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Abstract 

In this dissertation, I consider from a philosophical perspective three related questions 

concerning the contribution of mathematics to scientific representation. In answering 

these questions, I propose and defend Carnapian frameworks for examination into the 

nature and role of mathematics in science. 

The first research question concerns the varied ways in which mathematics contributes 

to scientific representation. In response, I consider in Chapter 2 two recent philosophical 

proposals claiming to account for the explanatory role of mathematics in science, by 

Philip Kitcher, and Otavio Bueno and Mark Colyvan. My novel and detailed critique of 

these accounts shows that they are too limited to encompass the diverse roles of 

mathematics in science in historical and contemporary scenarios. The conclusion is that 

any such philosophical account should aim to faithfully capture the structure of our 

theories and their use in applied contexts. 

This insight prompts the second question guiding this dissertation that I consider in 

Chapter 3, regarding a viable philosophical account of the role of mathematics in 

scientific theories. I respond by proposing a modified form of the reconstructive 

frameworks for philosophical analysis developed by Rudolf Carnap for theoretical 

entities. I propose three amendments to Carnap’s account: i) a semantic view for the 

representation of theories, ii) a careful consideration of instances of the use of theory in 

representing target systems, and iii) consideration of the practical complexity of relating 

theory to experimental data. 



 

 ii 

The final research question for this dissertation asks what, if anything, we can 

legitimately conclude about the nature of theoretical entities invoked by a theory in light 

of its success in representing phenomena. In the backdrop of the Carnapian frameworks 

proposed in Chapter 3, I argue that contemporary ontological debates in the philosophy of 

science are largely premised on an acceptance of Willard Quine’s epistemological 

outlook on the world and a dismissal of Carnap’s approach, which can be used to offer a 

satisfactory deflationary resolution. This is in the service of my contention that a 

Carnapian attitude to central issues in the philosophy of science is decidedly preferable to 

the route championed by Quine. 
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There have been and still are geometricians and philosophers, and even 

some of the most distinguished, who doubt whether the whole universe, or to 

speak more widely the whole of existence, was only created in Euclid’s 

geometry; they even dare to dream that two parallel lines, which according 

to Euclid can never meet on earth, may meet somewhere in infinity. I have 

come to the conclusion that, since I can’t understand even that, I can’t 

expect to understand about God. I acknowledge humbly that I have no 

faculty for settling such questions, I have a Euclidean earthly mind, and how 

could I solve problems that are not of this world? And I advise you never to 

think about it either, my dear Alyosha, especially about God, whether He 

exists or not. All such questions are utterly inappropriate for a mind created 

with an idea of only three dimensions. 

 

Fyodor Dostoevsky, The Brothers Karamazov 
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1 Introduction 

Mathematics has long been a handmaiden of science. The two have become ever more 

intimate with time such that as a matter of course, theories in many areas of science are 

articulated and models of these theories are developed in the language of mathematics. 

However, a lack of clarity persists in much of contemporary philosophical thinking 

regarding several matters related to this activity. These include the ontological status of 

the mathematics used in our scientific theories, the ways in which mathematics is useful 

in formulating these theories, and whether mathematics can play explanatory, predictive, 

or confirmational roles in science and, if so, what these precisely involve. This curiosity 

regarding the relation between mathematics and its use in scientific representation has 

manifested itself in the form of several related questions and claims in the philosophical 

literature. In spite of its importance, there thus far seems to be no philosophical consensus 

on the role of mathematics in science. Nonetheless, there does appear to be a growing 

realisation that mathematics can contribute to scientific representation in a variety of 

ways.1 

In light of the clear epistemological benefits of the application of mathematics to 

science, many philosophers have adopted strong metaphysical theses regarding the 

existence of mathematical entities and operations used in scientific representation. 

Roughly, the idea is that since our most successful scientific theories seek to describe and 

predict phenomena and are thought to be accurate descriptions thereof, we ought to be 

committed to entities posited by these theories. As reference to mathematical entities is 

                                                 

1 See, for instance, Wilson (2006) and Pincock (2012). 
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an indispensable part of our most successful scientific theories, we ought thus to believe 

in their existence as well. Debate over this thesis—known as the Indispensability 

Argument—has persisted for over five decades,2 with proponents of either side weighing 

in with observations and arguments that have caused the discussion to evolve 

significantly since its commencement. 

In this dissertation, I consider from a philosophical perspective three general questions 

concerning the contribution of mathematics to scientific representation. These questions 

raise issues regarding the role of mathematics in such representation, the possibility of a 

philosophical account of scientific theories that can help clarify and explicate this role, 

and those related to the ontological status of mathematics arising out of its successful 

application to physical systems. The instances of representation that I treat in the course 

of this dissertation will primarily be drawn from literature in the philosophy of science, 

and will vary in their complexity and detail. Furthermore, while the claims made here 

should be considered to hold for all scientific disciplines that employ mathematics to 

represent, most of the examples and cases that I use are from theoretical and applied 

physics. These include scenarios from fluid dynamics, graph theory, and 

electromagnetism. In order to be able to accommodate such a scope of instances and 

consistently consider them in light of diverse philosophical approaches, I offer a minimal, 

liberal description of a (mathematical) scientific representation as that which has as its 

content the existence of certain kinds of relations between a mathematical structure and 

the arrangement of certain properties and quantities in the relevant scientific domain3. A 

                                                 

2 See Colyvan (2001) for a comprehensive history of the issue. 
3 This description is from (Pincock 2012, 27). 
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mathematical structure in turn is a collection of mathematical objects with some formal 

relations obtaining among them. I approach the specific questions that follow, regarding 

the contribution of mathematics to scientific representation, as ones that straddle the 

boundary between the general philosophy of science and the philosophy of applied 

mathematics. Moreover, as will become evident, I use traditional philosophical methods 

of analysis and argumentation in conjunction with an emphasis on important details of 

the reasoning involved in particular scientific contexts by way of methodology. The 

eventual result is the proposal and defence of a Carnapian framework to examine and 

explain the role of theoretical entities, including mathematics, in our scientific theories. 

Furthermore, I argue that the attitude towards the status of theoretical entities that follows 

from the kind of framework that I propose helps dissolve a number of spurious 

ontological debates in philosophy, such as the Indispensability Argument issue 

mentioned above, by showing that they are misguided because they are based on 

questions that are not well formed. Such an attitude can also provide direction for 

productive research in the discipline in general, and in the philosophy of science in 

particular. 

I now turn to the three questions that guide my project in this dissertation, and provide 

an overview of the role of each subsequent chapter in advancing the above thesis as a 

response to them. 

 

1.1 Guiding questions 

A. How does mathematics assist in scientific representation? 
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B. Is there a promising philosophical account available to represent the 

theoretical/mathematical entities employed in our scientific theories in order 

to help clarify and explain their role? 

C. What can we conclude about the nature of theoretical/mathematical entities 

employed in a theory from its success in representing phenomena? More 

generally, what philosophical benefit, if any, is to be expected from 

ontological inquiries of the above sort, and how ought it to shape our 

preferences concerning research questions in the discipline? 

 

The above questions can be reasonably thought to engage a number of important 

questions in contemporary literature in the philosophy of science. Each of these is taken 

up in order in the three subsequent chapters, whereas Chapter 5 summarises my responses 

to them in light of my findings. My treatment of these questions will show that they 

continue to be the subject of intensive inquiries and lively debates in the philosophy of 

science. Thematically, A is an investigation into the role of mathematics in scientific 

representation, whereas C scrutinises the issue of its ontological status in light of its 

employment in our successful scientific theories. In this vein, B can be considered to be 

an intermediate inquiry that bridges A and C, and is grounded in the idea that a 

philosophical account of formal theories that can appropriately represent the role of 

theoretical/mathematical entities can help us frame, assess, and address questions 

regarding their status. That is, if we have available to us an account that can clarify and 

explain the role of mathematics as it is used in science, we will be better able to 
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determine whether questions pertaining to the ontological status of theoretical entities are 

warranted and, if so, how they ought to be pursued. 

All three questions form the following narrative for this dissertation: My response to A 

in Chapter 2 shows that contemporary philosophical accounts of the contribution of 

mathematics to scientific representation that claim to circumscribe all or the bulk of such 

instances within their ambit are unsatisfactory because they are too limited in the face of 

the sheer diversity of such contributions. The limitation in the frameworks proposed in 

these accounts also stems from a lack of attention to historical and contemporary 

instances of the application of mathematics to science. This prompts B, in response to 

which I propose and defend my Carnapian frameworks as appropriate to represent for the 

philosophical analysis of the mathematics used in science in a manner harmonious with 

practical considerations. Finally, in posing C, I do not intend to suggest that questions 

regarding the ontological status of theoretical or mathematical entities are inevitable or 

even appropriate in light of the successful contribution of mathematics to scientific 

representation.4 However, given that the ontological status of theoretical entities 

continues to be hotly debated in the philosophies of science and mathematics, where the 

Indispensability Argument issue is exemplary, it is well worth inquiring into the 

assumptions that ground such disagreements. Furthermore, since I propose Carnapian 

frameworks of analysis for the explication of mathematical/theoretical terms in 

representation, it is only natural to extend this inquiry to investigate the merits of the 

attitude that follows from adherence to such frameworks towards ontological issues in the 

                                                 

4 Indeed, as will become clear in §4.3, I do think that such questions are misguided in their standard 

philosophical formulations. 
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philosophy of science. Lastly, should I be correct in my contention that such an approach 

can help us reframe and dismiss a number of such debates and guide us in pursuing 

productive questions, the philosophy of science would benefit greatly from an according 

shift in focus. Thus, it is only appropriate that I try to convince the philosophical 

community that ontological issues are undeserving of the considerable research interest 

that they continue to garner. 

A minor note on usage. In the statement of C above, I hint at the interchangeable use 

of the terms “theoretical” and “mathematical.” As will become evident in Chapters 3 and 

4, I do so because the debate in the philosophical literature regarding the ontological 

status of mathematics has been largely conducted in such terms. However, the reader 

should note that insofar as I intend to focus here on theories in physics, which are 

formally articulated using mathematics, an investigation into the role of theoretical 

entities should be considered a natural part of an inquiry into the mathematics used in our 

theories. 

 

1.2 The role of mathematics in representation: Explanation 

In order to address A above, I consider in Chapter 2 two accounts of the role of 

mathematics in science, one proposed by Kitcher (1981, 1989) and the other by Bueno 

and Colyvan (2011). To the best of my knowledge, these are the only two all-

encompassing proposals in the recent philosophical literature for the application of 

mathematics to scientific representation, in that their respective claims are intended to 
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pertain to all applied mathematics.5 Furthermore, my choice of these accounts is 

motivated by the fact that, while varying in their respective aims and details, both purport 

to highlight the explanatory contributions of mathematics to scientific representation. The 

arena of explanation appears to be naturally suited to an investigation of the contribution 

of mathematics to science. Hempel proposed his famous Deductive–Nomological model 

of scientific explanation (Hempel and Oppenheim 1948) because of a Humean suspicion 

of the notion of causation (Cartwright 2004). Models of scientific explanation that have 

been proposed in the philosophical literature tend to gloss over the role of mathematics in 

furnishing such explanation.6 Since mathematics is a science of abstraction, an account of 

the explanatory contributions of mathematics to scientific representation offers 

considerable promise: divorced from considerations that pertain exclusively to scientific 

explanation, an investigation into the explanatory role of mathematics in science should 

help illuminate the ways in which the former contributes to the latter.  

Kitcher sees the explanatory activity of mathematics in science as consisting in its 

ability to unify by using the most economical argument patterns to generate the largest 

number of conclusions regarding the world, in the same manner as an optimisation 

problem. He writes in the wake of debilitating attacks on the covering law model of 

explanation as well as the enterprise of Logical Empiricism in the philosophy of science. 

Kitcher is sympathetic to the spirit of the empiricist enterprise, and looks to incorporate 

many of its features into his model. Bueno and Colyvan have put forth a bolder proposal 

                                                 

5 Strictly speaking, this is true of Kitcher only if I add the phrase “all applied mathematics within the 

restrictions imposed by the conceptual focus of the proposal,” since his account only considers its 

explanatory role in these applications. However, it is intended to apply to all instances where the 

mathematics can be said to be explanatory. 
6 Hempel and Oppenheim (1948) and Hempel (1965a, b) are two such instances. Others, such as 

Salmon (1984) and Dowe (2000), ignore the role of mathematics in explanation altogether. 
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that aims to capture all contributions of mathematics to science by focusing on mappings 

between empirical and mathematical structures. It is not unreasonable to see their effort 

as part of a structuralist revival in the philosophy of science in Britain.7  

In response to the question How does mathematics assist in scientific representation?, 

my examination of the above explanatory accounts yields at least two such ways: i) by 

connecting different phenomena using mathematical analogies, and ii) by isolating 

recurring features of phenomena through acausal representations. Moreover, in spite of 

the varying contextual motivations of the projects of Kitcher and Bueno and Colyvan, the 

significant differences in their respective approaches and details thereof, and the diversity 

in the arguments I use to critique them, I find a common way in which both accounts 

seem to falter: due to “structural deficiencies,” whereby the frameworks for 

representation proposed in both these accounts are too narrow to accommodate a number 

of explanatory contributions of mathematics to science in historical as well as 

contemporary scenarios. This oversight can be seen as a symptom of an old disease in 

philosophy, of the making of sweeping claims about science while disregarding the 

details of its practice. The upshot of my detailed treatment of each proposal is that a 

crucial desideratum of any general framework aiming to capture the contribution of 

mathematics to science is that it be able to faithfully capture the structure of our theories. 

In particular, such an account should outline clear mechanisms for the assignment of 

interpretations to the theoretical entities used in a representation and clarify the inter-

relationships among them. This involves taking heed of the ways in which a theory is 

                                                 

7 See, for instance, da Costa and French (2003), French and Ladyman (1999, 2003a, 2003b), Ladyman 

(1998), and Ladyman and Ross (2007). 
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related to experimental contexts for its verification as well as the manner in which it is 

used to solve problems in the world. 

It is this insight that prompts question B in §1.1 regarding a general account for the 

representation of theoretical entities in science, which is addressed in Chapter 3. 

 

1.3 A Carnapian framework for theoretical entities 

The general philosophical accounts of representation referred to in the inquiry in B in 

§1.1 can loosely be considered to be ones that can adequately reflect the structure of our 

scientific theories. Such accounts would clarify the logical and mathematical rules 

assumed by our theories. They would also be capable of articulating fundamental 

scientific laws, specifying the manner in which crucial theoretical notions therein are 

defined and empirically interpreted, and describing the assumptions needed in order to 

devise a representation. In Chapter 3, by way of a response to the question Is there a 

promising philosophical account available to represent the theoretical/mathematical 

entities employed in our scientific theories in order to help clarify and explain their 

role?, my proposal and defence of a Carnapian framework for the reconstruction of 

scientific theories is based on the recognition that any account purporting to treat 

theoretical entities as they are employed in science should be conceived of and structured 

in a manner that respects scientific reasoning as well as its dialectical relationship with 

the vast array of relevant experimental procedures and concerns, whereby the activity in 

one domain informs and is informed by that in the other. I choose a conception based 

heavily on Rudolf Carnap’s work because frameworks for reconstruction of the kind that 
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he proposes appear, at least prima facie,8 to be well suited to an examination of theories 

in physics. 

In addition to my defence of the treatment of theoretical entities in his linguistic 

frameworks against criticisms in the literature, I propose three amendments to Carnap’s 

account: i) a semantic view for the representation of theories, whereby a theory is taken 

to be a family of models rather than a set of sentences, as in the syntactic view, ii) a 

careful, detailed “bottom-up” consideration of instances of the use of theory in 

representing target systems, in contrast to the traditional philosophical approach based on 

a priori concerns or toy examples, and iii) a consideration of the practical complexity of 

relating theory to experimental data. As with the rationale for the transition from question 

A to B as well as my adoption of a framework based on his proposal, my departures from 

Carnap’s account, which render my proposal properly Carnapian, are similarly driven by 

the desire to be appropriately sensitive to scientific reasoning as applied to the 

formulation and evaluation of theories. Moreover, my defence of this conception against 

influential criticisms in §3.4 and §3.5 locates flaws in certain assumptions grounding 

them that evince a similar failure to engage scientific reasoning that came to the fore in 

my critiques of the accounts of mathematical explanation in Chapter 2. My aim is to 

show that my Carnapian frameworks can usefully represent theoretical entities in science 

in a manner harmonious with scientific practice. 

 

                                                 

8 See Stein (1992) and (1994) for arguments to this end. 
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1.4 The ontological status of mathematics 

A common tendency in the general philosophical literature is to hastily read off 

ontology from successful representational systems in science. Among the many 

unfortunate consequences of this predilection is the pursuit of misguided debates 

regarding the nature of theoretical entities, a major reason for which is a widespread 

misunderstanding of the nature and role of frameworks in scientific theorising and 

representation. In consonance with my proposal of a Carnapian conception of theoretical 

entities in Chapter 3, Chapter 4 highlights this error through a pragmatic comparison of 

the influential epistemic views of Carnap and Willard Quine. The difference between the 

two thinkers’ views naturally manifests itself most starkly in the arena of the ontological 

status of the theoretical, and hence mathematical, entities posited by our scientific 

theories. Quine sees philosophy as continuous with science,9 where the latter is an inquiry 

into reality, and thus sees no need to manufacture a distinction in our body of knowledge 

between theoretical and factual content. He thus thinks that all of our knowledge, 

including the theoretical components of our scientific theories, is subject to empirical 

verification. Carnap rejects questions concerning the status of theoretical terms as 

conceptually misguided, where his outlook is firmly embedded in and influenced by his 

linguistic frameworks. 

In seeking to frame and address the final substantive question guiding this 

dissertation—What can we conclude about the nature of theoretical entities employed in 

a theory from its success in representing phenomena, and how ought we to shape our 

                                                 

9 According to Quine (1981b), this is one of the “five milestones” achieved by Empiricism in the last 

two centuries. 
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preferences concerning research questions in the discipline in light of anticipated 

philosophical benefit?—I argue that contemporary ontological debates in the philosophy 

of science are largely premised on an acceptance of Quine’s epistemological outlook on 

the world and the standards of justification pertaining to our knowledge of it, which 

implies a dismissal of Carnap’s view. I then show how adherence to the Quinean 

perspective has sparked spurious debates in philosophy, most recently instantiated by the 

aforementioned Indispensability Argument issue, that continue to rage without a 

consensus on the conceptualisation of the issues at hand, the methodology or set of 

methodologies appropriate to apply to the problem once it is precisely formulated, the 

standards of evidence that are considered admissible, and so on. Hence, the pursuit of 

research questions in the philosophy of science that lead to unfruitful discussions of this 

nature is inadvisable. On the contrary, by engaging a recent debate that reflects on 

ontological questions in the backdrop of the theoretical and experimental research that led 

to the confirmation of the atomic hypothesis in the early 20th century, I show how 

Carnap’s approach to questions regarding the ontological status of theoretical entities in 

science can be used to offer a satisfactory deflationary resolution. This is in the service of 

my contention that such an attitude to central issues in the philosophy of science is 

decidedly preferable to the route championed by Quine. 

 

1.5 Limitations 

The role of mathematics in scientific representation encompasses an enormous amount 

of knowledge from a number of disciplines. Hence, any attempt to treat the subject in its 

entirety by taking into account all relevant dimensions and perspectives is unlikely to 
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succeed. Furthermore, even within the more restrictive confines of my philosophical 

approach to the issue in this dissertation, the extent and depth of my treatment of each of 

the research questions stated in §1.1 has been conditioned by my overarching advocacy 

of a Carnapian approach in considering questions concerning the role and nature of 

mathematics as used in our scientific theories. For instance, with regard to my response to 

A, the modes of mathematical explanation that come to the fore from my consideration of 

proposals by Kitcher and Bueno and Colyvan are not by any means exhaustive of the 

explanatory contributions of mathematics, nor are they intended to be. At the very least, 

the philosophical literature on the issue has yielded a number of explanatory 

contributions that I do not consider.10 This limitation arises out of my interest only in 

general, all-encompassing philosophical accounts of the contribution of mathematics to 

representation. Similarly, with regard to B, I only consider and defend a Carnapian 

conception of theoretical entities in representation, to the exclusion of other accounts, 

e.g., Kuhn’s (1962) paradigms for scientific theories.11 However, a careful consideration 

of even a few representational frameworks of this sort would easily make for a 

dissertation of its own. And so I restrict myself to the proposal and defence of my 

Carnapian conception. Finally, the Quinean and Carnapian perspectives do not at all sum 

up philosophical opinions on the ontology of theoretical entities in science.12 However, 

                                                 

10 See, for instance, Pincock (2012, §3.2) and Batterman (2002). 
11

 I do not mean to suggest that the approach or aims of Kuhn’s enterprise are similar to those of 

Carnap’s. However, among other things, Kuhn was concerned with the articulation of important scientific 

theories and their application for the solution of important problems—one sense in which he used the word 

“paradigm.” In this sense, he can be said to be involved in a similar project to that pursued by Carnap. See 

Pincock (2012, 122) for a relevant comparison between the two. 
12 For example, see Schaffer (2009) for a summary of a neo-Aristotelian programme of metaphysics as a 

response to the Quinean and the Carnapian approaches. 
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insofar as they form the bulk of the general perspectives in the philosophy of science, I 

have chosen to busy myself with them to the exclusion of other outlooks. 

 

 

As mentioned in §1.1, the questions posed and addressed in this dissertation engage 

important philosophical queries regarding the role and ontological status of mathematical 

entities used in science. In offering responses to the questions stated at the outset, my 

hope in this work is to recommend Carnapian frameworks for the philosophical 

examination of the contributions of theoretical entities in general, and mathematics in 

particular, to our scientific thought. Misconceptions about mathematical representation 

and the roles played by mathematical objects therein have led to philosophical 

misunderstandings regarding theories and theoretical entities. By offering a more 

promising account of mathematical structures in science, my Carnapian notion of 

framework also promises a more convincing and realistic way of understanding them. 

The specific ambition is to help repopularise the use of these frameworks in our 

philosophical reflections on science, for both science and philosophy stand to profit from 

it.
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2 The explanatory role of mathematics in science 

Als ik zou willen dat je het begreep, had ik het wel beter uitgelegd. 

Johan Cruyff 

 

In light of the project for this dissertation outlined in the Introduction, my aim in this 

chapter is to investigate two proposals for the explanatory role of mathematics in 

representation that claim to account for all or the bulk of its contributions to science. The 

lure of an overarching framework of this kind is clear, for if we have at our disposal an 

account that can encapsulate the vast variety of the applications of mathematics to 

phenomena that appear to be explanatory, we can use it to make considerable headway in 

responding to question A posed in §1.1—How does mathematics assist in scientific 

representation? At a grander scale, such a framework would probably contribute 

invaluably to philosophical accounts of confirmation and questions concerning structural 

invariance across theories. This hope is founded on the quite reasonable assumption that a 

successful general account boasting such breadth would tie together or relate the varied 

applications of mathematics in a manner more amenable to a structured inquiry into these 

questions than otherwise. 

Philip Kitcher proposes an ambitious, holistic account of scientific and mathematical 

explanation that sees the unification of seemingly disparate phenomena, structures, and 

theories as the task of both. The accommodation in his proposal for a role for 

mathematics forms a major reason for my consideration of Kitcher’s account of 

explanation in §2.1: it draws heavily on important features of the covering law model of 

explanation of the logical empiricists but, unlike this and subsequent accounts of 

scientific explanation in the literature, such as that proposed by Salmon (1984), offers an 
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explicit explanatory role for mathematics as an indispensable part of scientific theories.1 

Bueno and Colyvan are concerned with a model that can represent all instances of the 

application of mathematics to the physical sciences. Consonant to the scale of the task, 

they claim that their mapping-based account yields copious rewards, of which a 

clarification of the explanatory role of mathematics in representation is but one. My 

examination of these accounts will reveal that neither succeeds in delivering on the 

promise of a comprehensive model of how mathematics is explanatory in science. 

