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ABSTRACT

Risk aversion is normally considered to be exogenous, like
preferences. This paper supposes that risk aversion is generated
by natural selection maximizing expected life span in the face of
risky gambles concerning food acquisition. Two stylized facts
emerge: only poor people play lotteries, and people display de-

creasing absolute risk aversion.
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Introduction

In the presence of perfect capital markets, it is clear that a
risk neutral firm tends to prosper over a risk averse or risk loving firm.
Thus, the long-run evolution of firms should yield risk neutral firms.
However, it is rare to observe risk neutral people. Indeed, most people
insure wealth, that is, they pay a risk premium thus acting risk averse.
Furthermore, many play lotteries, where they appear to act as risk lovers.

I will argue that both of these facts can be explained by evolution. 1In
addition, two testable predictions will emerge: that individuals have
decreasing absolute risk aversion, and only poor people play lotteries.
Both of these are "stylized facts'" about people's behavior.

Most economic models presume that risk aversion is similar to pre-
ferences, in that it is exogenously given to the agent. I wish to amend that
assumption in a minor way. Let us suppose that, while agents cannot vary
their own risk aversion, our agents' ancestors were forced to compete some-
time in the distant past and that today's risk aversion is the result of this
competition. Thus, I am presuming that heredity explains today's risk aver-
sion. It is the purpose of this paper to explain heredity.

This construction permits us to plausibly dismiss the assumption of
perfect capital markets. In addition, we may virtually ignore the pleasure
of the agent, for evolution generates species that persist in time, rather than
happy individuals. Perpetuating the species generally involves providing
the individuals enough time to procreate, which suggests a utility function
for nature: the life expectancy of the individual. Thus, we consider that

evolution is designing animals which, ceteris paribus, maximize their life span.




While this is not an accurate model of the effect of natural selection

on people today, it is a plausible model of the influences on mankind's
ancestors. Evolution will also alter the physical characteristics of the
animal to increase the likelihood of perpetuating the species, of course.
Given two animals that differ only in their attitude toward risk, the one

with the longer life span will produce more offspring, and ultimately
predominate.1 Thus, I argue that it makes evolutionary sense to argue that pre-
ference toward risk (today) is explained by a life expectancy maximization

procedure.

The commodity that plays the role of money in risk preference for
animals is food. Hunting for food is inherently risky, as there is always
thé possibility that the "food" will kill the hunter, or that another
animal will appear and kill the hunter. In addition, obtaining some food is
riskier than obtaining other food. The risk depends on the circumstances as well
as the food; a hunter would prefer an environment less likely to leave him
exposed to predators. To some extent, the hunter can control the risk,
that is, he can choose not to pursue very risky game. For example, only a
starving tiger attacks an elephant.

Thus, we may plausibly argue that there is a distribution of risky food
acquisitions, and that the animal can choose to take on a risk or not. One
expects, ceteris paribus, that an animal that has just eaten will not take on
a risky food acquisition, while a hungry animal might.

This work is most closely related to an interesting paper by Farrell
(1970) . Farrell's model has speculators faced with gambles as in this paper,
in which the speculator faces a monetary gain or ruin (death) with probability

P;-. However, the similarity ends at this point. Farrell's agents are endowed
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with a given P; (that may be different for distinct agents) and are not

allowed to choose among gambles. Thus, no implications about risk aversion

could possibly be deduced. Second, Farrell's agents have different P;»

so that his result concerns the survival of better endowed individuals, and

not the process generating the endowment. That is to say, although there is

a superficial similarity of the gambles facing the agents in this model and
Farrell's model, Farrell is addressing a completely different question. For

an overview of the literature concerning the application of natural selection

to economics, see Lippman and McCall (1981). For a discussion of the applicability

of natural selection to economics, see Alchian (1950).

Food Acquisition

We introduce some simplifications to the preceding discussion to achieve
a tractable result. First, let the animal enjoy perfect storage of food.
Without loss of generality, let the consumption of food stores occur at rate 1,
so that the animal can survive y days on a store of y.

