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I. INTRODUCT ION

Economic theory has to date offered five treatments of the production
of multiple outputs. The everyday theory of the firm assumes it away.
Early work by R, G. D. Allen (1938), Hicks (1939), Samuelson (1947), and
more recently, Laitinen (1980), analyzed the isolated behavior of profit-maximizing
firms with access to a m-input/n-output technology. This analysis stopped short
of analyzing market equilibrium. More recently, the "contestability' literature,
summarized in Bailey and Friedlander (1982) has focused on the structure of market
equilibrium under multiple-output production. This approach assumes "economies
of scope" for the production of an exogenous collection of goods. Since
primary interest there attaches to the number of plants in an industry, the
issue of which goods will be produced together is settled in advance. The
fourth approach goes to the opposite extreme, Arrow-Debreu-McKenzie general
equilibrium theory allows each producer a distinct multi-dimensional production
set. In a general equilibrium, some allocation of production of total output
across firms is implied, but at the level of generality of the analysis no
operationally meaningful restrictions result., Lastly, there is the "where
there is sawdust there must be 'fire logs'' approach, dating back at least to
Marshali (1920, pp. 321-2). In modern terms, this view uses production
complementarities to generate economies of scope. However, these complementarities
are completely unstructured and, like the full general equilibrium model, rule
out next to nothing.

In sum, economic theory has not offered any falsifiable predictions
about the manner in which production is divided among firms in market

equilibrium. The novelty in this paper is that it does precisely that.



The approach taken is as follows. First, production complementarities
are ruled out, Each good is produced according to an independent production
process, These complementarities cannot be unstructured and uninformative
if they do not exist, Next, the definition of a multiple output firm is that
it is one which uses more than one of the production processes., However,
multiple output firms operate subject to a restriction. While there are many
restrictions that might be imposed, and one other is briefly examined below,
in this paper it is assumed that if more than one production process is
utilized, all must use identical factor proportions. This is an analytically
tractable exaggeration of the notion that when more than one good is produced
in a firm, none are produced with precisely the plant, materials and labor
inputs which would be chosen were there no other goods produced there. For
example, a plant producing table legs and cabinet knobs will utilize lathes
which are larger than those which would be used were only knobs produced, but
which are also more easily adjustable than if they were used to produce only
table legs,

That multiple output plants are not just a series of contiguous single
output plants is, of course, necessary for the distinction to have any content.
The only issue is whether multiple output plants are more efficient or less
efficient, 1In this paper, producing goods together compromises the production
process,

In order for there to be any multiple output firms in equilibrium,
there must be some economy associated with such production structures., This
efficiency gain is assumed to be in terms of the non production component of
the firm's operations. The costs of management, .accounting, payroll, etc. are
assumed to be less than the sum of those required to run the production processes
independently. Multiple output firms, if there are any, exist because of

something akin to public goods within the firm.
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Below it is shown that the technological restriction of equal factor
proportions implies (it is slightly less obvious than it appears) diseconomies
of scope in production costs, The treatment of non production costs is
identical to economies of scope in those activities, Thus, in brief, the
results presented below are based on diseconomies of scope in production
activities and economies in non-production activities.

It is worth noting that analyses of the sawdust-fire logs variety
assume just the opposite, Therein, the factors preventing all goods from
being produced together is the "loss of control" associated with problems
of coordination that outweigh the public good aspect of the firm, in
conjunction with transaction costs which prevent the sawdust from being
hauled away and the fire logs produced in an environment where there is no
loss of control (i,e,, a single output firm), The predictive content of
this approach is next to nil because the transactions costs (presumably
unobservable to the analyst since they are not incurred) can be set to
achieve any allocation desired,

The payoff to the approach adopted herein is that it offers numerous
predictions, explains various curious phenomena as equilibrium behavior
under perfect competition, and even sheds light on applied policy debates. As
an example of the first, focusing on two goods, the equilibrium outcome can
be "polymorphic", to borrow from Hallagan and Joerding (1983). Some firms
will produce just one good, and other firms that good plus another; efficiency
in competitive equilibrium yields asymmetry. This stands in contrast to
the fully symmetric equilibria following from economies of scope in production

costs (Baumol, et al (1982)). Another prediction is that, starting from a



situation wherein both goods are produced solely by single-product firms, an
increase in the non-production costs of firms specializing in the production
of one good can lead to an equilibrium wherein those firms remain and the

other good is produced by diversified firms, Firms specializing in production
of the other good are casualties of the cost increase. This unintuitive result
does not require any "perverse" occurrence. It is a natural outcome of
efficiency under some not unreasonable circumstances.

Curious phenomena explained by the theory are, among others: (1) the
production of golf clubs and airplane parts in a Montreal firm, and the
historical curiosum that sewing maching firms typically also produce bicycles;
(2) why producers of video games do not produce other leisure related goods
such as records. Applied policy issues include evaluation of the claim that
elimination of banking regulation will yield financial supermarkets, as well
as an application to the influence of sector-specific factor taxes/subsidies
on the allocation of production across firms.

It should be pointed out that the analysis to follow treates firms
and plants as synonymous. A firm which owns numerous single output plants
is treated as numerous firms, However, the approach examined in this paper
shows promise in terms of explaining these (essentially financial) arrangements
as well., Some space is directed to these considerations in the concluding
section,

The paper is set out as follows. Section II contains material on the
multi-product technology under the equal factor proportions restriction. Next,
the associated cost functions are presented and the relevant "scope" properties
examined., Section IV is devoted to a brief treatment of the competitive
equilibrium as a programming problem, the solution to which is developed in

Section V. Section VI details the predictions implied by the theory and offers
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a discussion of the applied phenomena mentioned above. Recapitulation is

contained in Section VII,

II, PRODUCTION TECHNOLOGIES

In the sections to follow, the case in which each of two outputs
requires inputs of two factors of production is examined. This section
first presents the assumptions made concerning the independent production
processes used to produce each good. It is then shown that the restriction
to equal factor proportions when both goods are produced in the séme plant
generates a multiple output technology which is well behaved in an
appropriate sense. Finally, necessary and sufficient conditions for
this multiple output technology to differ from the multiple output
technology which would obtain in the absence of the equal proportions
rest;iction are provided.

The notation to be used below is as follows:1

q= (qa,qﬁ) € ﬁi a vector of outputs indexed

by j € {a,p]
1 .2 2 . R .
Xj = (Xj’xj) € R+ - a vector of inputs, with typical
element X%, used to produce
X' =5 X; - total input of factor i € {1,2};
3
X = (X‘,XZ) = vector of total inputs;
L.(q,) = {(X1,X%)lq. 2q.} - the input requirement set for good j.
3 33 J That is, the set of all input vectors
which will produce at least q,, a
particular qj; J
0.(q.,X) = argmin{sxlsx‘elj(q.)} - the smallest share of a total input
33 s J vector X which will produce qj;
. .) = mi .1X.€L.(q,
]
§eR2, ”§” =1} - the value of the least cost factor

bundle which will produce qj when

"prices" are §5.



Ci(ay>0 = (EIllgl =1, § oy(ay,0X=1,(8;,q)]

L(q) = {X|= ¢

(q,,X) <1}
i h|

3

L%q) = {X[X =X =X ¢ L(q)}

2(q) = {XIXj € Lj<qj)}

2%(q) = {X[X <X =X ¢ 4(q))

the set of factor prices
for which utilization of the
share Gj of total inputs X

is the least cost way to
produce qj;

the restricted multiproduct
input requirement set. That
is, the set of total input
vectors X which will produce
the output vector q under the
equal factor proportions
restriction;

lower boundary of L(q);

the unrestricted multiproduct
input requirement set;

lower boundary of £4(q).