Against Kitcher’s proposal, I present and examine in §2.2 and §2.3, respectively, 

Margaret Morrison’s claim that far from being relentless companions, explanation and 

unification tend to part ways in many instances where the mathematics involved is clearly 

functioning in an explanatory capacity. Bueno and Colyvan’s conception of the 

application of mathematics is found to be problematic in §2.5 because it neglects basic 

aspects of representation in applied mathematics, and hence is neither representative nor 

practicable. My analysis of these proposals will also seek to uncover a general way in 

which these accounts of mathematical explanation and application are found wanting. As 

we shall see in §2.6, the insight that this yields leads us to question B, posed in §1.1, as 

well as the manner in which it is addressed in Chapter 3. 

 

                                                 

1 It is also interesting to note in passing that Kitcher explicitly exonerates his account of explanation 

from a consideration of “idealisations” in science. This likely means that his model cannot accommodate 

mathematical explanations of the sort discussed by Batterman (1997, 2002). 
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2.1 Kitcher and explanation as unification 

Kitcher (1976, 1981, 1989) proposed his theory of scientific explanation in the 

backdrop of a series of criticisms that undermined the covering law model of explanation 

offered by Hempel and Oppenheim (1948, Hempel 1965). This model is based on the 

insight that explanation is derivation: specifically, it is the deductive or inductive 

derivation of a sentence describing a phenomenon to be explained—the explanandum—

by using a set of sentences, called the explanans, that contain at least one general law. 

This is harmonious with the claim by Carnap (1966, 7) that successful explanation 

inevitably requires an appeal to a general law. Not only is Kitcher sympathetic to these 

attempts to furnish a theory of scientific explanation, he adopts the view that an 

explanation assumes the form of a logical derivation. He then proposes a holistic model 

that encompasses scientific and mathematical explanation under the common principle of 

unification, i.e., the comprehension of a maximum number of facts and regularities 

through a minimum number of theoretical concepts and assumptions (1981, 508). In fact, 

Kitcher explicitly cites Feigl and Hempel as inspiration for the idea that explanation is 

nothing other than unification, and calls this the “unofficial view” of explanation 

harboured by the logical empiricists. 

Kitcher thinks that any purported account of scientific explanation should advance our 

understanding of phenomena and allow us to arbitrate in historical as well as 

contemporary disputes in science. The notion of unification can be easily linked to that of 

the enhancement of our understanding, as it presumably helps us discern how a diversity 

of phenomena may be the manifestations of the same underlying mechanism. Kitcher 

thinks that the most general problem of scientific explanation is to determine conditions 
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that must be met to answer an explanation-seeking question (1981, 510). Hence, he sees 

explanation as an activity that involves answering questions. An explanation is an 

ordered pair consisting of a proposition and an “act type.” This conceptualisation of 

explanation also clarifies its relevance to arguments: the ordered pair <p, explaining q> is 

an explanation when a sentence expressing p bears an appropriate relation to a particular 

argument provided by our scientific theories. 

The idea is to observe common “argument patterns” (1981, 516) appearing in a wide 

variety of scientific representations of diverse scientific systems. Kitcher thinks that our 

understanding of phenomena advances by repeatedly using the same patterns of argument 

in different representations, which shows us how to reduce the number of facts or 

assumptions that we have to accept as brute (1989, 432). Explanations are not evaluated 

separately, in isolation from one another, but by observing how they form part of a 

“systematic picture of nature.” They are hence ranked according to their role in a broad 

systematic group of derivations supplied by a particular theory. 

It is important to note that Kitcher makes an explicit connection between explanation 

in mathematics and the ways in which it functions in science (1989, 423). He claims that 

mathematical knowledge is similar to all other parts of scientific knowledge, and there is 

thus no reason for a methodological division between mathematics and the natural 

sciences, in particular with regard to the ways in which each is explanatory. This implies 

not only that this approach provides an account of explanation in mathematics as well as 

science (Kitcher 1989, 437), but also that the explanatory role of the mathematics used in 

scientific theories is evaluated using the same criterion of unification that is used to 

assess the explanatory strength of these theories. Hence, on Kitcher’s account, the only 
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difference between the explanatory contribution of mathematics to pure mathematics and 

that to representation in the sciences is the target domain in question: in mathematics, this 

domain is mathematical, such that no connection need be made or sought between the 

mathematical representation and a physical interpretation for it; in science, on the 

contrary, the domain being modelled is physical, and hence the mathematics needs to be 

suitably linked to it. 

Let K be a set of (sentences expressing) beliefs that is consistent and deductively 

closed. Kitcher encourages us to think of K as a set of statements endorsed by some ideal 

scientific community at some point in time. A set of arguments that derives some 

sentences in K from others in it is a “systematisation” of K (Mancosu 2011). The 

explanatory store over K—E(K)—is the optimal systematisation of our set of beliefs K, 

i.e., it is the set of sentences representing our knowledge that uses the fewest 

assumptions, or sets of arguments, to derive the largest set of conclusions. E(K) consists 

of arguments acceptable as the basis for acts of explanation by those whose beliefs are 

constituted by K. For each K, E(K) is the set of arguments that best unifies K. 

According to Kitcher, the manner in which the optimal explanatory set of arguments 

constituting our scientific knowledge, and hence the one that best unifies it, is determined 

is fairly complicated. At the same time, much of this formalism is intended to render the 

account tighter than the covering law model so that it does not fall prey to the same 

issues.2 In general, a theory unifies our beliefs when it provides one (or a few) patterns of 

argument that can be used to derive a large number of sentences that we accept (1981, 

514). The notion of argument pattern is crucial to explanatory unification, but requires a 

                                                 

2 See, for instance, Scriven (1959). 



 

 20 

few preliminary definitions. A schematic sentence is an expression obtained by replacing 

some, but not necessarily all, non-logical expressions in a sentence with dummy letters. 

There is a set of directions called filling instructions for replacing the dummy letters in a 

schematic sentence such that for each dummy letter, there is a direction that tells us how 

it should be replaced. A schematic argument then is a sequence of schematic sentences. 

The classification for a schematic argument consists of a set of sentences describing the 

inferential characteristics of a schematic argument, i.e., it specifies the sentences that 

should be considered premises, those that are to be inferred from others through 

derivation, the rules of inference to be used, and so on. A general argument pattern is a 

triple consisting of i) a schematic argument, ii) a set of sets of filling instructions, 

containing a set of instructions for each term of the schematic argument, and iii) a 

classification for the schematic argument. 

Kitcher (1981, 517) uses an example of the popular formulation of Newton’s second 

law of motion to explicate the idea of an argument pattern and its role in unification. In 

the Principia, Newton had shown how to obtain the motion of bodies from knowledge of 

the forces acting on them. The unifying power of Newton’s work consisted in its 

demonstration that one pattern of argument could be used repeatedly to derive a wide 

range of accepted sentences. Consider a fusilier who wants to know why a gun attains 

maximum range when mounted at an angle of 45o
 to the horizontal on a flat plane. 

Kitcher thinks that the following general pattern of argument by Newton to treat one-

body systems can be used to answer this and a large variety of related questions through 

the following derivation: 

(1) The force on a is b. 
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(2) The acceleration of a is y. 

(3) Force = mass × acceleration. 

(4) (Mass of a) × (y) = b. 

(5) δ = ϑ. 

For the above, the filling instructions stipulate that the instances of “a” should be 

replaced by an expression referring to the body under consideration, those of “b” by an 

algebraic expression referring to a function of the variable coordinates and time, “y” 

should be replaced with an expression representing the acceleration of the body as a 

function of its coordinates and their time derivatives, “ϑ” by an expression referring to 

the variable coordinates of the body, and “δ” should be replaced by an explicit function 

of time.. Hence, the sentences that instantiate (5) reveal the dependence of the variable 

coordinates on time, and so provide specifications of the positions of the body in question 

throughout its motion. The classification of the argument, defined above, tells us that (1)-

(3) are premises, (4) is obtained from these by substitution, and (5) follows from (4) 

using algebraic manipulation and techniques of the calculus. It is thus the ability of the 

above argument pattern to allow us to represent a wide variety of physical systems and 

generate conclusions regarding them that renders it explanatory, insofar as it unifies. 

Analogously, the mathematical structure used above is explanatory because it can be 

repeatedly applied in varying situations to obtain a variety of conclusions (1989, 423). 

Although he concedes that arguments instantiating the Newtonian pattern above do not 

have identical logical structure, Kitcher thinks that the classification does impose 

conditions that ensure “similarity” of logical structure and non-logical vocabulary among 

such arguments. This is important because Kitcher claims that scientists are interested in 
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“stringent” patterns of arguments, which are patterns fairly similar in terms of their 

logical structure. Stringency is determined by conditions i) on the substitution of 

expressions for dummy letters, jointly imposed by the non-logical expressions in the 

pattern and the filling instructions, and those ii) on the logical structure imposed by the 

classification. A set of arguments is then said to be acceptable relative to K if and only if 

every argument in the set consists of a sequence of steps that accord with elementary 

valid rules of inferences, and the premises of each argument in the set belong to K. 

In consonance with the epistemic flavour of his account, Kitcher takes seriously the 

process by which we arrive at an explanatory store E(K) of knowledge that constitutes the 

best systematisation of our beliefs. If Σ is a set of arguments, a generating set for Σ is a 

set of argument patterns Π such that each argument in Σ is an instantiation of some 

pattern in Π. In determining the explanatory store E(K), we first narrow our choices to 

sets of arguments that are acceptable relative to K, and then consider, for each set of 

arguments, the various generating sets of patterns that are complete with respect to K. A 

generating set Π for argument set Σ is said to be complete with respect to K if and only if 

every argument that is acceptable relative to K and instantiates a pattern in Π belongs to 

Σ. 

Of the generating sets available to us in our body of knowledge, we choose the one 

with the greatest unifying power and call it the basis B of the set of arguments in 

question: 
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Figure 2.1. The derivation of basis sets on Kitcher's account of explanation (from Kitcher 1981, 520). 

The unifying power of a basis set B with respect to K varies directly with the size of 

the set of conclusions derived from it, the stringency of the patterns belonging to it, and 

the similarity among these patterns. On the above picture, explanation in the form of 

unification yields understanding, since by using a few patterns of argument to derive 

many beliefs, we minimise the number of types of premises we must admit as underived 

(Kitcher 1981, 520). Kitcher thinks it important to look closely at scientific practice to 

determine the arguments favoured by scientists and attempt to understand the patterns 

common to them. 

 

2.1.1 Explanation as unification at work: Natural selection 

The recurring historical instance used in Kitcher’s work to exemplify his account of 

explanation is Darwin’s theory of natural selection in the 19th century regarding the 

differential survival and reproduction of biological life. Darwin believed that natural 

selection should be accepted as the process by which species evolve because he thought 

that the “doctrine must sink or swim as it groups and explains phenomena” (Kitcher 
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1981, 514). However, he was unable to provide a complete derivation of any biological 

phenomenon. How, then, can natural selection be said to have any explanatory power? 

Kitcher thinks that Darwin’s evolutionary theory promised to unify a host of 

biological phenomena. The eventual unification proposed by his theory would consist in 

derivations of the descriptions of phenomena that would instantiate a common pattern. 

Kitcher supports this claim by observing that instead of providing detailed explanations 

for the presence of a particular trait in a particular species, Darwin provides a general 

pattern of argument that he claims can be instantiated in principle by a complete and 

rigorous derivation of the description of the characteristics that any species comes to 

exhibit over time. Such a derivation would employ the principle of natural selection as 

well as premises describing the relevant environment, the ancestral forms of the species 

under consideration, and the then-unknown laws of variation and inheritance. In other 

words, Darwin offers “explanation sketches” (Kitcher 1981, 515): by showing how a 

characteristic would be advantageous to a species, he indicates an explanation of the 

emergence of that characteristic in the species, hinting at an argument instantiating the 

general pattern. By using instantiations of this pattern, we can account for analogous 

variation in kindred species, the greater variability of specific characteristics, facts about 

their geographical distribution, and so on. Hence, Darwin though that his theory of 

natural selection should be accepted because it unifies and, thus, explains. 

 

2.2 The divisiveness of explanation 

Margaret Morrison (2000) has provided a fairly comprehensive critique of the 

identification of unification and explanation in the literature in philosophy of science, and 
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explicitly considers Kitcher’s account in the context of natural selection. Her general 

thesis is that there are many cases in the history of science where the demands for 

explanation and unification have militated in opposing directions, such that one has been 

rendered possible only at the expense of the other. Hence, explanation cannot be cast 

solely as unification, as Kitcher claims. Furthermore, a consideration of Morrison’s 

argument against Kitcher reveals an explanatory role for mathematics that cannot be 

accommodated by the latter’s proposal. 

Morrison concedes that the most successful unification in biology, the synthesis 

between evolutionary theory and Mendelian genetics, was accomplished by using 

particular mathematical structures that enabled geneticists to combine natural selection 

and Mendelianism under a common framework (2000, 192). However, in spite of this 

theoretical unity, there was no unanimously accepted explanatory model for the ways in 

which selection operated within this new synthesis. In fact, the evolutionary synthesis 

only successfully afforded explanation by introducing disunity at the level of models used 

in the application of population genetics to biological phenomena. That is, a diversity of 

models was needed to account for the processes and effects encountered in this domain, 

rather than a uniform pattern of argument. 

Kitcher claims that the argument pattern that he attributes to Darwin is implicit in his 

explanations of the prevalence of traits discussed in On the Origin of Species as well as 

other works. However, Morrison argues, although natural selection may serve to unify a 

wide range of phenomena on account of its applicability, it is not clear that it can also 

function as a source of explanation. Explanations based on derivation typically require a 

theoretical background to which one can appeal in order to understand how the 
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phenomena in question came about. They are invariably situated in larger theoretical 

contexts that can in turn explain why the relevant derivations work. In order for natural 

selection to be explanatory in a diversity of areas, several additional assumptions needed 

to be added to the theory, many of which were not grounded in evidence at the time. For 

instance, selection is not the only mechanism operating in Darwin’s evolutionary theory: 

there is the effect of use and disuse, spontaneous and directed variation (where the 

tendency to vary is transmitted rather than the actual variation), and so on. None of these 

involved selection, and could thus lead to maladaptive differentiation in local populations 

(Morrison 2000, 201). Hence, natural selection could only function in an explanatory 

manner in conjunction with specific assumptions, some of which lacked independent 

justification.  

Darwin wanted to show how natural selection and its evolutionary effects could be 

used to solve a host of problems in geology, palaeontology, geographical distribution, 

morphology, embryology, etc. If we consider his discussion of geographical distribution 

and his explanation for the inhabitants of the archipelago, we find, in addition to the 

selectionist claim, the introduction of crucial assumptions regarding the methods of 

transportation across long distances. Darwin justified these methods by claiming that they 

should be expected to occur rather than simply considered possible (Morrison 2000, 206). 

For instance, seeds could be transported for miles over oceans if embedded in driftwood, 

and birds blown by gales across the water would serve as quite effective transporters of 

seeds. Thus, each domain in which selection operates makes use of a specific model that 

incorporates assumptions of varying kinds, like the one above, in order to explain. On 

Kitcher’s criterion of the unity of a theoretical structure—where an argument pattern uses 
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the fewest premises or assumptions to generate the largest set of conclusions—these 

additional assumptions—the very ones that render natural selection-based models truly 

explanatory—detract from this unity. Hence, in such cases, natural selection could be 

explanatory only if these assumptions were satisfied: while it was necessary for the sort 

of explanation provided by Darwin, it was insufficient. Thus, natural selection could only 

function in an explanatory manner in conjunction with certain assumptions, contrary to 

Kitcher’s claim. 

 

2.2.1 How mathematical analogies may explain 

It is a good thing to have two ways of looking at a subject, and to admit that there are two ways of 

looking at it. 

(Maxwell, “On Faraday’s Lines of Force”) 

 

Pursuing the history of evolutionary theory, Morrison (2000, 218) shows that the 

synthesis between Mendelian genetics and Darwin’s evolutionary theory was only made 

possible through the isolation of mathematical structures common to them in the work of 

Fisher (1918, 1922) and others. Fisher was interested in the problem of how a large 

number of factors might separately affect genetic variability, and whether this could be 

statistically represented. He wanted to show, contra Pearson (1903), that an exact 

specification of each factor relevant to a given population was unnecessary for a 

representative statistical analysis: when these factors are sufficiently numerous, the most 

general assumptions with respect to separate peculiarities leads to the same statistical 

result. Fisher saw this as analogous to the methodology employed in the theory of ideal 

gases, where only general statistical laws regarding interactions among particles were 

needed to describe and predict the behaviour of gases. By the early 20th century, the 
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success of the kinetic theory of gases had shown that knowledge of the particular 

members of a population was not required to formulate representative, accurate, and 

general laws governing the behaviour of a population. Fisher thus treated biological 

populations as ideal gases. The benefit of this technique was that it provided the simplest 

account of a many-body system because it neglected as negligibly small the interactions 

among its members. This allowed Fisher to determine the role of natural selection in 

Mendelian populations by successfully isolating selection pressures from other relevant 

factors, such as migration, genetic recombination, and gene interaction, in order to render 

natural selection and Mendelian genetics compatible, and to show how the former 

operated in the latter. Tellingly, in his 1922 paper, Fisher used the law for the distribution 

of velocities of the particles of an ideal gas as the model for calculating the frequency 

ratios for different Mendelian populations. 

Morrison sees two ways in which the work of Fisher undermines Kitcher’s 

unificationist model of explanation. First, the mathematical analogy with ideal gases was 

the means by which Fisher was able to determine the effects of selection in isolation from 

other influences. This clarified the role of selection in genetic evolution in a manner 

considerably more informative and fruitful than the mere structural unification in the 

relevant argument pattern cited by Kitcher. Fisher was able to show how his assumption 

of a stochastic distribution yielded the conclusion that the action of natural selection on 

single genes, rather than mutation, random extinction, etc., was the primary determinant 

of evolution (Morrison 2000, 219). It is also important to note that in spite of the use of 

his analogy, Fisher did not propose or assume any identity between the actual 

mechanisms involved in the kinetic theory of gases and biological populations, which 
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would be the sort of epistemic unification demanded by Kitcher’s model. Second, it is not 

the case that Fisher used the analogy with ideal gases to justify his assumptions about 

biological populations; nor did he use it to explain empirical results that had been already 

available in hand. Instead, the mathematical analogy served as an instrument to 

investigate the role of selection in human populations by replacing actual populations 

with idealised ones. It should be clear that Kitcher’s rather narrow conception of 

explanation based on patterns of argument is not susceptible to accommodating such an 

elaborate mathematical analogy. The methodological decision to isolate natural selection 

as an independent factor in variation was ultimately justified on empirical grounds. Thus, 

while natural selection can have explanatory power, this cannot be understood solely in 

terms of its unifying power. It follows that there appears to be a difference between the 

unifying role of natural selection and its function as an explanatory hypothesis. More 

generally, while a theory such as natural selection can be explanatory, its ability to 

explain cannot be understood only in terms of its unifying power. Unification and 

explanation come apart. 

 

2.3 Reflections on Kitcher 

One of the virtues of Kitcher’s conception of science, and hence his account of 

explanation, is his explicitly epistemic approach to scientific knowledge. His proposed 

explanatory store of arguments represents the structured body of all our knowledge, and 

he encourages us to think of this as the product of the consensus of leading scientists in 

all areas. Similarly, he articulates criteria for the stringency of the argument patterns—in 

addition to formal demands for consistency, soundness, etc., that form part of the 
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covering law model—as a determinant of their eligibility for our explanatory store in 

order that only patterns that are appropriately unifying are admitted to it. At the same 

time, the argument by Morrison above highlights the inadequacy of his unification-based 

account by showing that the relationship between unification and explanation does not 

endure across the body of our scientific knowledge, and that the two are often torn 

asunder.  

More importantly, her account of Fisher’s work on unifying genetics and natural 

selection, by using a mathematical analogy between biological populations and particles 

of an ideal gas, provides another avenue where the mathematics employed in scientific 

representation helps clarify and explain phenomena. The use of analogies between the 

mathematical representation of one physical system and another in fact occupies a 

distinguished place in the history and practice of science. Among the earliest and most 

influential uses of this can be found in the work of James Clerk Maxwell on 

electromagnetism. In his 1861 paper “On Faraday’s lines of force,” Maxwell explicitly 

considers a “physical analogy” between fluid flow and electromagnetic phenomena.3 His 

purpose was to articulate Michael Faraday’s lines of force conception, which described 

the direction and intensity of all forces in a homogeneous field about a charged particle. 

Maxwell was here concerned with providing a mathematical formulation of these lines of 

forces. The analogy that he drew to this end was between the intensity and direction of a 

line of force at a point, and the flow of an incompressible fluid through a fine tube of 

variable section. This yielded a vector representation of the lines of force in terms of the 

                                                 

3 Maxwell (1965, 157) credits Lord Kelvin for first using this method to draw an analogy between heat 

and electrostatics, and light and the vibrations of an elastic medium. 
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velocity field of a fluid. Maxwell then applied this analogy to the phenomena of static 

electricity, galvanic current, permanent magnetism, magnetic induction, and 

electromagnetic induction: that is, he derived representations of almost all 

electromagnetic phenomena using the analogy with ideal fluid flow. This motivated his 

subsequent and more important physical analogies in his “On the physical lines of force” 

in 1862, where he found the correct field equations for electromagnetism and calculated 

the velocity of the transmission of electromagnetic interactions to be approximately equal 

to the speed of light. 

It is important here to recognise the similarity between Maxwell’s use of the 

mathematical analogy between electromagnetic phenomena and fluid flow and Fisher’s 

groundbreaking work in relating natural selection with Mendelian genetics. Much as 

Fisher did not identify biological populations with the particles of an ideal gas, Maxwell 

does not assume an identity of any kind between fluid flow and electromagnetic 

phenomena. In fact, he repeatedly insists on the deceptiveness of this appearance and, at 

least in the first part of the 1861 paper, makes no claim about the physical nature of the 

phenomena being modelled. His explicit aim there is to provide a mathematical 

description of the lines of force conception, and he eschews the position of a “physical 

theory” to ground this mathematical description. One of the many important 

consequences of this work was the recognition that under certain restrictive conditions, 

the equations of ideal fluid flow are identical in form to those governing electromagnetic 

phenomena. In fact, this insight is still used to solve a number of problems in 

electrostatics to this day. I will have more to say about this in my treatment in §2.5 of the 

account of the application of mathematics proposed by Bueno and Colyvan. But for now, 
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it is important to see how this method of mathematical analogy is unavailable to Kitcher 

on his model of explanation, and serves to rob his unificationist account of the 

comprehensiveness required of an all-encompassing theory. Since Kitcher sees scientific 

and mathematical contributions to explanation solely through the lens of unification, the 

argument patterns that he proposes to capture this contribution consist of an optimised 

formal rendition of our ever-growing body of scientific knowledge, where the 

optimisation consists in the generation of the largest set of conclusions using the smallest 

set of premises. However, as is clear from the above, insofar as epistemic and structural 

unification is not the only explanatory contribution of mathematics or science, Kitcher’s 

model cannot capture these contributions on account of a structural myopia grounded in 

the major assumptions of his view of explanation. The major virtue that he espouses for 

his account of explanation—unification—becomes its major handicap. 

With regard to the example of natural selection, Kitcher can reasonably claim that 

selection as proposed by Darwin is in fact explanatory. If accepted in conjunction with 

the other requisite assumptions highlighted by Morrison above, regarding the 

geographical distribution of species, their morphology, and so on, natural selection does 

provide an arguably satisfactory explanation, at least for its time, of the evolution and 

propagation of species. It shows how, given that natural selection is true4 and the other 

assumptions are admitted, species evolve over time due to a wide variety of genetic, 

environmental, and other factors. Be that as it may, the point is that a subsequent, 

significantly richer explanation was afforded in Fisher’s work by employing the 

                                                 

4 I purposely use this word, in spite of my reservations against this as the sole aim of any physical 

theory, because this is required of the premises of arguments in Kitcher’s model. 
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mathematical analogy described above. Using his model, Fisher was able to determine 

the independent effect of each of a multitude of environmental and genetic variables on 

the evolution of biological populations. Similarly, using his fluid flow analogy with 

electric and magnetic phenomena, Maxwell was able to provide a mathematical 

formulation for Faraday’s theory that led to his equations of electromagnetism and 

yielded a useful methodology to conceptualise problems in a variety of disciplines for the 

future.  

