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THE FINITE SAMPLE PROPERTIES OF OLS AND IV ESTIMATORS IN SPECIAL

RATIONAL DISTRIBUTED LAG MODELS

R. A. L. Carter and Aman,Ullah1

University of Western Ontario

1. Introduction

A popular model in economics is the rational distributed lag model
proposed by Jorgenson (1966). In this paper we deal with the version of this
model in which the polynomial in the denominator is of degree one. Popular
special cases are the geometric distributed lag model of Koyck (1954) and
Nerlove's (1958) adaptive expectations model. The coefficients of such models
are sometimes estimated by ordinary least squares (OLS), which ignores the
correlation between the right-hand lagged dependent variable and the auto-
correlated disturbances and is, hence, inconsistent. Alternatively, Liviatan's
(1961) instrumental variables estimator (IV) may be used to obtain consistent
estimates. Some small sample properties of IV have been derived by Nagar
and Gupta (1968) and by Scadding (1973). The aim of this paper is to derive
exact and small o asymptotic properties for OLS and small o asymptotic properties
of IV.

The main results of the paper can be summarized as follows. The exact,
and approximate bias and mean squared error of the OLS estimator are derived
and it is shown that, with the sample size fixed, OLS converges to the true
value of the parameter if the noncentrality parameter of its distribution

increases indefinitely; that is, as 0 grows small. With regard to the

IV estimator we note that its exact moments, to any order, do not exist. An

approximation to the exact distribution has been obtained which is centered on the



true paraﬁeter. When this approximation is valid we are able to give the dis-

tribution of the IV estimates of the coefficients of the exogenous variables,
In section 2 we present the model and its assumptions. Then in

section 3 we analyze the exacf and approximate moments of the OLS estimator.

Finally, in section 4 we consider the distribution of the IV estimator.

2. The Model

We begin with the assumption that the values of y, are independent

drawings from normal populations with constant variances but varying means. -
2
(201) yt ~ N(p,t,O' ) fOI‘ t= 1,..0,T

Next, we assume that ut is determined by a linear function analogous to a regres-

sion equation
xI
(2.2) by =YW +XB

where Xé is a non-random 1xK vector, p is a Kxl vector of unknown coefficignts, Y
is an unknown scalar coefficient, and My and W..1 are unknown means of Ye and Vel
To ensure that the process described by (2.2) is stable we assume

(2.3) lv| < 1.

Now Ye can be written as

(2.6) oy = w N =y FXBHT,

YO gt M) FXB T - YT

= ! =
YY1 FXBHE, t22,...,T,

]



'n
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where Ct = 'ﬂt =Y nt-l and 'nt is an independent drawing from N(O,crz). Therefore,

Et follows a first order moving average scheme with

(2.5) EE =0 and

2
2.6)  var) =E( -y T,_D% = (A +y))o

The covariance of St and SS (s <t) is

(2.7) E€, €5) = EM, - v M_)(Mg - v T_y)

2
{,
0

Therefore, the coefficient of autocorrelation 1is

ifs=¢t -1

ifs<t -1

EE€, € -y

A+ 1+y

(2.8) r€, €. ) = 2

This moving average process may seem to be unduly arbitrary,
However, it is solely the result of assumptions (2,1) and (2.2), and (2.2)
can be obtained in several appealing ways, First, consider a Koyck (1954)

type distributed lag model which has been specified in terms of (instead
He

of in terms of the random yt)
(2,9) .= +a,z, + LAz +ak2z +
. t Yo T A TR F A2 5+ .l

This model says that the mean response, My s is a function of the present

value and all past values of an exogenous variable, z,, where a& and ),

0 < X\ <1, are unknown coefficients, Then, applying the Koyck transformation

we have
(2.10) by = Ape + [L,z.] | (-0,
1

which is of the form (2.2) with y = ), xt’ =[1z]andp-=|(l-Na

1



4
A second justification for (2.2) is the adaptive expectations
model of Nerlove (1958).

*
(2.11) Wy = Q)+ Q) P

* % *
(2.12)  p, =P,y =6 _; - P._

1 0<ssl )

which says that the mean response, Mg > depends on expectations about the future,
* A

