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Abstract

Recent advances in the application of game theory to the study of auctions have spawned a
growing empirical literature involving both experimental and field data. In this paper, we focus
upon four different mechanisms (the Dutch, English, first-price sealed-bid, and Vickrey auctions)
within one of the most commonly used theoretical models (the independent private values paradigm)
to investigate issues of identification, estimation, and testing in structural econometric models of

auctions.

*This paper is a substantial revision of research contained in University of Western
Ontario Research Reports 92-11 and 92-16. Paarsch is grateful to the SSHRC of Canada
for continued financial support. Both authors would like to thank Joel Horowitz and
two anonymous referees for helpful comments and useful suggestions.
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1. Motivation and Introduction

Over the past thirty-five years, economists have made considerable progress in understanding the
factors influencing the prices realized from goods sold at auction. For example, they have found
that the seller’s expected revenue depends upon the type of auction employed, the rules that govern
bidding, the number of potential bidders, the information available to the potential bidders, and the
attitudes of the bidders toward risk. Perhaps the most remarkable and surprising result to emerge
from this research was one first derived by Vickrey (1961). Vickrey showed that if potential bidders
are risk neutral with respect to winning the auction, if each potential bidder knows only his own
valuation for the object, and if each valuation is an independent draw from a common distribution
of valuations, then four quite different institutions yield the same average revenue to the seller. The
four institutions are the oral ascending-price (English) auction, the oral decending-price (Dutch)
auction, the first-price sealed-bid auction, and the second-price sealed-bid (Vickrey) auction. This
result, known as the revenue equivalence proposition (REP), is of considerable practical interest to
both buyers and sellers at auctions.

Vickrey’s environment is often referred to as the independent private values paradigm (IPVP).
The stark theoretical predictions concerning equilibrium outcomes at auctions within it have invited
considerable empirical investigation using both experimental and field data. Coppinger, Smith,
and Titus (1980) were the first to examine Vickrey’s (1961) claims concerning Dutch, English,
first-price sealed-bid, and Vickrey auctions using experimental data, although researchers before
them had examined some of Vickrey’s other propositions using experimental methods. In a series of
subsequent papers (cited in Smith [1982]), Smith and other co-authors examined the implications
of other factors, particularly risk aversion, on bidding behaviour. Because timber is one of the
few commodities to be sold simultaneously in the same market using different auction mechanisms,
researchers such as Mead (1967), Johnson (1979), and Hansen (1986) have employed regression
methods to examine the REP using field data concerning timber sales.!

Although either experimental or field evidence concerning the REP appears mixed, some sup-
port for “rational” behaviour appears to exist. A problem with much of the empirical evidence
discussed above is that most researchers have tested only one implication of the IPVP: a restriction

upon the first moment of revenues. Revenue equivalence might fail to be rejected for alternatives

1 Both English and first-price sealed-bid auctions have been used to sell timber.
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that are close because of low power. A structural econometric framework for interpreting exper-
imental and field data is required to address questions concerning the applicability of the IPVP
when the REP is not rejected and to investigate directions in which behaviour differs from what is
predicted theoretically.

Another goal of recent research, such as the work of Riley and Samuelson (1981), has been
to construct optimal selling mechanisms. The literature concerning mechanism design has been
criticized as lacking practical value because the optimal mechanism depends upon random variables
whose distributions are typically unknown to the designer. At auctions within the IPVP (the
most commonly used framework within which to investigate mechanism design), potential bidders’
equilibrium bidding strategies are increasing functions of their valuations. Thus, it is possible to
estimate the underlying probability law of valuations using bid data from a cross-section of auctions.
Based upon such an estimate, one can then derive an estimate of the optimal auction. To carry
out such an exercise, however, also requires a structural econometric framework.

In this paper, we investigate the structural econometrics of auctions within the IPVP, focusing
upon the empirical analysis of data from the four types of auctions Vickrey examined. The paper
is in eight more parts. In section 2, we introduce the IPVP and define the equilibrium strategies
at the four auctions within that paradigm, while in section 3 we discuss the data that are typically
available from auctions, and the minimum data required to specify the data generating processes
implicit in theoretical models of auctions. In section 4, we develop the data generating processes
implicit in the equilibrium strategies, while in section 5 we investigate parameter identification
in the empirical specifications. Parameter estimation by the method of maximum likelihood is
investigated in section 6,2 while we examine hypothesis testing within this empirical framework
in section 7. The results of a small Monte Carlo experiment are reported in section 8, and we

summarize and conclude the paper in section 9.
2. Equilibrium Bidding Strategies within the Independent Private Values Paradigm

Consider an indivisible object that is to be sold at auction by one seller to N potential bidders.

Suppose that the seller announces a minimum (reserve) price vo. Assume that the i*® potential

2 Laffont, Ossard, and Vuong (1991) have examined the method of simulated non-linear least squares in
empirical specifications of Dutch and first-price sealed-bid auctions. The performance of their method
was compared to the method of maximum likelihood discussed below by Paarsch (forthcoming). Gallant
and Tauchen (1992) have examined the generalized method of moments in models that appear feasible
for data from English auctions. '



bidder has a valuation v; for the object, which is known to him, but not to the M = (N -
1) other potential bidders. Heterogeneity across potential bidders in valuations is ascribed to
independent draws for a random variable V having a probability density function f(v), with
cumulative distribution function F(v), and having support upon the interval [v,7]. Assume that
vo exceeds v, and that the number of potential bidders N and the distribution function F(v) are
common knowledge. Consider the case when potential bidders are potentially risk averse with
respect to winning the object, having von Neumann-Morgenstern utility functions that fall within
the hyperbolic absolute risk aversion (HARA) fa.mily.3 Thus, for an uncertain prospect y utility
U(y) is
U(y) = ny'/"

where 7 > 1, with 9 = 1 being the risk-neutral case.
2.1. English and Vickrey Auctions

English and Vickrey auctions are strategically equivalent. To see this, consider first an English
auction where the seller sets the reserve price at vg, and then lets it rise more or less continuously
as long as at least two bidders are willing to pay the announced price. Each bidder indicates
willingness to pay by some action that is observable not only to the seller but also to the other
bidders. Within this setting, the dominant strategy for each potential bidder B(v) is to participate

as long as the announced sale price does not exceed that bidder’s valuation. Thus,
Bv)=v v> . (2.1)

Notice that risk aversion plays no role in determining the dominant bidding strategy at English
auctions.

At a Vickrey auction, each participant must submit a sealed bid, with the highest bidder
winning the auction but paying only what his next-nearest opponent has bid.# The dominant
strategy at this auction is also to follow (2.1). To see why, consider what would happen if participant

i were to bid less than his valuation v;. He would then risk losing a non-negative rent, but gain

3 This type of risk aversion was considered by Smith and his co-authors. Other parametric forms of
risk aversion, such as constant absolute risk aversion, could also be implemented, but have not been
considered below because they do not nest the risk neutral case.

4 We shall assume that if only one potential bidder submits a bid, then that bidder gets the object at
the reserve price.



nothing. Conversely, to bid more than v; would be to reduce the amount of rent garnered if he
won. Thus, bidding v; when it exceeds vp is optimal from the perspective of bidder i.

Notice that the winner is the potential bidder with the highest valuation, provided it exceeds
vo. Letting V(;.n) denote the i*h highest order statistic for a sample of size N from the distribution
of V and denoting the winning bid by W, the above bidding behaviour implies that W equals V(3.
whenever W exceeds vp.

