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1, INTRODUCTION

Several families of adaptive shrinkage estimators have been developed
for the estimation of coefficients in a linear regression model, and
conditions for their dominance over least squares according to the total
mean squared error (risk) criterion have been obtained; see, for example,
Judge et al (1980, Ch. 12), Judge and Bock (1978) and Vinod and Ullah -
(1981, Ch. 5). In a special case of the Stein-type shrinkage estimator,
Ullah (1974, 1982) has attempted to analyze its approximate marginal
sampling distribution analytically. However, no attempts have been made to
evaluate the sampling distribution of other adaptive shrinkage estimators
and especially of the t and F ratios which are of significant interest for
applied researchers. This paper is an attempt in these directions. We
have considered a general family of adaptive shrinkage estimators and have
derived Edgeworth-type asymptotic expansions in order to approximate the
exact multivariate as well as marginal sampling distributions. The asymptotic
expansions of the F ratio are also derived. Although all these expansions
are derived by assuming o (standard error of the disturbance) to be small,
the asymptotic results for large T are also given. It is shown that the
small-c approximation provides high order of accuracy to the exact sampling
distribution of the F ratio compared to the large-T approximation. This is a
new result and it is useful for getting the correct size of the test. Further, it
suggests the use of the small-o technique to derive the approximate distributions
of various test statistics in econometrics whose exact sampling distributions

are not known. Another interesting result in the paper is the examination



of the performance of shrinkage estimators with respect to the least
squares estimator according to a new criterion; viz., concentration of the
distribution around the true value. We find that the dominance

condition under the mean squared error criterion is robust against the
new criterion.

The plan of the paper is as follows. We present the family of
shrinkage estimators in Section 2 and its multivariate as well as marginal
distributions in 2.1. 1In 2.1 we also compare the performance of
the shrinkage estimators with the least squares estimator. Then in Section 2.2
we present the sampling distribution of the F ratio. In Section 3 a
numerical experiment is conducted to assess the accuracy of the small-o
approximation compared to the large-T approximation. Finally in Section 4

we present the proofs of the theorems given in Section 2.

2. THE MAIN RESULTS

Consider a linear regression model:

(2.1) y=XB+u

where y is a T.x 1 vector of T observations on the variables to be explained,
Xis a T X p full column rank matrix of T observations on p explanatory
variables, B is a p X 1 vector of regression coefficients and u is a T X 1
vector of disturbances assumed to follow a multivariate normal distribution
N(O,GZIT).

The least squares estimator of B is

(2.2) b= (x’x)'lx'y

which is unbiased and has a multivariate normal distribution N(e,az(x'x)'ﬁ.

(U]
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Now consider a general class of shrinkage estimators

» -1
(2.3) B = [I+ hA] "b,
where A is any known p X p positive definite matrix and the stochastic

scalar h is
(2.4) h=-5,§b—“;ﬁ=y-Xb=MuandM=I-X(X'x)-lx'.

In (2.4), k is a positive constant and B is a known positive definite
matrix.
When A = Ip and B = X'X, B becomes the Stein-type Ullah and Ullah

(1978) estimator

o Al A
@2.5) b=[l- L P
b’ X' xb + ki'4
Also for A = (xfx)'l, é is an adaptive ridge-type estimator. Various other

Bayesian and non-Bayesian adaptive shrinkage estimators can also be shown
as special cases of (2.3); for details, see Judge and Bock (1978), Judge

et al (1980) and Vinod and Ullah (198L, Ch. 13). The mean squared error pro-
perties of é under normal and non-normal disturbances have been analyzed

in Ullah et al (1983).

We analyze here the small-o approximation for the distribution of E
and the F ratio given in (2.26). These results are asymptotic in nature and
require o to be small; see Kadane (1971). Nagar (1959) type large-T
asymptotic approximations are easily derived from the small-o asymptotic ex-
pressions. The results have been derived here using the small-o approach
for three reasons. First, it is simpler to develop the asymptotic expansion
of a general class of estimators, like é, using this approach: large-T

expansions would require assumptions about the nature of k and the matrices
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A and B as T grows large. Secondly, Srivastava et al (1980) and Ullah (1980)
have shown, for different estimators, that the small-o approach gives

better approximations to the exact moments than does the large-T approach.
Section 3 shows that this is also true for the small-c approximation of the
exact distribution of a test statistic. Thirdly, we note that while in
small-c approximations the sample size T is fixed, the large-T approximations
make sense only for sufficiently large T. It may be more typical for re-
searchers to have small samples of data from populations with small error

variances, in which case small-o results are more useful.

2.1 The Approximate Distribution Functions of 5 and éi

Before presenting the results we define the estimation error of the

a
vector B and its ith element 51, respectively, as

=L rx =L o L.
(2.6)  x =2(B-p) and v'x == ' (B-p) =2(B,-B;)
where ¢ is a p X 1 vector with 1 at the ith place and O elsewhere. We also

introduce the following notations:

2

© =p'B8, q° =2, q-= «xt

2.7)

Nil—'

n=7T-p, m, = Q m.o

where m, is a p X 1 vector of fixed constants.