Before the relationship between the Lj(qj)’ L(q) and £(q) can be

examined, the assumptions made about the Lj(qj) must be specified:2

set L(q) is constructed from the underlying Lj(qj)'

Lj(qj) is closed V qj;
Lj(qj) iszconvex v PE
L.(0) =R . >0=0¢ L.(q.);
5O =Ry, RACHE

X, e L(q.), X. 2X. =X, ¢ L.(q.);
5 (qJ), i 5 ! J(qJ),

If either (i) Xj >>0; or (ii) Xj 2 0 and ij € Lj(aj) for some

.2-.20=L.. CL,(q.);
q; qJ J(qJ) J(qJ)

N 1.q,) = {g}.
k|
qj € ﬁh_ J

A and q., then Vq, 20 {AX_|[A 20} NL (q. ;
an, qJ then qJ { Jl } J(qJ) # {¢}

Figure 1 depicts the manner in which the restricted input requirement

For each "direction"

0



FIGURE 1

Construction of Restricted Technology
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vector Y ¢ Ri, crjX = (X},Xg) is determined as the shortest vector of
direction Y which will reach Lj (qj) . The normalization Z‘.jcrj =1 yields
X e 1%(q).

The unrestricted input requirement set #(q) is constructed from the
Lj (qj) by the usual set addition as indicated in its definition. However,
for the purpose at hand it will be useful to consider its construction
from a different but equivalent standpoint, Let § = (51 ,§2 ) e R_Z'_ be

= 3
an arbitrary vector of unit length and for each j let Xj = argmin{ §(j lxj € Lj (qJ.)}.
X

Then £%(q) = {X|3§ such that X = zj'ij} and 4(q) = {X[X 2%, X ejze(q)}. That
is, at "prices" §, a point on 4°(q) is found as the sum of the least cost
input vectors which will produce qj‘ Varying § yields all of ﬁe(q) .

Given the technological structure assumed above, two relevant
propositions are available. First, it is shown that the restricted multi-

product input requirement set is well behaved in an appropriate sense.

PROPOSTITION 1: L(q) satisfies
(1) L(q) is closed;
(2) L(q) is convex;
(3) L) =R, q 20=0¢L@;
(4) XeLl(q, X 2X =X e L(q);

(5) 1If either (i) X >> 0; or (ii) X 20 and AX ¢ L(q)
for A > 0, q >0, then

(1) {Xx[r=20} OL(q) # {8} Vq;
or (ii) {?\XMEO} N L(q) # {¢} V q such that qj >0
=>qj >0;
(6) q 2q 20 =1L(q) CL(@;

(» N, L = {g}:
qe R

PROOF: See Appendix.




FIGURE 2

Construction of Unrestricted Technology
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Proposition 1 shows that the restricted multiproduct input requirement
sets, which are a type of aggregate of the underlying Lj (q j), inherit the
(suitably modified) properties of the Lj (qj) . The proof is straightforward
with the exception of part (2). Given the Proposition, the cost function
analysis carried out in Section III is valid.

Of somewhat greater interest is the relationship between L(q) and
£(Q). The information relevant to the analysis below is obtained as

follows. A notion of similarity between the Lj (qj) is required:

DEFINITION: L,(*) and Lz(-) will be said to be sgimilar with respect
to (q,X) if and only if:
Q-I (q7,%) n €,4q, ,X) £ o.

Loosely, the Lj(qj)' are similar if there is some set of prices for which
a share of the total input vector X is the cheapest way to produce each

qj. Putting this definition to use:

PROPOSITION 2: ZLet (q,X) be such that X eLe(q'), and let A>0 be such that

AX € £%(q) . For any such A, q, X, we have that
A<les L1(-) and L2(~) are not similar with respect

to (q 3X) .
PROOF: See Appendix.

Though the proof is arduous, the basic logic is straightforward.
First of all, it is obwvious that }s(q,i) = 1. Thus the case of strict

inequality is all that need be dealt with. To see necessity, assume



11

A <1 and that the Lj (qj) are similar for some (qj,.i). Since the Lj(qj)

are similar, there is some set of prices _5 e (,'j (q j,i) such that a share

3

of XX is the cheapest way to produce qj when prices are E But then by
definition of L(q), X e L(q), contradicting A < 1.
Sufficiency is obtained as follows. Suppose the Lj (q j) are not

similar with respect to some (q,-)'('). Let E support £ (q) at MX. Since

the Lj are not similar for (q,f), there is some k-j where € xj <E. [O'j (qj,

M_{)):}Z], (0'_1 is the smallest share of AX which will produce qj), Z)_{'j = 75(',

and the inequality is strict for some j. Summing the inequalities gives

g Zij <EX chrj(qj,M()

or

—
A
™
qQ

K

-

i.e., X £ L(qj).
Put simply, Proposition 2 states that production under the equal factor

proportions restriction invariably requires more resources if and only if the
expansion paths associated with each independent production process never

Cross.

Given Propositions 1 and 2, the material on cost functions can be

presented.
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III, COST FUNCTIONS

Firms incur both production and nonproduction costs, The former
include the costs of materials and services of factors utilized directly
in the production of output. The latter are comprised of costs of book-
keeping, management, ordering materials, etc. The operational distinction
is that nonproduction costs need not vary greatly with the level of output.
They operate in the manner of a fixed cost. As the analysis to follow is
of the long-run competitive equilibrium type, nonproduction costs are the
only fixed costs.

In this section the cost functions for single and multiple output
firms are presented. Both types of firms face a vector of fixed factor prices
r = (rl,rz) € Ri.

" First consider firms producing a single product. These are referred
to as specialized firms. A specialized firm producing good j faces a fixed
cost Fj > 0. As regards variable costs, the variable cost function
Cj(qj;r) is defined in the usual fashion:

cj(qj;r) = min{erlxj € Lj(qj)}.

XjZO

Turning to multiproduct firms, referred to as diversified in the two-
good context, a fixed cost of FD assﬁmed. The notion here is again
that nonproduction costs do not vary with the level of output of the goods
produced in diversified firms. In addition though, it is assumed that
costs of organization, management, etc. are: (i) greater in a diversified
firm than in either type of specialized firm, FD > Fj V j; but (ii) not as
great in total as would occur if the goods were produced apart, FD < Zij.

This latter restriction is effectively "economies of scope" in nonproduction costs.
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The variable cost function for the diversified firm is obtained in a

fashion analogous to the specialized case:

CD(q;rl,rz) = min{rx|x e L(q)}.
X=0

The relationship between variable costs of production in the diversified
and specialized firms is obtained as follows. First, note that

z cj(Q-;r) = min[rX|X € z(q)}. @)
3 J i
X.j 4
This follows simply from replacing { with r in the construction of 4(q).

Using Proposition 2:

PROPOSITION 3 (Strong Diseconomies of Scope): Assume Ll(') and L2(-)
are not similar with respect to any (q4,X). Then, for any (q,r),
) D ‘
C(q;r) > 2 Cj(q.;r).
s J
J
PROOF: For any (q,r), let
X = argmin{rX|X ¢ L(q)).
X20

By Proposition 2, for some A <1, X e 4(q). Thus (using (1))
Z‘.jCj(qj;r) SrX <X = CD(q;r). |
Thus the equal factor proportions assumption coupled with dissimi-
larity of the underlying production processes guarantee diseconomies of scope
for all factor prices and output levels.
In brief, then, product diversification yields: (i) economies of
scope in nonproduction costs due to cross-good economies of scale in management ,
etc.; and (ii) diseconomies of scope in production costs, owing to technical

inefficiencies caused by the compromising of factors which occurs when diverse

goods are produced contiguously.
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Given the presence of fixed costs, our assumption of competitive
behavior by firms requires that the production technology exhibit strictly

decreasing returns to scale. Thus, define the production set

Y. = (X X.eL, i=1,2,
We thus strengthen property 2 of Lj(°) to:

Yj is strictly convex for j=1,2.

It is then well known that y = {(X,q)IXIeﬂ(q)} is strictly convex,
and straightforward to verify that Y = {(X,q) |[XeL(q)} is also strictly
convex. This also implies that CD(q;r) and Cj(qj;r) are strictly convex
functions of q and qj, respectively, and thus continuously differentiable
almost everywhere.

Finally, there is little to be gained in carrying the behavior of
specialized firms along in detail. Accordingly some simplification is
undertaken at this point.

