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A MODEL OF POLITICAL COMPETITION
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May 1993

ABSTRACT

We develop and analyze the Nash equilibria of a model of electoral competition
in which each citizen chooses whether or not to run as a candidate. Citizens
care about the policy position of the winning candidate; it is costly to become a
candidate and there is a benefit from being the winner of the competition that
goes beyond the returns to being able to implement one’s preferred policies.
We consider both plurality rule and majority rule with runoffs. Depending on
the parameters an equilibrium in which there are one, two, or more candidates
may exist. Under plurality rule we find, for some parameter values, three-
candidate equilibria in which one candidate is sure to lose. We show that
under either system the number of candidates depends positively on the ratio
of the benefits of winning to the costs of entry and identify a sense in which
a two-candidate equilibrium is more likely under plurality rule than under a

runoff system.

Preliminary Draft. Please do not quote. Comments welcome.
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1. INTRODUCTION

The number of candidates and the dispersion in their positions varies widely
across political competitions. How can we account for this diversity? A promi-
nent hypothesis, known as “Duverger’s Law”, is that the form of the electoral
system plays a central explanatory role: plurality rule fosters a two-party sys-
tem while both proportional representation and a two-ballot system with a
“runoff” favor the existence of many parties (Duverger (1964, pp. 217, 239)).
We study a model that gives some support for this hypothesis and at the same
time illuminates the role of two other explanatory variables: the costs and ben-
efits of winning an election and the distribution of the citizens’ preferences.
In our model there is a population of citizens, each of whom has prefer-
ences over policies. Each citizen chooses whether to become a candidate in
the competition; running as a candidate costs c. The winner of the election
implements her favorite policy and also reaps a direct benefit b (the “spoils
of office”). Our results are broadly consistent with some stylized facts about
electoral outcomes. Under plurality rule we find that when b is small relative
to c (as in an election for the chair of an academic department, or a Republican
gubernatorial primary in an overwhelmingly Democratic U.S. state?) only one
candidate runs. As b increases relative to ¢ the number of candidates that can
coexist in an equilibrium increases; for some range of values of b all equilibria
involve precisely two candidates, and in any such equilibrium the candidates’
positions are distinct. Among the equilibria that may exist for larger values
of b are ones in which there are three candidates, one of whom (Perot? the
U.K. Liberal Party/SDP?) is bound to lose; such a candidate enters in order
to affect the identity of the winner. In any equilibrium at most two candidates
whose probability of winning is positive take the same position. Under a runoff
system also the number of candidates who can coexist in equilibrium increases
as b increases relative to c. However, under a runoff system, in contrast to
plurality rule, equilibria in which many candidates take the same position are
possible. Further, there is a sense in which a two-candidate clection is less

likely and the candidates’ positions are less dispersed under a runoff system



than under plurality rule.

The dependence of the number of candidates on the size of b relative to ¢
is very natural. However, to our knowledge there is no other model in which
such a result emerges. Our result that there may exist equilibria in which
candidates with no chance of wining enter simply to affect the identity of the
winner is also, to our knowledge, novel.

Our model differs from most of those stemming from the work of Hotelling (1929)
in that the set of players is the set of citizens, not a set of exogenously given
candidates. Starting with the work of Wittman (1977, 1983), several models

.in the Hotelling mold allow the candidates to be concerned not simply with
winning the election but also with the policy of the winning candidate. In all
these models, however, the existence of the candidates and the character of
their preferences are given exogenously (although, under the assumption that
candidates can commit to policies, the policies that are offered in an equilib-
rium are determined in the models). In our model, by contrast, the set of
candidates who enter is determined within the model (and in particular the
number of candidates is not restricted to be two, as in Wittman’s model).

The strategic calculations that drive our model concern the desirability of
entry into a political competition. Two other ideas for explaining the number
of candidates in political competitions focus on the strategic calculations of
voters. The first is formalized by Palfrey (1989) (in a model that draws upon
the work of Cox (1987)), who captures the idea that under plurality rule a vote
for a candidate other than the two most likely to win is “wasted”. Palfrey’s
model, however, does not rule out equilibria with more than two candidates
entirely: there still exist such equilibria, in which all candidates are tied for first
place. Moreover, such ties may tend to arise in equilibrium if the candidates
are able to choose their positions (in Palfrey’s model the parties’ positions are
fixed).

The second idea is formalized by Feddersen (1992) who draws upon a fea-
ture of the model of Feddersen, Sened, and Wright (1990) to capture the
following idea. If information is perfect and voting is costly then every voter

must be pivotal in equilibrium (otherwise she would not vote); thus for each



citizen there can be no more than one candidate who is preferred to the lot-
tery over all winning candidates (since if there are two or more such candidates
then the citizen can switch to voting for one of these candidates and cause that
candidate to win outright). If all citizens’ utility functions are concave then we
conclude that there are at most two candidates in any equilibrium. In Fedder-
sen’s model, as in ours, the only strategic actors are citizens. The models differ
in that the strategic decision in our model is whether to run as a candidate
while the decision in Feddersen’s model is the position for which to vote.

In related work Feddersen (1993) modifies his earlier model by allowing
deviations by groups of citizens, a group that supports a given position being
interpreted as a “party”. This assumption reduces the size of the set of equilib-
ria, significantly limiting the difference that may exist between the two parties’
positions. It also introduces into the model “parties” as strategic entities, a
party being simply the set of citizens who vote for a position. A party takes an
action only if all its members approve the action; there is no independent role
for a party leader (political entrepreneur). By contrast, a party in our model is
identified with a single citizen who takes decisions unilaterally. Our model and
that of Feddersen differ in another significant respect: the strategic reasoning
of the parties. In Feddersen’s model a party (i.e. the set of citizens voting for
some position) that considers changing its position assumes that if it does so
the voting behavior of all other citizens will be unchanged (although its new
position may be more attractive than the one for which they are voting). By
contrast, in our model a party that decides to deviate takes into account the
effect of its action on the citizens’ voting behavior. Finally, in both models
there is perfect information, though this assumption appears to play a more
. critical role in Feddersen’s argument.

Our model yields a richer range of equilibrium outcomes than does Fedder-
sen’s: more than two candidates may enter an election for a lucrative office,
and some of these may be sure to lose. This richer range of equilibria seems
desirable since the number of candidates in plurality rule elections varies so
widely. For example, Wright and Riker (1989, Table 2) report that more than
25% of plurality-rule Democratic gubernatorial primaries in the U.S. between



1950 and 1982 involved four or more candidates and more than 25% also in-
volved just one candidate.® Even in U.S. presidential elections, in which the
two major parties are legally entitled to significant advantages over minor par-
ties (they receive maximal funding for their election campaigns and grants
for holding their national conventions, for example) there have been at least
11 candidates in all of the last seven elections and in three of these elections
(1992, 1980, and 1968) a third party has received more than 5% of the popular
vote. To take a final example, in the six general elections in Canada between
1962 and 1974 four parties each received at least 5% of the popular vote (and,
except in 1974, at least 5% of the seats in the parliament).