THEOREM 1: The small-c asymptotic expansion (for fixed T) of the multivariate

.

distribution function of |x|, up to order 0(02), is
2 1 1
o kn 2 2

(2.8) p[lx} = mO] = G(m,)-G(-m,) +'-;§-[G(m*)‘G('m*)] tr(CQ I Q)

where G(m*) represents the standard multivariate normal distribution £unction,
I'is a p X p diagonal matrix with jth (j=l,...,p) diagonal element as
ij*g(mj*)/(G(mj*) - G(-mj*)); g(mj*) represents thé standard univariate

normal density function, and
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2.9) ¢ = eq'lA - 2Q'1Ass’3 - %’-(n-PZ)k Q'lAse'AQ'l

Proof: The proof is given in Section 4.

Remark: The |x| < @ in (2.8) is equivalent to -m <x < m . Thus
P[|x| < mol = P[-m.0 <x = mb]. The statement of the theorem in this form is useful
for deriving the result in (2.13).2 Also, the term (G(m*)-G(-m*)) on the right-
hand side of (2.8) is P[-m* < (b=B) /o = m*]; that is, it is the probability
for the least squares case. The second term is, to order 0(62), the extent
to which the probability of é is pulled away from that of b.

A comparison of b and B can be made with respect to the concentration
of probability around B. For this purpose we consider the standardized
multivariate distribution functions of b and B and assume for the sake of
simplicity that all the elements of m  are identical to a scalar m.

It is easy to see that
L
(2.10) P[Q 2 -Q";@ s m = G(m)

1

and so P[-m <Q 2(b-ﬁ)/cr < m] = G(m) - G(-m), where G(m) is the standard

multivariate normal distribution function. Similarly, from (2.8) and (2.9)

1
= 2
(2.11) P[-m < Q 21%92 < m] = G(m)-G(-m) + °—el-2°“—“[9trA-26' BAB - -;-(n+2)kﬁ'AQ Lagpl

X (G(m) - G(-m)),

where

_ 2mg (m)
(2.12) v T T

We can now present the following result.

COROLIARY 1: Under the criterion of concentration of probability around B the

shrinkage estimators Edominates the least squares estimator b, that is,
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2, "2
(2.13) Pl-m <§ (B-B) < m] - P[-m <:°T- (b-B) <m] >0,

when

@.14) 0<k<=2 A b (d-2), d=p1 trA>2,

nt2
max

where A min and Boay 8re the minimum and maximum characteristic roots of

B(A.X' XA)-]' and A, respectively.

Proof: Using (2.10) and (2.11), and noting from Rao (1973, p., 74) that for any
.twomatrices A and B, min(B ‘AB/'BB) .is the minimum root of |A-AB| = 0, the
P

result in Corollary 1 follows. Q.E.D,

The result in (2.14) provides the dominance condition for the shrinkage
estimators é under a new criterion. It is interesting to observe that this
condition of dominance is the same as the dominance condition in Ullah et al
(1983, p. 394) under the weighted mean squared error criterion
E(ﬁf‘ﬁ)’Q-l(é'B) - E(b-)’ Q-l(b-B) where Q':l =X X . .Note that the condition

(2.14) is independent of the parameters of the model,

In the special case of the Stein-type estimator b in (2.5) for which

A= Ip and B = X'X the condition in (2.14) reduces to

' 2

The results for other special cases of shrinkage estimators can be written
similarly with appropriate substitutions of A and B. -

Now we consider the distribution of individual elements of ﬁ.

.THEOREM 2: The small-g asymptotic expansion (for fixed T) of the

digtribution function of ¢’x, up_to order .0(0'2), is



m m it
@.16)  Rle'x <ml =6()) + (8, + 7 &8 )

where g(m/q) and G(m/q) represent the standard univariate normal density function

and distribution function, respectively, m is a scalar constant,

2,9
_ gkn Pkl

q

and

(2.18) q = ok [%{k(n—l-Z)ABB’A + 4ABB'BQ} - AQ)z .

Proof: The proof is given in Section 4.
Remark: An alternative representation of the distribution function of

Jx = L'(B—B)/o which is correct up to the order of approximation considered

above is

(2.19) P[¢'x < m] = G(E  + §(§1+1)).

This expression can be evaluated by using .the standard normal table,” For the

special cases of é, the distribution of ¢’x can be written immediately from
(2.16)." We also note that the P[-m < ¢'x < m] = P[z"x Sm] - P[¢/x < -m]

coincides with the result in (2.8) when p = 1.