When the reserve price vp exceeds v, the number of actual bidders (participants) at an auction
P is endogenous, and typically less than the number of potential bidders N. Only those potential
bidders with valuations exceeding the reserve price vy participate. To calculate the number of
pa.rticipanl;s'a.t an auction, introduce the indicator variable

I-={1 if Vi > vy,
! 0 otherwise.

The number of participants at an auction is then

N
P= ZI;.

i=1

Note that P is distributed binomially with parameters N and Pr{l; = 1] = [1 — F(w)).
2.2. Dutch and First-Price Sealed-Bid Auctions

Dutch and first-price sealed-bid auctions are also strategically equivalent. To see this, consider
the decision problem faced by a participant at a Dutch auction. At Dutch auctions, the price
starts high and then falls continuously until some one stops it. Depending upon the participant’s
valuation for the object, he must decide at what point to stop the auction by signalling willingness
to pay the existing price. This situation is identical to that faced by a participant at a first-price
sealed-bid auction who must decide how high to bid for the object.

To analyze this case, we shall focus upon symmetric Bayesian-Nash equilibria. To construct
the equilibrium, suppose that the M opponents of player ¢ are using a common bidding rule o(v)
which is increasing and differentiable in v. Since valuations are modelled as independent draws from
a common distribution, the probability of player ¢ winning with strategy s; equals the probability

that every other opponent bids lower because each has a lower valuation

F(o™(si))™.
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Here 0~1(s;) denotes the inverse of the bid function. Given that player i’s valuation v; is determined

before the bidding, that player’s choice of strategy s; has only two effects upon his expected utility
- M ' -
U(vi - si)F(o™"(s))™ = n(vi — ;) /7 F (a7 (s:))™.

The higher is s;, the higher is player ¢’s probability of winning the auction F (o‘l(s,-))M, but the
lower is the pay-off following a win 7(v; — s;)/7. Maximizing behaviour implies that the optimal

bidding strategy solves the first-order condition

—(v — )"V F (07 ()M + Mp(v; — 5;)1/ f(a—'(s.-))p(a-l(s,-))’““dL;:—fo =0. (22)

Symmetry among bidders implies
8 = a('v,-). (2.3)

Substituting (2.3) into (2.2), recalling that do~1(s;)/ds; = 1/0'(v;), and requiring (2.2) to hold for
all feasible v;s, yields the following differential equation for o:

o'(v)F(0)™ + Mo (v) f(v) F(0)M~ = M f(v) F(v)M . (24)

Integrating (2.4), imposing the boundary condition o(v) = vy, yields

Jo F(E)M7 dg

o (2.5)

o(v)=v-

Notice that the condition determining participation at Dutch and first-price sealed-bid auctions
(V > vp) is identical to that at English and Vickrey auctions.

The winner at Dutch and first-price sealed-bid auctions will be the player with the highest
valuation V{;.n). Because the winning bid function is monotonic in V{;.x), its distribution is related

to that of the largest order statistic for a sample of size N from the distribution of V.
3. Data Availability and Requirements

The type of data available will typically determine whether a particular structural econometric
analysis of an auction is possible. With experiments, data problems can be avoided by efficient
design. This is not the case with field data. The way field data are sampled will typically determine
whether structural econometric work can be completed. Thus, in this section we consider what

kind of field data are typically available, and what are the minimum data requirements.
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In the above characterization of English auctions, where the exit of each participant is observed,
one can measure participants’ valuations from their final bids. In addition, both the reserve price
vo and the number of participants P can be observed. Other information must be typically
used in order to find the number of potential bidders N. When exit is unobserved at English
auctions because bids are only observed when a participant cries out, the last recorded bid for
each participant only provides a bound upon the valuation of that participant. In particular, a
participant’s valuation is greater than or equal to his last observed bid.

At Dutch auctions, one may observe the number of participants P, but only one bid as only
the winning bid is ever revealed. Whether the reserve price is observed will vary. As in the case of
English auctions, the number of potential bidders N is typically unobserved.

The use of Vickrey auctions is rare, but when used they are like first-price sealed-bid auctions,
in that both institutions provide the most complete information of the four mechanisms. Thus, in
addition to the reserve price vp, one typically observes all of the bids. Although one can measure
the number of participants P, one cannot observe the number of potential bidders N. Thus, like
English auctions, one must typically use other information to find the number of potential bidders
N.

In order to carry out the analyses consider below, a researcher must know the number of
potential bidders N, the reserve price vg, and the winning bid w. As discussed above, obtaining
the winning bid and the reserve price are typically straightforward. Thus, we shall often focus just
upon the special case of the winning bid. In all of our work, we shall assume that a measure of the
number of potential bidders N is available.? We shall also assume that the researcher has access
to a sample of T independent auctions of a relatively homogeneous good or service as in Paarsch
(1992) who considered low-price sealed-bid auctions of tree planting procurement auctjons; Laffont,
Ossard, and Vuong (1991) who considered the sale of eggplants using Dutch auctions; or Paarsch
(1993) who considered the sale of timber at English auctions.

4. Data Generating Processes

One strategy for interpreting field data (see Paarsch 1989, 1991, 1992,1993) involves exploiting the
fact that (2.1) and (2.5) are monotonic functions of V: players with higher valuations will bid

5 Note that the number of participants at an auction P is not a useful proxy for the amount of competition
N as P is endogenous. In the absence of a reserve price, researchers often argue that P is a good
measure of N; see, for example, Paarsch (1992).
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more. Because the bidding rules are functions of the random variable V, the bids are also random

variables and their densities are related to f(v).
4.1. English and Vickrey Auctions

At English and Vickrey auctions, finding the density of a bid B is straightforward because g is a
trivial function of V; viz., B = §(V) = V,if V > v,. Thus by employing independence, one obtains
the joint density of non-participation and bidding when P > 1 is similar to a Tobit model

N
IT £6)" F(uwo)=5. (4.1)

i=1
If exit from an English auction is imperfectly observed, then the joint density of non-participation

and bidding for P > 1is
N
TT01 = Fbo)1" F(wo) 50 (4.2)

=1

When P = 1, the dominant bidding strategy at English auctions reveals no other information than

Vi > vo for one potential bidder. The joint density in this case is then

N
[101 - F(wo)) F(wo)*=1.

=1
The winning bid is also a function of the V's. Thus, its density is related to f(v). The density

of the second-highest valuation for the object Y = V(2:N), when it exceeds v, is

NMFyM='[1 - F9)lf(v),
so the density of the winning bid W = (Y) = Y when it exceeds v, denoted hg(w; M), is
hp(w; M) = NMF(w)" (1 - F(w)]f(w).

A single potential bidder participating at an English auctions bids the reserve price vy, while at a
Vickrey auction the solo bidder pays the reserve price vg. Thus, there is a discrete mass point in

W’s distribution at vy having probability
hg(vo; M) = N F(vo)M[1 — F(w)].