Unlike Feddersen, we retain the two-stage structure of Hotelling’s model
and, unlike either Feddersen or Palfrey, assume that citizens qua voters do not
act strategically. Certainly the assumption that citizens cast votes rationally,
weighing expected costs and benefits, is attractive. Further, there is some evi-
dence (see for example Riker (1982, pp. 762-764) and Abramson et al. (1992))
that some voting is strategic in the sense of the simple static model. However,
whether this simple static model captures the behavior of voters better than
the model of sincere voting is unclear. Voters in the world may be motivated
by considerations that extend beyond the current election: they may wish to
signal their support for a cause in order to increase its (rational) support in
future elections. Further, even under plurality rule the winner of an election is
frequently not a dictator; the fact that the support of a losing party is substan-
tial could have a significant effect on the post-election outcome. Finally, a vote
for a sure loser may be rational if it prevents that candidate from withdrawing
from the competition and such a withdrawal would cause the remaining parties
to take even less attractive positions. That is, “sincere” voting may be a rea-
sonable model of rational behavior in a larger model. In addition (as argued,
for example, by Riker (1982, p. 764)), there is some doubt that the chance
of a citizen’s vote affecting the outcome of some elections is large enough to

explain voting behavior to begin with; if this is so then arguments that rest on

3By contrast, more than 25% of primaries under the runoff system had more than seven
candidates and less than 4% had only one candidate.



strategic voting may be suspect. In any case we follow Riker’s (1982, p. 764)
suggestion to “turn attention away from the expected utility calculus of the in-
dividual voter and to the expected utility calculus of the politician and other
more substantial participants in the system”: we seek to isolate the extent
to which such strategic calculations can limit the number of participants in
political competitions independently of the strategic calculations of voters.

We maintain throughout the assumption that a citizen who enters the com-
petition as a candidate must espouse her favorite position. This assumption is
reasonable if the possibilities for commitment are limited, since in such a case
voters can correctly anticipate that the candidate who wins will indeed carry
out her favorite policy regardless of the announcements she made during the
campaign. In situations in which commitments are possible—either explicitly
or implicitly (perhaps using future behavior as a commitment device)—a can-
didate may be able credibly to claim that she will carry out a policy different
from her favorite policy. Though we have not investigated the question for-
ma.lly, it appears that the possibility of a small amount of commitment does
not significantly change our results.

2. THE MODEL

Each of a continuum 7 of citizens has single-peaked preferences over the set
of policy positions, which we take to be the real line R. The distribution
function of the citizens’ favorite (ideal) positions on R is F', which we assume
to be continuous; we denote its median by m. Each citizen can choose to
enter the competition (E) or not (N). A citizen who chooses E is referred
to as a candidate. After all citizens have simultaneously made their entry
decisions they cast their votes. Voting is “sincere”: a candidate whose position
z; is occupied by k candidates (including herself) attracts the fraction 1/k
of the votes of the citizens whose ideal points are closer to z; than to any
other occupied position. Under plurality rule the winner of the election is
the candidate who obtains the most votes; if two or more candidates tie for
first place then each wins with equal probability. Under a runoff system the
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winner is determined as follows. If some candidate obtains a majority (more
than half the votes) then that candidate is the winner. If no candidate obtains
a majority then the winner is the candidate who obtains a majority in a second
election between the two candidates who obtained the most votes in the first
round. In both cases ties are dealt with via an equal-probability rule.

Each citizen’s payoff depends on the distance between her ideal point and '
that of the winner of the election, on whether she is a candidate or not, and
on her probability of winning. The preferences over policies of a citizen with
ideal point a are represented by the function —|z — al; a citizen who chooses
E incurs the (utility) cost ¢ > 0 and, if she wins, derives the benefit b > 0.
Thus if a citizen with ideal position a@ chooses N and the ideal position of the

winner is w then her payoff is
—|w - al.
A citizen who chooses E obtains the payoff
b—c
if she wins outright and the payoff
—jw—a]-c

if she loses outright to a candidate with ideal position w. If no citizen enters
then all obtain the payoff of —oo. Each citizen’s preferences over lotteries are
represented by her expected payoff.

In summary, we study the strategic game in which the set of players is I, the
set of actions of each player is {E, N}, and the preferences of each player are
those given above. The solution notion that we use is Nash equilibrium, which
we henceforth refer to simply as “equilibrium”. We refer to a distribution of

candidates’ ideal positions on [ as a “configuration”.

3. RESULTS FOR PLURALITY RULE

We begin by studying the case of plurality rule. Our first result rules out as
equilibria some, though not all, configurations in which some candidate loses

with certainty. (The proofs of all results are given in the appendix.)
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Lemma 1 In equilibrium a candidate does not lose with certainty if either
(i) there are other candidates with the same ideal position as hers or (ii) the
ideal positions of all other candidates are on the same side of her ideal position.

A call for individuals to run for some elected office sometimes results in a
single citizen offering herself as a candidate and thus winning the election by
acclamation. (As we have noted this was so, for example, in over 25% of the
plurality-rule gubernatorial Democratic primaries in the U.S. between 1950
and 1982 (see Wright and Riker (1989, p. 161).) The next result shows that
such an outcome is consistent with our model: if b is small enough relative to c
then regardless of the nature of the distribution F of the citizens’ ideal points
there is an equilibrium in which a single candidate runs unopposed. The result
shows further that if b is smaller than c then this candidate’s ideal position

need not be the median m of F.

Proposition 2 (One-candidate equilibria under plurality rule) There is
a one-candidate equilibrium if and only if b < 2¢. If ¢ < b < 2¢ then the can-
didate’s ideal position is m while if b < c then it may be any position within
the distance (¢ — b)/2 of m.

Many elections are contested. The next result completely characterizes the
set of parameters for which a two-candidate election is an equilibrium outcome.
To state the result we need the following definitions. Suppose that there are
two candidates, with ideal positions m — ¢ and m + ¢ for some € > 0, so that
each receives half of the votes. Let s(¢, F') be the position between m — ¢ and
m + € with the property that if a citizen with this ideal position enters the
competition then each of the candidates still receives the same fraction of the

" votes:

F(i(m—e+s(e,F)=1-F(3(m+e+s(e,F))).

If € is small then no citizen whose ideal position is in (m — ¢,m + €) can
enter the competition and win, while if € is large there is such a citizen who
can win. Let e,(F) be the critical value of € below which all such entrants

lose and above which some such entrant wins. (Note that if the density of



F is single-peaked and symmetric about its median then s(¢, F) = m and
ex(F) = 2(m - F7'(3)).)

Proposition 3 (Two-candidate equilibria under plurality rule)

a. Two-candidate equilibria ezist if and only if b > 2(c — e,(F)).

b. In any two-candidate equilibrium the candidates’ ideal positions are m—e
and m + ¢ for some € € (0,¢e,(F)].

c. An equilibrium in which the candidates’ positions are m — € and m + ¢
exists if and only if e > 0, € > c—b/2, and one of the following conditions

is satisfied.
i. € < e,(F) and ¢ > [m — s(e, F)|.
. e=ep(F)<3c—b.

In particular, the set of equilibrium values of € contains the interval
(max{0,c—b/2}, min{c, e,(F)}) and is a subset of [max{0,c—b/2}, e,(F)].

By Lemma 1 each candidate must win with probability one half in any
two-candidate equilibrium, from which it follows that the candidates’ positions
must be symmetric about the median. That there is no equilibrium in which
two candidates take the same position follows from recognizing that entry
by some third citizen with an appropriate ideal position always results in
a win for the entrant. Since b > 2c is necessary to keep two identically-
positioned candidates willing to enter, a third citizen who could win for sure
would always enter, so that no such equilibrium is possible. The condition
€ > c— b/2 ensures that the payoff to winning is large enough that each of the
candidates finds to worthwhile to enter. Finally, any citizen whose ideal point
lies between those of the two candidates obtains a payoff of b— c if she wins as
opposed to —e if she stays out of the competition. Since € > c— b/2 we have
b > 2(c—¢€) > c—¢, so that in equilibrium no such citizen can win if she enters,
giving the requirement € < e,(F). Such a citizen who loses when she enters
may still prefer to enter since she may change the outcome of the election from

one in which each candidate has an equal chance of winning to one in which



her favorite candidate wins with certainty.* The second part of condition (i)
ensures that any such deviation is in fact not profitable. Condition (it) ensures
that any citizen who can enter and tie for first place is no better off doing so
than she is staying out of the competition.