COROLIARY 2: Under the criterion of concentration of probability around

(4 . . ” .
v B the shrinkage estimators ¢ dominates the least squares egtimator

¢’b, that is,

? D I
2.20) Pl-m < ZXEB) < o7 . pop < EB2B) o g 5 o,
g o

when

2 A’ B(X' X)L A x) L8
(2.21) 0 <k <=2 @ (0.-2); - LABS BQ , @ = 25 ,.
a2z AP o] v ARE A 2" asd BX 1) L

Proof: From (2.16) we note that

A ’ ‘
p[-m<u';t§)-<m] - P[-m<£-%_-ﬁl<m] =2';3§1 8(?):



where EI is given in (2.17)., The result in (2.21) then follows by observing
the condition under which §] is positive, Q.E.D,
The condition in (2.21) implies that, under the criterion considered,
the single element of the shrinkage estimator 5 cannot dominate the single -
element of the least squares estimator b in the entire parameter space.,

When the matrices A and B are such that A = (X 'X) -1B=A', the condition

in (2.21) reduces to

¥4 /7
, (B2 _) (8" BB) )
(2.22) 0<k<;(pr2); @ =252, 1 = &) L.
(<! B)

We note, using the Cauchy-Schwartz inequality [Rao (1973, p. 54], that @, =1,

This implies that for some part of the parameter space P the condition ¢k >2

can be satisfied.
For the special cases of 5 the conditions of dominance follow by

appropriate substitution of A and B. For example, in the case of the Stein-

type estimator b in (2.5) we substitute B = XX in (2.22). -
To obtain the large-T approximation we first consider k to be any

arbitrary constant such that the 1lim(T k) is a constant; thus k is of order
. oo

O(T-l). Next we observe that for the different cases of B the orders of the
matrices A and B are different. For example, for the Lawless and Wang

(1976) adaptive ridge estimator A = (X'X)-1 and B = X X; that is, the orders
of A and B are O(T-l) and O(T), respectively. Similarly, for the Stein-

type estimator b in (2.5) the orders of A = Ip and B = X' X are O(To) and O0(T),
respectively. Below we present the result for b. The distribution of various
other shrinkage estimators can be written similarly by appropriate substitutes

of the matrices A and B. -
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COROLIARY 3: The large-T asymptotic expansion of the distribution function of
L’(b-B)/G, up to order O(T-l), is given by

1,
(2.23) 19[ﬁ#d'l’-éz Sml= G(—=-) + (% + ;" £e )
VIa L JTq

where £¥ = 2/ B(okT/0q) is of order O(T °) and

2 1 2
(2.24) & =- "e‘%[“‘T TRED . 2wl
q

is of order O(T-l).

Proof: Noting that k is of order O(T-l), and A =TI and B = X' X are of orders

O(TO) and O(T), respectively, the result in (2.23) follows.4 Q.E.D,

2.2 Approximate Null Distributions of F Ratio

Consider the problem of testing Hb:B = Bo against H1:B # Bo in

model (2.1). The least squares test statistic for this hypothesis iss

_n (b-p) ‘¥'x (b-B) _
(2.25) F = o Fyon *

The F in (2.25) follows the central F distribution with p and n degrees

of freedom under the null hypothesis. Note that when p=1 the F becomes the

square of a t-ratio.
The improved F is obtained by using B in place of b in (2.25); that 186

(2.26) F, == (B-B) X' X(-8)
) B P YRS .

uu
In what follows we present the small-oc and large-T asymptotic expansions of

Fa.
B

THEOREM 3: The small-c asymptotic expangion (for fixed T) of the distribution

of FB’ up to order 0(02), is given by

.27) PlpFas<ml =G@F )+ I £ T, 46G F
(2.27)  RlpFg sml =G F, )+ P 07 s %av 2l Cpr2s,mis

')
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nr nr
C— = — <
where G(w Fr ,w) P[W Fr m] , for any r and w, represents the distribution

H

of central F with the r and w degrees of freedom, and n—l,l = “o,l = L1,2 =

=T5‘,3 =T]o,4='nl,4 =0, ) )

2 2 2

= . T ka(nt2) - 25 =7 . n=0 kK n(ni2) (nt+4 .
.2 M= _e‘(;#?z%“r"‘ 0 BABL, My 5 =M= 45 M= 502 %’Ax'w
2.28

=-ML n = - T' 'n .-.-M ‘n =;Ml

W2 = (py’ 1,3 T3 =@ptd) ° -1,4 = Cotpth)

1 4

such that l,i-l .G'Z=1 'ﬂz"e, = 0.

Proof: The proof is given in Section 4.

The results.for the special cases of shrinkage estimators é can be
written from (2.27) by appropriate substitutions of the matrices A and B.
Also, the large-T asymptotic expansions can be obtained easily. We present
below the results for Stein-type estimator I; in (2.5) for which A = Ip and -

B = X' X. These results have been numerically evaluated in Section 3.

COROLIARY 4: The small-c asymptotic expansion, up to order 0(0'2), and the

large-T asymptotic expansion, up to order O(T'l), of the distribution of Fl‘; s

are respectively given by

1 4

_ * n(p+24
(2.29)  PlpFg < ml =GGeE, )+ = £?=1“z,z'c<3£%?¢) For2a,mi24)

and
2.30 P[pF» < m] =G 2)+; G(2 )

2
where 'ﬂ: P is Tl'e P in (2.28) with A = I and B = X' x, G()Li) = P[Xr <m] is
b b

the distribution of central x2 with r degrees of freedom, and

.