Another reason for why the avenue of mathematical analogy, employed to great 

success by these scientists, is simply not admissible to Kitcher’s account is that his 

proposal emphasises patterns of argument, and is hence founded on the notion of 

derivation. The ultimate arbiter of the success of any explanation of such a theory—one 

that casts all explanations as arguments—is the soundness of the argument encapsulating 

a given explanation. In addition to satisfying a valid form, an argument of this sort is thus 

required to have true premises. However, as mentioned above, there is nothing ostensibly 

true about the mathematical analogies used by Fisher and Maxwell above, which were 

marshalled nonetheless to great explanatory and scientific success. We know that for 

Kitcher, the explanatory store of argument patterns that we can bring to bear upon a 

phenomenon in order to explain it comprises the beliefs of scientists and other 

epistemological experts in society; hence, all these patterns encapsulate truths about the 

world. That is to say, there is no room in these patterns, due to their stringency, for 

unsound arguments containing assumptions that are known to be false, such as 

mathematical analogies, that we know form a critical part of the so-called toolkit of an 

applied mathematician in solving problems in engineering. Kitcher’s account betrays an 
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emphasis on truth in the course of representation that thus impoverishes his account by 

denying it resources available to someone who privileges the ability to represent over 

truth in scientific investigation. And this is reflected in the limitedness of his view of 

explanation. 

 

2.4 The inferential conception of applied mathematics 

Otavio Bueno and Mark Colyvan (2011) have recently proposed an account of the 

application of mathematics to phenomena. The motivation underlying their “inferential 

conception of applied mathematics” is that embedding features of the empirical world 

into a mathematical structure allows us to draw inferences that would be otherwise 

difficult to obtain. Bueno and Colyvan frame their inferential account as an extension of 

and improvement on the “mapping account” of the application of mathematics proposed 

by Christopher Pincock (2004, 2007) and others.5  

Pincock considers cases involving a mapping of some sort between a physical and a 

mathematical domain such that it yields an “abstract explanation,” one that mainly relies 

on the structural features of the physical system in question (2007, 257). He considers as 

instance of this the problem of the famous bridges of the city of Königsberg. Some 

preliminary graph theory is first in order. A graph is an ordered pair consisting of vertices 

and edges. The path of a graph is a series of edges where one of the vertices in the nth 

edge overlaps with one of these in the n + 1th edge. Connected graphs have a path 

between any two vertices. The number of edges on a vertex is called its degree. A 

                                                 

5 They attribute variants of this approach to Baker (2003), Balaguer (1998), and Leng (2002). 
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connected graph G is said to be Eulerian just in case it is connected and contains a path, 

from an initial vertex v, that features each edge exactly once and ends at v. 

Figure 1 shows a map of the seven bridges of Königsberg. The question is whether it 

is possible, starting at any given bridge, to traverse all bridges exactly once and return to 

the origin—if an Eulerian path is possible. 

 

 

Figure 2.2. The bridges of Königsberg. 

We can represent the bridges as a graph by abstracting from the details that are 

irrelevant to the problem at hand—the material constitution of the bridges, their 

elevation, the distance between any pairs of them, and so on—and by considering the 

bridges as edges, and the banks and islands as vertices. This yields the simple graph 

shown in Fig. 2. Now, we know that according to a theorem of graph theory, the 

existence of Eulerian circuits requires that all vertices of a graph have an even degree. As 

shown in Fig. 2, on the contrary, each of the vertices of the graph representing the bridges 

of Königsberg has an odd degree. This allows us to conclude that it is impossible for 

anyone to cross all bridges exactly once and return to the origin (Pincock 2007, 258). If 

someone were to ask how we can confirm, in particular without attempting traversals, 
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that a Eulerian path is not possible, we would point to the isomorphism between the 

relevant features of the bridges and the graph to claim that the graph is sufficiently 

representative of the bridges to the extent required for our purposes. Having secured the 

consent of our interlocutor6 to the isomorphism, we can then invoke the above theorem of 

graph theory and claim that this holds for the bridges as well, insofar as the mapping is 

representative. To clarify our reasoning, we can show other, Eulerian, graphs 

representing possible bridges where such a traversal is possible. This allows us to 

conclude that, as in our representative graph, the number of paths or bridges connecting 

any two vertices or parts of the city determines that a path of the kind we sought is not 

possible. 

                                                 

6 I should point out here that Pincock and other proponents of the mapping account do not frame their 

proposals in such a context of accountability. I purposely use language here that evokes a view of 

explanation that requires that it somehow be confirmed as competent by an evaluator, preferably a lay one. 

My initial impression is that this is not mutually exclusive with the possibility of the development of formal 

measures to this end. The major inspiration for this idea is Gregory Vlastos’s (1993) very creative work on 

the Socratic elenchus, and a central feature of the method of investigation advertised by Socrates in what 

are considered “early” Platonic dialogues: Charmides, Crito, Euthydemus, Euthyphro, Gorgias, Hippias 

Major, Hippias Minor, Ion, Laches, Lysis, and Protagoras (see Vlastos (1991)). 
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Figure 2.3. The bridges of Königsberg rendered as a simple graph. 

This, then, is an instance of a static (time-invariant) system where an abstract 

explanation is afforded by the mathematics through a mapping from the phenomena at 

hand. It is important to note that this mapping captures only the features of the bridge 

system relevant to the problem being considered—whether an Eulerian traversal is 

possible—and ignores a host of other details—the constitution of the bridges, their 

microphysical properties, and so on—that do not contribute to the investigation. Hence, 

mathematics can be used to supply explanations of phenomena that are dependent solely 

on the abstract structural features of the system in question. Such representations have 

also been referred to as “acausal” (Pincock 2012, §3.3).7 

                                                 

7 The reader should note here that in calling such representations “acausal,” I do not intend to suggest 

that I subscribe to any “causal” representations in the pre-theoretic, metaphysically repugnant sense of the 
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It is in the context of this mapping account of the application of mathematics that 

Bueno and Colyvan propose their inferential conception. They agree with Pincock’s 

contention that a variety of mappings from the phenomena to representative mathematical 

structures are crucial to applied mathematics. However, they think the mapping account 

is incomplete because it does not say much about the kinds of mappings that can be 

effected between a physical system and a mathematical structure. Specifically, it cannot 

accommodate the fact that mathematical theories often have more structure than the 

target empirical setup in any given situation and, when suitably interpreted, some of this 

mathematical structure has empirical implications (Bueno and Colyvan 2011, 356).  

To address this shortcoming in the mapping account, Bueno and Colyvan propose an 

account of applied mathematics that accommodates the central features of the application 

process, including the mapping of mathematical structures to a physical one (2011, 346). 

The crucial feature of this account is that it captures the important fact that the 

fundamental role of the application of mathematics to physical systems is inferential: by 

embedding certain features of the empirical world into a mathematical structure, it is 

possible to obtain inferences that would otherwise be extraordinarily difficult, if not 

impossible (Bueno and Colyvan 2011, 352). They claim that all roles of mathematics in 

science involve the ability to establish inferential relations between phenomena and 

mathematical structures, or among mathematical structures themselves. They are careful 

to point out that their account is not a purely structural account, since it makes room for 

                                                                                                                                                 

 

word. The term “acasual representation” seems to have stuck. So I use it only because this is what it has 

come to be known in the literature (See, for instance, Räz (2014)). 
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pragmatic and context-dependent features in applying mathematics to phenomena (Bueno 

and Colyvan 2011, 8). 

 

 

Figure 2.4. The inferential conception of applied mathematics (from Bueno and Colyvan (2011, 353)). 

The inferential conception consists of the following three steps (Bueno and Colyvan 

2011, 9): 

1. Immersion. This involves a mapping from the physical setup to a convenient 

mathematical structure.8 Bueno and Colyvan recognise that not all elements of a 

physical situation may be relevant to the purposes of the application in question, 

and hence stress that the mapping might omit certain structural features of the 

physical setup. Furthermore, the empirical setup is assumed to have structure, i.e., 

it either naturally has structure suited to the establishment of a mapping with a 

mathematical structure, or an appropriate one can be imposed on it. The latter 

may be a non-trivial exercise. The point of this step is to relate the relevant 

                                                 

8 Bueno and Colyvan (2011, 347) offer a fairly inclusive definition of “structure” as a set of objects 

(nodes or propositions) with a set of relations on them. 
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aspects of the empirical situation with the appropriate mathematical 

context/structure. 

2. Derivation. The mathematical structure obtained as a result of the mapping is then 

employed to derive consequences. 

3. Interpretation. The mathematical consequences obtained in the derivation stage 

are then interpreted in terms of the initial empirical setup. A mapping from the 

mathematical structure (obtained in Derivation) to the initial empirical setup is 

needed to establish an interpretation. This need not simply be the inverse of the 

mapping used in Immersion. 

Bueno and Colyvan emphasise that the above distinction between an empirical setup 

and a mathematical structure does not imply that the former is free of mathematics or 

other formalism. On the contrary, they claim that a representation of the empirical setup 

in practice will very often invoke a great deal of mathematics. The mappings are obtained 

by using partial homomorphisms between the relevant theoretical and mathematical 

structures, with partial isomorphisms between the theoretical9 structures and those closer 

to the phenomena, down to structures directly representing appearances (Bueno and 

French 2012, 2). Partial structures are used in the setup in order to cater to the need for a 

formal structure that deals adequately with the openness and incompleteness of 

information involved in scientific practice. 

Bueno and Colyvan cite several reasons for viewing their proposal as an improvement 

over the mapping account of Pincock. They think that the detail they provide enables 

                                                 

9 “Theoretical” here is identical to the “physical” or “empirical” setup in the Immersion step. 

Presumably, the physical setup will, from the beginning, be an abstraction from the real world, will contain 

only relevant details, and may also incorporate theoretical entities, e.g., electrons. 
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their inferential conception of the application of mathematics to unify disparate theories, 

make novel prediction, and facilitate mathematical explanation.10 With regard to the 

latter, they claim that the establishment of inferential relations between mathematical 

structures and the empirical setup is crucial to mathematical explanations of phenomena 

(2011, 366). It seems that the Immersion and Interpretation steps are important for 

mathematical explanation, since these steps involve what Bueno and Colyvan call 

“inferential relations.” It is unclear how they intend for the inferential conception to be 

explanatory. It seems that on their account, a mathematically viable interpretation of the 

physical domain—in Immersion—and a physically coherent understanding of the 

mathematical results—presumably in Interpretation, once the derivations have been 

made—can contribute to an account of explanation of the phenomena that invokes the 

relevant mathematical structures. Thus, the view seems to be that the mappings will 

feature as necessary constituents in the formulation of an explanation of the phenomena. 

In sum, Bueno and Colyvan think that their account enables the conceptualisation of 

two central issues in the application of mathematics to science: i) selecting appropriate 

mathematical structures to represent the empirical setup, and ii) assessing the 

representational and, perhaps, explanatory adequacy of these structures (2011, 356). 

 

                                                 

10 I will not describe how they think their account accomplishes each of these because my criticism 

undermines the very applicability of their proposed structure to problems in applied scientific reasoning. If 

successful, such a strategy undermines any claim that they make regarding its fruitfulness for science. 



 

 42 

2.5 The applicability of the inferential conception 

I think it uncontroversial that there is some truth to the sort of mapping account 

described in the foregoing. If I ask you to divide 97 tomatoes among 10 people such that 

each person gets a whole number of tomatoes and the same number of tomatoes, you will 

not need to experiment with attempts to effect such a distribution and fail in order to 

conclude that this is impossible. In this and countless such instances, an isomorphism is 

assumed (typically not consciously, perhaps) between a certain set of numbers (the 

natural numbers from 1 to 97 in this case) and the target system in the physical world. Be 

that as it may, the account of the application of mathematics proposed by Bueno and 

Colyvan is far more ambitious than proposing to account for mental arithmetic. My 

treatment of it in the following will seek to emphasise the fact that this account of applied 

mathematics fails because it overlooks the basic details in scientific practice that enable 

frameworks of representation to model scenarios in the first place. Hence, the inferential 

conception as proposed by Bueno and Colyvan is in fact inapplicable to most such 

contexts. 

Recently, Erik Curiel (2012) has convincingly argued that an adequate semantics for a 

physical theory must be based on notions of meaning that are determined prior to 

concerns regarding the accuracy with which the theory represents the dynamical 

behaviour of the physical systems that it treats. Following scientific practice, Curiel 

proposes distinguishing between the kinematical and dynamical components of a theory 

in its representation. Roughly, kinematical components are features of a system that are 

constant, or are assumed to be so for the sake of argument or analysis, as the system 

evolves over time, on pain of the system transforming into another in the representation. 
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On the other hand, dynamical components are quantities of the system that can vary with 

time and place. Kinematics comprises all that one needs to know in order to fix the kind 

of system in question (Curiel 2012, 9) and imposes constraints on the possible range of 

values of the relevant quantities in order to be able to provide a complete description of 

the system with regard to the representation at hand. For instance, there are several 

different physical systems that contain shear and stress, e.g., Nävier–Stokes fluids, 

electromagnetic fields, elastic solids, etc. To merely claim that a system has a shear-stress 

tensor is far from sufficient to characterise it in a manner that will allow a meaningful 

representation of it. One also needs to know whether the tensor is symmetric or 

divergence free, or if it stands in some relation to another quantity of the system, such as 

heat or flux (Curiel 2012, 10). These constitute part of the system’s kinematical 

constraints. 

Recall from §2.4 that the inferential conception of Bueno and Colyvan consists of 

three stages: a mapping is established between the target physical setup and a suitable 

mathematical structure in Immersion, the mathematics thus obtained is manipulated in the 

Derivation stage to obtain results, and these are then interpreted in terms of the original 

physical setup in the Interpretation phase. Hence, it is evident that Bueno and Colyvan 

propose reinterpreting the mathematical structure, which is derived by purely formal 

manipulation of the structure abstracted from the initial empirical setup, in terms of the 

physical setup once the necessary derivations have been made from it. Presumably, the 

underlying idea is that a reinterpretation of the formalism in question is provided once it 

has been used to derive consequences purporting to have physical significance. Such a 

view of representation is unfeasible as it is unrepresentative of scientific practice. This is 
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because an interpretation of the formalism obtained by derivation requires, among other 

things, the prior stipulation of the types of systems and the sorts of conditions for which 

the system of equations (the formalism) at hand would be adequate. Without this having 

been done at the outset, before using the formalism to derive any consequences, it is 

impossible to know the sorts of derivations that are and are not reasonable to make in the 

context of the interpretation, since a given system of equations can be manipulated in any 

number of ways depending on the objective at hand. In such a case, it would not be 

possible to distinguish, without prior interpretation of the formalism, the parts of it with 

actual physical significance from those that have none in the context in question. 

However, Bueno and Colyvan do recognize that the initial empirical or physical setup, 

from which the mathematical structure is obtained in Immersion, may itself be fairly 

formal and will very often involve “a great deal of mathematics” (2011, 354) that will 

presumably have been interpreted at that stage. Given that the consequences obtained in 

Derivation are subsequently reinterpreted in terms of this highly mathematised initial 

empirical setup, Bueno and Colyvan can claim that the requisite part of the formalism is 

in fact interpreted prior to derivation. And after all, the principle of charity requires that 

their proposal be viewed in its strongest viable manifestation. 

Nonetheless, such a response is unsatisfactory. It is important to point out that Bueno 

and Colyvan market their inferential conception as an improvement over the mapping 

account proposed by Pincock et al. Their major criticism of this family of accounts, and a 

feature that they claim is corrected in their proposal, is that it is vague with regard to the 

details of the establishment of relations between phenomena and formal structures. 

Insofar as this is the case, there is by implication an onus on them to show how their 
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account is detailed in precisely the ways in which they fault the proponents of the 

mapping account for being vague. Furthermore, the criticism made above regarding the 

inevitable role of interpretation in our derivations runs deeper. As Rizza (2013) has 

recently pointed out, while the corresponding mapping between an empirical structure 

and a mathematical structure can play an important role in representation, the applicative 

relevance of a mere mapping is secondary to and, more importantly, contingent upon the 

isolation of relevant formal properties of the empirical structure and their use as 

constraints on the mathematical structure corresponding to it. This is to say two things. 

First, the isolation and selection of salient formal properties characteristic of an empirical 

structure are tasks that are non-trivial. Insofar as Bueno and Colyvan do not say much 

more about the initial empirical setup in their account than that it might be highly 

mathematised, to conclude thus that this empirical setup accounts for the considerations 

offered above would be akin to largesse rather than charity. Second, such “kinematical” 

constraints cannot be defined in terms of mappings because the scientist is required to 

acquit himself/herself of this task before the “immersion” of the physical setup into a 

mathematical model. Since Bueno and Colyvan do not even gesture in general at 

interpretive work required to obtain a coherent empirical setup that is conducive to 

subsequent moves in their account, it is unreasonable to attribute to them a sophisticated 

view of this stage of representation generation. Thus, the inferential account must contain 

a specific articulation of detailed mapping-independent steps in order to determine the 

constraints on the system at hand, which in turn would enable it to represent physical 

systems in the first place. Otherwise, it is fair to claim that adherence to the inferential 

conception leads us to a situation, corresponding to the Interpretation step, where we 
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have made a number of derivations that may or may not represent the target physical 

system because the quantities that need to be defined and the constraints that need to be 

imposed on their range of values have not been specified. 

A related objection regarding the lack of interpretive detail in the inferential 

conception can be described as follows: Consider the equations of electrostatics with a 

dielectric: 

E = – ∇ ⋅       (2.1) 

∇  . (κ . ∇ϕ) = −ρfree / e0    (2.2) 

where ϕ represents scalar potential. Equations of the same form have been found to 

represent and solve a litany of simple problems in various branches of physics, such as 

irrotational fluid flow, steady heat flow, certain problems in mechanical engineering, the 

diffusion of neurons, and certain areas of optics. In every problem scenario in each of 

these areas, the scientist is faced with an empirical situation that needs to be modelled. 

The outcome is a set of equations representing the physical situation at hand. This 

presumably occurs in Immersion on Bueno and Colyvan’s model. Bracketing the above 

objection regarding the extent of interpretation required at this stage in the face of Bueno 

and Colyvan’s disregard of it, the scientist is then required to derive this form from the 

set of equations generated in Immersion. The important mathematical similarity among 

the solutions of these systems is the satisfaction of Laplace’s equation ∇ 2 . ϕ = 0. This 

would occur in the Derivation phase of the inferential conception. The result would be a 

set of equations in the same form as Eqs. (2.1) and (2.2) that solves the system in 

question. However, in the course of manipulating the equations of the system generated 

in Immersion to obtain the harmonic functions that would solve it, the scientist frequently 
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needs to refer to the interpreted physical scenario during Derivation. This is to ensure 

that he/she makes mathematical inferences that continue to be representative of the 

situation at hand—say, a case of irrotational fluid flow—while looking to reduce the 

equations to harmonic functions in order to render them solvable. However, Bueno and 

Colyvan’s model does not accommodate this alternation between Derivation and the 

empirical situation (or Immersion, depending upon how structured the consequence of 

this phase is). Insofar as this alternation is necessary to solve all but the simplest 

problems in applied mathematics, the inferential conception appears to be unsuited to 

accurately account for the application of mathematics because it misses a structural detail 

of the process that is crucial to application. This disregard of scientific practice manifests 

itself as a general failure, by many in the philosophical literature, to appreciate the 

interplay between theory and experimentation in Chapter 3, when I present and defend a 

Carnapian conception of mathematical entities in representational systems in science. 

 

2.6 Conclusions 

The preceding sections reveal an error common to Kitcher’s unificationist model of 

explanation as well as Bueno and Colyvan’s inferential conception: a failure to account 

for a number of contributions of mathematics to representation due to structural 

deficiencies in their proposals. By “structural deficiencies,” I simply mean that the 

frameworks for representation proposed in both these accounts are too restrictive to 

accommodate a number of explanatory contributions as seen in historical as well as 

contemporary instances of the application of mathematics. In the case of Kitcher, his 

proposed argument patterns to formally represent our scientific knowledge are designed 
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to admit only instances where scientific inquiry, and the relevant mathematics, appears to 

unify disparate phenomena. As a consequence, we saw in §2.2 and §2.3 how this view 

cannot accommodate Fisher’s seminal mathematical work that synthesised genetics and 

natural selection by using the familiar technique of making mathematical analogies 

between diverse physical systems, or Maxwell’s use of the analogy with ideal fluid flow 

to model electromagnetic phenomena. Structural deficiency is even more pronounced in 

Bueno and Colyvan’s proposal, which is simply incorrect in its assumptions about how 

physical systems are modelled. As I have argued in §2.5, this is because it completely 

ignores the interpretive work needed to establish an empirical setup that is capable of 

even representing, let alone accurately modelling, the target system. 

The common error of structural shortcomings in the face of practical instances of 

mathematical representation suggests that any philosophical account purporting to 

explicate the various contributions of mathematics to science ought to at least faithfully 

reflect the structure of our scientific theories. Specifically, it should explicate the 

relationships among the theoretical/mathematical apparatus that it employs and outline 

clear procedures for their interpretation. Furthermore, it should take cognisance of the 

ways in which theory is related to experimental procedures for its verification, as well as 

the manner in which it is used to solve real-world problems. Such a framework would be 

more likely to accurately capture the details of scientific reasoning of the sort that are 

overlooked by the accounts examined in this chapter. This observation prompts question 

B posed in §1.1— Is there a promising philosophical account available to represent the 

theoretical/mathematical entities employed in our scientific theories in order to help 

clarify and explain their role? The linguistic frameworks for the reconstruction of 
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scientific theories proposed by Carnap appear to satisfy this requirement. This is because 

as Stein (1992, 1994) has pointed out, these frameworks are modelled after the highly 

mathematised structure of canonical theories in physics, with a clear distinction between 

theoretical and observational vocabularies, the relationship between which is mediated by 

rules of correspondence. Hence, in Chapter 3, I propose and defend frameworks for the 

representation of theoretical entities in science that are based on Carnap’s proposal, but 

deviate from it in detail. 
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3 Carnapian frameworks for mathematical entities 

 

My examination of the accounts of mathematical explanation in Chapter 2 was 

intended to highlight some of the contributions of mathematics to scientific 

representation. In addition to discharging this burden, my inquiry revealed that Kitcher’s 

unificationist account and the inferential conception of Bueno and Colyvan fail to 

accommodate many explanatory contributions of mathematics to science because of 

varying structural limitations and shortcomings. The upshot was that a scheme that can 

competently reflect the role of mathematics in representation ought to be amenable to the 

mathematical structure of theories in physics. This prompts the second of the research 

questions for this dissertation stated in §1.1— Is there a promising philosophical account 

available to represent the theoretical/mathematical entities employed in our scientific 

theories in order to help clarify and explain their role? In response to this challenge, I 

argue in this chapter that a modified form of the linguistic frameworks for the 

philosophical analysis of theoretical entities proposed by Carnap is competent to 

represent mathematical entities in just this role. The modifications I propose to such 

frameworks—what renders my proposal Carnapian—are three:  

i) The position of a semantic view for the representation of theories, whereby a 

theory is taken to be a family of models rather than a set of sentences, as in the 

syntactic view of Carnap (§3.2). 

ii) The proposal and pursuit of a methodology based on a careful, detailed 

“bottom-up” consideration of instances of the use of theory in representing 
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target systems, in contrast to the traditional philosophical approach based on a 

priori concerns or toy examples (§3.2 and §3.6). 

iii) A consideration of the practical complexity of relating theory to experimental 

data (§3.7). 