It is clear that if there are any specialized forms in equilibrium,
and the "integer problem’ is ignored, they will all operate at the level of
output which minimizes average cost. Thus let

h| .
F + C'.l(q"l’r)

qj = arﬁmln qj (2)
i
and
€. =1 +c¢.(q,;1).
3 J(qJ r) (3)

The relevant behavior of specialized firms is completely summarized by aj and

In summary, specialized firms produce ﬁj at a cost of Ej‘ Diver-
sified firms differ from specialized firms in that they enjoy economies of
scope in nonproduction costs and diseconomies in production costs. Total
cost functions for diversified firms are

P + c2(q;1) . - (&)

Nl

0
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v, A PROGRAMMING APPROACH TO COMPETITIVE EQUILIBRIUM
In the analysis of Sections V and VI, the competitive equilibrium

configuration of specialized and diversified firms is found as the least
aggregate cost method of producing given quantities of the two outputs,

The analytical economy involved in this procedure is obvious: the
entire demand side of the economy can be ignored, Moreover when making
predictions concerning the impact of the pattern of demand on the equilibrium
configuration the laborious (but not impossible) task of altering preferences
in an appropriate fashion need not be spelled out,

The purpose of this section is to briefly explain why this procedure
is an appropriate one, Since rigorous demonstrations of the proposition
are already available in the standard Arrow-Debreu-McKenzie general
equilibrium literature, the discussion proceeds at a slightly less formal
level than would be appropriate otherwise. In particular, though we do
not do so below, existence of a solution is assumed, Finally, as the
proposition has nothing especially to do with multiple outputs, and
simplicity is gained, the case of heterogeneous firms (where all types are
in infinitely elastic supply) producing a single type of good is examined.

Suppose firms of type k (k=l,...,n) produce output ofva good q subject
to the total cost function Fk + ck(q); ci >0, ci > 0, Let the number of
firms of type j be Nk. Now assume a competitive equilibrium, an& that in this
equilibrium Nk > 0 for k eKc{1,...,n}, firms of type k produce Gy and

let Q = Zkaqk. The aggregate cost of production is

c* = LN [F + e (g)] .
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Conditions necessary for an interior (w.r.t. Ni,qk) minimum for C* subject

to Zkaqk Z q are
F + ck(qk) - qu =0,

S -A =0,

where A is the multiplier on the aggregate output constraint.

If the Nk and % of competitive equilibrium do not minimize aggregate cost,
it follows that one of the above conditions is violated. Since all firms
face the same price, profit maximization implies the second set of conditionms
does not fail, and A is the price of output, The failure must therefore

be ip the first set of conditions, That is, some type of firm is making

non zero profits, As all firm types are elastically supplied, this too

is inconsistent with equilibrium, Thus, under free entry, competitive

equilibrium yields any given aggregate production at least aggregate cost,

Y. SOLUTION

In accordance with the argument above, we will proceed as if the
economy solves the programming problem of minimizing the total cost of
producing a given aggregate bundle of the two goods.

To keep the notation as suggestive and simple as possible, we shall
henceforth let 0 and B designate the two goods, while a numerical subscript
i will indicate partial derivatives with respect to the ith argument of a
function. Thus, the aggregate bundle of goods to be produced is designated
as (Qa’QB)’ Nj is the number of firms of "type j", for j=a,B,D, while
qj is the level of output of good j=(!,f, by a diversified firm, aj’aj are

as defined in (2) and (3).
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The Lagrangian for the cost-min problem is thus:
= N [F +CD(qa,qB) 1+N8, + NG,
+ AR - Mya - Nody] + N[ - Nogg - Ny

with Ad and XB being the as yet undetermined multipliers.

The Kuhn-Tucker necessary conditions for a minimum are then as

follows, with subscripts indicating partial derivatives:

P+ (aya0) - Ay - Mgl 20 ©)
an B }‘aaa =0 (6)
'EB - }‘BEB z0 €
P(q.q) - A, 20 (8)
1Y’ a

D =

Q, - Nya, - Ng, =0 (10)

These conditions are individually familiar, (5)-(7) simply stating
that all three types of firms must earn non-positive profits, given that
outputs are valued at the shadow prices Xj' (6)-(9) also require that
all producing firms' marginal costs be equal to these shadow prices, while
(10) and (11) are of course just the aggregate production constraints.

Before proceeding, we should note that, given the usual sort of
technical assumptions about minimum average cost being attained at a
sufficiently low output, it is straightforward, if tedious, to show that

a solution satisfying (5)-(11) must exist and this is done in an Appendix.
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The first preliminary result for the characterization of equilibrium is the

following.

[

PROPOSITION 4 At most two of Nb, qx, NB’ can be positive.

This "spanning theorem' follows from the simple fact that the necessity ‘

of zero profits and the equality of marginal costs across operating firms

imply five equations (5-9) to determine only four variables: outputs by
diversified firms qa,qB, and the common levels of marginal costs, Aa’XB‘

Since Qa,Q5 are both positive, Proposition 4 implies that the solution,
which we will denote by z = (qa,qB,Nb,ﬂ5,Né,Xa,KB), can take one of four
forms: We will say that

zeD ¢9ND >0, Na =N, =0

-

B
zesza>0, NB>°’ND=°

zeM, ®N) >0, N, >0, N =0, j=o,B; kfj .

Our present task is to examine the determinants of the form of z ;
that is, to determine for what parameter configurations z falls into each of
the above four sets. Let C¥(°+) be the minimized level of aggregate production
costs in the economy, which therefore is a function of all the parameters

of the problem. This last preliminary result greatly simplifies what follows.

PROPOSITION 5 C#%(.) is homogeneous of degree one in (Qa’QB)'

Propositions 4 and 5 highlight the result that the present model is in
many ways a multi-product analog of the traditional long-run competitive equi-
librium model. Proposition 4 follows from the observation that the set of
firms which operate in equilibrium can be determined by considering only the

zero-profit conditions for an individual firm of each type. Proposition 5
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follows from the fact that proportional changes in aggregate output can
always be met by proportional changes in the number of all operating firms,
as in the traditional ome product/firm case.

In light of Proposition 5, we henceforth consider all changes in
the aggregate output vector as changes in Qa utilizing the convenient normal-
ization QB =1, The magnitudes of (Qa’QB) determine only the number of firms
of each (operating) type, so long as they are large enough for at least one
firm to operate. We assume this to always be so, as well as assuming away
the singularly uninteresting integer problem.

We now introduce an additional restriction on the diversified firm's

variable cost function:

D, - D - = - _3
€ (0:45) <€1(9,,0) = Cy/q, =},
1z)

D, - D,. - = a3
C,(d550) < Cy(0,95) =Cplag = Ag

The reason for (12) will be clear as we proceed. Its first role is

in (i) of the following Proposition

PROPOSITION 6 (i) If F° = FJ, then Ny =0, § =B

Fa + FB, then N_ = 0.

D
(ii) If F b

v

Part (ii) is obvious enough, since FD = Fa + FB, diversified production

always carries an unambiguous total cost disadvantage. As to (i), suppose that

FD = Fa, for example, and Na > 0. Then good B cannot be produced, by diversified

firms, since they and specialized Q-producing firms have "the same'" strictly
convex cost function. That is, both types of firms could not be earning zero
profits at "prices" (ia,hs), for any hﬁ. If good B is being produced by

specialized firms, then its shadow price would be A , and a diversified firm

B

can earn positive profits given prices (ia,xs), from the second inequality in (12).



20

A convenient notation is to let Ma > D mean that the lowest cost
z eM& dominates the lowest cost z €D, for example. The central result

for our eventual classification of equilibria can now be given.

PROPOSITION 7 Let F,F° be given.

(i) For any FD > #2’ there exists a unique Qa > 0 denoted

as 'Q'a(FD), such that M, > D ®Q_ > Q-a(FD) .

(ii) For any FD > Fa, there exists a unqiue Qa > 0, denoted

as Qa(FD), such that M, >D ©Q <Qa(FD) .

The following characterization of 6&(FD) is evident from the proof of
Proposition 7, which is left to the Appendix: If one solves the aggregate
cost-minimization problem, with the additional constraint that NB = 0, then

for given #J,FB, 6&(FD) is the value of Qa at which the solution switches

between Ma and D, Symmetrically, Qa(FD) is defined from the sub-problem
withN, = 0. Thus, the functions 6&('), Qa(') imply nothing directly about
the solution to the actual cost-min problem,

However, the artificial N_, = O problem does generate a value for A _.