When vg exceeds v, there is also a chance of the object’s going unsold, the “winning” bid being
zero. This occurs when P = 0, the probability of which is
F (Uo)N.
7



Introducing

if P=0,
otherwise;
ifP=1,
otherwise;

D1 P22,
2+~ 10 otherwise;

o
o
il
——
(=T

!
)
]
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(==

and

the density of W is
h(w; M) = [Fu)V] % [N F(so)M[1 - Foo)[]™ [NMF(w)~1[1 ~ Fw)lf(w)]™*.  (43)
4.2. Dutch and First-Price Sealed-Bid Auctions

The density of § = (V) is more complicated to calculate because o is a non-linear function of V.
The joint density of non-participation and bidding is
N ~105.0) 1% N
i f’(a l(s.)) Flo)0=9 =]
i=1 o (O'— (8,‘)) i=1
where F(wp) again denotes the probability of non-participation and where

Mnf(v) [, F(OM" d¢
F(v)MH

is the Jacobian for the transformation of v to o(v).

L

F(o™!(s))M™! F(v)—1) (4.4)

Mn 271 F(e)Mn dg

o'(v) =

The winning bid is also a function of the Vs. Thus, its density is related to f(v). The density
of the highest valuation for the object U = V{y.n) is
NF(u)™ f(u),
so the density of the winning bid W = o(U), denoted hgs(w;n, M), is

NF(o~}(w))M™N
My o) F(eyMn de

4.3. Revenue Equivalence Proposition

(1—-Do)
hs(w;n, M) = [ ] [F(vo)"]™. (4.5)

Assuming potential bidders are risk neutral with respect to winning the auction, the REP is a
restriction upon the first moments of the winning bids at Dutch, English, first-price sealed-bid, and

Vickrey auctions. In particular,
/whg(w; M)dw= /whs(w; 1, M) dw. (4.6)
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While many empirical applications of regression models based upon a moment condition like (4.6)
are easy to implement, in the case of auction models (because of the discrete mass points in the
density, etc.) it is often conceptually and analytically easier to work off the density of the individual
bids or the density of just the winning bids.% In what follows, we shall adopt this approach.

5. Identification

In experimental work, researchers choose F(v) and then examine whether observed behaviour is
consistent with what (4.1), (4.2), (4.3), (4.4), and (4.5) would predict. When field data are used,
however, the structure of F(v) is typically unknown. Also, auctions can differ in ways that are
observable to both potential bidders and researchers. In such cases, researchers often assume that
the random variable V' comes from some distribution that can be uniquely characterized by an
((r=1)x 1) parameter vector 8 as well as a vector of known, exogenous covariates denoted Z T

Thus,
F(v) = F(v;0,2). (5.1)
The parameter vector  and the covariate vector Z will embed themselves in the densities of all

of the bids as well as the winning bids for any of the auctions. Can one identify F(v;6,Z) from

observed field data?
5.1. English and Vickrey Auctions

At English and Vickrey auctions, an affirmative answer to this question is easy to see. For example,
in the case of P > 1 when exit is observed perfectly, the joint density of non-participation and
bidding is

N

[] £(6:;8, 2)" F(vo; 6, 2) -1,

i=1

6 Computationally, the method of simulated non-linear least squares proposed by Laffont, Ossard, and
Vuong (1991) may be preferred in the case of risk-neutral bidders at either Dutch or first-price sealed-
bid auctions. No one, to our knowledge, has ever applied the generalized method of moments estimator
proposed by Gallant and Tauchen (1992).

7 Note that v and 7 may be known, or they may be contained in the unknown parameter vector 6.
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while the density of just the winning bid is
hB(w; 0, M, Z) = [F('L’O; 9, Z)N] Do
[V F(v03 8, Z)[1 = F(v036, 2)]]™

[N M F(w; 8, 2)M-[1 - F(w; 6, 2))f (w9, 2)] ™.

For English and Vickrey auctions, the behavioural hypotheses of the model are that potential
bidders bid independently and losers tell the truth. For example, at English auctions each potential
bidder drops out of the auction when the price reaches the bidder’s valuation, thereby revealing that
valuation. The optimality of this strategy does not depend upon the strategies chosen by opponents.
Because the equilibrium is a dominant strategy, there is an absence of strategic play, which makes
it difficult to test the theory, assuming F is unknown. Thus, any assumption concerning F is
an assumption concerning the distribution of bids (or the winning bid) since the bid function is

essentially the identity function. Identification of é can be assured by the choice of F(v;0, Z).
5.2. Dutch and First-Price Sealed-Bid Auctions

In the case of Dutch and first-price sealed-bid auctions, the density of non-participation and bidding

is

ﬁ F(o~(s:;0,n, M, 2);6, 2)"™!
MTI o=1(si;0,n,M,Z) F(E; 0, Z) df

vo

I
] F(”O;oa Z)(l-l‘)a

=1

while the density of the winning bid is

NF(o~}(w;8,7,M, 2),9, Z)Mo+N
My [2 8¢ 2) p(g;0, Z)Mn d

(1-Do)
hs(w;8,n,M,Z) = [ ] [F(vo; 8, 2)"]™.
In the following analysis of identification for Dutch and first-price sealed-bid auctions, we shall
focus upon hs(w; 8,7, M, Z) since at Dutch auctions only the winning bid is observed. Our results
apply to the joint distribution of non-participation and bidding too.
The issue of identification for empirical specifications of Dutch and first-price sealed-bid auc-
tions revolves around the following question: Is there a class of distributions G in which members

G other than F solve Mot N
NG(§ (w))""™

hS(w§9,7I,M,Z)= (o
Mn [T GeYMn de

10



where
 GeM d,
G(u)Mn

To begin our analysis of identification, we assume that F(v;8°, Z) is the true distribution of

w=38u)=u-

valuations and that 7° is the true value of the risk aversion parameter 7. (For notational parsimony
we shall often suppress the Z argument.) Note that the derived distribution of all the bids as well

as the winning bid has support upon
v
[vo,/ F(&;6°, Z)yM™ df] = [vo, 3(6°,7°, M, Z)).
vo

In showing that the parameters vector (°,7°) is identifiable, we shall proceed in two steps.
First, we shall show that (F,7°) is the only distribution-risk aversion parameter pair that give rise
to the true distribution for the winning bid. The identifiability of §° will then follow from standard
results concerning the uniqueness of the parameters defining F.

Being first concerned with the identifiability of the pair (F,7%), we consider the question of
whether (F,7°) is the only pair that gives rise to the true distribution of the winning bid. Stated
another way, is there another (G, ), such that either G is different from F (in a sense to be defined
below), 7 # 1°, or both differ, that gives rise to the same probability law for the winning bid? The
main regularity assumption on the class of distributions (of which F is a member) is contained in

Assumption 1.

Assumption 1.
The class of distributions G contains distributions F(v) defined upon [v,7] that are monoton-
ically increasing, continuously differentiable with continuous density f(v) such that f(v) > 0

on (u,7).

Note that this assumption imposes no restrictions upon the value of the probability density function
at its lower or upper bounds. A large number of families of probability density functions satisfies
Assumption 1. Identification of F' will be relative to the class G, with F' assumed to be a member
of G. We shall assume that 7 belongs to some set of real numbers R = [1,A], for some large real
number A. The sense in which we say that G € G differs from F, written G # F, is given by the

following definition:

11



Definition 1.
We say that G # F if there exists an open interval A C (2,7) for which either F(v) > G(v) or
G(v) > F(v) for all v € A.

The sense in which (F,7°) is identified is given in the final definition. Note that this definition
requires that there exist some event (concerning the winning bid) for which the probability under
(F,7°) differs from the probability under (G,1) for any (G,n) # (F,n%). This is the standard
notion of identification as in Wald (1949).