I outline in §3.1 the major commitments shared by my proposed Carnapian view with 

Carnap’s own account of linguistic frameworks. In §3.2, I attend to some preliminary 

considerations and explain the first two of my amendments to Carnap’s framework for 

theoretical entities. Section 3.3 features a detailed consideration of criticisms of Carnap’s 

account of theoretical entities in his reconstructive frameworks. The general strategy 

pursued in all these is to show that Carnap’s approach leads to consequences for scientific 

theories that are counter-intuitive or outright false, is unrepresentative of scientific 

practice, and hence must be rejected. While I consider and address objections from a 

number of thinkers, my discussion centres on criticisms made by Pincock, since these 

satisfactorily encapsulate the concerns expressed by the others and explicitly engage the 

question of whether Carnapian frameworks can capture scientific practice. In order to 

better understand the context of the concerns and the nature of a possible response in the 

spirit of Carnap, I will briefly summarise in §3.4 his mature view of the theoretical 

language in his framework. It should be noted here that my amendments to Carnap above 

are consistent with this view. Given the strategy underlying the criticisms of Carnap, it 

would be argumentatively effective and efficient to consider an instance of the 

application of a Carnapian framework to a physical theory. I will thus provide in §3.5 an 

example from the history of science—Maxwell’s equations of electromagnetism—and 

consider it in the backdrop of Carnapian frameworks in §3.6 to show that these concerns 



 

 52 

are unjustified. My responses to these concerns reveal insights into how Carnapian 

frameworks are representative of scientific practice. They also unearth the third way, 

stated above, in which my approach to frameworks for scientific reconstruction diverges 

from that of Carnap. I briefly sketch this in §3.7. 

 

3.1 Major points of agreement with Carnap 

Carnap has provided the most comprehensive and systematic programme in 

philosophy for the rational reconstruction of science. The aim of his enterprise is to 

articulate scientific theories in a manner that reveals hidden assumptions by clarifying the 

multiplicity of relations involved in their construction and regimentation. To my mind, 

this accounts offers considerable promise for the use of philosophy as both a servant and 

critic of scientific theorising and practice. Hence, I will dedicate the remainder of this 

chapter to clarifying and defending an account of the role of theoretical entities in science 

in the spirit of Carnap’s enterprise in general, and largely in accord with his mature view 

(1934, 1956, 1966) of this issue in particular. I write “theoretical entities” instead of 

“mathematics” because the debate in the philosophical literature has been carried out in 

these terms. However, it should be clear that insofar this dissertation has emphasised 

theories in physics, and since theoretical entities in our physical theories are rendered in 

the language of mathematics, an investigation of the role of such entities should be 

considered part of an inquiry into the mathematics employed in the relevant theories. 

It is pertinent at this point to briefly highlight the major tenets of Carnap’s programme 

that are retained in my Carnapian approach, over and above my subscription to his 

mature view of theoretical entities in linguistic frameworks detailed in §3.4. This is 
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particularly relevant because each of the following subscriptions plays an important role 

in the arguments that I mount in this and the next chapter, either as assumptions (as with 

the analytic–synthetic distinction in §4.4) or as commitments that are defended against 

criticisms in the literature (as with the criterion of cognitive significance in §3.3). First, 

my Carnapian conception endorses its eponym’s distinction between analytic and 

synthetic propositions in the context of formal frameworks for science. There are many 

formulations of this distinction in the philosophical literature. With regard to frameworks 

for scientific theories, the distinction translates into one between propositions that can be 

verified or falsified without reference to empirical data and those that cannot. This is in 

contrast to Quine’s (1951) famous rejection of this division, and his view that no 

distinction in kind can be made between the a priori and the a posteriori in our formalised 

epistemology. As we shall see in §4.4, it is adherence to the analytic–synthetic distinction 

that permits Carnap to pose and answer questions concerning the formal/mathematical 

components of reconstructed theories as internal to his frameworks, and to reject 

ontological questions concerning theoretical entities as questions without content that are 

external to them. Second, the Carnapian view remains faithful to Carnap’s criterion of 

cognitive significance as formulated in his later works, and described in §3.4. Roughly, 

this holds that a proposition is meaningful just in case it is in principle verifiable or 

falsifiable. In light of the analytic–synthetic distinction endorsed above, the criterion of 

cognitive significance provides two kinds of mechanisms for the verification of 

propositions within a framework: formal proof in the case of purely logical and 

mathematical propositions, and empirical verification in the case of synthetic 

propositions. I defend this criterion against influential criticisms in the literature in §3.5 
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and §3.6 by using Maxwell’s equations of electromagnetism as an instance. Furthermore, 

in §4.4, I use the distinction between these two methods of verification to address 

concerns shared by Demopoulos and Maddy regarding the viability of Carnap’s attitude 

to ontological questions regarding theoretical entities in linguistic frameworks. The third 

such notable commitment of the Carnapian conception of theoretical entities is 

harmonious with a revision by Carnap to his early work. Long before he espoused his 

mature view of theoretical terms in linguistic frameworks, Carnap had abandoned his 

ambition for a single unified language for all of science, and had begun exploring 

alternative frameworks for the representation of the structure of particular theories.1 In 

the backdrop of his view of philosophy as the logic of science, this stance allows me to 

propose and defend in the remainder of this chapter Carnapian frameworks for the 

analysis of theoretical entities in a manner useful to science and philosophy. The 

usefulness of this perspective is exemplified by my use of Carnapian frameworks to 

represent Maxwell’s work. 

The final significant debt that my Carnapian view owes to Carnap is also the most 

tentative. It is the claim that the aim of such frameworks is the reconstruction of scientific 

theories. For Carnap, the primary task of philosophy is to make explicit the various 

assumptions made by scientists in formulating theories in order to clarify the 

methodological and epistemological commitments entailed by them. Hence, as 

frameworks of reconstruction, Carnapian systems are not intended for use by practicing 

scientists in the so-called context of discovery, but to be employed by philosophers 

                                                 

1
 This assumes the form of his “Principle of Tolerance” in The Logical Syntax of Language, whereby 

one is free to use the framework of one’s choice for the representation of theories so long as the rules 

invoked and the methods used are clearly articulated (Carnap 1937, 52). 
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following the establishment and acceptance of theories in order to analyse them. 

Scientists do not know of or care about Carnapian frameworks, and certainly do not use 

them. Nonetheless, I have said that my subscription to this component of Carnap’s 

programme is tentative. By this, I mean that in the context of my argument in this 

chapter, and my project in this dissertation, I continue to subscribe to the thesis that 

Carnapian frameworks are fundamentally reconstructive in their intended application and 

should not be burdened with the onus of being attractive or useful to scientists engaged in 

cutting-edge research.2 At the same time, beyond the scope and aims of this dissertation, I 

do not see a principled reason for restricting Carnapian frameworks solely to 

reconstructive enterprises. It appears that scientists in many fields already use some 

implicit form of proto-Carnapian frameworks in their research. But over and above this 

cursory observation, I see three ways in which some scientists would benefit from the use 

of a more explicit framework along the lines developed by Carnap in their work.3 

i. In the case of mathematical physics, scientists working on algebraic quantum 

field theory, for instance, or those engaged in more or less strictly 

mathematical problems, such as characterising formal properties of initial-

value problems for a set of equations, such as the Nävier–Stokes equation or 

the Einstein field equations, already have available to them an explicit and 

purely formal system much like the Carnapian frameworks being 

recommended here. Since, the physical interpretation in the case of some fields 

                                                 

2
 In fact, I use this stance in my preliminary response to Maddy’s criticism of Carnap’s view of the 

ontological status of theoretical entities in §4.4. 
3
 I am grateful to Erik Curiel for making this suggestion. 



 

 56 

is unclear, the formal framework is all that they have to ensure that they remain 

within the bounds of the theory.  

ii. In the presence of a well worked out and acceptable interpretation of a theory, 

such as General Relativity, physicists can use Carnapian frameworks to guide 

their search for novel and interesting results as well as to confirm the potential 

meaningfulness of results that have already been established.  

iii. In case a theoretical or experimental scientist wants to construct rigorous 

theoretical models of experiments or families of types of possible experiments, 

he/she will need more or less explicit Carnapian frameworks that contain clear 

physical interpretations of the theoretical terms invoked by the relevant theory.  

Such a possible extension of Carnapian frameworks for use by practicing scientists is a 

subject that I intend to pursue in subsequent research. As stated above, however, for the 

purpose of this dissertation, I will consider reconstruction as the proper setting for the 

deployment of Carnapian frameworks. 

 

3.2 Preliminary considerations, and two amendments to 
Carnap 

While I am sympathetic to Carnap’s reconstructive enterprise and agree with much of 

what he says in relation to it, there is an important way in which my approach here is a 

departure from his. Carnap advocated what has come to be known as a “syntactical view” 

of the representation of theories in his reconstruction, whereby these are to be expressed 

entirely in the language of logic. As Suppes (2002) points out, this narrow restriction on 

the form of expression of the theory makes its expression unduly laborious. Consider 
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Euclidean geometry. If we want to define a line, say, as a set of points, this requires that 

the concepts of set theory be readily expressible in the language of our framework, which 

is a decidedly painstaking task. The concern is amplified when we consider theories 

involving more complicated mathematical structures, such as general relativity or 

statistical mechanics, that would require the rendition in a logical language of quite 

complicated mathematics, such as results from spectral theory, symplectic theory, and so 

on. It is perhaps a testament to the complexity and the superfluity of the task of the 

linguistic reconstruction of theories that no substantive instance of the representation of a 

theory as a logical calculus seems to have been provided in the literature. 

Contrasted to the syntactic approach summarised above is the so-called “semantic 

view” of theories,4 which encourages the conception of a theory as a family of models 

rather than a set of sentences. A model is an abstract, non-linguistic entity (Suppes 2002, 

3) that occurs naturally in the context of a scientific theory. For instance, the 

measurement of the predicted consequences of a theory, given an experimental procedure 

and accordingly conducive datasets, involves a representation theorem that establishes an 

isomorphism between numerical models of the theory and the experimentally obtained 

datasets.5 This allows us to use familiar computational methods, which we know to be 

nicely applicable to the numerical model, to the experimentally determined sets of 

observations. Needless to say, such a task would be incredibly tedious in linguistic 

                                                 

4 See, for instance, van Fraassen (1980), Suppe (1989), and Suppes (2002) for different versions of this 

view. 
5 This is a bit quick and dirty. The datasets themselves are not the raw results of measurement. The 

measurements are typically subjected at least to data reduction and curve fitting. 
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representation. Hence, I will adopt this semantic view in the backdrop of Carnap’s 

account of theoretical entities in his reconstructive frameworks.  

Bas van Fraassen (1980, Ch. 3) embraces the semantic view in the course of a defence 

of his “Constructive Empiricism.” In addition to the variation in the nature and breadth of 

our respective concerns, my view here is different from his for two main reasons. First, in 

spite of his commitment to empiricism, van Fraassen’s reservations against Carnap’s 

project are quite thoroughgoing;6 on the contrary, I think it pertinent to label my approach 

Carnapian due to my subscription to the spirit of his project as well as much of its mature 

detail. Furthermore, in spite of his empiricist leanings, van Fraassen is fundamentally 

uninterested in a reconstructive project of the sort proposed by Carnap and favoured by 

me. 

It is also worthwhile to draw attention to the methodological approach that I adopt 

here, primarily to contrast it with strategies pursued in classic critiques of logical 

empiricism in general and Carnap in particular. These have tended to focus solely on 

general philosophical considerations (Quine 1951), objections relating to formalism,7 or 

arguments from common-sense analogies and toy examples (Suppe 1977), almost to the 

exclusion of an investigation of instances of the articulation and application of theories in 

science. This can be considered a “top-down” approach of sorts to the analysis and 

critique of philosophical theses regarding science. While there is nothing objectionable 

about this approach per se, its overemphasis in the course of the evaluation of proposals 

regarding approaches to scientific theories leads to analyses that are limited in their 

                                                 

6 For instance, he rejects the logical empiricist criterion of cognitive significance (1980, §2.7). 
7 Admittedly, this is shaped in large part by Carnap’s own focus in his programme. 
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vision and often erroneous as a consequence because they abstract from the details of 

these approaches. We will witness instances of these in my discussion of the criticisms of 

a Carnapian approach to theoretical entities in §3.4. 

In contrast, the methodology that I suggest through my critique of the accounts of 

mathematical explanation in Chapter 2 consists of a careful, “bottom-up” consideration of 

instances of the use of theory in representing target systems in the service of solutions to 

problems. The idea was to compare the general accounts of the explanatory role of 

mathematics in representation with practice in order to highlight their limitations. This 

approach has so far been fruitful in revealing how a consideration of the details of 

scientific theorising and practice may be critical to the success of a putative all-

encompassing account  of this kind. To this end, I analyse Maxwell’s system of equations 

of electromagnetism using the Carnapian framework that I propose. This helps illuminate 

the ways in which top-down criticisms of such frameworks are misguided because they 

ignore the detail afforded by a bottom-up approach, one that seeks to compare general 

theory with practice in order to make the former better informed and more reflective of 

the latter. It also helps exemplify the second, methodological, way in which my 

Carnapian proposal differs from Carnap’s original conception of frameworks. 
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3.3 Criticisms of theoretical entities in Carnap’s frameworks8 

In his recent book, Pincock (2012) investigates a variety of ways in which 

mathematics contributes to science. One of these is related to its role in the formulation of 

“constitutive representations.” While he does not provide a strict definition of the term, 

the general idea is that these constitute the general assumptions underlying other, derived 

representations that are specific to the physical system at hand.9 He provides the 

following definition of what he calls a “derivative representation”: “A representation r1 is 

derivative when its success depends on the success of another, constitutive representation 

r2” (2012, 121). Pincock concedes that the notion of a derivative (constitutive) 

representation posed by this definition is relative, in that a representation r1 can be 

constitutive with respect to another representation r2, but can also be derivative with 

regard to yet another representation, r3. 

Pincock employs the following general strategy to argue against Carnap’s account of 

theoretical entities: to show that the view regarding the meaning of scientific terms and 

propositions that appears to follow from his proposal is flawed. According to Pincock’s 

reading, rules of a framework for Carnap are ones for the proper use of signs that form 

the language of the framework in question, and exhaust its constitutive representations 

(2012, 124). The success of derivative representations is related to beliefs derived from 

the rules of the framework and/or other beliefs adopted on the basis of experience. The 

                                                 

8 The reader unfamiliar with Carnap might struggle with this section because my description of 

criticisms of his view inevitably involves, albeit minimally, the use of some vocabulary particular to his 

frameworks. This difficulty can be obviated by first reading §3.4, where I introduce the required apparatus 

to address these concerns. 
9 Strictly speaking, there is no requirement for a constitutive representation to represent a physical 

system. However, that is their purpose in the context of Pincock’s study and coheres well with his 

overarching aim: to provide an account of the contribution of mathematics to the success of science. 
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discussion of a “new domain” requires the introduction of new signs, according to 

Carnap. The use of these signs must be governed by rules along with their specification in 

order for them to be meaningful. These rules would include at least some specification of 

how existence questions within the framework can be resolved for the entities referred to 

by corresponding signs. Pincock sees Carnap as proposing the following test to evaluate 

the success of constitutive representations: Does adopting a framework contribute 

effectively to our stated goals (2012, 125)? If it does, the constitutive representation in 

question is accepted as justified. For instance, the fluid flow framework is founded on a 

set of rules that define the mathematical vocabulary employed. This allows the definition 

of further (physical) terms by reference to the logical and mathematical terms, which in 

turn make possible truth-functional claims involving mathematical and physical 

components related to the framework at hand. For instance, the Nävier–Stokes equations 

can then be formulated and determined to be true or false based on empirical testing. 

From this reconstruction of his view, Pincock observes that Carnap’s argument is 

grounded in two assumptions: “(1) the meaning of a new term is given by rules for its 

proper use, and (2) the rules will relate, at least in part, to how sentences using that term 

can be supported.” Pincock claims that both these assumptions are incorrect. Against (1), 

he invokes semantic externalism about the meaning of scientific terms, whereby the 

meaning of a term—including novel terms—invoked in science (and presumably 

referring to the system to be represented) is based on some kind of causal or other 

interaction between the agent and something in the world. Thus, Pincock argues, the 

meaning of a new term is not exhausted by the set of rules of its use outlined by the 

speaker, nor by the possible inferential rules that could be derived from such rules. 
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Consider the term “fluid.” On Carnap’s understanding, if two linguistic frameworks 

contain different rules for the use of the term “fluid,” the meaning of the term changes 

across the two frameworks. There seems to be something wrong about this, for we take 

the term “fluid” to refer to the same thing regardless of the successively sophisticated 

theories of fluids in the development of physics over the course of history. Furthermore, a 

framework can only be critically examined with regard to the objectives of the 

representation through pragmatic evaluation. There is no constant, framework-

independent subject matter on Carnap’s view that can be assumed in order to evaluate 

scientific progress (2012, 126). In a similar vein as Pincock, Glymour (1980, 61) 

attributes to Carnap the view that the rules of correspondence in his frameworks are 

stipulated, their truth is guaranteed by virtue of their meaning alone—they are analytic—

and they are never tested. Against this, he claims that not only are rules of 

correspondence subject to empirical verification, they are also susceptible to rejection or 

falsification. 

In his opposition to (2) above, Pincock claims that the rules for a framework need not 

be involved in specifying how derivative claims can be supported, but might simply 

reflect the features of the objects being referred to by the terms in question. That is to say 

that the mere specification of rules does not guarantee reference to any object, but that a 

new term must correspond to some feature of the world in order to refer. Pincock claims 

that Carnap would reject this link between rules and reference as traditional metaphysics, 

but that the latter’s own picture “makes meaning too easy to achieve and clashes with the 

way that mathematicians and scientists go about deciding when their words have 

successfully picked out something in the world” (2012, 126). 
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Another popular line of objection to Carnap’s mature view involves formal 

manipulation of his criterion of the cognitive significance of theoretical entities to show 

that it leads to unacceptable consequences. Versions of this objection have been posed by 

Rozeboom (1960) and Kaplan (1975), and have been endorsed by Glymour (1980) and 

Creath (1976).10 The criticism has been framed and argued in the context of Carnap’s 

logical definition of cognitive significance (1956) and involves a fair bit of formalism.11 I 

omit a formal statement of the criterion in question as well as the details of the formal 

manipulations involved in generating the objectionable consequences because this does 

not mitigate the force of the complaint; nor does my Carnapian response to it turn on the 

logical formalism used. Hence, a description of the objection in formal terms might, if 

anything, distract the reader from the issue that it seeks to bring to the fore.  

The idea is that in the context of Carnap’s frameworks, extending a theory by adding 

theoretical postulates or rules of coordination may cause some theoretical entities to lose 

significance (Rozeboom 1960, 37). Similarly, Kaplan (1975) claims that such an addition 

may cause hitherto insignificant theoretical entities to become meaningful. The former 

consequence is counter-intuitive because assuming that the additional rules or postulates 

are consistent with the existing content of the theory, this ought not to affect the 

significance of a theoretical term that draws its meaning from the original rules and 

postulates that remain part of the theory. The latter consequence is analogously untenable 

                                                 

10 Creath proposes a modification of the criterion of cognitive significance in defence of Carnap. 
11 The interested reader can find it in (Carnap 1956, 49). Roughly, a term of the theoretical vocabulary 

is said to be cognitively or empirically significant when a certain assumption involving the physical 

magnitude that it designates makes a difference in the prediction of an observable event. 
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because “definitional extensions”12 of the sort above are typically considered to add no 

empirical content to the original theory (Kaplan 1975, 90).13 It is germane to note that 

neither Kaplan nor Rozeboom provides a positive, alternative account of significance in 

the context of his criticism. The argumentative strategy employed by both seeks to reduce 

to absurdity Carnap’s formal criterion of significance for theoretical entities by showing 

that it yields the above consequences, which are intuitively unacceptable. It is further 

notable that neither Kaplan nor Rozeboom provides a formulation of even this intuitive 

notion in the course of his criticism. In all fairness, this is not needed for the success of 

the negative cases posed by them, so long as their readers acquiesce to the argument 

whereby the implications of Carnap’s criterion of significance ought not to follow from 

any cogent criterion of this kind, no matter what it might precisely be. 

From the above, we can identify five related reservations against Carnap’s account of 

theoretical entities in his frameworks. First, the meaning of a novel term introduced in a 

constitutive representation cannot be exhausted by the mere specification of general, 

theoretical rules because it leads to incommensurability in reference to, ostensibly, the 

same entity across different theoretical frameworks. Second, there is no framework-

independent method in Carnap’s conception that can be used to assess scientific 

progress.14 Third, a framework need not specify how propositions using a novel term can 

                                                 

12 If one were being a stickler for accuracy, one would point out that Carnap in fact does not think that 

theoretical entities in his framework can be defined. He thinks that they admit an indefinite number of 

“descriptions,” which may be thought of as rules of coordination, each of which provides a different 

method of measurement (1966, 234-236). 
13 Kaplan (1970, xlvi-xlvii) reports that in a meeting, Carnap agreed with his criticism and concluded 

that Hempel, Quine, and others were correct in claiming that theories must be accepted or rejected 

wholesale. 
14 This objection is implicitly addressed in Chapter 4. 
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be verified, but may simply reflect the features of the object designated by a term. Fourth, 

the addition of theoretical postulates or rules of correspondence to a framework can cause 

theoretical entities to gain or lose meaning, which is intuitively unacceptable given our 

knowledge of scientific theories. Lastly, Carnap’s view of frameworks is simplistic, and 

thus does not accurately reflect scientific practice. 

The last of these criticisms can be considered to be the crux of the reservations against 

Carnap’s proposal, since each of the other four, when articulated at length, ultimately 

relies on the dissonance between Carnap’s account of representational systems and the 

manner in which scientists actually reason about such systems. 

 

3.4 Carnap on theoretical terms 

Carnap’s mature reflections on the status and function of theoretical terms in his 

linguistic frameworks can be found in “The methodological character of theoretical 

concepts” (1956, 38-75). For these frameworks, the language of science is divided into a 

theoretical and an observational part. The theoretical language LT consists of logical and 

descriptive constants, the latter of which form the theoretical vocabulary VT of the 

language (1956, 42). A theory according to Carnap consists of a finite number of 

postulates T in LT, where these postulates correspond to axioms or constitutive 

representations on Pincock’s conception. The theoretical language and the observational 

language LO are connected through rules of correspondence, or C-rules (1956, 39), which 

only provide a partial, indirect interpretation of the theoretical terms of VT. This means 

that only some terms of the theoretical vocabulary are directly connected to observational 

terms through the correspondence rules, and the remaining theoretical terms are 
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connected to the theoretical terms mentioned first through the postulates of LT, and are 

hence indirectly connected to the observational language. 

It is important to note that according to Carnap, LT, consisting of postulates T and the 

rules of deduction of the chosen logical system, is an uninterpreted calculus prior to the 

specification of the C-rules in the language (1956, 46). All interpretation that can be 

accorded to LT is by virtue of its relation with the observational language LO through the 

rules of correspondence. These rules permit the derivation of certain sentences of LO from 

those of LT, or vice versa.15
 The C-rules indirectly derive conclusions in LO, such as the 

prediction of observable events. Thus, without the rules of correspondence, terms of VT 

would have no observational significance (1956, 47). 

