cytokinesis defects as well as the observed lethality in different gsl8 mutants, 
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tested in this study, it is tempting to propose that GSL8 is the callose synthase essential 

for depositing callose at the cell plate to complete cytokinesis.  

4.3 Cell-to-cell communication is relaxed in essp8 hypocotyls 

Intercellular signaling is required for regulation of developmental programs in any 

multicellular organism. In plants, PD channels interconnect the cells and provide the path 

for movement of nutrients and regulatory molecules such as mobile transcription factors 

(Rinne and van der Schoot, 1998; Koizumi et al., 2011; Xu et al., 2011). Callose 

deposition at the neck of the PD plays a critical role in regulating cell-to-cell 

communication in plants (Vatén et al., 2011). Symplastic signaling is a dynamic process 

and is achieved through a balance between the activity of callose synthases and β-1,3-

glucanases (Levy et al., 2007). However, it is still not clear how callose synthases 

regulate PD and what other molecular components are required for this regulation. 

Expression analysis of GSL8 indicated that GSL8 is highly expressed in most organs 

during plant development with the maximum transcript level in the vasculature and 

actively dividing cells (Schmid et al., 2005; Chen et al., 2009). In the vasculature, callose 

is mostly deposited at the PD to regulate its SEL. Therefore, GSL8 was suggested to be 

associated with PD regulation. In agreement with the predicted role of GSL8 in PD 

regulation, a mutant allele of GSL8, called chorus, showed PD defects as indicated by an 

increase in passive diffusion of CFP and a trimeric GFP (3×GFP) molecules in leaf 

epidermis (Guseman et al., 2010). In agreement with Guseman at al. (2010), the 

histochemical assay to visualize the callose deposited at the PD showed that, in all gsl8 

mutants, almost no callose is accumulated at the PD in the elongation zone of the root, in 

the root hairs and vasculature tissue compared to the wild-type Col-0 (Fig. 3.13E-H). 

Furthermore, the cell-to-cell diffusion assay using fluorescent probes demonstrated that 

the essp8 mutation results in an increase in symplastic movement in hypocotyls, likely 

due to lack of callose accumulation at the PD, which consequently boosts the passive 

diffusion (Fig. 3.18). Therefore, not only my finding is consistent with PD defects 

previously documented in chorus epidermal cells by Guseman et al. (2010), but also it 

indicates that PD defects in gsl8 mutants occur in different somatic tissues. Hence, it can 



100 

 

be concluded that GSL8 is required for callose deposition at the PD and regulation of 

their size exclusion limit.  

Two other members of the Arabidopsis GSL family, GSL7 and GSL12, were recently 

shown to be involved in callose biosynthesis at the PD (Barratt et al., 2011; Vatén et al., 

2011; Xie et al., 2011). Compared to GSL12, GSL7 callose biosynthesis activity is more 

tissue-specific. GSL7 is expressed in the vasculature system and is required only for 

callose deposition at the phloem PD and sieve plates. Vaten et al. (2011) suggested a role 

for GSL12 in PD regulation using an inducible expression system for GSL12 gain-of-

function mutants. Although, a GSL12 gain-of-function mutant seedlings develop shorter 

roots compared to the WT, the defect is not as severe as those of essp8 (Vatén et al., 

2011; Yadav et al., 2014). The lethality of essp8 single mutant rules out the possibility 

that GSL8 and GSL12 are functionally redundant during early seedling development and 

suggests that they are likely to be independently required for callose biosynthesis at the 

PD with GSL8 playing a more critical role.  

4.3.1 GSL8 is required for highly-regulated trafficking of SHR 

To gain a better understanding of the effect of essp8 mutation on PD aperture and 

trafficking of various mobile factors, SHR (see section 1.5.2) was chosen as a candidate 

for NCATFs, and its symplastic movements in essp8 roots was investigated. SHR is 

specifically expressed in the stele cells and the SHR protein moves from stele into the 

neighboring cells including the QC, the CEIs, the CEIDs and the endodermis (Nakajima 

et al., 2001). In the endodermis, SHR transcriptionally activates several target genes 

including SCR. Physical interaction of SHR and SCR suggests that a transcription 

activation complex might be formed by the two proteins (Nakajima et al., 2001; 

Levesque et al., 2006; Cui et al., 2007).  