P> and that these expectations are adjusted by some fraction of the extent to

which past expectations were in error. By substitution and transformation, this

model can be reduced to

(2.13)  p = (Q-6dp,_; + [1p, 4] fab
0:16

which is of the form of (2.2) with y = (1-§), Xé =[1 pt_]] andp = |a 5| .

a,é

1
More generally, consider the rational distributed lag model, Jorgenson (1966) ,

in the case that the polynomial in the denominator is of degree one.
J

z a, . ) -
i=1 5Lz, g <y <
(2.14) 'J't = T—yL » 0 Y ’
where OG(L) is a polynomial in the lag operator L and ztj is observation t on
J
exogenous variable number j. This is of the form (2.2) with X, B = .ZHOB(Ltaj.
J=

3. Least Squares Estimation

It is convenient, at this point, to rewrite equation (2,4) in matrix
notation

(3.1) y=yy_1+XB+€

where y is an nxl vector of independent random variables Ye ~ N(p,t 02),‘n =T -1,

y_; is an nxl vector of independent random variables Yeo1 ™ NO*t 1,02), X is

an nxK matrix with non-random rows Xé, and £ is an nxl vector of moving average

disturbances, The OLS estimates of y and B are obtained by solving the equations



(3.2) eyly,+y Xb=yly

(3.3) cx'y_l +XXb=X"y

OLS will not be consistent in this application because
’ '

(3.4) yE= v N, -y bl Tt pHT+ G T

(where B_po T and n-l are nxl vectors of elements e 1> ﬂt and nt-l) and we
-1 ¢

cannot reasonably expect to have plim n 1“;1"-1 = 0, Nevertheless, we will

consider the OLS estimator of y, c, and present its exact moments,

Equation (3.3) can be solved for b ﬁhich can then be substituted into

(3.2) to obtain:2
Y’_ My ’
(3.5) c=——T < Z,D,NM’S
YoMy, Z11f

where M =1 - X(XIX)-IX' is an idempotent matrix with rank h = n-K,

It -

D, = [In 0] and D, = [0 In]. That is, D, and D, are nxn identity matrices
bordered by columns of zeros., N and D& MD1 are both symmetric and Di MD1 is

idempotent of rank h so that we can find a TxT orthogonal matrix P such that

I 0
(3.6) PD, MD, ¥ =| B ,
11 o 0

where Ih is an hxh identity matrix, Now let

8 (S
3.7) Pz = ~ N(Pz, I,) =N ._) I
( Z ¢ T e ] T

where z = Ez, s = Es, t = Et and s and t are vectors of hand m =T - h =K+ 1,

elements respectively, Also let



A
(3.8) PNV =

C B
where A and B are square symmetric matrices of order h and m, respectively,
and C is mxh, Then we can write

NPPz _s'As+2t/Cs+tBt
!
S 8

(309) c = =7 z,'P'

Now s’ s has a non-central XZ distribution with h degrees of freedom and a

non- centrality parameter

4
- - . . W My
(3.10) g =3a's =42/ D, M, z =—L -1
1™ 3 .

Also

A Ccl|s| WoMp vyl My
G.11) [ ] =3 Nz =-—L el _ "1 ooy,

- 2 2
C B t (o (o

since M =yMp._1.

Remembering that the elements of t are independent of those of s, we.

expand (3.9) to obtain

2

h s h h S.s mh s
= i i ‘
(3.12)_ Ec = ;f a4 E(—-;—s s) + i&z 2y E(—,——*L’s S Y+2ZZ c1j Eti E(—-,ls s)
] S A .
Bk I b, Fe E(-r-l);;le(t
+ s'8” if(ti)+ s s 194 i it.‘p ’