An instance of the use of C-rules in the framework is to connect a location in physical 

space with corresponding space-time coordinates x, y, z, t. The C-rule R, say, relates to an 

observable space-time region, say u, through a class of coordinate quadruples of intervals 

about (x, y, z, t). Theoretical quantities such as mass, length, volume, velocity, etc., are 

assigned interpretations after a similar fashion.16 

A more involved example of a C-rule is the definition of “kinetic energy” for 

Newtonian particles: “measure the inertial mass of the particle; measure the velocity of 

the particle; its kinetic energy is one-half times the mass times the square of the velocity; 

it follows that the concept of kinetic energy requires the fixation of a frame of reference 

                                                 

15 In this formulation, Carnap hints at the dialectic between theory and experimentation, the neglect of 

which by large parts of the contemporary philosophical community has led to inaccurate criticisms of 

Carnap. I discuss this in §3.6. 
16 Even though general, this is admittedly too simplistic an account of how theoretical entities are 

related to phenomena and hence rendered significant. See my remarks in §3.7 for a brief discussion of how 

the Carnapian programme can be extended to provide detail here. 
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for the representation of its value, insofar as velocity itself is not defined outside the 

context of a fixed frame of reference.”17 Note that in this instance, kinetic energy is a 

theoretical term defined using other theoretical terms—inertial mass and velocity—that 

are in turn defined through C-rules.18 

In light of the above, Carnap thinks that a criterion of significance or meaningfulness 

for LT should constitute exact conditions that terms and sentences of the theoretical 

language must fulfil in order to play a positive role in the explanation and prediction of 

observable events and, thus, to be accepted as empirically meaningful (1956, 38).19 He 

articulates the following criterion: a term of VT is said to be cognitively or empirically 

significant if, when a certain assumption involving a physical magnitude m is specified 

by theoretical term M, a certain assumption involving m makes a difference in the 

prediction of an observable event. Specifically, there is a sentence SM of T, regarding the 

term M, such that it can be used to infer SO in LO (1956, 49). 

As one might imagine, the notion of “real” in LT, pertaining to theoretical entities, 

differs from the manner in which it is used in LO.20 To say, for instance, that a magnetic 

field is real is to agree to understand the acceptance of the reality of the electromagnetic 

field in the classical sense as the acceptance of LT and a term E in it, as well as a set of 

postulates T, which includes the laws of classical electromagnetism (Maxwell’s 

                                                 

17 I am indebted to Erik Curiel for providing this example in personal correspondence. 
18 Strictly speaking, only inertial mass is defined directly through a C-rule that connects it with physical 

observation. Velocity is defined by a C-rule in terms of displacement and time, and displacement in turn is 

expressed by yet another C-rule that links it to empirical observation, on this account. 

19 Note that this consideration is contra Pincock’s contention that the Carnapian theoretical language—

or, equivalently, constitutive representations—is adjudicated solely on the basis of pragmatic aspects. 
20 In LO, the statement that an event is “real” means that the sentence of LO describing it is true (e.g., 

“This valley has a lake.”). 
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equations), as postulates for E (1956, 45). Then, for an observer to “accept” the postulates 

of T means not simply to admit T as an uninterpreted calculus, but to use T along with a 

specified set of C-rules to guide his/her expectations by deriving predictions regarding 

future observable events from observed events, based on the postulates T and the C-rules. 

Carnap encourages us to think of the postulates T as representing the fundamental laws of 

physics, but not other statements, however well established they may be (1956, 48). 

Furthermore, both T and the C-rules are completely general, e.g., they do not contain any 

references to particular positions in space-time, etc. 

Interestingly, Carnap offers a response to Pincock’s concern that his framework 

renders the meaning of novel theoretical terms too easy to obtain. He claims that a new 

theoretical term is introduced to VT only when a “radical revolution” is effected in the 

system of science, and not otherwise (1956, 50-1). This is because the postulates T, and 

the class of terms of LT admitted as significant, contain only fundamental scientific laws, 

which are not altered whenever new facts are discovered. Furthermore, as Carnap 

emphasises, even though all of T is presupposed in the criterion of significance, the issue 

of meaningfulness is separately considered for each theoretical term, and not merely for 

VT as a whole. As we shall now see, when we consider Maxwell’s formulation of his 

equations of electromagnetism, it was precisely a radical revolution in our conception of 

the nature of electromagnetism that was brought about by the introduction of a novel term 

in the theoretical language. 

 

3.5 Maxwell and the displacement current 

From a long view of the history of mankind—seen from, say, ten thousand years from now—there 

can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s 
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discovery of the laws of electrodynamics. The American Civil War will pale into provincial 

insignificance in comparison with this important scientific event of the same decade. 

(Feynman 1964, vol. 2, 1-6) 

 

Maxwell’s discovery of the laws of electromagnetism is one of the most significant 

events in the history of scientific thought. He first derived them in his “On physical lines 

of force” (1862) as 20 differential equations of 20 variables. He was also the first to show 

that these laws are expressible as first-order partial differential equations (Fitzpatrick 

2008, 116).  

Michael Faraday had previously revolutionised physics in 1830 by showing through 

extensive experimentation that electricity and magnetism are interrelated.21 Maxwell was 

the first to clarify and articulate the nature of this relationship between the two 

phenomena, in the form of equations that are as remarkable for their elegance as they are 

for their immense range of applicability. In modern notation, these four equations are as 

follows: 

 

∇  . E = ρ/ε0    (3.1) 

∇  . B = 0    (3.2) 

∇  × E = −∂B/∂t   (3.3) 

∇  × B = μ0 j + ε0μ0 ∂E/∂t  (3.4) 

where E represents the electric field, B is the magnetic field, ρ is the charge density, j 

is the current density, ε0 is the permittivity of free space, and μ0 is its permeability. 

                                                 

21 Maxwell, who was heavily influenced by Faraday’s experimental work, subscribed to his “lines of 

force” model (Faraday 1852) to explain electric and magnetic forces, contra the action-at-a-distance theory 

of forces held by the majority of physicists at the time, such as Weber (Weber and Kohlrausch, 1856). 
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As we can see, Eqs. (3.1) and (3.3) are correspondent, as are Eqs. (3.2) and (3.4). 

Equation (3.1) states that the divergence of the electric field E is charge density/ε0, which 

is true of static as well as dynamic fields. Equation (3.2) says that since there are no 

magnetic charges, the flux of the magnetic field B through any closed surface is always 

zero (Feynman 1964, vol. 2, 18-1). Equation (3.3) describes the induction of electric 

fields by changing magnetic fields, and Eq. (3.4) describes the generation of magnetic 

fields by electric current as well as the induction of magnetic fields by changing electric 

fields over time (Fitzpatrick 2008, 122). 

Prior to Maxwell’s work, the magnetic field of steady currents was expressed as 

∇  × B = j / ε0c
2

    (3.5) 

which is Ampere’s original circuital law. A divergence of the above equation reduces 

the left-hand side to zero because the divergence of a curl is always zero. Hence, the 

divergence of j ought also to be zero. But if so, the net flux of current out of any closed 

surface is zero as well (Feynman 1964, vol. 2, 18-1). This cannot be true in general 

because we know that charges can move from one place to another. Hence the 

introduction by Maxwell of the extra term to yield Eq. (3.4). 

Feynman provides a simple example to explain where Ampere’s original law 

encounters difficulties (1964, vol. 2, 18-2). Imagine a large symmetrical, spherical block 

of Jello that is a conductor with a hole in the centre, into which some charge has been 

injected through a hypodermic needle, and is slowly leaking. We assume that the current 

is moving radially outward, with the same magnitude in all directions. The question, then, 

is whether the current generates a magnetic field. It does not. This is because since the 

sphere is symmetric, it can only generate a symmetric magnetic field. However, the only 
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fields possible in this case are one that points everywhere outwards and one directed 

everywhere inwards, both of which correspond to non-existent monopoles by Eq. (3.2) 

above. Hence, Ampere’s law must be wrong because we know that a magnetic field 

always exists around a charge. 

The most commonly used instance to clarify this problem and underscore Maxwell’s 

contribution involves a parallel plate capacitor (Fitzpatrick 2008, 118). I will use it to 

clarify why Maxwell needed the additional term that distinguishes Eq. (3.4) from Eq. 

(3.5) above. 

Consider a long, straight wire interrupted by a parallel plate capacitor, as shown in 

Fig. 3.1. The letter “C” in the figure represents a loop circling the wire. In time-

dependent situations, transient current flows through the wire as the capacitor charges up 

or down, generating a transient magnetic field. Hence, the line integral of the magnetic 

field B around C is non-zero. According to Ampere’s circuital law, the flux of current 

density through any surface attached to C should be non-zero as well. 

 

Figure 3.1. The application of Ampere's circuital law to a charging/discharging capacitor (from 

Fitzpatrick (2008, 118)). 

Now consider two such surfaces, S1 and S2. S1 intersects the wire; hence, the flux of j 

through the surface is non-zero because it intersects a current-carrying wire. S2 passes 
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between the two capacitors, as shown in the above figure, and does not intersect the wire. 

Hence, the flux of current density j through S2 is zero. However, since both surfaces are 

attached to the same loop C, Ampere’s law 

 

requires that the two fluxes be identical. Ampere’s law is thus incorrect in this context. 

Note, however, that while S2 does not intersect the electric current (loop C), it does 

pass through a region of strong changing electric field as it threads between the plates of 

the capacitor. Hence, Maxwell altered Ampere’s law to 

 

or 

∇  × B = μ0 j +  m0μ0 ∂E / ∂t 

by adding the new second term—m0μ0 ∂E / ∂t—describing the induction of magnetic 

fields by changing electric fields. This was called “displacement current density” by 

Maxwell.22 

 

3.6 Reconsidering criticisms of Carnapian frameworks 

Equations (3.1)-(3.4) are clearly fundamental laws, and hence would correspond to T-

postulates for Carnap and, equivalently, constitutive representations for Pincock. In fact, 

                                                 

22 As is well known, the term “displacement current” is a misnomer because it is not current at all, but 

the induction of magnetic fields by time-dependent electric fields. Maxwell subscribed to the existence of 

the aether, which was thought to permeate all space. He called the phenomenon “displacement current” 

under the assumption that it was caused by displacement in the aether. Maxwell considered electric and 

magnetic fields to be manifestations of stress in the aether. 
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as Feynman states, in the context of 19th century physics, Maxwell’s equations in 

conjunction with the others shown in Figure 3.2 below, constituted all known 

fundamental classical physics (excluding thermodynamics) until 1905 (1964, vol. 2, 18-

3). The C-rules, though not specified, are presumably constituted by general guidelines 

for the association of theoretical terms, such as charge, flux, electric and magnetic 

intensities, etc., with physical magnitudes and spatial coordinates in order to provide an 

interpretation of these in the observational language. The ability to measure the 

magnitudes of these theoretical terms of the system also determines the criterion of 

significance specific to each. 

The new term in Eq. (3.4), ϵ0μ0 ∂E / ∂t, signifies the displacement current. Hence, we 

see that the new term representing the induction of magnetic fields due to changing 

electric fields is defined in terms of other theoretical terms of the system— ϵ,0, μ0, and 

∂E/∂t—the values of which can be determined through the relevant C-rules. 
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Thus, the displacement current is defined, and hence assigned a definite meaning, in 

terms of these theoretical terms, and the definition immediately provides a method to 

measure it by virtue of the correspondence rules used to determine the values of t0, μ0, and 

∂E/∂t. 

As we saw in §3.3, Pincock attributes to Carnap the view that the meaning of a 

theoretical term is exhausted by the rules for its use, and objects to it on the ground that a 

theoretical term in physics needs to somehow be linked to phenomena in any framework 

that purports to successfully describe theories in physics, which predict affairs in the 

world with remarkable success. However, this attribution is incorrect. Carnap in fact 

claims that a “theoretical term can never be explicitly defined on the basis of observable 

Figure 3.2. All of classical physics (from Feynman (1964, vol. 2, 18-1)). 
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terms” (1966, 234). And he justifies this claim by appealing to the history of science. The 

rules of correspondence in Carnapian frameworks should roughly be understood as 

procedures for the measurement of the magnitudes of the theoretical quantities with 

which they are associated. They are intended to supply the elusive connection between 

theory and observation by partially interpreting the theoretical terms in a manner that 

corresponds to a certain observation. In order to understand why the interpretation should 

be partial, Carnap invites us to consider the theoretical term “temperature” in the kinetic 

theory of molecules (1966, 265-266). There are rules of correspondence that link this 

term with the construction and use of a thermometer. The thermometer, when suspended 

in a liquid, records a measurement that the correspondence rules associate with 

“temperature” in a way that provides an interpretation of the term. This interpretation is 

partial because it does not apply to all sentences of the theory featuring the theoretical 

term “temperature:” an ordinary thermometer can only measure temperature in a limited 

interval (e.g., the mercury-in-glass thermometer covers a range from -37 °C (-34.6 ºF) to 

356 °C (672.8 ºF)). For temperatures below which any test liquid would freeze and those 

above which any test liquid would solidify, special measurement techniques are used; 

these in turn require different C-rules from the ones that govern the measurement of 

“temperature” with a mercury-in-glass thermometer. Even if an alcohol thermometer is 

used to measure temperature in a range that overlaps with that measureable by a mercury-

in-glass thermometer, different correspondence rules would be required for the former 

than those used for the latter, at least because a different fluid with different properties is 

involved. Now each of these C-rules provides a different interpretation of “temperature,” 

but none of these by itself can be said to exhaust the meaning of the term. 
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Carnap explicitly invokes the practice of science in defence of his resistance to 

(exhaustive) definitions of theoretical terms in physics. He hints at an instance—the 

extension of Maxwell’s equations of electromagnetism, in fact—in a different context 

(1966, 242), but I think it applies nicely here. There was a parameter “c”23 in Maxwell’s 

equations that described the velocity of waves in an electromagnetic field in case of a 

disturbance. Coupled with the theoretical observation that the electromagnetic field in 

free space following the elimination of either the electric or the magnetic field from his 

equations was describable by the wave equation of classical optics, Maxwell conjectured 

that light is a special case of electromagnetic oscillation. This was borne out following 

the brilliant experiments by Hertz in 1888 (Goldstein 2010, 575). Here is an example 

where a theoretical term, c, that was assigned one interpretation was accorded another in 

a move that led to a massive advancement in physics. And this is not an isolated instance, 

as Carnap points out (1966, 237). The history of 19th century physics is peppered with 

instances where additions to the interpretations of theoretical terms have yielded 

revolutionary insights.  

I make much ado of this because it is not about nothing. It reveals another benefit of 

Carnapian frameworks as it concerns their harmony with scientific theorising and 

practice. With regard to the reconstruction of theories, the Carnapian refusal to explicitly 

define theoretical terms nicely reflects the tenor of the historical development of 

scientific theories, as we have seen above.24 

                                                 

23 In Eq. (3.4), c = 1 / ϵ0μ0. 
24 Furthermore, if I may be allowed to speak loosely, with regard to prediction, it offers a clear, albeit 

very general, possibility of the contribution that a Carnapian reconstruction might make to theories in 

science that are current. Given that our (theoretical) knowledge in physics seems to be tending towards a 
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The above tangent notwithstanding, charity demands that I consider Pincock’s 

criticism above by applying it to the partial interpretation of theoretical entities. That is, 

if, as I gathered from my consideration of his remarks in §3.3, the crux of Pincock’s 

criticisms of Carnapian frameworks is that they do not accurately track scientific 

progress, his objections ought then to be considered in light of a modified criticism. This 

would be as follows: Carnap claims that all the interpretation that can be accorded to a 

theoretical term is due to rules for its use (its rules of correspondence). Since Carnapian 

frameworks are presumably intended to reconstruct scientific theories, which describe 

and predict events in the world, some link is required between the interpretation of 

theoretical terms and the phenomena that they are supposed to represent. But theoretical 

terms are analytically defined, which forestalls the possibility of empirical content. 

Hence, Carnapian frameworks fail to fulfil their purpose. 

It is true that in a Carnapian framework, the partial interpretation of a new theoretical 

term is determined by the postulates in conjunction with the C-rules. However, as the 

historical example in §3.5 has shown, this is nothing other than the assignment of 

interpretation to theoretical terms through the delineation of rules for the measurement of 

quantities associated with the corresponding observable terms. This is accepted, common 

practice in science. Pincock’s argument appears to be premised on the conception of an 

armchair theoretician who has little regard for whether representational systems, or the 

terms employed in the postulates constituting these, actually represent phenomena. The 

                                                                                                                                                 

 

convergence, exemplified in the spectre of the Grand Unified Theory model, a Carnapian reconstruction 

can help identify possible connections between theoretical terms representing seemingly disparate 

phenomena in different contexts. This would enable it to assist scientists by anticipating these relationships. 
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criticism that Carnap’s view “makes meaning too easy to attain” is a consequence of this 

assumption, and one of the commonest misunderstandings of the nature of Carnap’s 

frameworks. One can easily devise a completely arbitrary framework, containing the 

minimally required postulates, C-rules, etc., such that all theoretical terms can be 

assigned meaning. However, the criticism is misplaced because while such a toy 

framework would never be judged to be fruitful or desirable by a reasonable scientist, 

Carnap is not at all concerned with frameworks of this nature, based on little more than a 

priori whimsy. The generation and appropriate articulation of a theoretical Carnapian 

framework that can be useful to scientific modelling and inquiry, such as that provided by 

Maxwell, is an extremely complex exercise. Furthermore, even though Maxwell was not 

an experimentalist, he had access to mountains of experimental data, based on work by 

Faraday, Coulomb, Ampere, and others, that profoundly shaped and informed his 

research. In fact, Maxwell’s discovery of the inadequacy of Ampere’s circuital law, 

through the experiment involving a parallel plate capacitor, is based on intimate 

knowledge of the experimental procedures in electricity and magnetism at the time. Large 

parts of his corpus, in particular A Treatise on Electricity and Magnetism (1873), are 

devoted to establishing the adequacy of his proposed equations for various experimental 

situations.25 Hence, it is incorrect to assume that Carnapian frameworks are to be used by 

theoreticians without regard for experimental research in their respective areas. 

Maxwell’s addition to Ampere’s Law in the above also serves to address the concerns 

expressed by Rozeboom and Kaplan, and endorsed by Glymour. The objection was that 

                                                 

25 Item: Part III of Ch. VII of the 1873 treatise is entitled “Magnetic measurements,” Ch. XV is called 

“Electromagnetic instruments,” XVII is titled “Electricity measure of the coefficient of induction,” and so 

on. 
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the addition of theoretical postulates or rules of coordination, provided these are 

consistent with pre-existing content of a given theory, should not cause theoretical 

entities that were already part of the framework to gain or lose significance because this 

militates against our intuitions and is contrary to scientific practice. As we saw, Maxwell 

added the term for the displacement current—ϵ0μ0 ∂E / ∂t—to Ampere’s circuital law—∇  

× B = j / ε0c
2. Note that Maxwell’s addition is consistent with Ampere’s law, and does 

not render it false: as we now know, the circuital law is known to hold in magnetostatic 

situations—systems where the electric current is steady—and Maxwell’s addition is 

required in all other cases. Hence, this is a case of addition to the set of postulates of a 

theory. Moreover, it certainly alters the significance of the theoretical term associated 

with the flux in the magnetic field by rendering it dependent on displacement current in 

addition to current density. This falsifies the assumption, based on mere intuition, 

underlying Rozeboom and Kaplan’s criticisms, whereby theoretical terms must retain 

their significance in case the theory is extended. Relatedly, insofar as the addition of the 

rules of coordination constitutes an extension to the theory in a Carnapian framework as 

well as in scientific practice, and since these rules would typically be exemplified in a 

Carnapian framework as a wide variety of models of measurement procedures, 

representation theorems, data collection procedures, data normalisation procedures, etc., 

there is no reason based on scientific theorising and practice to think that the significance 

of a theoretical entity is somehow independent of extensions to the theory. 

Furthermore, given the criterion of significance for theoretical entities provided by 

Carnap, it is clear that the framework contains an internal yardstick by which to gauge 

the success of the employment of a theoretical term, or a postulate, which can then be 
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revised if the criterion is not satisfied, i.e., if a change in the value of the relevant 

theoretical term does not yield a difference in the observation or prediction of the relevant 

events. Analogously, a theoretical framework as a whole is assessed according to its 

success in representing the phenomena in question. 

 

3.7 Limitations, and another amendment to Carnap 

It is apt to conclude this chapter by highlighting the limitations of my argument in 

defence of Carnapian frameworks. I have shown that the criticisms against the fitness of 

these frameworks to represent scientific theories described in §3.3 dissipate when we 

analyse instances from science. At the same time, it should be clear that my analysis of 

Maxwell’s equations of electromagnetism in the context of Carnapian frameworks goes 

only into sufficient detail to address such a priori concerns. The detailed reconstruction of 

Maxwell’s theory along the lines of a Carnapian framework, even assuming a semantic or 

model-theoretic view, is an extremely complex and challenging task, and one that is 

better left for a more ambitious enterprise in more capable hands.26 

 Furthermore, the instance of the sort that I have analysed in §3.5, strictly speaking, 

proves nothing conclusive regarding the soundness of Carnapian frameworks for 

representing scientific theories in general; nor does it decidedly refute all the objections 

to Carnap presented in §3.3. At the same time, it should cast significant doubt on the 

correctness of these and other a priori criticisms of Carnapian frameworks. 

                                                 

26 Prof. DiSalle has pointed out to me that such a detailed reconstruction may not always be required, as 

it is possible that the relevant philosophical issues are addressed by the sort of sketch I have provided here. 



 

 81 

In spite of the above, it is understandable to view the above reservations against 

Carnap’s frameworks as prompted and encouraged in part by the absence of important 

details in his elaboration of his programme for the reconstruction of scientific theories. I 

refer to his unsatisfactory description of the manner in which the rules of correspondence 

provide (partial) interpretations of theoretical terms. Consider the example cited in §3.4 

of the how the C-rules are used: “the C-rule R, say, relates to an observable space-time 

region, say u, through a class of coordinate quadruples of intervals about (x, y, z, t).” We 

know that the assignment of physical magnitudes to theoretical entities is certainly not as 

simple a task as suggested by this. Underlying such an assignment is a series of complex 

processes that mediate the connection between theoretical entities and observational 

reports. Carnap might claim that this simplification is justified given that he intends to 

provide a framework that is applicable to the practice of science in general, rather than a 

particular formulation that can provide the requisite detail for some branches thereof but 

might prove too restrictive for others. However, the issue is precisely that the process of 

coordinating theoretical constructs with experimental data is in general a very 

complicated exercise. The reconstructive project of the kind that Carnap proposes thus 

requires a more detailed, albeit schematic,27 account of the various steps involved in 

arriving at an epistemological rapprochement between theory and observation. As Quine 

points out in a different context, 

I think [Carnap’s example of locational coordination, as above,] is a good schematization (deliberately 

oversimplified, to be sure) of what science really does; but it provides no indication, not even the 

                                                 

27 I am using schematic in the sense described by Stein (1994). Speaking in a similar context regarding a 

possible way of circumventing the intractable problem of deducing observations from a Carnapian 

framework, he proposes mathematical structures within the theory that can represent generic experimental 

procedures and empirical content. 
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sketchiest, of how a statement of the form ‘Quality q is at x; y; z; t’ could ever be translated into Carnap's 

initial language of sense data and logic. 

(Quine 1951, 37-38) 

 

Among other things, a more representative account of the connection between theory 

and observation would take cognisance of the fact that this correspondence is obtained 

through a series of procedures involving, on the one hand, the development of a tractable 

numerical model of the theory that is susceptible to testing and, on the other, the 

manipulation of the results of experimental procedures to obtain datasets in a form that 

fits with the models of the theory. All this does not even take into account considerations 

of the theory involved in the design of experiments and the interpretations of the results 

of these in order to render them in a form conducive to models of the theory.28 At the 

same time, Carnap’s frameworks are readily susceptible to the provision and addition of 

this detail because they are designed in light of canonical physical theories.29 The sort of 

model-theoretic, semantic approach to theories that I outlined in §3.2 is well suited to 

this, and can help provide this structure. 

Hence, this is a third way in which my proposal here deviates from Carnap’s original 

programme—the other two being a semantic view of theories rather than Carnap’s 

syntactic view, and a detail-oriented, bottom-up approach to instances of the use of 

theory. Nonetheless, this departure can help provide the sort of detail that, on the one 

hand, will help make such frameworks more representative of the details of scientific 

practice and, on the other, will forestall objections that do not engage scientific practice 

                                                 

28 It is this complexity that leads Stein (1992, 1994) to think that a deductive “dictionary” of 

correspondence rules linking theory to observation is not forthcoming. 
29 Curiel (2005, 2012) has undertaken some promising work in this area. 
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by presenting the problems of the relation between theory and observation as detail-

oriented puzzles that inevitably require such engagement. 