2 21272 2 1

o kT 3 _ k - _ O kT, 1
(2.31) p =g lp-2+FKIl, by =-"F > ¥ =-"g [p-2+7 k]

1
such that X pz = 0,
4=-1
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Proof: The result in (2.29) follows by direct substitution of A = I and
B = XX in (2.27) and (2.28). Further, the result in (2.30) is obtained by
observing that A = 0(T’) and B = O(T), and noting the fact that the distri-

I tends to xz as T = <,

bution of (p + 24)F P24

p+24,n+2

Remark: We observe from (2.29) (also (2,27)) that while the small-c expansion
of the distribution of Fﬁ is the weighted sum of the central F distributions,

from (2.30) the large-T expansion is the weighted sum of central XZ

distributions.7 The sum of the weights in each case is unity. The

numerical experiment in the following section shows that the small-c ex-
parsion provides high order accuracy compared to large-T expansion for
approximating the exact distribution of Fﬁ‘ This result suggests the use
of small-c approximation in terms of central F distributions for the

various other test statistics used in econometrics whose exact sampling

distributions are not known.

3. NUMERICAL RESULTS

Of all the expansions derived above the most useful for applied work
are those dealing with the F ratio; equations (2.27), (2.29) and (2.30),
since they are what would be used to build confidence intervals for, or
test hypotheses about, linear combinations of regression coefficients. The
aim of this section is to use numerical methods to compare the accuracy
of the small-c and large-T approximations to the exact distribution function
(df) for these improved F ratios. Since this exact df is unknown, the
approximate df's are numerically compared to an empirical df obtained

by Monte Carlo simulation.
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For the model given in (2.1), assume that the focus of interest is
Hozﬁ = Bo. The least square test statistic for this hypothesis is as given
in (2.25). The improved F ratio is obtained by using é in place of b and

it is as given in (2.26).

[t}

In this section the version of B considered is B, given by (2.5).

This is a special case of the double k-class estimator of Ullah and Ullah (1978).

k]ﬁ"’“

I;(k] k) = [1 - - lbs
y y-kzu u
obtained by setting k] = k and k2 = 1-k1. Another member of this class is
the James-Stein (1961) estimator for which k2 = 1,0, The disadvantage of
the James-Stein estimator is that it can have the opposite sign to the least
squares estimator. This change of sign can be prevented by choosing k2
kd'd R
so that the shrinkage factor 1 - - . is positive, It is easily shown
y y-kzu u

that a sufficient condition for this is k2 £ 1~k]. Note that Q in (2.5)
satisfies this sufficient condition but the James-Stein estimator does not.
We prefer this solution to the sign change problem, over those suggested
by Baranchik (1964) and Stein (1966), on the grounds that its constant
form over repeated samples makes its small sample properties easier to
discover,

Since the ratio F,. will be used to form a confidence region for B,
we wish to set the valui of k1 = k s0 as to minimize the expectation of
(é\-B) % 'X(lg-B) and hence minimize the radius of the confidence region. The
results of Ullah and Ullah can be used to show that, to order 04, the value
which does this is k1 =k = (p-2)/(nj2): See also Corollary 1 to Theorem 1 above.

In order to numerically evaluate the small-o and large-T approximations,

as well as to do the simulation, the value of T was set to 36 and p was
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set to 10, implying n = 26 and k = k1 = ,2857., The approximations also

involve the ratio of two population parameters

2 2
G Y ¥ IV

Now if we define the population goodness-of-fit to be

. BX%B
LG = EAE
BXXB + Tco

. . . 2
then we can write this ratio in terms of p as

= 1-0"
(3.3) Y, T .

This is more convenient than the original form because one typically has
a more intuitive understanding of what are "large" or "small" values of p2
than of 02 and because this form involves only one unknown parameter instead
of two. For the computations discussed here p2 was set to .70 so that
Y, = .0083.,

The X matrix used in the Monte Carlo simulation was derived from a
set of 36 observations on 10 regressors which was originally published by
Daniel and Wood (1971) and has been used in simulations by Hoerl, Kennard
and Baldwin (1975) and Lawless and Wang (1976) . Each regressor was first
standardized to have zero mean and unit variance so that the 10 slope
coefficients could be estimated independently of the intercept. Finally
the set of regressors was transformed so that XX was a diagonal matrix
with the following eigenvalues on the main diagonal: .07402, .1479, .2318,
.3605, .6571, .9446, 1,051, 1.300, 1.550, 3,686, This transformation
simplifies computation but has no effect on F or F_ or any aspect of their
sampling distributions. The ratio of the largest zigenvalue to the smallest

is 49.8 which indicates a nontrivial degree of multicollinearity among

the regressors,
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The ten items in the vector B, after the diagonalizing transformation,
were each set equal to 1.0. This implies that 02 = YOB‘X'XB = 119,

For these parameter values the expectation of the numerator of F is

(3.4)  EL(b-B) K'XK(b-B)] = op = 1.19.

The results of Carter (198l) can be used to find the expectation of the

numerator of F,, to order 08,

(3.5) E[(B-B) X' X(§-B)] = 1.11.

