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COSTLY INNOVATION AND NATURAL RESOURCES
by

Arthur J. Robson

ABSTRACT

An optimal model explores the connection between costly in-
novation and resource depletion. Both phenomena affect the asymptotic
growth rate, whereas capital accumulation does not. However, there is not a
simple trade-off between these two phenomena. Less productive innovation
can mean a faster rate of exploitation of the depletable resocurce. A
larger output share for the depletable resource can mean less innova-
tion and faster exploitation. The Rawlsian criterion is treated as a
limiting case. Then the rent from the depletable resource could finance
ipnovation, and no investment should occur. The paradoxes above

make the Rawlsian position seem less extreme.
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1. Introduction

The realization that land is in fixed supply led Malthus to the gloomy
prediction of perpetual long-run subsistence. In contrast, neoclassical
economics has tended to stress the role of capital in promoting growth.
Hotelling [5] was among the first to bring neoclassical analysis to bear
on the question of limited (indeed depletable) natural resources. In
particular, he studied the influence of market structure. A more recent

upsurge of interest in natural resources seems to have been sparked by

the oil crisis and the apocalyptic vision of the book The Limits to Growth
(Meadows, et _al. [7]). Much of the recent work has focussed on the
substitution in production of capital for the natural resource. This

possibility alone can vitiate the pessimistic Limits to Growth conclusions

(see Solow [11], for example). A potent force besides investment leading

to optimistic conclusions is innovation. There can be no doubt as to the
historical importance of innovation (as distinct from capital augmentation)

in promoting growth, A problem is that innovation is less susceptible

to precise modelling (as a result of its very nature). In the context

of earlier neoclassical growth there is a substantial literature on exogenous
innovation (see Arrow and Kurz [1] for a typical model). '"Endogenous"
innovation is usually taken to refer to choice of the factor bias. (See
Kennedy [6].) However, Phelps [8] for example, considers costly innovation.
In the recent context of natural resources, costly innovation has been studied
by Dasgupta and Heal [4]. In their article technological change is modelled
as a quantum jump--a breeder or fusion reactor ushers in the energy millenium.

(Natural resources may become useless, in fact.) The date of the innovation



is random (although advanced by expenditure on research). However, the proper-
ties of the innovation are precisely known.

The present paper models costly but continuous innovation. While
quantum jumps may occur in terms of inventions, the overall process must
be much smoother when development is also considered., Indeed, perhaps
the supply of inventions is quite inelastic with respect to expenditure;
however, this is less likely in the case of development.

Two types of limited natural resources are considered in the paper.
These types are exemplified by oil on the one hand and by hydroelectr;city
(o; land) on the other. The first type then has a fixed initial stock
and is depletable. The second type is in fixed flow supply--although it is non=
degletable it is equally non-augmentable.

| The time-honored method of modelling myopia in growth models is to

assume a constant savings rate. The counterparts of this assumption needed
to close the present model are taken to be (1) A constant fraction of output
is used to finance innovation. (2) The "rate of exploitation" of the
depletable resource is constant. (This is the ratio of the resource flow
to the current stock.) It is shown that the»fraction of output used to
finance innovation and the rate of exploitation of the depletable resource
are more fundamental than the savings rate since they affect the endogenous
(asymptotic) growth rate.

Under a fully optimal regime it is shown that an appropriate
constant savings rate and appropriate choices under (1) and (2) above are
asymptotically obtained. In the course of discussion of the optimal model,A
economic interpretations of the efficiency conditions are noted. 1In

particular, the appropriate rate of return on innovation is derived.
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Optimal paths are shown to converge to balanced growth (or 'decay') paths.

Comparative long-run "statics" show that effects on endogenous rates of

growth replace more familiar effects in terms of percentage shifts in the
patPs of variables of interest, with a fixed growth rate.

Paradoxically, it is shown that more productive innovation might
lead to a faster rate of exploitation of the depletable resource. Again
it is possible that a larger relative share of the depletable rescurce
might call for less innovation and a faster rate of exploitation of the
depletable resource.

