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Abstract

Clinical studies indicate that about 30% ~ 50% of patients have cognitive impairment after
the first or recurrent stroke. Ischemic injury, particularly subcortical lesions, caused by stroke has
been demonstrated to further exacerbate cognitive impairment of Alzheimer’s disecase (AD) and
vascular dementia. However, the mechanisms whereby cerebrovascular abnormalities contribute
to neurodegeneration at early stage of disease and eventually to cognitive decline remain unclear.
CT perfusion and positron emission tomography (PET) were used to investigate early
mechanisms in a rat comorbid model of cerebral ischemia (CI) and B-amyloid (AP, a

pathological hallmark of AD) toxicity, and in patients with small subcortical ischemic lesions.

Chapter 2 investigates the early hemodynamic disturbances within the first month after
transient CI insult in the presence of AP toxicity in the comorbid rat model. CT perfusion
revealed significantly lower cerebral blood flow (CBF) and blood volume (CBV) at acute phase
due to the transient ischemia, and increased CBF and CBV in the ipsilateral striatum of CI+Af
and CI groups at the first week post ischemia. These results suggest that Cl is the primary driving
factor of cerebrovascular abnormalities at early stage, and prolonged hyperperfusion and
hypervolemia may imply reperfusion-related injury and downstream inflammation. Chapter 3

further addresses these questions with CT Perfusion-PET imaging.

Chapter 3 describes the temporal profiles of blood-brain barrier (BBB) disruption and
neuroinflammation over 3 months after Cl with and without concurrent AP toxicity in the
comorbid rat model. CT perfusion showed significantly higher BBB permeability surface
product (BBB-PS) in the ipsilateral striatum of CI+Ap group at day 7, month 2 and 3, as

compared to ClI and sham group. PET imaging revealed the highest level of neuroinflammation



as reflected by the significantly increased ®F-FEPPA uptake due to microglial activation in the
striatal lesion of CI+Ap group at day 7 and 14. The temporal features of these cererbrovascular
and cellular changes may serve as early imaging biomarkers for development of cognitive

impairment in high-risk patients post ischemic insult.

Chapter 4 investigates the temporal changes in BBB-PS and cerebral perfusion using CT
perfusion over the first 3 months after small lacunar/subcortical stroke in patients. This
longitudinal investigation suggests the chronic BBB leakage detected by CT perfusion may

contribute to cognitive impairment and associated pathology in lacunar/subcortical stroke.

Overall, the imaging results presented in this thesis have demonstrated that BBB-PS, CBF,
CBV and activated microglia can be used as imaging biomarkers for delineating the early
pathogenic pattern and underlying contribution of cerebral ischemia to the disease development

in the animal comorbid model and subcortical stroke patients.

Keywords

cerebral ischemia, p-amyloid toxicity, cerebral blood flow, cerebral blood volume, blood-brain
barrier, microglia, neuroinflammation, subcortical/lacunar ischemic lesion, Alzheimer disease,

cognitive impairment, positron emission tomography, CT perfusion
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Chapter 1
Introduction

1.1 Introduction

Cerebrovascular disease is recognized as a common cause of disability and functional
impairment. Cerebrovascular lesions contribute to neuronal loss/degeneration and eventually
cognitive decline. Particularly, stroke is a devastating cerebrovascular disease and the second
leading cause of death in the world (1). In developed countries, about 75% of individuals above
65 years old could experience a stroke (1, 2). The proportion of stroke patients having permanent
disability and cognitive deficits is estimated to be 30-50% (3-6). In United States and Canada,
currently about 795,000 (7) and 315,000 people (8) respectively are affected by a new or
recurrent stroke. Furthermore, current clinical evidence suggests that stroke is associated with
Alzheimer’s disease (AD) (9-12), a neurodegenerative disorder, which is found in over 70% of
all dementia cases in the elderly population (13). With the increase in the elderly population, the
prevalence of stroke and dementia also rises. One direct consequence of a large population with

increasing stroke incidence is the escalated cost of treatment and rehabilitation.

Ischemic injury, particularly subcortical lesions caused by stroke has been demonstrated to
further exacerbate cognitive impairment of AD and vascular dementia. However, the
mechanisms whereby cerebrovascular abnormalities contribute to neurodegeneration at early
stage of disease and eventually to cognitive decline remain unclear. In this thesis, CT perfusion
and positron emission tomography (PET) were used to investigate early mechanism and temporal

changes in cerebral perfusion, blood-brain barrier and neuroinflammation in a rat comorbid



model of cerebral ischemia (CI) and B-amyloid (AP, a pathological hallmark of AD) toxicity, and

in patients with small subcortical ischemic lesions.

1.2 Comorbidity of cerebrovascular disease and AD

Many clinical and pathological studies have demonstrated that AD and cerebrovascular
diseases such as ischemic stroke not only coexist, but also interact with or affect each other in the
aging population. These two morbidities share some common vascular risk factors, and
cerebrovascular pathology precedes and/or accompanies AD-related neurodegeneration (12, 14,
15). Regional reductions in cerebral blood flow (CBF) and glucose metabolism, which are
typical indications of ischemia, are also frequently observed with cognitive impairment in

prodromal AD (mild cognitive impairment, MCI) and AD subjects (16-19).

1.2.1 Comorbidity: prevalence and risk factors

Cerebrovascular lesions can be present in 30~50% of AD patients (9, 20, 21), and stroke
accounts for a large portion of these lesions (22). Similarly, classical AD pathology, B-amyloid
(AP) protein plaques and neurofibrillary tangles of tau protein (NFT), are present in 40% of
vascular dementia patients (dementia due to vascular factors affecting the brain) (23). It is
estimated that AD is three times more likely to occur in the elderly after a stroke episode or
transient ischemic attack (24). Recent studies indicate that the presence of silent (asymptomatic)
stroke doubled the risk of AD development in the age of 60-90 (25). These studies reported that
subcortical ischemic and lacunar infarcts were associated with cognitive decline in AD patients

(12, 15, 26-29). Particularly, the Nun study demonstrated that subcortical ischemic infarcts were



associated with a 20-fold higher risk to have dementia than the subjects without the concomitant
cerebrovascular pathology (15). Furthermore, in rodent models, focal cerebral ischemia induces
more APP expression (30, 31). On the other hand, AD patients have higher risks for developing
stroke and cerebrovascular disease (32, 33). Cerebral amyloid angiopathy (CAA), which is seen
in more than 80% of AD cases, is associated with a higher risk of microhemorrhage and stroke
(34). AD and CAA are also associated with chronic blood-brain barrier/microvascular damage
(35-37).

Some important vascular risk factors are shared by both stroke and AD. There is
accumulating evidence that vascular risk factors associated with stroke can also contribute to the
risks for developing AD and vascular dementia in age above 65 (11). Besides age, many
epidemiological studies (Rotterdam study, Honolulu Asia aging study, Nun study, Framingham
study, Uppsala, Sweden and Kuopio study, Chicago Health and Aging project, and others) have
suggested that the risk factors for stroke, such as atherosclerosis, hypertension, atrial fibrillation,
coronary artery disease, diabetes, smoking and high fat diet can substantially increase the
probability of developing AD or other dementia (38). Among these risk factors, atherosclerosis,
atrial fibrillation and hypertension are the three common causes of stroke in elderly. Carotid
artery wall thickening and plaques due to atherosclerosis are strongly related to deterioration of
cognitive function in late-onset AD (39). Longitudinal studies indicate that high systolic and
diastolic blood pressure (hypertension) predicts cognitive dysfunction in AD at 15-25 years later
(40, 41). Hypertension has also been shown to increase the risk of prodromal AD (40). Atrial
fibrillation, a known risk factor for ischemic stroke, is also strongly linked to AD (42). All these
vascular risk factors are commonly known to reduce CBF in the aged brain. For instance,

atherosclerosis can reduce CBF (hypoperfusion) and cause silent stroke, which is involved in the



development of AD and white matter lesions (WMLs). Some longitudinal imaging studies
reported significant CBF reductions in the temporal lobe and hippocampus in MCI patients who
eventually converted to AD (17, 18, 43-45). MCI is considered a potential transitional phase
between normal aging and dementia. Therefore, measurement of cerebral perfusion may be

useful in predicting early disease progression.

1.2.2 Impact of ischemic lesion on cognition

Stroke impairs both motor and cognitive function. The risk of cognitive impairment after
first ever stroke is twice as high as that in age-matched controls. With recurrent stroke this risk is
even higher (46). Cognitive dysfunction among stroke patients is the most important cause for
failure to resume daily independent life and prior occupation. The most common cognitive
impairments post stroke are aphasia and hemispatial neglect. The other cognitive deficits include
impaired working memory, information processing speed, attention and learning (6, 47, 48). The
type and severity of cognitive symptoms can be different, depending on the location and size of
the ischemic lesion and infarct. However, controversy does exist and some studies showed no
association between cognitive dysfunction and size of lesion (49-51). In fact, some small lesions
such as lacunar or subcortical ischemic infarcts may exert large long-term influence on cognition
(15, 28, 50, 52), particularly in the presence of concurrent WMLs. The detrimental effect of
lacunar and subcortical ischemic lesion on cognition is possibly due to the interruption of
prefrontal and orbitofrontal cortical-subcortical circuits by the lesions (53, 54). These circuits are
highly involved in executive function, working memory, language, attention regulation and
mood, so the clinical symptoms can be loss of executive functioning and memory, deficiency in

speech and attention, and depression. The anatomical regions involved in lacunar and subcortical



stroke include the striatum (i.e. caudate and putamen, a part of basal ganglia), thalamus, internal
capsule, globus pallidus and surrounding white matter. In addition, hypoperfusion and
hypometabolism in cortical areas and WMLs are commonly observed along with lacunar and
subcortical ischemic lesions (53, 55, 56). It is difficult to determine the individual contribution of
each type of lesion to the cognitive dysfunction because they commonly share the same risk
factors and coexist in the affected brain (36). Nevertheless, the level of cognitive deterioration is
linked to the extent and number of lacunar and subcortical ischemic lesions present (54).
Therefore, more attention should be paid to temporal changes of cognitive function and cerebral

vasculature in the presence of lacunar and subcortical ischemic lesions.

1.3 Stroke and ischemic injury

The human brain receives about 20% of cardiac blood output and consists of more than 100
billion neurons. Brain function depends on the coordinated activity of various neuronal networks
which in turn depends on a continuous supply of oxygen and nutrients such as glucose by blood
flow. In stroke, interruption of blood flow causes shortage of oxygen and nutrients to the brain,
and then neurons start to lose bioactivity and eventually die in minutes if no reperfusion occurs

(57).

1.3.1 Causes, subtypes and symptoms of stroke
Stroke is caused by interruption of blood flow to the brain or rupture of blood vessels in the
brain. The majority of stroke is ischemic stroke, which accounts for about 85% of cases (58, 59).

In ischemic stroke, blood vessels supplying the brain are completely or partially blocked by a



blood clot (1, 60). There are two types of blood clot, thrombus (caused by a clot that forms in an
artery to the brain) and embolus (caused by a systemically developed clot that travels to the
brain). In addition to a major ischemic stroke that leads to neurological symptoms and damages,
transient ischemic attack (T1A or mini stroke) results in a brief episode of symptoms that resolve
within 24 hours and is due to temporary blockage of cerebral blood vessels (61). The second type
of stroke is hemorrhagic stroke, accounting for 15% of all stroke cases (59), where cerebral
blood vessels leak or burst due to uncontrolled high blood pressure (hypertension) or abnormal
structures (e.g. aneurysm). The bleeding disrupts the normal CBF and kills neurons by flooding

the leakage region and releasing neurotoxic substances.

Clinical symptoms of stroke may manifest with focal weakness, reduced motor strength and
coordination (ataxia), loss of sensory function (paralysis), and language/speech impairment
(aphasia and dysarthria) (62). Neurological deficits include impaired cognition, visual
disturbance, neglect, impaired skilled motor function (ideomotor apraxia) and aphasia (63).
Hemi-spatial neglect (failure to respond to stimuli on the side contralateral to the stroke)
typically occurs in more than 40% of patients with right hemispheric stroke, while aphasia

(language impairment) occurs in 15% to one third of patients with left hemispheric stroke (64).

1.3.2 Cerebral ischemia

Cerebral ischemia (CI) is a condition that occurs when there is not enough blood flow to the
brain to meet metabolic demand. CI leads to the lack of oxygen and glucose supply as well as
neuronal death (65). There are two kinds of CI: (1) focal ischemia is confined to a specific region

of the brain. Focal CI reduces blood flow to the particular brain region, increasing the risk of



neuronal death in the area. It can be either caused by thrombosis or embolism; (2) global
ischemia can affect wide areas of the brain. For global ischemia, blood flow to the brain is
severely interrupted or reduced. This is usually triggered by cardiac arrest. If adequate
circulation is restored within a short period of time, symptoms may be transient. However, if
there is a longer duration of global ischemia before reperfusion, brain damage can be permanent

(irreversible).

In the ischemic cascade of Cl, severe and prolonged reductions in CBF result in deprivation
of oxygen and glucose delivery to the brain. As a result, a low level or absence of available
glucose can lead to dramatic decline of ATP, which is the critical energy source for maintaining
normal neuronal activity (66). lonic perturbations and accumulation of toxic substances will
occur after ATP is completely depleted. At first, the Na"/K* transporter (pump), which is
essential for activating signal propagation in axons, fails to maintain a normal Na*/K* gradient
due to depletion of ATP (67). The loss of Na*/K* gradient and impairment of transporters can
then cause a massive and rapid influx of Ca?* and Na* into the cell and efflux of K* out of the
cell (66, 68). The overload of intracellular Ca?* greatly diminishes mitochondrial capacity of
oxidative phosphorylation and in turn accelerates the breakdown of membrane phospholipids by
activating phospholipases, thus degrading cell membrane and causing irreversible cell damages.
In addition, the increase in intracellular Ca?* induces the release of excessive glutamate, an
excitatory neurotransmitter, which can stimulate Ca®* permeable receptors to allow more Ca?* to
enter cells (69). This glutamate/Ca?*-triggered excitotoxicity then initiates apoptosis and triggers
the release of reactive oxygen species and other destructive mediators that lead to more cell

damages (68, 69).



The hemodynamic disruption has a great impact on the destiny of ischemic tissue. A
reduction of 20% in CBF diminishes protein synthesis and disrupts intracellular pH in the
affected tissue (70). A CBF reduction over 50% greatly attenuates ATP synthesis and action
potential of neurons (71). Severe CBF reduction over 80% can cause electrolyte imbalance and
neuronal death observed in ischemic stroke (71). In the center of the ischemic area, the CBF can
drop below 10% of normal perfusion (72, 73). Neurons in the center of ischemic area lose their
bioactivity and will die eventually (74). This necrotic core is the infarct. Between infarct rim and
normal brain tissue is the penumbra, where CBF drops to about 20-60% of normal perfusion (72).
The tissue within the penumbra is functionally impaired but still maintains ionic homeostasis, so
this area is potentially salvageable if reperfusion is established by interventional or drug
treatment (75, 76). If CBF in the penumbra does not return to a level that meets the minimal

energy demand of neurons, the infarct area can further expand to the penumbra (77).

1.3.3 Disruption of blood-brain barrier

The blood-brain barrier (BBB) is an important and unique structure of the brain. A major
component of the BBB is a lipophilic layer of endothelial cells that form the wall of capillaries
(78). The endothelial cells are connected with tight junctions to form the barrier which is further
strengthened by the basal lamina, pericytes and astrocyte foot processes (Figure 1-1). The BBB
acts as a selective diffusion/exchange barrier at the capillary level and maintains a constant and
secure microenvironment for the functioning of the brain (79). Under normal physiological
condition, the BBB only allows small molecules such as oxygen and carbon dioxide (via free

diffusion) as well as metabolically important species such as glucose, pyruvate, lactate and



amino acids (through specific transporters) to cross the barrier and access the brain parenchyma.
Water, sodium, other hydrophilic ions and large peptides cannot freely cross the BBB to enter
the brain (78, 80). The surface area of the BBB is about 20 m? in the human adult brain (81), and
as a part of neurovascular unit, it cooperates closely with pericytes and glial cells to regulate the

exchange of substances in and out of the brain (82), which in turn affects BBB permeability.

Basal lamina

Endothelial

Perivascular cell

Capillary
lumen

Tight

junction %/
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Figure 1-1: Schematic of the blood-brain barrier (BBB) in the neurovascular unit (83). The BBB
consists of a layer of endothelial cells with tight junctions, surrounded by the basement
membrane and pericytes. The functional integrity of the BBB is critically dependent on the basal
lamina and endothelium, while pericytes and astrocytes regulate capillary blood flow and

maintain/support vascular structure. Reprinted with permission.

Capillary barrier function is impaired or lost following focal CI (84, 85). This is due to

ultrastructural alteration in endothelium-tight junction and loss of basal lamina (86, 87). After
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loss of endothelial barrier function, as a result, vasogenic edema is induced as more water/fluid
accumulates in the extravascular space of the brain (88-92). The blood plasma components such
as albumin and immunoglobulins enter the brain via the leaky BBB, thus serving as a
pathological indication of BBB leakiness. In addition, basal lamina, which prevents leakage of
blood-borne elements into the surrounding cerebral tissue, is absent after Cl (87), resulting in
leaky BBB with increased permeability. The matrix of cerebral basal lamina contains laminin,
collagen 1V, fibronectin and other components. The expression of laminin and collagen IV is
reduced after focal Cl (87, 93, 94). Furthermore, extravasation of blood into the cerebral
parenchyma (i.e. hemorrhagic transformation) of the ischemic lesion is observed in the region
where the microvascular basal matrix is lost (94-96). Inflammatory responses following
reperfusion can also cause damage to the cerebral microvessels by activating proteolysis of the
microvascular matrix (97-99), thereby affecting BBB structure and permeability. The proteolysis
is mediated by proteases such as matrix metalloproteinases MMP-2, MMP-3 and MMP-9.
Several animal Cl models have shown that these proteases contribute to the degradation of
microvascular basal lamina matrix after middle cerebral artery occlusion (MCAO) (79, 100-103).
In addition, the MCAO model in rats shows that microvascular permeability increases from day
3 to day 21 and peaks at day 7 after ischemia, particularly in the reperfused areas (104, 105).
Taken together, the BBB is disrupted in Cl, thus increased BBB permeability can serve as an
imaging biomarker for predicting or explaining clinical outcome and brain damage (e.g.
infarction, hemorrhage, white matter lesion or cerebral microvascular abnormality). Recent
magnetic resonance imaging (MRI) and pathological studies show that increased BBB
permeability and elevated level of cerebrospinal fluid (CSF) albumin are frequently found in

patients with subcortical ischemic disease, lacunar stroke and leukoaraiosis (106-109). The
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patients with hemorrhagic transformation and increased BBB permeability in the subcortical
areas (white matter, basal ganglia and thalamus) tend to have poor functional outcome post

stroke.