The generation of random disturbances proceeded in several stages.
First the IMSL (1979) subroutine GGUW was used to generate a pair of pseudo-

random numbers, €1 and 62, from a uniform (0,1) distribution., If 81

and €, are such that (281-1)2 + (2€2-1)2 2 1,0 they are rejected and another

pair drawn. If 6:.l and 62 pass this test they are used to construct
1

“24nl(2e, -1+ 2, - n21]2

(3.6) €= - .
(26, -1+ (26, -1

which is then used to find

_ 2
(3.7 Te = Q(Zal-l)
(3.8) 7y = L6, -1)7
L] t+] 2 *
The pair Te and T, ,; are pseudo-random drawings from N(0,1). This was repeated

for t=1,3,5,...,35 to obtain a vector of T of 36 pseudo-random drawings
from N(0,1). Then u = oT and a sample y, of length 36, is obtained from
y = XB+u, The procedure was repeated, using the same X, to obtain 2500
samples, each of size 36, which led to 2500 values of F and Fé .

The cumulative frequency distribution was obtained for both F and F.

B
at intervals of 1%. A few selected points from these cumulative distributions
are given in Table 3.1 together with points from the df for the F distribution

with 10 and 26 degrees of freedom.
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TABLE 3,1

Selected Pointg for Cumulative Distributions

Cumulative Estimated Raw Adjusted
Frequency or f Sampling F. F,
Probability 10,26 F Error =) B
.50 .958721 .935374 -.023347 .874836 .898183
75 1.365645 1.355979 -.009666 1.264360 1.274026
.90 1.855028 1.863848 -.008820 1.736350 1.727530
.95 2.219718 2.258913 -.039195 2,0707M 2,031576
.99 3.094108 3.180216 .086108 2,987363 2,901255
TABLE 3.2

Right Tail Pointgs: Approximate and Simulated Distributiong

Cumulative Probability

F-value Simulated Small-o Large-T F10,26

1.7275 .9000 .9024 9753 8726
1.7863 .9100 .9138 .9823 .8861
1.8462 .9200 .9239 .9879 .8983
1.9155 .9300 29341 .9927 9109
1.9664 .9400 9407 .9953 9191
2.0316 .9500 .9482 .9978 .9285
2,1753 .9600 9614 1.,0001 9456
2.,3418 .9700 9724 1.002 .9603
2.5521 .9800 .9818 1,002 .9732

2,9013 .9900 .9907 1.001 .9859
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The set of F ratios is a pseudo-random sample of size 2500 from F10,26'
Therefore, the difference between an 530,26 point and an F point in Table 3.1,
or the more complete set from which Table 3.1 was drawn, is an estimate of
the sampling error inherent in the Monte Carlo simulation. That estimated
sampling error was subtracted from each raw F, point (colum 5 of Table 3.1)
to obtain adjusted F. points (column 6 of Tabﬁe 3.1) which we believe are
very nearly equal to the exact F, points, Both the small-c and large-T
approximations were evaluated atBeach of the 100 adjusted F. points.

The four cumulative distributions obtained in this way are plotted
in Figure 3,1. The first conclusion to be drawn from this figure is that
the small-c approximate df is nearly identical to the simulated df while
the large-T approximate df is noticeably different from the simulated df.
This is true even in the right tails of the distributions which are of
most interest for inference. Table 3.2 shows this in more detail, This
comparison is strictly true for only the simulated distribution. However,
we believe that the use of F as a control variate together with the large
number of replications makes it true in general.

These results imply that inference should be based on the small-c
approximation., Using the large-T approximation would give a nominal level.
of confidence which was larger than the true leveli that is, the nominal
level of significance would be smaller than the true level., Using F10,26
as an approximation (i.e. ignoring terms in the approximations beyond the
first) would give a nominal level of confidence lower than the true level:

that is, the nominal level of significance would be higher than the true

level.
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Fig}_lre 3.1
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Although the small-c approximate df is extremely close to the
simulated (and, we believe, the exact) df, it is not an operational

basis for inference because it depends upon the unknown parameter

i

Y, = (1-p2)/T. Fortunately, the range of Y, is known because the range of

pz is known, that is, 0 < p2 <1 so that 0 < Y, < 1/T, At one extreme, as

the population goodness-of-fit becomes closer to 1.0, é grows closer to b

so the df of Fé gets closer to Fp,n' For example, the df of F10,26 in

Figure 3.1 is as far down and right as the approximate (and exact) df can

shift, As p2 grows smaller, making‘yo larger, the approximate (and exact)

df shifts up and left. To illustrate this behavior the small-c approximate

df is plotted in Figure 3.2 for values of p2 of .1 to ,9 in increments of

1. The furthest left curve corresponds to p2 = ,1, the furthest right to

p2 = ,9. The curves in Figure 3.2 show rather small variation as p2 changes,

given T and p. Some more detail from the right tails is shown in Table 3.3,
Empirical researchers may have precise prior beliefs about the value >

of pz. In the absence of such priors a good rule of thumb seems to be to

set Yo to the middle of its range, 1/2T; that is, set p2 = 5, The results

shown in Figure 3.2 and Table 3.3 suggest that employing such a rule would

yield nominal confidence (or significance) levels close to the true levels

so long as the nominal confidence level was high,
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Figure 3.2
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TABLE 3,3

Approximate Right Tail Cumulative Probabilitieg for Various 92 Valueg

pz Values
F-Values ol o2 3 N o .6 o7 8 9
1,61 943 932 920 ,909 .897 .88 .874 .863  .851
1.91 980 972,965 ,957 949  ,941 ,933 ,926 .918
2,04 .988  .982 975 ,967 ,962 .956 ,949 ,943 .936
2,12 991 986 .980 ,97%  ,968 ,963 ,957 .951  .946
2,34 997 993  ,988 ,984 ,980 .976 .972 .968 .964

2.7 1.000 ,998 ,995 ,993 991 989  ,987 984 982
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4, DERIVATION OF RESULTS

In this section we provide proofs of the results in Section 2.