The Rawlsian criterion can be treated as a limiting case. Effi-
ciency dictates that the stocks of capital, technology, and the depletable
resource be generally readjusted. The state of the economy is not then
immediately "frozen" as with capital only. (See Solow [11].) It is shown

that eventually rent from the depletable resource should equal the cost of

innovation, whereas the stock of capital should be fixed. Furthermore, the
rate of exploitation of the depletable resource ultimately equals the asymp-

totic rate of interest.




2. The Model

Consider firstly the production function. This is taken to be Cobb-
Douglas. Although analytic feasibility dictates this choice to a large
extent, the Cobb-Douglas case captures the essence of the problem with
a depletable resource. (The resource is essential, in the sense that
output is zero without it. Also the marginal product of the resource
tends to infinity as the resource input tends to zero. Somewhat surprisingly,
these two stipulations leave only the Cobb-Douglas case among the CES class.

See Dasgupta and Heal [4].) Hence output is taken to be

Q=X kP rY 1° Grpry o=l (L)
o, B, v, 6= 0
where A is an efficiency parameter (which reflects innovation), LP is labor
used in production (the remainder being used for innovation), K is the
capital stock, R is the flow of the depletable resource used up in production,
and T is the stock of the non-depletable resource. For the sake of economy
of pdtation redefine the efficiency parameter to include the non~depletable

resource. Then (1) becomes

a+p+y 1

Q=a1%gPrY (2)
P a B, Y20

(Note for future reference--see Proposition 5--that changing the value of y
whi}e holding ¢ and B constant corresponds to altering the relative shares

of the depletable and non-depletable resources. The polar case with only a
depletable resource corresponds toy =1 - ¢ - B; the case with only a non-

depletable resource to y = 0.)



Suppose that the stock of the depletable resource at time t is

S(t) and that there is a given initial stock of So, then

©

s(t) = ft R(t)dt, S(0) = §_

where

_R@®) _ s(r)
I I TC)) (3)

€

is the '"rate of exploitation."

Although the production function, (2), exhibits increasing returns
to scale when A is treated as a factor, this is later shown not to cause
a problem given the specification of innovation. In fact, innovation
is taken to be determined by

eL

Al _ 4)
T whereL—Lp-i-LI (

where LI is the labor used for innovation, L is the total labor force, and
e is a positive parameter. The labor force is taken to be constant. Exponential
growth would not cause substantial complications but it is perhaps unreasonable
in the present context if only for reasons of standing room.

Consider now the interpretation of (4). With a more general
production function, and an essential depletable rescurce, it seems that
depletable-resource-augmenting technological change would be eventually
needed to stave-off collapse. However, in the Cobb-Douglas case, Hicks-neutral
and factor augmenting technological change are equivalent. Hence (4) can

be taken to mean that the growth in effective labor is proportional to the

labor employed in innovation. The homogeneity of (4) in LI and L means that



optimal innovation is independent of the scale of the entire economy (or
of each firm within an economy). The linearity of (4) in LI is an assumption

of constant returns in innovation for a given total labor force. An important

point about (4), in the present context, is that it permits endogenous

constant asymptotic growth. (As in Conlisk [3].)
Finally, since there is one (tangible) output,

’

K'=Qq-¢C (5)

where C is consumption. Depreciation of capital can be handled by notational

changes but is omitted for the sake of simplicity. (See Arrow and Kurz [1].)

3. Myopic Evolution Over Time

Consider the outcome with a constant savings rate, a constant

rate of innovation, and a constant rate of exploitation of the depletable
resource. Particular constant values of these parameters will be shown

to be asymptotically optimal.

