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1. Introduction

The method of least-squares (maximum likelihood) has traditionally
been used to estimate the slope parameters of the classical linear model
because of its best-linear-unbiased property. In recent years work begun
by James and Stein (1961), extended by Sclove (1968) and generalized by
Ullah and Ullah (1978) has led to a family of shrinkage estimators which
are of interest because their risk is less than that of least-squares (LS).
These estimators were originally intended to provide estimates of all the
regression coefficients jointly. However, one can think of several other
uses to which they might naturally be put. For example, Aigner and Judge
(1977) have applied them to the estimation of individual coefficients.
Alternatively, they might be used to estimate linear combinations of
coefficients or to provide forecasts.

The aim of this paper is to investigate the risk of the double k-class
(KK) estimators in each of these applications and, in each case, to compare
it to the risk of LS. In each case the most desirable values are obtained
for the two arbitrary constants, k1 and k2, which appear in the expression

for KK.

2. The Model and Estimators

Consider the classical linear model
(2.1) y=XB+ ¢

where y is a vector of T observations on a dependent variable, X is a T *K



matrix of T observations on K fixed regressors, f is a vector of K parameters
to be estimated and ¢ is a vector of T independent realizations of an
unobservable normal error with mean zero and variance 0'2. Assume X is of
rank K and that C is the orthonormal matrix of characteristic vectors of

x’X. Then an alternative formulation of the model is

(2.2) y = Z0+e

where Z =XC, a=¢'p and z'Z=A, a K order diagonal matrix whose diagonal
elements are the K characteristic roots of X'X. We will assume that the
columns of X are arranged so that the smallest root of X'X, )\1, is the

first diagonal element of A and the largest root, )‘l(’ is the last.

The least-squares (LS) estimators of B and Q are

(2.3) b= @& Ky
and
(2.4) a-= A-1Z'y=C'b

The risks of b and a are

(2.5) E(b-B)’ (b-B) - g2 tr(X'X)-1= o? t:m'1

=E(a-0)’ (a-0)
The vector of LS residuals is
(2.6) e = y-Xb=y-Za
Shrinkage estimators are obtained by multiplying b (or a) by a scalar
lying between O and 1 and chosen so as to make the risk of the product less
than that of b and a. A general form of the shrinkage estimator is given by

Ullah and Ullah (1978) as:

A k1e'e
@n BT "yyReTe

or, alternatively, as
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k1e'e , A
(2.8) a= |1 --;r}-’_—kzzre— a=C'p

The values k1 and k2 are arbitrary scalars whose presence led the Ullahs to

label B, "the double k-class estimator" (KK).

Various members of the KK family arise from varying the values of k]
and kz. An important set of estimators is obtained by setting k2= 1.0.
Then (2.7) and (2.8) give the Stein-rule estimators (Stein (1956) , James
and Stein (1961), Bock (1975), Judge and Bock (1976)) which have smaller

2(d1-2) 1

risk than LS for values of k., in the range 0 <:1c.l < — where d,= K1 trA

1
and n = T-K,

Ullah and Ullah have derived the exact and approximate bias, mean-
squared-error (MSE) matrix and risk for é when2 k1 >0and 0 = k2 <1,

A disadvantage of the shrinkage estimators in the form given above
is that they shrink b towards zero. However, researchers often have linear
hypotheses that B is some non-zero vector; that is they have hypotheses of
the form
(2.9) RB=r
where R is a known J K matrix of rank J and r is a known J element vector.
A value of B which is a solution to (2.9) is

(2.10) B =K'= R'&e’) 'z,

+ . . -
where R is the Moore-Penrose inverse of R. Sometimes J=K, so that R%E R 1,

or R=1 so that r is the hypothesized value of 8. In the presence of
hypotheses like (2.9) it is desirable to shrink3 b towards Bo rather than

towards zero. This leads to the estimators (see Appendix A for details)

A

(2.11) B = (1-k;e) (b-B) +B,
or
(2.12) 4= (1-k;c) (a-r)) +0t



where @ = C'B ,
0o o ,
(y-%B,) M(y-X8,)
(2.13) e = Y (3Xp) - K.(y-Xp ) M(y-XB_)
. (y-x8,) & By o (¥ Bo y-X8,

and M==I'-X(X'X)-1X'. The special cases (2.7) and (2.8) are obtained from

(2.11) and (2.12 ) by setting B= o = O.

3. Asymptotic Expansions

The exact bias, MSE and risk of p, given in Appendix A, are inconvenient
in that they do not suggest optimum values of the arbitrary constants k1 and

k2. However, if we restrict4 k2 to -1 <k2 < 1 we can use Sawa (1972) and

Carter (1981) to obtain useful asymptotic expansions of the bias, MSE and

risk, in powers of 9_1, where
A 4
(B-p) X'X(BB)  (@-0)"h (@0

(3.1) 6 =
202 262

In common situations the hypothesis erxror B-Bo, or a-as, will be non-zero so

that 6 will be positive. Then, for fixed values of 3-80 and a-a s making o

small will make O large. When this expansion is applied to the bias we have:
n(nt2)k

T 2~ T -3
G0 26 =7 | §r— (8-B,) +0(8™)

Both the expansion and the exact bias (equation (A.15) in Appendix A)

A
tell us that é will become unbiased if k.I - 0, so that B -b, or if B-*Bo.

In addition the expansion shows us that, to order 6-2,

E@p | e E-B)
(3.3) Ak, 2
2 46
Since k1 2z 0, this means that k2 values at one end of its range, say k2==-.99,

if B > 50 or k2= 1.0 if B < Bo’ will be the most beneficial with respect to

bias.

.



Of course the aim of shrinkage estimation is to minimize risk rather
than bias. It is convenient for our purposes to consider the weighted risk
E(é-ﬁ)'W(é-B), where W is a known K * K matrix of weights with rank J = K.
Equation (2.5) is a special case of this weighted risk obtained by setting
W=IK. Using Ullah and Ullah (1978) and Carter (1981) we can write

n(8-8,) ‘W(B-B)

(3.8 EG-) W(B-B) =olerl@'n) W]+ ; ¥+0(8™)
where
v 2 2,2
(3.5 Y=+ vk Ykl YK Yk T Y,
and g o 3(t) (n+h) (0+6)
! 166>

(@) (uth) 4 (3T+6-9)
2 20

\1!:
2 40

‘i’3= (n+223gn+42 [ - _2§]

40
(nt2) (8/2-T=-2) , T(3T+6 -26)

5 492 6

4~ - -
_ 429 T [5-4+g6 8 (T 22]
6 40 42 20

with
(B-B,) ‘X' X(B-B)
(BB, W(B-B,)
4
_ (oc-o:o) A(oz-oco)
B (oc-ozo)’c’WC(a-ao)

trlx'x) W

tr (A W)

The asymptotic expansions (3.2) and (3.4) become more accurate

approximations to the exact expressions as ® grows large. The implication



of a large © value is more easily understood if we subtract Xao from both
sides of the model (2.1) to obtain

(3.6)  y-XB = X(B-B)) te

Now define a population goodness of fit, analogous to the familiar Rz, for

the amended model.