1.3.4 Cerebrovascular abnormality in aged brains

In the aged brain, a decrease of vessel density is frequently observed in subjects with
ischemic stroke and AD (1, 35, 110). Pathologically, cerebral capillary degeneration is present in
almost all AD brains in post-mortem studies. Morphologically, basement membrane of
microvessels becomes thicker and capillary length is reduced in AD brains with cerebrovascular
pathology (35). Arterioles and capillaries are tortuous and their lumen becomes narrow (35, 111).
These morphological changes of cerebral vasculature are closely associated with subcortical
lacunes, microbleeds and white matter abnormality (111), which are often detected by routine
CT and FLAIR-based MRI. Lacunar stroke is caused by occlusion of small cerebral perforating
arteries such as lenticulostriate artery, recurrent artery of Heubner or thalamoperforating artery.
Most subcortical lacunes are clinically silent and usually manifest as gait problems and subtle
cognitive dysfunction at acute state. However, recent research shows that lacunar and subcortical
lesions actually have a larger impact on long-term cognitive deterioration and functional
outcome than expected (15, 112-114), particularly for the lesions in the basal ganglia, thalamus
and internal capsule (15). In addition, leukoaraiosis is one type of WML mainly caused by
stenosis and hypoperfusion of multiple medullary arterioles. This arteriolar hypoperfusion leads
to incomplete infarction of deep white matter, which manifests as periventricular and subcortical

white matter hyperintensity on MRI (56). Moreover, CAA is mainly accumulated in the smooth
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muscle cells of arterioles, thus causing vascular degeneration and stiffness. AP deposition in and
around the vascular walls disrupts the basement membrane of arterioles and microvessels by

upregulating matrix metalloproteinases (37).

Reduced vascular density and increased degeneration of vascular/capillary components can
lead to regional hypoperfusion and BBB breakdown, which have been observed in patients with
WMLs, subcortical ischemic lesions, AD and CAA (25, 36, 115). With advancing age, reduced
CBF and compromised BBB function increase vulnerability of neurons and axons to ischemia.
This may be a contributing mechanism of neurodegeneration in the early stage of AD and
vascular dementia. Several animal studies have revealed that chronic cerebral hypoperfusion
induces capillary abnormality, WMLs, microglia activation and memory impairment (115-121).
Moreover, increased BBB permeability and extravasation of plasma proteins are found in
patients with lacunar and subcortical ischemic lesions and WMLs, which are closely associated

with cognitive impairment (106, 108, 109, 122, 123).

1.4 g-amyloid burden in aged brains

Alzheimer’s disease and stroke are two contributing pathological factors to brain aging and
cognitive dysfunction. Instead of acting separately, the two pathologies are frequently present in
the same brain of elderly people (124). For instance, a connection between AD pathology and
cerebrovascular disease is clearly demonstrated in the case of cerebral amyloid angiopathy, in
which amyloid protein deposits in the blood vessels and adventitia, leading to cerebral
microhemorrhage (125). In addition, the presence of silent stroke including subcortical ischemic

and lacunar lesions can increase the risk of AD development and contribute to cognitive
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impairment (12, 27, 126). In this section, the primary aim is to review an important
neuropathological hallmark of AD, extracellular f-amyloid protein (AB), as well as its impact on

the disease.

1.4.1 Amyloid pathology and controversy about amyloid hypothesis

The accumulation of AP aggregates around neurons is observed in the AD brain. However,
the origin of AP, whether it is from the neuronal system or from other sources such as the blood
pool, is still unclear. AP peptides are derived from a proteolytic cleavage of amyloid precursor
protein (APP) by two enzymes, B- and y-secretases (127). APP is highly expressed in the brain
(128). Depending on the exact point of the cleavage by y-secretase, three main forms/lengths of
AP peptide are produced and individually contain 38-42 amino acids with molecular weight
about 4.5 kDa. The three forms are Ap38, AB40 and AB42, although the dominant AP peptides in
the brain are AB40 and AB42 (129). In normal human CSF and plasma, the level of AB40 is
respectively 10-fold and 1.5-fold higher than that of Ap42 (130). However, AB42, the longer
form of A, is particularly prone to aggregate and produce toxic amyloid fibrils or oligomers
than the more abundant AB40. In addition, recent studies suggest that soluble AB oligomer can
be associated with synaptic dysfunction and cognitive impairment (131-134). The canonical
amyloid hypothesis explains the development of AD, in which AB plays a central role (135).
However, this hypothesis has one unexplained inconsistency which does not support the
pathological role of AP plaques, that is, many elderly subjects can have AP plaques in the brain
but do not show cognitive impairment (135). One plausible explanation, contrary to the amyloid
hypothesis, is that AP plaque is the end-stage product of abnormal or sick neurons, rather than

the cause of neurodegeneration. Furthermore, the vaccination trial against fibrillar A (AN1792
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trial) was halted due to meningoencephalitis in 6% of the patients in the treatment and no
significant improvement on cognitive dysfunction (136, 137). Again, this result indicates that AP
plagues may not be the therapeutic target as they may not be the real cause of cognitive
dysfunction. Instead, further investigation is required to explain the source and pathogenic

mechanism of soluble AP in the early stage of AD development (132, 135).

Familial AD (early onset subtype, 1~5% of AD cases) is related to genetic mutations (genes
encoding APP, presenilin 1 and 2) producing excessive A in the brain (129). The cause of most
AD cases (late onset subtype) remains unclear but may be due to impaired clearance of soluble
pre-fibrillar AP from the brain (138-141). For late-onset AD, the brain does not have increased
AP production or APP overexpression, which is opposite to familial AD and transgenic animal
models. Recent evidence demonstrates that amyloid load reaches a plateau early after onset of
subtle clinical symptoms in AD patients and does not substantially increase in amount during
clinical progression (142-145). In fact, the underlying pathogenic process of AD may begin
many years before clinical signs appear. Therefore, the initial pathogenic event in the early stage
of the disease must be a chronic and minimal perturbation to the neuronal system, without
causing significant clinical symptoms. An alternative hypothesis is that the late-onset patients
may have a failed clearance of toxic and soluble AP from the brain in the early stage due to
deficient efflux transporters (e.g. LRP1, low-density lipoprotein receptor related protein 1) or
increased influx transporters (e.g. RAGE, receptor for advanced end glycation products) for A
across BBB (146). As a result, AP starts to accumulate in the brain and exerts chronic effects on
neurons. Reduced expression of LRP1, which clears AP from the brain, has been reported in the
normal aged rodents and primates as well as in AD patients (139, 140, 146-149). Furthermore,

elevated expression of RAGE in the cerebral microvessels of BBB is seen in AD brains, and this
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leads to more AP entering the brain via RAGE (148, 150, 151). AB/RAGE interaction can further
trigger downstream oxidative stress, neuroinflammation and release of endothelin-1 (ET-1) (146).
However, the factors that trigger the changes in LRP1 or RAGE expression in AD are still not
known. Aging and cerebrovascular diseases may be involved in up/down-regulation of LRP1 and

RAGE, but more evidence is needed.

1.4.2 Mechanism of AP neurotoxicity

The exact mechanism of AP neurotoxicity is not known. However, mechanistic pathways
have been proposed to elucidate the relationship between neuronal damage and AB. The first
mechanism is AB-induced mitochondrial dysfunction. Some studies have found that exposure of
rat neuronal mitochondria to AP leads to the decline in mitochondrial enzyme activity and the
increase in mitochondrial membrane permeability (152-154). As a result, the dysfunctional
mitochondria can swell and respiration is impaired, causing energy crisis such as the low
cerebral glucose utilization seen in the AD brain. The second pathway for AP neurotoxicity is the
induction of reactive oxygen species (ROS), which is also a consequence of mitochondrial
dysfunction. Ap has been shown to cause increased production of ROS and antioxidants may
counteract AB-induced ROS (152). On the other hand, AB can also activate radical generating
system in microglia (155, 156) and other cells (152, 157) in the brain by modulating specific
NADPH oxidases. The induced ROS can cause downstream damages to membrane lipids and

nucleic acids of neurons and other supportive cells to accelerate apoptosis.
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1.5 Effects of combined ischemic and amyloid injuries

1.5.1 Inflammatory influence of CI and AP on the brain

It has been demonstrated that cerebral ischemic lesions can coexist with AD pathology such
as AP and tau. Cerebral ischemia (CI) and AP together can exacerbate cognitive impairment by
accelerating neurodegeneration in elderly subjects and animals (158-162). However, the
underlying mechanism before occurrence of neurodegeneration and cognitive impairment is little
known. One possible pathway contributing to the detrimental effects of Cl and Ap comorbidity is

inflammation, which is the first reaction to tissue injury.

Cl-induced inflammation can stimulate the release of multiple inflammatory mediators from
neurovascular units in the affected area. Some locally produced cytokines such as interleukin-1
(IL-1p) and tumor necrosis factor-a (TNF-a) are released by activated microglial cells, astrocytes
and endothelial cells (163). Cytokines are essentially small glycoproteins produced in response
to immune activation and inflammation. In the diseased brain, cytokines act as inflammatory
mediators and are primarily secreted by glial cells. Moreover, post-ischemia reperfusion can
result in secondary damages to penumbral tissue (viable ischemic tissue surrounding the infarct)
due to induced inflammation. In the reperfused area, ROS are released by inflammatory cells and
accumulate locally (163). These ROS subsequently elicit the expression of pro-inflammatory
proteins such as NF-kB and hypoxia inducible factor 1 (164). The upregulation of downstream
TNF-a, IL-1B, nitric oxide synthase and cyclooxygenase-2 (COX-2) by NF-kB appears to
exacerbate cerebral ischemic injury (163, 165). Among these cytokines and inflammatory
mediators, TNF-o and IL-1p are substantially expressed by microglia in the AD brain. In-vitro
studies using human microglia in the presence of AP42 show increased secretions of TNF-a and

IL-1B (166-168), suggesting the role of AP in activating microglia-mediated inflammatory
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reaction. The activated microglia can synthesize inflammatory cytokines to recruit more
microglia, which further contribute to the production of ROS and neurodegeneration. In addition,
COX-2 is highly expressed in neurons and microglia in response to Ap toxicity and brain injury
including ischemic stroke (167, 169). In post-mortem examinations of ischemic stroke patients,
microglial COX-2 is upregulated in the ischemic area (163, 170). In the AD brain, the expression
of COX-2 is elevated in the neurons of temporal cortex and hippocampus (171, 172), which are
frequently involved in neurodegeneration and cognitive dysfunction. The increased level of
COX-2 makes neurons vulnerable to glutamate excitotoxicity that leads to cell apoptosis. In
CI+Ap comorbidity, ischemic cerebral tissues can be more susceptible to excitotoxicity and ROS
in the presence of AB. Together, these common inflammatory mediators from both AD and Cl

converge to increase neuronal damages by initiating a more intensive inflammatory response.

1.5.2 Activated microglia: a biomarker for imaging neuroinflammation in vivo?

Microglia is the resident macrophage of mature central nervous system (CNS) including the
brain, spinal cord and optic nerve. They constitute 5-20% of the total brain glial cells (173).
Microglial cells play a crucial role as immune phagocytic cells during inflammation and immune
defence. They clear tissue debris, damaged cells, foreign antigens and microorganism. Normal or
inactive microglia can be activated from resting state in response to various CNS injuries
including CI, trauma, neurodegenerative diseases and infection (174). The activation of
microglia after CI induces morphologic transformation and changes gene expression and
functionality of the cells. They become enlarged with stout processes and convert to an
amoeboid shape. Activated microglia also become more active and motile, which help them to

proliferate and accumulate around a lesion such as ischemic penumbra. The extent of microglial
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activation depends on duration and degree of the injury (175). Some studies show that in the
animal brain with induced CI (e.g. MCAO model), microglia can transform into phagocytes and
release a variety of inflammatory cytokines such as IL-1p and TNF-a as well as other neurotoxic

molecules including ROS and prostanoids (163, 176, 177).

Microglial activation can be a cellular marker of neuroinflammation in ischemic stroke and
neurodegenerative diseases such as AD. An increase in activated microglia is directly associated
with a higher degree of brain damage because more tissue is involved in the neuroinflammation.
For this reason, in-vivo imaging of activated microglia can be a valuable tool for assessing brain
lesions and damages. One promising candidate for imaging activated microglia is a ligand
binding to the peripheral benzodiazepine receptor (i.e. now renamed as translocator protein,
TSPO). TSPO is an 18kD transmembrane protein located on the outer membrane of
mitochondria (178). As a component of the outer mitochondrial membrane, TSPO plays a role in
mediating mitochondrial functions including steroid synthesis, cholesterol transport and
mitochondrial membrane permeability (179). In the brain, TSPO is mainly expressed in the outer
mitochondrial membrane of activated microglia and reactive astrocytes (179, 180). Under the
normal/healthy condition, TSPO expression is very low in the brain, compared to that in other
organs (181, 182). The expression of TSPO after CI dramatically increases in response to the
microglia-related neuroinflammation (183). Moreover, in the neurodegenerative AD brain, TSPO
also significantly increases in affected areas with amyloid burden such as the temporal and
parietal lobe (184, 185). Therefore, the upregulation of microglial TSPO in the brain can be
considered as an inflammatory biomarker for in-vivo imaging with positron emission
tomography (PET). Some recently developed TSPO-binding ligands such as PK11195, DPA714

and FEPPA are experimentally labelled with radioisotopes like **C or *F for PET imaging of the
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activated microglia in CNS diseases (186). In animal models of CI, TSPO expression, detected
by its radioactive ligands, increased predominantly in the activated microglia from acute phase
up to 7-11 days after the insult, whereas the reactive astrocytes showed a delayed TSPO
expression at later time and this could be related to the formation of astrocytic scar around the
lesion (183, 187). In addition, transgenic animal models of AD showed an association between
the increased level of microglia-expressing TSPO and elevated neuronal loss (188-190), whereas
TSPO expression in astrocytes was associated with reduced neuronal damage (188). This
evidence may imply the damaging effects of microglia but the protective effects of astrocytes on
neurons, depending on intrinsic features of these inflammatory cells. The mechanism for the
increased microglial TSPO level in the diseased CNS is not clear. Several studies reveal a
correlation of increased PK11195/TSPO binding with the presence of inflammatory cytokines
TNF-a and ILs (191-193). Nevertheless, PET imaging of TSPO in the activated microglia is

useful for detecting and evaluating in-vivo neuroinflammation and associated neuronal damages.

1.5.3 Animal comorbid model of cerebral ischemia and A toxicity

The coexistence of cerebral ischemic injury and neurodegeneration has been demonstrated
in many studies. The combination of these two pathological processes may occur in ageing
people and play an important role in causing chronic neuronal dysfunction, inflammation and
eventually cognitive impairment or dementia (194). As discussed previously, the presence of
ischemic lesions enhanced cognitive deficits in patients with AD pathology. Animal
experimental models have found that cerebral ischemia upregulated (increased) the APP
expression and enhanced the cleavage of APP to AB. In turn, AP can trigger the release of

inflammatory mediators and cytokines such as TNF-a and interleukins, thus further contributing
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to post-ischemia neuroinflammation and more neuronal damages. However, more work has to be
done to elucidate the synergistic effects and mechanism of combined ischemic injury and AD

pathology.

Several animal models combined both CI and AD pathology (mainly Ap) together for the
evaluation of pathological and cognitive changes. In these animal models, AB protein is injected
into cerebral ventricles or hippocampus, and ischemia is induced by either endothelin-1 (ET-1, a
potent vasoconstrictor) injection or MCAO (158, 162, 195-197). The common findings from
these studies suggest that the combination of Cl and AP toxicity can lead to significant memory
impairment (i.e. using radial maze or similar test), increased levels of inflammatory
mediators/cytokines and cells including microglia and astrocytes, more neuronal loss and larger
infarcts. For this thesis, we used the previously established rat model of CI+Ap created by
Whitehead et al. This rat model combines ET-1-induced subcortical Cl with cerebroventricular
injection of soluble AP peptides (196). A small amount of ET-1 was injected into the center of
the striatum, a part of basal ganglia in the subcortical area involved in memory, movement
coordination and signal relay. The soluble AB protein was injected into the lateral ventricles in
the brain, allowing infiltration of AP toxicity to the periventricular areas including the striatum.
The characteristics of this model include spatial memory impairment and elevated level of
neuroinflammation as well as neuronal damages (161). However, the previous investigation of
this rat model did not explore in-vivo changes in cerebral perfusion, BBB integrity and
neuroinflammation, which are considered as critical factors for functional/cognitive deficits at
the early stage and may precede or accompany the development of substantial pathology.

Therefore, investigation of cerebral perfusion and BBB integrity in this CI+AB model can reveal
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the early vascular perturbations, which may explain the underlying contribution of

cerebrovascular injury to neurodegeneration in AD.

1.6 Medical imaging in cerebral ischemia and AD

1.6.1 Positron emission tomography

Positron emission tomography (PET) is a functional imaging modality for diagnosis,
monitoring and assessment of diseases using radiolabeled ligands. It has been widely used in
measuring in-vivo metabolic and physiological activity and molecular function of the target
tissue. The basic principle of PET imaging involves administration of a positron-emitting
radionuclide (radioisotope) labeled ligand to the subject and subsequently imaging of the
distribution of the radionuclide in vivo. Briefly, a positive electron, positron, is emitted from the
radioisotope used to label the ligand which then annihilates with an electron in the surrounding
tissue. This annihilation event emits two 511 keVV gamma ray photons in opposite directions at
180° apart. The gamma rays are then detected by scintillation detectors in the PET scanner. Some
common radioisotopes, 1'C, *°0 and 8F are used to label different ligands which bind to specific

targets in the tissue.