Proposition 1

A constant rate of innovation arises if a constant fraction of ocutput,
f, is used to finance innovation. As long as the rate of exploitation of
the depletable resource , €, is not too large, the capital stock, K, output,
Q, and consumption, C, grow asymptotically at the same positive rate. This
growth rate is independent of the savings rate, s, but does depend on € and f.
Proof

Since the value of labour used for innovation is QL : LI’

fQ = QL . LI = QL + (L - Lp) (6)



which implies the fraction of labor used in production, x, is given by

L
x=—LR=a+af, 0<xs1 )
Now
AI eL
T:-L—I = e(l-x) :—;f-'-f (8)

so that there is a constant rate of innovation. Now if the rate of

exploitation is a constant, €,

R = R exp(-et) 9)
Hence

K' =8Q= sA_ exp[;—ﬁft-] xaLakﬁRI exp[-yet] (10)
Assuming that

ef/(a+£) > vye (11)

integration ylelds

K'7P - k7P = {explef/(a£) - yelt - 1) (12)
where C is a positive constant. Hence, asymptotically,

’

= [e£/(046) - ve1/(1-p) (13)
Now
Cl Q_l_ AI KI Rl
c TQ A tP R tYy
(14)

= [ef/(a+f) - ve]/(1-B)

Q.E.D.



Note 1: If there is only a non-depletable resource (if y = 0) then (11)

1s satisfied for £ > 0.

Note 2: Under the optimal regime to be discussed next, it is possible
for '"balanced decay'" to occur. Constant values of s, ¢, and f obtain

asymptotically. However, there is a relationship between these values,
and the analogous general result to that presented in Proposition 1l is

not true.

Note 3: Stiglitz [1l2], studies a similar model with exogenous innovation,
He obtains the result that the rate of savings, s, influences the asymptotic
growth rate. However, he assumes an efficiency condition between the deplet-
able resource and capital. Then a different savings rate and hence a differ-
ent rate of return on capitai imply a different rate of exploitation of the

depletable resource. Stiglitz's result is thus consistent with Proposition 1.

The present model is more general since it does not rely on the existence

of a depletable resource to induce an endogenous asymptotic growth rate.

4, Optimality Conditions

Consider now an optimum allocation. Take the dynamic utility func-

tional to be, for the sake of simplicity,

o l-0

u[C] = jo Cl-c e-pt dt (15)

where p is the explicit rate of time preference, and o is the elasticity
of marginal utility with respect to consumption, C. (Take c > 0, o # 1,
Instead of ¢ = 1, take the logarithmic case.) The optimum is found by
maximizing (15) subject to the differential equations (4) and (5) for the
efficiency parameter, A, and capital, K, respectively, and subject also
to the constraint (3) on use of the depletable resource. (Initial values

must be given for A and K also.) The appropriate present-valued Hamiltonian is



l-0 e(L~L )

-pt¢C a
K=+ Yy —g T ato@ 1V -0} - a6)

which is to be maximized over choice of consumption, C, labor used in pro-
duction, Lp, and use of the depletable resource, R. The variables ¥ and
® are current shadow prices of A and K, respectively. The multiplier A
is the constant present-value shadow price of the depletable resource.
(Hence the current shadow price of the depletable resource rises exponen-
tially at rate p as in Hotelling [5].) Assuming an interior solution

(this can be justified),

g% =0 hence C° =9 (17)

equating the marginal instantaneous utility of consumption to the current price

of capital, as expected in a one good world. Also,

%‘Llf =0 or ¢q, = vo ALc; kP RV = APt (18)

equating the current marginal value product of the depletable resource to
its current price. Both (17) and (18) could arise from (idealized) competi-

tion as usual. Finally,

D =0 hence Y22 -g o ar®! (P Y (19)
aLp L P

Clearly this rule optimally allocates a given labor force, L, between its

two alternative uses--for production or for innovation. Although the shadow

price Y cannot be readily interpreted as a competitive price, to decentralize

the optimum it suffices to assume a firm undertakes innovation on its own
behalf. It then retains an internal shadow price for innovation. No
diffusion of innovation is necessary. For it can be shown that each com-
petitive firm (a scaled-down replica of the entire economy) will employ the

same optimal fraction of its labor force for innovation.
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Consider now the adjoint equation for ¢, the price of capital