, [EG=x8)1 [E(y-¥p)]
3.7 o = ) T
E[(y-XB) (y-XB)]

(B-8,) ' X'X(8-B) 0

B 1,0 2 T
(B'Bo) X X(ﬁ"ﬁo) +To 9+'2'

p2 measures the goodness of fit of the model net of the hypothesis. Of course,
if Bo= 0 p2 measures the goodness of fit in the original model. Given T, the
fit becomes very tight as © becomes large. For example if T is 40 a 8 value
of 42 implies a p2 of .68 while a 0 value of 1980 implies a pz of .99. With
(5-60), and hence 6, fixed p2 and 6 grow large through ¢ growing small.
Such changes make the asymptotic expansions (3.3) and (3.4) very accurate
approximations to the exact expressions. They also reduce the bias of é
and bring its weighted risk closer to that of b so that the reduction in
risk obtained by using KK instead of LS becomes very small. The cases of
most interest here are those for which 6 is small enough to give a worthwhile
reduction in weighted risk from using KK yet large enough to make the
asymptotic expansions fairly accurate.

The asymptotic expansion (3.4) involves powers and products of the
ratios-%% and-g%. Therefore, if 6 > % the terms of order 6‘3 and 9-4 will

be small compared to the term of order 9-2 and the weighted risk of é can

be closely approximated by
n(g-g,) ‘W(B-B)
2

A 1A 2 1o =1 2
(3.8) E(B-B) 'W(B-B) =0O tr[(X'X) W]+ [(n+2)k.| -2(5-2)1(.']

40
+0¢073
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Note that E(é-B)'W(E-B) < E(b-B)'w(b-B) only if 6 > 2 and

2(6-2)
(3.9) 0 <1<1 < (at2) °

The minimum value of (3.8), with respect to k1, occurs when k1= %;6;—3))- . We

want to ensure that 6 is large enough that the minimum value of the approximate

A
risk (B) > 0. Note that

_ (-8 ) 'w(p-B)8
(3.10) oPtr(x'%) e —L 0

Then in order for the minimum of (3.8) to be positive we need

n( 6-222

(3.11) 6> 2 8(ot2)

2
. n(§-2)
Since 2(at2) O

sufficient for (3.11) to hold, Note that & > T implies p2 > 2/3.

can exceed T when & is large relative to n, 6 > T is not

4, Choosing k1 and kzz w=1

1 and k2 which minimize the weighted risk (3.4) depend

upon the values of 6 and of §, which depends, in turnm, upon the values chosen

The values of k

for the matrix W and the vectors Bo or & . We begin by setting W=1 so that

(3.4) becomes
. BB (BB

G.)  E@-B) (B-p) =ctr(X'X) '+ n = ¥+0(6™)
with ', ,

(B-B,) 'X'X(B-B,) o (aey Maa)
4.2) b= O tr(X'X) = o2 O ¢r 47

(B-8,)" (B-B,) C(@a)” (00 )
This is the W matrix used by James and Stein (1961) and Ullah and Ullah (1978).
It is the appropriate weight matrix if one is concerned with minimizing the
sum of the mean-squared-errors (MSEs) of the individual coefficients.

Assume, temporarily, that & and © are also known. Then we could

find the minimum-risk-member of the double k-class by choosing the values



of k1 and k2 which minimize (4.1) subject to the constraints -1.0 <k251.0

and k.I 2 0, In practise the second constraint is never binding and the
fir;t is binding only when 6 is very large in which case k2, can be set
close to -1.0, at -.99 say. We will refer to the estimator which uses
the optimal feasible k1, k2 pair as OPOP, This estimator is a useful
benchmark against which to compare other estimators.

Of course, 6 and © are unknown in practise so OPOP is not a feasible
estimator. However several operational rules for selecting k1 and k2 are
available, based on various a priori specifications with respect to 6 and
0. We are interested in establishing the usefulness of these rules as
compared to the optimum k1 and k2 used in OPOP. One implicit prior
specification that underlies most available feasible rules is that & 2 T,
so that (3.8) is a close approximation, and that (3.11) holds so that risk

(é) > 0 at its minimum. Equation (3.8) does not contain k2 and it has

traditionally been set equal to one. From (3.8) risk (&) < risk (a) for

. 2(6-2) . ~ §=2
< . s e s -
k1 in the range O k1 < ) and risk (&) is minimized when k1 v

We will label the estimator which uses this k.I value DDO1, Although this
estimator is not operational, because § is unknown in practise, it is
another useful benchmark against which to compare estimators that employ
some a priori specification of &.

Operational estimators based on minimizing (3.8) must employ some a
priori specification of the unknown parameter §. James and Stein suggest
replacing 6 with its minimum possible value d1= l1tr A"1 to obtain
k1= (d1- 2) /(nt+2) and k2= 1.0; we label this estimator JS01. This
specification for § is equivalent to assuming that (a-o%)'==(a1-a01,0,...,0).
An attractive property of this choice of k1,is that it satisfies (3.9).
However, it is always smaller than the optimum value (8-2)/(nt2). This

suggests finding a value 3, for & such that (-6-2)/ (n+2) is less than the

-4



upper bound 2(6-2)/(n+2). A $ which does this is 2d1 - 2 which leads to
k1= 2(d1— 2)/(n+2) . We label this estimator, employing k2= 1.0, DSO1.

The (a-ag) specification discussed above is rather drastic. One
alternative is to behave as though A=1 (Sclove (1968) analyzed the orthogonal
regressor's case) which implies that §=K so that, to order 6-2, risk is
minimized by setting k1 to gi%. We label this case, with k2= 1.0, DKO1.

