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Abstract

We introduce the notion of the partnered core of a game. A payoff is partnered
if there are no asymmetric dependencies between any two players. A payoffis in the
partnered core of a game if it is partnered, feasible and cannot be improved upon
by any coalition of players. We show that the relative interior of the core of a game
with side payments is contained in the partnered core. For quasi-strictly convex
games the partnered core coincides with the relative interior of the core. When
there are no more than three partnerships, the sums of the payoffs to partnerships
are constant across all core payoffs. When there are no more than three players,
the partnered core satisfies additional properties.

1. The Partnership Property

An intuitively appealing property of a solution for a game-theoretic model is symmetry
of dependencies. If one player needs the cooperation of a second player to achieve his
payoff but the second player has alternative coalitions not including the first player
then the second player is in an apparently stronger position. This is an asymmetric
dependency. In such a case we may expect the stronger player to attempt to use this
dependency to increase his own payoff at the expense of the more dependant player.

*This research was initiated in 1991 when the authors were guests of Sonderforschungsbereich 303
at the University of Bonn. The hospitality and support of Sonderforschungsbereich 303 and the Uni-
versity of Bonn is gratefully acknowledged. The authors are also indebted to the Social Sciences and
Humanities Research Council of Canada for support which made this collaboration possible. We thank
Arja Turunen-Red, Preston McAfee, Larry Samuelson, and Arthur Robson for helpful comments.



A solution is said to have the partnership property if there are no asymmetric depen-
dencies. The partnership property has a long history in cooperative game theory. It
appeared in Maschler and Peleg (1966,1967), Peleg (1968) and Maschler, Peleg, and
Shapley (1972) in their impressive study of the kernel and separating (partnered) col-
lections of coalitions. The partnership property on the domain of undominated payoffs
was introduced in Albers (1974,1979), and further studied in Selten (1981), Bennett
(1983), Bennett and Zame (1988), and Winter (1989).

Two familiar examples illustrate the appeal of the partnership property. First, con-
sider a two-person bargaining problem of dividing a dollar. Any division of the total
payoff between the two players is in the core. To achieve the payoff ($.50,$.50), each
player must have the cooperation of the other player; thus the players are partnered.
By contrast, the payoff ($1.00,$.00) is not partnered and the coalition consisting of the
two players is not compelled to form. One player has an alternative coalition — himself
alone- in which he can realize his part of the payoff; the other player does not have
such an option. In other situations, no payoff in the core exhibits the instability demon-
strated by the payoff ($1.00,$.00) for the divide-the-dollar game. For example, in a
game with one seller who owns one indivisible unit of a good and two potential buyers,
each of whom is willing to pay a dollar for the good, the only payoff in the core is $1.00
to the seller and $0.00 to each of the two buyers. If the player who actually buys the
good attempts to obtain a larger share of the surplus, the seller has the possibility of
approaching the other potential buyer and coming to some new agreement with that
buyer. The seller is not dependant on either buyer, and each buyer receives only his
individually rational payoff. Thus, there are no asymmetric dependences between any
pair of players.

Following Maschler and Peleg (1966,1967) we formulate the partnership property
directly on collections of coalitions. A collection of coalitions has the partnership prop-
erty if for each player ¢, whenever j is a member of all the coalitions containing player
t,1 is a member of all the coalitions containing player j. A largest set of players whose
members are in all the same coalitions in the collection is called a partnership and the
players in the partnership are called partners. A collection is minimally partnered if the
only partner of a player is the player himself. It is maximally partnered if the partners
of each player include all other players.

A payoff for a game is partnered if the collection of coalitions that can afford that
payoff for their members has the partnership property. We define the partnered core
as the set of payoffs that are partnered, feasible, and undominated. We show that
the partnered core contains the relative interior of the core and present an example in
which the containment is strict. Thus, whenever the core is nonempty, almost all, but
not necessarily all, core payoffs are partnered. For quasi-strictly convex games, however,
we prove that the set of undominated payoffs with the partnership property coincides
with the interior of the core of the game.



For games with no more than three partnerships, we provide additional results on
the partnership property of the core. In particular, the collection of partnerships as well
as the payoff to any particular partnership is constant across all payoffs in the relative
interior of the core. Also, when the total number of players is less than or equal to
three, we show that the partnered core coincides with the core’s relative interior and
that all core payoffs are minimally partnered — no one is dependent on anyone - if and
only if the core is a singleton set.