B >

If KB 2 iﬁ’ then the NB = 0 constraint is binding, and the given (Qa’QB) can

always be produced more cheaply by eliminating the diversified firms and
replacing them with specialized B producers. (12) guarantees that at some
p and the larger of (Fa,FB)), A < A,

B >
and the artificial problem gives the "right" solution. The role of (12) is

level of FD (strictly between Fa +F

now clear. Without it, only z € D or z ¢ S are possible, with the result
hinging only on the relative size of FD and (Fa,FB). (12) allows us to prove

the following
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PROPOSITION 8 There exists a unique F such that max{F*,F°} =F <F < P45

and ZGSQFD?.,E.

F is precisely the level of FD at which 6& and Qa are equal. The
reasoning behind this result that the possibility of a completely specialized
equilibrium hinges only on the magnitude of FD is as follows. That once
z €S, an increase in FD alone keeps z €5 is clear enough if one considers the
form that the system (5)-(11) must take if z €S, An increase in FD affects
only (5), keeping it a strict inequality, insuring that NB =0,

As to why changes in Qa do not affect the fact that z €S, recall that in
a completely specialized equilibrium, specialized firms are of course operating
such that their marginal costs equal Kﬁ = E}/&j. If z¢8S, a diversified firm
producing the (qa,qB) combination such that his marginal costs also equal‘ia,xﬁ
is producing his output at a total cost greater than qoﬁ& + qéﬁu (i.e.,
diversified production is unprofitable at "price§"ix;xs). Changes in
Qa can always be met by changes in Na and NB’ leaving kj = Xﬁ, and thus can
never make it possible for diversified firms to enter.

F is thus the level of fixed costs just sufficient to prevent diversified
production from occurring. The difference o+ FB - F (or ratio E/(fu4-FB))

can thus be viewed as an output-independent measure of the extent of diseconomies

of scope in production.

Propositions 6, 7 and 8 are summarized in Figure 3, in which the
letters S and D refer to the region into which z must fall if (FD,QO?
fall into the region so labelled., The diagram is rather more well-behaved
than we have so far shown it must be. However, it is a direct corollary

to the proof of Proposition 8 that

lim Q—a(FD) =, " 1im _o,a(FD) =0 (13)
P 5% P 5P
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FIGURE 3
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Further, we can prove the following result,

PROPOSITION 9  For all F ¢ IF,F[;
W P >,
(i1) zeM, Q > ()
(iii) zeD ® 5a(FD) >q, > 0 (F)
(iv) 2 Mg ®Q, <Q ).

This proposition allows us to label the remaining regions of the

diagram, a&(') and Qa(-) have no significance for the structure of the

solution for FD > ﬁ, as shown by Proposition 8, though they are nevertheless

well defined. (13) shows that for P s F, 6&(~) must be, "on average"
downward sloped, and Qa(°) on average of positive slope. To guarantee

that these slopes do not change signs we need the following assumption
0 & (q.,0) +a.C, (q 4y > 0» 4,00,(q 05 +d.Cp1.(q ) >0
of11 (4299) 981299y > 0 9% 092 %? T 9021 %% %
This is not particularly restrictive, as the convexity of CD alone

implies that at most one of these can fail for any given (%u,qﬁ). Also,

0?2 >0 is clearly sufficient for (14) to hold, and this is obviously

(14)

the leading case, given our construction of the diversified firm's technology.

We can now present a final result

PROPOSITION 10 Given (14), for all FD, we havé4

Q) o 2 @
o oF

Under (14) then, Diagram 3 is an accurate illustration of the

categorization of equilibria, and can be completely labelled utilizing
Proposition 9. It will no doubt prove useful to provide some intuition

as to how the structure of production is altered as (FD,QQ) change, when

FDe ]Fa Fa"‘ Fﬁ[.
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First, suppose (FD,Qa) are such that z eMB, and consider an increase
in Qa’ FD remaining fixed. First of all, the (qa,qB) combination produced
by diversified firms :i.nMB is independent of Qa’ this being the analog of

qa= &a for single product firms. If ro increasing is due to an increase in

the production of good O, this must occur through an increase in the number
of diversified firms, and thus a consequent decrease in I\b . 1f, on the
other hand Qa is increasing as a result of a decrease in P production, then
as noted previously this must occur through a fall in N'B. Eventually NB= 0
(when Q o qa/ qa = Qa(FD)) , and production becomes completely diversified.
Then as Qa continues to increase, since only diversified firms are producing,
their outputs must satisfy qa/q6= Qa' Throughout this region, C]; <-7-\.j

for j=q,B, but as Qa (and therefore qa/qﬁ) rises, Cg rises until it
reaches 'ia. At this point, increases in Qa, whether due to increases in

O output or decreases in B output, cause an increase in Noz (and in the

case of B output falling, a fall in ND) . For the diversified firms,

qa/qB is again fixed independently of output, although at a level different

from that when 2z ¢ MB .

Note that the above discussion in no way hinged on the validity
of Proposition 10and so did not require (14). All that was assumed was
(1) of Proposition 9. We now consider starting with a (Qa,FD) such that
z ¢ D, and consider the result as FD rises, assuming that (14) holds.

We know from (13) that there is some (Qa,FD) with FD > Fa such that
z ¢ D. Consider an increase in FD , with Qa fixed. It is easy enocugh to
see that qm/qB = Qa independently of FD if z ¢ D so that an increase in
FD simply reduces ND’ and increases both 9y and qs° This must cause a
rise in the level of marginal cost for at least one of the goods. (13)

implies that we could always choose Qa high enocugh so that it is cz which

first attains the value -)'\a, and thus z ¢ M'a. Still, none of this requires (14).

i3
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D
As F continues to increase, this now has an affect on qa,qB and
thus on ND’Nd which is indeterminate. Without Proposition 10, we could
not be sure that the alterations in (qa,qs) did not result in both
D

C j < ij again with the result that z e D once more. With (14), however,

. oD
increases in F must leave z ¢ Ma until the marginal costs of production

D

of both goods for a diversified firm reach the ij levels, when F = E, and

Proposition 8 then applies.

VI. PREDICTIONS

This Section explores the predictions of the model presented in
Section V which are additional to those inherent in the classification
results. Throughout it is assumed that (12) and (14) hold.

There are three basic predictions about the character of equilibrium.
First, as explained above, the number of types of firms will not exceed
the number of types of goods; again this is a type of spanning result
familiar from linear programming. Efficiency places severe constraints
on the types of firms which can arise and be viable in a general equilibrium,

At the same time though, the model predicts that under various
circumstances, firms specialized in the production of one good will exist
alongside diversified firms producing that good and another; zelﬂxis an
example. The behavior, known more generally as polymorphism, arises when
the pattern of aggregate production is particularly intensive in one good:

Qa/QB < ro or QO/QB 2 Qa.

In the 2z eMa case, diversified firms produce
all of good B, and good & such that qa/qB = Qa' Qa - Qa is produced in
aggregate by firms specializing in production of good @. Polymorphism
per se is of interest because it is usually only generated where a subset

of firms has some advantage (e.g. superior location). In the present

case, all have access to the same opportunities.
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Closely related is the prediction that when the equilibrium is
polymorphic = 3MJ,) s alterations in the structure of aggregate production
will have very different effects depending on the manner in which aggregate

production changes. In particular, an increase in aggregate production of

I3

the good which is produced by specialized firms yields entry of more

specialized firms and no adjustment whatsoever involving diversified firms.

However, an increase in production of the other good leaves unchanged the
qa/qB ratio produced by diversified firms, but raises their numbér at
the expense of some of the specialized firms. In a sense, specialized
firms form the industry "fringe".

The spanning result, polymorphism and the fringe behavior of
specialized forms are the theory's coarse and unqualified predictions on the
effiicient structure of production.

Turning to the effects of parameter changes, first consider FD and "

the FJ. As is obvious from Figure 3, sufficiently low F’D always results

g

in zeD; raising FD eventually generates 2 €Mj for some j, with still
greater FD implying z € S.