Another alternative is to adopt a more reasonable prior specificati.on5 for

(a-ab). 1f we specify that the elements of the vector (a-ab) are all the

K -
same this leads to & = 1 % A_trA [ ltrA-1= d. Then we would set k.= 4-2
K 4=1 L 1 nt+2

and k.= 1.0. We refer to this estimator as DBO1.

2
0f course the risks of DKO1 and DBO1 will be less than the risk of

LS only if their (positive) k_l values lie below 2(6-2)/(n+2). This, in
turn, is true only if & > (R+2) /2, for DKO1, or § > (d+2)/2 for DBO1.
These conditions indicate that shrinkage estimation will be most beneficial
in the context of models with large 6 values.

One major difficulty with estimators which set k2= 1.0, like JSO1
or DSO1, is that the signs of the element of (é -Bo) can turn out to be
opposite to those of (b—Bo). That is, the shrinkage factor (1-k1c) in
(2.11) and (2.12) can turn out to be negative. One solution to this
problem is the positive part estimator of Baranchik (1964) and Stein (1966)
which is equal to é for all samples for which (1-k1c) 2 0 and is equal to
b for any samples for which (1—k1c) < 0. Although this estimator is
known to dominate the Stein-rule estimator, expressions for its exact or
approximate risk are not available.

Another solution to the sign change problem is to vary kz, as well

as k1, so as to ensure (l-klc) = 0. To see what values of k2 will bring

this about note that



10

k1 k
R L (B TR MW BT
B ) HGXB) 2

since
0 < (y-XB) M(y-%8.) < (y-XB)’ (y-XB,) . X
Then a sufficient condition for k1c = 1, and therefore for l-klc 20,
is k1/(1-k2) <1 or k1+ k2 < 1. Given knowledge of 6 and 6, an optimum
positive shrinkage estimator is obtained by finding the k1 and k2 values
which minimize (4.1) subject to k1 20, -1< k2 <1 and k1+ k2 <1. We
label this estimator OPPS. As we will see below, in some cases neither the
second nor the third constraint is binding so that OPPS is identical to OPOP.
If 0 is unknown but assumed to be large enough for (3.8) to be
useful, then a positive shrinkage estimator will result from setting k1
by making an a priori specification, as above, which leads to a value for
6 and then setting k2= 1-k1. This modification to k.2 transforms DDOl to DDPS, .
JSOl to JSPS, DSOl to DSPS, DKOl to DKPS and DBOl to DKPS. The k1 values
employed by DKPS or DBPS could, for some models, exceed 2.0 in which case
(1-k1) < -1.0. However, for the asymptotic expansions (3.4) and (3.8) to be

valid, we must restrict k2 to lie in the range -1 < k2 <1, (Carter (1981).)

Therefore, in these cases one should set kl = 1,99 and k2 = -,99,

One further positive shrinkage estimator is to be found in the

development leading to equation (2.7) (see Ullah and Ullah (1978) equation

(2.14)). This is to set k1= %-and k2= Eﬁl. We label this DFPS. An

attractive property of this choice of k1 is that it satisfies (3.9) so

long as 6 > 2+ (1/2+1/n). This condition is not much stricter than the

e
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condition & > 2 which is required for any k1 to give smaller risk than
LS, to order 6-2. Furthermore the k1 value of 1/n exceeds that used by
Js01 so long as d1 < 3+2/n.

In order to numerically assess the effectiveness of these various
schemes, both operational and nonoperational, for fixing k] and kz we
can compute the ratio, R of the risk of KK to that of LS for given values
of T, K, 5and 8. Note that, given W, T and K, the detailed structure
of X, B and 02 influence the risk of é only through 8 and 6 and are,
therefore, not of direct interest. Of course if & is changed with € fixed
there must be a compensating change in 62. Table 1 shows values of the
relative bias (rel. bias) to order 9-2 and the risk ratio, R to order 6
for several interesting cases.

Model 1 has a 6 value large enough to make (3.4) and (3.8) good
approximations yet not so large as to make KK indistinguishable from LS.
The value of & is higher than both d and K so all the operational KK
estimators will have smaller risk than LS. Setting k1 and kz to minimize
(3.4) (OPOP) produced a rather spectacular reduction in risk, vis-a-vis
LS, at the cost of a sizeable increase in relative bias. When the
minimization was attempted under the constraint sufficient for positive
shrinkage (OPPS) the boundary values of k1 and k2 resulted and the
reduction in risk was slightly less. When (3.8) was minimized, rather

than (3.4), with k= 1.0 (DDO1) the k.| value obtained was not much

2
different from that used by OPOP. However, the k2 value of 1.0 was much
different to that used by OPOP so the R value was somewhat higher for
DDO1 than for OPOP. Since the k.| value used by DDO1 exceeded 2.0, the

boundary k1 and k2 values were used for DDPS, making it the same as OPPS.
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Since the operational estimators are all based on attempts to
minimize (3.8), rather than (3.4), they should be compared to DDO1
(or DDPS) rather than to OPOP. 1In this light DBO1 and DBPS performed
very well. Indeed, the R value of DBO1 was less than that of the non-
operational benchmark DDO1! The other operational estimators were much
less impressive. In no case did DSO1; DSPS, JSO1 or JSPS produce a risk
reduction greater than 1%.

Model 2 is different from Model 1 in only one respect; it has a
much lower 6 value., The unrestricted optimizing k1 and k2 values are
both small enough that the sufficient condition for positive shrinkage
holds so OPPS was not computed. One would expect that very low k] and k2
values would make KK nearly the same as LS and this is confirmed by the
low relative bias and high ® value for OPOP. Although the other benchmark
estimators, DDO1 and DDPS, used higher k2 values, their k1 values were
small and their R values were close to one.

Of course, the small value of 6 was chosen to highlight the effect
this specification can have on the operational estimators. The effect
was most pronounced on DBO1 and DBPS, which had performed so well when
6 was high, but which now have risks more than twice that of LS! Similarly,
the risks of DKO1 and DKPS also exceed those of LS, Unfortunately, it
seems impossible to know in practise whether & is large or small and, hence,
whether or not any of these four operation estimators is preferable to
LS. The remaining five operational estimators continued to dominate LS
but, like OPOP, they gave a reduction in risk of less than 1%.

Models 3 and 4 differ from Models 1 and 2 in that their 6 value
is higher leading to a higher value of p2, a value typical in applied

econometrics. At this higher © value the k1 values used by DDO1 will be

.