Vaten et al. (2011) suggested that SHR movement is likely to be PD-mediated as callose 

induction, in either the endodermis or the stele, could impair its trafficking (Vatén et al., 

2011). Disruption of SHR movement in essp8 root meristematic zone suggests 

dysregulation of SHR signaling pathway. This finding, for the first time, provides 

evidence that essp8 mutation indeed alters the movement of SHR protein as its trafficking 
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increases by an extra cell layer. This increase could be detected as early as in five-day-old 

essp8 roots. In essp8, SHR ectopically moves to the cortex, the neighboring cells to 

endodermis (Fig. 3.19B). In wild-type seedlings, SHR is localized into both nucleus and 

cytoplasm of stele cells, but only to the nucleus in the endodermis (Fig. 3.19A) where it 

activates SCR as a transcription factor (Cui et al., 2007). Contrary to the WT, in essp8 

seedlings, SHR was localized into both, nucleus and cytoplasm, in stele, endodermis and 

cortex cells (Fig. 3.19B). Previous studies have shown that restricted movement of SHR 

for only one cell layer and its nuclear localization in the endodermis are critical 

regulatory mechanisms for endodermis differentiation (Nakajima et al., 2001), and are 

evolutionarily conserved (Cui et al., 2007). Reduction of SHR nuclear localization and its 

movement outside of the endodermis induces cell divisions and an increase in the number 

of cell layers, where the cells ectopically exhibit endodermal characteristics (Cui et al., 

2007; Welch et al., 2007; Miyashima and Nakajima, 2011). 

SHR plays a substantial role during embryonic root development by regulating radial 

patterning of the Arabidopsis root (Nakajima et al., 2001). Transport of SHR from the 

stele into the endodermis acts as an initiator of cell communication network in the 

meristematic zone of the root. SHR is required for cell division and endodermis 

differentiation (Benfey et al., 1993; Helariutta et al., 2000). Highly-regulated movement 

of SHR and its well-defined subcellular localization are both crucial for ground tissue 

formation. Furthermore, it has been previously shown that SHR abundance changes 

dynamically during root development, and its dose regulates MC formation. An increase 

in SHR level prevents MC formation, whereas its abundance at intermediate level 

promotes MC formation (Koizumi et al., 2012). Additionally, overexpression of SHR 

using CaMV35S promoter induces disorganized cell divisions in the root meristem 

(Helariutta et al., 2000; Nakajima et al., 2001). Similarly, ectopic expression of SCR in 

the supernumerary cell layers leads to development of extra endodermal layers (Cui et al., 

2007). Collectively dysregulation of SHR symplastic movement in gsl8 mutants suggests 

that GSL8 is required for careful regulation of SHR trafficking via PD. Therefore, it is 

tempting to speculate that essp8 root defects such as increased number of cell layers and 

cell identity changes are, at least partially, caused by impairment of SHR cell-to-cell 

movement caused by loss of GSL8 and disruption of PD aperture. These results suggest a 
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new role for GSL8 as a critical factor required for regulation of cell communication 

network during early seedling development in Arabidopsis.    

4.3.2 Loss of GSL8 dysregulates symplastic movement of microR165/6 

Transcription activation of three MICRORNA165/6 genes, MIR165A, MIR166A and 

MIR166B is SHR-mediated in the QC, CEIs, CEIDs and endodermis (Carlsbecker et al., 

2010; Miyashima et al., 2011). SHR directly binds to the 5’ upstream regions of 

MIR165A and MIR166B to activate their transcription (Carlsbecker et al., 2010). After 

activation, the mature miR165/6 will move from endodermis to stele, and suppress the 

HD-ZIP III family genes, such as PHB, by targeting their transcripts (McConnell et al., 

2001; Prigge et al., 2005; Hirakawa et al., 2011). Suppression of the HD-ZIPIII genes by 

miR165/6 plays important roles in establishing apical-basal polarity during 

embryogenesis, patterning of leaf primordia and shoot vascular organization (McConnell 

et al., 2001; Emery et al., 2003; Smith and Long, 2010). However, it is not yet clear 

whether miR165/6 acts as a non-cell-autonomous factor during the other developmental 

events, or if it is root-specific.  

Similar to SHR, symplastic movement of miR165/6 has been shown to be PD-mediated 

(Vatén et al., 2011). The symplastic movement of mature miR165/6 was investigated in 

essp8 roots to confirm whether PD defects and the increase in their SEL affect miR165/6 

signaling. The analysis revealed that the movement of mature miR165/6 is impaired in 

essp8 roots (Fig. 3.20). Even though the difference in miR165/6 activity between wild 

type and essp8 in five-day-old seedling roots was minor, the ectopic activity of miR165/6 

in the outer cell layers and root collumella cells increases markedly in ten-day-old roots 

as the root tissue patterning develops a more severe defect. This is the first report on the 

alteration of miR165/6 intercellular movement in gsl8 mutants. This new finding suggests 

that GSL8 is required for regulation of miR165/6 PD-mediated trafficking.  