To consider the impact of an increase in one of the Fj, focus on
raising Fa. Recall that 6a(FD) is the value of Qa for which the equilibrium
configuration switches from z €D to z eMa’ if NB = 0 is assumed .5 Indeed

Q_ is found as part of the solution to

(04

D D -

F +C (qa,qB) - )\aqa - }LBq6 = 0, (15)
c,-rd, =o, (16)
cX(q ,q) - A =0 a7
] qa’qB a 9

c2( ) -\ =0 (18)
289gdp? = B T

N = 1/qg, (19)
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and Qa =Ny, . (20)

That is, 60‘ is aggregate production of good ¢ such that any increase in

Qo: will be met by firms specialized in production of good . Now (16)
defines 'Xa (recall (12)), and (17) can be solved as q, = ¢(Xa,qﬁ) . Using

these facts and (19),

Q, = ¢/qa 21)
where clf3 solves
D = D _
P+ P(digg) - K9 - Cy(Bra0)q, = 0. (22)

ch enters only through Xa' (Indeed dxa/dFa = 1/&a.) Note that since FB
does not appear here dQ_Ot/dFB = 0 trivially.
Minor manipulation gives both qu/dFa <0 and daa/dFa > 0 under (14).

. - 3 ) > ~
The logic is easy. Qa is the critical qO‘/qB ratio such that Qa/QB Qa
yields specialized firms producing good Q. An increase in F* raises the
level of minimum average cost at which the latter firms can viably supply

good 0, Thus it would be expected that the critical th/qB ratio will

rise with Fa. This could only fail if a decrease in q‘3 raised C? to such

a great extent that the adjustment in qa required to achieve C]}) = Xa (at

the new higher level of ch) is not only negative but large enouéh to yield
qa/qB falling. (14) rules this out. (Convexity alone does not.) Analogous
manipulations give dga/dFa = 0 and dgm/dF{3 < 0. Refer to Figure 4. The
regions for which z €D and 2 €MB become unambiguously larger when P rises;
that for which z € S shrinks, The impact on region Ma is ambiguous because
while some (Qa,FD) pairs which would have generated z eMa‘ now yield z €D,

there are also (Qa,FD) pairs which formerly implied z € S, but now yield
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Figure 4

z eMa. ((6a,fD) in the figure is an example.) Notice that for these latter
(Qa,FD) pairs, the rise in F~ has led to diversified firms replacing type B
firms and leaving type Q firms in the market, At first, this last result
appears bizarre. The reasoning is as follows. Consider (6a,§D) . For

= F‘: (its initial value), if it were assumed (éa,f'D) generated z ¢ M,
diversified firms produce (in aggregate) aa(ﬁD,E'g) of good O with.

60( - aa(Ew,Fg) being produced by specialized firms of type @¢. Now focus

on the production of aa(fn,l’g) by diversified firms. The point (aa(fp,Fg),ED)
is such that z eMe; that is, the qm/qﬁ ratio is so low that introduction

of some type B firms would allow their portion of aggregate output to

be produced at lower aggregate cost. Given the spanning result, this means

that 60( is most cheaply produced by pﬁre specialization,

[}

[
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In contrast, for = F?, the assumption that (Q\a,fn) implies z eMa,
generates aggregate production by diversified firms of 6&(§D,F$5. Again
focusing on whether it would pay to introduce type B firms, that 6&(§D,F$5 >'ga
implies the qa/qB ratio is such that it does not pay to do so. (da,ﬁn) does
not yield z €S for = ﬁ?.

Further insight can be obtained by imposing more structure on the
relationship among FD and the Fj. Suppose the nonproduction costs are
comprised of the cost (P) of a factor which operates as a pure public

input, as well as a product-specific nonproduction cost K3, Then

Py

FJ

and . FD

P+ K (23)

P+ zjKj. ® (24)

Consider a change in Ka, and focus on the induced changes in the
loci Qa and a&. Raising K% involves a movement along Qa as the only change
relevant to the experiment which generates Qa is a variation in FD.
Regarding 6&, raising K% induces a shift to the right (as Fj rises) as well
as a movement along 6&. Given this, the consequences of changing K% and
KB independently are straightforward though somewhat tedious. The interesting
result comes from raising P, which can be analyzed as a simultaneous and
equal increase in k% and KB. Analysis very similar to that required above

to obtain the influence of an increase in Fj yields:

D D
PROPOSITION 11 Agsume C1(qa,qﬁ) and Cz(qa,qB) are converse. Then for

all (Qa,FD) pairs such that D-qu;7an increase in P =D >-Mj.
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D D -
1,::md C2 are convex, raising

the cost of the public good portion of nonproduction inputs implies that pure

Thus, according to Proposition 11, when C

diversification becomes cheaper than partial specialization if the two. were
equally costly prior to the change.

The intuition behind the convexity part of the proposition is not
obvious, but consider the following. Raising F alone augments the critical
qO‘/qB above which Md > D, In particular, it was shown that such a change
reduced qB and did not reduce qa enough to cause qa/qB to fall. When fD
rises along with Fa, a general expansion is required to spread the higher
fixed cost., Convexity of 02 ig merely sufficient to guarantee that this
general expansion does not cause q‘3 to rise quickly enough to cause the
critical qa/qB associated with the higher level of FD to be below that
associated with the lower level.

Referring to Figure 5, under the assumptions in Proposition 11,

points previously on ga and Qa, shifted vertically by the addition to FD,

Figure 5

N
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lie inside the parameter configurations generating z €D, In particular,
since this also applies at point A in the figure, increases in P generate
less divergification in the sense that there are no parameter configurations
which, once large FD has been accounted for, (i) previously generated

some diversification which do not do so now, or (ii) generated pure
diversification which do not do so now.

Particular interest is attached to this prediction for the following
reason., A familiar argument is that increments to the "extent of the market"
foster the development of factors specialized to or more specifically suited
for utilization in the firms producing the goods in question. To the
extent that these resources are nonproduction inputs (i.e. being used for
accounting, product design, management training, etc.) the theory offered
here suggests that "balanced" (i.e. Qa/QB,not varying greatly) increases
in the extent of the market, which generate reductions in P (or both &>
and KB, which will do equally well), increase the degree of specialization.
Loosely, the division of production increases with the extent of the
market.

Recent attempts to reduce government regulation in various ways also
provide an example to which Proposition 11 might be applied. To the extent
that reductions in regulation simply lower the fixed costs (Kj) of doing
business, it clearly fosters specialization. On the other hand,.if regulation
requires superfluous duplication of paperwork which could equally well apply
to two or more goods (in which case eliminating it yields FD =P+E = Fj),
its reduction generates greater diversification. Apparently the latter

characterization typifies regulation in the banking industry. The argument
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that reduced regulation will generate "financial supermarkets" does not
seem misplaced.

Next, the underlying restriction which generates diseconomies of scope
in production costs is that diversified firms are required to utilize the
same factor proportions in the production of both goods. This suggests the
proposition that if two goods become "more similar" in terms of their input
requirements, it is more likely that they will be produced in a diversified
firm, Or to put it differently, the goods which are most likely to be
produced in a single plant are those whose input requirements are ''most
similar",

While it is difficult to make these notions precise, the following is
one parameterization for which a reasonable result can be shown. Suppose

the technologies L (qj) can be represented by the production functions

k|
Gy = £

and
dp = h(akg,bK)

where a and b are positive constants, £f(*) and h(°*) are concave and twice

differentiable, and for all 1 and Yo

f1 (Y-I :Yz—)_ S h1 (Y1 ,y?L)
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Now consider an increase in a, and adjustment of b, such that for any
B

given qB, the minimum cost of producing q_ is fixed. It is easy to check

that for given da > 0,
al
r X
b =2-1Bg4a >0
a a2

r2XB

= Bl B
quant map for good B clockwise, but leaves unchanged the cost fuctions for

o
where X_ = ar§min{rx X e LB(qB)]. A given da thus rotates the entire iso-
B

both types of specialized firms for all output levels. However, because
the factor proportions used by a diversified firm are always intermediate
with respect to those uged by specialized firms (this is both obvious and
easy to show), costs rise under the restricted technology, again for all
output levels. Diseconomies of scope become more severe. Given this, it is

not difficult to obtain
PROPOSITION 12 da > 0 = F £alls.