We employ the framework of a game in characteristic form with side payments. This
framework does not directly treat negotiations between players. Partnered payoffs,
however, have been shown to arise as outcomes of bargaining. In a non-cooperative
setting, Selten (1981) shows that the subgame perfect equilibrium payoffs of a coalitional
bargaining game are partnered. We discuss the relationship of our framework and results
to games with coalition structures in Section 6. We argue that partnerships are game-
theoretically important components of coalition structure games, as in Aumann and
Dreze (1974). In particular, we emphasize the distinction between partnerships and
ccalition structures required to achieve gains to the collective activities described by
the characteristic function. We discuss related literature more generally in Section 7.

2. Games

A game (in characteristic form) is a pair (N, v) where N = {1,...,n} is a finite set of
players and v is a function from 2V to R, with v() = 0. A nonempty subset S of N
is called a coalition.

A payofffor a game (N, v)isa vectorzin RV, Let § C N and define z(5) = i =i
A payoff z is feasible if z(N) = v(N). A payoff z is undominated if 2(S) > v(S) for
all coalitions § C N. The coalitions § with v(S) > z(S), denoted by S(z), are said
to support the payoff z. The coalitions in S(z) that contain the i** player are denoted
by Si(z) = {S € S(z) : i € §}. The core of a game (N, v) is denoted by C(N,v) and
defined by

C(N,v) = {z € RV : z is a feasible and undominated payoff for (N, v)}.
We denote the relative interior of the core by riC(N,v).

3. Partnership

Let N be a finite set of players and let P be a collection of subsets of N. For each ¢ in
N let
P,={SeP:ieS}.

We say that P has the partnership property (for N) if for each ¢ in N the set P; is
nonempty and for each pair of players ¢ and j in N the following requirement is satisfied:
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if P; C P; then P; C P..

That is, if all the coalitions in P that contain player i also contain player j then all
the coalitions that contain j also contain i.! We say that players i and j are partners
(or that ¢ is parinered with j) if P; = P;. Cleaily, the relation “is partnered with” is
an equivalence relation. Consequently, let P[i] denote the equivalence class containing
s partners, and call P[i] a parinership. For any collection P with the partnership
property we say that P is minimally (mazimally) partnered if P[i] = {i} for each player
¢ (P[i] = N). While our results will focus on feasible payoffs, the partnership property
is a property of collections of sets and does not involve any feasibility requirements.

Let (N,v) be a game and let z be a payoff for (N,v). The payoff z is called a
partnered payoff if the collection of coalitions that support z, S(z), has the partnership
property. In this case we denote the partnership containing player ¢ by P[] and the
collection of partnerships induced by z by P,. The payoff z is minimally partnered
(mazimally partnered) if it is partnered and if the set of supporting coalitions S(z) is
minimally (maximally) partnered. Note that it is not required that partnered payoffs
be feasible.

The partnered core is denoted by C*(N,v) and is defined by

C*(N,v) = {z € C(N,v): z is a partnered payoff}.

Our first Theorem establishes the close connection between the core and the partnered
core for games with side payments; the relative interior of the core is contained in the
partnered core. The Theorem also states that the set of partners of a player (and hence
the partition of N into partnerships) is unchanged over all points in the relative interior
of the core.

Theorem 1. Let (N, v) be a game. Then
riC(N,v) C C*(N,v)
and for all z,y in riC(N,v),
Pali] = Pyfi].

Note that since riC(N,v) C C*(N,v) the partnerships P[i] and P,[i] are well-defined.
The result that P[] is equal to P,[4] is a consequence of the fact that the set of
supporting coalitions is constant over all points in the relative interior of the core. The

'For the reader familiar with these works, we note here that partnered collections of coalitions are
called “separating collections” in Maschler and Peleg (1966,1967), and Maschler, Peleg, and Shapley
(1971). See Section 7 for further discussion.



proof of Theorem 1 requires some linear programming results. These, and the proof of
the Theorem, are contained in the next section.?

Combining Theorem 1 with the Bondareva (1963) and Shapley (1967) Theorem that
a game with side payments has a nonempty core if and only if it is balanced leads to
the Corollary below. We refer the reader unfamiliar with the concept to Section 4 for
the definition of a balanced game.