Using (A.5), (A.7), (A.8) and (A,9) from Appendix A gives

1]



hh
-2 ZZXa

h
(3.13) Ec=%Za, (s fl 9 fO,l) + & 17 51 % f1’2
i i#3
f m m

mh

- - -1.0
+ZZe¢,, t, s, £ +——-=—[Zb (1+t)+22b t.]
i3 i i 73 To,1 2 1 141 ij 1 j

. + = ! -
¥ g(tr é +2t' C s)fo,l + #(t’ Be + tr B)f_l’o

-, - i -y - i
vyoef +t' C S(fo,l 1 2) + * *t' B t(f-l,O f1,2)

1,2

+3tr Af . + tr B f

0,1 -1,0°
Using the asymptotic expansion3 of the confluent hypergeometric

function in (A,6) we can write functions like fo 1’ f1 2 efc., up to
Vs ’

order ;% (or order 04), as
e

oo A-8)(1-3-6)  (u-8) (r-&+1) @25 18-
G.14 fs:'& =8 -,_1 + 6 * 292 ] .
Substituting (3.14) into (3.13) gives, up to order 02’

1 5'Qlé
(3.15) E€ - y) = [gtr N - zy]'e- + ——9—2—

0 0
wheretrA+trB=trPNP'=trNandQ1=P'I: :lp. SinceE'Qli is
C B

of order 0—2, and all other terms inside the square brackets are of order
1, Ec» Y as 8 = » by 0 » 0, with n fixed. That is, for a given n, as the

random component .of y shrinks Ec approaches Y.



To f£ind Ec2 we first expanded c2 (see Appendix B). then took expectations
and simplified to obtain

3.16) B’ =y el g, S+ @ CHE ADIE -5, )
+BE BEE A+ ( ¢ E)zl(fo’z - £, )
H@ BOE CE, - £ )+ BE B 2)21<f_2’0 W

+BG" A s)(er A) + & 2% 5+ 28 A, As -3 Af §]f153

- - - ., - - - 2
+[2t' CAs+t' CA, 8+ %(s’ As)(r B)+ g ¢ Cs +#(tr A)

+ $(vec A) (vec MIE, 5

+[#@® BE)erA)+ ' CcC t+ 2t BCs+ (& Cs)(tr B) + tr(cC)

+ §(tr B)(tr A)If; 4

+[2(t’ B t)(tr B) + 4t’ BB t + 2(vec B) (vec B) + (tr B)2]4_‘5_2 0

where A_ 1s a diagonal matrix whose non zero elements are from the main diagonal
of A, A, 1s a matrix with the vector [au a22...ahh] for each column and-vec A
(or vec B) is the h2x1 vector of all the:elements of A (or B),

2
Using (3.14) we can write the series expansion of Ec , up to order 02,

as (see Appendix B for details)

[



(3.17) E2 =y’ - (@i + 2)y2}% + (3G Q, 2)(tr W)

+2 ¥ 3+ (er B+ 2v)3 Q12+§'(2A*A-Af)§+i:' CA,, s

: + ¥ 138 + } tr(B)BIE)S
S
where
A0
Q =¥ P,
2 0 B

The term (h + Z)Y2 inside the first set of curly brackets on the right side of
(3.17) is of order one, The terms within the second are of order 0"2. Since
6 and 92 are of orders 0'2 and 0'4, respectively, Ec2 - yz as 0 - 0, that is as
8 - o,

We conclude from (3.15) and (3.17) that

(3.18) lim E(c - y) =0
o0

and

(3.19)  1lim E(c - y)2 = 0
o0

from which it follows that c converges in probability to y as o - O,

We now consider the first moment of b, Using (3.3) and (3.1) we have

w0 Ky - @ IRy mp+ - Q@O Ky + DT Xe

(3.20) b

B+ oy - c)(x’X)'1 ).« D, Y Pz + (x'X)’1 Xe
S

=8+ oy - ¢)L
t

] + (X'x)'1 X €

where L = (X'X)-1 X D1 P. Consider any element from this vector, say the

. first, Its expectation is

s

= ’ - ’
(3.21) B =B+ ovhy) | - o E(ehy | )