This is, as noted, the simple result of the fact that the only effect
of such a da > 0 is to increase the costs of diversified production only
(at the given factor prices).

The Proposition that those goods which are similar in unrestricted

factor proportions will tend to be jointly produced is the source of the
examples cited in the introduction. As it turns out, golf clubs Qnd
airplane parts require very similar labor and capital inputs, as did sewing
machines and bicycles. Sewing machines and bicycles are no longer produced
together, for the factor similarity diminished as the goods became more
sophisticated. Further, even though video games and records are both recre-

ation goods, despite their hedonic similarity they are not efficiently
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produced jointly because of their underlying factor dissimilarity.

These predictions have an appealing flavor, and it is for this reason
that the equal factor proportions restriction was chosen. Exact equality
of factor proportions can be relaxed in various ways without altering
Proposition 12. For example, equality of factor proportions only within a
subset of factors, or restriction of factor proportions to a cone, can be
accommodated. The results will only be materially altered if the restriction
used to generate diseconomies of scope requires firms producing more'than
one good to use factor proportions more extreme than the unrestricted choices.
In such an instance, Propositions 1-11 will not change, and Proposition 12
will be reversed. This does not appear terribly plausible, as the ACME Leisure
Suit and Fiber Optics Corp. has yet to appear.

EWO small points conclude this section. First, differential taxation
of factors depending on their use can either exaggerate or ameliorate the

diseconomies of scope in production costs used to generate the above predictionms.

If, for example, good ¢ (in unrestricted production) is more X; intensive

than good B at a common set of factor prices, a subsidy to X2 used in the
production of good & can virtually eliminate the diseconomies of scope,
causing diversification where none would be viable otherwise. The degree
of specialization in the economy is another avenue through which such dis-
tortions operate.
Finally, non-convexities in production are one of the great

dull topics in economics. Efficiency implies they will not be observed
even if they are present. However, in the present context non-convexities
are of some interest. The reasoning is as follows. It is easy to show

that the underlying Lj(qj) can be to some degree non-convex and still yield

1]
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a convex L(q). As a consequence, diversified firms may operate factor
proportions such that one (at most one in the two good case) of the tech-
nologies is non-convex. As such, overall efficiency may imply what appear

to be inefficiencies within the diversified firm. This provides an alternative,
and efficiency-based, view of the "inefficiency observations" underlying

the literature on X-efficiency.

VII. SUMMARY AND EXTENSIONS

This paper has addressed itself to the problem of determining the
manner in which production is divided among producers in a competitive
economy. Its basic premises can be summarized as economies of scope in
nonproduction activities, and diseconomies of scope in production
activities. The former arise as a result of the public good attributes
of planning, accounting, and management, etc.; the latter is due to the
compromises which are made in order to produce more than one good in a
single plant. The particular compromise utilized in this analysis was
an exaggeration of the notion that in order to produce more than one
good in a single plant, factor proportions intermediate to those which
would be chosen were only one good produced.will be chosen by the firm.
The analysis was simplified by strengthening this to the assumption that
all goods produced in a single plant use identical factor proportions.
Other than that, production of each good was assumed to occur indépendently.

The first task was to analyze the technological structure of
production. It was first shown that it is possible to derive a restricted
technology from the underlying independent production processes coupled

with the assumption of equal factor proportions. Proposition 1 showed that
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this restricted multiple product production process inherited the properties
of the underlying processes. It was next shown (Proposition 2) that
provided the underlying technologies are such that factor proportions would

be distinct across goods for all factor prices in the absence of the equal

o

proportions restriction, that production utilizing the restricted technology
always uses more resources than independent operation of the unrestricted

technologies. Turning to the analysis of cost functions, the analogue to

Proposition 2 is strong diseconomies of scope in production costs (Proposition 3).
That is to say, the production costs associated with obtaining two goods
within a single plant exceed those which follow from production in two
separate plants.
-Having obtained the cost structure for the multi-product plant, and
knowing the cost functions for this single plant firm from the standard

theory, the well-known result that a competitive economy produces any

(o

aggregate output at least aggregate cost was used to characterize competitive
equilibrium. There followed a set of'classification theorems" which may

be summarized as follows: For any given collection of nonproduction costs
associated with single plant production, there is a critical level of non-
production costs for the multi-product firm such that if nonproduction

costs exceed the critical level all goods will be produced in firms specializing
in the production of a single good. For nonproduction costs below the

critical level, there will be some diversified firms. When aggregate production
is skewed towards the production of one good, diversified firms will exist

in conjunction with some specialized firms producing the good towards which

aggregate production is skewed.

[
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The theory was shown to have a rich and diverse set of predictions.
Perhaps most interesting is the prediction that a change in technology which
renders the unrestricted optimal factor proportions more diverse, increases
the extent of specialization in the market. A surprising result is that
an increase in the fixed cost for one type of specialized firm may cause
the equilibrium configuration of production to change from purely specialized
to partially diversified, where the specialized firm which remains in the
market is the one whose cost has risen., These and other predictions were put
to use explaining some applied issues.

The most interesting area to which this kind of analysis might be
extended is that of the financial structure of the firm, The reasoning is
basically as follows. Organization of a collection of plants under a
singig "managerial umbrella" presumably causes a different managerial
structure than if the plants were operated independently. In a manner
similar to that utilized above, diseconomies of scope in multiple plant
organization are implied. On the other hand, there are obvious public
good aspects to operation in financial markets. Economies of scope in

the nonmanagerial component of nonproduction costs are implied. The

above analysis can be applied with little modification,
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Footnotes

1Wé adopt the following notation for vector inequalities:
(i) X2YeX 2Y, for all i, and X; # Y, for some i, (ii) X >Y
Lol X:i. >Yi for all i,

2These assumptions are standard, and represent a slight
modification of those in Shephard (1970).
3§3 need not be unique.

Z‘It is clear from the proof of Proposition 10 that (14) is also
necessary for the result,
5 ry FOL . s s
The dependence of ro on is explicit here.
: A 6It: is easy to include P=pP+= O'jKJ, o5 >0.
|

T peans "equally costly".
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APPENDIX

Proof of Proposition 1
) L@ = {XeRYlso,(q,,0 51} = £ ([0,1),

where £:R) - R, is defined by £(X) = Z0,(245%) «

Since crj(qj,X) = min{A EOI)\XGLj(qj)}, then properties 1 and 5

imply that each oy and thus £(+), are continuous.

L(q), as the pre-image of [0,1] under £, is closed.

Hence

(2) Let x,ieL(q), so that Zo (qj ,X) =1 and ch(qj,)_f) =1, and

j

let O‘j(qj,X) = a., crj(qj,i) = ;j‘ Let Xt=tX+(1 -t)X for some

J

t € [0,1], We show that there exist (lt such that a'-_;Xt e L(q) and

k|
. ozat =1,
k|
Define at:' = —t— + a-u) | a.a, [[ta, + (1-t)a.],
h| a. - 373 j h|
j a
h|
a. X a X
t,t _ i 1
Then aX" = -Da, T ta,
T+—1 1+ -
ta. (1-t)a,
h| 3

a X,a Xel (q ) by definition, and

(1-t) a

( (1-t)a> ( -1 ‘“-51
1+ = +
(T-t)a - -
taj+(‘l t:)aj

Further,

-1
st = z[_t_ N 11_;1]
| a -
i

Zf[;t— +ﬂ-_'—t)-:| , for £(z) = 1k
j a

]

ta,+ (1-t)a.
a; ‘( )aJ
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=T e£(d /aj) + (1-t)£(1 /ij) since £(*) is convex
j

=tZa. + (1-t)Za, =1, [ |
| k|

3) crj(O,X) = 0, from 3. for all X eR™,

_am
so L(0) = R,.

If q 20, and 0 €L(q), then let qj>0.
Th .(q.,0) <1 =20.(q.,0) "0 =0¢€L,(q,
us O'J(qJ ) ch(qJ ) j(q_])

contradicting 3.