In the scenario of cerebral ischemia or stroke, disturbed CBF, oxygen metabolism, neuronal
activity and microglial activation are the common physiological processes measured by PET
imaging. CBF and cerebral metabolic rate of oxygen (CMRO>), measured from PET imaging of
150-labeled water and oxygen, are used to identify the ischemic brain tissue which later becomes
infarcted (198). Some PET studies reported that the severe decreases in both CBF and CMRO:

(CBF < 12 mL/100g/min and CMRO2 < 65 umol/100g/min) could represent irreversible tissue
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damage (i.e. infarction) (199-201). The extent of CBF and CMRO: disturbances has been used
for differentiating irreversible damage from the viable penumbra, which has preserved CMRO-
and CBF (202). Moreover, recently developed !C-flumazenil or ‘8F-fluoroflumazenil binds to
the central benzodiazepine gamma-aminobutyric acid (GABA) receptor in the cerebral cortex.
These GABA neurons are sensitive to ischemia and can thus indicate early neuronal loss and
identify the location of final infarct (203, 204). However, this ligand only binds to the GABA
receptors in the cortex, and therefore cannot detect white matter lesions. Furthermore,
inflammatory reaction in CI or stroke can be detected by PET imaging of microglial activation.
As mentioned in the previous section, microglia-associated TSPO radiotracers (}'C-PK11195,
18F-DPAT714 or 8F-FEPPA) have been used in human and animal studies. The 'C-PK11195
studies found increased binding of the radiotracer in the rim of the ischemic core (205-208), and
interestingly, also in some distant regions, especially in the subcortical white matter fibers (207,
209). This may indicate a secondary damage from the ischemia to the subcortical white matter.
However, the non-specific binding property of !C-PK11195 (210), as the first generation
neuroinflammatory tracer, can confound the observation in such cases. The second generation
TSPO tracers, mostly radiolabeled with F (e.g. FEPPA, PBR28 and DPA714), have better
binding affinity, specificity and lipophilicity (for penetration of BBB), as compared to the

prototypical 1!C-PK11195.

In the neurodegenerative AD brains, PET imaging has been applied in many studies
focusing on early detection of the disease. Glucose hypometabolism, amyloid/tau protein and
microglial activation are the primary targets of the radiotracers used in AD studies. The glucose
analog compound, 8F-labeled fluorodeoxyglucose (*¥F-FDG) enables quantification of brain

glucose metabolism. A number of studies using ®F-FDG revealed the progressive decreases in
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cerebral metabolic rate of glucose (CMRglc) in the hippocampus, parietotemporal and posterior
cingulate cortex before appearance of clinical symptoms of AD (211, 212). Glucose
hypometabolism correlates well with the decline in cognitive performance (142, 213). In addition,
longitudinal studies have found that the regional glucose hypometabolism in the posterior
cingulate cortex was the most sensitive marker in predicting MCI conversion to AD (214-216).
Recently developed amyloid radiotracers such as *'C-PiB and !8F-AV45 have been used to
identify MCI patients who have a greater risk of progressing to AD (217-221). However,
cognitively normal subjects may also show 'C-PiB uptake (218, 222), making it difficult to
interpret whether these subjects are at-risk population or amyloid plaque is a common process in
the aging brain rather than the neurodegenerative cause of the disease. ®F-AV45 has non-
specific binding in white matter nearly two-fold higher than *C-PiB (223). More recently, PET
imaging of pathological tau protein with ¥F-THK523 and !C-PBB3 has shown promising
binding to tau fibrils in animal models and AD patients (224-226), but the clinical usefulness of
tau radiotracers for early detection of disease is yet to be fully investigated. Moreover, increased
level of activated microglia in animal models and AD patients has been observed in both
pathology and PET imaging. Significant 1!C-PK11195 binding was reported in the temporal,
parietal cortex and hippocampus of AD patients, and correlated with lower cognitive
performance scores but not with the amyloid load (184), suggesting that activated microglia is

related to the AD progression.

In brains with coexisting ischemic injury and amyloid/Af pathology, which occurs in 30-50%
of cognitively impaired elderly population, reliable biological targets for PET radiotracers are
needed to study early mechanisms of the comorbidity. In the common pathological pathway of

Cl and AP toxicity, detecting neuroinflammation is a good step because histology in the animal
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comorbid models has shown a stronger neuroinflammation in the first month after combined
ischemic and AP insults were induced (161, 195, 196). In such cases, PET imaging using
microglia-associated TSPO radiotracers can be useful for investigating inflammatory reaction
caused by ClI and AB. In comparison with histology, PET imaging can reveal in-vivo
neuroinflammation related to the disease progression. However, the major limitation of PET
studies is the requirement of an on-site cyclotron for producing and labeling radioisotopes
because of the short half life of the tracer (**O ~2 min, *C ~20 min). The distribution of
radiotracers to remote medical centers is difficult unless a cyclotron is available nearby. With
advances in biomarker discovery and development of novel radiotracers, the significance of
ischemic injury and the mechanism in the comorbidity can be further elucidated in future

research.

1.6.2 Magnetic resonance imaging

MRI is based on the principle that protons in the tissue have angular momentum which is
polarized in a magnetic field. A pulse of radiofrequency can alter the energy state of protons.
After the pulse is turned off, the protons return to their energy state, emitting a radiofrequency
signal. This signal is measured by a receiver coil. Specific sequences can be designed by
combining and manipulating gradients and pulses. Different sequences are sensitive to different
tissue characteristics. Some MR sequences that are sensitive to structural or physiological
changes have shown alternations in ischemic stroke or AD such as atrophy, edema or white
matter hyperintensity. Diffusion weighted imaging (DWI1) and perfusion weighted imaging (PWI)

are commonly used to study functional/physiological changes in disease progression.
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DWI has excellent sensitivity in detecting neuronal deficits caused by cerebral ischemia or
stroke (227). It can measure the diffusion of water molecules, termed as apparent diffusion
coefficient in DWI. In cerebral ischemia, as CBF declines below the critical level
(~10mL/100g/min), the subsequent failure of energy dependent process such as the membrane
Na*/K" balance leads to cytotoxic edema (tissue swelling caused by excessive water diffusion
into the cells). This is reflected as a decreased apparent diffusion coefficient and increased signal
intensity on DWI. As a result, the signal hyperintensity in DWI represents edematous ischemic
lesion that later may become an infarct. DWI has reported sensitivity of 95% and specificity of
nearly 100% within 6 hours of stroke onset (228). It is usually used to study acute ischemia and
is better than routine non-enhanced CT and T2-weighted MRI in identifying early ischemic
lesions. However, DWI is rarely used for AD studies mainly because of the low spatial
resolution and limited ability of detecting chronic lesions. Instead of DWI, AD studies use PWI
to measure reductions in regional CBF or T1-weighted MRI to visualize hippocampal and
temporal atrophy. In addition, subcortical ischemic lesions (e.g. lacunes) and WMLs can be
detected by T2-weighted and fluid-attenuated inversion recovery (FLAIR)-MRI. Microbleeds
can be detected by susceptibility-weighted imaging. Recent MRI studies indicated that the

presence of lacunes or microbleeds was associated with AD and cognitive impairment (229-231).

PWI is based on the measurement of T2 or T2* decrease from the passage of an
intravenously injected gadolinium contrast agent through the brain. The T2-weighted PWI, based
on dynamic susceptibility contrast MRI (DSC-MRI), measures concentration of contrast agent
such as gadolinium-DTPA by calculating the change in transverse relaxation rates from the rapid
loss of MR T2 or T2* signal. MR images are serially acquired as contrast agent flows through

the vascular system, and then signal intensity-time curve derived from the acquired images is
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converted to a relative concentration-time curve for quantifying hemodynamic parameters such
as CBF, CBV or mean transit time (MTT) (232). Besides DSC-MRI, arterial spin labeling (ASL-
PWI) imaging, which does not require administration of gadolinium-based MR contrast agent,
can also be used. ASL uses endogenous water molecules in the blood that is magnetically labeled
as the contrast agent and produces quantitative maps of CBF. However, the main disadvantage of
ASL is the low signal to noise ratio, therefore it cannot accurately measure low CBF. In clinical
practices, PWI can measure CBF and CBV abnormality as well as prolonged MTT values in
stroke. It is used together with DWI to identify the ischemic area at risk for infarction (PWI-DWI
mismatch) (227). In AD studies, PWI has shown decreased CBF and CBV in the temporoparietal
regions, but some recent studies reported hyperperfusion in the hippocampus, amygdale, anterior
cingulate gyrus and basal ganglia in early AD and MCI patients, suggesting a regional

compensation for neural damage in the transitional phase of the disease (233).

1.6.3 CT perfusion imaging

CT perfusion (CTP) or dynamic contrast-enhanced CT (DCE-CT) is an advanced functional
CT imaging method that uses rapid acquisition of CT images after a bolus injection of
intravenous contrast agent to image cerebral hemodynamics. In general, CTP requires the fast
scanning speed of modern multi-detector CT scanners for continuously acquiring images (i.e.
cine imaging mode) after iodinated contrast agent is infused through a peripheral vein. CTP can
measure hemodynamic parameters such as CBF, CBV, MTT and permeability surface area
product (PS) by analyzing temporal changes in attenuation in blood vessels and tissues from the
arrival and washout of contrast agent. In actual practices, the increase in attenuation of the blood

vessel and tissue after arrival of contrast agent is measured and expressed as enhancement in
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Hounsfield unit (HU), which is linearly related to the iodine concentration within blood vessels
and tissue. Based on different levels of the enhancement of the tissue, the physiological status
can be reflected by hemodynamic parameters. In order to measure the enhancement any time
after injection of contrast, baseline image intensity before contrast arrival is subtracted from
image intensity after arrival of contrast agent. Using this subtraction technique, a time-
enhancement or time-density/attenuation curve (TDC) of the tissue or blood vessel can be
generated and analyzed with mathematical models to derive hemodynamic parameters such as
CBF, CBV and MTT (232, 234, 235). The calculation of CBF, CBV and MTT makes use of the
first phase (typically 45-60 s) after contrast injection because at this time frame the contrast
agent is predominately intravascular. PS calculation makes use of the second phase (about 2-3
minutes after the first phase) which is dominated by the contrast leakage/passage from
intravascular to extravascular space. Data in this prolonged phase (second phase) enables
measurement of diffusion-driven microvascular permeability such as BBB permeability in the

brain (236).

The arterial TDC is measured from cerebral arteries in the brain. However, due to the
limited resolving power of CT, cerebral arteries are too small to be resolved. As a result, this
underestimates the arterial input function (AIF). To avoid this partial volume averaging, a
venous TDC measured from a large cerebral vein (superior sagittal sinus) is used to normalize
the AIF by scaling the area of the AIF with that of venous TDC (234, 235). The corrected AIF

can then be used for the calculation of CBF, CBV, MTT and PS.

Parametric maps of CBF, CBV, MTT and PS can be calculated and produced with
commercially available CTP software. For this thesis, a mathematical deconvolution method was

used in the CTP software (GE Healthcare) (235, 236). The tissue TDC of each pixel is



28

deconvolved against the arterial TDC (Figure 1-2B) which is obtained from an unaffected artery
on the image (usually anterior cerebral artery, ACA) and corrected for partial volume averaging
as discussed above. This deconvolution produces the blood flow-scaled impulse residue function
(F-IRF) as illustrated in Figure 1-2A. The impulse residue function (IRF), which can be
distinguished from the F-IRF calculated by deconvolution, describes the fraction of contrast
agent that remains in the tissue over time following injection (237). CBF is calculated as the
peak height of the F-IRF and CBYV is the area under the F-IRF. MTT is the ratio of CBV/CBF,
representing the mean time taken for blood (contrast) to exit from the draining vein after entry at
the input arteries. The above condition applies when the BBB is intact. When the BBB becomes
leaky as in stroke and possibly AD, the modified Johnson and Wilson model can be used to
calculate PS in addition to CBF, CBV and MTT (238, 239). PS is related to blood flow and

extraction fraction E via the Crone and Renkin relationship (239) as follows:

_PBs
E=1—e¢e BF

This model separates BF and E, thus enabling the calculation of PS:

PS = —BF -In(1 — E)

where E is the fraction of prolonged contrast enhancement in the IRF at the second phase,
representing the portion of contrast agent leaking through a leaky BBB into the extravascular

space after the first impulse response.
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Figure 1-2: (A) a blood flow-scaled IRF as calculated from a deconvolution of arterial and tissue
TDC. (B) example of arterial (closed circles) and tissue (open circles) TDC curves. Graphs

reproduced from Cenic et al, 1999 (237). Reprinted with permission.

In ischemic stroke or CI, CTP has been applied to identify penumbra and infarct in the acute
phase. CBF, CBV and MTT are commonly used to distinguish infarcted brain tissue from the
penumbra. The hemodynamic characteristics of the penumbra include decreased CBF (ischemia),
normal or elevated CBV (due to activation of vascular autoregulation) and elevated MTT, while
infarct is indicated by decreased CBF and CBV along with increased MTT (240, 241). Some
CTP studies have proposed CBF below 10 - 15mL/100g/min as the infarct (73, 242, 243)
because of collapse of vascular autoregulation and thus irreversible tissue damage at this stage.
However, decrease in CBV is more difficult to interpret, probably due to confounding factors
such as locally released vasodilators (nitric oxide) or reactive hyperemia. For AD or vascular
cognitive impairment (VCI), CTP so far has not been widely used. Recent CTP studies reported
a correlation between regional hypoperfusion and cognitive decline in AD and VCI (244-246).
As mentioned previously, AD and VCI patients have shown increased BBB permeability/leakage
(BBB-PS) when subcortical ischemic lesions present. This gives an opportunity for CTP-derived

BBB-PS to monitor microvascular dysfunction of the disease. With accumulating knowledge
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about cerebrovascular lesion, CTP may become a promising modality for detection of abnormal

cerebral perfusion and BBB leakage at the early stage.

The main advantages of CTP are wide availability, simplicity of acquisition and linear
relationship between contrast concentration and signal intensity, as compared to MRI. CTP also
has better spatial resolution than PET, which allows accurate delineation of region of interest
(232, 247). However, the radiation dose (typically 2-3 mSv for a head CT scan) is the main
concern of CTP compared to MRI. CTP has similar radiation dose to PET but limited brain
coverage than both MRI and PET (247), which have whole brain coverage. More recently, the
integrated PET-CT scanner enables acquisition of both anatomic and physiological information,
and thus can be used to detect disturbances of cerebral perfusion and abnormal activity of

cellular/molecular biomarkers in a single imaging session.
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1.7 Research objectives

The work of this thesis focuses on two primary goals: (1) using CTP and PET to study the
early mechanism of CI+Ap in causing hemodynamic disturbance and neuroinflammation; and (2)
using CTP to investigate the role of breakdown of BBB in subcortical CI or lesion. These goals
were achieved by accomplishing the following objectives which include preclinical and clinical

studies.

1. To investigate the abnormality of cerebral perfusion of CI in the presence of AP at the early

stage of CI+AP comorbidity using CTP in an animal model

2. To reveal the temporal changes of BBB permeability/integrity over 3 months and assess the

extent of BBB leakage with CTP and histology in the animal CI+Ap model

3. To establish a pilot study for evaluation of ®F-FEPPA in detecting in-vivo neuroinflammation

induced by CI+Ap comorbidity

4. To study the evolution of BBB permeability (BBB-PS) using CTP in patients with
subcortical/lacunar ischemic lesions in the first 3 months post stroke, and compare to those

without such lesions

5. Overall, to elucidate the contribution of cerebrovascular lesion/abnormality to the progression

of CI+AP comorbidity and subcortical ischemic disease within the first 3 months post insult
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Chapter 2

Hemodynamic Effects of Combined Focal Cerebral Ischemia and
Amyloid Protein Toxicity in a Rat Model: A Functional CT Study

This chapter is adapted from the original research manuscript entitled “Hemodynamic
Effects of Combined Focal Cerebral Ischemia and Amyloid Protein Toxicity in a Rat Model: A
Functional CT Study” published in PLoS ONE. 2014, 9(6): e100575 by J. Yang, C.D. d’Esterre,

Z. Amtul, D.F. Cechetto and T.Y. Lee.

2.1 Introduction

Stroke and Alzheimer’s disease (AD) are the most common contributors to cognitive
impairment in the population greater than 65 years of age (1). The pathogenic mechanisms of
these two conditions not only overlap, but are also highly interactive (2). In fact, the presence of
ischemic lesions or silent infarcts in persons with AD is associated with a greater decline in
cognition (3-5). It is speculated that cerebral ischemia (Cl) may accelerate AD disease

progression (3-8).

For patients with moderate to severe stages of AD and vascular dementia, cerebral
hypoperfusion is prevalent (9-12). Changes in cerebral blood flow (CBF) occur early in the pre-
symptomatic stages of AD, much sooner than brain atrophy, tau and plaque pathology (10,13-15).
Some subjects with mild cognitive impairment (MCI) also show a similar pattern of
hypoperfusion, in the absence of substantial Ap plaque (10,16). Animal studies have shown that

ClI can stimulate mRNA expression of amyloid precursor protein (APP) and APP proteolytic
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processing to P-amyloid protein (AP), a central neuro-toxic/degenerative factor in AD
pathogenesis (17,18). Disruption of the blood-brain-barrier (BBB) caused by ClI may also
increase the extravasation of soluble AP peptides, as well as its precursor APP, into the brain
parenchyma, resulting in a neuroinflammatory reaction and Ap plaque formation (19,20). In turn,
AP accumulation can reduce brain capillary density and cause aberration of capillary structures,
decreasing local cerebral perfusion (21-25). These hemodynamic changes may indicate

neurovascular degeneration (26).

CT perfusion (CTP), a functional imaging modality involving intravenous injection of
contrast agent, is currently used for the diagnosis of both acute stroke and brain tumors (27,28).
CTP not only measures tissue perfusion but also vascular permeability, an indicator of BBB
integrity. Moreover, this technique is more accessible and less expensive to perform in the clinic
than single photon emission computed tomography (SPECT) and positron emission tomography
(PET), the modalities currently used for studying dementia. CTP-derived CBF and cerebral
blood volume (CBV) can clearly reveal the degree and site of ischemia in a relatively short

scanning time with minimal invasiveness.

We sought to determine the potential negative hemodynamic effects of AP toxicity
combined with CI. To mimic the clinical situation, an intra-cerebroventricular injection of Ap2s.
35 fragment, and unilateral striatal ischemic insult were conducted in an animal model (29,30).
CTP imaging was performed to visualize and measure CBF and CBV, in conjunction with
histology. We hypothesize that the combination of AP toxicity and Cl will cause greater

hemodynamic disruption compared to CI alone or control.
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2.2 Methods and Materials

2.2.1 Animals

Male Wistar rats, weighing 250-300g, were obtained from Charles River (Montreal,
Quebec). They were housed in separated cages in a room maintained at 23°C with light from 7:00
to 19:00 hr, and had free access to food and water. All experimental procedures were approved
by the Animal Use Subcommittee of the Canadian Council on Animal Care of our institution
(protocol number: 2008-113). At end of the study, all animals were euthanized by administration
of pentobarbital overdose (80 mg/kg) and perfused transaortically, first with 0.01M PBS and
then followed by 4% paraformaldehyde (pH 7.4). The brains were carefully removed and

cryoprotected in 30% sucrose at 4°C before sectioning.