The mRNAs of five HD-ZIPIII genes, including PHABULOSA (PHB), PHAVOLUTA 

(PHV), REVOLUTA/INTERFASCICULAR FIBERLESS1 (REV/IFL1), CORONA/ 

INCURVATA4 (CNA/ICU4) and ATHB8, are targeted by miR165/6 (Baima et al., 1995; 

Talbert et al., 1995; McConnell et al., 2001; Green et al., 2005; Prigge et al., 2005; 
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Ochando et al., 2006). Although single mutants for any of these five genes do not display 

distinguishable defects in their root tissue patterning, quadruple mutants for the HD-

ZIPIII genes, as well as overexpression lines for miR165 develop excessive cell layers in 

their vasculature tissue (Carlsbecker et al., 2010). The dose of miR165/6 in the ground 

tissue precisely regulates the PHB distribution across the stele, known to be essential for 

xylem differentiation in vasculature tissue (Miyashima et al., 2011). Interestingly, 

miR165/6 and HD-ZIPIII have also been found to be involved in regulation of xylem 

secondary cell wall (SCW) formation  (Du and Wang, 2015). Alternatively, miR165/6 

seems to have a bidirectional movement pattern, moving both, to the inside and outside, 

of the endodermis (Carlsbecker et al., 2010). Therefore, miR165/6-mediated suppression 

of the HD-ZIPIII genes in the endodermis and stele is not only restricted to xylem cell 

specification, but also plays a broader role in cell layers differentiation in Arabidopsis 

roots (Miyashima et al., 2011). The defects in meristematic root tissue patterning in essp8 

mutants are similar to the phenotype of miR165/6 overexpression lines and quadruple 

mutants of HD-ZIPIII genes, particularly the extra cell layers observed in the root and 

vasculature tissue (Carlsbecker et al., 2010). Therefore, it can be suggested that ectopic 

miR165/6 activity in the outer cell layers in the root meristem might be, at least partially, 

responsible for the essp8 root phenotype and loss of vasculature tissue in ten-day-old 

seedlings.  

Significant decrease of miR165/6 levels in both shr and scr mutants have suggested that 

the SHR/SCR transcription complex is likely to regulate MIR165/6 expression 

(Carlsbecker et al., 2010; Miyashima et al., 2011). Therefore, it still needs to be further 

investigated whether elevated miR165/6 activity in the outer cell layers in essp8 is a 

direct result of an increase in its bidirectional PD-mediated symplastic movement from 

endodermis to stele, cortex, epidermis and collumella cells, or the ectopic presence of 

SHR in the outer cell layers up-regulates miR165/6, or it is caused by both. 

4.4 PDLP5 function is likely to be GSL8-dependent 

PDLP isoforms were first identified in the cell wall proteome of Arabidopsis (Table 1.1) 

(Thomas et al., 2008). PDLPs are small proteins with a predicted size of 30 to 35 kDa. 

They contain a very short tail at the C-terminus, two conserved Cys-rich repeats at the N-
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terminus and a connecting transmembrane domain (TMD) (see section 1.4.1). Thomas et 

al. (2008) showed that all PDLPs localize to the cell periphery with punctate structures 

which represent PD. There are reports indicating that overexpression of PDLP1 and 

PDLP5 leads to the reduction in PD permeability and, therefore, improves plants’ 

resistance against pathogens, and concomitant elevation of callose deposition at the PD 

(Lee et al., 2008; Thomas et al., 2008; Lee et al., 2011; Wang et al., 2013). It is still 

unknown how PDLPs induce callose deposition at the PD and control symplastic 

trafficking in response to both internal and external signals. Contrary to PDLPs positive 

regulation of callose deposition at the PD, Amari et al. (2010) found that PDLPs might 

act as endogenous factors required for virus infection and movement of the virus MP. It 

was found that in a pdlp triple mutant, the virus association with the PD and its MP 

movement is inhibited (Amari et al., 2010).  

To investigate whether the gsl8 phenotypic defects can be partially rescued by induction 

of callose deposition at the PD, PDLP5 was overexpressed in a gsl8 genetic background. 

Seedlings overexpressing PDLP5 look slightly yellowish, and their adult plants show 

evident growth inhibition and chlorosis compared to the WT (Fig. 3.23A-B). This result 

is consistent with previous reports on the phenotype of PDLP5 overexpression lines (Lee 

et al., 2011; Carella et al., 2015). Similar to the other members of the PDLP family 

(Thomas et al., 2008; Lee et al., 2011), the localization analysis in the root showed that 

PDLP5 is localized at the cell wall as punctate structures, correspond to PD, in the WT 

and gsl8 five-day-old seedlings (Fig. 3.23D-E). Interestingly, serial z-section images 

revealed that in essp8 seedlings overexpressing PDLP5, the punctate localization pattern 

is missing in some of the cells. Instead, PDLP5-GFP signal was detected in the cytoplasm 

(Fig. 3.23C).  