()
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closer to those used by OPOP since equation (3.8) is nearly the same as
(3.4). However, such a high 8 also makes (3.4) and (3.8) only slightly
different from risk (LS) so that the considerable risk reductions obtained
by using OPOP in Model 1 are no longer available. Of course, the

benefits from using one of the operational estimators are smaller still.
Note that when & is small (Model 4) DBO1, DBPS, DKO1 and DKPS will still
have risks greater than LS. Indeed, for this model even OPOP has a risk

only .1% less than LS.

Results very similar to those displayed in Table 1 have been obtained

for different values of K and T. However, since they lead to no different

conclusions they are omitted.

5. The MSE of Individual Coefficients

A researcher who was primarily interested in the MSE of the ith

coefficient would choose W to be a matrix with zeros in every position
except for the ith main diagonal element which would be set to one. This
is the W value which implicitly underlies much of the discussion in Aigner

and Judge (1977). For this W (3.4) becomes

2
N . n(B,- B _.) -
5.1y B, -8y’ Pan e —E5 2 vroe™)
2
2 na(a.- o)
_ 9 i ol -5
T ¥+0(87%)

with & replaced by
(-8 )'X'X(B-B_) s
(5.2) 8= — (' =
8- Boi)

(anao) A(a-og)

2
Ay (04 03)
where (X'X)11 is the itM main diagonal element of (X'X)-‘|

Similarly (3.8) becomes



Relative Bias and Risk Ratios for Several Models and Estimators:

Table 1

14

W=1

Model 1

K=10, T=36, 6=72

Model 2

K=10, T=36, 6=72

p%= .80, 6=72.8 02= .80, §=3.23
- rel. rel.
Estimator k] %g, bias R k] Afg bias ®
OPOP 2.48 -.815 -¢265 «669 .0656 .0646  -,00903 .995
OPPS 1.99 =699 -.200 .683 - - - -
DDO1 2.53 1.0 -.431 0762 .0438 1.0 -.00747 .997
DDPS 1.99 -.99 -.200 .683 .0438 .9562  -.00740 .996
DBO1 1.09 1.0 -.186 . 749 1.09 1.0 -.186 2.56
DBPS 1009 -009 -0144 9766 1009 "'909 '0144 2.11
DKO1 .286 1.0 -.0487 2913 .286 1.0 -.0487 1.08
DKPS 0286 .7]4 -00459 0916 -286 p714 -.0459 1.06
DFPS 10385 .9615 -000651 0987 00385 09615 -c00651 0997
DSO1 .029 1,0 -.00501 2990 .0294 1.0 -.00501 .997
DSPS .0294 .9706  -.00498 .990 .0294 .9706  -.,00498 .997
Jso01 0147 1.0 -.00251 .995 0147 1.0 -.00251 .998
JSPS .0147 .,9853 -.00250 .995 0147 .9853  -.00250 .998
Model 3 Model &
k=10, T=36, 0=342 K=10, T=36, 0=342
p’= .95, 6=72.8 02= .95, 6=3.23
rel. rel.
Estimatox k1 k2 bias_ ® k] k2 bias 4
OPOP 2053 -099 “.0872 0914 .0545 '099 '000188 0999
OPPS 1 099 ®o 99 -00686 091 8 - - - -
DDO1 2,53 1.0 -.0950 .916 .0438 1.0 -.00165 .999
DDPS 1.99 -.99 -.0686 918 .0438 .9562 -.00164 .999
DBO] 1.09 1.0 "00410 0939 1.09 1.0 -.0410 1.35
DBPS 1009 "009 -00392 .941 1009 "009 ".0392 1032
DKO1 .286 1.0 -.0107 980 .286 1.0 -.0107 1.02
DKPS .286 714 -.0106 .981 -286 714 -.0106 1.02
DFPS .0385 .9615 -,00144  .997 .0385 9615 -,0144 .999
DSO1 .0294 1,0 -.00110 .998 .0294 1.0 -.00110 .999
DSPS .0294 .9706 -,00110 .998 .0294 .9706 -,00110 .999
Jso1 0147 1.0 -.000552 .999 0147 1.0 -.000552 .9996
JSPS .0147 .9853 -.000552 .999 .0147 .9853 -.000552 .9996

)
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n(B,8_,)"
5.3 E@ppl=cl@ Dt 29201
2 n(o -0 )2

_o i oi 2 _ - =3
=+ o2 [(n+2)k.| 2(61 2)k1]+0(9 )

2 -3
[(n+2)k.l -2( ﬁi-Z)k.l 1+0(0 7)

e

from which we can see that the risk of éi’ to 0(9-3), will be less than
that of bi only if O <'k.I < 2(5i-2)/(n+2). Since one k1 value will be used
in estimating the value of every Bi’ i=1,...,K, we must choose it to be
smaller than the minimum value of 2(61-2)/(n+2) over all i, if we want all
éi to dominate all bi' In the spirit of James and Stein, we might seek a
values dlm < ﬁm, where qn is the smallest of the 61 values, and set

k1= (d1m-2)/(n+2), However, we can see from the last term on the right

of (5.2), that

K 2
z 7» Lo =0 )
i#i Y | 0J
(5.4) 6i= 1+ 5
M (0704
so that d.I = 1 which would lead to a negative value for k.I That is, there

is no positive k] value which is guaranteed to be less than 2(61-2)/(n+2)
for all i. 1In particular, the k1 values discussed in the previous section,
chosen to minimize risk with W=1, will give ratios of MSE(&i)/MSE(ai) > 1
for at least one i.

If the hypothesis about a particular coefficient is nearly correct,

o, -0, will be small so 8, will tend to be large and the ratio MSE(&i) /¥SE(a,)
small. Of course, this will happen more readily if 6 is small which will
occur if large hypothesis errors (ai-agi) are associated with small roots

hi and vice versa., However, since this can be false for models with widely
differing hi and (ak-o%i) values, it is easily possible for MSE(ai) to

exceed MSE(ai). This would be very undesirable to a researcher concerned

with individual coefficient estimates as well as with overall risk. Given

the 6i values, such a researcher could set k.| and k2 so as to minimize the
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MSE of the coefficient with the smallest of them. However, this rule can
break down if the smallest 61 is less than 2.0 because then the minimizing

k. will be negative to order 9-2 and perhaps also to order 9-4. In this

1

case all k, > 0 will lead to MSE(&i) >~MSE(ai). Also, knowledge of all

1
61 values is equivalent to knowledge of all Bi values!