w

t

where z’l = [d’, e'] is the first row of L which is partitioned to conform to



10
.S S
. Ecld’, €] is obtained in detail in Appendix B, The expectation
t t

which results is,

(3.22) Eb ='Bl+0'y(d' s+ e t) - oy §6f23+e' tef
. t

1 1,2

- o{ (® &)@ 8 ,- £, 4)+ @ C s) (e’ £)(fy 1 - £ )

e 4 i T - o 4 + 3 -
+ 3@t Bt)d 8)(£5 4 f2’3) + 3@ Bt)( t) (f.l’0 f1,2)
+ [d As +(tr A 8)If , + [t Cd+ e Ca+g(tr A)(e t)

+ #(tr B)(d’ E)]fo 1+ [ Bt + #(tr B)(e E)]f_l o}

We can now use (A.6) to write the terms, up to order 9-1 of the series,

like £ etc., which appear in (3.22), After collecting terms we have

2,3 1,2

(3.23)  Eb, =8, + c{lgl(d' s+e E)+yd 5 - R(erN)@ s+ e b)

8
+0d SIPNP | }%-c{(l-h)i' Q (@ 5+ ¢ )
t

F2G QD D+ @ BD@ S+ D1 + 0™,
0

The terms inside the first curly bracket are, after multiplication by o, of
order one., The terms inside the second curly bracket are, after multiplication
by o, of order 0'-2, while e'j is of order crzj. Therefore if § = @« by 0 - 0
lf-:b1 - Bl. That is, for a given n, as the random component of the model shrinks
Ebl approaches 8,

If we wish to consider the distribution of b as ¢ = 0 we must

standardize equation (3,20) to obtain

{0
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.20 lo-me=@-o@n TR e DX E
Now (X' )()'1 ) o D, z is multivariate normal with means vector (X’ X)"1 X M.y

and covariance matrix (X’ X)-1 X/ D, D'l X(X'X)-l = X' X)-]'. Also %’_(X' )()-1 X ¢

is multivariate normal with a zero means vector and a covariance matrix

(0.4 x)'1 X v x>'1 where

F‘1 + Y2 -y 0 0 T
-y 1+ YZ -y O 0
(3.25) V=
0 -Y
2
L 0 _ vy 1l4vy __{

Neither of these two multivariate normal distributions depend on 0'2. Further-
more, from (3,18) and (3,19), (c - Y) converges in probability to zero as
0'2 - 0, Therefore, %_(b - B) converges in distribution to -};(X' X)-l X € as

0'2 - 0, Hence, as 0‘2 grows small b is approximately normal and unbiased with

approximate covariance matrix o2 x’ X)"1 X v X)'l.

4, Consistent Estimation of y

Liviatan (1963) has proposed two consistent estimators for models like
(2.4). The simplest of them uses a lagged exogenous variablef‘ W, as an

instrument to produce the normal equations.

4.1) ?w'y_] +w'Xé =w'y
(4.2)  yX'y_, +X'%8 =X’y
from which

S_w/My _u
(4‘3) Y= W'My_] u]

2 - 2 2 - 2
where u ~ N(w/Mu, 0 w/Mé) = N(u, @), u, "'N(w'Mp,_], g w/ Mw)= N(u1, w’) and
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!

- - - 2
E(u-u)(u1 -u] )' = o-zw’ MDZ Mw = pw where p is the coefficient of correlation

between u and ;. Under (2.1), this ratio has a distribution of the typé'described by

- P T

Fieller (1932) which has no moments of any order. However, if ___u_)_ < 1/3 the

%

[t}

distribution of ¥ can be approximated by (Scadding (1973)).

. w[(up u)+(upu)vl - (u- uv)
(4.4) f(y) = exp {

/;n[w (y -2yp +1)] 20 (Y -2yp+1)

}.

When this approximation is valid §' is nearly unbiased (Nagar and Gupta (1968),
Carter (1976)). Higher moment can be obtained from Merrill (1928).
Scadding (1973) and Nagaf and Gupta (1968 analyzed the distribution of

; only, We wish to consider the distribution of ’é So we use (4.2) to obtain
A ’ -1 ., iy |

%5 B=o NTXE-Yy .