I have argued in this chapter that Carnapian frameworks are adequate for the 

representation of theoretical entities as they are employed in our scientific theories. In the 

context of the philosophy of science, this helps partly address one of two related, general 

considerations. The first involves issues relating to the adequacy of the 

theoretical/mathematical apparatus used in a theory to represent phenomena, its role in 

the design and methodology of experiments that can confirm or infirm its hypotheses, the 

accuracy with which a theory so formulated can predict features of the target system, and 

so on. While my proposal and defence here has been limited to a Carnapian conception of 

theoretical entities in philosophical reconstructions of scientific theories, a complete 

linguistic framework of this sort should help provide insights into conceptualising and 

examining the above matters. Such a complete account is beyond the scope of this 

dissertation. The second consideration related to the use of theoretical entities in 

scientific representation pertains to the justification for the use of mathematics in 

scientific theories, and is couched in questions regarding the ontological status of the 

formalism used in representational systems. As mentioned in Chapter 1, the use of 

abstract and highly complex mathematics allows us to model and predict goings on in the 

physical world with remarkable accuracy, and this nourishes the idea that mathematics is 

somehow “real” in the way the things it (oftentimes) describes are real. This leads to 

demands by many to ground our mathematical knowledge on a firm epistemological 

footing such that its ready application to the representation of phenomena is vindicated. 

Hence, in the next chapter, I attempt to address inquiries concerning the ontological 
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status of theoretical entities in science by answering the third of the research questions 

posed for this dissertation in §1.1: What can we conclude about the nature of 

theoretical/mathematical entities employed in a theory from its success in representing 

phenomena? More generally, what philosophical benefit, if any, is to be expected from 

ontological inquiries of the above sort, and how ought it to shape our preferences 

concerning research questions in the discipline? 
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4 The status of mathematical entities in science 

Les métaphysiciens sont des musiciens sans dons musicaux. 

Rudolf Carnap 

 

The ontological status of abstract entities has long been a controversial subject in 

philosophy. In the literature on the philosophies of science and mathematics in the last 

few decades, the recognition of the mathematisation of science has prompted renewed 

demands for efforts to justify the use of mathematics in representation. We employ our 

scientific theories to gain knowledge of the world, the structures and features of the 

phenomena therein, and to predict the course of events based on the representations of the 

world facilitated by mathematics. Hence, the argument goes, in order to be certain that 

our knowledge of the world is well grounded, the mathematics employed in our scientific 

theories needs to be justified. 

While demands for the justification of the mathematics used in science have been 

variously articulated by different thinkers, a shared feature of these is the emphasis on 

doing so by establishing some kind of a connection between knowledge that is already 

relatively securely grounded, such as empirical evidence based on sense experience, and 

abstract mathematical formalism. Hence, Benacerraf thinks that to this end, any theory 

that interprets mathematical truth as “theoremhood” also needs to explicate the 

connection between truth and theoremhood (1973, 666). This would be tantamount to 

having obtained “mathematical objectivity” of the sort desired (Putnam 1979a). 

According to Maddy, it was this desire for a firm grounding for mathematics, and hence 

for all our scientific knowledge, that drew Gödel to commit to realism regarding 

mathematics. Kfia (1993, 19) even claims that the examination of the ontological status 
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of mathematical entities has “far-reaching implications” for the method of science in 

general, and for physics in particular. In a spirit similar to that of Benacerraf’s inquiry, 

Pincock regards as a most pressing issue the justification of the “purely mathematical 

beliefs” involved in the theoretical frameworks of our representational systems (2012, 

139). Mathematical claims have truth conditions; hence, in order to know these claims, 

we must possess evidence that these truth conditions have been satisfied. Merely deriving 

a claim from axioms is thus insufficient to generate knowledge because one has yet to 

establish a connection with truth in such cases. These appeals to ground the mathematics 

used in our scientific theories seem to be based on a commitment to some variety of 

semantic externalism, whereby one needs a connection, in this context, between a formal 

claim and events in the world. 

In this chapter, in response to the final research question for this dissertation stated in 

§1.1—What can we conclude about the nature of theoretical/mathematical entities 

employed in a theory from its success in representing phenomena? More generally, how 

should the philosophical benefit, if any, to be expected from ontological inquiries of this 

sort shape our preferences concerning research questions in philosophy?—I consider 

two major responses to the above concern regarding the status of the theoretical 

components of scientific representation, offered by Quine and Carnap. I consider these 

two thinkers because not only have they been among the most influential figures in the 

philosophy of science in the last few decades, the general position that each espouses is 

also representative of a major side in the debate on the status of theoretical entities. In 

very rough terms, Quine represents the so-called “naturalist” position, which denies any 

distinction between the analytic and synthetic parts of our knowledge, and hence looks to 
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science for its ontological commitments. Carnap likewise represents a “neutralist”52 

stance that seeks to offer a deflationary response to the question of the existence of 

theoretical entities, including the mathematics used in our theories. Furthermore, while 

philosophers sympathetic to the views of Carnap and Quine have critiqued and further 

developed their respective positions on the above issue, they have remained faithful to the 

fundamental claims that shape their general positions. Hence, for instance, while 

Maddy’s Second Philosopher (2008, 87) proposes “friendly amendments” to the Quinean 

programme,53 these amendments do not result in a significant or principled modification 

in her stance on the status of theoretical entities. Any deviations from Quine’s views are 

either not pertinent to the issue at hand, or are sufficiently small in the context of the 

generality of the discussion to be neglected as internal disputes.54 I mention Maddy as the 

most influential representative of a Quinean position on the issue, but the same general 

commitments regarding the status of theoretical entities are shared by Colyvan (2001), 

Baker (2005), Resnik (1995), and many others. Similar considerations apply to 

contemporary philosophers sympathetic to Carnap’s enterprise, such as Friedman (2001) 

and Stein (1989, 1992), although these are far fewer in number than those seduced by 

Quine. A notable exception is William Demopoulos (2012), whose deviation from 

Carnap in the context of the status of theoretical entities is discussed in detail in §4.4. 

                                                 

52 This term is due to Psillos (1999, Ch. 3). I, for one, consider his stance rather militant. 
53 For instance, “[Contra Quine,] the Second Philosopher resists the characterization of her 

commonsense beliefs about ordinary physical objects as inferred from some sensory ‘data’; it now emerges 

that she also departs from Quine’s naturalistic analysis of higher scientific theorizing.” 
54 For instance, Maddy (1992, 280) disagrees with Quine about the ontological status of higher 

mathematics. 
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Section 4.1 is devoted to a description of Quine’s attitude to the challenge of the 

ontological status of theoretical entities in general, including mathematics, in our 

scientific theories. As we shall see, he embraces the proclaimed need to ground our 

mathematical knowledge and proposes a conception whereby the entirety of our 

knowledge—and, a fortiori, all our scientific theories—is subject to empirical 

verification, without countenancing a distinction in kind between theoretical (including 

mathematical and logical) statements and empirical claims. Section 4.2 contains the 

details of Carnap’s deflationary response. He convincingly argues that questions 

concerning the status of mathematical entities are misguided at best and meaningless at 

worst. I showed in Chapter 3 that Carnapian frameworks are conducive to the articulation 

of scientific theories, and can handle theoretical mathematical entities in a manner that 

tracks scientific practice. In §4.3, I argue that Carnap’s approach to questions of the 

ontology of mathematics, grounded firmly in and flowing naturally from his conception 

of frameworks, offers far more promise for philosophical investigation than the Quinean 

alternative. I do this by showing how commitment to a Quinean view of theoretical 

entities in science has spawned the Indispensability Argument debate in the philosophy of 

mathematics, which appears misguided and seems to offer little by way of 

methodological and epistemic insights. While I highlight the assumptions driving the 

debate in order to relate these to Quine, I will eschew a consideration of these in any 

detail. This is largely because engaging such debates is tantamount to contributing to 

futile inquiries in philosophy.55 Instead, I make a novel, pragmatic argument for why 

                                                 

55 However, see, Field (1980), Maddy (1992), Leng (2005), and Bangu (2008) for objections to various 

premises of the argument. 
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Carnap’s approach to the status of theoretical/mathematical entities is a more appropriate 

attitude for meaningful progress in the philosophy of science. Section 4.4 is devoted to a 

recent criticism of Carnap’s position by Maddy and a critique by Demopoulos in the 

context of experimental proof for the discovery of the atom. A concern shared by both is 

that Carnap’s distinction between internal and external questions in the context of 

theoretical entities tends to misrepresent and undermine instances of genuine scientific 

discovery. The outcome of my consideration is that the atomic hypothesis and similar 

instances pose no problem for Carnap’s view, and hence that no refinement of his 

position on the issue is needed. Note that this is at variance with the Carnapian stance 

that I assumed in Chapter 3, which involved a modification to Carnap’s reconstructive 

project. 

A reminder of my usage is in order. As the reader might notice, I will interchangeably 

use the terms “mathematical entities” and “theoretical entities.” Unless otherwise 

specified, they should be taken to be identical, insofar as the mathematical apparatus is a 

subset of the machinery required for a theory. Furthermore, theoretical entities in science 

in general, and in physics in particular, are described in mathematical vocabulary. The 

above identification will become particularly stark in §4.4, when I consider the atomic 

hypothesis. However, this is not a problem because in the context of his views on the 

ontological status of theoretical entities, neither Quine nor Carnap makes a distinction 

between mathematical terms and other theoretical terms. This is not to claim that there is 

no difference at all for Carnap between purely formal systems, such as Peano Arithmetic, 

and physical theories, such as Newtonian physics (Carnap 1966, 237). In the case of the 

former, there is no obligation on the scientist to supply a physical interpretation for the 
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framework in question, since Peano Arithmetic by itself does not purport to describe 

anything in the world. On the contrary, such a physical interpretation is required in the 

case of the latter, insofar as a physical theories purport to describe events in the world. As 

we shall see in §4.4, this difference in the presumptive burden between a scientist 

working with a purely formal system using Carnap’s frameworks and one using them to 

articulate a physical theory translates into two methods of addressing questions 

concerning the status of theoretical entities within a linguistic framework. 

 

4.1 Quine and the tribunal of experience 

Quine’s response to concerns regarding the grounding of theoretical entities in 

science, including mathematics, is rooted in his famous rejection of the analytic–synthetic 

distinction (1951) that forms part of his theory of meaning. According to one formulation 

of this distinction, analytic propositions are true by mere virtue of the meaning or the 

logical form of their constituent terms, whereas synthetic propositions are not. In my 

description of his view on the issue, I will only engage as much of Quine’s criticism of 

Carnap as is pertinent for my purposes here, especially since his attack on the latter has 

been extensively discussed in the literature.56 In particular, I will not detail or assess 

Quine’s arguments against the analytic–synthetic distinction, nor will I evaluate his 

                                                 

56 See, for instance, George (2000) and Stein (1992) for opinions on the issue that I find compelling. 
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reasons for subscribing to the various philosophical positions that lead him to adopt the 

perspective on science that I describe below.57 

Quine thinks that language is “a social art, which we all acquire on the evidence solely 

of other people’s overt behaviour under publicly recognisable circumstances” (1968, 

185). His empiricism assumes a commitment to behaviourism about meaning: meaning is 

nothing other than is manifest in behaviour. By using an elaborate thought-experiment 

involving the construction by a linguist of a translation manual between English and a 

novel foreign language, Quine shows that it is possible to devise a number of such 

manuals that, while mutually inconsistent, are all harmonious with empirical evidence 

exemplified as behaviour. Hence, it is possible to assign varying, contradictory meanings 

to the same sentences in different translation manuals such that they are all consistent 

with experience. Insofar as experience of behaviour is the sole arbiter of meaning, there is 

thus no fact of the matter about meaning (Quine 1960, 74). This is known as Quine’s 

indeterminacy thesis. Note that if there is no fact of the matter about meaning, the notion 

of a class of statements that are true by virtue of their meaning—the definition of 

analyticity with which Quine takes issue in his criticism of Carnap—is rendered 

nonsensical. Furthermore, if the indeterminacy thesis is correct, then there is no fact of 

the matter about what the speaker meant when he/she says “Rabbit,” say. If there is no 

fact of the matter about what the speaker meant when he/she says “Rabbit,” there is no 

fact of the matter about whether the speaker is referring to a rabbit, a stage in the life of a 

rabbit, or a physical part of a rabbit (1987, 127-8). This is known as the inscrutability of 

                                                 

57 For Quine’s behaviourism-based thesis regarding the “indeterminacy of translation” and the 

consequent “inscrutability of reference,” see Quine (1960, Ch. 2). For an elaboration of its implications for 

his relativistic ontology, see Quine (1969). 
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reference—the Quinean thesis that “referents of terms in a language and the range of 

quantifiers are not determined by physical or behavioural facts” (Hookway 1988, 141). 

Quine’s solution to the issue of referential inscrutability is the relativity of ontology. This 

is the view that there is no absolute fact of the matter about the ontological commitments 

of a language or a theory (Hookway 1988, 25). This means that reference in language 

makes sense only relative to a linguistic framework. It would be meaningless to inquire 

about the meaning of terms absolutely; such an inquiry can be made only relative to a 

background language (Quine 1969, 200). Quine’s epistemological holism concerning all 

knowledge, which I detail below, and his conformational holism in the context of 

scientific theories, which I summarise in §4.3 while discussing the Indispensability 

Argument, are grounded in this view of language and meaning. 

Another Quinean commitment that is critical to shaping his view of the ontology of 

theoretical entities in scientific theories is his naturalism. He writes: 

Naturalism: abandonment of the goal of a first philosophy. It sees natural science as an inquiry into 

reality, fallible and corrigible but not answerable to any supra-scientific tribunal, and not in need of any 

justification beyond observation and the hypothetico-deductive method.  (Quine 1981, 67) 

 

There appear to be two facets to this view of naturalism. The first is the rejection of 

foundational epistemic enterprises of the kind undertaken by Descartes, which seek to 

ground all knowledge on principles that are known with absolute certainty. Such projects 

assume a privileged office for philosophy as seeking to justify our successes in science by 

providing a firm basis for its epistemology. Note that Quine takes Carnap’s plan for the 

rational reconstruction of science as an instance of such foundationalist endeavours. The 

second aspect of his naturalism is a commitment to science as our best means of learning 

the nature of the world and, thus, determining the contents of our ontology. The reference 
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to the hypothetico-deductive method in the above quote indicates that Quine embraces all 

generally recognised sciences as falling within the ambit of science proper. 

Quine’s holism and naturalism in conjunction determine his view of the status of 

theoretical entities. According to his epistemological holism, there is no fundamental 

distinction between the a priori and the a posteriori, the logical and the factual, the 

analytic and the synthetic (Friedman 2001, 32). Our system of knowledge should be 

viewed as a vast network of interconnected beliefs where experience only impinges along 

the periphery. The centre of this network is occupied by the formal, theoretical 

components of our knowledge that are not modified or replaced often, such as rules of 

logic and the postulates of scientific theories that are current. If, as Quine claims, the 

analytic–synthetic distinction does not hold, there is no difference in kind between 

theoretical/analytic claims and observational/synthetic58 ones. Hence, “our statements 

about the external world face the tribunal of experience not individually, but as a 

corporate body” (Quine 1951, 38). That is, both the theoretical and empirical components 

of scientific theories are beholden to empirical verification. He likens “total science,” 

which constitutes our structured knowledge of the world, to a force field the boundary 

conditions of which are constituted by experience. A conflict with experience at the 

periphery occasions adjustments in the interior of the field: truth values have to be 

redistributed over some of the statements. However, the total field of science is so 

underdetermined by its boundary conditions—experience—that there is considerable 

                                                 

58 Strictly speaking, synthetic propositions are not identical to empirical propositions. The former are 

defined as not being true merely by virtue of the meanings of their constitutive terms, whereas the latter are 

simply based on experience. Hence, a synthetic proposition is not necessarily empirical. For instance, Kant 

regarded geometry as synthetic (and a priori) but not empirical. See (Carnap 1966, 267) for the suggestion 

that Carnap does not respect this distinction. 
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leeway in the choice of statements to reconsider in light of any single infirming 

experience. This is because no particular experience is linked to specific formal 

statements that occupy the interior of this field or “web of belief” (Quine and Ullian, 

1978), except indirectly through the consideration of coherence and consistency affecting 

the entire field (Quine 1951, 39). Hence, it becomes folly to seek a boundary between 

synthetic statements, which hold contingently based on experience, and analytic 

statements, which hold come what may. Any statement can be held to be true if we make 

sufficiently drastic changes elsewhere in the system. Quine thinks that taken collectively, 

science is dependent on language and experience, but this dual dependence is not 

traceable in the statements of science one by one. The unit of empirical significance is the 

whole of science. Empirical evidence spreads over a conjunction of all elements of our 

total system of science. 

Quine thinks that total science is extremely underdetermined by experience, but the 

edge of our web of belief must nonetheless be kept consistent with it. The remainder, 

with all its elaborate “myths or fictions,” be it mathematics or the Homeric gods, one 

translation manual or another, has as its objective the simplicity of the relevant laws 

(1951, 42). That is, so long as our theories agree with empirical observation, the ontology 

underlying them is determined based on pragmatic values, since there is no fact of the 

matter about the “correctness” or “truth” of rival ontologies that are all consistent with 

experience. Our natural tendency to disrupt the total system as little as possible would 

lead us to focus on empirical statements for our revision, since these are closer to the 

periphery of our web and, hence, emendations to them are likely to be far less turbulent 

for the enterprise of science than some statement—at the centre of the web—more 
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important to the theoretical integrity of our (set of) beliefs that ground the system, e.g., 

the law of the excluded middle. Crucially, on this view, ontological questions, including 

those pertaining to mathematical entities, are on par with questions of natural science. For 

instance, the question of whether to countenance classes as entities is simply one of 

whether to quantify over variables that admit classes as values. In this conception, the 

only way to make ontological commitments is by using bound variables (Quine 1953, 31-

2): “to be is, purely and simply, to be the value of a variable.” This heuristic59 is used to 

determine the ontological claims made by a particular theory. Hence, “a theory is 

committed to those and only those entities to which the bound variables the theory must 

be capable of referring in order that the affirmations made in the theory be true” (Quine 

1953, 33). 

Quine grants that certain beliefs, such as those of logic and arithmetic, are relatively 

central in the web, whereas others, such as those of biology, are relatively peripheral. 

However, this only means that the former are less likely to be revised than the latter in 

case of recalcitrant experiences at the periphery. On such a view, Quine claims, the 

difference between the existence of classes, say, and that of physical objects is only one 

of degree, in that it turns on our pragmatic inclination to adjust one strand of the “fabric 

of science” rather than another in accommodating some recalcitrant experience. Hence, 

Quine advocates a more rabid and thoroughgoing pragmatism than that espoused by 

Carnap. 

 

                                                 

59 I use this word, instead of “rule” or “principle,” because in spite of his remarkable facility with 

language, Quine maintains a frustrating glibness with regard to this and other critical components of his 

philosophy. 
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4.2 Carnap on the justification of theoretical entities 

A physicist who is suspicious of abstract entities may perhaps try to declare a certain part of the 

language of physics as uninterpreted and uninterpretable, that part which refers to real numbers as 

space-time coordinates or as values of physical magnitudes, to functions, limits, etc. More 

probably he will just speak about all these things like anybody else but with an uneasy conscience, 

like a man who in his everyday life does with qualms many things which are not in accord with 

the high moral principles he professes on Sundays. 

 (Carnap 1992, 72) 

 

Unsurprisingly, Carnap takes up the issue of the status of abstract entities in the 

context of his linguistic frameworks for science. The sum of his stance is that the use of a 

formal language that refers to abstract (theoretical) entities does not imply the acceptance 

of a Platonic (realist) epistemology, and is perfectly compatible with empiricism and 

strictly scientific thinking (Carnap 1992, 73). Recall that for Carnap, in order to speak in 

his or her language about a new kind of entity, one needs to introduce a system of novel 

ways of speaking subject to new rules. This system is a linguistic framework. Carnap 

makes two crucial distinctions in the context of his frameworks. The first is between 

formal/analytic sentences, which correspond to logical or “L-rules” in his framework, and 

empirical/synthetic ones, which correspond to physical or “P-rules.” The second 

distinction is that between internal and external questions (Friedman 2001, 32). 

According to Carnap, there are two kinds of questions concerning the reality of 

entities: i) questions regarding the existence of certain new kinds of entities within the 

framework—internal questions—and ii) those concerning the existence or reality of the 

system of entities as a whole—external questions (Carnap 1992, 73). Internal questions 

and possible answers to them are formulated using the new forms of expression, either 

through purely logical methods or empirical ones, depending on whether the question is a 

logical or a factual one, respectively. “Reality” with regard to internal questions is an 

empirical, scientific, and non-metaphysical concept. To recognise something as a real 
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thing or event means to successfully incorporate it into the system of things at a particular 

space-time position such that it fits with other things recognised as real according to the 

rules of the framework. External questions, on the other hand, concern the reality of the 

world hypothesised by the framework itself.60 

Carnap claims that all standards concerning notions such as “correctness,” “validity,” 

and “truth” are relative to the logical rules definitive of the framework. Thus, it makes no 

sense to ask whether one’s choice of a framework is “valid” or “true” because the logical 

rules on the basis of which these notions are defined are not yet in place (Friedman 2001, 

31). He claims that disputes in philosophy concerning external questions about the 

ontological status of theoretical entities arise because these questions are framed in an 

inappropriate manner. To be “real” in the scientific sense means to be an element of the 

system. Hence, this concept cannot be applied to the system itself, which forms the 

subject of external questions. However, if one chooses to accept a framework, this must 

not be interpreted as belief in the reality of the framework: there is no such belief or 

assumption because the relevant question is not an internal question. To accept a 

framework means nothing more than to accept a certain form of language, to accept rules 

for forming and testing propositions in order to accept or reject them (Carnap 1992, 74). 

At the same time, on the basis of observation, the acceptance of a certain framework 

leads to the acceptance of, or a belief in, the assertion of certain propositions. Decisions 

regarding the acceptance or rejection of a framework will be influenced by theoretical 

                                                 

60 Prof DiSalle has pointed out to me that this is only the metaphysical interpretation of external 

questions— Carnap remarks wryly that such questions are raised “neither by the man in the street nor by 

scientists, but only by philosophers” (Carnap 1964, 241). External questions might instead concern the 

pragmatic value of using a framework, or the comparative pragmatic values of different frameworks. 
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knowledge, and the intended purpose of the framework will determine the factors 

relevant to this decision. For instance, having introduced a set of rules related to defining 

and performing operations on the natural numbers, the question “Is there a prime greater 

than 100?” is an internal question that is answered by logical analysis—a proof— and 

yields an analytic answer instead of one based on observation. Similarly, the answer to 

the question “Are there numbers?” is, rather trivially, “Yes!” if the question is construed 

as an internal question because the relevant rules added to the framework in order to 

allow the use of numbers establish their existence in the framework. Hence, when asking 

questions regarding the existence of theoretical entities such as numbers, philosophers, 

such as Quineans, presumably do not mean to ask an internal question. In fact, they 

would readily admit that they are asking a question that is conceptually prior to the 

acceptance of a new framework. These may be posed as questions regarding the 

ontological status of numbers, some ideal reality, and suchlike inquiries. These questions 

have not thus been formulated in scientific language. Hence, the above external 

questions, and possible answers to them, have no cognitive content. Until this is supplied, 

we are justified in regarding this as a pseudo-question, a non-theoretical inquiry disguised 

as a theoretical one. In this context, this is expressed as the practical question of whether 

to incorporate the relevant system of entities into our linguistic framework. 