Xel s =1 .(q.,X)XeL.(q.) £ ie
(4) XeLl(q) =20'j(qj X) and a-J(qJ )X € J(qJ) or all j

Thus, o (qj,X)-)EeLj(qj) for all j by 4, and O'j(qj,X) = O'j(qj,X)

h|
for all j, thus, Zcrj(qj,.)-(') =1, so XeL(q).

(5) i) Let X>0. Then 5 implies that for all j,

. X eLj(qj) for some Aj' If we let

i-lyl

A= max{XJ]J eN}, XX el (Qj) for all j, and thus

3

crj(nXX,q) =1/n, so ch(nx:{,q) =1, and nAX eL(q).

ii) Let X20, and AX e L(q) with N

{j eNlaj>0}. Let
q be such that qj >0 =3 sNo. The construction now

proceeds as in 1i).

(6) Let XeL(q), q=q. Then, since for all j, O'j(aj,X) §0'j(qj,X)
by 6, we have Zaj(c-lj ,X) = Zb'j(qj,x) =1,

(7) Let XeNML{(q). Then Xe¢ N L(Ke1) = N L,(ch),e1=(1,0,...,0)e6%n
: Az0 4y z0

contradicting (5) and (6). [ |
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Proof of Proposition 2

=)

)

-

Assume A <1, and that the Lj(') are similar wrt. (¢,X). Let

re n gj(qj,x) # 0. Then X €1%(q) =20'j(qj,X) =1, But

J

ref .(q.,X Sro. .(q.,X)X = .,- =-'x;
ref EJ(qJ ) @r o‘J(q:I ) T]j(qJ r) =r for all j

J

=7 ¢ X =3 (qj,E) = 1(q,r) .

3

But AX €4£%(q) for A <1 =1 « AX<r.X

Suppose the L

=’; M X# n(q,:‘).

j(') are not similar wrt some (q,X). Let r « AX = T(q,r)

(i.e., r supports £%(q) at XX €£%(q)). Since the Lj(') are not

similar, there exist X, €L

X, =M and r * X, =
i |

j(qj) for all j such that

J
r e [cj(qj,AX.)]lX with at least one strict

inequality, Summing then, Zr ° Xj =r +« X <r X Zc'j(qj,?\x)

:Zgj

(qj,x) >1 =2 AXfL(q). Since X€L%(q), then A<I, [ |

PROPOSITION A: There exists a solution to the aggregate cost-min problem.

Proof:

(1)

(i1)

If we impose the constraint ND = 0, we know that the

- - - _ %
solution is Nj = Qj/qj for j=1,2, with C¥ =N G + NoCy = Cg.

If we impose the constraint Na = NB = (0, the problem is

. D
n{qm N, [F + CD(Qa/ND,I /ND)]
D

FD >0 =C* »® ag Ny 2 ®, hence the optimal N <®, So
long as we make the standard assumption that there exists

some ED > 0 for which:
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lim N [F+Cy @ /Ny, 1/8)] >N [F°+c @ /N, 1/N)]
NDao

an optimal N; must exist. Further,

3¢ _
—3 = Q
N

D -
by the convexity of C, so N is unique.

2 D D D .,3
o C11 F 2Ly + Gyl >0

Now set NB = 0, so the problem is min ND[FD-+CD(qa,q6)]-FNa§&.
q_,9q :
o’ B

We break this possibility down further into two cases:
(a) Na = 0, Then the problem is just that of (ii) again,
and we have already seen that a solution of this form exists.
(b) Na > 0. Necessary and sufficient conditions for a
solution of this form to exist are that the system below

be satisfied:

D - -

P+ (a08g) = Ry = Agdg = 0 (A1)
2q..q) = X (A.2)
14929’ = Yy )
P(q ,q) = A (A.3)
2% B )
1= NDqB (A.4)
Q= Npg, + N aaa . (A.5)

(A.2) defines a function: 4, = ¢(qB). Using this and (A.3)
allows us to reduce the first three equations to just

P+ ¢2(8(d5) ,q,) - RyB(ag)

9

D

{
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(iv)
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Letting the LHS be C(qﬁ) /qB and using (A.2), yields:

g

Further, 6(0) = FD + CD(aa,O) - -Xac'ia = FD -
~ 2(.

Thus, so long as P> F*, since _é@_Q_ > 0 and _B___(é:_ >0, a
q5 an

* % %*
solution dq >0 to (A.6) exists. This gives ¢, = ¢(q5)’

* D * % * * % % %x)/-
Aﬁ = Cz(qa,qs) and then ND = l/qB, N, =@a-NDqua.

% &
If Q, -E-Nan this is a candidate solution, if not,

then it can be ignored.

This case with No.' = 0 is symmetric with (iii) above.
Proposition 4 in the text implies that one of the
solutions above must solve the overall problem. Thus,

the overall solution must exist.

Proof of Proposition 5

Consider a solution z* to the cost-min problem, for given (Qa’QB) >

yielding

L3 -k * [ e
C* Qg ) = Ny (E + € (q5000)) + N, + NG,

(A.7)

Then if we consider the new problem of producing (ma,XQB) for A > 0, the

- A %
system (5)-(11) is clearly satisfied by z, with Nj = mj, j=D,c,B, and

all other variables unchanged. This gives C*()nQa,lQB, ) = XC*(Qa,QB, °)

“from (A.7)
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Proof of Proposition 6

1)

A.

B.

(ii)

Suppose that FD s say, and that z is such that Na > 0. Then

]

(6) must be an equality. Since QB > 0, there are two possibilities
ND > 0. Then (8) and (9) are equalities and (5) becomes
o2, D - s = D o D D - P
[F4C7(q,50)-2 9 ] + (F-F") +¢ (qa,qB) = €(q,,0) - Aglg + Ay (a,m0)
D D D D - o
D .-
- €(3,0)
A seond-order Taylor expansion of CD(aa,O) around (qa,qﬁ) yields:
D,- _ D D - D
C(q,50) =¢C (qa,qs) +C (qa,qs)(qa ) - C, (qa,qﬁ)q‘3 +A
where A is a positive quadratic form, due to the convexity of CD(-).

Thus (5) equals (FD-Fa) - A<O0, and Nd > 0 cannot be part of the

" solution.

NB > 0. Then evaluating (5) at (ia,e) yields

D, D,- = = o, D, > - D o D, -
F +¢C (qa,e) - Kaqa - xse =F 4 C (qa,O) haqa + (F-F)+¢ (qa,e)

D .- -
-C (qa:o) - )\ﬁe

Expanding CD(aa,O) around (aa,e) yields:
D - D, - D, -
C (1,5,0) =C(q,s¢) - C,(q,.e)e + B
with B > 0 again, so (5) equals
D o = D, -
F-F) - B - e(iy - Gy @, 0e))
(12) then implies that for ¢ > 0 small enough, this is negative.

As noted in the text, if ND > 0, then for any qa,qB >0,

Ny (P 4e”(a,a,0] > N [F%cD(q_,0) + 7P + ¢’(0,q,)1
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Proof of Proposition 7

(i) Let FD, 5, FB be as hypothesized and consider the system:
P+ (q,:q5) - A, - Aglg =0
998! = %oe T s
D o

D =
Cy(4y298) = Mg
The argument from Proposition A shows that if FD > Fa,.
* * %

this system has an interior solution qa,qs,ks, Now define
N = 1/qs and Q, = qyfqy. Th lting 2% = (qsush s hgslNy
p = 14 and Qot = 95/9g- e resulting z¥% = (qa,qs, o B,ND,O,O)
then satisfies the FOC for the artificial cost-min problem with
the constraint NB = 0, and with Qoz = aa. Strict convexity implies
that these conditions are in fact sufficient, and that the solution
to the above system is unique. This defines aa(FD) .

Consider the above cost-min problem with NB=0, and Qa>6a.