Note that e,(F) > 0 and |m — s(¢, F)| < € for any distribution F. Note
also that if the density of F is single-peaked and symmetric about m then,
since m = s(e, F), the second part of condition (i) is never binding.

Equilibria involving more than two candidates are possible. Since there
have been many significant examples of three-party competitions (e.g. national
elections in the U.K. and Canada, and several U.S. presidential elections) it
is of particular interest to determine when a three-candidate equilibrium can
occur. The next result shows that in any such equilibrium there is at least

some dispersion in the candidates’ positions.

Lemma 4 In any equilibrium at most two winning candidates share any given

tdeal position.

A complete characterization of the conditions under which three-candidate
equilibria exist is complex. The next result gives some features of these equi-
libria. Lemma 4 implies that not all three candidates can have the same ideal
position, so there remain two possibilities. If two candidates share one position
and a third has a different position then by Lemma 1 the paired candidates
must split two thirds of the vote. The other possibility is that all three candi-
dates have different ideal positions, in which case the two extreme candidates
must each have a positive probability of winning and so must obtain the same

fraction of the vote, which must be not less than that of the center candidate.
. Proposition 5 (Three-candidate equilibria under plurality rule)

a. Every three-candidate equilibrium takes one of the following three forms.

i. The positions of the three candidates are all different; each candidate
obtains one third of the votes.

4The fact that a citizen may contemplate entry in order to affect the outcome of the
election, even though she has no chance of winning herself, is of independent interest, as we
see below.
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ii. The positions of two of the candidates are the same (either F~'(3)
or F~1(2)) while that of the third is different; each candidate obtains
one third of the votes.

ili. The positions of the three candidates are all different; each of the
eztreme candidates obtains the same fraction of the votes while the

central candidate obtains a smaller fraction (and hence surely loses).
b. A necessary condition for any such equilibrium to exist is b > 3c.

c. If a configuration of type (i) or type (ii) is an equilibrium for the pe-
rameters (b, c, F) then the same configuration is an equilibrium for the
parameters (b, c, F) whenever ¢ > ¢ and ¥’ —3c > b—3e.

To illustrate the considerations that arise when determining the conditions
under which each type of equilibrium exists suppose first that the density of
F is symmetric and single-peaked. Gonsider the configuration in which one
candidate is located at the median m of F and the other two candidates are
located symmetrically about m, at m — € and m + ¢, in such a way that each
candidate receives a third of the votes. If a citizen whose ideal point is at
most m — € enters then she certainly loses and causes the election to be a tie
between the candidates at m and m+¢; thus she is better off staying out of the
competition. Similarly a citizen whose ideal point is in (m — €, m] who enters
certainly loses and causes the outright winner to be the candidate at m + ¢,
and is thus better off staying out of the competition. Symmetric arguments
show that it is optimal for every citizen whose ideal point is greater than m
to stay out of the competition. Finally, the candidate at m — € obtains the
payoff 16— c—1e—1(2¢); if she withdraws she obtains —e (since the candidate
at m is then the outright winner). Thus her decision to enter is optimal if
b > 3c. This condition is more than sufficient to guarantee that the eﬁtry of
the candidate at m is optimal. Thus the configuration is an equilibrium if and
only if b > 3ec.

If the middle candidate it located at a point different from m and the three
candidates tie for first place then it may be possible for some citizen whose

ideal point is between the two extreme candidates to enter and win outright.
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Figure 1. An example of a three-candidate equilibrium of type (ii). One candidate is at
@, and two are at t; = F~!(3). The area of each square is 1. We require that ¢ > 3 and
b>3c+4.

If this is so then, given the condition on b and ¢ required to make it optimal for
the candidates to enter, the deviant citizen is better off. Thus in equilibrium it
must not be possible for such a citizen to enter and win outright. In addition,
even if such a citizen does not win her entry may change the outcome of the
election; to ensure that this change is not advantageous the cost ¢ must be
large enough.

If the density of the distribution of ideal points is symmetric about its
median then no equilibrium of type (iii) exists: in any configuration in which
the extreme candidates tie (as they must in equilibrium) it is desirable for
the middle candidate to withdraw since this leads to victory for the candidate
whom she likes best. If in addition the distribution of ideal points is single-
peaked then there is no equilibrium of type (ii) either, since a citizen with
ideal point just closer to the median than the position at which there are two
candidates can enter and win outright. To see how asymmetric distributions
can support such equilibria, consider the two examples in Figures 1 and 2. In
the case of Figure 1 any citizen who enters between a; and ¢; loses and, given
that ¢ > 3, generates an outcome that is worse for her than that which occurs
when she stays out. The condition b > 3¢ + 4 guarantees that it is optimal for
each of the candidates to enter. In the case in Figure 2 the middle candidate
loses, but is indifferent between entering and staying out of the competition:
she obtains a payoff of —c—-4—1:2 = —4 as a candidate and the same payoff
if she withdraws (since the candidate at a, is then the outright winner). The
condition b > 4 is required to make it optimal for each of the other candidates

12
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Figure 2. An example of a three-candidate equilibrium of type (iii). One candidate is at
each of the points a;, az, and az. The area of each square is 1. We require that ¢ = 1 and
b>4.

to enter.

There are distributions of the citizens’ ideal points for which no 3-candidate
equilibrium exists for any values of b and c. An example is a distribution F
whose density is symmetric about its median and has its mass concentrated at
ty = F7(}) and t; = F-1(2). We argued above that for such a distribution
there is no equilibrium of type (iii); there is no equilibrium of type (i) or
type (ii) since an entrant at either ¢, or ¢, can win outright.

We do not have a characterization of the conditions under which an n-
candidate equilibrium exists for an arbitrary value of n. However, we can
show that an equilibrium exists in which there are k > 3 winners only if
b > ke.

Proposition 6 A necessary condition for the existence of an equilibrium in
which k > 3 candidates tie for first place is b > ke.

Further, equilibria in which there are three or more candidates can exist
only if b > 3c. In particular, if 2¢ < b < 3c then in all equilibria there are

exactly two candidates.

Proposition 7 A necessary condition for the ezistence of an equilibrium in

which there are three or more candidates is b > 3c.

Some features of the possible equilibria for the case that the density of F

is single-peaked and symmetric about its median are summarized in Figure 3.
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Figuré 3. Equilibria under plurality rule for a symmetric single-peaked density of ideal
points. (The value of 2(c — e,(F)) may be less than c.)

4. RESULTS FOR A RUNOFF SYSTEM

Proposition 2, which gives the conditions for a one-candidate equilibrium under
plurality rule, remains true under a runoff system, since the entry of one
additional candidate cannot induce a runoff. However, the structure of the set
of multicandidate equilibria differs between the two electoral systems. Under
plurality rule there is no two-candidate equilibrium in which the candidates’
ideal positions are the same (Proposition 3) and in no equilibrium are more
than two candidates’ positions the same (Lemma 4). Under a runoff system,
on the other hand, there are equilibria in which any number of candidates have

the same ideal position.

Proposition 8 (Multicandidate equilibria under a runoff system) For
k > 2 there is a k-candidate equilibrium in which the ideal position of every
candidate is m if and only if ke < b < (k+ 1)c.

“At such an equilibrium a citizen whose ideal position is different but not
too distant from m obtains the most votes in the first round if she enters but
then surely loses the runoff. The two inequalities in the result guarantee that
none of the candidates prefers to withdraw and no further citizen with ideal
position m wishes to enter.