4.1 Proof of Theorem 1

Let us rewrite the model (2.1) as

4.1 y =XB +ov [u = ov]

so that v follows a multivariate normal distribution N(O,IT) and as o
approaches 0, the disturbance term tends to be small,

Now for the derivation of the result in Theorem 1 we first substitute
(4,1) and (2.2) in (2.4) and note that h = czkv'Mv/b Bb is at least of
order 0-2. Thus, for sufficiently small ¢ in Kadane's (1971) sense, using

(2.2) we can write (2.3) as

(4.2) B=(+bA) b=(I-nhh+niadp+.,..
or
2 - o =11 ton =117 2,2 to=1,1¢
(4.3) B-B=0XX) Xv-bAB+o(XK) XVI+h A [B+c(XX) XV] + ....
where
(4.4) h = 2k l.:M_V n +2¢ ﬁ'BQ('X)-IX'v + 0_2 V'XQX'XQ-IBQX'X2-1X'\_[]-]
. 7% B8R B BB B 'BP .
Define
(4.5) s=vMy, z = (X'X)"1 /zx'v = Q'l /2X .

Notice that z follows a multivariate normal distribution N(O,Ip) and s has
a central xz-distribution with n degrees of freedom. Further, they are

stochastically independent.



22

Expanding the expression in square brackets on the right-hand side

of (4.4), we can express the estimation error in (4.3) up to order 0(03),

as
~ 2 3
(4.6) 5-B—cre] +a'e, +07e,
where
_A1/2 _ ks _ ks _ 2 . a1/2
(4.7) e.I—Q Z,ez"'eAB’e3-"eDzs D‘(A'QAﬁBB)Q

and 8 = BBB is as given in (2.7).

Thus, up to order 0(0‘2) ,

(4.8) x = %_'(é-ﬁ) = e, +oe, + 0'2e3

and its characteristic function is

L
(4.9)  ¥t) = E['t *] )
e
it (e] +ce2+0' e3)

=EE [e ]
sz ks .+
- E [e—m e tABE (eiélzl)]
s z s
where
7 1n1/2 o*zks
(4.10) 6°=¢t"[Q -9 D].
It is easy to see that
¢ ¢
i - 6
%.11) Ez(e15 zls) = e 1/26

2
1
- %(t-'Qt - E-e-ﬁ t DQ /zt)

= e
- L4 2
e 2 (1 + g_elc_g t'DQl/Zt]

2
up to order 0(02) . Substituting (4.11) in (4.9) we get, up to order 0(c ),
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1 1 ¢
2 .22 2 ks -2tQt

42) ¥ =E[( - oi K els - T EE D+ of B e ]
:

o—

-Life

=e? N -ci¥ep+dt ’:‘% £ ‘{80Q% - L2y wapp ‘Ale ],
Next, using the Inversion Theorem, the multivariate density function

of x to order 0(0'2) is

- . ?
(4.13) g () = v [ e T y(p)at

emP -=
= g(x) [1-o .ISGA x'Q-IAB + c.r2 %E {6trA-2p'BAB

1 | tan=]1 -1 y; 1 -1 |
- §(n+2)k5 AQ AR - x°(8Q "A-2Q "ABB'B - ‘2‘(n+2)k.Q ABB ‘A )x}]

where we have utilized the following results:

1 1_4-1
1 ® @ -1tx-§t'Qt e-sz X
E— f...‘re dt = g(x) = 1
(21T)p _® ™) g 7
emle|
Lo L, ok -1 '
(4.14) > J... [8te at = -i8 Q" 'x g(x)
@mP -= -=
"
1 © @ -it x-5t Qt
L .. thee 2 at = [ex 0 Q7 - 207D 0 xlg(x)

@2mP o e

for any fixed vector 50 and fixed matrix D .

Finally, noting that for any fixed vector 6] and the matrix D,

* *
"p
(4.15) f* cee f* x’élg(x)dx =0
-n"] -mp
and
) moom 11
P )
a6y [, ... f xDxe(x)ax = (6(¥) - 6(-w¥)) [tr D)Q - £r Q° D,QT] -
-ml _m*

P
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N =

we get P[-m <x<m ] as stated in Theorem 1 (m, =Q "m).
o o o

4,2 Proof of Theorem 2

From (4.7) and (4.8)

Gan 'x= }:L:(ﬁ_ﬁ) =6 z-0 K8 o

where

-1 L .
r_ 002 2 ks 2,42 2 20n Ton2
418 6y =R -0t G0 Tat -G e,

o—
omad

1 1

. . . .
Now the characteristic function of z 'x is

Y4
4.9  ¥t) = E[IEP P
¢
it(éz'z -c Q%'éé)

25, o R

[}

F 4
-it(o k—S;—Aé) it(ﬁz'z)
E

=E [e e ]
s z s
It is easy to see that
1 .0, .2
1t(8,2) _m7 05t
(4.20) Ez{e ls} = e .