Definition 2.
(F,n°) is identifiably unique relative to G x R, if for any G € G and 7 € R such that G # F,
n # 1°, or both,
PilW € A| F,q°] # Prlw e A | G,7)

for any Lebesgue measurable set A, where Pr{-| F,7°] denotes the probability calculated under
(Fy1°).

Note that it will be sufficient to show that the density of W under (F,7°) differs from that under

(G, n) over some open set in [vo, 3].

Theorem 1.

Given Assumption 1, (F,7°) is identifiably unique in G X R.

The proof of this theorem, like the proofs of all of our results, is contéined in an appendix to the
paper.

A consequence of this result is that if we have proposed a family of distributions F(v;8) = F,
then if the parameter 8° is identifiably unique, in the sense of generating a unique probability model
for v, then it is also identifiably unique in the sense of generating a unique probability model for

all of the bids or just the winning bid.

Corollary 1.
If for any 0 € O, such that 8 # 6°, we have Fy # F, then 6° is identifiably unique in the model
for all of the bids or just the winning bid.

To obtain these results, we have not imposed any regularity conditions beyond those contained

in Assumption 1. Additional assumptions concerning F may be required for an equilibrium to exist
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in the auction model, but these do not need to be imposed to identify the distribution of valuations

given the distribution of all the bids or just the winning bids.
6. Estimation

Having established identification for each of the mechanisms in the case of field data and trivially
for all four mechanisms in the case of experimental data, we shall now concentrate upon estimating
the unknown parameters of these empirical specifications by the method of maximum likelihood. As
in the case of identification, estimation is straightforward for data concerning English and Vickrey

auctions, but not in the case for Dutch and first-price sealed-bid auctions.
6.1. English and Vickrey Auctions

Because the equilibrium bidding strategies at English and Vickrey auctions are trivial functions of
the valuations for participants, deriving the likelihood function for a sample of data is straightfor-
ward. The econometrics of these auctions requires no more theoretical work than exists already
in the literature. In addition, such empirical specifications can usually be estimated using existing

software; e.g., the maximum likelihood command available in TSP.
6.2. Dutch and First-Price Sealed-Bid Auctions

The straightforward econometric structure of English and Vickrey auctions does not carry over to
Dutch and first-price sealed-bid auctions. The main technical problem is that the the support of
both the individual bid and the winning bid distributions depends upon all of the parameters of
interest. Thus, the standard distribution theory does not apply. Moreover, the standard way that
consistency is demonstrated in econometrics is unsatisfactory for this purpose in this context. In
what follows, we again focus upon the winning bids, but the methods we propose would apply were
all of the bids used.

A simple example will illustrate the nonstandard nature of the problem a researcher faces when
attempting to estimate structural econometric models of Dutch or first-price sealed-bid auctions.
Consider a random sample of size T' for a random variable W that is distributed uniformly upon
the interval [0, a], where a is an unknown parameter which the investigator seeks to estimate. The

probability density of function of W is

h(w;a)=a 0 < w < q]
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where 1[-] is the indicator function of the event argument. The standard approach to finding
the maximum likelihood estimator of a would involve maximizing the following logarithm of the
likelihood function with respect to a:

1 1 <

T-logL(a;wl,wz,...,wT) = -loga + Tt_zllog (10 € w < a)).
The standard approach to demonstrating the parameter consistency of the maximum likelihood
estimator (see, for example, White [1982] or Amemiya [1985]) would involve showing that this
function converges uniformly over some parameter set to a function that is maximized at the true
value.8 The problem with this approach is that showing uniform convergence is difficult, unless the
parameter set is restricted to be [a?, a® + §] for some value of § which is greater than zero, where
a® is the true value of a. This is because the usual dominance condition, such as Assumption A3
of White (1982), can only be satisfied on this set. This would then imply that the maximum is a®,
a somewhat unsatisfactory result that obviously depends upon knowledge of the true parameter
value.

Our approach to demonstrating consistency avoids this difficulty. We note that an equivalent

representation to maximizing the logarithm of the likelihood function is to solve the following

constrained optimization problem:

wm S a
. wy < @
max —Tloga subject to
<a> .
wr < a.

This approach is also more in line with the way the estimator will be calculated in practice. A
further advantage to this approach is that treating the problem in this way will provide a link to the
distribution theory. For, as we demonstrate below, the binding constraints are an important part
of the solution. For example, in the uniform example considered above, it is easy to see that the
solution for the maximum likelihood estimator involves a binding constraint. In fact, the maximum
likelihood estimator is

& = max[wy, wy,...,wr).

Abstracting from ties in the data, T — 1 of the constraints do not bind. Also, the conventional

methods used to determine the asymptotic distribution of & do not apply. In particular, only the

8 Note that some variant of Wald’s (1949) proof of parameter consistency. could potentially be used,
although as Amemiya (1985, p. 118) and Dhrymes (1970, p. 121) have noted, some of Wald’s conditions
may be difficult to verify in practice.
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largest w, is important in determining the distribution of & We shall discuss the problems which
arise in performing the asymptotic analysis in detail below. Suffice to say here that we shall define

the maximum likelihood estimator of the unknown parameter vector a = (4, 7) in a similar fashion.
Optimization Problem and Parameter Consistency

To define the maximum likelihood estimator, we first denote the density of the *h observed

winning bid w; conditional upon z; = (m,, Z;) by
hs(we; a,z) vo < wy < 3(e, z4)]

where a is an r dimensional parameter vector of interest. Letting

T
1
Lr(a) = T Zloghs(wt;a,zg),
=1

we denote the set of feasible values of a (that are consistent with the data in the sense described
above) by
A;. = {a € A | v S w; < 3(0,3:;) Vt= 1,...,T}

where A is some compact set which contains the true value of the parameter a®. Note that by
definition ap € A% for all T. The maximum likelihood estimator of a, &, is defined as the solution
to

bj T
max Lr(a) subject to a € AT

In proving the parameter consistency of the maximum likelihood estimator, the main compli-
cation that arises is that the set A} shrinks as the sample size increases. To prove consistency
in this case, we shall show how AT behaves as T grows. To begin, we make some assumptions

regarding the distribution of the z,.

Assumption 2.
The z;s are independently and identically distributed and contain discrete variables z;; with
finite support X;, and continuously distributed variables z;, with compact support Xo.
Moreover, for any non-empty subset A; of X; and any non-empty open subset Ay of Xj,

Pl’[Al X Ag] > 0.

We shall let X = X; x X, denote the complete set of = variables. Next, we shall make an assumption
that restricts the behaviour of the true density function near the upper bound of the support. This

will be useful in determining the limiting behaviour of the set AZ..
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Assumption 3.
For any € > 0,
inf Pr[W > 3(a®,z) — €] = é(¢) > 0.
zeX

A final assumption that is used to analyze the behaviour of A} regards the nature of the 3(a,z)

function.

Assumption 4.
For any a € A, 3(a,z) is continuous in z on X. Moreover,
v < inf §(a®,z) < sup 3(a’,z) < oo.
z€X z€X

In providing conditions for consistency, we shall show first that the set A} converges to the

set

A*={ae A|5%z)< 3(e,z)Vz € X}

This is the set of & that obeys the constraints for all possible values of z and w. Notice that by
construction A* C Aj. After showing that A} converges to A*, we shall give a set of conditions
in terms of A* that guarantee consistency. The sense in which A7 converges to A* is given in the

following definition.

Definition 3.
A% =3 A*if A* C A} and if for any o ¢ A” there is a finite value T such that a ¢ A% for all
T > T with probability 1.