Its sampling error can be written as

1. _ . -1 1 -1
(4.6) <G -p)=( -V X)X D oz + & X)X E,

Ifoc-0 (hences_9 - 0), :(.. y and the distribution of B - B approaches to that
"1
of %_(X' X)-IX' € which is the same as the limiting distribution of -ol_(b - B)
as seen at the end of section 3. Then, like b, as o - O the distribution of

ﬁ is approximately normal with means vector B and covariance matrix

oz(x' X)'l X v X)'1
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5, Conclusions

The coefficients of a rational distributed lag model with a first
degree polynomial in the denominator can be estimated by least squares or
by instrumental variables. This paper presents some exact and asymptotic
properties of these estimators,

We find that the OLS estimator of the coefficient of the lagged
dependent variable converges in probability to the true value of the coefficient
as O, the non-centrality parameter of its distribution, grows large; that
is as 0, the standard deviation of the errors, grows small, Also, as o
grows smalx, the OLS estimator of the coefficients vector of the exogenous
variables becomes unbiased., In addition, for small o, the IV coefficient
estimators possess these same properties. These findings suggest that when
both the sample size and the error variance are small OLS is a useful

estimator which is not inferior to IV,
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APPENDIX

A. Expectations Required in Section 3

Let ZyseessZy be independent normal variates with

1]

(A.T) E z, = ;i and Var z, = 1 i=1,...,T

Then we know .that the distribution of

(A.2) W=2 Bz,
where 2/ = [z],...,zT] and B is idempotent with rank h, is 'noncentral chi-

square' with h degrees of freedom and the parameter of noncentrality
(A.3) 9 =47 Bz

The density function of W is given by

0o 2 g° A(r2m) =1 -2y .
ml ,3(M+2m) » DSWse.
m=0 2 [ (h+2m) /2]

Therefore, if h/2 > r [see Ullah (1974, p. 147)]

(A.4) f(W) = e

-}
-r _ —r = -r -
(A.5) EW = J‘o W fW) dw = 2 f_r’o ’ r=1,2,...
where

- _ :
a6) g =TBEEB O r 2 465 /2 4 vs 0)

and writing § = -r, v = 0, we get f-r,O and so on. The function ]F1( ) represents

the confluent hypergeometric function.5
The expectations required in Section 3 may now be stated as follows:6 *
(A.7) E(zi W')=2 z; f-r+4,l



(A.8)
(A.9)

(A.10)

(A1)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A7)

15

2 _~r -r =2 .
E(zi zj W) =2 z, 'j f-r+2;2
3 -r -r =3 -r -
E(zi W')y=2 z; f-r+3,3 +3x2 z, f-r+2,2 s
2 T, _ ,"r =2 = -r =
E (zi zj W) =2 zg zj f-r+3,3 + 2 zj f-r+2,2
i#j
E (2,2, W)=2"222 f
1#i#k i%j i7] -r+3,3
4 -r. __-r =4 -r =2 -r
E(ziw ) =2 z; f_r_’a’4+6x2 zg f_r+3’3+3x2 £
3 r, _ ,=r =3 = r = =
153(21 zj W) —‘2 zy zj f-r#&,& +3x2 -z zj f-r+3,3
2 2 er. _ er =2 =2 “r =2 , =2
155(21 zJ. W)=2 z; zj f-r+4,4 + 2 (zi + zj) f-r+3,3 + 2
2 T, _ ,T =2 = = “r - =
i#?#k(zi zj zk W) =2 zi zj zk f-r+4,4 + 2 zj zk f_r.*_:,,,3

E (z, z, z W-r)=2-r; z, z, f
AL B Ze %4 1% 5 % tera,4

"r+2 ’2

-r
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B, The Evaluation of Useful Expectations

The first step in finding Ec2 is to expand c2 as:

(B.1) 2 =—1L
(s’ 8)

2[(S'A 3)2 + 4(t’ Cs)(s’ As)+ 2(t' Bt)(s’ A s)

+ 4(t’ C 5)2 + 4(t’ Bt)(t' Cs)+ (t' B t)zl.