2
But, up to order 0(c )

4.21) 86, = 20z - 20" KE {200 - £ 2 'agp m01).

Thus putting (4.21) in (4.20), and then substituting (4.20) in (4.19)

along with
7
ks
-1t (ks AB, ' 2 e 2
(4.22) e ° =1 - git Ls-z'—eéé - 0'2 %‘(L&G—AQ)

we find, up to order 0(0‘2)
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-5t kst ‘A8 2132 (2 ap)y 2
(4.23) ¥(t) = e Es[1 -oit =8 5 - o> 2
2
2 t2k ? 2 ¢ 2
5z 'Mz -5 2'Asp BQ2}]
- t2 2

= 7 2
= e 2 [1-o itkrew AR _ 0_2 t ekg{kgg-;ZQ(LlAB)Z

+% 2 'agp ‘Bz - 2 'MQ2}]

where q2 =29z as given in (2.7).

. . . :
Next, using the Inversion Theorem, the density function of z x

to order 0(0‘2) is

-] . 7
(4.28) g (2B =5= [ e 1Y Fy(eyat
- R

5=

-

Q=

¢ ‘
g(_&__:g) [1-0 kg&eéﬁ kiz + 0'2 kn {kgn;ﬂz (L’AB)Z
q q 6 2 2

.2
+2 28502 - 2 M2} ;‘) -11

q
where we have utilized the following results:
2 2
;0 -—ﬂ—tz -ite'x 1 ot
(4.25) -2-1—1‘{; e at =g 8("'(1“')
2 2
1 2 % z
=] e ar = L 522
(-] 2 q q
15 ,..2 %L‘ ita"‘
z
2 [ an? e -y Loy,
© q q q

Finally, noting that the distribution function P['x < m]

f 8,( ‘®)dz ‘x, we get the result in Theorem 2.
-0
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4,3 Proof of Theorem 3
Let us write by using (4.6) and (4.7)

(4.26) (B-B) W(B-s) We.l + 203e1We2 + o (e2We2 + 2e1 We3),

up to order 0(0'4) » where W is any positive definite matrix and
1

e.l'We1 =z 'szzz, e]IWe2 = - ‘lsé& B ’Amzz
(4.27) - 11 1 1
; _k's Y _ ks 12 ___
eZWe2 = 92 e1We3 = -3 zQ WAQ (I Q BB BQ )z,

Substituting (4.27) in (4.26) and dividing both sides of (4.26) by o%s

we can write the improved F ratio in (2.26) as

Bo -0 (BB)YWE-B) _ / 2 4
(4.28) n FB = FB = 0'25 2 Pz + 0632 + 0"sp'P,p

where

1=
-I
l—l

1 1
2.2 2 -3

jm =38y - - Zoue’n - §o e’

(4.29) 2 1
_k_ ’ 2k L 4,02
Pz—ezAWA,GB—-eBAm .

Now the characteristic function of Fg is
g
ith\ it(z 'P1z + 0'6:;2 + crzsﬁ ’Pzﬁ
(4.30) o(t) = Ee EsEz[e

8

2 ¢ ¢ ?
ito"sB p,B it(z P,z + 08.2)
= Es[e 2 Ez{e 1 3 | 31.

Using (4.29), it is easy to see that up to order 0(0‘2)

“
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2
it(z Pz + 0b2) -'5 - §- o2 84(I -21:;?1)"5
(4.31)  Efe |} = 11, -21e2; | P
.1 5
_ 2 . 2 -1 t” ¢ -1
= ]3| ° 0 +itc’tr IR, -5 0 an 5,1,

where

(4.32) Jy = Ip - 2it Hy,
1

and we use the result that for any square matrix A, [I-Al 2 ~ 1 +';‘ trA, Also,
2
up to order 0(c")

itcrsz 'Pzﬁ 2 .
(4.33) e =1 + ito"sB PB.

Thus, substituting (4.31) and (4.32) in (4.30) we get, up to order

O(crz),
1 )
_ 2 2 L2 -1 to 2
(4.34) ¢(t) = E_[(1+itc"sB szs)].:]l (1 +ito” tr JH) -5 0" 8] J 63)]
L _l 2 1_
2 L2 2 -1
=ES(]J1| ) +ite trHZES(lJII 3] )- T 5 E (|3, | 2 38,
1
L2, _7
+ ito B Pzﬁ Es(s[J]l )
1 p
2 _ 2it, "2

Considering W = XX in (4.28), we note that ESIJ]I = ES('I - 55 )
= ¢(F; n,t:); that is the characteristic function of a central ﬁ F=F° ratio
’

with the p and n degrees of freedom, see Phillips (1982, p. 262)., Similarly,
1

- _{pt2)
it can easily bé verified that Es(fJ] | 2J]-I) = Es[(l - 2%) 2 ]Ip
{pt2) L b}
2it, 0 2 _ 87| 2.5 S 2it, "2
where E_(1 - =) ¢(Fp+2 ,t). Also, E IJ | “=E 5 Q-5

¢(F +2,t) Using these results in (4.34) we can write
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2
(4.35) o(t) = ¢(F ,t) + itcr (trH ) o(F° t) - (— o 5 63¢(F st)

P#2,n rt2,n

+ 16’ n (8 BP0 ) .0).