2.2.2 Surgical procedure

Rats were anesthetized with 2-2.5% isoflurane/medical air during surgery. A stereotaxic
frame was used for all surgeries and body temperature was maintained at 37°C. The atlas of
Paxinos and Watson was used for selecting the stereotactic coordinates for all injections. Small
burr holes were drilled in the parietal bone at near-bregma locations to insert injection cannula
(23-gauge). Rats were divided into 4 groups: (1) ClI model: unilateral injection of 60pmol
vasoconstrictor, endothelin-1 (ET) (Sigma-Aldrich, Oakville, ON) into right striatum
(anterior/posterior (AP): +0.5mm relative to bregma, medial/lateral (ML): -3.0mm relative to
bregma, and dorsal/ventral (DV): -5.0mm below dura); (2) AB+Cl model: first bilateral
injections of 50nmol Af2s.35 peptide (Bachem, Torrance, CA) into lateral ventricles (AP: -0.8mm

relative to bregma, ML: +1.4mm relative to bregma, and DV: -4.0mm below dura) followed by
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the same unilateral ET injection into right striatum; (3) Amyloid alone model (A alone):
bilateral injections of 50 nmol Af2s35 peptide into lateral ventricles was used as an internal
control for comparison between AB+Cl and AP alone model; (4) Sham-control: unilateral
injection of 10pL of 0.9% wi/v saline into right striatum as in the ClI model. At the end of each
injection, the cannula was left in-situ for 3 minutes before fully retracted. Once all the injections
were completed, the wound was sutured and each rat received one dose of intramuscular

buprenorphine (40mg/kg).

2.2.3 CT perfusion scanning

CTP studies were performed at pre-surgery baseline, 30min, 60min, 1 week and 4 weeks
post-surgery on rats which were anesthetized with 1.5% isoflurane during the scans. Each CTP
study started with an injection of iodinated contrast agent (Isovue-300, Bracco Diagnostics,
Princeton, NJ) at a dose of 2.5mL/kg body weight into a tail vein at an infusion rate of 8mL/min
while a clinical CT scanner (GE Healthcare, Waukesha, WI) continuously scanned coronal
sections of the rat brain using the high resolution mode. The technical parameters used were
FOV of 10cm, 80kVp, 300mA and 0.4s per rotation of the gantry. Each CTP acquisition
consisted of two phases: 24 scans acquired every 1 second, and 12 scans acquired every 14.6
seconds. Sixteen image slices (1.25mm thick/slice) were scanned for each study. CBF and CBV

maps were generated with the CT Perfusion software (GE Healthcare, Waukesha, WI) (31).
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2.2.4 Image post-processing and analysis

The average maps of all acquired images of each CTP study were manually co-registered to
a digital 3D atlas template of the rat brain (LONI rat brain atlas, UCLA, CA) by alignment of
corpus callosum, lateral ventricles and cerebellum using Analyze v11.0 software (Mayo Clinic,
Rochester, MN). Region of interests (ROIs) were defined in the striata of the same coronal slices
of the brains from all experimental groups. Absolute values of CBF and CBV were obtained
from the defined striatal ROIs. ROI data from each time point were then normalized in two ways:
1) either with its contralateral value for the groups with unilateral injection of ET and control to
differentiate effects of AB+Cl and CI from control, or 2) with its pre-surgery baseline value for

the comparison between AB+CI and AP alone group.

2.2.5 Immunohistochemistry

Immunohistochemical staining was performed on serial, coronal sections of the entire brain
and 35um-thick sections were cut using a Tissue-Tek Cryo3 sliding microtome (Torrance, CA).
Sections were then stained with laminin primary antibody (1:1000, rabbit anti-rat Laminin,
Sigma-Aldrich). Laminin staining was used to measure numbers and diameters of microvessels.
The stained brain sections were then examined using a light microscope (Leica DC-300,
Heerbrugg, Switzerland). The results were expressed as the numbers of dilated microvessels per

mm? of the striatum.
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2.2.6 Statistical analysis

Normalized CBF and CBV between baseline and other time points were analyzed by using
one-way ANOVA and Tukey’s post hoc tests with a significance level of p<0.05. A two-group
comparison of the hemodynamics between AB+CIl and AP alone group for each time point, was
assessed by t-test with p<0.05. All histological measurements were analyzed by using one-way
ANOVA followed by Dunnett’s post hoc tests with p<0.05. All values were presented as mean +

standard error of the mean (SEM).

2.3 Results

2.3.1 CTP functional maps

CTP-derived CBF and CBV maps at baseline, 30min, week 1 and week 4 post injection of
one rat from each of the four groups are shown (Figure 2-1 and 2-2), respectively. Baseline CBF
and CBV among all groups were not significantly different. In the CI group there was a large
ischemic lesion at 30min post injection, which showed as large CBF and CBV defects in the
functional maps. The AB+CI brain also showed a large hypoperfused lesion at 30min, mainly in
the right striatum. Increased CBF (hyperperfusion) and CBV (hypervolemia) were observed at
week 1 in both CI and AB+ClI animals, but not in control. The animal with A alone injection did
not show significant changes of CBF and CBV from baseline over 4 weeks. No significant

difference in CBF and CBV at week 4 was observed between Cl and AB+CI group.
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CBF

Ctrl

Cl

AB

AB +Cl

Figure 2-1: Cerebral blood flow maps at four time points in: control rat (1% row); CI rat (2"
row); ApB alone rat (3 row) and AB+ClI rat (4™ row). Baseline imaging was done before any
injection. In Cl and AB+CI brains, ischemia (white arrow head) and hyperperfusion (white arrow)
in the right striatum were observed at 30 minutes and 1 week post injection, respectively. No
significant change in CBF was observed over four weeks in control and Ap alone rats, when

compared to their baselines.
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CBV Baseline 30min Week1 Week4

Figure 2-2: Cerebral blood volume maps at four time points in: control, Cl, Ap alone and
AB+CI rat. Baseline imaging was done before any injection. In Cl and AB+ClI brains, similar to
the CBF results, CBV deficit (white arrow head) and hypervolemia (white arrow) in the right
striatum were observed at 30 minutes and 1 week post injection, respectively. Similar to the CBF
maps, no significant CBV change was observed over four weeks in control and AP alone rats,

when compared to their baselines.

2.3.2 Cerebral ischemia and hyperperfusion post ischemia

Relative CBF (rCBF) and CBV (rCBV) to the contralateral striatum in the control group
(n=3) did not show significant differences between baseline and other time points (Figure 2-3a
and 2-3b). In contrast, AB+CI (n=7) and CI (n=6) groups at the acute phase (30-60 minutes) had

a significantly lower rCBF and rCBYV in the right striatum when compared to their baseline
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values as well as to control (p<0.05). At week 1, rCBF and rCBYV increased significantly from
baselines in the right striatum of the CI (p<0.05) and AB+CIl (p<0.05) groups, but not in the
control group. Furthermore, at week 4 only the combined AB+CI group showed a significantly
higher rCBF and rCBYV in the right striatum when compared to its baseline (p<0.05). However,

no significant difference between AB+Cl and CI group was seen over 4 weeks.
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Figure 2-3: Evolution of striatal CBF and CBV over four-week period post injection. Absolute
CBF and CBYV in the right (ipsilateral) striatum at each time point from AB+CI, CI and control

group were normalized by their contralateral values. (a), normalized (relative) CBF; (b),
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normalized CBV. In AB+CI group (¥, n=7), there were significant differences in CBF and CBV
between baseline and those at other time points (30min, 60min, week 1 and week 4. p<0.05).
Similar findings were shown in the CI group (&, n=6. p<0.05), except for week 4. No significant
CBF and CBV difference from baseline was found in the control group (n=3). In addition,
AB+CI and CI groups showed significantly lower CBF and CBV at acute phase and higher CBF
and CBV at week 1 than control. However, no significant difference between AB+Cl and CI

group was seen over 4 weeks.

2.3.3 Comparison of hemodynamics between Ap+CIl and A alone model

To differentiate hemodynamic effects caused by combined AB and ClI to that by AP alone,
ipsilateral (right striatum) CBF and CBV normalized by their baseline (pre-surgery) values
between AB+CIl and AP alone group were compared (Figure 2-4a and 2-4b). At 30-60 minutes
and 1 week, but not 4 weeks post the insult, ipsilateral rCBF and rCBV in the striatal ROIs from
AB+CI model (n=7) were significantly different from those from Ap alone model (n=6). Ap+ClI
group showed an opposite temporal changes in ipsilateral rCBF and rCBV to the A group at the
acute state (p<0.01) and week 1 (p<0.05). At the first week, hyperperfusion and hypervolemia
were seen in the AB+CI group, but not in the AP group. At week 4 the hyperperfusion and
hypervolemia in the AB+CI group had subsided to be statistically non-significant from its
baseline. Interestingly, from week 1 to week 4, ipsilateral rCBF and rCBV of AB+CI group
decreased much faster than those of Ap alone group (-36 £ -11% versus -6 = -9% for CBF; -20 +

-7% versus -2 + -6% for CBV).
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Figure 2-4: Hemodynamic effects of AB+CI and AP alone models. For rats which had
combined AP and ET injections (n=7) and AP only injections (n=6), absolute CBF and CBV in
the right (ipsilateral) striatum were normalized with their respective baseline values. Both
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relative CBF (a) and CBV (b) were significantly different between the Ap+CI and AP alone
group at the time points post insult except for week 4 (#, p<0.01 for 30-60min, p<0.05 for

week1). At week 4, rCBF and rCBYV in both AB+CI and AP alone groups dropped to the baseline

level.
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2.3.4 Vascular pathology after induced CI and AP

Viable microvessels assessed by laminin staining was determined in the right (ipsilateral)
striatum of control (n=3), CI (n=6) and AB+CI (n=6) groups. At week 1, a diffused network of
laminin-positive vessels as a result of leakage was detected in the core lesion of Cl and AB+ClI
brains. The presence of dilated microvessels (with a diameter greater than 10 pum) was also
observed surrounding the lesion epicenter at the striatum in Cl and AB+CI groups (Figure 2-5, B
and C). However, at week 4, laminin immunoreactivity was observed extensively around
damaged microvessels in the lesion of Cl and AB+ClI brains (Figure 2-5, E and F), and these
brains also had a reduction in dilated vessels. The average number of dilated microvessels per
mm? in the core of right striatum was 29+2 for Cl and 34+3 for AB+CI group at week 1, but this

number significantly decreased to 3+1 and 5+1 for Cl and AB+Cl, respectively at week 4.
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Figure 2-5: Histology of cerebral microvessels in control, CI and AB+CI groups.
Microphotographs showed laminin-stained microvessels in the core of ipsilateral (right) striatum
at week 1 (A-C) and week 4 (D-F) post insults. Quantitative analysis of the whole striatal core
showed that average density of dilated microvessels (i.e. diameter greater than 10pum) in CI and

APB+CI groups was significantly higher at week 1 than those at week 4. As induced injury
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advanced, at week 4 regular vasculature was almost absent in the AB+CI group. Letter “C”

indicates significant differences when compared to the control group, p<0.05.

2.4 Discussion

The results herein support the hypothesis that the addition of ischemic insult to AR
pathology leads to greater hemodynamic dysfunction. The major findings are as follows: first,
CTP imaging had successfully showed a significant decrease of CBF and CBV in the ipsilateral
striatum at the acute phase, followed by a post-ischemic hyperperfusion and hypervolemia at
week 1 in AB+ClI and CI groups. Second, for the two-group comparison between AB+Cl and Ap
alone model, the ipsilateral striatum affected by AB+CI had significant differences in both CBF
and CBV compared to that of Ap alone model from acute phase to week 1. Ap alone group did
not show the hyperperfusion and hypervolemia at week 1, in contrast to the AB+CI group. Third,
laminin staining showed increased vasodilation at week 1 as a result of reperfusion reaction,

which was related to the hyperperfusion in AB+Cl and CI groups.

Previous work on neurodegeneration has focused on structural alternations, such as brain
atrophy and cerebroventricular enlargement using routine CT and MRI (32,33). However, this
diagnostic approach is limited by the low sensitivity and specificity to detect early functional
changes (33). Conversely, a reduction in glucose metabolism, detected by functional imaging
using 8F-FDG PET, has been shown to occur years before onset of clinical symptoms (34-36).
Prior to the hypometabolic state, A accumulation in the brain is hypothesized to be the primary
driving factor in AD-related pathogenesis (37). Several PET studies have shown that the levels

of !C-PIB (i.e. radiotracer which binds to AP aggregates) retention can be used to differentiate
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between patients with AD and/or mild cognitive impairment (MCI) and healthy individuals
(33,36,38). However, the ability of AP imaging to diagnose early AD rests upon the assumption
that AP plays a central role in the progression of the disease. Some subjects exhibit typical AB
pathology without clinical symptoms, similarly 25-35% of healthy individuals over the age of 75
years show cortical 1C-PIB uptake (33,38,39), suggesting that AP is not the only crucial driving
factor for cognitive impairment. Agreed with this view, variably sized cerebrovascular defects
are frequently present with AD-related pathogenesis and cognitive decline (4,32,40). Recent
studies show that the evolution of changes in cerebral perfusion does not necessarily corroborate
with gross structural changes of the neurodegenerative brain (9,23). Brain hypoperfusion and
endothelial dysfunction likely precede the hypometabolic and neurodegenerative state observed
in MCI and AD (9-11,14,16). As such, CTP imaging may be used to characterize these changes

of causative cerebral hemodynamics.

A hyper-acute decrease, followed by an increase in CBF and CBV in the brains of the
AB+Cl group may reflect a dynamic transition from normal cognition/perfusion to a
compensatory brain  mechanism which attempts to revive the impaired neurovascular
functionality prior to substantial neurodegeneration and amyloid deposition. For both AB+Cl and
ClI groups, CBF and CBV parameters showed a similar decreasing trend within 60 minutes after
the injection, indicative of successful CI induction by ET. Hyperperfusion and hypervolemia
were present in the right striatum at week 1 for both AB+Cl and CI groups, possibly due to
release of vasodilators elicited by CI. There were no significant inter-group differences found
between the AB+CI and CI group at the acute state and week 1-4, indicating that at this phase of
disease progression, Cl acted as a dominant driving factor in causing hemodynamic dysfunction.

This result is supported by a previous investigation which indicates that the development of
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pathological changes, changes in infarct size, or even cognitive deficits do not fully develop until
3 weeks after the insult (30). With more prolonged interaction between AP pathology and Cl,
only the AB+CI group demonstrated significant intra-group CBF and CBV differences between

week 4 and its baseline level, a trend not observed in the control and CI groups.

The presence of soluble AB proteins could further increase cellular stress and reduce
vascular tone via the inflammatory cascade when CI coexists (29,30). Focal CI has also been
shown to produce larger infarcts in transgenic mice overexpressing APP (41,42). AB-induced
vascular dysregulation, which may increase the propensity for ischemic damage, threatens
overall cerebral perfusion (43). This is partially consistent with our findings in which reactive
hypervolemia appears at the first week as a post-ischemic reperfusion response in the AB+ClI
model. Recent clinical studies using ASL or PW-MRI also revealed similar states of
hyperperfusion in the hippocampus, cingulate gyrus, amygdala and striatum of patients with MCI
and mild AD (44-46). Our histopathology data showed that an increase in microvessel diameter,
distributed sporadically throughout the striatal ischemic core at week 1, is consistent with
vasodilation to maintain regional cerebral perfusion in response to the drop in CBF and CBV

after ischemia was induced in Cl and Ap+ClI rats.

We also compared longitudinal hemodynamics of ipsilateral striatum between Ap+Cl and
AP alone group. For the AB alone group, the initial CBF and CBV increase at the acute state and
later decrease at week 1 and week 4 may be attributed to an immediate response to the injection,
and later followed by a vasoconstriction induced by this soluble AB (25,47,48), respectively.
However, the moderate amount (50 nmol) of AB used in this experiment might not be the

optimal dose to maintain the vasoconstrictive effect for four weeks or longer duration than
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expected. In contrast, the AB+CI group showed the opposite hemodynamic effect. This may
suggest that hyperperfusion and hypervolemia after CI were a result of prominent hemodynamic
disturbance which was further amplified by the initiation of an AB-induced pro-inflammatory
response. From week 1 to 4, CBF and CBV within AB+CI group declined much faster than those
of AB-only group, indicating that adding AP could greatly attenuate the reactive hypervolemia

triggered by CI.

Two main limitations of the study included: first, the size of the rat brain relative to the
resolution of the clinical CT scanner might contribute to the variability involved in the map
processing and registration. However, in our study a high resolution mode was used during CTP
scans and this may help to compensate for that limitation. A small animal phantom scanned
under the same mode showed an achievable spatial resolution of 500 um (data not shown), which
should be sufficient in guiding ROI placement in a large anatomic region such as striatum in the
rat brain here. The feasibility of CTP in evaluating CI has been validated against PET. CTP-
derived CBF measurements have shown a good correlation with PET-derived CBF values (49-
51). In addition, CTP imaging can be combined with vasodilatory challenge using acetazolamide
to assess cerebrovascular reserve in acute stroke, which may further help to identify penumbra
and infarct core (52). In the other hand, dynamic susceptibility contrast MRI (DSC-MRI) or MR
perfusion has also been applied in assessment of cerebrovascular reserve using acetazolamide.
Although MR perfusion has similar or even higher spatial resolution and larger coverage of the
brain than CTP, changes in MR signal intensity are not linearly related to changes in contrast
concentration, resulting in difficulty with measurement of absolute perfusion parameters in

detecting perfusion defect (52, 53). For the second limitation, as vascular cognitive impairment is
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an insidious disease process, a study is needed to elucidate the long-term effect of Cl on Ap.

Moreover, the addition of contemporaneous PET-CTP imaging is needed.

2.5 Conclusion

In summary, we showed that the co-existence of Cl and AP disrupted normal cerebral
perfusion and exacerbated post-ischemic injury, when compared to the control or Ap alone. The
observed hyperperfusion and hypervolemia post CI support the assertion that there is a local
compensatory brain mechanism which occurs early in the pathological progression. This
compensation is further associated with increased amount of dilated microvessels. The
subsequent decrease in CBF and CBV reflects the failure of vascular autoregulation after A3 and
Cl initiated the inflammatory cascade. Overall, this study demonstrated that CTP-derived CBF
and CBV are suitable parameters for quantitatively assessing variable hemodynamic changes in

the early stage of cerebral ischemia when neurotoxic Ap is present.
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Chapter 3

Breakdown of Blood-Brain Barrier and Neuroinflammation in a Rat
Model of Combined Focal Cerebral Ischemia and Amyloid Protein
Toxicity: A Longitudinal CT and PET Study

This chapter is adapted from the original research manuscript entitled “Breakdown of
Blood-Brain Barrier and Neuroinflammation in a Rat Model of Combined Focal Cerebral
Ischemia and Amyloid Protein Toxicity: A Longitudinal CT and PET Study” submitted to
Frontiers in Aging Neuroscience by J. Yang, L. Morrison, L. Wang, N. Cockburn, D.F. Cechetto

and T.Y. Lee.