Notice that in this definition T may depend upon the particular a chosen. Also note that the
probability measure with respect to which this condition relates is the joint probability measure of

the pair (w,z). Theorem 2 contains the consistency result.

Theorem 2.

Under Assumptions 2 to 4, AT 235 A

The following result contains the general consistency result for the maximum likelihood es-
timator. Notice that the result proved in Theorem 2 is one of the assumptions used to prove

consistency.
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Theorem 3.

Given the following:

a) A is compact;

b) A5 = A%

¢) Lr(a) == L(e) uniformly over A;

d) if L(a) > L(a®) for any a € A*, then a = a%

~ 8.8
a — a°.

The conditions have been stated in such a way so as not to impose a strict set of primitive
conditions on the underlying density function. This seems most desirable since there are now a
large number of ways that one can verify the uniform convergence condition in c); see, for example,
Newey (1991) and Andrews (1992). Conditions c) and d) have been stated in a way that requires
verification with respect to the fixed sets A* and A rather than with respect to the changing random
set AT. This should make it easier to verify them in practice.

In order to calculate the maximum likelihood estimator on a computer using non-linear pro-
gramming techniques as well as to determine its asymptotic distribution, we need the following two

assumptions:

Assumption 5.

The log hs(a; w, z) function is twice continuously differentiable in a.

Assumption 6.

The 5(a, z;) functions are quasi-convex and twice continuously differentiable in a.

-

The maximum likelihood estimator & can be computed by solving the following optimization

problem:
w S 5(&, 2:1)

T w2 S 5(0,:{:2)

max ;]oghs(a;w‘,m,) subject to )
wr < 5(0, .’ET).
In practice, solving for the maximum likelihood estimator will involve maximizing the following

Lagrangean:
T

Llen=Y (log hs(0 01, 20) + A (3(ex, ¢) — w,))

t=1
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with Tespect to the vector a, where A = (Ay,..., Ar) is the vector of T' Lagrange multipliers. The
maximum likelihood estimator & satisfies the following conditions:®

T
Y (Valoghs(é;we, ze) + M Vad(d, z:)) = 0

t=1
A1 (5(&,21) - 1.01) =0

A2 (3(&, T2) — 'wz) =0

1\7(5(&,:0:7') - wT) =0,

where V, denotes the gradient vector of the function to follow with respect to the vector a. At
most, T of the T' constraints will ever bind at one time; i.e., T — 7 of the Lagrange multipliers will

be zero at the optimum. For the binding constraints, the Lagrange multipliers will be non-negative.
Asymptotic Distribution of the Estimator

A natural way to calculate the variance-covariance matrix of & would be to consider the
behaviour of the Hessian matrix of the Lagrangean

T
Voo £(8) = Y (Voo loghs(&;wr,2e) + AVoad(d 1))
t=1

This is useful when the solution to the optimization problem occurs along a smooth and differ-
entiable part of the constraint set, but typically the solution obtains at the intersection of the
constraints. In this case, the Hessian is ill-defined. Moreover, the properties of the perturbed
optimum are determined solely by the constraints. To see this, consider the simple problem intro-
duced in the first part of this section. There, the properties of the maximum likelihood estimator
& were solely determined by the behaviour of the largest w, in a sample of size T. In this case, the
properties will often be determined by the solution to some set of the largest r order statistics of
wy given z;.

As may be expected from the previous discussion, the distribution theory for the estimator

can be quite complicated. Because of technical difficulties that arise with T constraints when T is

9 Under the stated conditions, these Kuhn-Tucker conditions are necessary, but not sufficient for a global
maximum. If the logarithm of the likelihood function is pseudo-concave, then it is well-known (see
Mangasarian [1969]) that the Kuhn-Tucker conditions are both necessary and sufficient.
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going to infinity, we have only analyzed the case of discrete covariates in which case a finite number

of constraints exist asymptotically. Hence,

Assumption 7.
z is a discrete random vector with probability mass function w(z), with k£ being the number

of points that have 7(z) > 0.

Denote each possible point in the set by z(z), and let ; = x(z(z)) for i = 1,..., k.

Despite the assumption of discrete covariates, the results are of considerable interest. Indeed,
as the following discussion will show, the limiting distributions of the estimators will depend upon
the relationship between k and 7, and will only fall into the usual normal limiting family in a special
case.

The advantage of having discrete covariates is that the sample optimization problem, which

- we shall call (L), may be written as

k
max Z #;L1(a,z(i)) subject to i(z(i)) < 3(a,z(3)) i=1,...,k

i=1
where 1 (z(¢)) = max{w; : z; = ()} is the largest order statistic of w, over all observations that

have z; = z(%), #; = T;/T is the proportion of the sample with z; = z(7), and

T
Lr(e,a(3)) = 7 3 log hs(a we 2(0))lze = 2()

=1
is the average of the contributions to the logarithm of the likelihood function contribution of
observations with z; = z(i). The fact that the constraints involves order statistics and that
some of the constraints bind at the maximum likelihood estimate will lead to the unusual limiting
distributions that appear below.
Before proceeding, we first present a general result, contained in Galambos (1978) and discussed
in Reiss (1989), which gives the limiting distribution of order statistics and their relationship to

the Weibull distribution.
Lemma 1.

Suppose that the {w;}7, are drawn randomly from a population with probability density

function f and cumulative distribution function F, on [0, 7] such that for all z > 0,



and T < 00, then

- (r — max{uwi}) - W(1,7)
T

where W(1,7) denotes a random variable that is distributed Weibull with parameters 1 and

v,and df =7 - F1(1- F)-

This Lerama provides conditions under which the limiting distribution of the largest order statistic
is
[1 - exp(—2")].

Note that it is only defined for positive values of z. This gives the well-known fact that extreme
order statistics are biased estimators of the upper bound of the distribution, although they generally
converge very quickly as shown in the previous result. Note also that if we can find alternative
constants dr such that dy/dr — 1, then the result will still hold. The v parameter will depend
upon the behaviour of the density function near the upper bound of the support. There may be
other types of limiting distributions of largest order statistics (depending upon the nature of the
parent population), but this result is sufficient to characterize the limiting distributions of order
statistics in the auction case. As the following result shows, the densities in the problem we consider
will satisfy the condition in Lemma 2 with v = 1 because the density is strictly positive and finite

at the upper bound of the support.

Lemma 2.

Given Assumption 4,

lim hs(w;a®z) = = N >0
w—3(a®,z) Mo fu‘; F(&;60, Z)Mn° d¢

This result shows that the distribution of the winning bid has a strictly positive density at its
upper bound. This fact will be important to the proof of Corollary 2 below. There we show that
the largest order statistic for each possible value of = consistently estimates the upper bound for
each possible value of z. Moreover, these order statistics are consistent at rate T. This result is
useful since later we show that the maximum likelihood estimator in these models depends upon
order statistics. In some cases, the maximum likelihood estimator is obtained by solving for the
parameters purely as functions of the order statistics. In such cases, the maximum likelihood
estimator will also be consistent a rate T. The particular limiting distribution that results will,

however, depend upon the number of possible values of z as well as the number of parameters.
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Combining Lemma 1 and Lemma 2, we can show that the limiting distribution of the largest
winning bid for each possible covariate value will be exponential with intensity parameter equal to

one. In addition, a convenient form for the normalizing constant can always be found.

Corollary 2.