Now, using the Inversion Theorem, the density function of the F ratio

in (4.28), with W = X'X, can be written after simplification as

436 5, = 8(Ep )+ Me ) -8(F, o1+ [5G, )

2N

- By 1t (n+2)[(2"'1) (Foia, M)+(2+3)3(F 2,048

- 28+ 282 L)

where 1, 1]1,1 and 'nl 9 are as given in (2.28). In obtaining the result in
>

(4.36) we used the following results (for any positive scalar Fo):

r@ER 1) o2

1 " -itF
- ,t)dt = 3(F ) = —
£ ¢( p,n p,n r(%,'_l)r(g.) a+ FO)(p+2+n)/2

® o
1tF 5 = {o#2) (n#4) ° - g(F°
= [ ite B, ne2°tME =5ty B, 1) 8(F 5 nte)]

-0

® 2
@31y L [ 1eettFB0E,, o) = sy (B, ) - @D )]
® o
T ) e 0007, et = S ey | 3 G BTy )

- 8(F) 46)) - GG L0

- 8(F) ) el
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Finally, noting that the distribution function of FE is
0 0,.,.0 o
P[Fa = m] = Fa)dFa, and observing that P(nF, < = P(pF, <
(Fy < m] ]Ogo( 8) 80 ng (nFg < m) (PB m)

we get the result stated in Theorem 3.
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FOOTNOTES

]This paper is prepared for the special issue of the Journal of
Econometrics on Shrinkage and Pre-test Estimators. The research supports
to A, Ullah from the NSERC and Air Force Office of Scientific Research
at the Center for Multivariate Analysis, University of Pittsburgh, and
to R, Carter from SSHRCC, are gratefully acknowledged., The authors are
thankful to D, E. A, Giles for helpful discussions and T. Peters for

research assistance.

2The multivariate density function of x = (é-ﬁ) /o is given in (4.13).
Using this, one can easily verify that Eé and E(ﬁ-ﬁ) % 'X(é-B) are identical
with the corresponding results in Ullah et al (1983) for the normal case.
Another point to be noted is that when A in (2.3) is not a symmetric matrix,
the results stated in Theorems 1 to 3 remain the same with B'A replaced
by B'A'. Since in almost all the shrinkage estimators known in the literature

A ig a symmetric matrix we have presented here results for this case only.

3Given the distribution of ¢'x in (2.10) the density function of 2 'x
can be obtained (also see (4.24)). Using this density one can also verify

the results indicated in footnote 2.
“T'he result in (2.23) compares with that in Ullah (1982).

SThe result in this section easily extends to the case of testing linear
restrictions RB=r, where R is an mX p matrix and r is an mX 1 vector of known
constants. This is because we can write RB=r as RB=RBo or R(B-ﬁo) =0,

Ala

where Bo igs a fixed vector, and hence the F statistic as (b-Bo) 'W(b-BO) /a9,

where W = R/[R(X 'X) -1R']-1R, In fact, the proof in Section 4.3 has been



31

outlined for any positive definite matrix W, We have considered here

R = Ip(W=X'X) for the sake of simplicity in exposition.

6Not:e that pF. = (é-B) '[As§ .V(ﬁ) ]-1 (5—6) is the well-known Wald (1943)
test statistic, wheie Asy.V(ﬁ) = 0'2(X 'X) -1 is the asymptotic variance of é
and it is to be evaluated at the unrestricted estimator of 0'2. We have taken
§% = 4'6/n where ¢ = y-Xb. An alternative to this, that is & = @'/,
where U = y-Xé, was also considered. In this case the result in (2.27) of
Theorem 3 remained the same with [trA& -ZéBAB/ 0] on the right-hand side of
" 1 (see (2.28)) replaced by [trA -2p‘BAB/8+ kB ‘AX XAB/28]. Further, the
numerical findings in Section 3 would be changed only slightly by using

5"2, or the approximate V(B) given in Ullah and Ullah (1978) instead of Asy.V(ﬁ) .

7A less interesting case of the distribution of the statistic (5-5) x 'X(é-ﬁ) /0‘2
was also examined and it was found that while the small-o expansion of this
statistic was in terms of the central x2 distribution and hence different with
(2.29), the large-T expansion was the same as in (2,30). This implies that the
replacement of o by 4 ‘4/n did not change the large-T expansion up to the

order of approximation considered.

8We essentially derive Edgeworth-type expansions. For details about

these expansions, see Sargan (1976).
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