Then the FOC are satisfied by the same values of all variables,

- * %
_ ro'Qg Q- Npdy >0

with the exception that Noz = = = ~ . Thus, Ma >D,
G LS
Suppose now that Qoz <6a’ and still Moc >D. Then we have that
A oA N
= 3 > ]
Qa ND o + Naqa with NOt 0. But then as above, solving the problem

for Q_ = Ea yields FOC which can be satisfied by the same values,

~  Q-VNpdy -

except that Na = > Na’ which contradicts our definition of

- q
(0
QOL'

(ii) The proof is symmetric, using the artificial cost-min problem

with the constraint N, = 0. R
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Proof of Proposition 8
Suppose that FD = Fa + Fﬁ. Then diseconomies of scope in production

imply that
D T D D D -
4 (qa,O) - laqa + Fﬁ+C (O,qB) - XBqB <F +C (qa,qB) - }\aqa— lﬁqB,

Consider now aa(Fa+FB) . This is defined by the system laid out in the
proof of Proposition 7 above, in which the RHS of the inequality above is
equal to O,

The definition of Ka implies that:

D - -
 +c (q,:0) - laqa z0,
so that

B, D
F-+C(0,d) - Agag

= = B
Therefore, AB > }sB when Qa = Qa(Fa"‘F ).

On the other hand, as FD = Fa, it is straightforward to show that

<o s+ CD(O,qB) - Ratge

-

in the solution to the above-mentioned system, qB*O. Then, since

D - -
¢ (qa,qB) = Ka, we must have q,~q,, and thus,

_ D D, =~ D - _ T
}‘B = Cz(qa’qﬁ) i cz(qa:o) < CZ(O’qB) = }‘B
from (12).

Thus, there exists some FD € ]Fa,Fa + FB[ such that }»B = )\B

in the above system,

A symmetric argument then yields the existence of some FD e] FB,Fa-l- FB[

such that
P + CD(qa,qﬁ) - .xan - Xaqa =0
C?(qa,qs) = -X-a
Cg(qa,qﬁ) = XB
Np = 1/qB

Qa = qa /qﬁo

[t}

\*
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Clearly, the (FD,GU) pairs which solve these two systems can differ
iff the (qa,qB) pairs do, But (qa,qs) are determined by the same two
equations in each system, and thus we have the existence of a 6a,fe ]-I;,Fa+Fﬂ[

satisfying both systems with

(B = (F =4,
We now show that z €S “FD ZF,
Let (FD,Qa) = (ﬁ,('fa) and consider the aggrepate cost-min problem, We

will show that its solution yields the same z* as in the two sub-problems

used to define Q (F) and Q (F).
The problem defining 60:( ) had the general form,

min C(2) s.t. g(z) =0 and N‘3 =0,
and that defining 9‘01( *) had the form,

min C(z) s.t. g(z) =0 and N&- =0
with the solution to both being the same 2%, Suppose now that in the actual
cost-min problem:

min C(2) s.t. g(z) =0
a different solution Z were to emerge, with C(g) <C(z*), Then it must be
that both ﬁa > 0 and ﬁB > 0, or else £ would have been the solution to the
first two problems, also.

However, this implies that in 2, we have Cllj(c'[a,c'fs) = Xa and

CzD(cfa,é‘B) = -}:5’ which in turn implies (é\a,é\ﬁ) = (q:;,q;;) . Thus, i\f
z # z*¥, it can only be because ﬁDq; + ﬁaaa = 50‘ = N;q; and

* - * %

NDqB + Nﬁqﬁ =1-= NDqB°



48

Noting that P + CD(qa,qﬁ) = C is the same in both solutions, this
yields:
A = * * N
C(z) =N C + (Nan - Nan)C /q + (NDqB - an)c /qB

~ —

NDC qa)s]+N(an +qﬁﬁ)

ND = C(z%)

Thus, z¥ solves the actual cost-min problem. Further, if one
solves the problem with the constraint ND = 0, the above shows that
the result, z—', is such that C(;) = C(z*), also. Thus, the solution can

be characterized by the system:

f + CD(qa:qB) X d. - A

C?(qa’qa) -
D -—
CB(qu’qﬁ) = B
=%,

= l\baa.

Clearly, changes in 605 have no effect on anything but Nd, while

i
lQ>—'I o
Q

>

increases in F only make the first expression strictly positive, leaving
2z €8S, This proves the (=) part of the claim, A

As to (=°)_ suppose that FD <F and z €S, for any Qa. The resulting
FOC would be the same as above, with (F,&O) replaced by (FD,Qa), and the =
in the first condition now a 2, But again, as FD increased to E‘,. the only
effect would be to make the first condition a strict inequality. But from

above, we know that this must be an equality when FD =F , for any Qa. |

(s
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Proof of Proposition 9
(i) Let FD € ]i‘-,fp[ be arbitrary, and suppose Qa(FD) >Q_a(FD). From

(13) however, we know that for some f‘D < FD, we have the reverse

inequality., This implies another intersection Qa(F.'D) = aa(f‘D) for
some P e ]f’D,FD[, which contradicts Proposition 8. The (=) parts
of (ii), (iii) and (iv) follow from Proposition 7. The (=) parts
then follow from the fact that (i) implies these possibilities are

exhaustive, and that z §S.

Proof of Proposition 10
xQ_(F)

We will show that —%LFD— < 0. Consider again the system defining

—-— D _ —
Qa(FI-)) . If we make use of the fact that C1 (qa,qB) = )‘o: for any FD,

D
11

obvious substitutions yields the system:

Ciq > 0 allows us to define q, = Q(qﬁ) . Using this, and making some

FD+CD(¢(qﬁ) »4g) - Tasb(qﬁ) - Cg(¢(qa) »4g)9 = 0 (A.8)
0 = N, 0(ag) (4.9)
1=1Nq, (A.10)
From (A.10) we have
%% M M N2

0= +q = =
NDBFD ParP o 95 5pP

Then from (A.9)

N N, EEE

o ?
—3 = %) T N, @
L A

¢(qE) aqé
- - ’

(A.8) then gives
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S _ 1
B W G M I

n

D ., D
Cre +Cyy

D T D D D D
But CI(¢(qB)’qB) = %x =0 = CII¢' + Cyy> S0 we have ¢' = - 012/011, and

% G® (30

'Nb(m qa) s S

o Cn _ Cqscu + 9,11 )
) - =- )
‘(Cm) . P €011 - (G1)
D 22

11
since the denominator is positive, by the strict convexity of CD, the
result follows from the first inequality of (14).

A gimilar proof works for 5;5 >0. n

Proof of Proposition 11
First, recall that a&(') (and thus the (Qa,FD) pairs for which M& ~ D)

are defined by (15)-(20). Also,

Q. D, -
_ F +C (q.,0) OA O\
M= T = ”FZ='J_='§P'Q£
4 OF g,
RQ

We will show that j;g >0,

Since @ is defined implicitly by c? (¢,qB) a, then

"”
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As before, we reduce the system to two equations, so

D + D _
FD +C - Au¢ - CZqB =0
Qa - ¢/qa =
Differentiating

D,- D - = ,-.D
[1 +6,/4,607 - 814, - A/98qq - 95 Cpq /3,E1 1B

+ 1D 9 4 ) - R g" - C) - ag(8Cy; + Cpp) ldgg = 0
— 0.9 -9
Q -—E—_ L )dq, =0
a” - D 2 B
%911 9

so:

O 1 - ¢/‘-1a - qsclzj1/°]1)1°-la

oP
B(CZZ - G /Cn
D
(4, + a €12
R, 1 Oy (1 - 945 21’“11 9y )
P - qz .
T8% B qs(c 2C11 - G )/Cn
D D
__1 (95C17 + 96%19) C - 913, - quzlcnqa)
- D 3
q.49,C q D D D
a'p1l B Cy2C1y = (G9)

Clearly, given the convexity of c® and (14), a sufficient condition

for this to be positive is that
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- D.,D -
1 - 9/9, - a5C1,/Cyy 4y <0
- D D D
® 9507 - 4 - 946Gy < 0. .

A second-order Taylor expansion gives

(1]

- D -
(@0 = € (a0 + €1 (2pg) iy~ 4
- q,Ch,(q,q.) +A
p“12 %9
where & > 0, if c? 3 Si CD(- 0) = A= CD( ), we have
s 1 1s convex, ince 1 qa, o 1 qa,qB s

D - D _
C11(dy - 9) = G5 = -4 <0.

The proof for Qa is symmetric, N

w
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