Hence, for all questions related to the status of abstract entities in the framework, 

responses are readily available through formal or empirical methods incorporated into the 

framework if the question is construed as an internal one (Carnap 1992, 75). The only 

feasible interpretation of these questions as external to the framework leads to their 

reformulation as pragmatic inquiries concerning the effectiveness of the entity in question 
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in fulfilling the intended purpose of the framework (Carnap 1992, 77). Critics of the use 

of abstract entities in semantics overlook the fundamental difference between the 

acceptance of a system of entities and an assertion internal to the system, e.g., that there 

are elephants, electrons, etc. Whoever makes an internal assertion is obliged to justify it 

by providing the necessary evidence, empirical in the case of electrons and elephants, 

formal proof in the case of numbers. Hence, the demand for a theoretical justification, 

appropriate in the case of internal assertions, is sometimes incorrectly applied to the 

acceptance of a system of entities (Carnap 1992, 81). For instance, with regard to 

disagreements among philosophers over the status of numbers, Carnap feels compelled to 

regard the relevant external question—“Do numbers exist?”—as a pseudo-question until 

both parties to the argument offer a common interpretation of the question in scientific 

language as a cognitive question. This would involve an indication of possible evidence 

regarded by each side as having a bearing on deciding the issue. 

 

4.3 The fruitfulness of ontological inquiry 

Trends of research in several areas of the philosophy of science in the last few decades 

indicate that a large number of scholars in the English-speaking tradition have sided with 

Quine on the issue of the justification of theoretical entities, including mathematical ones. 

In particular, the Quinean slogan “to be is to be the value of a variable,” in conjunction 

with his epistemological holism and naturalism, have prompted a long dispute over the 

status of mathematical entities, called the Indispensability Argument debate, that persists 
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to this day. The argument is attributed to Quine (1976, 1980a, b, 1981a) and Hilary 

Putnam (1979a, b).61 It is as follows (Colyvan 2001, 11): 

1. We ought to be ontologically committed to all and only those entities that are 

indispensable to our best scientific theories. 

2. Mathematical entities are indispensable to our best scientific theories. 

Therefore: 

3. We ought to be ontologically committed to mathematical entities. 

The crucial first premise of the argument relies on Quine’s naturalism and his 

confirmation holism described in §4.1. Quinean naturalism rejects metaphysics as first 

philosophy, and views the project of philosophy as continuous with that of science, which 

tells us what the world is like. It is only proper, thus, that we look to our scientific 

theories to determine our ontological commitments. The doctrine of conformational 

holism claims that theories are confirmed or disconfirmed in their entirety, and not 

piecemeal. Hence, if empirical evidence confirms or infirms the hypotheses of a theory, 

the entire theory, including its mathematical component, is verified or falsified, 

respectively. As mentioned in §4.1, I will not consider and evaluate these assumptions in 

part because they have been extensively treated in the literature, and I have nothing to 

add to this.62 Furthermore, critiques of Quinean naturalism and confirmation holism, in 

light of the looseness and generality with which they are employed in the Indispensability 

                                                 

61 Liggins (2008) has claimed that the argument for the indispensability of mathematical entities 

actually offered by Quine is different from that ascribed to him in the literature. However, even if Liggins 

is correct, the differences he cites between the original Quinean argument and that associated with him 

have no bearing on my reasoning here. 
62 For other views, see Parsons (1983) and Laudan (1990) on conformational holism. See Gregory 

(2011) and Haack (1993) for contrasting views on Quine’s naturalism. 



 

 101 

Argument, have shown that these theses are suspect at best. My own views on the issue 

are influenced by Wilson.63 

So, the first premise states that we should be guided by prevalent scientific theories 

with regard to our ontological commitments, and the confirmation of a theory directly 

confirms all of its theoretical components, including the mathematics used. The argument 

has been hotly debated by realists, anti-realists, as well as instrumentalists over the 

years.64 Over time, the realist claim has evolved into an “Enhanced Indispensability 

Argument,” which is as follows (Baker 2005, 613): 

1. We ought rationally to believe in the existence of any entity that plays an 

indispensable explanatory role in our best scientific theories. 

2. Mathematical objects play an indispensable explanatory role in science. 

3. Hence, we ought rationally to believe in the existence of mathematical objects. 

This argument seeks to be more specific about the contribution that mathematics 

makes to our scientific theories and representation in order to bolster the ontological 

claim. 

It is notable that each of the above arguments contains a first premise that invokes the 

abovementioned assumptions due to Quine. Hence, debate on the issue has been 

legitimised through the participants’ acquiescence to Quinean holism as well as his 

insistence on experience as the sole arbiter of all knowledge—his naturalism. Once it is 

granted that all knowledge, theoretical as well as empirical, is subject to a uniform 

                                                 

63 For Wilson’s critique of Quinean holism, see (2006, Chapter 5, §xii). For his objection to Quine’s 

naturalism, see (Ladyman et al. 2013, 198-207). 
64 See, for instance, Maddy (1997) and Pincock (2004). 
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standard of evidence, and the distinction between the formal components of a framework 

and its empirical content is rejected, it becomes kosher to seek and locate justifications 

for the existence of theoretical entities. That is, philosophers inquiring into extra-formal 

justification of the formal, analytic components of a theory or a linguistic framework are 

siding with Quine in his rejection of the analytic–synthetic distinction, and endorsing the 

so-called tribunal of experience as the proper setting to ground the formal as well as 

empirical content of our theories. This is all well and good, but for the fact that no one, 

from Platonist mathematicians such as Gödel to the participants of the Indispensability 

Argument debate, has proposed a framework for the conception and articulation of 

empirical evidence for or against formal claims. A formal proof as justification of such 

claims is presumably unsatisfactory to the Quinean due to its remoteness from 

experience. Quine occasionally writes of “experiential meaning” (1963, 389) to be 

assigned to the formal components of frameworks in order to justify them. However, 

neither he nor any other thinker has detailed or even outlined a proper method to do so 

satisfactorily. And it is important to note that this is precisely Carnap’s objection. He 

writes: 

Unfortunately, these philosophers have so far not given a formulation of their question in terms of the 

common scientific language. Therefore our judgment must be that they have not succeeded in giving to 

the external question and to the possible answers any cognitive content. Unless and until they supply a 

clear cognitive interpretation, we are justified in our suspicion that their question is a pseudo-question, 

that is, one disguised in the form of a theoretical question while in fact it is non-theoretical … 

(Carnap 1992, 75) 

 

“Common scientific language” in the above can be read as the language and 

epistemology of one’s choice to represent the relevant scientific knowledge. In addition 

to his complaint concerning the failure of philosophers to meaningfully articulate 

ontological questions of this kind, it is interesting to note that in the above quote, Carnap 
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does not dismiss out of hand the possibility of the development of methods or 

frameworks in which such inquiries can be meaningfully and fruitfully made. Carnap’s 

objection is methodological: philosophers involved in debates regarding the status of 

abstract entities, be it in the contemporary Indispensability Argument debate, the disputes 

concerning scientific realism from a few decades ago,65 or even the problem of universals 

of old, have not even managed to arrive at an agreement regarding an appropriate manner 

of conceptualising these issues, let alone investigate them to the satisfaction of scientific 

standards that are more widely accepted. Hence, engaging in debates on these issues 

without a common, robust methodology to settle the problem is tantamount to putting the 

cart before the horse. Furthermore, the implication in the above quote is that Carnap 

would be more than willing to accept these questions if, in the future, they are rendered 

susceptible to meaningful articulation. Such a generous attitude to an ill-formed dispute is 

further testament to Carnapian tolerance in what he regards as a pragmatic issue in 

science. 

One possible route to rendering meaningful the ontological questions regarding 

mathematical entities is to develop a language containing a uniform account of notions 

such as “meaning,” “reference,” “truth,” etc., for all concepts in the language, whether 

formal or not. Benacerraf (1973) outlines a few conditions for a project of this kind, 

which incidentally presumes a variety of naturalism, but this has not been pursued any 

further in the context of the justification of theoretical entities in scientific theories. Until 

such an all-encompassing theory is developed, a Carnapian attitude to these questions is 

justified. 

                                                 

65 See Boyd (1984) for the classic formulation of the thesis of scientific realism. 
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My discussion of Maxwell’s equations of electromagnetism in §3.5 showed, among 

other things, that Carnapian frameworks are well suited to represent scientific theories in 

general, and theories of physics in particular, due to the cleavage therein between a 

highly mathematised theoretical component and empirical content, to which it is related 

through rules of correspondence. Specifically, my discussion showed how Carnapian 

frameworks can accommodate novel theoretical entities. We saw that Maxwell’s 

modification of Ampere’s circuital law by adding displacement current density to 

describe the induction of magnetic fields due to changing electric fields is easily 

accommodated by a modified Carnapian framework, which assigns to the new term a 

definite meaning in terms of other theoretical concepts through the C-rules, and hence 

provides a method to measure it as well. In contrast to this, Quine’s prescriptions contain 

little detail beyond the repeated insistence on an extreme empiricism. This is particularly 

problematic in the case of a drastic innovation in science that requires the rejection of a 

prevalent theory in favour of another. While this seems to pose no problem for Carnapian 

frameworks, as I showed for Maxwell’s groundbreaking work, no such methodology is 

forthcoming in Quine’s work. The closest he approaches to considering such 

revolutionary changes in total science is to note that in the face of obstinate evidence, his 

epistemic holism allows for alterations to be made elsewhere in the web of belief in order 

to preserve the centre, where the formal, theoretical components of our knowledge reside, 

as described in §4.1. Apart from inciting debates that appear to promise scant 

philosophical fruit, which, if anything, is harmful to the discipline, the Quinean 

perspective offers no comprehensive plan for pursuing an epistemological enterprise as 

bold as the one he proclaims. 
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4.4 Carnap’s view of theoretical terms and the atomic 
hypothesis 

Thus far in this chapter, I have shown that Carnap’s approach to the status of 

theoretical entities in scientific representation is fruitful for philosophical inquiry in a 

number of ways, particularly in contrast to the views espoused by Quine. Not only are 

frameworks of the kind proposed by Carnap amenable to representing scientific theories, 

and theories of physics in particular, they also help distinguish issues that can be resolved 

within the resources of a given theoretical framework from those that cannot. This is 

accomplished by means of the corresponding distinction between questions that are 

internal to a framework and those external to it. Among other things, this apparatus 

allows us to identify certain concerns that have been posed as ontological puzzles 

pertaining to the nature of the theoretical entities employed in science as misguided or 

confused. This confusion may arise through a misunderstanding of the aims of science, 

the content of theories and their relation to experimentation, the scope and limitations of 

the claims made by theories, or, in the case of representative debates in the philosophy of 

science, a failure to investigate and appreciate the practice and methodologies of science 

in order to provide much-needed context. Sections 3.6 and 3.7 developed this in some 

detail. Debates in the literature on scientific realism and the Indispensability Argument, 

summarised in §4.3, are exemplars. For these are cases where both realists and 

nominalists have engaged each other for decades without a clear idea of the formulation 

of the problem in the varying contexts in question, the methods to pursue in order to 

arrive at a solution to the problem once it is formulated, and, most importantly, the 
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significance of possible solutions to the problem for science and the philosophy of 

science. I have also shown in the foregoing that these futile debates in the literature can 

be traced to a subscription to a Quinean approach to questions of ontology. 

In spite of the above, the impression that the Carnapian approach to the status of 

theoretical entities is incorrect has proven to be considerably resilient in the literature. 

The theoretical and experimental research that led to the discovery of the atom in the 

early 20th century has recently been used as an instance. The claim is that a consideration 

of the research that led to the verification of the atomic hypothesis reveals that Carnap’s 

attitude towards theoretical entities unfairly trivialises questions of their existence to ones 

of the choice of linguistic framework. Such a perspective unreasonably undermines the 

importance of such epistemological scientific achievements and hence misrepresents 

them. In the following, I will consider two recent treatments of the issue, by Maddy and 

Demopoulos. A reason for choosing this particular instance is that these two thinkers 

conveniently fall, roughly speaking, along the Quinean and the Carnapian sides, 

respectively, of the philosophical divide on the consideration of theoretical entities in 

science. This choice is additionally useful because I think that Maddy’s understanding of 

Carnap’s enterprise and its details evinces misconceptions that are widespread in the 

literature and, although I will not pursue this issue here, should be considered 

representative. Demopoulos does not accept Maddy’s analysis of Carnap but agrees that 

the atomic hypothesis poses a problem for him. The general conclusion to be drawn from 

my consideration of Demopoulos’ remarks is that Carnap’s distinction between internal 

and external questions in its original form is sufficient to address the above concerns. 
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At the turn of the 20th century, there was considerable disagreement about the kinetic 

theory of gases and fluids. This theory describes fluids as composed of a very large 

number of subatomic particles in constant random motion. Contrasted to this was the 

thermodynamical approach espoused by Mach, Ostwald, and Duhem. Emboldened by the 

success in physics and chemistry of thermodynamical approaches, which abstract from 

and are independent of the underlying structure of matter, these thinkers were sceptical of 

commitment to a theory of matter based on invisible and undetectable particles.66  

In the second of his four ground breaking papers in 1905, Albert Einstein derived an 

equation for the diffusion of particles through a fluid and speculated that this occurs 

through Brownian motion. In his analysis, he assumed Maxwell–Boltzmann statistics and 

its relation to the molecular–kinetic theory of heat. In a series of ingenious experiments 

starting in the same year, Jean Perrin was successfully able to measure the density 

distribution, the mean displacement, and the mean rotation of Brownian particles in a 

solution. Crucially, through several different methods, he was able to determine the value 

of Avagadro’s number—the number of particles in a mole of a substance—to an accuracy 

of within a few percentage points of contemporary estimates. This confirmed the 

correctness of the kinetic theory and, hence, established the existence of atoms. 

To clarify her criticism of Carnap’s attitude towards theoretical entities in 

representational systems, Maddy (2008) asks us to consider the following scenario: 

[S]uppose we’ve adopted a linguistic framework for simple scientific observation and generalization—

perhaps an elaboration of the thing language—and we’re wondering whether or not to embrace a new 

range of entities, say atoms. As our current language has no terms for such things, no predicate ‘is an 

                                                 

66 This was but one reason for their scepticism. Their objections to the kinetic theory were far more 

nuanced, involving practical considerations as well as the concern to maintain consistency with well-

established empirical laws at the time. See Chalmers (2009) for an excellent treatment of the history of the 

atom. 
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atom’, no evidential rules with which to settle questions of their existence or nature, Carnap holds that 

this is not a question that can be asked or answered internally, that we must step outside our linguistic 

framework and address it pragmatically, as a conventional decision about whether or not to adopt a new 

linguistic framework. This new framework would include new evidential rules linking various 

indicators to the presence of atoms, just as the thing language includes evidence rules linking various 

experiences to the existence of ordinary objects. … [T]he meticulous and decisive work of Jean Perrin 

on Brownian motion came as a welcome surprise. In circumstances like these, where the new evidential 

rules are such elusive and hard-won scientific achievements, the Second Philosopher is unlikely to 

agree with Carnap that their adoption is a purely pragmatic matter, a conventional choice of one 

language over another. Instead, she insists that the development of the Einstein/Perrin evidence was of a 

piece with her standard methods of inquiry, that it required careful examination and justification of the 

usual sorts. … [Even if] the empirical study of human language use might justify some notion of purely 

linguistic truth, [the Second Philosopher] doubts that a distinction so grounded would put the relevance 

of Einstein/Perrin’s work to the existence of atoms on the linguistic side of the ledger.  

(Maddy 2008, 71-2) 

 

There are a number of explicit and implicit issues of interest in the above, but I will 

confine my observations to the extent required by my purposes here. The thrust of 

Maddy’s argument is that in the context of his framework, Carnap would regard Perrin’s 

crucial experiments to prove the existence of the atom merely as one of many choices 

that need to be made in the adoption of a language for the corresponding theory. This 

serves to reduce the question of the existence of the atom, a significant cause for dispute 

at the time, as well as Perrin’s experiments to settle it, to one of which framework to use 

based on pragmatic considerations. This militates strongly against the intuition, well 

grounded in science, that this issue is one of ontology, of what does and does not exist. 

That Carnap considers this a problem concerning the pragmatics of language choice is 

sufficient, Maddy thinks, for us to reject his stance on the status of theoretical entities. 

Thought experiments serve as a powerful tool for conceptual analysis in science and 

philosophy, and a rich tradition attests to their usefulness in such inquiries. At the same 

time, there is a widespread tendency in philosophy to forget that the major purpose of 

thought experiments is to clarify and refine our pre-theoretic concepts in order to develop 

general methodological principles for subsequent research in the field in question. 



 

 109 

Instead, it is common among philosophers to employ these for largely critical and 

invariably superficial analyses of proposals in numerous areas of philosophy without 

considering their details.67 Hence, I think it pertinent to explore the thought experiment 

offered by Maddy above in order to evaluate the merit of her criticism. 

In the context of a Carnapian framework, Maddy asks us to consider a situation where 

a new kind of entity is being posited, for which there is no theoretical or relevant 

observational apparatus in our language. This is problematic with respect to betraying a 

misunderstanding of Carnap’s frameworks in two ways. First, it is important to remember 

that these frameworks are not intended for use in scientific practice: We know that most 

scientists do not know or care about them; nor does Carnap prescribe the use of his 

frameworks to scientists to formulate theories. They are instead intended for a rational 

reconstruction of these theories in a meticulous and regimented manner, so that the 

numerous assumptions and inferences implicit in the relevant theoretical and 

experimental procedures are laid bare. Hence, the hypothetical question of the application 

of Carnap’s framework to Einstein’s analysis of Brownian motion or Perrin’s 

experiments at the time that they were conducted is one that is irrelevant to its purpose. 

Hence, the thought experiment fails to get off the ground in the first place. The second 

manner in which Maddy’s thought experiment misconstrues Carnap’s frameworks is a 

consequence of the first. The fact that these frameworks are neither used in scientific 

practice nor, a fortiori, in the context of the discovery of novel theoretical entities blunts 

Maddy’s criticism by denying the burden that she seeks to impose on them. Her objection 

                                                 

67 See, for instance, Horgan and Timmons’ (1992a, 1992b, 1993) use of the twin Earth thought 

experiment to argue against Boyd’s moral realism. 
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draws its strength from the idea that while using a framework in the backdrop of research 

concerning a novel theoretical entity, it is counter-intuitive to the point of courting 

absurdity for a scientist to consider the issue of incorporating the relevant theoretical 

machinery, correspondence rules, experimental procedures, and so on, as a pragmatic 

choice of language. However, once it is clear that this is not the proper setting for the 

employment of such frameworks, we are no longer required, as Maddy enjoins us, to 

think of the question of the existence of atoms as one of choice of language. In the 

context of the rational reconstruction of a theory—the proper context for the application 

of such frameworks—the need for an appropriate linguistic framework translates into one 

that contains the logical, mathematical, and methodological resources required to 

represent the phenomena at hand. In case of the atomic hypothesis, for instance, this 

requires a framework that can represent the kinetic theory along with its underlying 

assumptions—the Maxwell–Boltzmann statistics, the equipartition of the energy of the 

particles in Brownian motion, and so on—formulate experimental methods that can be 

used to test the theoretical hypothesis, and develop appropriate correspondence rules to 

link them. Such a framework is needed in order to represent the theory, and Maddy 

should have no objection to this. 

While he agrees that Maddy’s criticism of Carnap’s frameworks is mistaken, 

Demopoulos (2012, Ch. 3) is keen to the force of an argument that lurks underneath her 

thought but requires some development. He uses the idea of the Ramsey sentence to 

clarify this argument. The assumption underlying Ramsey sentences is one of a theory the 

non-logical vocabulary of which has been divided into theoretical and observational 

terms. Consider such a theory TC: 
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(TC)  [T1, T2, …; O1, O2, …]68 

where T1, T2, … represent theoretical terms and O1, O2, … represent observational 

terms. The Ramsey sentence of this theory is formed by existentially generalising over all 

theoretical terms: 

(TCR)  ∃X1, ∃X2, … [X1, X2, …; O1, O2, …] 

The crucial feature of TCR is that theoretical terms have been eliminated from it. 

Furthermore, TC and TCR are equivalent in that anything that follows from the former 

also follows from the latter. Hence, the Ramsified theory TCR has the same explanatory 

and predictive power as the original theory TC. Ramsey wanted to show that it is possible 

to formulate any theory in a language that does not require theoretical terms but conveys 

the same observational content. The motivation underlying such a move is that if 

theoretical entities can be eliminated from the expression of a theory without affecting its 

content, it can help avoid repugnant metaphysical speculation. 

With this machinery in place, Demopoulos poses a puzzle for Carnap (2012, 66). 

Given any theory, an archetypal realist and an instrumentalist69 would agree on its 

observational reports or consequences. Given its Ramsey-sentence reconstruction, the 

theory is reduced to nothing but its observational consequences. Hence, both the realist 

and the instrumentalist would agree on the content of the Ramsified theory. In such a 

                                                 

68 I have omitted symbolism for correspondence rules because this is not important here. 
69 Following Carnap (1966, 255), I define a realist as someone who thinks of theoretical entities posited 

by our scientific theories as “actual” in some supra-theoretic sense. An instrumentalist, by contrast, is 

someone who views theories, and theoretical entities by implication, as tools to organise observed 

phenomena that are useful but not “true.” 
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case, Carnap must conclude that the two disagree on an external question. However, 

Demopoulos writes: 

[C]arnap’s deployment of his Ramsey-sentence reconstruction should strike us as unsatisfactory: it 

portrays the question of the reality of unobservables as metaphysical; hence, one that should be 

transformed into a question of preference for theoretical vocabulary. But then it is difficult to see how 

the question of the reality of atoms—which are just a special case of unobservables—should not also be 

regarded as a question of linguistic preference. This is to relinquish at the level of the realism–

instrumentalism debate everything we struggled to sustain in connection with the work of Einstein and 

Perrin, since it leaves Carnap open to the charge that the question the atomic hypothesis raises can be 

settled by a choice of language. 

(Demopoulos 2012, 66) 

 

Hence, given the Ramsified theory, Carnap is faced with a choice of modifying or 

abandoning his distinction between internal and external questions, or maintaining on 

pain of absurdity that questions pertaining to the existence of theoretical entities, such as 

the atom, amount to no more than inquiries regarding the choice of framework. This 

argument highlights Maddy’s concern as well. Demopoulos thinks that Carnap does not 

have a satisfactory response to it, and hence formulates one on his behalf by extending 

the distinction between internal and external questions in the spirit of Carnap.70 

I propose and defend a modification of Carnap’s project for the rational reconstruction 

of science in Chapter 3 because I think that problems persist in this mature view. 

However, I do not think that the concern shared by Maddy and Demopoulos is one of 

these, and hence an appropriate response to it can in fact be found in Carnap’s work. 

While explaining correspondence rules in his Philosophical Foundations of Physics 

(1966, 234), Carnap claims that a theoretical entity can never be explicitly defined in 

terms of observational content. He then writes: 

There is no answer to the question: “Exactly what is an electron?” Later we shall come back to this 

question, because it is the kind that philosophers are always asking scientists. They want the physicist to 

                                                 

70 While I will not discuss it here, I should mention that I find Demopoulos’ solution unsatisfactory. 
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tell them just what he means by “electricity,” “magnetism,” “gravity,” “a molecule.” If the physicist 

explains them in theoretical terms, the philosopher may be disappointed. “That is not what I meant at 

all,” he will say. “I want you to tell me, in ordinary language, what those terms mean.” 

 

The claim here is that philosophers erroneously burden the scientist with providing 

definitions of highly theoretical terms such as the above in ordinary language, abstracted 

from the theoretical framework in which they are developed, verified, and subsequently 

used. Carnap thinks that the question here is improperly phrased. When a child asks what 

an elephant is, we can tell the child that it is a large animal with big ears, and can even 

show a picture. The temptation among philosophers is, by analogy, to think that 

theoretical terms can be similarly defined in familiar terms. We can describe an elephant 

as a large animal with certain characteristics. Why can we not do the same with an 

electron, say? 

The answer is that a physicist can describe the behaviour of an electron only by stating theoretical 

laws, and these laws contain only theoretical terms. They describe the field produced by an 

electron, the reaction of an electron to a field, and so on. If an electron is in an electrostatic field, 

its velocity will accelerate in a certain way. Unfortunately, the electron’s acceleration is an 

unobservable. It is not like the acceleration of a billiard ball, which can be studied by direct 

observation. 

(Carnap 1966, ibid.) 