Dysregulation of PD aperture in gsl8 mutant seedlings was previously observed as it 

affects the symplastic movement of non-cell autonomous factors including SHR and 

miR165/6 (see sections 4.3.1 and 4.3.2). Mislocalization of PDLP5 to cytoplasm in five-

day-old gsl8 seedlings raised the question whether PDLP5 localization at the PD is 

GSL8-dependent, or this occurs only as an indirect effect of cell wall and PD defects in 

gsl8 mutants. 
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Lee et al. (2011) showed that overexpression of PDLP5 induces callose accumulation at 

the PD for up to fourfold higher than the wild type. They proposed that PDLP5 controls 

PD permeability through modulation of callose accumulation at the PD. In agreement 

with their finding, WT seedlings overexpressing PDLP5 display an increase in callose 

deposited at the PD compared to the wild type. Furthermore, over accumulation of 

callose at the PD in PDLP5-OE lines indeed affects the SEL of PD and restricts passive 

diffusion through PD (Fig. 3.24). This finding supports the notion of Lee et al. (2011) 

that PDLP5 adjusts callose accumulation at the PD to control PD permeability.  

In contrast to the PDLP5-OE data in wild type, surprisingly, overexpression of PDLP5 in 

a gsl8 mutant background did not alter callose accumulation at the PD compared to the 

gsl8 loss-of-function mutants. Moreover, no significant difference could be detected in 

intercellular movement of fluorescein in the hypocotyls of gsl8 PDLP5-OE seedlings 

(Fig. 3.24). Taken together, these results explain why overexpression of PDLP5 in gsl8 

background cannot rescue their phenotypic defects as persistent lack of callose at the PD 

in gsl8 PDLP5-OE lines does not lead to discernible restoration of the PD size exclusion 

limit. Therefore, it can be concluded that loss of GSL8 might negatively affect PDLP5 

function and subcellular localization.  

De Storme and Geelen (2014) proposed that negative regulation of PD by PDLPs might 

occur through their interaction with enzymes synthesizing callose such as GSLs; 

however, no evidence was provided to support this hypothesis. This study provides novel 

insight into a putative cross talk between GSL8 and PDLP5, and the significance of this 

cross talk in PD regulation. Based on PDLP5 mislocalization and absence of callose 

induction in gsl8 PDLP5-OE seedlings, it can be argued that PDLP5 is likely to require 

GSL8 for its localization at the PD and this might happen through their direct interaction. 

This assumption needs to be further confirmed by testing the possibility of PDLP5 and 

GSL8 physical interaction, and if truncation of GSL8, in case of essp8, affects this 

putative interaction (see sections 4.5.2 and 4.5.5).  
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4.5 GSL8 forms a complex to synthesize callose and regulate its deposition 

Callose biosynthesis and its deposition need to be highly-regulated. Hence it has been 

proposed that GSLs, e.g. GSL8, are integrated into an extremely specialized protein 

complex, hypothetically named CalS complex, to carry out callose synthesis.  

4.5.1 SUCROSE SYNTHASE 1, a provider of UDP-Glc to GSL8  

Callose is synthesized from hundreds of glucose residues linked by β-1,3- glycosidic 

bridges (Piršelová and Matušíková, 2013). Thus, glucose molecules need to be provided 

to GSLs, where they are used by GSLs as precursors to synthesize β-1,3-glucan 

polymers. SuSy, known as a sugar metabolic enzyme involved in sucrose synthesis and 

degradation, can potentially act as the glucose provider for GSLs. It has been previously 

shown that in cellulose synthase complexes, SuSy is in charge of UDP-Glc delivery to 

the enzyme (Baroja-Fernández et al., 2012).  