Food acquisition gambles appear stochastically in time, according to a
Poisson distribution. By using appropriate units, we can let the rate at which

gambles appear be unity. The gambles are assumed to take the form:

{increase food stock by c probability p
(1M

death probability 1-p

The gambles are not created equal, and thus we suppose p takes on a
uniform distribution on [0,1]. Evidently the animal will set a reservation
safety level q (which depends on y) so that he takes the gamble if p 2 q,

and otherwise stays in his lair.



Finally, let there by an exogenous death rate 8 > 0, so that the prob-
ability the animal remains alive at time t, if he takes no food gambles, is
e-ét.

This model may not seem to suit some actual animals, but I think, with
suitable reinterpretation, it does. First, there seems to be a startling
lack of incidents in which tigers, ulligators, and wolves are killed as food..
However, they are, on occasion, injured by their prey, and thus they do face
risks in food acquisition. Indeed, a wolverine is likely to injure a wolf
who tries to eat it, while a rabbit injures a wolf only rarely. Second,
herbivores are not ever injured by their 'prey'. However, some feeding
grounds offer more risk of predators than others.

Finally, of course, the real case we are interested in is some
human ancestor. Human ancestors hunted everything from berries to wooly
mammoths, with all degrees of risk in between. Thus, it is not implausible

to consider natural selection determining optimal risk aversion in the face

of circumstances stylized by this model.

Given the animal is still alive at time t, the probability he finds an

acceptable gamble at that time is

t
. -I  (1-q(s))das
eu=e ° (1-q(8)).
Let y index the animal's stock, and Ny = N(y) be the expected life span,
given this stock. If the animal finds an acceptable gamble at time t, his

life span becomes:

itg
e+ 2 Ty-tic

i
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as he has already survived t, and l%ﬂ is the probability he survives the

gamble, and N ig hig life span if he does survive.

y-ttc
Thus, the probability the animal either dies or gambles at time t is

e-u+6t(ﬁ+6).2

This results in a gamble 72- of the time, and death by natural causes, with
utd

8
life span t, the other — of the time. The animal starves to death with probability:
utd

-6y‘u y "6t'u o
oy 1- j‘o e (5+)dt

yielding a life span of y. Thus

= (¥ WU B g 8 -8t-u
N(y) J‘o e [&+] [6+ﬁ(t += Ny_t+c) + " t]dt + ye ey
sy + [T By L+ (k) (e e
=y+ 7 L T a 2
y o 2 y-t+c )(t-Y)] t

1]

y + fz H(u,8,t)dt

We may employ the Euler equation to (2) to solve for N(y).3 Because
this sort of search model has been employed extensively in discrete time
(see Lippman and McCall (198l)), it may be of interest to some readers to
see the continuous time solution method. As a result, this follows in exten-

sive detail. Time has been suppressed as a variable where confusion can not

occur,.
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%I - e guZ_u_ Ny-t+c + (&) (e-y)lde .
6 - °

M- T, + )

=-8t-u
e

[q Ny-t'l'c+t- y] .

d OH _ -6t-u
— ==

- (&+1) ((1-1 + t -
dt aﬁ [ ( )(( u)NY"t"'C Y) + V"'t"l'C q Ny"‘t"'c + 1] ¢
From the Euler equation,
%uli gt BH’ o>
du
[___2;1-&2_ 3+ a2 - 8(1-8) + &N - q N/ +1=0
2 uru v Wyitie = 1 Pyotie S Y
or,
ﬁz )
[7? - &§(1-4) + q]Ny_t+c -q N&-t+c +1=0,
Substituting u =1 - q, we have:
1- & - ' = . 3
[3—2-‘1)E -l AN ANt 1=0 (3)
By transversality,
JH - - 0t-u - =0 .
o ¢ [q Ny-t+c +e -yl
t=y t=y
Therefore, q(y)Nc = 0, or,
a(y) = 0 . )
Furthermore,
y
y BH y __oH|” _oi
o t=0
q(0)N Yo

i



Thus

N, = q(o)Ny_*_c . (5)