(or consumption from (17)). As usual,

'
g—=p-QK=p-ﬁy,
where y = Q/K (20)

is thus the output-capital ratio. From (17), (20) is equivalent to
Q=ptog =r (21)

where r, is the consumption rate of interest. Equation (21) has the
usual Fisherian interpretation of equating the subjective and objective

. rates of interest. Also, from (18) and (20),

which equates the return oﬁ holding the depletable resource (a capital
gain) to the return on capital (its marginal product). This is an effi-
ciency condition.

Consider now the adjoint equation for (4), the shadow current price
of the technology parameter, A,

Ye(L - L )‘

y'oy = - —P-a-¢ Lg kB rY (23)

which can be rewritten, using (19), as

4
=p-e +E%y), x-= L /L (24)

—é"é

as before. Consider now the efficiency condition between innovation and

capital. Differentiating (19) logarithmically, and using (20) and (24),
'

Q
& L _ ., .
=+ o, =Q = Py (25)
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Note that since this equation depends only on relative factor intensities,
that decentralization of the optimum is possible as was asserted follow-
ing (4) and (19).

To interpret the left-hand side of (25), consider the rate of return
on the wages of labor used for innovation during a short time, 6t. The
wage bill is

QL LI 6t = (& Q/Lp)LI ot (26)

On the other hand, the increase in output due to innovation is

(6A/A)Q = (A'/A)Q6t = (e L /L)Q 6t (27)

so a natural definition of the rate of return on innovation is:

(e LI/L)Q ot _ eLp _ex 28)

I («x Q/LP)LI&: aL o

r

which is the first term in (25). To interpret the second term, consider the
labor hired now for time &t rather than in the immediate future for time ©&t.

The rate of return on this variation is the second term, From (25), if the wage
rate is rising, the rate of return on innovation (rI as in (28)) should be
driven below the marginal product of capital, because it pays to innovate now
using cheaper labor rather than later. Conversely, if the wage rate is falling,
innovation should be postponed, in the sense that its rate of return should
exceed the marginal product of capital. This result is formalized in the
following.

Proposition 2

The efficiency condition relating innovation and capital, (25), states

that the sum of the rate of return on innovation and the rate of increase in

the wage rate should equal the marginal product of capital.
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5. Optimum Evolution Over Time

Consider now the evolution of the optimal path over time. Note this
problem involves three state variables--capital, K, technology, A, and
the stock of the depletable resource, S. Such problems cannot generally
be "solved" without extra assumptions. (Typically including a "small"
rate of explicit time preference. See Brock and Scheinkman [2], for
example.) However, this problem needs no such extra assumptions.

Firstly, consider the definitions

L
x=—%,y=g~ z=8, 0<xs1 (29)

=io

where x and y are as already introduced. The "equations of motion",

(5) and (6), become

2 el :
ﬁ—- = TI = e(1 -x) (30)
and
K.2.¢ ., (31)
K K _ Kk 7

respectively. The efficienéy conditions are (22) and (25). After some

algebra, these can be shown-to imply

(l-a-y):—:— = ef1 +-1'%Y x} - Bz (32)
and
(-opE = e - g (33)

Consider the behavior of y, the output-capital ratio, along an optimal path.

Since
A AN S G S 2N 2 )
y Q K A Lp K R K
it can be shown, using (29) through (33), that
7
(1-a-v>§,L = e - (1-) (1-0-y)y + (1-0=B-y)z (35)

Using the optimality condition (21),

(0]

(e
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0':—-.-:0-2- (c-B)y=-»p (36)

Note now that the differential equations for y and z, (35) and (36), are

self-contained, in the sense that no other variables appear in these

equations. This facilitates a (generalized) phase-diagram approach. Represent
(35) and (36) in the y -z plane, as in Figure 1. The slope of z/ =0
locus can be easily shown to exceed algebraically that of the y/ = 0 locus.