Other two-candidate equilibria are possible under a runoff system. Such
equilibria have features in common with those that exist under plurality rule:
the candidates must receive the same fraction of the votes and hence take the

positions m — € and m + € for some € > 0, and ¢ must be small enough that no
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citizen with ideal position in (m — ¢,m + €) can enter and win outright (since
she would then prefer to do so). However, the limit on the size of ¢ under a
runoff system is different than it is under plurality rule: under a runoff system
a citizen with ideal position in (m — €¢,m + €¢) who obtains a larger fraction of
the votes than just one of the other candidates gets into a runoff, which she is
certain to win. (By contrast, under plurality rule such a citizen needs to obtain
a larger fraction of the votes than both of the other candidates in order to win
outright.) To be precise, let e,(F) be the supremum of the values of ¢ for which
there is a position d € (m—e¢, m+¢€) such that a citizen who enters at d obtains
a smaller fraction of the votes than both of the existing candidates. If € > e, (F')
then the configuration in which one candidate is at m — € and one is at m + ¢
is not an equilibrium since there is a citizen with ideal point in (m — ¢, m + ¢€)
who wins outright if she enters (and hence prefers to do so). Note that from
the definition it is immediate that e,(F) < e,(F): there can be less separation
between the candidates’ positions under a runoff system. (If the density of F'is
single-peaked and symmetric then e,(F) = min{m— F~'(}),2(m—F~1(3))}.)

Proposition 9 (Two-candidate equilibria under a runoff system)

a. Two-candidate equilibria exist if and only if 2(c — e,(F)) < b < 4e.

b. In any two-candidate equilibrium the candidates’ ideal positions are m—e

and m + € for some € € [0,¢,(F)].

c. An equilibrium in which the candidates’ positions are m — € and m + €
ezists if and only if either (1) € = 0 and 2c¢ < b < 3¢ or (2) € > 0,
€ > c—b/2, b< 4c, and one of the following conditions is satisfied.

i. e < e(F).
ii. e=e(F)<2c—b.
In particular, the set of equilibrium values of € contains the interval

(max{0, ¢ — b/2},e,(F)) and is a subset of [max{0,c — b/2}, e-(F))].

If a two-candidate equilibrium exists under plurality rule then there is no

bound on the value of b for which the equilibrium exists. The same is not true
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under a runoff system since a citizen whose ideal point is the same as that of
one of the candidates has a positive probability of getting into a runoff, and
of ultimately winning, if she enters the competition. The condition b < 4c is
necessary to make the entry of such a citizen unattractive. (The value of this
upper bound on b depends on our assumption that an election in which one
candidate obtains exactly one-half of the votes precipitates a runoff. If in such
an election the candidate with one-half of the votes wins on the first round
with some positive probability then the upper bound on b is higher.)

By Proposition 3 a two-candidate equilibrium exists under plurality rule
if and only if b > 2(c — e,(F)). By contrast Proposition 9 shows that a two-
candidate equilibrium exists under a runoff system whenever 2(c — e,(F)) <
b < 4¢. Thus given the distribution F of ideal points the set of values of (b, c)
for which a two-candidate equilibrium exists under a runoff system is a subset
of the set of values that result in a two-candidate equilibrium under plurality
rule.

We have seen that under a runoff system there can exist two-candidate
equilibria in which both candidates choose the same position while no such
equilibrium exists under plurality rule. For values of the parameters for which
there exists a two-candidate equilibrium under both electoral systems we can
compare the maximal amount of dispersion in the candidates’ positions that
can exist. If ¢ > e,(F) then since e,(F) < e,(F) the comparison is unam-
biguous: the maximal amount of dispersion in the candidates’ positions is at
least as large under plurality rule as it is under a runoff system. If ¢ < e, (F)
then because the requirement ¢ > |m — s(e, F)| in Proposition 3 may rule out
equilibria under plurality rule in which € > ¢ the maximal degree of dispersion

-in the candidates’ positions may be larger under a runoff system than under
plurality rule. However, if the distribution F is single-peaked and symmetric
about its median, or is not too different from a distribution with these prop-
erties, then |m — s(¢, F')| < c for all values of ¢, so that the maximal degree of
dispersion is definitely greater under plurality rule.

We found that under plurality rule there are distributions F' of ideal points
for which no three-candidate equilibria exist for any values of b and ¢; under a
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runoff system such equilibria exist for any distribution F'if 3c < b < 4c. In this
sense three-candidate equilibria are more likely under a runoff system. How-
ever, this leaves open the possibility that there are combinations of b, ¢, and F
that give rise to three-candidate elections under plurality rule but not under
a runoff system. Thus we need a complete characterization of the parameters
for which a three-candidate equilibrium exists under a runoff system. Note
first that under a runoff system there is never a three-candidate equilibrium
in which one candidate is sure to lose since such a candidate does not make it
into the runoff and cannot have any effect on the ultimate outcome, and thus
does not wish to incur the cost c. Nonetheless, the possibility of entry by a
(fourth) citizen who cannot win, but who can alter who does, does influence
the structure of the three-candidate equilibrium configurations.

Suppose that there is one candidate at a; = m 4 t; — {2, one at a; =
11+ 12 —m, and one at az = t,+m —t,. If a citizen with ideal point in (a1, az)
enters the competition then she gets into a runoff (with the candidate at as)
if she obtains a larger fraction of the votes than both the candidate at a, and
the candidate at a;. Let \;(F') be the maximal amount by which the fraction
of the votes received by any such citizen who enters the competition exceeds
the larger of the fractions received by the candidates at a; and a;:

M(F) = max ) {F(-;-(az +a)) — F(%(al +a)) —

nE(al,ag
max { F(1(a1 + a)), % — F(}(az + a)) } }
Then we need A\ (F) < 0 in order that no citizen with ideal point in (a1, az)
can enter and certainly get into a runoff. Similarly define Ay(F) (for citizens

with ideal points in (ay, a3)).

Proposition 10 (Three-candidate equilibria under a runoff system)

a. If b # 4c then there is a unique three-candidate equilibrium in which
not all of the candidates take the same position. In this equilibrium the
positions of the three candidates are all different, equal to a; = m+t1—12,
as = t; +t, —m, and az = t + m —t;; each candidate obtains one third
of the votes in the first ballot.
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b. There ezists € such that this equilibrium ezists if and only if the following

three conditions are satisfied.
i. b> 6c+2lt; +t2 — 2m|.
ii.c2c¢
iii. max{\;(F),A2(F)} <0 (for generic F).

The reason that only this single configuration is a candidate for an equi-
librium is that all three candidates must have a positive probability of being
the ultimate winner, else they prefer not to enter. Thus each must obtain
one third of the first-round vote and each must have a positive probability of
winning in the second round if they reach it. In any configuration that satis-
fies these conditions and in which two candidates share an ideal position it is
profitable for a fourth candidate who shares the lone candidate’s ideal position
to enter unless b = 4c. Thus all three must have distinct ideal positions. The
two extreme candidates surely lose a runoff with the center candidate so they
must have a positive probability of winning against one another in a runoff.
The only configuration with these properties is the one defined in (a) of the
proposition.

As to (b), condition (i) is necessary and sufficient for all three candidates
to want to enter while (ii) guarantees that no fourth citizen wishes to enter for
the sole purpose of altering the ultimate outcome by causing one candidate
(as well as herself) to not make it to the runoff. Finally, (iii) captures the
requirement that it must not be possible for any citizen with an ideal position
between a; and a3 to enter and get into the runoff, which she will surely win.

This results shows that indeed there are parameters that give rise to three-
candidate elections under plurality rule but not under a runoff system, so that
the comparison between the two systems with respect to the “likelihood” of
three-candidate elections is ambiguous.
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Figure 4. An example of a equilibrium under a runoff system in which an extremist loses.
One candidate is at each of the points a;, a2, a3, and a4. The area of each square is 1. The
dashed line is the midpoint of [a2, as). We require =0 and c=1.