Table 2 provides a numerical illustration using Models 1 and 2 of
Table 1 for the best of the benchmark estimators and the two best operational
estimators. Recall that for Model 2, OPOP and OPPS and the same. The
numbers in the body of the table are ratios MSE(&i)/MSE(ai). The results
of Table 2 illustrate the fact that when OPPS achieves spectacular risk
reduction over LS it does so at the cost of increasing the MSE for several
coefficients. However, when 6§ is small with respect to 6, reductions in
risk from OPPS are modest but its MSE is less than that of LS so long as
61 > 2, The two operational estimators fare quite well with regard to
individual MSEs, although they work poorly when the minimum 61 < 2. The
reason for their comparative success in terms of individual coefficient
MSEs is that they employ comparatively small k1 values,

Whether the ratio MSE(&i)/MSE(ai) exceeds one for any particular
coefficient depends not only upon (ai-aoi) for that coefficient but also
upon that same difference for every other coefficient in the model; e.g.,
compare the ratios for coefficient 10 in Models 1 and 2. Since this pattern
is unknown, a priori, one cannot say for which coefficients of a multiple
regression &, dominates a,.

i i

The value of the W matrix used here effectively reduces the number

of coefficients being estimated from ten to one. The results of Stein (1961)

and Ullah and Ullah (1978) indicate that KK will dominate LS only if K 2 3

so any W matrix of rank less three, will lead to increased risk vis-a-vis LS.

.

.
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Table 2

MSE Ratios for Individual Coefficients of Models 1 and 2

, Model 1
R=10, T=36, 6=72, p’= .80, 6=72.8
. o0 5, 0PPS DFPS DSPS
100.0 765000 471 .987 .990
81.0 239000 472 .987 .990
64.0 3016 477 .987 .990
49.0 613 497 .987 .990
36.0 138 .583 .987 .990
25.0 46.2 805 .988 .991
16.0 22.4  1.16 .988 .991
9.0 0.7 1.92 .990 .992
4.0 5.57 3.2 .993 .99
1.0 1.54 10.5 1.007  1.005
Model 2
K=10, T=36, 0=72, p>= .80, 6=3.23
o0y 5, oPPS DFPS DSPS
19.0 .37 1.015  1.010 1,007
1.0 248 .981 .987 .990
1.0 158 .981 .987 .990
1.0 102 .981 .987 .990
1.0 55.8 .982 .988 .990
1.0 38.8 .982 .988 .991
1.0 34.9 .982 .988 .991
1.0 28.3 .982 .988 .991
1.0 23.6 .983 .988 .991

1.0 9.94 .986 .990 «992
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6. Linear Combinations of Coefficients

The third case we will consider is that in which interest is focussed
on a hypothesis like (2.9) in which J, the number of linearly independent rows

in R, is at least three. Under this null hypothesis, the quadratic form

i»

G-Z(b-B)IR'[R(X’X)-lR']-1R(b-B) has a x? distribution with J degrees of
freedom. Given o, this leads to confidence regions for RS whose size
depends, in part, on the expectation of this quadratic form. This motivates
replacing b by 6 and using R'[R(X'X)-1R']-1R as W in (3.4). A unique
property of this W is that changes in R, 1.e., changes in HO, change W,
and hence 8, even though X and B may be constant.

For a fixed value of R (with J > 3) knowledge of 8 and 6 can be
used to find the values of k1 and k. which minimize (3.4) subject to

2

k1 2 < 1, which we again label OPOP. Adding the constraint

k1+ k2 < 1 ensures that the elements of Rb and Ré have the same sign and

we retain the label OPPS for this estimator.

>0, -1 <k

(e

In this case too we can assume that 6 is large enough to justify
basing our operational choice of k1 upon (3.8). As before, the quality
of our estimator will depend upon the a priori specification of 5 which is
used in forming k1. As a first step in specifying &, note that tr[(X'X)-]W]==J
in this case. When J <K the matrix X'X-R'[R(X'X)-1R']-1R is positive
semi-definite so that & > J. This suggests, in the spirit of James and
Stein, setting k]= (J-2)/(n+2) and k2= 1.0 or k2==1-k1. We retain the
labels JSO1 and JSPS, respectively, for these estimators. This value of
satisfies (3.9) but it is always smaller than the optimum so we seek

1
a larger k.l value guaranteed to be smaller than 2(6-2)/(nt+2). A value

k

i

which does this is k1= 2(J-2)/(n+2) which leads to the two estimators

DS01, when k2= 1.0, and DSPS, when k2= 1-k1.
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An important special case arises when the hypothesis involves
all the elements of B so that J=K. In this case 6=K which, of
course, is known exactly! An example of this case arises if all the
variables are measured as deviations about their sample averages so
that B is composed entirely of slope coefficients. Then one would
typically test the hypothesis that the elements of B were jointly zero:6
i.e., Ip=0. Even if J <K, 6 will still equal K if all of the following
conditions hold: X’X=1I, the columns of R can be arranged so that

R = [IJ: OK-J] (i.e., a partitioned matrix with one portion a J order
identity matrix and the remaining K-J columns all zeros), and all elements
of the p vector are the same. Although all these conditions will be met
only rarely, they may be approximately true in enough cases to justify
setting k1= (K-2)/(n+2) as a general rule, leading to the two estimators
DKO1 and DKPS.

The specification k1= % is not useful here because it leads to a
k1 value less than (J-2)/(n+2), which is itself typically smaller than the
optimum k1, for all J values greater than 3+2/n.