The FRET analysis (see section 3.7) revealed a physical interaction between GSL8 and 

SUS1 (Fig. 3.26). This result suggests that, similar to the case of the cellulose complex, 

SuSy is likely to be incorporated into the callose synthase complex to channel UDP-Glc 

into glucan synthesis. SUS1 is traditionally predicted to be localized into cytosol (Hooper 

et al., 2014). However, several studies have suggested that, depending on the metabolic 

environment, SUCROSE SYNTHASE can adjust its cellular localization, and interact 

with membranes, organelles and cytoskeletal actin (Winter and Huber, 2000; Etxeberria 

and Gonzalez, 2003; Subbaiah et al., 2006; Zheng et al., 2011). Several lines of evidence 

have highlighted posttranslational modification as an important regulatory mechanism for 

SUS1 association with membranes. For example, SUS1 phosphorylation at Ser-15 in Zea 

mays and Ser-11 in Glycine max enhances its association with the membrane (Komina et 

al., 2002; Hardin et al., 2004). Although the molecular mechanisms by which SUS1 can 

bind to the membranes are not yet known, based on this finding, it is plausible to 

conclude that SUS1 integration into CalS complex might occur at its membrane-

associated status where it interacts with GSL8 to provide UDP-Glc monomers, required 

for callose biosynthesis.  
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4.5.2 A PD-localized β-1,3-glucanase and PDLP5 regulate PD through GSL8 

AtBG_PPAP, a PD-localized enzyme degrading callose, is required for maintaining 

callose balance at the PD (Levy et al., 2007; Zavaliev et al., 2011). AtBG_PPAP is 

localized in the ER membrane and at the cell periphery where it is associated with PD 

(Zavaliev et al., 2013). As was previously predicted in the hypothetical interactome 

network for GSL8 (Fig. 3.25), results of the FRET experiment support interaction of 

GSL8 and AtBG_PPAP (Fig. 3.26). The physical interaction of GSL8 and PD-associated 

β-1,3-glucanase suggests that GSL8 is likely to be the PD-associated callose synthase 

required for retaining the equilibrium between callose synthesis and hydrolysis.  

My results already showed that PDLP5 functionality and subcellular localization are 

disrupted in essp8 mutant seedlings (Fig. 3.23). This finding led me to investigate 

whether PDLP5 and GSL8 physically interact. The FRET result proved the interaction of 

GSL8 and PDLP5 (Fig. 3.26). PDLPs have their N-terminal domain exposed to the 

apoplast and a very short cytoplasmic domain with unknown role. Therefore, it has been 

proposed that the extracellular domains are likely to act as the interacting domains 

(Thomas et al., 2008). The FRET analysis suggests that the cytoplasmic domain of 

PDLP5 might be the one involved in its interaction with GSL8. Furthermore, the 

identified interaction between GSL8 and PDLP5 supports an earlier proposal that the 

induction of callose deposition at the PD by PDLP5 might happen through its interaction 

with callose synthase enzymes (De Storme and Geelen, 2014). Here, I have demonstrated 

that GSL8 is, if not the only one, the callose synthase regulating callose deposition at the 

PD.  

Cumulatively, the physical interaction of GSL8 with two PD-localized proteins, with 

roles in PD regulation, provides the first evidence for an earlier prediction by TÖller et al. 

(2008) as GSL8 might have regulatory roles, apart from its enzymatic function. This 

study gives new insight into the role of GSL8 in PD regulation, the mechanisms 

underlying the regulation of PD aperture and/or their size exclusion limit, and how they 

are linked to callose biosynthesis. 
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4.5.3 SCD1, an interacting partner of GSL8  

SCD1 is required for vesicular trafficking to the equator of the dividing cell (Falbel et al., 

2003), where the vesicles are fused together to form a tubulovesicular network (Söllner et 

al., 2002). Callose deposition converts the network into a fenestrated plate (Samuels et 

al., 1995; Verma, 2001).  

A recent study has shown that SCD proteins, including SCD1, are involved in different 

membrane trafficking events required not only for cytokinesis, but also for cell expansion 

(McMichael et al., 2013). It is already known that the secondary PD are formed post-

cytokinesis, possibly during cell expansion. However, how this happens has remained 

unclear (Brunkard et al., 2013). The observed interaction between GSL8 and SCD1 

provides new views on the role of GSL8, both in cytokinesis and PD regulation. 

Therefore, it raises new questions on whether this interaction is restricted to cell plate 

formation and is required for callose deposition at the cell plate, and/or it is somehow 

linked to secondary PD formation.  

4.5.4 GSL8 and GSL10 interplay might be required for proper function of callose 

synthase complex 

The effort to clone GSL10 cDNA was unfortunately not successful, thus the interaction 

of GSL10 and GSL8 could not be tested. Furthermore, although five different T-DNA 

insertion lines for GSL10 were screened (Appendix I), no homozygous seedlings could be 

recovered, indicating that gsl10 mutation causes gamethophytic lethality. Hence, the 

seedling phenotype of a conditional gsl8 gsl10 knockdown remains as the only evidence 

for the hypothetical GSL8 and GSL10 interaction.  