5. CONCLUDING REMARKS

Losing Extremists

Under plurality rule a losing candidate ¢ who withdraws gives her votes to
her two neighbors. If the result is that one of the neighbors wins then unless
this neighbor’s position is further from #’s position than the average winning
position if i stays in the competition (which requires the distribution of winning
positions to be very asymmetric), ¢ is better off withdrawing. If ¢’s withdrawal
has no effect on the outcome then she is also better off (since she saves the
cost of entry). Thus in our model plurality rule gives citizens little incentive to
enter if they lose; in particular Lemma 1 shows that an extremist never loses.
(Nevertheless, equilibria in which candidates lose may exist, as we have seen.)

Under a runoff system the incentives are different. A candidate who with-
draws increases the chances (roughly speaking) that her neighbors get into
a runoff; but these neighbors may lose the runoff and may have displaced a
more moderate candidate who would have had some chance of winning. To
illustrate, consider the example in Figure 4, in which an extreme candidate
loses in an equilibrium under a runoff system. If either candidate 1 withdraws
then candidate 2 gets into a runoff against candidate 4, which she loses. Thus
candidate 1’s withdrawal changes the outcome from one in which 3 and 4 each
win with probability % to one in which 4 wins for sure. The change due to
the exit of candidate 2 is similar, and the values of the parameters ensure that
candidates 3 and 4 find it worthwhile to enter and no other citizen finds it

worthwhile to do so.
While a general result eludes us our model thus captures a respect in which

19



the incentives inherent in plurality and runoff systems differ: under a runoff
system there may be an incentive for a citizen with an extreme position to
enter in order to splinter the vote among other extreme parties of the same
persuasion and change the outcome from one in which one of these parties
gets into a runoff that she loses to an extremist of the opposite persuasion
to one in which a more moderate candidate gets into such a runoff and wins.
Under plurality rule the incentive is in the opposite direction: splintering the
vote tends to decrease the chance of a like-minded candidate being elected and

hence is not desirable.

The Cost of Entry

We have assumed that the cost of entry c is independent of both the number of
candidates in the competition and the electoral system. The latter assumption
may be unreasonable. A runoff system could operate with a single ballot, in
which citizens both cast a “first-round” vote and express their preferences
between every pair of candidates. However, this is not how runoff systems are
usually operated; rather, there are two separate elections. The cost of running
in both of these elections may exceed the cost of running in a single plurality-
rule election, or perhaps the total cost may be approximately the same, the
cost of participating in the first round of the runoff system being less than the
cost of being a candidate in a plurality-rule election. We have not explored
the implications that these various possibilities may have in our model.

Uncertainty

The exact ties that occur in most of the equilibria that we discuss are an
artifact of our assumption of perfect information. If candidates are uncertain
about the distribution of the citizens preferences (or about b or c) then it
seems that equilibria may occur in which many candidates have different,
positive probabilities of winning. The presence of uncertainty may have other

significant implications that are absent from our model.
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APPENDIX

This appendix contains the proofs of all of the results stated in the text.

Proof of Lemma 1. Suppose that a candidate who loses with certainty
deviates and withdraws. In case (i) the fraction of votes received by the other
candidates whose ideal position is the same as hers increases and the fraction
of votes received by every other candidate remains the same. In case (ii) the
fraction of the votes received by the candidate (or candidates) whose position
is closest to hers increases and the fraction of votes received by every other
candidate remains the same. Thus in both cases her deviation either has no
effect on the outcome of the election or causes the set of winners to be the
set of candidates whose ideal position is closest to hers (rather than a set of
candidates with more distant ideal positions). Since the deviation saves her
the cost c it is thus profitable. (]

Proof of Proposition 2. A one-candidate equilibrium requires that no
other citizen with the same ideal position wishes also to enter, which implies
that 3b — ¢ < 0. Further, 1b < c implies that it is an equilibrium for a single
citizen with ideal position m to choose E, since any entrant with a different
ideal position who enters must lose and withdrawal by the single entrant yields
her —oo0.

If there is a single entrant with ideal position a # m then a citizen with any
ideal position d € (a,2m — a) can win outright by entering, getting a payoff
of b — c rather than —|a — d|. Thus we must have —|a — d| > b — c for any
such d, which implies that b < c and |m — a| < (¢ — b)/2. Finally, if b < ¢
and |m — a| < (c — b)/2 then entry by a single citizen with ideal position a
is an equilibrium by the following argument. For a citizen with ideal position
d € (a,2m — a) it is best to choose N, as we have argued. A citizen whose
ideal position is either a or 2m — a wins with probability 1 if she enters, and
hence does not enter either. A citizen with ideal position outside (a,2m — a)
surely loses if she enters, and hence does not enter by Lemma 1. Finally, the

citizen who enters at a obtains —oo if she withdraws. 0
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Before proving Proposition 3 we establish a result that is useful in the

sequel.

Lemma 11 If b > c then in any equilibrium no citizen can enter the compe-

tition and win outright.

Proof. A citizen who wins outright obtains the payoff b—c > 0 while one who

stays out of the competition obtains a nonpositive payoff. ]

Proof of Proposition 3. If there are two candidates and they have the
same ideal position a then each obtains a payoff of %b — ¢. If either of them
withdraws then she obtains a payoff of 0, so we require b > 2¢ in order for
the configuration to be an equilibrium. But now a citizen whose ideal position
d # a is close enough to a wins outright if she enters the competition, so by
Lemma 11 the configuration is not an equilibrium. Hence in any two-candidate
equilibrium the candidates have different ideal positions. By Lemma 1 each
candidate has a positive probability of winning, so that the candidates’ posi-
tions are m — € and m + ¢ for some € > 0.

We now establish c. In order for such a configuration in which one candi-
date is at m — € and one is at m + € to be an equilibrium we require that each

citizen’s action be optimal, with the following implications.

o Citizens who enter: For such a citizen the payoff to E is 3b— 3:2—c

while the payoff to N is —2¢. Thus for equilibrium we require € < c—b/2.

o Citizens with ideal points outside (m — €,m + €) (other than those who
enter): If such a citizen chooses E then she loses and either does not
affect the set of winners or causes this set to consist only of the more

remote candidate. Hence N is optimal for her.

o Citizens with ideal points in (m — e,m + ¢€): If by entering such a citizen
wins outright then she obtains the payoff b —c. If she stays out of the
competition she obtains —e. By the first point above we have b > 2(c—¢),
so that in equilibrium no such citizen can win outright if she enters:
€ < e,(F).
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If € = e,(F) then a citizen who enters at d = s(e, F) ties for first place
with the two existing candidates, obtaining a payoff of b — ¢ — 3(d —
m+e)—i(m+e—d)= 1b— ¢ — 2e. If she stays out of the competition

she obtains —e. Thus for equilibrium we require € < 3¢ — b.

If € < e,(F) then the entry of a citizen with ideal position d € (m —
€, s(e, F)) causes the candidate at m + € to win, resulting in a payoff
for the citizen of d — m — € — ¢ rather than 1(d —m — ¢) + 3(m —
¢ — d); thus in equilibrium we require d —m < ¢ for all such d, or
s(e, F) —m < c. Symmetrically the condition that a citizen with ideal
position in (s(e, F),m + €) not be better off by entering is equivalent to
m — s(e, F) < c. Finally, if a citizen with ideal position s(e, F)) enters

then she does not affect the outcome, and hence is definitely worse off.