Table 3 presents numerical results for a number of cases. Here the
term "rel. bias" refers to the relative bias of RP and, as before, R shows
the weighted risk of é relative to that of b. The first section of the table
is concerned with Model 1, which also appeared in Tables 1 and 2. The ten
cases numbered (i) to (x) represent ten combinations of J and 6 which could
arise from ten different R matrices (i.e., ten different null hypotheses).
In many of these cases OPOP is the same as OPPS because its k1+ k2 < 1.0.
When J and & are both small (Model 1 cases (i) and (ii)) the values of R

are close to one even for OPOP. In case (i) 8 < (K+2)/2 so the R values

for DKO1 and DKPS exceed one. As & grows larger, with J and the model
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structure fixed, the potential reduction in risk of KK over LS becomes
larger; see Model 1 cases (iii) and (iv) . Unfortunately, the operational
estimators capture, at most, only about a third of this potential gain.
DKO1 and DKPS are best in this respect, while JSO1 and JSPS offer only very

small gain. DSO1 and DSPS are less effective than DKO1 and DKPS when J

(13

is very small and § is very large. However, they have the advantage of always
having R values less than, or equal to, one; see Model 1 case (i). Also,

when J > (K+2)/2 the R values of DSO1 and DSPS are less than those of DKO1

and DKPS, so long as & is large enough (see Model 1 cases (v), (vi) and
(viii)) because the k1 values for the former two estimators exceed those

of the later two and are closer to the optimum value., Of course, if 5 is

only slightly larger than J the larger k] value for DSO1 and DSPS are a
disadvantage vis-3-vis DKO1 and DKPS (see Model 1 case (vii)), although

the range of circumstances under which this will happen seems small,

For Model 1 cases (ix) and (x) 8 is the same although the J values

are different. Therefore, OPOP, DKO1 and DKPS are all the same for these
two cases. Of course, in case (x) where J=K DSO1 and DSPS would never
be used and JSO1 and JSPS are the same as DKO1 and DKPS. Since & is
known in this case almost all the potential reduction in risk exhibited by OPOP
is realized by the operational estimator. The lack of knowledge of 6,
which prevents OPOP from being operational in these cases, makes very little
difference.
The results for Models 5 to 8, which appear in the second part of
Table 3 also illustrate these findings. Models 5 and 6 have the same
degrees of freedom and goodness of fit as Model 1 and in both cases J =K.

The R ratios are smaller when § is larger and the operational estimators

i

have R values very nearly as small as those for the benchmark estimators.
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Models 7 and 8 were obtained by halving the degrees of freedom of Models

5 and 6 with everything else held constant. This had the effect of reducing
the R values for all the estimators while leaving unchanged the proximity

of operational and benchmark estimators and the relatively small R values
produced by a large &

Model 3 also appeared in Table 1. It has a higher goodness of fit
than Model 1 but is the same in all other respects. Results for J and &
values of cases (i), (iv), (ix) and (x) are tabled. The R values for
these cases, when compared to Model 1, are all much closer to one, even
those for DKO1 and DKPS which exceed one. In addition the absolute value
of the relative bias is much reduced. This same trend is evident from
the results for Models 9 and 10 which are Models 7 and 8 with the goodness

of fit increased.
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Table 3

Relative Biases and Risk Ratios for Linear Combinations of Coefficients

Model 1
k=10, T=36, 6=72, p>= .80
() (ii)
J=3 6=5 J=3 §=7
rel. rel.
Estimator kl k2 bias R k1 kz bias. ®
OPOP .138 155 =.0195 .986 .218 .208 -.0311 .975
DKO1 .286 1.0 -.0487 1,016 .286 1.0 -.0487 .984
DKPS .286 .714 -00459 19009 0286 0714 ".0459 ’ .981
DSO1 0714 1.0 -.0122 +990 0714 1.0 -.0122 .986
DSPS .0714 .929 -.,0120 .990 0714 .929 -.0120 .986
Jso01 .0357 1.0 -.00609 .994 .0357 1.0 -.00609 .992
JSPS .0357 .964  -.00605 .994 .0357 .964  -,00605 .992
(iii) (iv)
J=3 6=13 J=3 6=60
OPOP 447 248  -.0644 . 941 2,05 -.510 ~.241 .723
OPPS - - - - 1.93 -.931 -.198 728
DKO1 .286 1.0 -.0487 0948 .286 1.0 -.0487 914
DKPS .286 JJ14  -,0459 .948 .286 o714  -,0459 .918
DSO1 0714 1.0 -.0122 .981 0714 1.0 -.0122 .977
DSPS .0714 .929 -.0120 .981 0714 929 -.0120 .977
Js01 .0357 1.0 -.00609 .990 .0357 1.0 -.00609  .988
JSPS .0357 .964  -.00605 .990 .0357 .964 -.00605 .988
(V) (vi)
J=7 6=13 J=7 8=60
OPOP .447 5248 ".0644 .941 2.05 "'0510 -0241 .723
OPPS - - - - 1.93 -.931 -.198 .728
DKO1 .286 140 -.0487 .948 .286 1.0 -.0487 .914
DKPS .286 714 -,0459 .948 .286 LJ14  -,0459 .918
DSO] .357 1 -0 "00609 0944 .357 1.0 ".0609 0895
DSPS 0357 0643 -.0564 0943 0357 .643 "90564 9901
Js01 2179 1.0 -.0305 .960 .179 1.0 -.0305 .944
JSPS .179 .821 -.0293 .961 .179 .821 -.0293 .946

-

(v

(L]
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Table 3 (cont'd.)

Model 1 (cont'd.)

(vii) (viii)
J=9 &=11 J=9 48=15
rel. rel.
Estimator k1 kz bias ® k1 kz bias R
OPOP 0372 0247 ‘00536 0953 0521 .243 -.0749 0930
DKO‘I 0286 1.0 -00487 0955 .286 1.0 -.0487 0942
DKPS .286 o714 ‘.0459 9955 0286 .714 ".0459 0943
DSO1 »500 1.0 -.0853 .969 .500 1.0 -.0853 .934
DSPS .500 . .500 -.0765 .960 .500 .500 -.0765 .931
Js01 .250 1.0 -.0426 .957 «250 1.0 -.0426 .946
JSPs «250 .750  -.0404 «957 «250 .750  -.0404 2947
(ix) (x)
g=5_ 6=10 J=10_ 6=10
OPOP 0334 0242 -00481 0958 .334 0242 -.0481 0958
DKO1 .286 1.0 -.0487 «960 .286 1.0 -.0487 .960
DKPS 0286 0714 "00459 0959 .286 0714 "00["59 -959
Ds01 214 1.0 -.0365 .963 - - - -
DSPS 0214 .786 -00349 0963 - - - -
JsO01 .107 1.0 -.0183 .976 - - -
JSPS 0107 .893 "uO‘l 79 0976 - - -
Model 5 Model 6
K=6, T=32, 0=64, p>= .80 K =24, T=50, 6=100, p>= .80
J=6_ 6=6 J=24 6=24
OPQP .178 .165 =-.0285 .978 .857 .325 -,0887 914
OPPS - - - - .864 0136 -00864 0914‘
DKO1 .143 1.0 -.0281 .981 .786 1.0 -.0909 .915
DKPS .143 .857 -.0272 .980 .786 214  -,0797 914
Model 7 Model 8
K=6, T=19, 6=38, p°= .80 K =24, T=37, 8=74, p>= .80
J=6 6=6 J=24 =24
OPOP 332 .138  -.0442 .966 1.59 155  =.107 .89
OPPS - - - - 1.56 -.559 =-,0950 .896
DKO] ’267 1¢0 -.0432 0970 .‘.47 190 -.110 0896
DKPS .267 .733 —90408 0969 1 .4‘7 -.467 -00905 0896
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Table 3 (cont'd.)