The Bellman Principle of Optimality guarantees q is a function of income

4
alone. Thus we may write p(z) = q(y-t) for z =y - t, and p'(z) = =« g. Thus,
by (4) and (5),

p(0) =0, (6)

p(z) =3 :c , and, 7)

’ — '’ .
P (z)Nz+c = Nz p(z)Nz-l-c

Hence, from (3),

1-p(z)]"
Né*c[i—-gﬁ—l] - 6p(2)] - N; + P(Z)N;+c +1 =0, or,

2
[N, -N]
—-—;—"%——z——-aNz+1=Nz’. (8)
z+c

From (6) and (7),
N(o) =0 9)

HOREL S (10)

We may rewrite (8) to procure:

' 1-2
N =- 8N +=P-N
Z Z

2
2 +1+ (p -p)Nz-i-c

+c

= oy + [-pIER N, - N]+1 (1)

+c
Equation (6) has the obvious interpretation that a starving animal

takes any gamble. If applied to people, a person with little money is more

likely to take a dangerous job, for his threshold p will be small.



Equation (11) shows that the marginal value of food is 1 (the time

this food buys) plus the gain if he gambles (l%ﬁ Nz - Nz) times the proba-

.'.c
bility he gambles, minus the depreciation of food by death from natural
causes., Thus (11) is just the marginal benefit of food in an obvious way.

Also, we see from (8) and integration that, if ¢ = 0, Nz =-1€')-(1-e"62

).
Thus, if food gambles drop out of the problem, the individual has constant
absolute risk aversion.

To characterize the solution to (8), note

l-ce 1
8 <N, <%

The left inequality occurs because Né must exceed the suboptimal strategy of

« This, in con-

oo |-

p = 1, while the right inequality occurs because N_ =
junction with (8), forces N; > 0, The existence and uniqueness of N is

demonstrated in Appendix 2,
Furthermore,

2
N = - 6N+ (p) v, -n)) - LRED ! (12)

All three terms of this expression are negative if N;+c - N; < 0, Since

lim N;+c - N; = 0, we obtain N; < 0. Thus, the animal is risk averse, that is,
z—.&

EN(x) < N(Ex)

for a random variable x 2 0.

N, N )2
In addition, NCo) N'(c)=1-& + Ze_c” > 1. 5(N(c)) -
c c 2 N2c
or
c 1
N(c) 2 = .
14+cd 5+_(1_:_
4 [
Furthermore, as Nz+c < Né
N, N - NN
z4c 2z z z+c >0 . (13)

P'(z) = N2
z+c

‘e



This equation is a formal statements of the claim that richer indi-
viduals are less apt to buy lottery tickets than poor omes.
Finally, it remains to be shown that the animal displays decreasing

absolute risk aversion. 5

From (12),
N N’ 2 N’
o5+ [1-p()] 38 - 1) - {LR(E)) sz
N N N
K4 2 Z
2, . N/
== 5. (-p(x)) + FR(E)Ey (14)
N
Z
Thus
N N’ 2, n
d 'z I} ) z+c , l-p~ d Tzic
— = =p (2) - (P)p (2) + 5 ]
dz N' N' 2 ‘"dz N’
Z 4 2
N’ 2 N’
1- d
= p'(2)[L - p(e) X8 + 2P o EE (15)
N N

z Z
The details of the proof that (15) is positive are relegated to
Appendix 3. However, we may show N;” > 0 quite easily, and the value of

N: is necessary to the proof. This shows the reservation safety level is

concave, for
7 " "

” 2Nz Y Nz+c z - z zt+c
' (2) = - s () + T35 <o,
z+c N
z+c
m 4 I/
. < .
if Nz > 0, as this implies Nz Nz+c <0
n 4 4 7 i1 E 4 4
=- &N + (1- - - - 16
N = - O+ A-p)IN, - N1 - I, N ] (16)

2
+p(a)p (), - (R

If N;' 2 0 for all y > z, then N;' > 0, as every term in (16) is positive.