Corollary 1. The partnered core of a balanced game is nonempty.

The following example shows that the containment expressed in Theorem 1 may be
strict.

Example 13 : Let (N, v) be a game where N = {1,2,3,4},

v(N) =4,
v({1,3}) =2,
v(1,4}) =2,

v({2,3}) =2,
v({2,4}) =2, and
v(S) = 0 for all other coalitions § C N.

The core consists of the set
{z:21=2—-24, 2, =223, 23 = 24, 24 € [0,2]}.
Note that for all points in the core the constraints associated with the coalitions

{1,3}, {1,4}, {2,3}, and {2,4}

are binding. Consequently (see Lemma 3 in the next section), the solution to the
equations associated with these coalitions characterizes the relative interior of the core.
Thus, every payoff in the relative interior is minimally partnered. This implies every
core payoff is minimally partnered. Therefore (0,0,2,2), in the boundary of the core and
not in riC(N,v), is partnered.

Although all core payoffs may be minimally partnered, as in the above example, our
next Theorem shows that not all core payoffs can be maximally partnered. Indeed the

“The first part of our Theorem is also proved by Albers (1979, Lemma 3.3 ). Both proofs follow the
same line of argument; ours, however, provides more detail — specifically, Lemmas 1 to 3. It follows
frora Albers’ Lemma that the set of undominated and partnered payoffs is nonempty. The latter result
is also proved in Bennett (1983).

4This example is based on an observation due to Preston McAfee
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Theorem provides a somewhat more general result on the partnership property of the
core.

Theorem 2: Let (N, v) be a balanced game. Then there is a payoff in C(N,v) that is
either minimally partnered or not partnered.

Proof of Theorem 2: Let z* be any extreme point of the core. If z* is not partnered,
we're done. So, suppose z* is partnered and not minimally partnered. Then there is a
pair of distinct players ¢ and j who are partners. Consequently, S;(z*) = §;(z*), so that
we can slightly increase the payoff to ¢ (or j) and correspondingly decrease the payoff
to j (or ) while not violating any of the constraints given by S(z*). Thus, there is more
than one solution to the equations given by

z(S)=v(S)forall § in S(z*).

But this contradicts the extremal property of z*, (i.e., z*, being extreme, must be the
unique solution to the set of binding constraints). O

Remark: The conclusion of Theorem 2 is tight. In Example 1 all payoffs (and therefore
all extreme payoffs) in the core are minimally partnered. An example of a game in
which no extreme payoff in the core is partnered and no payoff in the core is minimally
partnered is a two-person bargaining game.

The following Corollary is immediate from Theorems 1 and 2.
Corollary 2: C(N,v) = {z} implies z is minimally partnered.

For games with empty cores there exist undominated partnered payoffs. For ex-
ample, all payoffs in the relative interior of the core of the balanced cover game are
both undominated and partnered. These payoffs however are not necessarily feasible,
as illustrated by the following example.

Example 2: A three-person simple majority game. Let N = {1,2,3} and let
v(N)=1,

v({#,7}) = 1 for each pair of distinct players ¢ and j,

and
v({¢}) = 0 for all i.

The payoff z = (}, 3, 1) is clearly undominated and it is also partnered since the collec-
tion of supporting sets {{1,2}, {2,3},{1,3}} is partnered. It is not, however, feasible.



For a class of convex games the set of undominated and partnered payoffs coincides
with the relative interior of the core. Let (NV,v) be a game. The game is quasi-strictly
convez if for any pair of non-nested sets S and T contained in N,

»(S)+v(T)<v(SUT)+v(SNT)

with strict inequality if S UT = N. Thus, the game is convex and the gains to forming
the grand coalition are strictly positive. Note that all strictly convex games are quasi-
strictly convex, but the converse is not true. An example of a quasi-strictly convex game
which is not strictly convex is a pure bargaining game, where »(§) =0forall S # N
and v(N)=1.

Theorem 3: Suppose that (N, v) is a quasi-strictly convex game. Then a payoff z is
undominated and partnered if and only if z is in riC(N,v).