Under Assumptions 1 to 7,
-dl?(E(ao,x(i)) _ a(a(i)) <5 W1, 1)

where W(1,1) is an exponential random variable with parameter 1, denoted £(1), and

_ Mn°(7 - 5(a®,2(:))

dr NT:

= 0,(T7").

To make these notions concrete, consider the following example of a procurement auction that
has no covariates and where the lowest bidder wins the right to perform the task and is paid the
amount bid. If costs are distributed Pareto, then so too is the winning bid. Suppose that the
parameters are o; and a3, and
a2

W 0<a; <wand0< ay,

hs(w; 0, 02) =

then for a sample of size T

CZ—'I(min W — ay) <, (1)
1

is distributed exponentially in the limit with parameter 1 because the Pareto density function is
strictly positive at the upper bound of the distribution.10
Letting the subscript 0 on the function denote population values, introduce the following

notation
Lo(, (i) = Eo[log hs(w; a®, z(3))]

where Ep denotes that the expectation is taken at the true parameter values a®. Also, define the

following population optimization problem (F;):

max Lo(a,z(i)) subject to 3(a,z(:)) < §(a®,z(i))

10 The reader will remark that the normalization employed in this example is not the one implied by
Lemma 1. We use it because it is equivalent in the limit and has a convenient form, as do the
constants dr in Corollary 2 for the auction case.
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as well as the aggregate problem (P)

k
. ; 3 3 ) < 5(a®, z(¢ i=1,...,k.
max gw.Lo(a,m(z)) subject to  3(e, z(3)) < 3(a”, z(3)) i

We shall assume throughout that we can interchange integration and differentiation. We also

introduce the following assumption regarding the problem F;.

Assumption 8.

The solution to P; is (a2, A?) with A > 0, so that the constraint binds.

Typically, we find that the expectation of the gradient vector V4 Lo has at least one strictly positive -
element, with remainder being 0 when evaluated at the true parameters a®. Continuing with the
Pareto example considered above, one can demonstrate easily that Assumption 8 is satisfied with
X = a9/l > 0.

A condition that simplifies the calculation of the limiting distribution is contained in Assump-
tion 8. It essentially permits use of the implicit function theorem to concentrate the likelihood
function using the binding constraints, so that standard expansions can be used to obtain the
asymptotic distribution. Consequently, when k 2> 7, the maximum likelihood estimator is deter-
mined sclely by the constraints, so its distribution will depend only upon the distribution of the

order statistics.

Assumption 9.

The matrix whose columns contain the k-vectors
Vag (a’ z (z))
is of full rank min{k,r} uniformly in a neighbourhood of al.
In the remainder of this section we analyze two different cases.

Casel: k<r

Partition the vector a into (@, az) of dimensions k and (r — k) respectively, in such a way

that the k X k matrix whose i** column is
Vo, 3(a, (%))

is non-singular over a neighbourhood of a®. Of course, when k = r the a; component is non-

existent. The next result shows that & the solution to the sample maximization problem defined
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above, with probability one, will satisfy the Kuhn-Tucker conditions, with all k£ constraints binding
as T tends to infinity.

Theorem 4.

Given Assumptions 1 to 9, and assuming that
Valr(e,z(i)) == VqLo(a,z(1))

uniformly over a neighbourhood of a? for each 7, then for large enough T all k& constraints bind

at the solution & with probability 1.

The fact that all k& constraints bind makes it possible to invert out a subset of parameters a; as
a function of the remaining parameters by Assumption 9 and the implicit function theorem. The
resulting solution will be twice continuously differentiable in both a3 and the remaining arguments

in a neighbourhood of a3. Here, the implicit function will be denoted as
ay = Y(az, @, ),
the solution to the set of equations
#(z(3)) = 3(a,2(2)) i=1,...,k

where we introduce the shorthand 1 to denote the k vector of #(z(i))s and z to denote the vector
of z(¢). Also, note that

a(l) = y(a3, 8°,2)
where 3° denotes the k vector of values of the upper bounds. When k = r, one can solve for a;
just using the constraints, so that it can be written as a function of only the w(z(i))s, and its
distribution will depend on the distributions of the @(z(i))s. In this case, this condition will give
rise to limiting distributions related to those in Corollary 2.

We next introduce the following notation, which will be useful in characterizing the results
~when k < 7. Define ) )
) &0 O
V[V, log hs(a® w, z(3)] =

t O

21 62
for each ¢ where the partition is conformable with that of a. In the case where k¥ < r, standard
mean value expansions will be used to find the limiting distribution. The terms involved will be of
the form

di = Vg, ¥(@2)Va, log hs(a; wi, 7:) + Va, log hs(a; we, 7).
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Note that Assumption 8 implies that E[d;] = 0 for each ¢. Define for z; = z(3),

V[di] = V', 9(a2)% Vo, (e2) + 9 + Vo, b(az)2 + 8 Va, ¥(@2)

Theorem 5.

Under Assumptions 1 to 9, and assuming that k < r

V(& - o) 5 N(0, 1)

and
VT{(és - ) -5 N(0,V2)
where
k -1
Vi = [vald,-]]
=1
and

V2 = V:xz ’¢(a2)Vl Vaz "xb(a?)‘

When k = r, things are very different. Since, by Theorem 4, the parameters are determined
by the constraints, no averages are involved and the distribution is related to that of 1, which are
extreme order statistics. The limiting distributions in this case are related to the £(1) family, and
the estimators will converge at rate T. This unusual result is contained in Theorem 6. To state
this theorem succinctly, we first develop some notation. Note that in this case for large enough T,

@ is the solution to
(2() = 3(&, 2(1)),
'so that, as noted above, we can write

&= d’(@a Z)

. where ¥(-) is a smooth function of 1 near the limiting values 3°. To characterize the limiting

distribution we expand the function about 5°.

Theorem 6.

Under Assumptions 1 to 9 and assuming that k£ = 7,

~D7tir(é - a®) <5 (&(1), .., E(1))
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a vector of independent £(1) random variables where
Dr = diag{dr(i)}

of dimension k, where dr(¢) is given in Corollary 2, and

with V,5(a) being the matrix formed by the vectors V,5(e, z(3)) for i = 1,...,k.

Note that the standardization in Theorem 6 will be proportional to T, so that the estimators
converge at the rate T', and the limiting distribution is that of a vector of independent exponential
£(1) random variables. This result does not imply that the estimators themselves have one-sided
distributions, only that there is a linear transformation of the estimators that has a one-sided
distribution. One may be concerned about the fact that the limiting distribution is not normal,
since this will make inference difficult. There is no need for this concern since the exponential
distribution has a particularly convenient closed-form cumulative distribution function, which will
make it even easier to form confidence intervals than would be the case with a normal limiting
distribution.

These results can easily be adjusted to the case where only a subset of the parameters influence
the upper bound of the distribution. Another case that can easily be examined is where k < 7 and
one can solve for a subset of a; as functions of only w and z. The result of Theorem 6 would imply
that these parameter estimators have £(1) limiting distributions whereas the remaining parameter

estimators will have distributions that fall in the normal limiting family of distributions.

Corollary 3.
Suppose the conditions of Theorem 5 hold, and that a subset of &; can be written as functions
of only 1 and z, then this subset will have limiting £(1) distributions, and the remaining
parameters will have limiting normal distributions. Moreover, the first subset will converge at

rate T and the remainder converge at v/T.

Note that this corollary can be used to show that the simple Pareto example considered previously

in the examples behaves like this.