Since lim N” = 0, N” > 0, as desired.
z-—DOO z z
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Conclusion

A model of natural selection over agents faced with gambles that
either extend their life span or kill them was presented. The agents were
endowed with fixed risk preference and natural selection favors those
whose risk preference maximizes their life span. This yields an indirect
utility function over food or wealth. Two facts emerged. First, with
respect to wealth gambles that do not kill the agent, the agents display
decreasing absolute risk aversion. Second, they display increasing
aversion to lotteries involving death as an outcome. The first of these
two has unambiguous economic meaning and is certainly testable in principle.
The second warrants further discussion.

| Consider again a lottery like (1). Such a lottery is faced by any
person working a risky job. Individuals set a reservation risk level p(z)
and accept the risky job if p exceeds p(z). From (13), p(z) is increasing
in wealth z. Thus, ceteris paribus, the model predicts that poor people
will take riskier jobs. This is a formal statement of the notion that a
person's wealth measures the value of his life. Indeed, the agent in this
model values his at precisely %ég%gy , owing to his indifference between
gaining c with probability p(z) and death with probability 1-p(z). The
indifference follows from (5).

I think this model may be applied in broader circumstances to predict
that only poor people buy lottery tickets. Consider a lottery ticket that
pays c with probability p, and costs k. Let z, satisfy p==p(zo). Then the
expected utility of the lottery ticket to an individual with wealth z, is:

p(z IN(z_+c) + (1-p(2,)IN(z k) 2

p(zo)N(zo+c)-+(1-p(z°))N(death) = Nzo.
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Thus, some poor individuals will purchase lottery tickets. This is
graphically illustrated in Figure 1.

Thus, the model predicts that very poor people will play lotteries,
not because they are risk lovers (at least in the small), but because
bankruptcy establishes a lower bound to their utility of money. In particular,
we expect to observe lottery players to be those individuals with zero or
negative current net worth.6 Essentially, we can understand actuarially unfair
lottery playing as the result of equating negative current net worth to zero.7

Note, of course, that an individual doesn't have to actually die
to drive this phenomenon. Because the utility of money is given to the
individual exogenously, the individual will act as if death is the result
of ﬁegative net wealth, even if it is not. That is to say, natural selection
has given him a utility function that is not in accord with the welfare
state, and the individual is not able to alter it to make it more appropriate
to his circumstances, as, by hypothesis, it is exogenous to the individual.

Virtually every result of this model is, in principle, testable.
Although we are not generally allowed to offer experimental subjects
gambles including death as an outcome, indirect evidence of attitude to
the risk of death could be obtained by examining the net wealth of
mercenaries and others in risky occupations.

The following example would permit an experimental test of the results
using animals. I observed squirrels coming down from trees to gather nuts
from the ground. There were cats about, thus making this a risky activity
for the squirrels. The squirrels enjoyed virtually perfect storage,
although seasonality entered into the distribution of gambles. I noted
that the squirrels would venture down as long as no cat was within 50

feet: this seemed to be a reservation risk level. Experimentally, one
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N(z)

- [/

z -k z z+ ¢
o

Figure 1: A person of wealth z will bankrupt himself to obtain a
lottery ticket with probability p==p(zo).

N(z)

(e



te

13

could test this model by establishing whether this distance varied with
the number of nuts stored, according to equations (7) and 8).

A number of obvious extensions of this model may merit explorationm.
In particular, one might allow the rate gambles appear to vary, permit c
to be random, and inject noise into the ex ante observations of p and c.
Further, one could consider arbitrary distributions of p, allow for
depreciation of storage, and add a third outcome to (1), wherein food.'is
expended with some probability (an unsuccessful, nonfatal hunt). I find
it unlikely that any of these ultimately alter the flavor of the model
presented here.

This approach, however, may be profitably considered in areas
oufside of risk aversion. Natural selection optimizes those characteristics
that are exogenous to the individual. This simple 'economy of nature' may
be exploited to explain where conjectural variations originate, to justify
the assumption of rational expectations, and to understand why people have
a preference for brussels sprouts. That is, whenever something that
could vary is fixed for each individual, it is reasonable to ask whether
this is advantageous for the individual, and optimize over it, invoking
natural selection. As in this paper, of course, nature's objective does

not necessarily coincide with the individuals' objectives.