The similar phenotype of gsl8 gsl10 double mutant to that of gsl8 single mutant supports 

an earlier prediction made by Töller et al. (2008). They hypothesized that GSL8 and 

GSL10 might form a complex where both are required for the complex to be functional. 

The assumption that GSL8 and GSL10 form a complex, where the absence of one of 

them disrupts the complex function, was supported by gsl8 gsl10 morphological 

phenotype. Two-week-old gsl8 gsl10 seedlings’ phenotypic defects are similar to gsl8-1 
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by having dwarf seedlings with short roots and abnormally-shaped true leaves (Fig. 3.28). 

To further confirm this assumption, the physical interaction of GSL8 and GSL10 should 

be tested in the future. Due to requirement of both GSL8 and GSL10 in early seedling 

development, efforts to generate gsl8 gsl10 double mutants have not been successful. 

Hence, this study can be considered as the first report on GSL8 and GSL10 interplay in 

early seedling development in Arabidopsis.  

4.5.5 GSL8 cytoplasmic loops are required for its interaction with the partners 

GSL8 encodes a large integral membrane protein with sixteen predicated transmembrane 

helices and seventeen non-transmembrane loops. GSL8 comprises a large hydrophilic 

cytoplasmic loop in the middle (Käll et al., 2007). It has been previously suggested that 

the cytoplasmic loop is required for GSLs interaction with other regulatory proteins 

(Verma and Hong, 2001; De Storme and Geelen, 2014). The alignment of Arabidopsis 

GSLs’ amino acid sequence revealed that the conserved regions mostly belong to the 

cytoplasmic loop (Fig. 3.12). In essp8, GSL8 is truncated at the fifth cytoplasmic loop. 

The findings demonstrated a loss of GSL8 interaction with SUS1, AtBG_PPAP, PDLP5 

and SCD1 where an essp8 version of GSL8 cDNA was used for interaction analysis   

(Fig. 3.27). These data support the assumption that GSL8 cytoplasmic loop is required for 

its interaction with the identified partners and, possibly, its regulatory role(s). Taken 

together, it is predicted that truncation of GSL8 in essp8 disrupts the CalS complex at the 

PD and, therefore, PD regulation (Fig. 4.1). 

It has been predicted that the cytoplasmic loop should contain a UDP-Glc catalytic site 

and a glucosyltransferase domain (Verma and Hong, 2001). Furthermore, GSLs show a 

high substrate specificity for UDP-Glc (Brownfield et al., 2009; Zavaliev et al., 2011). 

Although FRET results confirm that SUS1 may provide the UDP-Glc substrate to GSL8, 

no UDP-Glc binding site has been identified on the cytoplasmic loop of GSL8 yet. 

Therefore, further investigation should be performed to identify the specific domain(s) 

required for GSL8 interaction with regulatory proteins including AtBG_PPAP and 

PDLP5.   

  



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 A proposed model for GSL8 role in PD regulation. 

In wild-type plants, GSL8 negatively regulates PD SEL by forming a CalS complex and 

induction of callose deposition. Symplastic movement of mobile factors is blocked in the 

WT. Truncation of GSL8 in essp8 mutant results in lack of a functional CalS complex at the 

PD and callose deposition. Absence of callose at the PD in essp8 induces ectopic movement 

of mobile factors to adjacent cell layers and dysregulation of intercellular signaling.   
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PERSPECTIVES 

The work presented in this thesis provides novel insight into the role of GLUCAN 

SYNTHASE-LIKE 8 during early seedling development in Arabidopsis. These new 

findings raise more questions for future investigation using the materials generated in this 

study. 

Regarding the critical role of GSL8 in cytokinesis and cell plate formation, it remains to 

be further studied if GSL8 is solely required for callose biosynthesis at the cell plate.  

Despite a clear role of callose accumulation in PD regulation, the molecular 

mechanism(s) underlying this regulation and how the identified players are linked to 

callose homeostasis have remained elusive. Identifying other interacting partners of 

GSL8, putative components of the callose synthase complex, would further extend our 

knowledge of this regulatory network. Additionally, the interaction of currently identified 

interactors should be reconfirmed using another protein-protein interaction method, e.g. 

membrane yeast two-hybrid (MYTH) system.  

Vaten et al. (2011) previously reported the association of GSL12 with PD and its role in 

PD regulation. Therefore, it needs to be further investigated how GSL8 and GSL12 

contribute to the PD regulation, and if there is any functional overlap. Additionally, the 

assumption of GSL8-GSL10 heterodimeric complex can be further studied by testing 

their subcellular localizations to find out whether they are similarly-localized. 