Proof of Theorem 3: From Theorem 1 it follows that if a payoff z is in riC(N,v)
then z is partnered. To prove the Theorem it now suffices to show that if a payoff =
is partnered and undominated then it is in riC(N,v). And to show that z € riC(N,v)
it suffices to show that (i) z(N) = v(N') and (ii) z(S) > v(S) for all coalitions S # N.
Since z is partnered, (ii) implies (i). (Partnership of the payoff z implies that for each
player ¢ there is at least one coalition containing player ¢ supporting the payoff z. Since
(ii) implies that no coalition smaller than N supports z, N must support z. Finally,
since z is undominated we must then have z(N) = v(N).) Hence it suffices to show
(ii). So, proceed by assuming that (ii) is false. In particular, assume that there is some
coalition S # N such that 2(S) = v(S). (Recall that 2(S) < v(S) is impossible since
z is undominated.) Choose ¢ € S and j ¢ S. Since z is partnered, there exists ' C N
with j € T, i ¢ T, and z(T') = »(T). Since S and T are non-nested we then have by
quasi-strict convexity that

z(SUT)+z(SNT)
=z(S)+z(T)=v(S)+v(T) < v(SUT)+v(SNT).

Hence, 2(SUT) = »(SUT) and 2(SNT) = v(SNT). We have therefore shown the
following: for each strict subset S of N satisfying z(S) = v(S5) there is a non-nested
strict subset T of N satisfying z(T') = v(T), 2(SUT) = v(SUT) and 2(SNT) = v»(SNT).
Let S denote the non-empty, finite set of all such (§,T) pairs. Choose (S*,T*) € S
such that §* UT* is maximal with respect to set inclusion.

Now since z(S5*) = v(5*), z(T*) = v(T*), z(§*UT*) = v(S*UT*), and z(S*NT*) =
v(§*NT*), it follows that v(S*) 4+ v(T*) = v(S*UT*)+v(S*NT*). Consequently by the
quasi-strict convexity of (N, v) it must be the case that S*UT* C N,and S*UT* # N.

"



Let @ = §*UT*. Since z(Q) = v(Q) there is a non-nested subset R of N satisfying
z(R) = v(R) and z(RU Q) = v(RU Q). Hence, (Q,R) € S. But this contradicts the
maximality of S*UT*=Q CQURand Q #QUR. O

Corollary 3: If (N,v) is a quasi-strictly convex game then the interior of the core,
tntC(N,v), is nonempty and z is partnered if and only if z is maximally partnered.

Proof of Corollary 3: Choose 2° € riC(N,v). Then by the proof of Theorem 3,
z%(N) = v(N) and z°(S) > v(S) for all proper subsets S of N (since z° is partnered).
Hence z° € intC(N,v), and the first part is proven. The second part follows since
the fact that z° is partnered means that (as before) the only binding comstraint is
z%(N) = v(N). Consequently, z° is maximally partnered. O

4. Some Results on the Core and Linear Programming

To prove Theorem 1 and the results in the following Section, we require some linear
programming results. First, for the convenience of the reader, we present the well-
known (c.f., [13] p. 154) linear programming characterization of the core.

A game (N, v) has a nonempty core if and only if the following linear program

n
minimizez =2z
=1 ( 4.1)
subject toZz; >v(S)foral SC N
i€S
has a minimum z* < v(N). Any minimizing  lies in the core. Conversely, if z € C(N,v)
then z(S) > v(S) for all coalitions S; moreover, Y% ; z; = v(N). Thus, the minimum
z*must satisfy z* < v(N).
Consider the dual program to (4.1):

n
maximize Ewsv(S )=4¢q,
=1

subject to ) ws=1foralli€ N, and (4.2)
iefen
wg > 0forall § CN.

Program (4.1) is feasible if and only if (4.2) is feasible and, in this case, the maximum
2* equals the minimum g¢*. Thus, C(N,v) # 0 if and only if ¢* < v(N).

4Because every core payoff must be feasible, we view the core as a subset of R*~1. Consequently, the
interior of the core is nonempty if and only if the core has full dimension, n — 1.
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The above is the proof of the Bondareva (1963) and Shapley (1967) Theorem that
a game with side payments has a nonempty core if and only if the game is balanced.
Let 8 be a collection of nonempty subsets of N. We say that § is balanced if there exist
positive real numbers, called balancing weights, wg for § € § such that

Y ws=1foralli€e N. (4.3)
Sep
i€S
A game (N,v) is balanced if for every balanced collection # with balancing weights wg
for S € B,
E wsv(S) < v(N). (4.4)
Sep

The balancedness condition (4.4) characterizing games with nonempty cores will be used
in the proof of Lemma 3 below.