Perhaps the most profitable line of research spawned by this paper
involves determination of the optimal discount rate on future wealth. Con-
sider an infinitesimal investment A to receive B, t units of time in the
future if one is still alive at this time. As A and B are infinitesimal,

there will be no change in the value of p(z) as a result of the investment.

The death rate, by (2), is
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2
r(y) = 5+.(1_'§i1).)_

which arises from death by natural causes plus the rate of dying from gambles.8
This last is the rate of taking gambles (1-p(y)) multiplied by the probability
a gamble is fatal, (l-p(y))/2. Thus, for infinitesimal gambles, the discount
rate is r(y). Differentiating r, we find that the discount rate for
infinitesimal gambles is a convex strictly decreasing function of wealth., This
explains why poor people borrow and rich people save, at a given interest

rate, as people will borrow when their rate of time preference is less than

the prevailing interest rate,

However, this analysis applies only to infinitesimal gambles. 1In
general, we expect large gambles to affect the optimal value of p. The mathe-
matics involved in determining the optimal value of p, given that one will
receive a lump sum return in the future, is quite complex. The character-
ization of this discount rate, in the case of lumpy investment, provides the
most intruiguing line of inquiry generated from this model and is left as
an open problem. I hypothesize that in general the discount rate is convex
in wealth and converges to § as wealth diverges. The resolution of this
issue would suggest a functional form which is, in principle, testable, 1In
addition, it would lead to an understanding of how risk aversion and time
preference are related, an issue which, to my knowledge, has never been examined.

Another topic meriting further research emerges from the very existence
of risk aversion. Risk aversion provides incentives to pool resourcés (food
store), while free riding produces disincentives of this behavior. Presum-
ably, comparison of these two yields an optimal tribal size. However, once a
tribe has been established, the optimal utility function may change, given the

tribe's existence. Thus, one may be able to solve simultaneously for the

(»
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optimal tribe size, n, and utility function. Of course, tribes also
offer gains from specialization. One might adopt this model by letting
a tribe of size n obtain c(n) in a successful hunt, with c!'>0. In
this way, one might be able to examine altruism from the standpoint of
natural selection. Indeed, altruism may be nature's way of equating the

social benefit of providing food for a tribe to the privately paid cost.
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Footnotes

1For example, if one offspring per year is produced, then maximizing

expected life span maximizes the probability the genes persist in time.

For a reference, see Ross (1970).

3This is more subtle than it may appear at first, as the optimized function
N appears in the definition of N. Worse still, the values of N appearing on
the right-hand side include values of the argument both greater and less than
the argument value on the left. This rules out any sort of inductive argument.
However, the usual Euler equation holds, as is demonstrated in

Appendix 1,

4What is being invoked here is that the optimal value of q does not depend
on the value of y at some time in the past. Thus, the q that prevails at time t
when one started with y is the same as that prevailing at time t +4 when one
started with y+A. This occurs because, given one reached a point of having

food store y, the path of q must still be optimal.

5For the definition of absolute risk aversion, its derivation and a
discussion of its interpretation, see Pratt (1964). Note that I have
ignored the negative sign on r(z). For a discussion of the evidence

for decreasing absolute risk aversion, see Sinn (1983), ch. V.

61t is not obvious, of course, exactly what belongs as an argument
in the objective function of the individual. I have chosen curren£ net
wealth, as opposed to the expected present value, because this seems to
be the closest to the idea of a food store. In the model, z is the current
food stock and N(z) is the expected life span given that food stock.

Thus, N(z) takes into account expected future returns, and hence those
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returns do not belong as the argument to N.

7Thi.s is basically the same argument advanced by Sinn (1983).
Indeed, his Figure 9, p. 165 is the same as my Figure 1. 1In both cases,
the diagram follows because, in his terminology, you can't get "blood out
of a stone" (Sinn calls it the BLOOS rule). The difference, however,
is that Sinn's analysis applies to the present value of net worth, while
mine applies to the current value. Even if the present value of net
worth is positive, if current net worth is negative, my model predicts
people will behave as in Figure 1.