The unique equilibrium in the y -z plane is

* _ge+ (1-a=-B-y)p
Bl -B) = (@+y)( -0)]

37

¥ _(g-Pe+p(-P(A-0C-Y)
Bl =p) - (@+y) (1 -0)]

2

For each initial value of y, there is a unique initial value of z,
such that the path satisfying (35) and (36) converges monotonically to the
equilibrium (37). (An analytic proof of this is not difficult.) This path
can be shown to be optimal by application of a sufficiency theorem.
Intuitively, however, what is wrong with other paths? Clearly other paths
either cross 2=0 in finite time or have z tending to infinity. Those
with z=0 in finite time have then zero consumption but a positive capital
stock, K. This is non-optimal. Those with z tending to infinity exhaust
the capital stock in finite time and are infeasible.

Suppose, therefore, that z (and y) follow the path converging to
z* @nd y*). Then the path of x can be deduced from (32), The situation
is represented in the x - z plane in Figure 2. It is readily shown that

a unique equilibrium value of x, is given by
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Figure 1
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Figure 2
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alp(1-p) - e(1-0)]
"7l - e (1)) (38)

In order to obtain 0 < x* < 1 (and incidentally, z* > 0), the following

conditions are assumed

e(1-0) < p(1-B)
and .

a(1-B)p < el(1-B) =y(1-0)] (39)
Note (39) is satisfied, in particular, for large o, the elasticity of
marginal utility. Clearly, from Figure 2, to each initial value of z,
there corresponds a unique'initial value of x, such that x converges
monotonically to x*. This path will be shown to be optimal by means of
the sufficiency theorem. Paths which\start too high become infeasible
by crossing x = 1. Paths starting too low involve an unnecessarily low
consumption stream.

Now given an initial value of x, say, the time paths of all variables

of interest follow by the requirement that the convergent path be followed.
Hence the paths of x, y, and z are determined. Equations (30) and (31),
together with initial values, determine the paths of A and K respectively.
Given y, z and K the paths of C and Q follow. Then the path of z and

the initial stock of the depletable resource determine the path of R, from

(33) .- Note that

’
ek= lim § = lm -5
t—e | Y]
. (40) .
. Pz*x-e _ p(-p)-e(1-0) > 0

T-a-y  [(1-B) = (0+y) (1-0) ]
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under (39), so that the integral (3) converges. Finally, the asymptotic

rate of growth follows from (31), it is

e - p(O+y)
[(1-B) - (oY) (1-0) ] (41)

w*:y*-z*:

which can be positive or negative, depending on whether

e 2 p(a+y) 41")
which is a condition independent of (39) since it does not involve o.
How then is the initial value of x, X, determined? Note that
the use of the depletable resource at £ =0 depends only on x,. In fact,

it can be shown that
dR /dx > 0
o' o
NQW, at t=0

_ a._ o B-1 Y _
Yo = Ay %o L Ky Ro(xo) - Io(xo) (42)

say. This relationship determines X The situation is represented in
Figure 3. Existence of suitable X, between 0 and 1 is simply assumed.
uqiggggggg is a consequence of the sufficiency theorem. Figure 3 also

depicts the equilibrium situation with
- % o
vk = (A kP 1 RY)  x#@ L~ = I¥(x¥) (43)
say, where although the individual terms in parentheses are not constant,

their product is. (Equations (42) and (43) are again independent of scale.)

If the economy is initially "capital poor" then

y* < I_(x%) (44)
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(Figure 2)

(Figure 1)

y = IO(X) |

A £

Figure 3
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and Figure 3 suggests that x, y, and z decline monotonically to their
equilibrium values, The converse would be that an initially "resource poor"
ecopomy should follow a path with x, y, and z rising monotonically to their
equilibrium values. However, general results concerning the direction of
convergence seem difficult to obtain.