Throughout the remainder of this section A and B denote m X n matrices and
b, ¢, ... denote vectors in R™.

Lemma 1: Let C be the convex subset of R" defined by

C={zeR*:Az>b,Bz2>c}.

Further, assume that A 20 = b and B z° > ¢ for some z° € riC, the relative interior
of C. Then

riC={z€eR":Az=b,Bz>c}

Proof of Lemma 1: Let X = {z € R": Az =b, B z > c}.

Part 1: To show that 7iC C X we first show that for all z € C, A z = b. So, choose
any z € C. Since z° € 7iC, there exists a € (0,1]and y € C such that z° = a z+(1-a)y.
But Az>b,Ay>b, and a € (0, 1], together with A z° = b, imply that A z = b.

Now choose any z* € riC. Then there exist a € (0,1] and y € C such that z* =
a 2°+ (1 — a)y. Hence, Az* =band B z* > c.

Part 2: To show that X C 7iC let L* be the smallest linear subspace such that
C C L* + 2°. Recall that z € riC if (and indeed only if) forall y € L*, z + a y € C for
all o sufficiently small (Rockafellar (1970), p. 44). Consequently, it is enough to show
that L* C {z : A z = 0).

So,let L={z:Az= 0}. Since [ is a linear subspace, it suffices, by the definition
of L* to show that C C L 4 z°. So, choose z € C. Then as shown in the first part of the
proof, A z = b. Since A z° = b, we havey = z — 20 € I, that is, z = y + z° € I + z°.

a



Remark: Consider the system of linear inequalities A z < b, and denote its (convex)
set of solutions by C. Suppose C # @ and choose z° € riC. Let E = {i : A;z° = b;},
where A; denotes the i*» row of A. Then by Part 1 of the proof above, for every 7 in
E, A;z < b is binding in every solution z € C. Moreover, because these are the only
inequalities binding for z0, these are precisely the inequalities that must be binding in
every solution. Hence, by Lemma 1, z* is in 7iC if and only if those constraints binding
for z* are binding in every solution.

The next Lemma relates constraints that are binding in every solution in a lin-
ear programming problem to positive values of the corresponding dual variables. The
Lemma is a converse to the complementary slackness Theorem.

Lemma 2: If the first constraint is binding in every solution to the primal problem,

maximize ¢- 2

(4.5)
subject to A-z < b,z > 0,
then there exists a solution to the dual problem,
minimize b-y
(4.6)

subject to ATy > ¢,y > 0,
in which the first variable is strictly positive.
Proof. See Schrijver (1990), p.95.

Remark: Let C denote the set of solutions to the linear programming problem (4.5).
Our first two Lemmas show that for every point z* in riC there is a solution to the dual
problem (4.6) with the property that every dual variable corresponding to a constraint
that is binding at z* has a positive weight.

Our next Lemma relates balanced collections of coalitions to the relative interior of
the core.
Let (N,v) be a game. Define the collection of sets B by

B ={S C N: for every solution 2z to the program (4.1)
the constraint z(S) > v(S) is binding}.

Lemma 3: Let z* € C(N,v). Then {5 : z*(S) = v(S)} is balanced if and only if
z* € riC(N,v).

Proof. Let z* € C(N,v). Assume S(z*) = {S : z*(S) = v(5)} is balanced. Let
(6s)ses(z+) be a collection of balancing weights for S(z*). Since z* € C(N,v),

10



v(N)=2*(N)= E dsz*(S) = E dsv(S).
SeS(z*) S5eS(z*)

Consequently, (§g) is a solution to the dual programming problem (4.2). By the defini-
tion of balancedness, §s > 0 for each § € S(z*). It follows that S(z*) C B. For suppose
not. Then there is a solution z° to the primal problem and S € S(z*) such that
z%(8) > v(S). This implies that v(N) = 2%(N) = L ses(z+) §52°(5) > Tses(ar) I5v(S)
= v(N) since z° € C(N,v) and z%(S) > v(S) for at least one coalition S in S(z*),
yielding a contradiction. Moreover, z* € C(N,v) implies B C S(z*). We conclude that
S8(z*) = B and so by the remark following Lemma 2, z* € riC(N,v).