3.1 Introduction

Stroke and Alzheimer’s disease (AD) are the most common contributors to cognitive
impairment in the population greater than 65 years of age (1). Stroke and AD pathology not only
coexist in the brain, but also interact with each other. The presence of ischemic lesions or silent
infarcts (e.g. subcortical infarcts, lacunes and microbleeds) in AD individuals is associated with a
greater decline in cognition (2-5). Therefore, cerebral ischemia (CI) may accelerate AD disease

progression.

Animal studies have shown that CI can stimulate mMRNA expression of amyloid precursor
protein (APP) and APP proteolytic processing to f-amyloid protein (Ap) (6-9), a central neuro-
toxic/degenerative factor in AD pathogenesis. Disruption of the blood-brain-barrier (BBB)

caused by CI may also increase the extravasation of soluble AB and its precursor APP into the
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brain parenchyma (10-12), and then induce inflammatory cytokines, leading to a
neuroinflammatory reaction (13-15). In turn, Ap accumulation over the long term can reduce
brain capillary density and disrupt the BBB integrity (16, 17). Morphologically, the basement
membrane of microvessels becomes thicker and overall capillary length is reduced in AD brains
with coexisting cerebrovascular pathology (17-19). These morphological changes of cerebral
microvasculature are commonly associated with subcortical ischemic lesions and/or white matter
abnormality, which are often seen in elderly AD subjects (2, 17, 20). Therefore, investigation of
BBB breakdown after CI in the brain with coexisting AP toxicity may reveal the early
pathogenesis of the disease, and provide guidance for post-ischemia management in minimizing

the contribution from BBB dysfunction.

CT perfusion (CTP), a functional imaging modality involving intravenous injection of
contrast agent, is currently used for the diagnosis of both acute stroke and brain tumors (21).
CTP not only measures tissue perfusion but also vascular permeability surface product, an
indicator of BBB integrity (22, 23). Positron emission tomography (PET) imaging with 8F-
FEPPA (24), which binds to activated microglia, can provide in-vivo information about location

and extent of the neuroinflammation and related neuronal damages.

We used a previously established animal model of combined focal CI and AB toxicity (14,
25). CTP imaging was performed to study temporal changes of BBB permeability, cerebral
blood flow (CBF) and blood volume (CBV), and neuroinflammation was revealed by ®F-FEPPA
over the first 3 months post CI and AP insult. Immunohistochemistry was used for examining

BBB damage and activated microglia.
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3.2 Methods and Materials

3.2.1 Animals and surgery

Male Wistar rats, weighing 550-600g, were obtained from Charles River (Montreal,
Quebec). They were housed in separated cages in a room maintained at 23°C with light from 7:00
to 19:00 hr, and had free access to food and water. The surgical procedure was described in the
protocol of the previous study (14). Briefly, rats were anesthetized with 2-2.5%
isoflurane/medical air during surgery. A stereotaxic frame was used for all surgeries and body
temperature was maintained at 37°C. Rats were divided into three groups: (1) Cl model:
unilateral injection of 200pmol vasoconstrictor, endothelin-1 (ET) (Sigma-Aldrich, Oakville, ON)
into the right striatum; (2) CI+AB model: injection of 150nmol AP2s.3s peptide (Bachem,
Torrance, CA) into the right lateral ventricle followed by the same ET injection into the right
striatum; (3) Sham-control: unilateral injection of 10uL of 0.9% w/v saline into the right striatum
as in the Cl model. The injecting needle was left in-situ for 3 minutes before fully retracted. At
end of the study, all animals were euthanized by administration of pentobarbital overdose (80
mg/kg). A total of 16 rats were used for CTP studies, 10 rats for PET studies and 9 rats for
histology. All experimental procedures were approved by the Animal Use Subcommittee of the

Canadian Council on Animal Care of our institution.

3.2.2 CT perfusion study
CTP studies were performed at pre-surgery baseline, and 60 minutes, 7, 14, 28 (1 month), 56
(2 months) and 90 days (3 months) post surgery on anesthetized rats (1.5-2% isoflurane). Each

CTP study started with an injection of iodinated contrast agent (Bracco Diagnostics, Princeton,
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NJ) at a dose of 2.5mL/kg body weight into a tail vein at an infusion rate of 8mL/min while a
clinical CT scanner (GE Healthcare, Waukesha, W1) continuously scanned coronal sections of
the rat brain. A two-phase CTP scanning protocol was used: 24 scans acquired every second, and
12 scans acquired every 14.6 seconds. BBB permeability surface product (BBB-PS), CBF and
CBV maps were generated using the delay insensitive CT Perfusion software (GE Healthcare,

Waukesha, WI) based on the modified Johnson-Wilson model (23, 26).

3.2.3 PET study

PET studies were performed at 7, 14, 28, 56 and 90 days post surgery using a micro-PET
scanner (GE Healthcare, Waukesha, WI). Anesthesia was induced for all animals with 1.5-2%
isoflurane. At the beginning of each PET scan, the rat’s tail vein was used for intravenous
administration of the radiotracer, ®F-FEPPA (at specific activity of 1-3 Ci/umol and
radiochemical purity >96%). Each rat received about 18.5 MBq of 8F-FEPPA and was scanned
for 60 minutes. The list mode emission data were sorted into a series of 10 time frames (1min x 5
frames, 10mins x 4 frames and 15mins x 1 frame) and corrected for scatters and randoms. The
images were then reconstructed using FORE/OSEM 2D. The time frame for the last 15 minutes
was used for image analysis because FEPPA uptake was the highest at that time. Each PET study
was followed by a non-enhanced CT (NECT) scan without moving the rat to aid image

registration.
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3.2.4 Image analysis

The method for registration of CTP maps across time points was described in our previous
study (25). Using similar method with Analyze v11.0 software (Mayo Clinic, Rochester, MN),
the PET images were also manually 3D-registered to the corresponding CTP maps for each time
point via the NECT images acquired with each PET study. For the CTP maps, regions of
interests (ROIs) were defined in the ipsilateral (right) and contralateral striatum of the brain. The
ROI data in the ipsilateral striatum were then normalized with the contralateral values for each
time point to obtain relative BBB-PS, CBF and CBV. For the PET images of ®F-FEPPA, ROIs
were defined in the areas of increased uptake in the ipsilateral striatum using Analyze. The
ipsilateral ROI data were then normalized with the contralateral data to obtain the relative uptake

value.

3.2.5 Immunohistochemistry

After the completion of all imaging studies, the rat brain was removed and serial coronal
20pm-thick sections were cut using a Tissue-Tek Cryo3 sliding microtome (Torrance, CA).
Sections were stained with 1gG (1:1000, goat anti-rat 1gG, Vector Laboratories, Burlingame, CA)
and OX-6 primary antibody (1:1000, mouse anti-rat OX-6, BD Pharmingen, San Diego, CA).
The stained brain sections were then examined using a light microscope (Leica DC-300,
Heerbrugg, Switzerland). IgG staining was used to detect and measure BBB leakage (27), and
OX-6 staining was used to measure the density of activated microglia (14). The results were
expressed as the percentage of 1gG-positive area in the striatum and OX-6-positive microglia

cells per mm?.
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3.2.6 Statistical analysis

Statistical analyses were performed using SigmaPlot v12.0 (Systat Software, San Jose, CA).
The normalized BBB-PS, CBF, CBV, relative ®F-FEPPA uptake and histological data of the
three groups were analyzed using Kruskal-Wallis test, and Tukey’s post hoc tests for multiple
comparisons with a significance level of p<0.05 for all time points. All values were presented as

mean + standard error of the mean (SEM).

3.3 Results

3.3.1 Changes in BBB permeability

The relative BBB-PS of the ipsilateral ROIs over 3 months for the three experimental groups
is shown (Figure 3-1). At baseline and 60 minutes post insult, no significant BBB-PS differences
were detected between groups. At 7 days after the insult, CI+Ap group (n=6) had a significantly
higher BBB-PS than saline-injected sham group (n=4, p<0.05) but not CI group (n=6). However,
there were no significant differences in BBB-PS between groups at day 14 and month 1,
although both CI and CI+Ap groups had a trend of elevated BBB-PS above the sham group. In
the chronic phase at month 2 and 3, CI+Ap group showed significantly higher BBB-PS than both
Cl and sham groups (p<0.05). There were no significant BBB-PS differences between CI and
sham at all time points. In addition, intra-group comparison showed that BBB-PS in the CI+AB
group significantly increased at day 7, month 2 and month 3 compared to the baseline level
(p<0.05), while this was not seen in the other groups. The BBB-PS maps (Figure 3-2) clearly

revealed the evolution of BBB-PS over time in the three groups. Both CI+Ap and CI rats showed
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focal patches of high BBB-PS at day 7. However, at month 2 and 3 only CI+Ap rat still had the

elevated BBB-PS in the ipsilateral hemisphere.
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Figure 3-1: Relative BBB-PS in the ipsilateral striatum of the three groups over the first 3
months. There were no significant differences between groups for the pre-surgery baseline
BBB-PS. At day 7 after the insult, CI+Ap group showed a significantly higher BBB-PS than the
sham, but non-significantly higher BBB-PS than the CI group. At later times, CI+Ap group had a
significantly higher BBB-PS than both sham and CI groups at month 2 and 3. * CI+Ap (n=6) vs
Sham (n=4), # CI+Ap vs CI (n=6), P<0.05 for all.



82

Figure 3-2: Quantitative BBB-PS maps displayed in rainbow scale (mL/min/100g). Bright
blue patches in the brain indicate elevated BBB-PS of a leaky microvasculature. BBB-PS in the
ipsilateral (right) side of the brain increased (white arrows) in the CI+Ap and Cl animals at day 7.
The high BBB-PS was only presented in the CI+Ap animal at month 2 and 3, but not seen in the

sham and CI animals.

3.3.2 PET imaging of neuroinflammation

In-vivo neuroinflammation was imaged by the radiolabelled ligand, 8F-FEPPA. Relative
18E-FEPPA uptake in the ipsilateral striatum for each group is shown (Figure 3-3). The saline-
injected sham animals were imaged only at the first week after the injection. The sham group

(n=3) showed no uptake at day 7, whereas both CI+AB (n=4) and CI (n=3) groups had
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significantly higher FEPPA uptakes at day 7 than the sham group (p<0.05). At day 14, uptake in
CI+Ap group remained significantly higher than both CI and sham groups (p<0.05). For CI+A
and CI groups, uptake reached the peak at day 7. At month 1, 2 and 3, only CI+A group still
had significantly higher uptake than the sham group (p<0.05). However, uptake in CI+AB group

at month 1-3 was not significantly different from CI group.
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Figure 3-3: Relative ®F-FEPPA uptake in the ipsilateral striatum. Relative uptake in the
CI+AB group was significantly higher than sham group from day 7 to month 3. The CI group
showed a significantly higher uptake than sham group, only at day 7 and 14 but not at other
times. Uptake in CI+Ap group was significantly higher than CI group at day 14. Saline-injected
sham animals were scanned only at day 7 and showed no uptake. *Sham (n=3) vs CI+Ap (n=4),
+ Sham vs CI (n=3), # CI+Ap vs Cl, P<0.05 for all.
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3.3.3 Cerebral perfusion

Relative CBF and CBV of the ipsilateral striatum were compared among the three groups
over time (Figures 3-4A and 3-4B). At baseline, there were no significant differences in relative
CBF and CBV between groups. At 60 minutes after the insult, both CI+Ap and CI groups
showed significant decreases in CBF and CBV as compared to the sham group (p<0.01). At day
7, CBF and CBV of the CI+ApB and CI groups increased significantly compared to the sham
group (p<0.05), with the highest level in the CI+Af animals. At day 14 and month 1, CBV but
not CBF in the CI+AB and CI groups were still significantly higher than the sham group
(p<0.05). However, the comparison between CI+Af and CI group failed to show any statistical
difference for day 7, 14 and month 1. At month 2 and 3, no significant CBF and CBV differences

were detected among the three groups.
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Figure 3-4: Relative CBF (A) and CBV (B) in the ipsilateral striatum. At pre-surgery
baseline, there were no significant differences in both relative CBF and CBV between groups.
Relative CBF and CBV of CI+AB and CI groups decreased significantly compared to sham
group at 60 minutes post insult. At day 7 CBF and CBV of CI+AB and CI groups increased
significantly (hyperperfusion/hyperemia) compared to the sham group. At day 14 and month 1,
CBV but not CBF in CI+AB and CI groups remained significantly higher than sham group.
There were no significant differences in CBF and CBV between groups at month 2 and 3.
*CI+Ap (n=6) vs Sham (n=4), T CI (n=6) vs Sham, P<0.05 for all.
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3.3.4 1gG leakage and microglial activation

Immunohistochemical analysis (Figure 3-5) showed the highest IgG extravasation (indicator
of BBB leakage) and microglia density (indicator of neuroinflammation) in the lesion of CI+ApB
group (n=3), as compared to Cl (n=3, p<0.05) and sham (n=3, p<0.001) groups. CI group had
significantly higher 1gG extravasation and microglia density than sham group (p<0.001).
Histology revealed that about 30% of the area in the ipsilateral striatum was IgG positive, and
activated microglia formed a denser colony in the CI+Ap brain, compared to the minor IgG

extravasation and diffused pattern of activated microglia in CI group.
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Figure 3-5: Immunohistochemistry of 1gG leakage (A-C) and activated microglia (D-F). The
data showed a significantly larger IgG-positive region in the ipsilateral (right) striatum of CI+Ap
group compared to Cl and sham groups. In the striatal lesion, activated microglia was positively
stained with OX-6. CI+Ap group had the highest density of activated microglia, followed by the
moderate amount of activated microglia in the CI group, as compared to the sham. *Sham (n=3)
vs CI+Ap (n=3) at P<0.001, T Sham vs CI (n=3) at P<0.001, # CI+Ap vs CI at P<0.05.
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3.4 Discussion

This imaging study investigated the changes of BBB-PS, neuroinflammation and cerebral
hemodynamics over the first 3 months post CI with and without the presence of AB. The major
findings of the study indicate that BBB-PS in the ipsilateral striatum increased non-significantly
at day 7, and significantly at month 2 and 3 in the CI+AB group but not the CI group. PET
imaging of !8F-FEPPA showed increased levels of neuroinflammation in the striatal lesion of the
CI+Ap brain throughout the 3-month period, with the highest level appeared at day 7 and a
smaller sustained increase at month 2 and 3. At day 14, a significantly higher ®F-FEPPA uptake
was seen in CI+Ap group as compared to sham and Cl. This is consistent with other reports
using similar radiolabeled ligands that bind to translocator protein (TSPO) in activated microglia
(28, 29). In addition, CBF and CBV in both CI+AB and CI groups showed a decrease at acute
phase due to the induced ischemia and a subsequent hyperemic increase at day 7 but no

significant changes at month 2 and 3.

For the past several decades, the pathogenic importance of cerebrovascular dysfunction in
AD development has been debated. A considerable number of pathological studies, including the
well cited Nun study have elucidated the existence and importance of cerebrovascular lesions
(particularly subcortical ischemic infarcts and white matter lesions) and microvascular
abnormality in AD patients (2, 16, 19). Moreover, reductions in CBF and glucose metabolism
have been observed in AD patients in imaging studies using SPECT or PET (30-32). However, it
was difficult to interpret the pathogenic importance of these cerebrovascular and metabolic
abnormalities because it was not clear whether they were causes or consequences of
neurodegeneration. A growing body of epidemiological evidence has indicated that

cerebrovascular diseases (e.g. stroke) and AD share common risk factors, suggesting a
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pathogenic connection/interaction between them (17, 33). In our study, CTP and PET imaging
were used in a rat model of combined subcortical Cl and amyloid injury to investigate the
contribution of cerebrovascular abnormality and inflammation to the pathogenesis of
neurodegeneration. Our previous work on this animal model had shown changes of cerebral
hemodynamics in the first month post Cl and A induction (25). The present study not only
extended the previous investigation but also provided further perspectives on early microglia-
related neuroinflammation and chronic breakdown of blood-brain barrier, which is a crucial part
of neurovascular unit in regulating local perfusion and traffic of various molecules in and out of

the brain.

The CTP imaging showed an increasing trend of the BBB-PS from acute phase to day 7 in
Cl and CI+ApB groups, but only CI+AB group had significantly higher BBB-PS at day 7
compared to the sham group. This result is consistent with other reports showing the increased
BBB permeability/disruption post Cl, particularly at day 7 (34, 35). With additive effects of Ap
protein on Cl, a greater BBB disruption was expected at day 7 in the CI+AB animals. However, a
higher but not significant BBB-PS was present in CI+Ap group compared to CI group at day 7.
This may be due to the sample size or BBB disruption/opening that had already reached or
approached the maximal degree at day 7, as compared to the other time points. Furthermore, the
significantly higher BBB-PS was seen only in the CI+Ap subjects at month 2 and 3, suggesting a
chronic breakdown of BBB/microvascular integrity due to the greater damage caused by
combination of Cl and A injuries and induced inflammation. The BBB breakdown is consistent
with our 1gG immunostaining, which showed significantly higher IgG extravasation in the
CI+AB brain than CI and sham brain. BBB dysfunction caused by ischemia or AB can contribute

to subcortical and white matter lesions, capillary degeneration and cerebral amyloid angiopathy
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(8, 16, 17, 36), all of which would accelerate the neurodegenerative process. Recent studies have
shown that increased BBB permeability is an early indication of subcortical ischemic disease and
white matter lesion, which are frequently observed in AD and vascular cognitive impairment
(VCI) (20, 37-39). In addition, increased level of cerebrospinal fluid albumin was found in
suspected elderly subjects prior to the development of AD (37) or VVCI (38), suggesting that BBB
dysfunction may have a pathogenic role in both diseases. Additionally, Ap can trigger the release
of inflammatory cytokines and mediators, further exacerbating BBB disruption (36, 40, 41).
Therefore, the comorbid model of CI and AB which mimicks subcortical ischemia in the striatum
and infiltration of soluble A to the periventricular region would allow us to study the interaction

between Cl and A in causing BBB disruption and neuroinflammation.