No experimental evidence is available regarding GSL8 localization. Therefore, studying 

the subcellular localization of GSL8, as well as the other members of the GSL family in 

Arabidopsis, would provide a better understanding of their tissue-specific and subcellular 

localization/distribution, and elucidate if GSL8 and GSL12 are the only important 

regulators of plasmodesmata within the GSL family. The ability to characterize the 

specific roles of GSL8 and GSL12 at the PD, and understand whether they are 

independently required for PD regulation will also be important in this context. 

Furthermore, it is worth exploring the possibility of PD-associated GSLs being 

incorporated into one complex.  
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The observation that AtBG_PPAP and PDLP5 interact with GSL8, and the likelihood of 

GSL8 requirement for PDLP5 localization opens up the questions: which specific 

domain(s) in GSL8 are required for this interaction, if the interactions are only specific to 

GSL8 and/or other PD-associated GSLs, and whether AtBG_PPAP and PDLP5 are also 

components of the hypothetical PD-regulating complex?  

To provide further evidence for the observed impairment of SHR and miR165/6 

movement in essp8 mutant, a quantification of their target transcripts, SCR and HD-ZIP 

III genes, respectively, should be informative. These experiments would address the 

question of whether ectopic localization of these non-cell autonomous factors indeed 

affects the expression of their downstream targets. Finally, genome-wide expression 

analysis can be used to find out the global effect of gsl8 mutation on gene expression.  

Many additional experiments could be listed here. The overall challenge, however, will 

be to gain sufficient resolution on PD cell-to-cell communication, and how it is tightly 

regulated in response to both internal and external cues. There is still a lot more to learn 

in order for us to draw a detailed picture of PD and understand the precise mechanism(s) 

through which GSL8 contributes to PD regulation and selective transport properties. 
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APPENDICES 

Appendix I List of mutant lines and primers used for genotyping 

Gene Mutant Allele Primer Primer Sequence (5'-3') 

GSL8 essp8 essp8 essp8-FW TGCGTTGACCATTGTTAGCTTG 

   

essp8-Rev AGGACAAAGTGGGAACGAAGAG 

 

SALK_111500 gsl8-1 GSTD-5-FW TCTCGAATTAACGTTGTGAATCC 

   

GSTD-5-Rev ACGGACATCAAACCAGTTTTG 

 

SALK_109342 gsl8-2 GSTD-7-FW GCATCACACCAGCCTAAAATC 

   

GSTD-7-Rev ATATGCTGCGATGTTTTCACC 

 

SAIL_21_B02/CS801051 gsl8-3 GSTD-9-FW GAAACCAAGTACCTCCCAAGC 

   

GSTD-9-Rev CATCATCCCAGATTCGAAATG 

 

SALK_098374C gsl8-4 GSTD-1-FW TGTACAAAGGTGGAGTGGGAG 

   

GSTD-1-Rev TCGAGTCTATGAGCTTCCAATG 

HINKEL SALK_056766C hinkel HNK-2-FW ACAAATGCTAATCAGATGCCG 

   

HNK-2-Rev TTAAGTCTGCACAATGTTGCC  

KNOLL CS1001988/ SK6760 knolle KNL-1-FW AATGTGATTAGTCAAAATTTTGGG 

   

KNL-1-Rev CAAACCCATCTCTGCTTTCAC 

SCD1 SALK_039883 scd1 SCD-1-FW GAAGTTCAGAACCACGCAGAC 

   

SCD-1-Rev GGGGTGCTTCTTCATTTAAGC 

KEULE SALK_032092C keule KEUL-FW ATGAGATTGATGGTCGTGACC 

   

KEUL-Rev ATGGGACAGCGAATATTTGTG 
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Appendix I cont’d 

Gene Mutant Allele Primer Primer Sequence (5'-3') 

KORRIGAN CS6390 korrigan KRG-1-FW-1 CGCGGCACAGTTTTAACGAT 

   KRG-1-FW-2 GCTAATGTCGGGTGGATGGAA 

   KRG-1-Rev CTCTTCAGACGACCGTAGCC 

AtBG_PPAP SALK_019116/CS25030 atbg-1 ATBG-FW TGATCCCAAGTGAGTAAACCG  

   ATBG-Rev TGCTCACAACCACTCACTACG   

GSL10 GABI_038F11 gsl10-1 GSL10-1-F TGTGATAGACTTCCTCAACAGCAT 

   

GSL10-1-R GCTCTTCATGTTCCTCTTACCAAT 

 

GABI_054E08 gsl10-2 GSL10-2-F TTTTTCCATCTAAGAAAAGCCAAC 

   

GSL10-2-R TCCAGAAGAAACAGAACCT 

 

SALK_143945 gsl10-3 GSL10-3-F TTAGGATGAATGTTGCTGTTGG 

   