Let z* be a payoff in ri{C(N,v). From the remark following Lemma 2 , there is a
solution to the dual problem (4.6) with the property that every dual variable corre-
sponding to a primal constraint that is binding at z* is positive. Thus, the collection of
supporting coalitions S(z*) = {§ C N : z*(5) = v(5)} is balanced. O

Proof of Theorem 1: Let z be a payoff in riC(N,v). From Lemma 3 the collec-
tion of supporting coalitions S(z) is balanced. Consequently, Xiges;(zjws = 1 and

Yees;@ws = 1 for any set of balancing weights {ws}ses(z)- Hence it is impossible
that S;(z) C S;(z) and Si(z) # S;(z). We conclude that z is partnered.

The second part of the Theorem follows from the observation (see Lemma 1) that
the set of binding constraints is constant over all points in riC (N, v). Consequently the
set of partners of a player is unchanged over all points in riC(N,v). O

The following Lemma will be used in the next Section.

Lemma 4. Suppose that A is an m x n matrix consisting entirely of zeros and ones
and that n, the number of columns, is no greater than three. If for any pair of distinct
columns, j and j/ there is a row, i, of A whose j** entry is one and whose j't*entry is
zero, then A has rank n.

Proof: Since there are potentially eight distinct rows, it is straightforward to simply
exhaust all possibilities. O

5. Games with Three or Fewer Partnerships

In this Section we obtain some stronger results for games with no more than three
partnerships. This condition is obviously satisfied if there are no more than three
players; our first two results concern such games.

Theorem 4: Let (N,v) be a game with |[N| < 3. Then a payoff z € C(N,v) is
minimally partnered if and only if C(N,v) = C*(N,v) = {z}.

11



Proof of Theorem 4: In view of Corollary 2, it suffices to show that if a payoff
z € C(N,v) is minimally partnered then z is the unique core payoff. Observe that if
z € C(N,v) is minimally partnered then {S : 2(S5) < v(5)} has a balanced subset that
is itself minimally partnered (this can be verified by checking all possible cases). Now,
since the subset is balanced the associated constraints in problem (4.1) must hold with
equality in every solution. But by Lemma 4 this balanced subset then yields a system
of equations with z as a unique solution since it is minimally partnered. Therefore
C(N,v)=C*(N,v)={z}. 0O

Theorem 5: Let (N, v) be a game with |N| < 3. Then z € C(N, v) is partnered if and
only if z € riC(N,v).

Proof of Theorem 5: In view of Theorem 1, it suffices to show that if z € C(N,v) is
partnered then it is in riC(N,v). If z € C(N, v) is minimally partnered then we’re done
by Theorem 4. So suppose that z is partnered but not minimally partnered. Conse-
quently there are four possibilities for S(z) : {{1,2},{3}}, {{1,3},{2}}, {{1},{2,3}} and
{{1,2,3}}. Clearly, each of the four possible collections of supporting coalitions for z is
balanced. Thus, by Lemma 3, z € riC(N,v). O

Recall that all relative interior core points induce the same partnerships. Our next
result states that if there are no more than three partnerships supporting payoffs in the
relative interior of the core, then the total payoff to each partnership is constant across
all payoffs in the core’s relative interior.

Theorem 6: Let z and y be payoffsin 7iC(N, v) and define P[] = P[] (= Py[i]). Suppose
that there are no more than three partnerships in the supporting collection S(z) (=
S(¥)). Then for each partnership P[i],

Y @i= ) w

J€PI] J€PI)

Proof of Theorem 6: Choose z* € riC(N,v). Consider the case in which z*induces
three partnerships which we denote by P[i1], P[é2], P[ia). (Other cases can be handled
similarly.) Recall then that the set of supporting coalitions for z*, S(z*) = {5 : z*(§) =
v(S5)} enjoys the following properties: (i) If $ € S(z*) and SNP[i;] # 0 then § 2 P[i;];
(ii) If P[i;] # Plix], then there exists S € S(z*) such that § 2 P[i;] and SN P[ix] = 0.
Introduce three free variables y;, 72, and y3. Then, by letting yx = z(P[ix]), for every
S € 8(z*), the associated equation z(S) = v(S) can, by (i), be written as Ty = v(5),
where the sum is taken over those k € {1,2,3} such that § D P[ix]. Taken together,
these equations provide a linear system in the three variables y;, y2, and y3. Write this
system as Ay = w and note that A is a matrix with three columns having, by (ii), the
properties listed in the hypotheses of Lemma 4. Consequently, A has rank 3 and the
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unique solution to the system is, say, yf, ¥3, and y3. Consequently, z*(P[ix]) = yi for
k = 1,2,3. Moreover, since the system Ay = w is independent of the chosen point in
riC(N,v), we must have z(P[ix]) = y;, for every z € riC(N,v). O