Neuroinflammation can play a significant role in AD and ischemic injury (42-45). An
important hallmark of neuroinflammation in central nervous system is the activation of resident
glial cells such as microglia and astrocytes. In this study, in-vivo PET imaging with ®F-FEPPA
showed the highest binding to the activated microglia in the ipsilateral striatum of CI+Af group,
followed by the moderate binding in CI group within the first month post insult. For Cl and
CI+Ap groups, FEPPA uptake reached a maximum at day 7, and then gradually decreased over
the first month. The same temporal change of activated microglia after Cl has been previously
reported in several studies using similar TSPO ligands such as !C-PK11195 and ¥F-DPA-714
(28, 29). However, our study extended the previous observations to demonstrate that the
synergistic effect of Cl and AP would lead to a more pronounced activation of microglia than CI
alone at day 14 (by ®F-FEPPA imaging) and at month 3 post insult (by immunohistochemical
staining with OX-6). Increased levels of activated microglia or neuroinflammation in AD animal

models and patients has been observed with histopathology and PET imaging, and has been
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associated with neurodegeneration and low cognitive performance (46-49), suggesting a
significant role of inflammation in AD development. Under the converging influences of both ClI
and AP demonstrated in our CI+AB model, a more severe neuroinflammation can enhance or

accelerate the neuronal damage and cognitive deterioration.

CBF and CBYV in the ipsilateral striatum decreased significantly in Cl and CI+Ap groups at
60 min post insult, indicating a successful ischemia was induced. At day 7, increased CBF and
CBV in Cl and CI+Ap groups represented a post-ischemia hyperperfusion and hypervolemia
(hyperemia). These findings are consistent with our previous study (25). Hyperperfusion or
hypervolemia were also observed in the Cl and CI+Ap groups up to one month post insult which
corresponded with the more pronounced BBB-PS increase and 8F-FEPPA uptake. Some studies
have also found the correlation between prolonged hyperperfusion or hyperemia and BBB

leakage and irreversible tissue damage (34, 50-52).

The main limitation of this study is the lack of monitoring of cognitive and functional
outcomes. This would be useful for investigating the correlation between degree of BBB
breakdown or inflammation and severity of cognitive/functional impairment induced by either
CI+ApB or CI alone. Studies have shown the leakage of plasma albumin into cerebrospinal fluid
in AD or VCI patients with subcortical ischemic lesions (20). However, the relation of BBB
breakdown to the extent of cognitive/functional impairment was not clearly determined at the

stage prior to maturation of A and tau pathology as would be the case for our model.



91

3.5 Conclusion

In summary, CTP imaging showed that CI+AB group had significantly higher BBB-PS in
the ipsilateral striatum at day 7, and month 2 and 3 than sham and CI groups, suggesting a
greater and chronic BBB breakdown in the comorbid group. PET imaging with 8F-FEPPA, as a
marker of inflammation, revealed the highest uptake in the lesion of the CI+AB group within the
first month, especially during the period of day 7-14. The prolonged post-ischemia
hyperperfusion/nypervolemia between day 7 and 14 during reperfusion and inflammation could
potentiate BBB disruption. Together, these findings suggest that ClI+Ap comorbidity can lead to
breakdown of BBB, greater neuroinflammation and hemodynamic disturbances, which may

delineate the early pathogenic pattern for the associated neurodegeneration.
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Chapter 4

Temporal Changes in Blood-Brain Barrier Permeability and

Cerebral Perfusion in Lacunar/Subcortical Ischemic stroke

This chapter is adapted from the original research manuscript entitled “Temporal Changes in
Blood-Brain Barrier Permeability and Cerebral Perfusion in Lacunar/Subcortical Ischemic stroke”
submitted to BMC Neurology by J. Yang, C.D. d’Esterre, S. Ceruti, G. Roversi, A. Saletti, E.

Fainardi and T.Y. Lee.

4.1 Introduction

Stroke is one of the leading causes of death and long-term disability (1). It is also an
important contributing factor to cognitive dysfunction or dementia post stroke, including
vascular cognitive impairment (VCI) (2). Around 15-25% of ischemic strokes are lacunar strokes
(3), which can manifest as lacunes or subcortical lesions on routine MR and CT images. Recent
clinical evidence has suggested that lacunar and subcortical lesion might exert adverse effects on
cognition and memory (3-5). Studies have shown that the blood-brain barrier (BBB) becomes
more permeable in VCI patients with subcortical lesions and leukoaraiosis (6-8). Contrast-
enhanced MRI reveals that BBB permeability increases in patients with lacunar lesions,
compared to normal control or cortical stroke (7-10). Moreover, pathological studies report
increased level of cerebrospinal fluid (CSF) albumin in patients with lacunar/subcortical lesion
or white matter disease (3, 6). Clinically, the primary types of brain lesion in cerebral small
vessel-related VCI are lacunar and subcortical lesions, which are caused by ischemia due to

arteriolar occlusion (e.g. lenticulostriate arteries, recurrent artery of Heubner and
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thalamoperforating arteries). The anatomic regions corresponding to these vascular territories are
basal ganglia, thalamus and surrounding white matter (involved in motor movement, cognition,
learning, visual memory and signal processing) (11, 12). The ischemic event/occlusion may play
as a trigger for the BBB abnormality in the presence of cerebral small vessel disease. Together,
the evidence suggests that there is an underlying association between lacunar/subcortical
ischemic stroke and cerebral microvascular abnormality, thus longitudinal investigation of
subcortical BBB permeability may better demonstrate BBB leakage and microvascular
dysfunction in stroke patients with small subcortical ischemic lesions before progressing to VCI.
The chronic BBB leakage may act as a contributor and predictor for long-term cognitive
impairment and associated pathology.

Recently, CT perfusion (CTP), a physiologic imaging modality requiring intravenous
injection of iodinated contrast agent to image blood flow and associated hemodynamic
parameters (13), is used for diagnosis of acute ischemic stroke and vasospasm. CTP not only
measures tissue perfusion but also vascular permeability surface product (PS), an indicator of
BBB integrity and permeability (13, 14). Current CTP technique is more accessible and faster to
perform in clinical practice than MRI and xenon-perfusion CT (15), and is ideal for studies at
acute and subacute stages of stroke.

In this study we sought to examine the time course of BBB permeability changes measured
with CTP in patients from the acute phase to 3 months post stroke to determine whether BBB
permeability of the non-infarcted ipsilateral basal ganglia and thalamus is different in patients

with and without lacunar/subcortical lesion.
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4.2 Methods and Materials

4.2.1 Subjects

Patients with clinically diagnosed acute ischemic stroke were consecutively and
prospectively recruited from February 2009 to July 2011 at one institution. All patients were
admitted to the Department of Neuroscience of the University of Ferrara within 6 hours of stroke
symptom onset. Patients with impaired renal function, contraindications to iodinated contrast
agent, intracerebral hemorrhage at admission, brain stem infarct, previous stroke with clear
deficits, missing CTP imaging at admission or any follow-up time points (24 hours, 7 days and 3
months), severe motion artifacts in CTP imaging, pregnancy and age < 18 years were excluded.
For this study, thirty-one patients who underwent non-enhanced CT (NECT) and two-phase CTP
acquisition (2.5 min) at admission and all follow-up exams were included. The study was
approved by the Committee for Medical Ethics in Research of the University of Ferrara and
informed consent was obtained from all patients enrolled in the study.

All patients were diagnosed by an experienced neurologist (G.R.) who evaluated the clinical
stroke symptoms at admission based on the National Institutes of Health Stroke Scale (NIHSS)
(16). Clinical outcome was assessed using the modified Rankin scale (mRS) at 3-month post
stroke (17) and mRS < 2 and > 2 were defined as good and poor outcome, respectively. Patients
having lacunar/subcortical lesion (<20 mm in diameter) on month-3 NECT images were
separated from those without subcortical lesion (i.e. large vessel infarcts primarily in the cortical
gray matter). Vascular risk factors including hypertension, diabetes, previous silent infarct,

ischemic heart disease and thrombolytic treatment were documented.
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4.2.2 CT perfusion acquisition protocol and functional maps

CTP studies were performed at admission, 24 hours, 7 days and 3 months post stroke. Prior
to CTP scan, a NECT scan was performed to locate hypodense ischemic lesion. Each CTP scan
started with an intravenous injection of 50 mL of iodinated contrast agent (lomeron 300 mg/ml,
Bracco Imaging SpA, Milan, Italy) at the rate of 4 mL/s, followed by 45 mL of saline flush at the
same infusion rate. A 20-gauge catheter and cephalic vein were used in peripheral venous access
for contrast injection. Each CTP acquisition used a two-phase protocol: eight 5 mm-thick slices
covering a 40 mm section of the brain were scanned continuously for 45 s with images
reconstructed at 0.5 s intervals and then scanned once every 15 s for another 105 s for a total
acquisition time of 2.5 minutes. The scan parameters for both phases were 25 cm FOV, 80 kV,
100 mA, and 1 s per gantry rotation. BBB permeability-surface (BBB-PS), cerebral blood flow
(CBF) and cerebral blood volume (CBV) maps were generated with the delay insensitive CT
Perfusion software based on the modified Johnson-Wilson model (GE Healthcare, Waukesha,

WI) (18, 19).

4.2.3 Image registration and analysis

CTP maps from all follow-up time points and NECT at 3 month of each patient were
manually co-registered with the admission maps using Analyze v11.0 software (Mayo Clinic,
Rochester, MN). The averages of the source CTP images were used as references for each
registration. For lacunar/subcortical stroke, regions of interest (ROIs) were defined in the
ipsilateral and contralateral basal ganglia (caudate nucleus, putamen, globus pallidus) and
thalamus as well as the infarct using the month-3 NECT (Figure 4-2). Data from the ipsilateral

deep gray nuclei excluding the infarct were normalized with contralateral data to obtain relative
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CBF (rCBF), CBV (rCBV) and BBB-PS (rBBB-PS) for each time point. The same analysis was

used for the cortical stroke group, except that no region of deep gray nuclei was excluded.

4.2.4 Statistical methods

Statistical analyses were performed using SigmaPlot v12.0 (Systat Software, San Jose, CA).
The unpaired t-test was used for comparisons of NIHSS score at admission, mRS at month 3 and
age between patients with and without lacunar/subcortical lesion. Fisher’s exact test was used for
demographic data between the two groups. Relative CBF, CBV and BBB-PS in the non-infarcted
ipsilateral deep gray nuclei were compared between the two groups, and also between the time
points within each group using two-way ANOVA with group and time as independent factors.
Tukey’s post hoc test was then used for inter-group comparison. Statistical significance was set

at p<0.05. All CTP-derived data were presented as mean = SEM.

4.3 Results

4.3.1 Patient data

The 31 patients (18 F, 13 M) included in this study were divided into two groups, 14
patients with lacunar/subcortical infarct and 17 patients with cortical stroke based on month-3
NECT images. Mean proportion of the infarcted area in the basal ganglia or thalamus for the
lacunar/subcortical group was small, 11.4 + 3.6%. There were no significant differences in mean
age, gender, hypertension and previous silent infarct between the two groups (Table 4-1). The

proportion of the patients who received intravenous thrombolysis was lower but not significant
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in the lacunar/subcortical group. The mean NIHSS at admission and mRS at 3 months post
stroke were not significantly different between the two groups.

Table 4-1: Characteristics of patients with and without lacunar/subcortical lesion.

Subcortical/lacunar Cortical p value

Clinical data (n=14) (n=17)

Age* 71+10 69 + 12 0.50
Female n (%) 9 (64%) 9 (53%) 0.72
Hypertension n (%) 9 (64%) 12 (71%) 1.00
Previous silent infarct n (%) | 5 (36%) 7 (41%) 1.00
Thrombolysis n (%) 10 (71%) 14 (82%) 0.67
NIHSS at admission* 15.1+£6.2 12.3+£6.2 0.21
mRS at month 3* 21+11 22%15 0.83

* Age, NIHSS and mRS are represented as mean + SD

4.3.2 Temporal changes in blood-brain barrier permeability

Mean rBBB-PS (Figure 4-1) in the non-infarcted ipsilateral basal ganglia and thalamus
(deep gray nuclei) in the lacunar/subcortical group was significantly higher at day 7 and month 3
(p<0.01 at day 7 and p<0.05 at month 3), and non-significantly higher at admission and 24 hrs
than the cortical group. Particularly, at day 7 the lacunar/subcortical group showed the largest
difference in rBBB-PS from the cortical group (2.78 £ 0.64 vs 1.07 = 0.06). In addition, intra-
group comparisons showed that the rBBB-PS within the lacunar/subcortical group at day 7 was

significantly higher than those at all other time points (p<0.05). This intra-group difference was
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not seen in the cortical patients. An example of increased BBB permeability was shown by the
enhanced signal in BBB-PS maps (Figure 4-2) in the right basal ganglia (putamen) where the

contrast agent leaked into the interstitial space of brain tissue through a compromised BBB.
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Figure 4-1: Blood-brain barrier (BBB) permeability (PS) in the non-infarcted ipsilateral
basal ganglia and thalamus. rBBB-PS was significantly higher in the lacunar/subcortical group
compared to the cortical group at 7 days and 3 months after stroke (*, P<0.01 at 7 days and
P<0.05 at 3 months). The largest difference between the two groups occurred at day 7, with
about 2.5-fold higher value in the lacunar/subcortical group than the cortical group. In the
lacunar/subcortical group, rBBB-PS remained stable between admission and 24hr but
significantly increased from 24 hrs to 7 days post stroke (P<0.05), and then significantly declined
at 3 months (P<0.05). No significant intra-group differences in BBB-PS over time were seen in

the cortical group.
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Admission

Figure 4-2: BBB-PS maps in a patient with a subcortical infarct in right putamen (as shown on
the 3-month NECT). The maps from acute phase to 3 months after stroke were shown. Focally
elevated BBB-PS was observed in right putamen at 24 hrs, day 7 and month 3 for the patient.
Caudate nucleus, putamen, globus pallidus and thalamus in both ipsilateral and contralateral
hemisphere were outlined in red. The infarct in the right putamen shown on the 3-month NECT

was also outlined in red (smaller ROI within the right putamen).

4.3.3 Cerebral hemodynamics

Mean rCBF in the non-infarcted ipsilateral basal ganglia and thalamus (Figure 4-3A) was
significantly lower in patients with lacunar/subcortical lesions at admission, 0.72 £ 0.05, as
compared to the cortical group, 0.86 + 0.03 (p<0.01). Similarly, mean rCBYV in the non-infarcted
ipsilateral basal ganglia and thalamus (Figure 4-3B) in the lacunar/subcortical group was

significantly lower than the cortical group at admission (0.80 + 0.05 vs 0.92 = 0.03, p<0.05).
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There were no significant differences in both rCBF and rCBV at 24 hrs, day 7 and month 3
between the two groups, although at day 7 rCBF and rCBV were slightly higher in the

lacunar/subcortical group.
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Figure 4-3: (A) CBF and (B) CBV in the non-infarcted ipsilateral basal ganglia and
thalamus. Both rCBF and rCBV in the lacunar/subcortical group were significantly lower at
admission (*, P<0.01 for rCBF and P<0.05 for rCBV) and remained lower at 24hrs (no

significance) than the cortical group. rCBF and rCBV were higher but not significant in the
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lacunar/subcortical group at day 7 compared to the cortical group. At month 3, there was no

significant rCBF and rCBV difference between the two groups.

4.4 Discussion

In this study, CTP imaging revealed that patients with lacunar/subcortical lesions had
significantly higher BBB-PS in the non-infarcted basal ganglia and thalamus at day 7 and month
3 than patients with cortical stroke. This finding is consistent with previous MRI evidence of
increased BBB-PS in lacunar stroke and VCI with subcortical ischemic lesions (6-10, 20). In
addition to BBB-PS, at acute phase (admission) CBF and CBV within non-infarcted ipsilateral
basal ganglia and thalamus in the lacunar/subcortical patients were significantly lower than the
cortical group, suggesting an ischemic influence in the subcortical region.

Lacunar and subcortical lesions, along with white matter lesions (WML), are frequently
found in patients with VCI and AD (6). The well cited Nun study found that, in subjects with AD
pathology, the presence of subcortical or lacunar infarcts (in the basal ganglia, thalamus and deep
white matter) at autopsy was associated with a 20-fold higher risk to develop dementia compared
to those without subcortical infarcts (21). Therefore, it is important to understand the
pathogenesis of lacunar/subcortical lesion. Some studies report that hypoperfusion (reduced CBF)
was found in leukoaraiosis, which is frequently related to cerebral microvascular disturbances in
lacunar/subcortical stroke (22, 23). In our study, within the acute phase significantly reduced
CBF and CBV was present in the non-infarcted basal ganglia and thalamus of the
lacunar/subcortical patients, but not in the cortical patients, indicating the presence of a more
severe ischemia in the basal ganglia and thalamus of the lacunar/subcortical group. At day 7,
differences in CBF and CBV between the two groups were not significant but CBF and CBV

were higher in the lacunar/subcortical group. This is probably due to reactive hyperemia or
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compensatory blood supply (reperfusion) from collateral flow to the viable penumbra, similar to
the results found in animal model of cerebral ischemia (24). This appeared to be transient since,
at month 3, slightly lower CBF and CBV were again detected in the affected region in the
lacunar/subcortical group possibly due to compromised vascular reactivity and tissue damage.
Several studies show that greater BBB disruption is associated with reperfusion post cerebral
ischemia in animal models (24-26). This is consistent with our finding that the greatest BBB
disruption (the highest BBB-PS) was observed along with the reperfusion at day 7 in
lacunar/subcortical stroke. In addition, the majority of the patients in this study had thrombolytic
treatment (tPA) at admission, which has also been associated with increased BBB permeability
after reperfusion (as a secondary injury) in previous studies (27, 28). Moreover, other reports
indicate that early post-ischemia hyperperfusion may be associated with infarction or impaired
BBB at later time (29, 30), which could explain the higher BBB-PS presented at month 3 in the
lacunar/subcortical patients.

Hypoperfusion in the basal ganglia and thalamus at acute phase is not the only vascular
abnormality of lacunar/subcortical lesion that is associated with cerebral small vessel disease.
Additionally, increased BBB permeability (i.e. leaky cerebral microvessels) could be an
underlying pathogenic mechanism that is exacerbated by ischemia (9, 10, 20). Pathologically,
extravasation of serum proteins such as albumin into CSF, which is an indicator of BBB
disruption, has been demonstrated in VCI and AD patients, particularly in those with
lacunar/subcortical ischemic lesion or WML (6, 7, 31). In our study, BBB-PS in the basal
ganglia and thalamus of the lacunar/subcortical patients was significantly elevated and peaked at
day 7, compared to that of cortical group. This reflects a dynamic transition of BBB abnormality

from acute phase to a maximum opening/disruption of BBB at subacute phase for
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lacunar/subcortical lesion. At month 3, BBB-PS of the non-infarcted basal ganglia and thalamus
in the lacunar/subcortical group was still significantly higher than in the cortical group, but at a
lower level than at day 7. This suggests that after an ischemic insult BBB in the viable area of the
lacunar/subcortical group remained more affected and vulnerable than the cortical group. All
these observations, to some extent, may explain early BBB-PS changes of cerebral microvascular
disease, especially in the affected subcortical regions such as basal ganglia and thalamus, where
about 31% and 12% of lacunar infarcts are located respectively (11). Recent perfusion MRI
studies found significantly increased BBB permeability in the basal ganglia, CSF and deep white
matter in subjects with VCI and lacunar/subcortical ischemic vessel disease (6-10, 20), which is
consistent with our findings. This increased BBB permeability observed from our and other
studies posits a link between cerebral small vessel disease and lacunar/subcortical lesions. All of
the above evidence strongly supports cerebral microvascular dysfunction as an important
contributing vascular mechanism for lacunar/subcortical lesions.