 

Hence, what Carnap is resisting here is a definition and description of theoretical 

terms in a language alien to the ones in which they have been formulated, a context 

foreign to that in which they are designed to feature and function, and vocabulary that is 

simply not susceptible to yielding a precise or useful description. My suggestion is that 

Carnap’s resistance to definitions of theoretical entities in ordinary language is of a piece 

with his prescription to distinguish between internal and external questions pertaining to a 

linguistic framework. Both are motivated in part by the concern that speaking of highly 

abstract concepts beyond the context of a scientific theory in a language ill-suited for this 

is inaccurate, unrepresentative of the nature of a “reality” beyond the medium of 
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interpretation provided by the relevant theory, and can easily lead to the development of 

erroneous beliefs through misuse. This is reminiscent of Carnap’s discussion of 

philosophical concerns regarding the reality of numbers in “Empiricism, Semantics and 

Ontology” (Carnap 1992, 75). When philosophers ask whether there are numbers, they 

are not asking whether a linguistic framework in which numbers have been accepted will, 

if accepted, be found to contain any. Instead, they are making a pre-theoretic inquiry that 

is conceptually prior to the adoption of one or another framework. It is such inquiries that 

Carnap resists and wants to discourage. This is borne out in his discussion of the 

disagreement between a realist and an instrumentalist concerning theoretical entities: “To 

say that a theory is a reliable instrument—that is, that the predictions of observable 

events that it yields will be confirmed—is essentially the same as saying that the theory is 

true and that the theoretical, unobservable entities it speaks about exist” (1966, 256). Of 

course, it is reasonable to assume, for the sake of consistency with his enterprise, that 

Carnap is here speaking of answers to relevant internal questions. 

Nonetheless, Demopoulos would be correct in pointing out that in the same passage, 

Carnap refers to the disagreement between the realist and the instrumentalist as 

“essentially linguistic.” This reinforces the opinion that in spite of my clarification above, 

issues such as the acceptance or rejection of the atomic hypothesis for Carnap are 

determined by choice of framework. Briefly, I think there is nothing repugnant about this. 

On Carnap’s view, with regard to the Ramsified theory above, both the realist and the 

instrumentalist have the freedom to accept or reject a framework that countenances the 

assumptions required to formulate a theory that helps establish the existence of 

molecules, atoms, and the like. However, once they have accepted a framework, neither 
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has the freedom to make assertions internal to it without justification. As Carnap says, 

“Whoever makes an internal assertion is certainly obliged to justify it by providing 

evidence, empirical evidence in the case of electrons, logical proof in the case of the 

prime numbers” (Carnap 1992, 81). Hence, on Carnap’s conception of linguistic 

frameworks, the realist is not permitted to make extravagant claims about the existence of 

theoretical entities without providing requisite evidence, just as the instrumentalist cannot 

deny such a claim in the absence of the same.71 The choice of language is open to each in 

consonance with Carnap’s Principle of Tolerance regarding framework selection. I have 

more to say about this below. 

There is another reason for doubting the grounds for the concerns raised by Maddy 

and Demopoulos. Both claim that Carnap’s attitude towards the ontological status of 

theoretical entities reduces the issue of the reality of the atom—in a repugnant sense of 

the word—to one of mere choice of framework to adopt. In their view, this appears to be 

at variance with the fact that many scientists, such as Poincaré and Ostwald, were 

compelled to change their views about the ontological status of atoms following Perrin’s 

experiments: they did not believe atoms were real before, and had to subsequently 

concede that they were wrong. It seems injudicious to history to present this significant 

epistemological discovery as constituted by nothing more than choice of language. Since 

Carnap’s framework-dependent attitude yields this counter-intuitive result, they claim 

that his view of the issue is mistaken. 

                                                 

71 Friedman (2001, 258-9) makes a similar observation regarding the instrumentalist in the context of a 

Ramsified theory. 
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The above objection is premised on the following assumption about Carnap’s 

frameworks: that the mere inclusion of a term in the theoretical vocabulary of such a 

framework is sufficient for its interpretation and, hence, empirical verification. This 

assumption explains the setup that Maddy invites us to consider in her quote from a few 

pages ago. Assume that we have adopted a certain linguistic framework for scientific 

observation, and we are wondering whether to embrace a new theoretical entity called the 

atom. “As our current language has no terms for such things, no predicate ‘is an atom,’ 

no evidential rules with which to settle questions of their existence or nature, Carnap 

holds that this is not a question that can be asked or answered internally, that we must 

step outside our linguistic framework and address it pragmatically, as a conventional 

decision about whether or not to adopt a new linguistic framework” (my emphasis). 

There are two points to make here. First, the above is a misrepresentation of the historical 

circumstances surrounding empirical proof for the atom. As is evident from the work of 

Perrin (Chalmers 2009, 236-8), as well from reflective accounts of the issue offered by 

Stein (2014) and Poincarê himself (1946, 135), it is not as if the issue of the existence of 

the atom was resolved, or is resolvable, by the mere stipulation of a theoretical entity in 

the theoretical vocabulary. In fact, both Einstein and Perrin were working within a 

general framework that was acceptable to both energeticists and atomists at the time. This 

framework, nonetheless, allowed the resources for an empirical argument to be made for 

the existence of the atom. With regard to the discovery of the atom, the task of the 

framework—Carnap’s framework in the context of a philosophical reconstruction of the 

system—in that case was to allow for the conditions for the possibility of an empirical 

case to be mounted to the effect that matter is discrete rather than continuous. In this 
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sense, this case is analogous, although converse,72 to Maxwell’s introduction of the 

theoretical term for the displacement current described in Section §3.5. His consideration 

of the induction of magnetic fields by changing electric fields over time to amend 

Ampere’s circuital law did not require, in the context of Carnap’s or Carnapian 

frameworks, the adoption of a different framework requiring the stipulation of a 

completely novel theoretical entity alien to the apparatus of the system of electric and 

magnetic equations, as suggested by Maddy’s claim above. Instead, based on the 

experimental knowledge whereby charges can move from one place to another in general 

and a magnetic field always exists around a charge, Maxwell was able to introduce an 

additional term—m0μ0 ∂E / ∂t—to correct Ampere’s law. In sum, my first point is that the 

stipulation of a framework that contains a novel theoretical entity is not sufficient in 

Carnap’s frameworks to claim that such an entity exists, even as a response to an internal 

question to this effect. In fact, as I have explained in §3.4 while outlining Carnap’s view 

of the role of theoretical entities in his frameworks, a theoretical framework is an 

uninterpreted calculus prior to the introduction of correspondence rules that (mostly 

indirectly) connect theoretical terms with observational content. Furthermore, Carnap 

states that the question of the partial interpretation of theoretical terms, which involves 

formulating procedures for their measurement, is to be taken up separately for each 

theoretical term in the framework. Hence, the simple admission of a theoretical term to 

                                                 

72
 I write “converse” because while Maxwell provided a (general,) theoretical formulation to account 

for a mistake in Ampere’s law that he detected by studying the results of experimental observations, Perrin 

devised experimental procedures to test an alternative (theoretical) hypothesis about fundamental particles. 
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our vocabulary that may designate something called the atom is not tantamount to 

admitting atoms to our ontology as a response to a relevant internal question.73 

Still, one might argue, even if the historical case of the discovery of the atom does not 

map on to the objection presented above, and even if it is the case that the methodological 

apparatus used by Perrin to prove the existence of the atom was common to both 

energeticists and atomists at the time, one still may imagine a case where, with regard to 

Carnap’s frameworks, the existence of a novel theoretical entity is confirmed (or 

disconfirmed) by the mere selection of a framework that can accommodate the requisite 

verifying (or falsifying) procedures. This brings me to the second, more general point that 

is pertinent to both Maddy and Demopoulos’s general objection above: to wit, that there 

is nothing repugnant about considering the acceptance of certain entities in the stead of 

others in a framework as a linguistic choice. Carnap allows for two ways in which a 

response can be offered to internal questions concerning the existence of theoretical 

entities invoked by a framework:  

                                                 

73
 In fact, Poincare'’s reaction to the debate concerning the status of the atom is exemplary in this 

regard as consistent with a Carnapian manner of thinking of the ontological status of theoretical entities. 

Until Perrin’s experiments, Poincare' regarded the hypothesis that atoms exist as “indifferent” because they 

had no bearing on or relation to the empirical results obtained. This strikes me as very similar to Carnap’s 

notion of an “uninterpreted” theoretical term, one that has been stipulated in the framework but is not 

associated with observation in any way, direct or indirect. This also explains how Poincare' was even able 

to make the claim that he did not believe in the existence of atoms, as this presupposed a definition of the 

concept in his system. 

Following Perrin’s experiments, the atomic hypothesis transitioned in Poincare'’s thinking from being 

an indifferent hypothesis to an empirical one. This is borne out by the fact that the atom was in fact a 

concept/term in the frameworks that Poincare' worked with prior to Perrin’s experiments. Hence, it is not 

the case that he was compelled to accept the existence of atoms following Perrin’s work, where he had not 

done so before, but rather that he was forced to change his mind about the attribution of truth values to 

statements concerning an entity (atom) that was already part of the framework. In this sense, Demopoulos 

and Maddy can also be considered to be mistaken about the historical details of the change in Poincare'’s 

attitude towards atoms. 
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i. Formal (logical or mathematical) proof in case the question can be answered 

by these means. This would include questions concerning the properties of the 

logical or mathematical apparatus assumed in the framework, such as “Is the 

set of natural numbers non-empty?,” “Are there such things as potential 

functions?,” “Do certain structures assumed in the framework have certain 

formal properties?,” and so on. 

ii. Empirical verification, by showing that a theoretical entity articulated in the 

framework has a physical interpretation in terms of observation, where the 

interpretation is provided by coordinating principles or rules of correspondence 

that connect, typically not directly, the theoretical term with the relevant, 

measurable observational terms. This answers questions such as “Is there such 

a thing as an atom?,” “Are there gravitational waves?,” and so on. Answers to 

these questions are not forthcoming using formal proof, but require verification 

through the results of observation in order to have a physical interpretation in 

the framework and, hence, the theory. That is to say, a physical interpretation 

is a crucial condition for the possibility of answering questions of this kind. 

As is evident from the articulation and methods for the verification of scientific 

theories in practice, the procedures that constitute (ii) above form major portions of 

various areas of scientific inquiry. For instance, a part of the empirical verification 

required in response to the relevant class of internal questions mentioned above concerns 

all of experimental physics, devoted to data acquisition and data acquisition procedures. 

In the context of Demopoulos’s argument, claiming that the Ramsified theory TCR has 

the same content as the original theory TC, the tacit but crucial assumption in his 
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presentation of his objection to Carnap is that a theory is adequately and accurately 

captured through its articulation in first-order logic. However, this claim is at best 

contentious.74 Given the limitations on quantification and predication inherent in such a 

logical system, as well as the insistence on such articulations in a language of (typically 

first-order) symbolic logic, the idea seems to be that once a framework for the 

representation of a theory has been determined, linking a theoretical term with 

verificatory procedures in such a framework is easy or relatively trivial. In a similar way, 

Maddy’s objection assumes that the sole act of the stipulation of a theoretical term in a 

framework will yield readily available, or at least simple, methods for its partial 

interpretation through correspondence rules that link it to measurable phenomena. This is 

the most plausible reason for them to think it appropriate to claim that the question of the 

existence of atoms is a mere linguistic choice in Carnap’s frameworks. From a considered 

perspective of Carnap’s frameworks, this is too hasty. The assignment of a partial 

interpretation to a theoretical term is what accords it significance in Carnap’s 

frameworks, and it is precisely downplaying the methodological complexity of this 

practice that allows Maddy and Demopoulos to assume that interpreting a novel 

theoretical term is simpler in Carnap’s frameworks than is reflected by such episodes in 

the history of science as the discovery of the atom. In fact, it took a significant 

technological advancement—the invention of the ultra-microscope by Siedentopf and 

Zsigmondy in 1903—as well as years of work on experimental design for Perrin to 

successfully execute his groundbreaking experiments. In a sense, Carnap would agree 

that the existence of the atom is established as a consequence of the stipulation of the 

                                                 

74 See Psillos (1999, 60). 
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relevant term in light of his frameworks. At the same time, he would claim that 

experimental work by Perrin to answer a crucial, internal question about the existence of 

the atom in the affirmative was vital in terms of the provision of rules of correspondence 

that provided an interpretation of the theoretical term “atom.” He would also admit that 

this yielded a significant epistemological insight for its time: that matter should be 

regarded as composed of discrete particles that obey well-known laws in certain 

distributions. Of course, this is an answer to a question posed within a framework to 

articulate a physical theory that posits atoms. So long as one does not seek to ask a 

question about the nature of reality independently of any scientific framework, such a 

response should be considered satisfactory. If, however, Maddy or Demopoulos seeks to 

assert that confirmed scientific hypotheses make assertions about the nature of reality 

beyond the considerations that pertain to a corresponding framework, a stronger 

argument is needed for why theoretical claims made or confirmed with the assumption of 

an extensive, often abstract, apparatus should be assumed to hold without it. 

Hence, while the stipulation of a theoretical entity corresponding to the atom may be a 

framework-dependent choice, the assignment to it of an interpretation and, hence, the 

discovery or delineation of procedures by which it can be associated with appropriate 

observational terms as well as the methods to determine the magnitudes of these latter 

terms, while framework dependent in a sense, constitute a far-from-trivial exercise. This 

leaves room for the scientist and the philosopher to make insights that can be considered 

to be genuinely epistemically significant, with the proviso that they remain internal to the 

framework in question. Hence, contra Maddy and Demopoulos, there is no reason to take 



 

 122 

issue with the fact that the existence of the atom is determined by choice of framework in 

Carnap. 

 

4.5 Conclusion 

In this chapter, I have offered a response to the third major research question guiding 

my project in this dissertation—What can we conclude about the nature of mathematical 

entities employed in a theory from its success in representing phenomena, and how ought 

the anticipated philosophical benefit of such inquiries shape our preferences concerning 

research questions in the discipline? By way of response, I presented in §4.1 and §4.2 the 

attitudes of Quine and Carnap, respectively, to ontological questions regarding theoretical 

entities in the milieu of scientific theories. Using the Indispensability Argument as an 

instance, I then showed in §4.3 how a commitment to the Quinean view of ontology in 

science has led to debates in the literature where there appears to be no consensus on 

satisfaction conditions that would be acceptable to all parties to the debate. Hence, the 

philosophical and methodological profit to be drawn from debates of this kind, grounded 

firmly in a Quinean outlook on the world and science, is suspect at best. On the contrary, 

Carnap’s deflationary position on ontological questions that flows from his conception of 

frameworks for the reconstruction of scientific theories demands precisely the sort of 

methodological clarity that is absent in Quine, and hence is superior for the pursuit of 

research questions in the philosophy of science in general. 

Finally, in order to underline the contemporary relevance and effectiveness of 

Carnap’s distinction between questions that are internal to a framework and those 

external to it, which helps identify and dismiss misguided metaphysical inquiries as 



 

 123 

meaningless, I defend this distinction in §4.4 against recent concerns raised by Maddy 

and Demopoulos in the context of experimental proof for the existence of the atom. The 

general concern shared by both is that Carnap’s view of ontology in science tends to 

unfairly trivialise instances of genuine epistemological discovery in science as a simple 

consequence of choice of linguistic framework to reconstruct a given theory. I have 

pointed out in response that such an objection presumes that the assignment of an 

interpretation to theoretical entities in Carnap’s frameworks as well as in science is a 

straightforward matter. Since neither scientific practice nor Carnap’s description of the 

mechanism of the assignment of physical interpretation to theoretical entities in his 

frameworks suggests that this is the case, there is no reason to accept this presumption. 

To the contrary, Carnap’s frameworks impose stringent demands on their users, 

regardless of their ontological predilections, to clarify their assumptions and support their 

claims with the necessary evidence. Hence, the distinction between internal and external 

questions in his linguistic frameworks does not misrepresent the significance of such 

epistemological achievements as the atomic hypothesis.  
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5 Conclusions 

5.1 Responses to guiding questions 

I had motivated my project in this dissertation at the outset by asking three general 

questions in §1.1 concerning the role and nature of mathematics in scientific 

representation. My aim in posing and considering these questions has been to illuminate 

certain explanatory ways in which mathematics can contribute to scientific 

representation, and highlight shortcomings in contemporary proposals that claim to be 

all-encompassing in this regard. Furthermore, I have sketched and defended a proposal 

for the treatment of theoretical entities in scientific frameworks in the spirit of Carnap, 

and have argued that adherence to such a conception is beneficial for research in the 

philosophy of science, particularly in the context of ontological debates regarding the 

status of theoretical entities invoked in scientific theories. 

By way of responding to the first of the questions posed in §1.1—How does 

mathematics assist in scientific representation?—my examination of the accounts of 

mathematical explanation put forth by Kitcher and Bueno and Colyvan in Chapter 2 

yielded a number of insights. We saw that there are at least two general ways in which 

mathematics is explanatory in scientific representation by drawing on the work of 

Pincock and Kitcher, and examining episodes in the history of science: i) connecting 

different phenomena using mathematical analogies, and ii) isolating recurring features of 

phenomena through acausal representations.75 An instance of the first is the famous 

Königsberg bridge example, considered in §2.3 in the context of the mapping account of 

                                                 

75 Pincock (2012, §3.2) also thinks that mathematics can be explanatory in science by tracking causes. 
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explanation. This is a steady-state representation, one where the main features of interest 

of the representation do not change over time. The second kind of explanatory 

contribution results from employing the mathematical structure used for one kind of 

physical system to represent another kind. The interesting aspect of this practice is that 

the target systems are fairly diverse and have little in common as physical systems, but 

are unified by their common mathematical form. As examples, we saw in §2.2.1 Fisher’s 

mathematical analogy between biological populations and the representation of ideal 

gases in statistical mechanics, as well as the mathematical framework common to 

Laplace’s equations representing the velocity of irrotational fluids and the forces acting 

on electrostatic charges in an electric field, among other phenomena. In addition to their 

use in appropriately conceptualising intractable problems and clarifying 

interdependencies among the variables involved, Pincock has claimed that a benefit of 

such analogies is that a small amount of experimental testing to confirm one of the 

above-mentioned representations would lend it a larger confirmational boost than if it 

were not mathematically related to the other representation, assuming that the latter has 

been successfully confirmed. Thus, little testing of the electrostatic case lends it far 

greater confirmation than would be the case if it were not linked to the representation of 

irrotational fluid flow. This is because “the independent confirmation of the way the 

mathematics is deployed for the fluids gives the scientist a template against which to 

judge the success of the electrostatic representation” (Pincock 2012, 79). 

Furthermore, my critique of the unificationist account proposed by Kitcher and the 

inferential conception of Bueno and Colyvan helped reveal that on account of structural 

shortcomings, both are inadequate as their corresponding frameworks for representation 
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are too restrictive to accommodate a number of kinds of explanatory contributions of 

mathematics to science and historical as well as contemporary instances of application of 

theories. One clear desideratum of a framework that can appropriately represent 

mathematical entities that emerges from my examination is that it appropriately reflect 

the structure of scientific theories, specifically theories of physics. It is this conclusion 

that prompted question B posed in §1.1— Is there a promising philosophical account 

available to represent the theoretical/mathematical entities employed in our scientific 

theories in order to help clarify and explain their role?—as well as my proposal and 

defence of a Carnapian framework for the representation of theoretical entities in 

scientific theories in Chapter 3. On the one hand, my choice of the linguistic frameworks 

of the sort proposed by Carnap was dictated by the need for a representation capable of 

adequately representing scientific theories. As we saw in §3.4 and §3.5, Carnap’s detailed 

proposal for the treatment of theoretical terms appears to be faithful to the reasoning 

deployed in formulating such theories and sensitive to the various considerations at play. 

In fact, a careful treatment of the popular criticisms of Carnap’s frameworks in the 

literature showed that these were based on a similar disregard for the details of scientific 

reasoning to the kind found in the proposals of Kitcher as well as Bueno and Colyvan. On 

the other hand, my departure from Carnap’s exact view of theoretical entities in his 

linguistic frameworks—what renders my proposal Carnapian—was motivated by the 

same desire to render such frameworks even more harmonious with scientific reasoning 

and practice. First, the ease of use of models, in accord with a semantic view of theories 

in contrast to the syntactic view advocated by Carnap, as well as their widespread 

employment in theoretical and the applied sciences, prompted my adoption of these in 
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§3.2. Second, my emphasis on a bottom-up methodology to investigate the role of 

theoretical terms in scientific systems, as opposed to the general, top-down approach 

favoured by Carnap, was driven by a similar desire to capture all the important features of 

scientific reasoning and practice. The idea is to compare the structure of theory with 

instances of its application to render the former better informed and more reflective of the 

latter. As my treatment of Maxwell’s discovery of the equations of electromagnetism in 

§3.6 showed, such an approach offers considerable reward, particularly by way of 

clarifying the interdependence of theory and experimentation in science. Lastly, my 

proposal in §3.7 that Carnapian frameworks take cognisance of the dirty details of the 

establishment of relationships between models of the theory and those of the data, as well 

as the manoeuvres involved in rendering each tractable to computation in the first place, 

is motivated by similar concerns. I should clarify that the above is intended to point out 

the ways in which my proposal departs from Carnap’s approach while remaining firmly 

embedded in the general insights and framework supplied by his genius. It is certainly not 

intended to be anywhere near the final word on fruitful representations of physical 

systems in philosophy. Instead, the above considerations are meant to act as a 

springboard for future research into such questions, especially for philosophers 

sympathetic to the approach sketched above.  

Furthermore, in response to the final question posed for my project in this 

dissertation—What can we conclude about the nature of mathematical entities employed 

in a theory from its success in representing phenomena, and how ought the anticipated 

philosophical benefit of such inquiries shape our preferences concerning research 

questions in the discipline?—I endorse in Chapter 4 Carnap’s approach to ontological 
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questions concerning theoretical entities in science, whereby such questions, as they are 

typically formulated, evince a confusion between inquiries that are meaningful within the 

context of a framework and those that are not. I then make a pragmatic argument to the 

effect that Carnap’s response to questions regarding the ontological status of theoretical 

entities in science, based on his linguistic frameworks, is preferable in framing and 

investigating philosophical problems to Quine’s approach to the issue. To this end, I 

show how commitment to a Quinean epistemology, and hence a subscription to his view 

of theoretical entities in science, has led to misguided discussions such as the 

Indispensability Argument debate that offer neither a satisfactory resolution nor any 

methodological boon. It is thus to the benefit of research in philosophy to seek guidance 

from the approach of Carnap rather than Quine. 

 

5.2 General philosophical lesson 

I also hope that the reader can see a general philosophical lesson in my work in this 

dissertation. The tendency to consider theory in isolation from considerations pertaining 

to its practical implementation is by no means unique to the philosophy of science. In 

fact, if anything, this has become second nature in a number of issues in meta-ethics, 

normative ethics, the philosophy of mind, and many other areas. In ethics, for instance, 

such an approach is evidenced in the absence of any methodology regarding the 

formulation and assessment of an ethical theory. This results, first, in the approval of 

crude heuristics76 as competent substitutes for a careful methodology and, second, in the 

                                                 

76 The Open Question Argument due to Moore (1903) is representative. 
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acceptance or dismissal of theories based on extreme and unrealistic problems that 

occupy the periphery of our experience and, hence, our ethical considerations.77 This 

yields discourse that is as unfertile as the Realism–Anti-realism debate in the philosophy 

of science,78 without a clear idea of or agreement on the formulation of the question at 

issue, the standards of evidence considered acceptable, and the implications of the 

possible outcomes in the context of practical life.  

Insofar as the general considerations of my work are transferrable to other domains of 

the subject, this dissertation should be considered to espouse method and detail in our 

pursuits in philosophy. 

                                                 

77 An apt example is the famous trolley problem. See, for instance, Foot (1967), Thomson (1976), 

Unger (1996), and Singer (2005). 
78 I suppose the best instantiation is a homonymous debate in meta-ethics. See Sayre–McCord (2015) 

for a summary. 
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