25



Case2: k>r

When k > r, with finite k, there will generally be more than one way of determining the
parameters from the constraints. Moreover, in the population problem (P), the objective function
may be tangent to one of the constraints. These facts make it possible for the solution to the
sample problem to be such that r constraints bind, or less than 7 constraints bind, and this will be
random from sample to sample. This introduces potential difficulties in the asymptotic analysis.
To proceed, we shall make the following assumption, which will guarantee that for large T the

solution to (P) has at least r constraints binding.

Assumption 10.

In problem (P), the matrix
(VaLO(a)a {Vag(a)}f-l)

has full rank over a neighbourhood of a® where

{Vad(a)}r-1

is a collection of derivatives of any r — 1 distinct upper bounds.

The type of situation that this assumption rules out is illustrated in Figure 1, which applies to
the Pareto auction example when k = 3 and r = 2. The following Lemma then shows that given
this assumption the solution to the sample problem for large T will occur where r constraints are
binding. The advantage of this is that the asymptotics for the case with r binding constraints and
the case with less than r binding constraints are quite different; with the first convergence is at

rate T and with the latter convergence is at rate VT.
Lemma. 4.
In the sample problem (L), assuming that
VoLlr(a,z(i)) = VoLo(e, z(7))
uniformly over a neighbourhood of a®, then the optimal solution occurs at a point such that
for large T at least = constraints bind with probability 1.

Suppose there are k constraints and r parameters, then there will be £ = (’r‘) possible

combinations of constraints at which the solution may occur. Denote the set of possibilities by
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E. (Note that Assumi)tion 9 guarantees that each possible combination will possess a solution.)
We shall let £ index each solution and let &(¢) be the solution to the £} set of constraints. Also,
let E(¢) be the event that the solution to (L) is at &(¢). In this Lemma, we show that for large
enough T the solution to problem (L), denoted &, is such that |
&= a(O)I[E(0)]
LeE

almost surely, where I[E] denotes the indicator function for the event E. Note that with probability
1 only one of the I[E(¢)] will be 1.

Using arguments similar to those used previously, one can rule out some of the combinations as
being likely to occur with probability 0. For example, consider Figure 2 representing the population
problem with £ = 3 and r = 2, and satisfying Assumption 10. In this case, we can rule out an
optimum at the solution of C; and C3 as being likely. The reason is that if we maximized the
objective function subject to these two constraints then the optimum is actually at B rather than
at A. Alternatively, at A it is impossible to find a positive Lagrange multiplier A, to satisfy the first
Kuhn-Tucker condition using these two constraints alone. Also note that at the actual optimum
B, C, is not satisfied. Noting this, we are able to narrow down the set of possible solutions. In the
example in Figure 2, there will in fact be two possible solutions. Maximizing the objective subject
to either (Cy,C2) or (Cy,C3) we are able to satisfy the Kuhn-Tucker conditions; i.e., find positive
A;s and satisfy all remaining constraints. The following Lemma makes this more precise in general.

First, define the solution to the linear equation,
Valo(a) = {Va3(a)}red =0

to be A§, where the notation {-},¢ is the ¢ possible combination of r elements of the argument.
Lemma 5.
In the sample problem (L), assuming that
Valr(e,z(i)) == VqLo(a, z(3))
uniformly over a neighbourhood of a?, then for large enough T Pr[E(¢)] = 0 if any element of
Af is negative.

Note that Assumption 10 rules out the possibility of any of the A} being 0. Also, note that in the

example in Figure 2, the combination that has (C,C3) will have one of the Lagrange multipliers
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being negative. Denote the remaining set of possible combinations, not ruled out by Lemma 5, by
Zg. Also, define =, the ¢t element of =g, to be the collection of the indices of constraints used
to obtain this solution. For example, in the case considered in Figure 2, there are two possible
solutions, so =g has two elements, and we could define Z; = {1,2} and Z; = {1,3}.

One potential problem that is raised by this representation is that the events E(£) are random.
Although Theorem 6 gives a nice characterization of the distribution for any given solution (uncon-
ditionally), the normalizing matrix ﬁ;l Jr will, in general, be different for each possible solution.
This problem can be avoided, however, by using the following normalizing random variable,

Br=- 3 I[E@)D1}ire
1133
where ﬁ;} Jre is the required normalization for the £*h possible solution as in Theorem 6. Since
almost surely only one of the I[E(£)] will be 1, and I[E(:)]I[E(5)] = 0 for i # j, then we have that
Br(a-o®) = - ) I[E(0)D7}rd(&(0) - o).
LeZp
In order to characterize the limiting distribution of this quantity, we must determine for each value

of ¢, the limiting distribution of
Dz} Jre(6(8) — @°) = Dz (@(=(8)) - 3e)

conditional on the event E(£). This requires more precise information on what actually determines
E(¢) and its relationship to the above random variables. The following Lemma shows precisely how

this is done.

Lemma 6.

In the sample problem (L), assuming that
Valr(e,z(i)) == VaLo(a, z(1))

uniformly over a neighbourhood of a°, then for large enough T I[E(£)] = 1, and hence & = &(¢),

if and only if, for every constraint ¢
b (2(3)) < 3(a(€),z(3)).

In other words, after restricting attention to solutions that are not ruled out by Lemma

5, a particular solution will be the optimum when all of the constraints are satisfied at that
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particular solution. In the case where the logarithm of the likelihood function is pseudo-concave
over a neighbourhood of a?, this result would be obvious due to the fact noted in footnote 9.
The constraints used to determine the ¢! solution will all be satisfied, so it remains to check
any constraint not included in the ¢th solution. This fact makes characterizing the conditional
distribution possible. This is because the joint distribution of all k*® order statistics is simply the
product of each marginal distribution due to the independence assumption, and the conditional
distribution is just the conditional distribution of » components of this conditional upon the fact
that certain linear combinations of these r components exceed each of the remaining (k — 7)
components. This is proved in Theorem 7, which contains the limiting distribution result for

the quantity Br(a — a°).
Theorem 7.
Under the assumptions made above

Br(é - % 4, z= (215 00y 20)'

which has a joint density function given by
[Tez) > IT0t—Pr(ki2)]
i=1 LEZER RS,

where the constants kg; are given by
108 s 2
Here, €(-) is the probability density function of an £(1) random variable, while
Pr{kyiz] = I[kyiz > 01E(ky:2)

and E(-) is the cumulative distribution function for an £(1) random variable.

The limiting distribution in Theorem 7 is non-standard, and to our knowledge has not appeared
in any other problems. As it stands, the distribution depends upon various unknowns, but these
unknowns are all estimable. One may determine consistently the set =g by using the result of
Lemma 6 to see if Lagrange multipliers at the solutions in the sample problem are all positive.

Given that this is possible, one may then determine the constants ky; using sample estimates.
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A simple corollary that follows from this is that the estimator is consistent at the rate T rather

than the usual VT.