In comparison with previous studies (8-10), the strengths of this study include: (1) multiple
time points post stroke at acute and subacute phase over the first 3 months to better identify early
changes of BBB-PS, a biomarker of cerebral microvascular dysfunction. In addition, we
registered CTP maps for all different time points to ensure measurements are from the same
region; (2) multiple parameters such as CBF, CBV and BBB-PS can be produced at the same
time for each CTP scan, increasing the chance to detect not only initial (acute) ischemic deficits
with viable penumbra but also BBB disturbances at acute and subacute period; (3) in contrast to
MRI, changes in CT signal intensity (attenuation) are linearly related to changes in contrast agent
concentration, resulting in better measurements of perfusion parameters in detecting defects (14,

32).
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The limitations of the study are the small size of the sample population and limited coverage
of the brain with relatively thick slices which diminished our ability in detecting some small
lacunar/subcortical lesions. The radiation dose is another concern. In our study, no patients
showed acute radiation-related complications. The effective radiation dose in a typical CTP
study is about 2 mSv (at 100-150 mA and 80 kV), which is significantly lower than xenon-
perfusion CT and SPECT (15). With advancement of new iterative reconstruction techniques
(33), radiation dose of a CTP study can be reduced to fraction of the background radiation dose
(34). This would allow repeated examinations for suspected VCI patients with cerebral small

vessel disease to monitor BBB permeability over time.

4.5 Conclusion

This study demonstrated that with serial CTP imaging, a more profound decrease in CBF
and CBYV at acute phase and a higher BBB-PS in the non-infarcted basal ganglia and thalamus at
subacute phase and month 3 in patients with lacunar/subcortical lesions, compared to patients
with cortical stroke. These findings suggest that ischemic insult can exacerbate vascular
abnormalities, especially subcortical BBB permeability in the presence of cerebral small vessel

disease.
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Chapter 5

Conclusion and Future Work

5.1 Summary

The introduction of this thesis provides an overview of vascular abnormality of cerebral
ischemia and clinical background of coexistence of ischemic and AD pathology. As described in
the previous chapters, the main goals of this thesis were to investigate the underlying interaction
between CI and AP, and to elucidate the contribution of post-ischemia vascular disturbances to
the early pathogenesis of AD or subcortical ischemic disease. The coexistence of ischemic and
AD pathology has been found in many studies, but few mechanisms have been advanced in the
literature to facilitate the understanding of vascular abnormalities occurring at early stage of the
comorbidity. This may be due to the lack of an appropriate animal model that has both ischemic
and AD-related injuries before substantial pathology such as AP plaques and tau tangles becomes
mature in advanced neurodegeneration. The animal model used for this thesis combines both
ischemic and AP injuries before formation of substantial Ap plaques and tau tangles. With CTP
and PET imaging, in-vivo biomarkers such as BBB-PS, CBF, CBV, and activated microglia
were measured to study the mechanism of early vascular and cellular abnormalities in the
comorbidity. In addition to the animal studies, this thesis also explored temporal changes of BBB
permeability and cerebral perfusion in patients with small subcortical ischemic stroke, which is

closely related to AD and vascular dementia.

In this chapter, major findings of my research and clinical implications will be discussed.

Furthermore, a future direction will also be included for the possible investigations that may help
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in understanding the relationship between cerebrovascular abnormalities and neurodegeneration

in progression of cognitive impairment.

5.2 Disturbances of cerebral perfusion

Clinical evidence indicates that cerebral ischemic lesions and infarcts are frequently present
with AD pathology and cognitive decline. Reductions in CBF and glucose metabolism have also
been found in elderly AD patients, but could be consequences rather than the causes of
neurodegeneration. Therefore, the role of cerebral ischemia needs to be elucidated at early stage
post ischemia with coexisting amyloid toxicity. Chapter 2 revealed disturbances in CBF and
CBV from acute phase to the first month post ischemia and chapter 3 extended the investigation
of chapter 2 to three months in our animal comorbid model of CI and amyloid injuries. Chapter 2
showed that the coexistence of CI and AP disrupted normal cerebral hemodynamics and
exacerbated post-ischemia injury, as compared to the sham or AP alone. The major driving factor
of hemodynamic dysfunction in the first month was ischemia. At 7 and 14 days post ischemia,
hyperperfusion and hypervolemia in Cl and CI+AB groups represented a reperfusion-related
compensatory phenomenon. However, this prolonged hyperperfusion/hypervolemia may also be
associated with inflammation and increased BBB leakage as demonstrated in chapter 3. Our
observations  suggest the yang (good) and the yin (bad) of prolonged
hyperperfusion/hypervolemia post ischemia. A few important questions remain to be addressed:
whether there is a long-term hypoperfusion in our animal model after 3 months; and whether
hypoperfusion correlates with inflammation and BBB leakage, and precedes or follows

neurodegeneration and cognitive decline.
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5.3 Changes in BBB permeability/integrity

The local exchange of molecules in and out of the brain is tightly regulated by an intact
BBB, thus BBB permeability surface (BBB-PS) can be an important indicator for BBB integrity.
In chapter 3, BBB-PS, a functional biomarker of microvascular permeability derived from a CTP
study, increased in CI+Ap animals relative to CI or sham group at day 7, month 2 and 3. This
suggests that CI can trigger a greater and chronic BBB disruption in the presence of amyloid
toxicity. This may be associated with enhanced inflammatory reaction induced by combination
of ischemic and amyloid injuries, which was demonstrated by PET imaging with ®F-FEPPA.
The initial pathogenic event at the prodromal stage of AD-related neurodegeneration must be a
chronic and minimal perturbation to the central nervous system in order not to cause significant
clinical symptoms. The opening or disruption of BBB after focal ischemia can be one of the
driving causes leading to this chronic perturbation. The chronic BBB disruption observed in our
animal model is similar to the elevated BBB-PS observed in stroke patients with
lacunar/subcortical ischemic lesions at 7 days and 3 months post ischemia (chapter 4), because in
our animal model CI was also induced in the subcortical location (striatum). Therefore, both
animal and clinical studies suggest subcortical CI is highly related to BBB breakdown. The
limitation of the studies in chapter 3 and 4 is the lack of investigation for the relationship

between long-term cognitive/functional impairment and BBB leakage that we observed.

5.4 Activation of microglia and neuroinflammation

This thesis used in-vivo PET imaging of activated microglia to investigate inflammation in

the animal comorbid model (chapter 3). PET imaging with 8F-FEPPA revealed that activation of
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microglia reached maximum at 7 days post insult in Cl and CI+Ap groups, with more activated
microglia in CI+A group. A significantly higher 8F-FEPPA uptake was found in CI+Ap group
at 14 days as compared to both Cl and sham groups. These findings demonstrate that
neuroinflammation in Cl+Ap/comorbid group is more severe than that in CI group, suggesting a
synergistic effect of Cl and AP insult on triggering inflammatory reaction. This result is
consistent with previous studies that showed enhanced neuroinflammation, associated neuronal
damage (e.g. larger infarcted area) and cognitive decline in animal models and patients with such
comorbidity (1-6). Under the converging influences of both Cl and AP demonstrated in our
comorbid model, inflammation can accelerate neuronal damage, potentially leading to cognitive

deterioration.

5.5 Clinical relevance and implications

Past imaging studies of AD or cognitive impairment have focused on hypoperfusion or
hypometabolism, which appears after onset of clinical symptoms from extensive
neurodegeneration. Therefore, these studies might miss the initial causes responsible for
hypoperfusion/hypometabolism and neuronal dysfunction. In contrast, the studies in this thesis
demonstrated the contribution of cerebrovascular injury from ischemia to the pathogenesis of
neurodegeneration and subcortical ischemic disease. Our animal CTP-PET studies successfully
demonstrated the pathogenic mechanism and temporal profiles of vascular abnormalities and
neuroinflammation at early stage post ischemic insult in the presence of amyloid toxicity. The in-
vivo CTP-PET studies described in this thesis can be used in clinical research to identify
suspected patients having cerebrovascular pathology, particularly those with increased BBB-PS

and neuroinflammation in subcortical regions, which can contribute to and accelerate AD
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development (7-10). In addition, PET imaging of inflammatory microglia offers a mean to detect
disease progression and to monitor efficacy of therapy over time. Moreover, cerebral small
vessel disease, a risk factor for vascular cognitive impairment, can result in elevated BBB-PS in
small ischemic lesions in the basal ganglia, thalamus and surrounding white matter (11, 12), thus
BBB-PS may be used as an indicator for management of BBB dysfunction or a predictor for

progression of cognitive impairment.

5.6 Future work

The work of this thesis has provided a better understanding of hemodynamic and vascular
abnormalities caused by cerebral ischemia, and investigated synergistic mechanism of ischemic
and AP insults in contributing to neurodegeneration. However, some questions still remain
unclear. The following section will outline possible research directions that may help answer

these questions.

5.6.1 Examination of cognitive performance

Although increased BBB-PS, hemodynamic dysfunction and microglia activation were
found in the animal comorbid model, our study did not monitor cognitive/functional impairment
along with BBB breakdown and neuroinflammation over time. To address this question, future
studies should perform animal cognitive testing using radial-arm maze (2) or Morris water maze
(13) over the first 3 months or even longer term post insult. These cognitive tests are able to

assess spatial learning and memory. The cognitive testing data may help in determining
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correlation between our CTP-PET biomarkers and severity of cognitive impairment. The

imaging biomarkers can then be used to monitor disease progression.

5.6.2 Amyloid or tau imaging

The pathological features of AD brain are amyloid aggregates and tau tangles. Recent
development of PET radiotracers binding to amyloid and tau proteins points out a new direction
for imaging neurodegeneration. With the coexistence of ischemic and amyloid injuries, the
accelerated neurodegeneration may be correlated with increased levels of amyloid and/or tau
pathology. Therefore, PET imaging of amyloid or tau proteins may be useful in investigating
progression of these pathologies and related neurodegeneration. In addition, amyloid or tau
imaging can also be used to determine whether there is a relation between BBB breakdown or

cognitive impairment and increased levels of amyloid and/or tau pathology.

Furthermore, another method can also be used to study correlation between BBB breakdown
and extravasation of blood-borne soluble A into the brain. Fluorescent or radio-labeled amyloid
proteins can be injected into the bloodstream after cerebral ischemia, and then near-infrared
fluorescence camera or PET can be used to determine whether there is extravasation of those
labeled AP through the leaky BBB caused by ischemia. This imaging study can facilitate our
understanding of exogenous source of amyloid pathology when there is ischemia-induced BBB

breakdown.
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5.6.3 Long-term cognition and imaging study for patients with subcortical/lacunar lesions
In chapter 4, we have performed a longitudinal CTP study over the first 3 months post
ischemic event, but this is not sufficient to determine underlying association between BBB
dysfunction of subcortical lesions or WMLs and cognitive dysfunction. To address this question,
a long-term imaging and cognition study focusing on cognitive changes in patients with small
subcortical lesions and/or WMLs up to 1~2 years post initial stroke should be done.
Neurocognitive assessments such as Mini Mental State Examination (MMSE), Alzheimer’s
Disease Assessment Scale-cognitive subsection (ADAS-cog) or Clinical Dementia Rating Scale
(CDR) can be performed, and cognitive status of patients can be correlated with follow-up CTP
results. In addition, MRI can also be included for follow-up imaging to investigate WMLs,
atrophy, microbleeds or other abnormalities. Recurrent stroke and newly formed infarcts can also
be documented via CT/MRI examinations. With this long-term imaging and cognition study,
chronic changes of BBB permeability/dysfunction of subcortical lesions and WMLs can be
correlated with long-term cognitive impairment to answer the question - does BBB dysfunction

predict cognitive decline?
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Appendix A: Animal Ethics Approval for the work contained within
Chapter 2
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has had its yearly renewal approved by the Animal Use Subcommittee.
This approval is valid from 12.01.10 to 12.01.11
The protocol number for this project remains as 2008-113

1. This number must be indicated when ordering animals for this project.

2. Animals for other projects may not be ordered under this number.

3. If no number appears please contact this office when grant approval is received.
If the application for funding is not successful and you wish to proceed with the project, request that an internal
scientific peer review be performed by the Animal Use Subcommittee office.

4. Purchases of animals other than through this system must be cleared through the ACVS office. Health
certificates will be required.

REQUIREMENTS/COMMENTS

Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar
with the contents of this document.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety
components (biosafety, radiation safety, general laboratory safety) comply with institutional safety
standards and have received all necessary approvals. Please consult directly with your
institutional safety officers.

c.c. Z Amtul, W. Lagerwerf

The University of Western Ontario
Animal Use Subcommittee / University Council on Animal Care
Health Sciences Centre, ® London, Ontario ®« CANADA — N6A 5CI
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Appendix B: Animal Ethics Approval for the work contained within
Chapter 3

Western

AUP Number: 2012-067

AUP Title: Investigation of early functional and physiological changes of cerebral ischemia
and amyloid-beta protein in a rat model of vascular cognitive impairment by using dynamic
contrast-enhanced CT and PET imaging

Yearly Renewal Date: 06/01/2014

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2012-067 has been approved,
and will be approved for one year following the above review date.

1. This AUP number must be indicated when ordering animals for this project.

2. Animals for other projects may not be ordered under this AUP number.

3. Purchases of animals other than through this system must be cleared through the ACVS
office. Health certificates will be required.

REQUIREMENTS/COMMENTS
Please ensure that individual(s) performing procedures on live animals, as described in this
protocol, are familiar with the contents of this document.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety
components (biosafety, radiation safety, general laboratory safety) comply with institutional
safety standards and have received all necessary approvals. Please consult directly with
your institutional safety officers.

Submitted by: Kinchlea, Will D
on behalf of the Animal Use Subcommittee

The University of Western Ontario
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Appendix C: Human Ethics Approval for the work contained within

Chapter 4
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Dott. F. CALZOLARI, U.0. di Neuroradiologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott. A. SALETTI, U.O. di Neuroradiologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott. L. BORGATTI, U.O. di Neuroradiologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott. S. CERUTI, U.0. di Neuroradiologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott. C. AZZINI, U.0. di Neurologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott. A. DE VITO, U.0. di Neurologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara
Dott.ssa P. MILANI, U.0. di Neurologia del
Dipartimento di Neuroscienze/Riabilitazione

125



SERVIZIO SANITARIO REGIONALE
'l EMILIA-ROMAGNA
111 Azlenda Ospedaliero - Universitaria di Ferrara

o

% universita di ferrara

COMITATO ETICO DELLA PROVINCIA DI FERRARA

Ditta/sponsor:

Codice identificativo
del piano clinico generale:

Specialita medicinale (nome o sigla):
Principio/i attivo/i:

Codice CAS (ove disponibile):

Classe farmacologica di appartenenza:

Codice ATC proposto

(secondo codifica OMS):

Codice ICD:

Fase della sperimentazione clinica:

Indicazione proposta:

Forma farmaceutica:

della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara

Dott. E. PAOLINO, U.O0. di Neurologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara

Profssa M. R. TOLA, U.O. di Neurologia del
Dipartimento di Neuroscienze/Riabilitazione
della Azienda Ospedaliero-Universitaria S.Anna
di Ferrara

spontaneo

/1

//

/1l
/1l
/1

/1
/]

si tratta di uno studio volto a valutare il
profilo temporale dei valori di flusso ematico
cerebrale (CBF), volume ematico cerebrale
(CBV), tempo medio di transito (MTT) e
permeabilita microvascolare (PS) ottenuti
con la  Tomografia  Computerizzata
perfusionale (CTP) nei pazienti con ictus
ischemico acuto durante le fasi evolutive
iperacuta, acuta, subacuta e cronica per
verificare le eventuali relazioni fra questi
parametri e gli indici clinici e
neuroradiologici di severita della malattia e
di decadimento cognitivo.
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Via di somministrazione: L
Durata dello studio: 24 mesi

Schema dello studio: nei paesi industrializzati, I'ictus ischemico rappresenta la terza causa di
morte dopo malattie cardiovascolari e tumori ed & una delle principali cause di disabilita.
Attualmente, l'unica terapia riconosciuta, approvata e disponibile per la fase acuta dell’ictus
ischemico riguarda le lesioni che interessano il territorio di irrorazione dell’arteria cerebrale
media (ACM) ed & costituita dalla trombolisi mediante iniezione per via endovenosa della
forma ricombinante dell’attivatore del plasminogeno tissutale (rtPA). Al momento, si ritiene
che tale trattamento possa rivelarsi efficace solo se somministrato entro 3 ore dall’esordio dei
sintomi ed in pazienti selezionati sulla base dei reperti della Tomografia Computerizzata (TC)
cerebrale di ammissione eseguita senza somministrazione endovenosa di mezzo di contrasto
iodato non-ionico (mdc), anche se recentemente numerosi studi hanno dimostrato la
possibilita di ampliare la finestra terapeutica sino a 4.5 ore dall'ictus. I criteri TC utilizzati
sono essenzialmente rappresentati dall’assenza di immagini riferibili ad emorragie cerebrali e
dalla presenza di segni precoci di infarto e, cio, di una ipodensitad parenchimale e/o di
rigonfiamento cerebrale focale di dimensioni superiori ad un terzo della regione di pertinenza
della ACM. Infatti, la comparsa di una ipodensita precoce a carico del tessuto cerebrale viene
ritenuta compatibile con edema citotossico e, pertanto, indicativa di danno irreversibile.
L'ipodensita precoce, quindi, rappresenterebbe la porzione centrale dell’area ischemica, il
cosiddetto “core ischemico”, dove il tessuto cerebrale risulta severamente ipoperfuso, non &
pitt vitale né potenzialmente recuperabile in caso di riperfusione ed evolve irrimediabilmente
verso l'infarto. Lo stesso significato viene attribuito al rigonfiamento cerebrale focale che si
associa quasi inevitabilmente all'ipodensita precoce e si esprime con un appianamento dei
solchi emisferici e/o una compressione dei ventricoli cerebrali.