8This follows because one gets the investment return B as long as

one doesn't die. Since A and B are infinitesimal, the curvature of N

does not enter into the discount.

.
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Appendix 1:

Equations, such as (2), where the maximized value of the function
appear as an argument, present a certain difficulty in solving. Consider
N(y) = max Jz £(x,%,t)N(t+c) + g(x,%,t)dt (T1)
X
as a typical such equation, where x(0) =0 is given.

PROPOSITION: A necessary condition for x(t) to solve (T1) is

=4

£ N+g1 = 3t

almost every t.

PROOF: Consider a variation x+pv of x, B ¢ &, v(0) =v(y) =0.
Write

J(y,B) =j'Z F(x+pv, %x+pV, t) J(t+e, B) + g(x+pv, x+pV, t)dt
Then maximization requires, Vv,

0 = .g_g (y,0) = IZJ({;-I-C’ 0) [vf1+ \'rf2]+g1v+g2\'7+f %Jé- (t+c,0)dt

= IZV[N(t+c)f1+ g.l- % [N(t+c)£2+ gz] + f %JE (t+c,0)dt .

For v=0, we observe ‘fz £ %]é- (t+c,0)dt =0.

For v= (N(t+c)f1+ 8- EdE (N(t+c) f2+ gz))S(t) s

et <
s(t) = {'I/e t-'o est to+ ¢ , yields (T2), taking lim . B
0 otherwise o) :

An intuitive way of observing that (T2) follows from (T1) exploits
the observation that (T1) is a "renewal function'. Note that x does not,
per se, appear in N(t+c) at all. We may think of x as a function of two

arguments t and y, so that
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N(y) = max fz f(x(t,y),%x(t,y),t)N(t+e) +g(x(t,y),x(t,y),t)dt

and thus changing x(t,y) has no influence on the value of N(t+c) (which
depends on x(8,t+c)) except in the measure zero case of t=y-c¢c. This is
not, of course, a formal proof, but provides, I think, a clear intuition

of the maximization procedure for this sort of equation.

Appendix 2:
EXISTENCE:

Define F (z) by

Fy(2) = N+lg-N(z-2) for 2z i+

and
' (B (z+e) - Fy(2))?
FN(z) =1- 5FN(z) + ZFN(z+c) (T3)
for z <2,
Fix No >N1, as in Figure 2,
For any Nle, define ZI(N) and ZO(N) by:
N=F (z) =Fy (z) .
1 o A
Claim: ZO(N) - ZI(N) is decreasing in Nle. (T4)
Proof of Claim: As Zi(N) is the inverse function of F, we need only
show that
'4 14
Bf (z)) >Ff (z)
1 o
This is clearly true at Nl’ as
2
(FN (zo+c)-N1) (1/6-N1)2
’ =1 - —
FNo(zo) 1- 6N, + ¥, (2 ) <1-8N +—57; FNl(zl) (T5)

o

"

]
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Figure 2:

Figure 3:
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Shifting the value of z so that FN(0)==O yields a decreasing

sequence of functionms,
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2
Because S’%L is increasing in x for x =N, FI"I (zo(N)) <F{ql (zl(N)), for
[o]

when one substitutes F_ (zl+c) for Fy, (zl+c), (T5) continues to hold. []
1 (o] .

Now consider shifting z so that Fn(O) =0, as in Figure 3, From (T4), it

is clear that the shifted function, given by

G, (z) =F, (z-2,(0))
Ni Ni i

satisfies GNo(z) <GN1(z) if No >1\I1 and z szl(Nl) - z1(0). This occurs as

F{\] >F{q under these conditions,
1 o

Thus, as GN(z) is a decreasing sequence of functions, a pointwise limit
N(z) exists, It remains to be shown that GN converges uniformly, However,
note that GN is concave, indeed, the same proof as appears in the text works,

with the exception that G& is not defined at zi(Ni) - Zi(O) -c, Thus
i -

{GI"I } NosNi<1/6 takes on a maximum, and it is Gf\] . This forces G to converge
i o]

w

uniformly, by virtue of being uniformly continuous,

NOTE from (T3) that if GN(z) has a ki derivative, then GN(z-c) has a k+1St
derivative, Thus, since G” <0 and G”>0 (the same proofs in the text work),
N has continuous first and second derivatives., This forces N to satisfy T3,
and hence (8), in the limit,