The following theorem restates compactly the hypotheses and main
conclusions of the foregoing analysis. The applicability of the sufficiency
theorem is demonstrated. Subsequent propositions investigate the comparative

long-run "statics" of the balanced growth path.

Theorem. Consider the model of costly technological change and natural

resources defined by

Q=XL§KBRYT6=AL3KBRY C+B+y<]
x
J' Rdt = S
0
A’/A=eLI/L, L=L +1L (45)
KK =Q-2¢C
N L
ufc] = < e Pt 4t
40 1-0

Then, the optimal path exists, is unique and involves perpetual innovation

if conditions (39) hold. 1Indeed the optimal path is such that
x = Lp/L, y =Q/K, and z = C/K

tend monotonically to equilibrium values
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_alp(-p) -e(1-y)]
el(1-B) - (a+y) (1-0)]

x*

_ _oce+( -a-B?v)p
Y* = BT(-6) - @) (1-0)] 46)

2% = M@L&ﬁiﬂ
BL(1-B) = (a+y) (1-0)

The common asymptotic growth rate of K, Q, and C is given by

- e - p(oty). '
V= T8 - (o) (T-0)]) “n

which may be either positive or negative. The asymptotic rate of depletion

of the depletable resource is

. p(-B) - e(1=0)

= lim R =
er=lim s T T0-m - @ma-o] (48)
The asymptotic savings rate is
= K" _ykezk e~ (ouy)p
=2Q) T TTer (v “9

and the fraction of output needed to finance innovation asymptotically (see

Proposition 1} is

oy (Llox® _e[(1-B) - y(1-9)] - p a(1-B)
£r=o {750 - p(1-B) - e(l-o) 50

Proof. The existence of a path converging to the equilibrium has been already
shown.‘ (Strictly, the initial values of x, y, and z must not be too different
from x*, y*, and z*,) Uniqueness and optimality follow from Mangasarian's
Sufficiency Theorem once codcavity of the maximized Hamiltonian in the

state variables and the transversality conditions are established. (See

Arrow and Kurz [1].) First concavity. Consider the equivalent problem

(o

[{]

(L]
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arising if the technological parameter, A, is replaced by A*, p > 0. The
terms in the Hamiltonian (16), involving consumption, C, cause no difficulty.
The remaining terms are now

Ye(L=-L)) -
3, ={TLA+¢A“ LC; kP RY}e™t - AR ~ (51)

The maximized value of this expression, apart from an additive constant, is
. - o
J(;" = (1-a-y)g e Pt Al L P rY

where

so that
y: & AF,/(]--a-y) KB/(]'a"Y) (52)

which is concave in A and K if

p< 6=1-a=-B-y (53)
as might be expected.
Consider now the transversality condition for A.
SE:SE_Z_AI: - =p + p-e(l +-l:g x¥) + e(1-x¥%)
ey a | ¢ (54)
=-§x*<o

Hence the present value of technology tends to zero as t — =, Similarly,

for capital since

-pt ’

Le—.;t-:l—l—()——b_p.'.p-ﬁy*-}y*-z*
. . p(-p) - e(1-0) <0
[(1-B) - (oY) (1-0) ]

using (39). The transversality condition for the stock of the depletable

resource, S, is satisfied simply because S tends to zero.
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Hence the convergent path is unique and optimal.

6. Comparative Long-Run "Statics"
Proposition 3 N

Asymptotically, the rate of return to innovation (as in (28)),
equals the rate of exploitation of the depletable resource. For, from
(46) and (48),

r. = ex*/a = €% (56)

This can also be seen to follow from

' '
Q Q
L = w¥ { =R = wk + g* (57)
\ & %

and (22), (25), and (28) relating innovation and exploitation of the deplet-
able resource.

The comparative growﬁh path "statics" of Tabie 1 are readily obtained
using (39). Note that the e#plicit rate of time preference, p, and the elas-

ticity of marginal utility, o, affect the rate of growth, w¥*, and do not

simply shift the paths of variables by a constant percentage as in the typical
neoclassical case. (See Arrow and Kurz [1], for example.) However, the im-
pact of these two parameters is otherwise intuitive.