Il metodo piu utilizzato per calcolare I'estensione degli eventuali segni precoci di infarto alla
TC cerebrale di ingresso @ il cosiddetto ASPECTS (Alberta Stroke Program Early CT Score), in
cui il territorio della ACM viene valutato su due sezioni TC passanti per i nuclei della base ed i
tetti ventricolari, rispettivamente, e risulta suddiviso in 10 zone a ciascuna delle quali viene
attribuito un punto. Per ogni area interessata da segni precoci di infarto si sottrae un punto
dal conteggio. Se il punteggio finale & superiore a 7 significa che meno di 1/3 del territorio
della ACM & danneggiato in modo irreversibile e, percid, la trombolisi viene eseguita. Se il
punteggio finale ¢ inferiore o uguale a 7, invece, il trattamento trombolitico non viene
praticato perché il danno irreversibile interessa piu di 1/3 del territorio della ACM. Tuttavia, &
noto che la ridotta densitd parenchimale determinata dall'insulto ischemico diventa
completamente visibile alla TC cerebrale solo dopo circa 24 ore dall'esordio dei sintomi,
rendendo in questo modo difficoltoso I'esatto riconoscimento dei segni precoci di infarto e,
quindi, la valutazione delle reali dimensioni del core ischemico. Inoltre, & stato dimostrato che
il rigonfiamento cerebrale focale senza ipodensita concomitante non & indicativo di infarto ma
di penombra ischemica o oligoemia. D’altra parte, l'area ipodensa prodotta da un'occlusione
vasale non necessariamente e ischemica ma pud essere anche iperperfusa. Infine, la TC
cerebrale senza mdc non @ in grado di fornire alcuna informazione sull'estensione e sull'entita
dei disordini perfusionali che si verificano nel contesto della lesione ischemica. In particolare,
la TC cerebrale convenzionale non riesce ad identificare la penombra ischemica e, ciog, la zona

127

127




SERVIZIO SANITARIO REGIONALE % universith di ferrara

. EMILIA-ROMAGNA
11 Azienda Ospedaliero - Universitaria di Ferrara

COMITATO ETICO DELLA PROVINCIA DI FERRARA

periferica dell'area ischemica che contorna il core dove il tessuto cerebrale si dimostra
severamente ipoperfuso, danneggiato in modo reversibile, ancora vitale e potenzialmente
recuperabile in caso di riperfusione ed a rischio di infarto.
Fra le diverse metodiche perfusionali capaci di dimostrare i disturbi emodinamici
caratteristici delle lesioni ischemiche, la Tomografia ad Emissione di Positroni (PET) e le
Risonanza Magnetica (RM) pesata in Diffusione (DWI) e Perfusione (PWI) sono attualmente
considerate gli strumenti pilt adeguati per differenziare fra infarto e penombra ischemica.
Queste tecniche, perd, hanno numerosi limiti fra cui, soprattutto, I'alto costo, le difficolta
organizzative ed il lungo tempo di esecuzione che ne rendono problematica l'applicazione nel
paziente con ictus ischemico in fase acuta.
Per tali ragioni, ultimamente l'interesse si & sempre pilt concentrato sulla TC Perfusionale
(CTP), una metodica rapida e di semplice esecuzione che appare in grado di discriminare fra
tessuto cerebrale irreversibilmente danneggiato (infarto) e tessuto cerebrale danneggiato in
modo reversibile ed a rischio di infarto (penombra). In particolare, & stato ripetutamente
provato che la CTP ¢ in grado di identificare il core e la penombra all'interno di un’area
ischemica mediante parametri sia qualitativi, che quantitativi. Infatti, con la CTP & possibile
generare mappe perfusionali di flusso ematico cerebrale (CBF), di volume ematico cerebrale
(CBV) e di tempo medio di transito (MTT), i cui valori vengono espressi in termini assoluti.
Lo studio comporta un'analisi clinico-radiologica longitudinale nel tempo di pazienti affetti da
ictus ischemico acuto comprendente: 1) studi con TC cerebrale standard, Angio-TC e CTP
programmati all'ammissione e a 24 ore, 7-10 giorni e 3 mesi dall'esordio; 2) il calcolo del
punteggio del National Institutes of Health Stroke Scale (NIHSS) previsto negli stessi intervalli
temporali; 3) il calcolo del punteggio del Rankin Scale modificato (mRS) pianificato a 3 mesi
dall’'esordio e l'esecuzione di una batteria di test neuropsicologici stabiliti a 7 giorni, 3 mesi e
12 mesi dall'esordio.
Il fine ultimo della ricerca & quindi quello di accertare I'effettivo ruolo della TC perfusionale
come strumento predittivo del destino funzionale del tessuto ischemico in modo da
migliorare le capacitd di selezione dei pazienti candidati alle terapie di riperfusione e
prevedere I'evoluzione clinica dei pazienti colpiti da ictus ischemico acuto in modo da attivare
rapidamente tutte le modalitd di supporto necessarie per fornire a questi pazienti un
adeguato trattamento non solo in fase precoce, ma anche negli stadi tardivi della malattia.
Saranno inclusi nello studio tutti i pazienti con diagnosi clinica di ictus ischemico cerebrale
emisferico confermata dall’esame di TC cerebrale che verranno accolti in Neurologia entro le
prime 9 ore dall'insorgenza dei sintomi. L'analisi comprendera sia i pazienti trattati con
trombolisi endovenosa e /o intra-arteriosa o con trombectomia per via endovascolare secondo
le linee guida attualmente accettate.
Tutti i pazienti arruolati nello studio saranno sottoposti a controlli longitudinali nel tempo di
tipo clinico-radiologico programmati all’esordio (entro 9 ore), a 24 ore, 7-10 giorni e 3 mesi
dalla comparsa dei sintomi ed a una batteria di test neuropsicologici programmati a 7-10
giorni a 3 mesi e a 12 mesi dall'esordio.
Valutazione clinica.
Tutti i pazienti accettati nello studio (trattati e non trattati con terapie di riperfusione)
saranno sottoposti ad esame neurologico completo con calcolo del punteggio NIHSS (National
Institutes of Health Stroke Scale) per definire la severita clinica dello stroke in ciascun
intervallo temporale stabilito: all'esordio (entro 9 ore) e dopo 24 ore, 7-10 giorni e 3 mesi
dall’esordio dei sintomi. A 3 mesi dall'ingresso verra anche effettuato il calcolo del punteggio
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della scala di Rankin modificata (mRS) per misurare I'evoluzione dell’ictus ischemico in senso

prognostico.

Valutazione neuroradiologica.

In ogni periodo di tempo programmato (all’esordio, a 12 ore, 24 ore, 7-10 giorni e 3 mesi

dall'ingresso), tutti i pazienti ammessi nello studio (trattati e non trattati con terapie di

riperfusione) verranno sottoposti a TC cerebrale standard senza somministrazione e.v. di

mezzo di contrasto iodato, Angio-TC con infusione e.v. di mdc (60 ml) e CTP con iniezione e.v.

di mdc (40 ml) eseguite mediante un apparecchio TC a rotazione continua con acquisizione a

scansione multipla di 64 strati (CT HiSpeed ZX/i; GE Medical System, Milwaukee, Wis).

In ogni paziente ed in ogni intervallo temporale stabilito verranno calcolati i seguenti

parametri:

- TC standard: calcolo del volume dell'infarto mediante la misurazione del punteggio ASPECTS

all'esordio e tramite metodo planimetrico, che consiste nel moltiplicare I'area della lesione

disegnata a mano libera in ciascuna sezione TC per il corrispondente spessore di strato, a 12

ore, 24 ore, 7-10 giorni e 3 mesi dall'ingresso e valutazione dell'eventuale presenza di

trasformazione emorragica in accordo con i criteri indicati dalla letteratura.

- Angio-TC: valutazione della sede e del grado di occlusione vasale ed analisi dell’'eventuale

ricanalizzazione in accordo con i criteri di letteratura attraverso l'utilizzo di ricostruzioni

agiografiche di tipo Multiplanar Reconstruction (MPR) e Volume Rendering (VR).

- CTP: valutazione dei disordini perfusionali mediante la generazione delle mappe di CBF,

CBV, MTT e PS tramite algoritmi di deconvoluzione e di approssimazione adiabatica del

modello di omogeneita tissutale.

La cadenza temporale degli esami TC ed il protocollo TC previsti dallo studio sono

esattamente quelli attualmente adottati nel nostro Dipartimento per tutti i pazienti con

ischemia cerebrale acuta che presentano le caratteristiche della popolazione studiata. Lo

studio, pertanto, non comporta oneri economici aggiuntivi rispetto alla normale pratica

clinica.

Valutazione neuropscicologica.

In ciascun intervallo temporale previsto (a 7-10 giorni a 3 mesi e a 12 mesi dall'ammissione), i

pazienti inclusi nello studio (trattati e non trattati con terapie di riperfusione) saranno

sottoposti ad una batteria di esami neuropsicologici comprendente:

- Mini-Mental State Examination per la valutazione dello stato mentale;

- Verbal Fonological and Semantic Fluency Test per la valutazione delle funzioni esecutive e di

linguaggio;

- Babcock's Story for verbal memory per esaminare la memoria a breve e lungo termine

- Picture Cancellation Test (Bells Test) per misurare l'attenzione e l'esplorazione visuo-

spaziale

- Beck Depression Inventory per la misurazione del grado di depressione

- Hamilton Anxiety Rating Scale per la misurazione del grado di ansia

Analisi statistica.

L'analisi statistica comprendera una prima valutazione della distribuzione delle diverse

variabili mediante test di Kolmogorov-Smirnov. Successivamente il paragone fra le medie

verra eseguito attraverso test parametrici (ANOVA, ANOVA per misure ripetute, t test) in caso

di distribuzione normale o mediante test non parametrici (Kruskal-Wallis, Friedman e Mann-

Whitney) in caso di distribuzione non normale. Le correlazione verranno esaminate quindi

con la Regressione Lineare nel primo caso e con il test di Spearman nel secondo. I confronti
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fra percentuali verranno eseguiti con il chi-quadro. Un valore di p < 0.05 verra considerato
statisticamente significativo.

Eventuale terapia concomitante: / /

AIC in Italia:
all’estero: //

Indicazioni all’AIC, posologia, vie di somministrazione e forme farmaceutiche
autorizzate: / /

Precedenti approvazioni/autorizzazioni alla sperimentazione per la stessa indicazione
proposta: / /.

Obiettivo/i dello/degli studio/i:
Primario:

- verificare se la lesione visibile nella mappa di CBV all’esordio, in fase iperacuta,
rappresenta veramente il core ischemico mediante il confronto fra I'estensione del
deficit CBV calcolato all'ammissione ed il volume dell'infarto finale misurato a 3 mesi
dall'ictus e stabilire la possibile correlazione fra valori di permeabilitd microvascolare
e sviluppo di un declino cognitivo

Secondario:

- valutare la storia naturale dei disordini perfusionali durante le fasi evolutive iperacuta,
acuta, subacuta e cronica dell’ictus cerebrale, chiarire se il deficit di permeabilita
microvascolare evidenziato all'esordio nella mappa PS é effettivamente in grado di
prevedere il successivo infarcimento emorragico della lesione ischemica e esaminare il
potere prognostico delle diverse mappe perfusionali utilizzando misure di outcome
cliniche e radiologiche.

Tipologia dei soggetti da arruolare
(specificare se pazienti o volontari sani): pazienti di ambo i sessi ed eta compresa tra i
18 e gli 80 anni con diagnosi clinica di ictus
ischemico cerebrale emisferico acuto che
soddisfino i criteri di inclusione

Numero dei soggetti da arruolare: 22

Informazione al candidato: mediante scheda informativa nella quale si
riporteranno notizie sulla natura, i metodi e
scopo dello studio, nonché il rapporto
rischio/beneficio.

L'informazione del paziente, in virti della
propedeuticita di tale fase, dovra essere
fornita in un momento formalmente distinto
dal recepimento del consenso.
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Si raccomanda che [l'avvenuta informazione
venga formalizzata su cartella clinica o su
scheda personale del paziente (in alternativa
su modulo che ne faccia parte integrante),
riportando contestualmente data e firma del
medico sperimentatore e dell'arruolando
stesso.

Recepimento del consenso: mediante apposito modulo

Si raccomanda che il recepimento del
consenso/dissenso avvenga in un momento
formalmente distinto dalla fase informativa e
ad essa successivo e venga formalizzato su
cartella clinica o su scheda personale del
paziente (oppure su modulo che ne faccia
parte integrante).

Criteri di inclusione/esclusione:
criteri di inclusione:

e pazienti di ambo i sessi ed eta compresa frai 18 ed gli 80 anni;

e improvvisa comparsa di manifestazioni neurologiche focali attribuibili ad ictus
ischemico acuto nel territorio della ACM;
epoca di insorgenza dei sintomi chiaramente definita;
ictus ischemico acuto clinicamente stabile con punteggio NIHSS compreso fra 4 e 20;
assenza di disordini di tipo afasico;
esecuzione di TC standard, CTA e CTP all'ingresso;
presenza di segni precoci di ischemia iperacuta in un’area inferiore a 1/3 del territorio
della ACM alla TC standard di ammissione calcolati sulle due sezioni TC indicate
dall'’ASPECTS.

criteri di esclusione: -
¢ etainferiore ai 18 anni e superiore a 80 anni;

e rapido miglioramento delle manifestazioni neurologiche focali attribuibili ad ictus
ischemico acuto nel territorio della ACM o improvvisa comparsa di disturbi neurologici
focali di grado lieve (“minor stroke”);
epoca di insorgenza dei sintomi sconosciuta;
ictus ischemico acuto clinicamente severo con punteggio NIHSS superiore a 20;
mRS superiorea 1;
crisi epilettica all'esordio;
stato di coma;
presentazione clinica suggestiva di emorragia subaracnoidea (anche in caso di TC
standard normale);

e pregressa storia riferibile a emorragia subaracnoidea, aneurismi, malformazioni
artero-venose, emorragia intraparenchimale o tumori;
e altro ictus ischemico o trauma cranico grave nei 3 mesi precedenti all’esordio;
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uso di anticoagulanti orali o tempo di protrombina superiore a 1.7 INR;

uso di eparina nelle 48 precedenti all’esordio o tempo di tromboplastina parziale
superiore a 1.5 rispetto alla norma;

conta piastrinica inferiore a 100.000/mm3;

ematocrito inferiore a 0.25;

glicemia inferiore a 50 o superiore a 200 mg/dl;

pressione arteriosa sistolica superiore a 185 mm/Hg o pressione arteriosa distolica
superiore a 110 mm/Hg non reponsive alla terapia anti-ipertensiva;

diatesi emorragica ereditaria o acquisita;

retinopatia emorragica;

infarto miocardio acuto nelle 3 settimane precedenti all’esordio;

emboli settici, endocardite batterica, pericardite;

pancreatine acuta;

malattie epatiche di grado severo;

diabete;

interventi chirurgici maggiori o trauma grave nei 3 mesi precedenti all’esordio;
emorragie gastrointestinali o dell'apparato urinario nei 21 giorni precedenti
all'esordio;

presenza di malattie ulcerative gastrointestinali nei 3 mesi precedenti all'esordio;
presenza di varici esofagee, di aneurismi o di malformazioni artero-venose a livello
sistemico;

puntura arteriosa in una sede non comprimibile nei 7 giorni precedenti all’esordio;
stato di gravidanza;

presenza di afasia;

mancata esecuzione di TC standard e/o CTA e CTP all'ingresso;

presenza di emorragia cerebrale alla TC standard di ammissione;

presenza di segni precoci di ischemia iperacuta in un'area superiore a 1/3 del
territorio della ACM alla TC standard di ammissione calcolati sulle due sezioni TC
indicate dall’ASPECTS;

e riconosciuta sensibilita nei confronti dei mezzi di contrasto iodati.

Sorveglianza clinica: //

1l Comitato Etico esprime parere favorevole allo studio proposto, ove siano soddisfatti i
prerequisiti etici nei termini innanzi richiesti,

Si ricorda al proponente responsabile la necessita di comunicare alla Segreteria Tecnico-
Scientifica del Comitato Etico la fine dello studio, nonché di trasmettere copia di eventuale/i
pubblicazione/i ovvero del report finale,

Si da atto che il Comitato Etico ha preso visione della sequente documentazione:

- n.1 copia di lettera di intenti datata 4 maggio 2012;

- n.1 copia di richiesta di autorizzazione allo svolgimento dello studio clinico datata 4
maggio 2012;
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- n.1 copia di analisi dell'impatto economico ed organizzativo per studi clinici;

- n.1 copia di protocollo di studio;

- n.1 copia di foglio informativo per il paziente;

- n.1 copia di modulo di consenso per il paziente;

- n.1 copia di lettera per il medico di base;

- n.1 copia di presentazione del progetto a European Network e Canadian Stroke
Network;

- n.1 copia di approvazione del finanziamento da parte di European Stroke Network e
Canadian Stroke Network.

1l Presidente del Comitato Etico
(dott.ssa Aurelia Guberti)
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Appendix D: Copyright Agreement

“Hemodynamic Effects of Combined Focal Cerebral Ischemia and Amyloid Protein Toxicity in a
Rat Model: A Functional CT Study” published in PLoS ONE. 2014, 9(6): 100575 by J. Yang,
C.D. d’Esterre, Z. Amtul, D.F. Cechetto and T.Y. Lee.

Content License (http://journals.plos.org/plosone/s/content-license)
The following policy applies to all of PLOS journals, unless otherwise noted.

PLOS applies the Creative Commons Attribution (CC BY) license to works we publish. This
license was developed to facilitate open access — namely, free immediate access to, and
unrestricted reuse of, original works of all types.

Under this license, authors agree to make articles legally available for reuse, without permission
or fees, for virtually any purpose. Anyone may copy, distribute or reuse these articles, as long as
the author and original source are properly cited.

Using PLOS Content

No permission is required from the authors or the publishers to reuse or repurpose PLOS content
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Appendix E: Absolute values of CBF and CBV
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Figure AP-1: Absolute CBF and CBYV in the striatal lesions. No significant differences in

CBF were shown among four groups at baseline, 30 min and month 1. No significant differences

in CBV were shown among four groups at baseline, 30-60 min and month 1. However, Ap+CI

group had a lower CBF at 60 min compared to sham group (*, p<0.05). At day 7, higher CBF

and CBV (hyperperfusion/hyperemia) were observed in both Cl and AB+CI groups compared to
sham and AP (T and *, p<0.05).
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