Finally, we show next that the limit of GN is the only differentiable

function with these properties,

Uniqueness Among Differentiable N:
Suppose N  and N, satisfy (8), Ni(O) =0, lim Ni(Z) =1/¢, i ¢{0,1}. Suppose,

Z~00

by way of contradiction, that (3z) No(z) #Nl(z).

(1]
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Then let z* =arg max[Nl(z) - NO(Z)I .
z

Without loss of generality, let No(z*) SNl(Z*) .

Then N (z%) - N/ (z%) =0,

Thus,
™,

(T6)

(T7)

(z#+e) - W (z¥))2 (N_(a*+e) - N (z4))°

0= NZ'I.(Z*) - N (z%) =-5(N, (z*%) - NO(Z*))"'WI(ZM.C)

Thus,

(N

(zh+e) - N (¥0)2 (N_(¥he) - N (24))°
0 < o 0
N, (z%+c)

- NO (z*+c)

CASE I: Nl(z*+c) ZNO(Z*'*'C)

Then, by (T8),
(N, (zh+e) - Nl(z*))z (N_(z#+e) - N_(2%) )2

0 < . ?
No (z*+c) No (z*+c)

or

Nl (z*+c) - N1 (z*x) > No(z*+c) - NO(Z*) ’
or

Nl (z%*+c) - No(z*+c) > Nl (z*) - NO(Z*) R
contradicting (T6).

CASE II: Nl(z*+c) - No(z*+c) <0

2

2N1 (z*+c)

(T8)

Note that S’é;ﬁl_ is increasing in x if x >N, Thus from (T8), substituting

No(z*+c) for Nl(z*-l-c), we find

. (N o) - Ny @) (N_(z¥+e) - N_(z%))
<TTN_(z*c) N_(z*+c)

forcing Nl(z*) <No(z*). This contradicts (T7).
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Appendix 3:

MI N { N / NII N ”

z+c _ z+c[ zic
L

d
Note that, if iz -N—zr 2 0 for z > y, then 4
Z

dz ! h N N N
2 z+c z
4 ”
d I\Iz Nz . . cr s .
by (15) that iz Er > 0. Thus, if ;]-r is decreasing at y, it is decreasing for
z
’
z >y, as is E,z_'*_'s .
z NII
So suppose, by way of contradiction, that -E%- is nonincreasing for z > y.
z
14 4
z+c . . z+c
From (15), -ﬁ'r—— is strictly decreasing for z > y. Thus, since 1 > — >0,
z z
'N,z+c N;
lim == ¢ [0,1], and from (14), lim — = -§. Consequently, for large
z-® Nz z7 Nz

enough z, greater than y,
” "

N
(1-p) =Zt& > (1+p) =2 , or,
Nz+c Nz
N' Y4
(1#p) TFS > (1-p) TS . This implies
Z 4
2 N N 2 N’
1-p~ _zte o g. ztc _1-p _ztc
2 N (-p) § 2 N,

Thus

— - --zy] 2 0, implying

",
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2 N N o', -N) g
1-p z+c > - ztc _ z+c" Z
5 N (1P)v— P()""*N‘—' 5N
i z z z
i Thus
N// 7 ?
. -5 - (1- +——P- z""’> 6+(1-p)[—-rr— 11-p zte, 2
P N
z z z
2 N’ d
_ 122 z+c +pp' 1z+c .

N
z

From (14) and (16), this is

mw

Nll Nz

Z -

—F > =7 , Or

Nz Nz
4 m 4

d NZ - NZ Nz 0

zy v Wl
z z z

B This contradicts the hypothesis, proving

"
N
z

(v

4

2N
L 2t 4 p(2)p! (2) gro

]

/
z+c

Z
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