Keeping in mind the symmetry of A and B, the terms inside the square brackets

can be expanded7 as

)

(B.2) (s’ A s)2 ‘gaii sl;+ 42’.;&11 254 51 84 + 2 gg?‘.au a4 si 8y 8
1 i#3 1£§#k
+4;;;a a szs s+;l};‘.‘a a 8282+2121'.;a2 32
PPt ik °1 %3 Tk Ty 11733 7Ly Print e
hhhh
+ZXXZXZa

8, 8, S, 8
1£1fkte 13 "kt "1 73 "k "

.mh
3
¢ ’ =
(8.3) (t/ Cs)(s’ A s) izicikakkti sk+

h 2
Zc a t, s s
Ak ij "kk 1 'k j

=~ m™MB
e M

e =2

h h 9 h
ZXe¢,,a,, t. 8,8, + 2 Xc t, s, 8, 8§
PPPRES I P I ik 1] ks "1 %3 %k "2

= ™MBE

o
oM

g W
(B.4) (' cs)" =2
i

ikcjl,ti tj sk sz

mh
2
’ ’ = ‘
(B.5) (t" Bt)(t' Cs) be “ c.‘ll ti t:j 8,

mmnh :
+§Zz§bu"kzt t,. t, s

i3k 42"

.

s
£

\e
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Since t, ~ N(Ei, 1), the moments of t:l. are

1
(B.6) Eti =1+ 8

B.7) Bt = &)+ 3¢,

(B.8) Et: = Ei + 6Ei + 3,

Using (B.1) to (B.8) together with (A,5) to (A,17) we can write the

exact second moment of ¢ for h > 4,

(B.9) 2=l;a ('af + 632 £, , + 3f )+'
. c P 51 f2,4 11,3 0,2
h h 3 - o
+ZZX a, aij(si 5 f2,4+ 3si S f1’3)
i#g
hhh P o
+2ZZZ (a;y gt 2a1_1 a5 (8 8y 8y f2,4 + 8y 08 f1’3)
i#j#k
hh 2 -2 22, -2
+3 ?é‘ (a a4 jj'i'Za )[s 1 %] f2’4+ (sy + sj)f1,3 + f0,2]
hhhh ) m h -
++z:tr2%a,a ,5,8,8 s £ ,+ZZc, a,,t (s +3s, £, .,
ihfchg M ke LY k “g 72,47 7 P i1 %33 j 1 3 j t0,2
mhh
+ZZZec,; + 2a, )t £
vy ¢4 @k ajk) (sj k f1,37* S 0,2
mhhh o
+4ZZXZ¢,,a , t, 8,8 s f
{ jhchg 11 ke LS kg 1,3
h -2
+ §[§ bii(l + t ) + 12 bij ti tj][i aii(si f0,2 + f-1,1)

i=j
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mh 2 2 mmh 2
+ 22 A +tS)+Z22%¢, ¢, €, 8, ]G E, .+ £ )
{1 ik 177y ik gk LS S I
mhh .2 mmhh
+ [ZZZc¢c,,c,, A+t)+ZZZZc t.)s, s
i kpp 1k 12 107 UH e ik ©j4 1 tyds Sy o 2
h m m m 2=
+z:[2:b:li i!'(t; +3t)+z>:(bucj£+ 2bi-1 ciz)(l"'ti)tj
4 1 i#j
mmnm - - - _
+ZZZb,,c . t, t tls f
f_2 2 -2 ‘m m
+—-4—{>:b (t +6t +3)+4ZZb . b (t +3t)t
it i3v 4 3
i#]
mmmnm
+22Z2Z[(® )(1+t)t t ]
194 ii jk ij 1k j Tk
mim
+ ZZ [ +2b 1 1+t
i#y
mmmm _
+Z22Z%hH ﬁ. -

b, t. t, t
iFfcpy kA1 )k

In moving from (B.9) to (3.16) we have used (B,2) to (B.5) as well as

the following equalities:

(

[0
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L. h , , hh , bh
(B.10) (s’A s)(trA) =L a, 8, +Z%a,,a,, s +22Za,, a,, S, s
i i1 1 14 i1 j3 1 1#4 iy 41 i 73
hhh )
z Xz e
+ il#jq‘ aij akk si sj
., . hh , , hhh o
B. =
(B.11) s’ A® s fiaiksi*.féiaikajkaisj
. _ b, , hh
B. =
(B.12) s’ AL As i‘.an si+}13*§an a:[.1 sy SJ
-, _ mh - mhh -
(8.13) t# CAs=2Zc,,a,, t, 8,45 % %¢c,, a,, t, s
P B E A Wit I S
-, _ mh . o mhh
(B.14) t' CA,,s=ZZc, a,t s, +ZZZc t, s
;3 1T i:"éki.j"kkik
., _ hm , , hhm o
(B,15) s C'Cs'-‘?l;:..'.ci:l sj+§#§.§cij ¢:ﬂ<sj S1c
h h h
(B.16) (vecA)'(vecA)=Zaii+ZZaij
i i#3
mh mmh
(B.17) (¢ ¢s)(trB)=ZZb,,c, t, 8 +ZZZb,, c, t, 8
P e S Sl A L -1 %

The terms (s’ A s)(tr B), (¢ B t)(tr A) and (¥’ B t)(tr B) are all similar
in form to (B,10), £’ B C s is similar to (B.13), t' CC tand t’ BB t

are similar to (B.15) and (vec B)’ (vec B) is similar to (B,16), A, is the
diagonal matrix formed by setting all off diagonal elements of A to zero. A,
is an hxh matrix whose every column is the vector [a11 azz...ahh]' and vec A

is the h2x1 vector of all elements of A,
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In moving. from (3.16) to (3.17) the following equality was used:

s A4+ CCs+2t CAs+2t BCs+E CC &

+U Bt

We consider now E c[d’ '] [

component of this expectation is

(B.19)

Ecd s ,E{(s’As+2t’ Cs+ t Bt)d s)]

t

7
8 8

]wh:l.ch is a part of Ebl' The first

The terms in the mumerator inside the square bracket must be expanded to give:

(B.20)

(B.21)

(B.22)

h
(s’A 8)(d s) =3
i

+ZZZaijdksis

audisi-!-ZZa

hhh

1#i#c

m h

(t' cs)ds)=ZZ¢c
1]

m
t'Bt)@d s)=(E0»>

iﬁ'

13 93 t1 %

t,+ZZDb

3 h h

i#k

2 mm

Ly

m
2+Z
i

1%

h
Ze
#k

e M

T 1 Sk

h
1 ' P& sy)

+2Z X' a

h h

1#9

2
i3 di'si sj

ij dk ti Sj Sk‘

When we combine the expansions with the results of Appendix A we obtain

(B.23)

h
Ecds=%Za
i

h h
+ X ZXa
i#)

d.G> £ .+ 33

£

11 %1°%1 %2,3

+ 8 £ )

i3 1

-2 -
d (si s.1 52,3 +

112

sj f1,2

)

hh

)+ ZZa

ifk

hhh

+%2ZZZa

1#3#k

11 dk(si k £2,3

1y 518y

.

2,3
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Qij dj ti(sJ f1,2 + £ +

e Mo

cij dk ti s1 sj f1,2

;‘FMU‘

m
+ Z
i

= ™M B
e M &

0,1)

=2

m -2 m m o -
+8Cb, (t;+1)+ZZb,, t, t)Ixd s £ ..
g i 141 1 71 )7, Tk Tk 0,1

Noting that

h h h
(B.24) d' As=Za,,d s, +ZZa,,ad, s,,
) 1114 iﬂijij
h h h _
A -
(B.25) (tr AY@d’ s8) =2 aii disi + Iz aii.dj sj and
i i#4
m h
-, - -
(B.26) t' cd f ? cij ti dj

we can simplify (B,23) to

= - ! - [ - res . 12
(B.27) Ecd s=v8d sf,,+ (t' Cs){ s)(fl’z f2’3) + #(t’ B t(d s)(fo’l

2,

2,3

+[d’A s + (tr A)(@'8)1E, , + [ Cd) + #(tr B)(d’s)]fo’l .