Consider now the effect of more productive innovation, as induced
by an increase in e. As expected, the labor used for innovation and the
asymptotic growth rate increase. One might then expect extra "impatience"

to be reflected in an offsetting faster rate of exploitation of the depletable

resource. This is not generally the case, for, from Table 1:

(o



Comparative Growth Path "Statics"
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Table 1

Dependent Parameter

x* y* w¥k e*

p >0 >0 <0 >0

g (L)wx>0 >0 >0 <0 >0

(i) wx< 0 <0 <0 >0 <0

e (i) o<1 <0
<0 >0 >0

(ii) o>1 >0

y @) o<1 >0 >0
< 0 <0

(ii) o>1 <0 <0
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Proposition 4

More productive innovation leads to greater employment in innovation,

and a faster asymptotic growth rate. However, if the elasticity of marginal

"

utility is less than one, more productive innovation also leads to a lower

rate of exploitation of the depletable resource. Only when the elasticity

of marginal utility is greater than one will there be a faster rate of ex-
ploitation of the depletable resource.
The explanation is as follows. The asymptotic rate of consumption

interest ("impatience") indeed does increase with a faster rate, for, from

(21),
* ' *
rc=p+a(g—-) =p + 0wk (58)

However, so does the rate of return on holding the resource, from (54).

(L]

So optimality ultimately requires
*
rQ 5
R *
—. =wk+ek=r =p+0y* (59)
% c

using (21) and (22). From (59) the result follows, given the increase in w*.

*
Note 1: Since from Proposition 3, r; = €%, the rate of return on innovation
also falls when innovation becomes more productive if and only if the elas-

ticity of marginal utility is less than one.

*
Note 2: If o =1, then ry = €* = p, the explicit rate of time preference.

Note 3: Proposition 4 might seem more striking as "Less productive innovation

leads to a faster rate of exploitation of the depletable resource (and a

[0

higher rate of return on innovation) when the elasticity of marginal utility is

(=

less than one."
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Again from Table 1, consider now the impact of a higher rela-
tive share of the depletable resource (at the expense of the non-depletable
resource, as explained following (2)). Such a higher share for the de-
pletable resource is analogous to technological '"regress". Not surprisingly,
the asymptotic rate of growth, w*, declines. Then less "impatiehce".might
be expected to lead to an offsetting decrease in the rate of exploitation
of the depletable resource, to an increase in innovation, or to both.

However :

Proposition 5

When the elasticity of marginal utility is less than one, a larger

share of the depletable resource means less innovation and faster exploitation.

Only if the elasticity of marginal utility is greater than one is there
more innovation and slower exploitation. .

The explanation for the effect on the rate of exploitation of the
depletable resource via the decrease in the asymptotic growth rate is as ex-

plained following Proposition 4. Also, optimality ultimately requires
* *
r; + wk = r.=e + 0 w* (60)

using (21) and (57). This accounts similarly for the effect on innovation.
Crucial to this explanation is the fact that a reduction in the rate of

increase of the wage rate inhibits innovation, as in Proposition 2.

7. The Rawlsian Criterion

Consider now the outcome as o, the elasticity of marginal utility,

tends to infinity. 1If C(t) is continuous
1
® l-¢ -pt -0
{[ ¢ &P ar} -~ inf{C(t)}, 0 = » (61)
0 t
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(See Rudin [10], for example.) Maximizing u[C] then becomes equivalent
to the '"max-min" criterion, advanced by Rawls [9]. Efficiency still re-
quires generally a readjustment of the initial stocks of capital, tech-

nology, and the depletable resource. Indeed (32) and (35) for x and y

1]

derive from efficiency considerations and do not involve 0. Equation (36)

becomes

[

'
z _ =. K
" z-y=-% (62)

so that consumption, C, is constant, as expected. The system (32), (35),
and (62) are necessary conditions under a Rawlsian criterion. Unique equi-
librium values of x, y, and z exist and can be obtained from (46) as o — =,
A unique convergent path still exists, and it is not hard to deduce that

this path corresponds to the maximum feasible constant value of consumption.