6. A Remark On Coalition Structure Games

In applications of the theory of games in characteristic form it is often assumed that
a part of the problem to be solved is the division of players into groups for the pur-
poses of joint consumption and/or production within groups, for example, the collective
consumption of public goods (c.f., Wooders (1992, Section 6) for a survey of some ap-
plications). In these problems, a characteristic function, say w, is derived from the
underlying social and economic data. The function w specifies the payoff to any coali-
.tion § when the members of S engage in collective activities. It is frequently useful
to make a distinction between the payoff to a group acting together and the payoffs
realizable by a group when it is permitted to divide into subgroups. There may be
congestion, for example, in the consumption of public facilities, so that a number of
groups may each have their own facilities. Then a superadditive characteristic function
v, called the superadditive cover of w, can be derived from the characteristic function w

by defining
S)= Sk), 6.1
v(S) max Ek, w(Sk) (6.1)

where the maximum is taken over all partitions {S%} of S, called coalitionstructures. Such
games (N, v) are known as coalition structure games or partitioning games; see Aumann
and Dreze (1974) where the concept was introduced, Kaneko and Wooders (1982) for
conditions ensuring that collections of coalitions are strongly balanced (so that any game
with those admissible coalitions has a nonempty core) and le Breton, Owen, and Weber
(1992) for a discussion of games satisfying strong balancedness, and references in these
papers.

Since we require feasibility of a payoff for the coalition of the whole, that is, the
condition z(N) = v(N) (see Section 2) our results do not make explicit any efficient
underlying coalition structure, i.e., a coalition structure {Si} of N such that »(N) =
i w(Sk). Our results, however, apply immediately to coalition structure games. The
partnership structure associated with a point in the partnered core of (N, v) informs us
of the partnerships induced by the game (N, w).

Proposition 1: Let (V,w) be a game and let (N, v) be the game in which v is defined
by (6.1).

(1.1) A payoff z is a partnered payoff for the game (N, w) if and only if z is a
partnered payoff for the game (V, v).
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(1.2) Given a partnered payoff z, let P¥ denote the partnership structure (i.e., the
collection of partnerships) induced by z in the game (N, w) and similarly let P? be the
partnership structure induced in (N, v). Then P¥ = P2,

The proof follows from the fact that for any payoff z the supporting coalitions induced
by the game (N, v) are unions of the supporting coalitions induced by the game (N, w).
While the characteristic functions » and w induce the same partnerships, there
is, however, a distinct difference between partnerships and coalitions. For example,
consider a 2-person bargaining game, where there is a dollar to be divided between the
two players 1 and 2. The payoff (.50,.50) is partnered with partnership {{1,2}}. The
coalition {1,2} can also realize the payoff (1.00,.00), but the collection of supporting
coalitions is not partnered and in this situation we do not call {1,2} a partnership.

To illustrate a further distinction between partnerships and efficient coalitions, sup-
pose now that there are eight players, {1,2,...,8}. For this example, the eight players
can be partitioned into four pairs, py = {1,2}, p2 = {3,4}, p3 = {5,6} and p4 = {7,8},
and only distinct pairs of players are productive. Formally, define the characteristic
function w by

w(S§) = 2if § = p; U p; for some i # j and
w(S) = 0 otherwise.®

Observe that, using (6.1) to define v, an efficient coalition structure achieving v(N) = 4
is given by

{{1,2,3,4},{5,6,7,8}},
or any other partition of the set of players into two coalitions, each consisting of two
distinct pairs, p; and p;. The core is given by

{z € R®: z; > 0 for each player k and for each pair p;,
z(p;) = 1}.

The partnerships induced by any point in the relative interior of the core are the pairs
D1, P2, P3 and ps and the partnered core is

{z € R®: z}, > 0 for each player k and for each pair p;,
z(p;) = 1}.