Part b and the first part of ¢ now follow. To complete the proof of c
note that |m — s(e, F)| < € for all € > 0 so that if ¢ < c then certainly
|m — s(e, F)| < c. Finally, it follows from ¢ that and equilibrium exists if and
only if either e,(F) > c—b/2 or e,(F) =c—b/2<3c—b. Butifc— /2> 0
then b < 2c, so that certainly ¢ — b/2 < 3¢ — b. Thus a follows. D

Proof of Lemma 4. If in equilibrium more than two candidates take the
same position then Lemma 1 implies that each has a positive probability of
winning, which is thus the same for all of them. Each of their payoffs is at
most 1b — ¢, while if one of them withdraws then she obtains 0 (since then
the set of winners is the set of candidates remaining at that position); thus
we require b > 3c in equilibrium. But now in order for it to be optimal for
a citizen with ideal point just to either side to choose N we need b —c < 0
(since she wins outright if she enters, obtaining the payoff b — ¢, and obtains
a negative payoff if she chooses V). These two inequalities are incompatible,

so no such equilibrium exists. 0

Proof of Proposition 5. From Lemma 4 there is no equilibrium in which
all three candidates have the same ideal point. The remaining possibilities are

that the three candidates are at different positions or two are at one position
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and the third is at a different position. By Lemma 1 all three candidates
must win with positive probability in the second case, so that part (a) follows,
except for the claim about the precise positions of the candidates in part (ii).
To establish the remainder of the result we give a complete characterization
of the three-candidate equilibria.

Throughout we let t; = F~'(3) and ¢, = F~'(2). For any position ¢ and
e > 0 let (e, t, F) be the maximal fraction of votes received by a candidate
who locates at some point in (£ — €, + €) when there is one candidate at ¢ —e¢,
one at t + ¢, and no other candidates in [t — ¢, + €]

plet, F) = de(ltrl?,)z(«) {F(-;—(t-i- E-I-d)) - F(%(t - €+d))} .

Further let h(t, @, F) be the largest value of ¢ for which this maximal fraction
is at most a: h(t,q, F) = max{e: p(e, t, F) < a}.

Lemma 12 There is a three-candidate equilibrium in which the positions taken
are a1, az, and az with a; < a2 < az and every candidate receives a third of the
votes if and only if for some &, > 0 and &2 > 0 the following four conditions

are satisfied.

1. a, =t]—61, (12=t1+€1 =t2—€2, a7ld(l.3=t2+62.
il. > 3c+2|er — €.
ese 2
iii. ¢ > 2max{e; — 2¢z,62 — 2a1}.

iv. ¢ < h(t.-,%,F) fori=1,2.

Proof. Condition (i) is necessary and sufficient for each candidate to receive a
third of the votes. The necessity and sufficiency of the remaining conditions
are implications of the requirement that each citizen’s action be optimal, as

follows.

e Citizens who enter: For the candidate at a; the payoff to E is h—c—

%el - %(61 + €;) while the payoff to N is —2e;. Thus for equilibrium
we require b > 3c + 2(e2 — €1). The analogous condition implied by the
optimality of the decision of the candidate at a3 is b 2 3¢+ 2(e1 — €2), 50
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that (ii) follows. For the candidate at a; the payoff to E is :‘—;b—c— %el —%62
while that to N is —2¢; for j = 1 or j = 2, so that (i) implies that E is

optimal for her.

e Citizens with ideal points outside (a1, as) (other than those who enter):
If such a citizen chooses E then she loses and causes the set of winners
to be no closer to her ideal point than they are when she chooses N.

Hence N is optimal.

e Citizens with ideal points in (a1,a3): Since by the first point above we

have b > 3c if follows from Lemma 11 that in an equilibrium we require
& < h(ti, 3, F) fori=1,2.
If & = h(ty, 3, F) then a citizen with some position d € (as, az) can enter
and cause the election to be a tie between her and the candidate at az. In
order for such a deviation to be undesirable we need 16— c—3(as—d) <
—id—a) - Haz —d) - Has —d), or d < az — 4¢; — 3b+ 6c. Using
(ii) this implies that d < a3 — 4€; — 3¢ — 6]er — €2| < az — 4 max{ey, €2},
contradicting d > a;. Thus if €, = h(t;, 5, F) then a citizen with ideal
point in (a1, a;) can profitably deviate; similarly if ez = A(%2, 3, F)thena
citizen with ideal point in (a2, a3) can profitably deviate. Thus we need
& < h(t;, 3, F)fori=1,2.

Now, if under this condition a citizen with ideal position d € (a1, a)
enters then the candidate at a3 wins, resulting in a payoff for the citizen
of d — az — c rather than —1(d — a;) — (a; — d) — j(as — d); thus
in equilibrium we require 3¢ > 2d — 2a3 + a2 — a; for all such d, or
3¢ > 3a; — 2a3 — a; = 2€; — 4¢;. Symmetrically the condition that
a citizen with ideal position in (az,a3) not be better off by entering is

equivalent to 3¢ 2> 2¢; — 4¢;.

This completes the proof. (]

We now consider the possibility of an equilibrium in which two candidates
take the same position; we restrict attention to the case in which this position

greater than the position of the remaining candidate. Let a; = 2¢; — ¢; and
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define ¢(F) to be the maximum plurality of a candidate at some point d €
(@1,t2) when there is one candidate at a; and two at ¢,:

HP) = max [F(3d+t) = F (Hd+ ) -

max {F (3(d+a)),; (1~ F (3(d+1)))}] -

For a generic distribution F we have ¢(F) # 0, and it is to this case that
we restrict attention. Finally, define r(F) to be the position d € (ai,%3)
with the property that the entry of a candidate at d causes each of the three
original candidates to receive the same fraction of the votes: F(3(r(F)+a1)) =
31 = FG(r(F) +2))].

Lemma 13 For a distribution F with ¢(F) # 0 there is a three-equilibrium
in which one candidate takes the position a; and two candidates take the same

position az > a; if and only if the following four conditions are satisfied.
i. a3 =2t —ty and a; = t,.
ii. b>3c+2(t2 —ty).
iii. ¢ > max{2(t; — r(F)), 2(»(F) — t)}.
iv. ¢(F) < 0.
Proof. First note that a necessary and sufficient condition for each candidate

to obtain a third of the votes is %(al +az) = ty; let a3 —t; =t —a; = €. Now

consider the conditions implied by the optimality of each citizen’s action.

o Candidates at ay: Each of these candidates obtains 0 if she withdraws
(since the other candidate at a; wins in this case), so for equilibrium we
need %b—c— %6 >0,0rb>3c+ 2e.

e Candidate at a;: This candidate obtains —2¢ if she withdraws, so for
equilibrium we need 1b —c — ‘356 > —2¢, or b > 3¢ — 2¢, which follows

from the condition in the previous point.

e Citizens who are not candidates: By the first point above we have b 2> 3¢
so it follows from Lemma 11 that in an equilibrium no citizen can win

outright if she enters.
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Now, if a; < t; then any citizen whose ideal point is in (a2,%z) wins
outright if she enters, while if az > 1, then any citizen whose ideal point
is in (f2,a;) wins outright if she enters. Thus we need az = %3, s0 that
¢ = t; — t;. Combined with the condition in the first point above this
gives us (i) and (ii).

Under these conditions any citizen whose ideal point is outside (a1, ?2)
loses if she enters. In order to ensure that no citizen in (a,%2) can win
outright if she enters we need ¢(F) < 0, which under our assumption
that ¢(F) # 0 yields (iv).

Finally we need to find the conditions under which a citizen whose ideal
point is in (a;,%2) and who loses if she enters is worse off if she enters
than if she stays out. Consider a citizen whose ideal point is d. There

are three cases.

. d = r(F): In this case the entry of the citizen has no effect on the

outcome, so certainly the entrant is worse off.

. d < r(F): In this case the entry of the citizen causes the candidates
at £, to be the winners. Thus for an equilibrium we require —3(d —
a1) — %(ta —d) > —(t2 — d) — ¢, or ¢ > }(d — t1). This condition
must hold for any d < r(F), so we need ¢ > 2(r(F) —t1).