1,2
s
The second component of E c[d’ €] is
t
14 U4 4 ’ 7 4
(B.28) Ece t = E[é As) t)+ 2(tsfzss)(e4t) + (t/ B t)(e .t)]
h hh .
= [§ Z a;, (s f1’2 + fO,l) +4ZZ a5y 54 8y f1.2]e t
i i#g
hm 2 m m - .
+ZZc .,eQA+t)+ZZc t, t Is, £
FRFIRE S I 1i#kijekik_10,1
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m mm

-3 - -2.-
+[Zb,, e,(t; +3t,)+ ZZD 1+ t))Ht

PR TR Rt 177 11 % 1'%

mmn 2.~ mmm L. flO
+22Zb,,. e (L+tHt, +ZZZDb t, t, t ]—2
w11 °1 1'%y iﬁjﬁkijekijtk 2

(03

=y e(e':':)fl’2 + (E'c 5)(e't':)(f0,1 - £ ) (@& B E)( t-:)(f._l’o - £5)

+ [§(tr A)(e't) + €'C 8]f

0,1 % [e'B t + &(tr B)(e E)]f-l,_O .

Using similar expansions and simplifications as were used in deriving E c d’s,

equation (3,22) is obtained by substituting (B,27) and (B.28) into (3.21).

L]
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Footnotes

1The authors are grateful to D. Hendry, R. D. Terrell, R. Kohn and

D. F. Nicholls for extremely useful suggestions on our éarlie; draft of this
paper which was entitled "The Finite Sample Properties of OLS and IV Estimators
in Regression Models with a Lagged Dependent Variable," An earlier version of
this paper was presented to the European meetings of the Econometric Society in

Vienna in September 1977,

2At first glance equation (3.5) resembles the analogous equation for
two-stage least squares and so one might hope to use the results of Richardson
(1968) and Sawa (1969) to analyze the behavior of c.” However, these earlier
results do not apply here directly because the elements of y_, are not
independent of those of y and there is no cannonical form of the model for
which independence holds. 1In fact the covariance matrix of y and Y. is
singular. Another complication is the presence of Yo in the numerator of

(3.5) but not in the denominator.

3If >0 and a, ¢ > 0, then, using Sawa's (1972, p. 667) results we

have
teeay Pl (c-a) . (1-a) - :
F. (ase30) =S o o7(€ a)[z — i 4 g 40 p)] .
171 ra =0 3
6 will grow if u; M.p1~+ o or if 02 - 0. Kadane (1970), (1971) has analyzed

the behavior of estimators as 02 -0,

One can also obtain the bias upto order 1/n by using the following result.

For large a and b, with ¢ > 0,

s
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. _ . bx a~b| (b-a) (b-a+1)
F, (a;bibx) = e (14%) [1 - 1+x) +0 (M) |

so long as (b-a) and x are bounded; Slater (1960, p. 66). @ is also a

concentration parameter because

@

p[]c-y|>e|=0ase->w

using (3.18) and (3.19).

4L:lvi.atan considered the case where X has only one column so the

choice of w was obvious,

5 e © pr(atn) x°
F,(ajcsx) =— I —
171 ra o r'{cin) n'

6The results in (A.7), (A.8), (A.10) and (A.13) are given in Ullah
(1974). (A.7) and (A.8) also follow by using (A.5) in the results of

Bock (1975, p. 216). The remaining expectations can be obtained from

(«

Nagar and Ullah (1973).

7We have not expanded the product (¢/ B t)(s' A 8) because t is
independent of s, Also the expansion of (t’ B t:)2 is of the same form

as (B.2).
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