Model 3
K=10, T=36, 0=342, p>= .95
(1) (iv)
J=3 6=5 J=3 6=60
rel. rel.
Estimator k1 k; bias ® kl k2 bias ®
OPOP -126 ".99 -000426 0997 2911 -099 -.0727 0929
OPPS - - - - 1.99 -.99 -.0686 .929
DKO1 .286 1.0 -.0107 1,004 .286 1.0 -.0107 .981
DKPS .286 714  -,0106 1.004 .286 714 -,0106 .981
DSO1 0714 1.0 -.00268 2998 0714 1,0 -.00268 .995
DSPS 00714 5929 -000268 0998 007][“ .929 -.00268 0995
Jso1 .0357 1.0 -.00134 .999 .0357 1.0 -.00134  .997
JSPS .0357 .964  -,00134 .999 .0357 .964  -,00134  ,997
(ix) (x)
J=5 6=10 J=10 6=10
OPOP 317 -.99 -.0109 .991 .317 -.99 -.0109 .991
DKO1 .286 1.0 -.0107 .991 .286 1.0 -.0107 2991
DKPS .286 .714 -.0"06 0991 0286 0714 "00106 o991
DSO1 0214 1.0 -900805 0992 - - - -
DSPS 0214 0786 ".00798 0992 - - - -
JSO1 0107 100 '000403 0995 - -
JSPS 0107 -893 -000401 0995 - -
Model 9 Model 10
K=6, T=19, 0=180.5, p>= .95 K =24, T=37, 0=351.5, p>= .95
J=6_25=6 J=24 6=24
OPOP «303 -.99 -.00992 .993 1.55 -.99 -.0265 .975
DKO1 .267 1.0 -.00950 .994 1.47 1.0 -.0263 .976
DKPS «267 «733  -.,00939 .994 1.47 -47 -.0254 .976
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7, TForecasting

In many cases the thing of most interest is XfB, where Xf is a
matrix of known future values of the explanatory variables, If the number
of rows of X, is 3<J=<K and one wishes to form confidence intervals for

£

XfB then X_ is just an example of R in Section 6 and the results of that

£
section carry over directly., If one desires to make joint forecasts over

at most two future periods then LS should be employed. Joint forecast
intervals over more than K independent future periods are difficult for
both LS and KK because in this case Xf(X'X)".lX'f is singular,

A situation close to this arises when one attempts to estimate the
mean of y conditional on X, XB, The LS estimator now is Xb=Za which has a
singular covariance matrix O'ZX(X, X) -IX' = O'ZZA-] z’ and a risk of 0'21(.
So long as 3<K<T, the estimator Xé hés a smaller risk which is (3.4),
or (3.8), with W=X'X. This value for W makes 6=K and so it is analogous
to the case of J=K in Section 6, As in that case, almost all the potential
gain from using the optimum k values, OPOP, will be obtained by the operational

estimators DKO1 and DKPS, The portions of Table 3 in which J=K can be

consulted for illustrations.

8, Conclugiong

In the context of the classical, normal, linear regression model
we have considered the double k-class estimators of: individual coefficients,
the whole coefficient vector and linear combinations of the elements of the
coefficient vector, which includes the expectation of y conditional on

future and current X values.
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KK should not be employed if interest is focussed primarily on
individual coefficients because it is impossible to know, a priori,
whether the MSE of the KK estimator of a particular coefficient is greater
or less than its LS estimator.

On the other hand, if one desires to minimize the sum of the
individual MSE's, KK can be usefully employed. Knowledge of the value
of the population parameter & could be employed to give an estimator
with much smaller risk than LS if 06 is large and the population goodness
of fit is moderately tight (about .,80), In practise, setting kﬁ ='%
and k2 =1 -kﬁ will give a small reduction in risk over LS in almost
all parts of the parameter space, without changing the sign of the LS
estimates, Over a fairly wide portion of the parameter space (8> (K+2)/2)
more substantial gains can be obtained by changing k; to (K-2)/ (nt2),
although this will lead to risks greater than LS if § is fairly small,
Other values for k1 can be found, including that suggested by James and
Stein, which lead to KK dominating LS everywhere but the gains obtained
are miniscule.

KK seems most useful in estimating three or more independent linear
combinations of the regression coefficients in the contexts of joint
tests of hypothesis about the coefficients or joint conditional forecasts
of y. So long as J, the number of linear combinations, is less than K,
the practical procedure is to set k; = 2(J-2)/(n¥2) and k2 = 1-k1 for
positive shrinkage. The KK estimator obtained will always have smaller

rigk than LS with the gain being up to 10% (noticeably larger than in the

1

i
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previocus case) when 6 is large relative to J and the goodness-of-fit is
moderately tight. If, as may often be the case, the number of linear
combinations (or number of forecast periods) considered is equal to the
number of coefficients 6=K so that k; should be changed to (K-2)/ (nt2) .
This value of k.l should also be used in estimating the expectation of y
conditional on the sample X, The reduction in risk produced here will be
slightly less than the case in which § is large relative to J but the
operational estimator achieves nearly all the risk reduction which is
theoretically possible.