GSL10-3-R TCATCCCTTTCAATCCTCTCC 

 

SALK_124294 gsl10-4 GSL10-4-F TGTGACGCATGTGCTATCTTC 

   

GSL10-4-R GAGCAAACAGCCAAGAAACAG  

 

SK5250 gsl10-5 GSL10-5-F GACGAGTGCTTTCTGCAAATC 

   

GSL10-5-R CCCAAGAATTCTGGTAGGCTC 
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Appendix II List of primers used for essp8 rough-mapping 

BAC Primer Primer Sequence (5'-3') 

F17A22 F17A22-FW ACGAATATTGATTGTCTAAG 

 

F17A22-Rev AACCTAAGGGAAGGCTAC 

T3D7 T3D7-FW GGTATCGATTGAGCAAATAA 

 

T3D7-Rev ACATGCGTCTGCTTGGAG 

F13M22 F13M22-FW AATATCCTCACGGTAAAATG 

 

F13M22-Rev GGTTAAATGAAACAATTTAG 

F11F19 F11F19-FW GTACTGGATGTCAAACTAGA 

 

F11F19-Rev ATAGCATGGTGATAAATAAG 

F19I3 F19I3-FW TTGTCTTAAGGGTAGTTATG 

 

F19I3-Rev AGGGACTTGACGAAAGAG 

F13P17 F13P17-FW CTGCTGTCAAAAAAGAAGA 

 

F13P17-Rev ACCTTATCCAAACAAATGTA 

F25I18 F25I18-FW GCGGTTCTCCTAATGAAG 

 

F25I18-Rev TTTCCACGTATACTAGCA 
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Appendix III List of primers used to generate expression, overexpression and FRET-related constructs 

Gene Primer Primer Sequence (5'-3') 

SHR SHR-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGAACGGTTCATTTCTGGGGCTA 

 

SHR-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCCGTTGGCCGCCACGCACTA 

PDLP5 PDLP5-OE-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGATCAAGACAAAGACGA 

 

PDLP5-OE-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTACACCATTTCTCATCTTG 

GSL8 GSL8-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGCTAGGGTTTATAGTA 

 

GSL8-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCGGTCTCAACATTAGCTCTG 

 

GSL8-M.Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTAACCTTTTCACAACAGGA 

SCD1 SCD1-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGGACGGATCTTCGAGTA 

 

SCD1-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCGATGTTGATGGTGGCATCCC 

AtBG_PPAP AtBGPPAP-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGCTTCTTCTTCTCTGCA 

 

AtBGPPAP-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCCAACCGAAGCTTGATGATG 

SUS1 SUS1-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGCAAACGCTGAACGTAT 

 

SUS1-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCATCATCTTGTGCAAGAGGAAC 

ROP4 ROP4-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGAGTGCTTCGAGGTTTATAA 

 

ROP4-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCCAAGAACACGCAGCGGTT 

UDPG UDPG-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGGGAAAAGAGGAAGG 

 

UDPG-Rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTGAATCTGCAATTTGAGACAC 
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Appendix IV T-DNA insertions-specific primers used for genotyping 

T-DNA Primer Primer Sequence (5'-3') 

SALK T-DNA LBb1.3 ATTTTGCCGATTTCGGAAC 

SAIL T-DNA LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

SK T-DNA pSKTAIL-L3 ATACGACGGATCGTAATTTGTCG 

GABI T-DNA GABI-8474 ATAATAACGCTGCGGACATCTACATTTT 
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Appendix V List of primers used for qRT-PCR 

Gene Primer Primer Sequence (5'-3') 

GAPDH qGAPDH-FW CTTGGAAGGAGCTAGGAATTGACA 

 

qGAPDH-Rev ATGTGTTTCCCTGCACCTTCTC 

CLAVATA3 qCLV3-FW GATGCTTCTGATCTCACTCAAGC 

 

qCLV3-Rev TCAGGTCCCGAAGGAACAGT 
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Appendix VI List of Arabidopsis GSLs accession numbers 

Gene Accession Gene ID 

AtGSL1 AT4G04970 

AtGSL2 AT2G13680 

AtGSL3 AT2G51960 

AtGSL4 AT3G14570 

AtGSL5 AT4G03550 

AtGSL6 AT1G05570 

AtGSL7 AT1G06490 

AtGSL8 AT2G36850 

AtGSL9 AT5G36870 

AtGSL10 AT3G07160 

AtGSL11 AT3G59100 

AtGSL12 AT5G13000 
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Appendix VII Alignment of the Arabidopsis GSL family amino acid sequence 

 

 

Conserved Unconserved 
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