- d > r(F): In this case the entry of the citizen causes the candidate
at ay to be the winner. Thus for an equilibrium we require —3(d —
a1) — }(t; — d) > —(d — 1) — ¢, or ¢ > §(t1 — d). This condition
must hold for any d < r(F), so we need ¢ > §(t; — r(F)).

This completes the proof. O

Finally we consider the possibility of an equilibrium in which the positions

of the three candidates are different and the middle candidate loses.

Lemma 14 There is an equilibrium in which three candidates take the posi-

tions a;, a3, and az with a; < a; < az and the candidates at a; and a, receive
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the same fraction of the votes while the candidate at a3 receives a smaller frac-
tion if and only if there exist my € (t1,m), my € (m,t2), & > 0, and €2 > 0
such that F(m;) = 1 — F(mz) and the following five conditions are satisfied.

i. @y =m — €, ag =m; + ¢ =my — €, and a3 = Mz + €2.

il. b2 4ec.
iii. Either € > € and (a1 + a3)/2 > m, or &2 > € and (a1 +a3)/2 <m.
iv. leg — €] =c.

v. & < h(mq,1 — F(my), F) and €3 < h(mg, F(m), F).

Proof. Condition (i) is necessary and sufficient for the candidates at a; and
as to tie for first place and the candidate at ap to lose. The necessity and
sufficiency of the remaining conditions are implications of the requirement

that each citizen’s action be optimal, as follows.

e Citizens who enter: For the candidate at a; the payoff to E is b —
¢ — (€1 + €3) while the payoff to N is —2¢; (since the candidate at a
wins in this case). Thus for equilibrium we require b > 2c + 2(e2 — €1).
The analogous condition implied by the optimality of the decision of the
candidate at a3 is b > 2¢ + 2(e1 — €2). Thus we need b > 2c + 2]ex — eal-

Now suppose that the candidate at a; withdraws. If (a1 + as)/2 = m,
so that the other two candidates still tie for first place, then certainly
the withdrawal is advantageous. Suppose that (a; + as)/2 > m, so that
the candidate at a; wins. Then in order for the entry of the candidate
at a, to be optimal we need —c — ¢; — €2 2 —2€;, or ¢ < € — €. Since
¢ > 0 this implies that ¢ > € and hence (a1 + a3)/2 < ap. Similarly
if (a1 + a3)/2 < m then we need ¢ < €2 — & and hence ¢; > € and
(a1 + a3)/2 > a,.

o Citizens with ideal points outside (a1,as) (other than those who enter):
If such a citizen chooses E then she loses and causes the set of winners
to be no closer to her ideal point than they are when she chooses N.

Hence N is optimal.
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e Citizens with ideal points in (a1,a3): By the first point above we have
b > 2¢ so from Lemma 11 we require & < h(my,1 — F(m2), F) and
€2 < h(mgy, F(m1), F) in an equilibrium.

Suppose that a citizen with ideal point d € (a1, a;) enters. Then the
candidate at as wins and the citizen obtains the payoff —c — a3 — d
rather than —1(d — a;) — (a3 — d). Thus we need a; —a3 > 2(d—as— c)
for all d € (ay,az), or ay — az > 2(az — a3 — ¢), which is equivalent to
¢ > € — €;. The analogous condition for a citizen with ideal point in

(az,a3) is ¢ > €2 — €. Thus we need ¢ > |e; — €.

In the first point above we concluded that if (a; + a3)/2 > m then
¢ < € — €, while if (a; + a3)/2 < m then ¢ < €; — ;. It follows that

c= |61 - €2|.
This completes the proof. 0

Proof of Proposition 6. Let the candidates’ positions be a; < @2 <
.++ < a,. By Lemma 1 the candidates at a; and a, are winners. First suppose
that a; = as. Then by Lemma 4 we have a3 > «;. Let one of the candidates at
a; be i. By Lemma 1 the candidates at a; are winners, so that if ¢ withdraws
then the other candidate at a; is the winner. Thus #’s payoff to N is 0 while
her payoff to E is less than (1/k)b — c. Hence for an equilibrium of this type
we require that b > kc. A similar argument can be made for an equilibrium
in which a,_, = a,.

Now suppose that a; < a; and a,—; < a,. We must have either a, — a; 2
2(az — a1) or ap — a; > 2(@n — @y—1). In the former case we claim that a
candidate at a,, say ¢, can profitably withdraw unless b > kc. If she does so
then only the fraction of the votes received by the candidates at a; changes. If
these candidates were originally winners then the withdrawal of ¢ makes them
the only winners. If there is only one candidate at a; and she originally lost
then, since she obtains all of i’s votes, she becomes the outright winner. Thus

in each case i’s withdrawal yields her a payoff of —(a; — a;) as opposed to at
most (1/k)b — [(k — 2)/k](az — @1) — (1/k)(a@, — a1) — c when she enters. Since

30

e



an — a; > 2(az — a;) this latter payoff is at most (1/k)b— (az — a;) — ¢, which

is at least —(az — @) only when b > kc. ]

Proof of Proposition 7. By Proposition 5b the condition b > 3c is
necessary for an equilibrium to exist in which there are three candidates. We
now show that if there are four or more candidates then there are at least
three winners, so that the result follows from Proposition 6.

We need to show that there is no equilibrium in which there are two winners
and at least four candidates. By Lemma 1 in any such equilibrium all the
candidates take different positions, and the two whose positions are extreme
are the winners. The cases of four and five or more candidates require different
arguments, as follows. A

First consider the case of four candidates. Let the candidates be 1, 2,
3, and 4 and let their ideal points be a), a; = a1 + €1, a3 = a3 + €2, and
as = az + €3. If the withdrawal of candidate 2 leads to a tie for first place
between candidates 1 and 3 then certainly 2’s withdrawal is beneficial. Thus
2's withdrawal must lead to an outright victory for either 1 or 3. Similarly the
withdrawal of candidate 3 must lead to an outright victory for either 2 or 4.
Suppose that the withdrawal of 2 leads to a win for 1 and the withdrawal of 3
Jeads to a win for 2. The optimality of the entry decision of candidate 2 then
requires €; > .';-61 + -12-(61 + €3) or €; 2> €2 + €3 and the optimality of the entry
decision of candidate 3 requires €z 2> %(61 + )+ %63 or € > € + €3. Since
these two inequalities are incompatible this pattern of winners in the event
of the withdrawals of candidates 2 and 3 is not possible. Similar arguments
eliminate two of the three other possible patterns, leaving the possibility that
candidate 3 wins when candidate 2 withdraws and vice versa, which implies
that €; > €5+ €3. Now, we claim that in this case there is a point in (az,a3) at
which an entrant can win for sure. To see this, first note that there is a point
in (a3, a3) at which an entrant can receive the votes of all citizens whose ideal
points lie in the interval (1(a; + as), (a2 + a4)), since Laz+as)—3(ar+as) =
%(51 +¢€3) £ -]2-62. To complete the argument we show that the votes of these
citizens are enough to win. Let @ = F(3(a1+az)) =1~ F (Y(as + a4)),
Bi = F (X(ar + @) — F (Las +a2)), B2 = F (3(as + ar)) = F (3(a2 + @4));
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and ¥ = F(3(az+as)) - F (3(a1 + a3)). The fact that candidate 2 wins
when candidate 3 withdraws, and vice versa, means that v+ 1 > a + B2 and
4 + B2 > a + B, so that ¥ > @, completing the argument.