If the population goodness-of-fit increases to .95 or more the
amount of risk reduction which is possible using KK is very small even if
values of the two population parameters & and ® are known. In such cases
the operational estimators lead to even smaller risk reductions. There is
also very little risk reduction obtainable when & is small or when the degrees
of freedom are large. In summary, KK is a technique which is most useful
when the degrees of freedom are small, the model is believed to fit loosely
and one is interested in K independent linear combinations of the K regression

coefficients,



Appendix A

Judge, Griffiths, Hillard and Lee (1980, p. 68) have presented a
version of the Stein-rule estimator which shrinks b towards ﬁo. It uses

the likelihood ratio test statistic

(T-K) (b-B_) X' X(b-B )
(4.1 u = Ke e
in
(4.2) B=(Q - 2y g ) +p
u (o) (o]
k1 e
=0 -Gy TRms) P P
k.l e
= 1 7-1(b-B ) + B,

"~ (y-XB o)' (y-XB) -

where 8 and k.l are arbitrary scalars,

This naturally suggests the following double k-class estimator which

shrinks b towards Bo rather than towards zero

ee
k1

@3  p=1 - ) G ke s R *
= (1-ke)(b-B) +B >

or

(A.4) & = (1-ke)(a-a) + o

’
a =C
where S B o’

U4
e e

B (Y-XBO)' (y-X8) - kze' e

(A.5) c

(y-X8 ) M(y~%B )
~ (y-XB) " (y-xB o) ~ Ky (3-XB) 'M(y-XBO)
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and M = I-XX X)-1X' . The special cases (2.7) and (2.8) are obtained
from (A,3) and (A.4) by setting Bo =a =0,
The sampling error of é is

A.6) B -B = (b-B) - k(b))

Now define

—t

(A7) z =—P (y-X8) ~ N[~ P’ x(B-p RE 1]

q

where P is the orthogonal matrix of characteristic vectors of M, Then ¢

can be written as

’
z D.Iz
(A.8) c = m
I 0
n
where D] =p'Mp = R D2 = I--k2D1 and n = T-K, Then we can
0 0

follow the proofs of Theorems 1, 2 and 3 in Ullah and Ullah (1978) to
obtain the bias, MSE matrix and risk of é.

First we define

n'l+v-u 2

(A.9) 8yv = j‘ 2 exp {1 Zt}(1 -2t) [1-2(1- 2)1:]2 -vdt
= exp(-6) z o! oF; (1,8 4v; Z4u+i5k,)
i=o 1.(—+u+1 1)
where
1n 6 - <B'5o>'x; XB-B) (a—ao>’z£2<a-ao)

2¢° 20°

[

(¢

1

[

tw
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and 2F] (1,p3q;w) is a hypergeometric function which can be written as

-]
A.11) LR A,piqw) = I .FaT !

with (p)j and (q)j ascending factorials: i.e., (P)j = 1923 oos (ptj-1).

Note that
. = (e a, T .
so that
(A, 13) lim g, V(B--B ) =0, aKel vector of zeros,
(B-B ) »0 ©
o
and
(A14) lim g (5'50) (B-Bo)' = 0, a KeK matrix of zeros

(B-p) >0 Y

Now, following Ullah and Ullah (1978), Theorem 1

. nky
@15  EE-P) = -5 g, (BB

Given n and (B-Bo) , variations in k.l and k2 have the same effect upon the
relative bias of each element of é: the relative bias becomes more negative
as Iy and/or k, increase (withk, < 1) (Ullah and Ullah (1978), Theorem 1,
Corollary 2(b)). Given n and k.I , the size and direction of the bias of
individual elements of é depend upon the size and direction of the difference
between that coefficient's hypothesized value and its true value: individual
elements of é will be unbiased if their hypothesized values are true, As the

elements of Bo all get closer to B, equation (A,13) shows that 6 becomes

unbiased.,
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Following Ullah and Ullah (1978), Theorem 2, the MSE matrix of

~

B is

aA oA - (n#2) .
(A.16) E(B-B) (B-B)’ = GZ(X'X) ! -k1n[g2,1 +ﬁ-5-"" (33,1 - 82,2) ]crz(x'x) !

(a

I

(nt2) ,
- k1n[g3’1 -8 1 e (g4’2 - 33’2) ](B-BO) (B-B,)

To obtain the risk of B we take the trace of (A,16) to obtain

(A7 E@-p) (B-B) = E@G-0)’ (6-0)

A ky (ni2) 2 -1
= trA -k1n[g2,1 +—7 (g3,2 - 32’2)10 trA

(n2)
- k-ln[g.'i,'l -32’1 + k_l A (84’2"83’2)]((1-&0)' (a-oco)

The size of the MSE matrix and of the risk depend not only upon k.I and k2

(through the 8. v terms) but also upon the size of the hypothesis error
J

(«

B-ﬂo, or o-C/ . As this error grows smaller, with all else constant we have

. A 2 2 -1 2 n T
(A,18) lim  E@-B)(B-B) =" X'X)™ -k nlE==),F (1,2+1;5+2;5k,)
(8-B,) »0 knlG5),F (55 2 2

k5 (n+2) 2 n T
+ =GP ,F (1:5+2; 5435 k)

2 B,,.T.,. 2 1y
- (T+2)2F1(] :2+2s2+23 kz)}lc' (X,X)
and
(A.19) lim E@-0)’ G-0) = tr[ 1lim  E(B-8) (B-B)’ .

(- ) =0 (B-6 o) -0

04
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Footnotes

1I am grateful to A, Ullah for stimulating discussion, to B, H, Bentley
for expert programming and research assistance and to the Social Science and
Humanities Research Council of Canada for financial assistance in the form of
a Leave Fellowship and a Research Grant. I have also received helpful comments
from C, Beach, D, Hendry, B, McCabe, A, Nakamura, M, Nakamura, G, D, A, Phillips,
N, E, Savin, L, J, Slater and J, Wolters, Much of the research on this topic

was completed while I was a visitor at the University of Cambridge.

21f k2 =1,0 the bias exists only if K22 and the mean squared error matrix

and risk exist only if K23,
3Note that the estimators E (A.2) or ﬁ (2.12) shrink b towards the fixed,

non-random hypothesized point Bo rather than towards a random restricted least

-1

squares estimator b* =b+ (X’X)-1 R’ [R(X'X)-1 R'] “(r-Rb). Whenever J =K, so

1r which is non-random. If J<K and the linear

that R is non-singular, b* =R’
restriction is transformed canonically so that the transformed R is non-singular
(see Judge and Bock (1978) p. 84) the restricted least squares estimator in

the canonical space is a non-random vector of J elements.

4The exact risk of B and g exist for k2 =£-1.0 but not for k2 >1.0, The
asymptotic expansion of the confluent hypergeometric function given by Sawa (1972)
is valid for real values of its parameters. A more general expansion which

allows for complex parameters is given by L, J, Slater (1960) p. 60.

511: could be argued that a priori specifications ought to be introduced
using Baye's Theorem, This would lead to posterior distribution for B of

the sort discussed by Tiao and Zellner (1964) or Lindley and Smith (1972).

6The distribution of test statistics employing ‘[3 is discussed in Ullah,

Carter and Srivastava (1983),
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