To realize a payoff in the partnered core the players in partnerships are inseparably
united, while a number of different coalition structures (3, to be exact) are consistent
with the achievement of any such outcome. This points to the distinction between
partnerships and coalitions.

In the coalition structure literature (even in [1], [4], [5], [19]) no distinction is made
between the concepts of coalitions and partnerships. Partnership refers to a closer link
between players than that of membership in the same coalition.
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Minimally partnered collections of coalitions appear to have special significance,
and enable a strong distinction between models of economies. In terms of familiar
economic examples, an economy with pure public goods has fully partnered Pareto-
* optimal outcomes and this is independent of the size of the economy. Economies with
local public goods, where the size of the groups of players required to achieve all gains to
collective consumption and/or production are smaller than the number of players of each
type, have Pareto-optimal outcomes that are minimally partnered. The competitive
outcome of a replicated exchange economy is minimally partnered (Reny and Wooders
(1993)). All three sorts of economies are coalition structure economies. The feature
of the existence of minimally partnered Pareto-optimal outcomes appears to be an
important distinction.

7. Other Literature Relating to the Partnership Property

The partnership property first appeared in Maschler and Peleg (1966,1967) and Maschler,
Peleg, and Shapley (1971) in their study of the kernel of a cooperative game. We refer
the reader to the original articles or to Owen (1982) or other texts in game theory for
a definition of the kernel. Since the concern of Maschler and Peleg was “separating
out” players, Maschler and Peleg call a partnered collection of sets a separating collec-
tion. They call two players ¢ and j inseparable if, in our terminology, they are partners.
Maschler and Peleg call a collection of sets completely separating if it is minimally part-
nered. Our choice of terminology follows Bennett (1983) and Bennett and Zame (1988)
and is motivated by our desire to focus on coalition formation rather than the sepa-
ration of players. The terms introduced by Maschler and Peleg are also appealing, as,
frcm the viewpoint of core solutions, we may think of players who are partners as in-
separable. A number of interesting relationships on balancedness and partnership are
established in Maschler, Peleg, and Shapley (1971) including that a balanced collection
of coalitions is partnered. This result, along with Lemma 3, lies at the heart of our
proof of Theorem 1. Maschler, Peleg, and Shapley observe, however, that in general,
the partnership property does not imply balancedness and that any set of six minimal
winning coalitions in the 7-person projective game (c.f., von Neumann and Morgenstern
(1953), p. 470) is minimally partnered but not even weakly balanced (i.e., balanced,
but with some balancing weights in (4.3) possibly equal to zero).

The partnership property on the domain of undominated payoffs appears in Albers
(1974,1979), Selten (1981), Bennett (1983), and Bennett and Zame (1988). In these
papers the authors take the viewpoint that individuals, in bargaining over the distri-
bution of payoff within a coalition, do not take into account the feasibility of the total
demands of all participants in a game. A payoff z for a game (N, v) is defined as semi-
stable (or an aspiration) if for each player i there is a coalition S containing i such that
z(5) = v(S). The payoff z is stable if it is semi-stable and partnered. Our definition
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of a partnered and undominated payoff implies that such a payoff is semi-stable (and
thus, of course, stable). We note that our results continue to hold when we restrict the
domain of payoffs to semi-stable demands (aspirations).

Besides its intuitive economic and game theoretic appeal and its mathematically in-
teresting properties, the partnership property has additional motivation in non-ccoperative
game theory and in the theory of perfect competition. Selten (1981) provides an interest-
ing example of the emergence of an undominated and partnered payoff (not necessarily
feasible) in the description of a three person “divide the dollar” game. Bennett and
Zame (1988) show that competitive payoffs of exchange economies with strictly convex
and monotone preferences are partnered.

Reny and Wooders (1993) show that the partnered core of a balanced game without
side payments is nonempty and thus provide a refinement of Scarf’s Theorem (1967) on
the nonemptiness of the core. Extending Theorem 4 of this paper, Reny and Wooders
(1993) show that for any game with at most a countable number of points in its core,
there is at least one core point which is minimally partnered. Reny and Wooders also
provide an example of a game without side payments in which the relative interior of the
core is nonempty but does not contain any payoffs with the partnership property. Thus,
the character of the partnered core is quite distinct between games with and without
side payments.
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