Now suppose that there are n > 5 candidates. Call them candidates 1
through n and let the position of candidate ¢ be a; fori=1,...,n;let a; =
ai_1 + €y for i = 1,...,n — 1 and let E;;:Cj = 6. (If n =5 then § = 0.)
Suppose that candidate 2 withdraws. If this results in a tie for first place
between candidates 1 and 3 then the withdrawal is profitable, so instead either
candidate 1 or candidate 3 must win outright. If candidate 1 wins then in order
for the entry of 2 to be optimal we require €; > L&+ 3(€24+ 6+ €n—2+€n ), or
€1 > €3+8+€n_z+€q1; if candidate 3 wins then the analogous condition is €z >
€1+ 6 + €n—2 + €n1. Similarly, if candidate n wins when n — 1 withdraws then
in order for the entry of n—1 to be optimal we require €,-1 2 €1 +¢€2 +o+€,—2;
if candidate n — 2 wins then the analogous condition is €,-2 > €1+ €246+ €n-1.

It is easy to see that no combination of these conditions is possible. o

Proof of Proposition 8. If there are k > 2 candidates with ideal position
m then entry by a citizen with a different ideal position results in certain
defeat: if k = 2 or k > 3 and the position of the entrant is far from m then the
entrant fails to reach the runoff, and otherwise she loses in the runoff. Thus
it is optimal for such a citizen not to enter. It is optimal for another citizen
with ideal position m not to enter since b/(k + 1) > ¢, and it is optimal for
the k candidates to enter since b/k < c. O

Proof of Proposition 9. It is immediate that in any equilibrium the
positions of the candidates are m — € and m + ¢ for some € > 0. The case in
which € = 0 is covered in Proposition 8. If € > 0 then such a configuration is
an equilibrium if and only if each citizen’s action is optimal, with the following

implications.

e Citizens who enter: For such a citizen the payoff to E is 3b— 12 —c

while the payoff to N is —2¢. Thus for equilibrium we require b > 2(c—e¢).

e Citizens with ideal points outside [m — e, m + ¢]: If such a citizen chooses
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E then she loses (either in the first or second ballots) and either does not
affect the set of winners (if she does not get into the runoff) or causes this
set to consist only of the more remote candidate. Hence N is optimal

for her.

Citizens with ideal points m — € or m + € (other than those who enter):
If such a citizen chooses E then she gets into a runoff with probability
and wins this runoff with probability 7. Thus her payoff is. 13b -
+2¢) + L -1(—2¢) — c = {b— e — c. If she chooses N then her payoft is
—e. Thus it is optimal for her to stay out if and only if b < 4c.

= 8=

Citizens with ideal points in (m—e, m+e¢): If by choosing E such a citizen
wins outright then she obtains the payoff b— ¢ rather than the payoff —e
that she obtains when she chooses N. Since by the first point above we
have b > 2(c — €) we deduce that no such citizen can win outright if she
enters: € < e (F).

If € = e,(F) then there is a citizen with ideal position in (m — €, m + ¢€)
who, if she becomes a candidate, ties for second place in the first ballot
and hence gets into a runoff with probability }; in a runoff she wins for
sure. Her payoff to E is thus 16 — 1¢ — ¢, while her payoff to N is —e.
Thus for equilibrium we require b < 2¢ — e.

If € < e,(F) then any citizen with ideal position in (m —¢,m + €) who

becomes a candidate loses for sure and has no effect on the set of winners.

Thus it is optimal for any such citizen to choose N.

Parts b and c follow. To show a note that if e,(F) = ¢ — b/2 then b < 2¢, so
that e,(F) =c—b/2 < 2¢c—b. m]

Proof of Proposition 10. a. First consider the possibility of an equilib-

rium in which two candidates are at the same position and the third is at a

different position. Suppose, without loss of generality, that candidate 1 is at
a; and candidates 2 and 3 are at az > a;. If candidate 1 receives less than a
third of the votes then she certainly loses, and hence is better off withdrawing.
If candidate 1 receives at least a third of the votes then she must receive at
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most half of the votes otherwise she wins outright on the first ballot and can-
didates 2 and 3 are better off withdrawing. Further, she must have a positive
probability of winning in the runoff (otherwise she prefers to withdraw), so
that she must receive exactly half of the votes; this means that a; = m —eand
az = m+ ¢ for some € > 0. Now, in order for candidates 2 and 3 to prefer E to
N we need 1b— 2:2%—c2 1.(—2¢), or b > 4c. But if another candidate with
ideal position a; enters then each of the four wins with probability 1, so to
prevent this possibility it must be that b < 4c. Hence for such an equilibrium
we require b = 4c.

Now consider the possibility of an equilibrium in which the three candi-
dates’ ideal positions are a; < a; < a3. If any of the three has no chance
of winning in the first round then she prefers to withdraw. Thus each must
obtain one third of the votes in the first round, so that the positions satisfy
the condition in Lemma 12(i). This implies that candidate 2 surely wins if she
makes it to the runoff. Each of the other two candidates prefers to withdraw
unless she has a positive probability of winning in a runoff; since she can win
only if she faces the other extreme candidate we must have m —a; = a3 —m,
which implies that the positions are those given in part (a) of the result.

b. First note that for this configuration candidates 1 and 3 win with proba-
bility % and candidate 2 wins with probability % In order for the configuration
to be an equilibrium we require that each citizen’s action be optimal, with the

following implications.

o Citizens who enter: With probability 3 candidate 1 is in a runoff with
candidate 2, which candidate 2 certainly wins; with probability % she is
in a runoff with candidate 3, which she wins with probability %; and with
probability % she does not make it to the runoff, which candidate 2 wins.
Thus her payoff is 1(—2e1) + 3[2b — 1(2e1 + 262)] + 5(—261) — c. 1f she
withdraws then she obtains —2¢; (since candidate 2 then certainly wins).
Thus to make it optimal for her to enter we need b > 6c + 2(e2 — €1). A
similar calculation for candidate 3 yields the condition b > 6c+2(e; —¢3),
so that we need b > 6¢+2|e;—¢€;| = 6¢+2|t;+t,—2m/|. Finally, in order for
the entry of candidate 2 to be optimal we require 30+ 31b— Ha+e)—c>
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—(e1+€2), or b > 3c—(e1+€2), which is implied by the previous condition.

o Citizens with ideal points outside (a;,a3) (other than those who enter):
The entry of any such citizen either has no effect on the outcome (if
the citizen’s position is very extreme) or causes candidate 2 to be the
outright winner. Thus for it to be optimal for such a citizen with ideal
position d < a; not to enter we require —1(a;—d)—3(az—d)—§(as—d) 2
—(az — d) — ¢, or 3¢ 2 2m — (t1 +t;). The analogous condition for a
citizen with ideal position d > a3 is 3¢ > t1 +12 —2m, so that we require

3¢ > |ty +t2 — 2ml.

o Citizens with ideal points in (a1,az): If such a citizen who enters the
competition obtains a larger fraction of the votes than candidates 1 and
2 then she gets into the runoff and wins for sure. Thus in equilibrium
we need \y(F) <0fori=1,2.
If \;(F) < 0, the generic case, then a citizen with ideal point in (a,, az)
who enters certainly loses, but affects the identity of the winner. In order
to ensure that the net effect of the change is not beneficial we require ¢

to be large enough.

e Citizens with ideal points in (az,a3): Symmetric considerations apply to
these citizens, resulting in the requirements that A(F) < 0 and c be

large enough.

o Citizens with ideal point ay (other than the one who enters): The entry
of such a citizen leads to candidates 1 and 3 tying in a runoff, and -
outcome that is worse for the citizen than the equilibrium one (in which
candidates 1 and 3 each win with probability ; and candidate 2 wins

with probability 2.

This completes the proof.’

35



	Western University
	Scholarship@Western
	1993

	A Model of Political Competition with Citizen-Candidates
	Martin Osborne
	Al Slivinski
	Citation of this paper:


	tmp.1459175822.pdf.qRC5V