\e

Thus the limiting system has qualitatively the same behavior as the case

for finite o. (In fact, it is the presence of innovation which smooths the
transition to the limit. Consider, for example, a case with no depletable
resource, and zero rates of technological change, population growth and
depreciation. The Rawlsian criterion implies that all output should be con-
sumed from time zero. Hence, the capital stock is frozen at its initial
level. However, for any finite o, the equilibrium capital stock is deter-
mined by QK = p, independently of 0. Generally, then, the limit of the
equilibria for finite ¢ is not appropriate under the Rawlsian criterion. In
terﬁs of the phase diagram analysis of this paper, the y' =0and 2’ = 0

loci coincide in the limit.)

n

Consider then the balanced growth path arising under the Rawlsian cri-

(»

terion. Denote values under this double limit by double asterisks. From

(47),
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wkk = (63)
so that output, capital, and consumption are ultimately constant. However,
from (50)

frk = y (64)
so that the burden of maintaining output in the face of depletion of a
natural resource falls on innovation alone. Indeed (64) states that the
fraction of output needed to finance innovation is precisely the share of
the depletable resource. This again highlights the link between innovation
and depletion of a natural resource. (Stiglitz [12] found, with no inno-
vation, that rent on the depletable resource should equal investment. With
endogenous investment, however, it is more efficient to innovate.) Con-

sider now the limiting values of x*, y*, z* and €* from (46) and (48)

x** = af(a + v)
y** = z¥% = e/[p(a + )] (65)
exkx = e/(Q + v)

In this case, as in general when w* = 0 (see Proposition 3),

Fok k¥
*% = = 6
€ QK rc (66)

Note that the presence of innovation means that the Rawlsian asymptotic rate

%% .
of interest, r, is independent of the initial conditions. Also, using (47),

K%k > . >
r, P if w*‘< 0 (67)

where w* is the asymptotic growth rate for finite o, the elasticity of

marginal utility.

Proposition 6

With a Rawlsian criterion, it is ultimately optimal to use the rent from

the depletable resource to finance innovation, and to hold the capital stock
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constant. The rate of exploitation of the depletable resource should fi-

nally equal the asymptotic rate of interest.

Propositions 4 and 5 might be interpreted as mildly strengthening
the "reasonableness" of a Rawlsian criterion. Note generally that the
non-paradoxical case with the elasticity of marginal utility greater than

one is inconsistent with monopoly control of the depletable resource (or

at any stage). A government then simply could not .adopt such a dynamic

utility functional in the face of the oll cartel, for example.

8. Conclusions

| This paper demonstrates that there is basic symmetry between costly
innovation and natural resoufce depletion. These phenomena are shown to
affect the asymptotic growth rate, whereas capital aecumulation does not.
In the limit, too, the rate of return on innovation equals the rate of ex~
ploitation of the natural resource. Furthermore, un&er the Rawlsian criterion

the rent from the depletable resource should eventuélly be used to finance

inno§ation, while no investmgnt should occur. However, the interaction
of innovation and resource depletion can sometimes yield unexpected
results. It is possible, for example, that more efficient innovation
leads to a slower rate of exploitation of the resource. Similarly, a
larger output share for the depletable resource can lead to less innova-
tion and a faster rate of exploitation.

It would be interesting to generalize the function used to de-
scribe innovation and the production function. What then is the appro~
priate rate of return on innovation and how does it relate to the marginal
product of capital? What is the general condition un@er which innovation
domiﬁates investment? To treat this general case requires a "tight" set
of sﬁfficient conditions to ensure "global asymptotic stability" with

costly innovation and depletable natural resources.

\€
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