Corollary 4.
Under the conditions of Theorem 7, for any § > 0

T1=5(6 - o) = op(1)

7. Testing

Having specified, identified, and estimated empirical models of auctions, the natural next step is
to test whether these models are consistent with theoretical predictions. In experimental work,
this might involve deciding whether the estimated parameters are consistent with those set by the
researcher. Alternatively, when field data are used one might be interested in deciding whether an
existing implementation of an auction is close to the optimal selling mechanism. As in the previous
two sections, testing using data from English and Vickrey auctions is straightforward, but when

data from either Dutch or first-price sealed-bid auctions are used the analysis is more complicated.
7.1. English and Vickrey Auctions

Hypothesis testing using the likelihood ratio, the Lagrange multiplier, or the Wald tests is well
understood in the case of English and Vickrey auctions.!! For example, with experimental data,
one could examine the behaviour of the score function at the truth via a Lagrange multiplier test.
With field data, the Wald test could be used to decide whether an observed implementation of an

auction is close to the optimal auction selling mechanism.
7.2. Dutch and First-Price Sealed-Bid Auctions

Except in special cases, the non-standard distribution of the maximum likelihood estimator in the
case of Dutch and first-price sealed-bid auctions prevents one from using any of the conventional
hypothesis testing procedures. How can the asymptotic results presented above be used to make
inferences about parameters? In answering this question, we consider three cases: a) k < r; b)

k = r; and c) k > r. Because Case a) fits into the standard framework with asymptotic normality,

11 Engle (1984) provides a good summary of these procedures.

30



inference may proceed in the usual way. Cases b) and c), on the other hand, require additional

analysis.
Case b): k=r

In this case, the maximum likelihood estimator is asymptotically an r vector of independently
and identically distributed exponential random variables having intensity parameter 1, hereafter
denoted £,(1). Note that nuisance parameters are not an issue here. For individual elements,
however, the limiting distribution does depend upon nuisance parameters. In particular, letting A;

denote the i*® row of A, the limit of A/T, where A-1= —f);l.f'r, then by Theorem 6
T(&i - af) = Ai,(1).

Because A; depends upon nuisance parameters, the limiting distribution is nuisance parameter
dependent. How can one conduct inference in this case?

Consider first hypothesis tests concerning the complete vector of parameters and of the form
Hoy:a=ao"
for some specified value a*. One sees immediately that
(&-e")YA VA (a-a") D £ (1)E(1)

under the null, and diverges when the null is false. Although the limiting distribution of £,(1)'&,(1)
" is non-standard (being the sum of squared independent exponential random variables), it does not
depend upon nuisance parameters. The distribution of £,(1)£,(1) can be simulated easily, so it is
relatively straightforward to calculate critical values or p-values in order to conduct the test. Note
. also that this result can be used to form a confidence region for the parameters a°.

The presence of nuisance parameters in the single-element of a case prevents the direct
application of the principles considered above. A useful alternative is to use a Lagrange multiplier
type procedure. To illustrate this, suppose (without loss of generality) that one is interested in

testing

. — L
Ho.a1—al

for some specified value of a}. In this case, the maximum likelihood estimator & solves a set of r

equations of the form



where a3 corresponds to the remaining (r — 1) parameters. Consider the functions 3(-, -) evaluated

at the hypothesized value of a}. One then obtains
- x A P -
5(a}, &) = 3(ef, 03)
and
L 5(0“1]1 a3),

50 a simple test of the null can be performed by examining the (normalized or weighted) differences
(E(a;, &2) - _‘lf)_)

which converge to zero under the null, and to some non-negative vector under alternative hypothe-

ses. To construct a test statistic, define the following matrix:
J = [Vod(a)]™?

with Jr being the estimate of J based upon G. Also, denote the last (r—1) rows of Jr by Jrz and
the last (r — 1) rows of J;! by (Jr);!. Using results from the proof of Theorem 6, one can show
that under the null

D7 (5(05, &) — B) > ZE:(1)

where

Z = plim Z = plim D7 (-1 + (J3')2J12) Dr

T—oo T—00

which we assume to exist and to be non-singular. It then follows that
(8(c5, 62) — 1) D7 (2'2) 7' D5 (3(0, 62) — ) - E:(1)VE:(1)

which again does not depend upon nuisance parameters. It is straightforward to extend this result
to tests concerning more than one parameter, and to show that the extension of this to tests
concerning all r parameters gives a test that is asymptotically equivalent to the one based upon

the result in Theorem 6.
Casec): k>r

In this case, the limiting distribution does depend upon nuisance parameters. Thus, although in

principle one could proceed as in Case b), the limiting distribution is an inner product of random
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variables having a distribution given in Theorem 7. Whether it is possible to estimate p-values
consistently based upon estimates of the nuisance parameters and simulation given these nuisance
parameter estimates is a difficult question that we shall not address here. Although the regularity
conditions needed and the actual implementation of this in practice are open to question, it does
seem plausible that such an approach could work. In any case, Theorem 7 is interesting in its own
right and is a step towards a general solution for a wide class of problems.

What other alternatives exist? One possibility is to note that the solution to any set of
r constraints will be consistent at rate T'. If one chooses a set randomly, then Theorem 6 would
apply and inference could be conducted as in Case b). Moreover, it may be possible to combine test
statistics in a deterministic way, such as averaging over all possible combinations of r constraints.

Thus, inference is possible to conduct within this framework. Alternative estimation strategies,
that would result in v/T consistent and asymptotically normal estimates, are available but tests
based upon such approaches are likely to be less powerful because of the slower rate of convergence.
The fast convergence for the maximum likelihood estimator (or estimates based upon solving sets

of support constraints) makes this approach most attractive in parametric models.
8. Some Monte Carlo Evidence

In this section, we use Monte Carlo methods to compare the small sample properties of the
maximum likelihood estimator with those of the piecewise pseudo-maximum likelihood proposed
by Donald and Paarsch (1993) and non-linear least squares estimators in the case of Dutch and
first-price sealed-bid auctions.!? For direct comparability, we have adopted the experimental design
used in Donald and Paarsch (1993). Donald and Paarsch focus upon a procurement auction within
the independent private values paradigm, where the lowest of the sealed bids is the winning bid.
Potential bidders are assumed to be risk neutral. Thus, 7 equals one. In all of our simulation
experiments we have assumed that f(c), latent distribution of costs C, follows the Pareto law, so

o2
Qo
f(c)=caz_+11 0<ay<e 0<a;.

In this case, the optimal bid function is
[0 = FOIM de oM e
M=F@M ~aM-1 "~

o(c)=c+

12 WWhen the amount of simulation goes to infinity, the method of simulated non-linear least squares
proposed by Laffont, Ossard, and Vuong (1991) becomes the method of non-linear least squares.
Thus, the non-linear least squares results can be interpreted as the best-case scenarios for the estimator
proposed by Laffont, Ossard, and Vuong (1991).
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The density of w = A(z) where z = min[cy, . ..,cN] is then

M az(M+1)
o2(M + 1)(%) ayoo M
h(w; ay, ag, M)= woz(M+1)+1 asM -1 <

while the 7*® raw moment of w is

J
W= ajao M az(M-l-l) . M+1). i=1.2.
Efw’] (azM—l) M 1) -7 j<a(M+1),i=12,...,

implying the following empirical specification for the first raw moment:

w= ( alagM ) az(M-l- 1)

oM —1) M+ 11"

where u, has a mean of zero and a variance that depends upon M.

We fixed the values of (a$,a9) at (1,2). This implies that the expected value of ¢ is two, while
the variance of ¢ does not exist. This latter implication has no effect upon our work, since it is
the second raw moment of z = min[c, ..., cn] that is important. Allowing ¢ to have a very diffuse
distribution also mimics some of the empirical evidence encountered in field data (see Paarsch
[1992]). In any case, the second raw moment of z depends upon N = (M + 1) and exists in all of
our experiments.

We considered three different sample sizes T: 50, 100, and 200. These values reflect the amount
of data typically available. In particular, samples of size 50 would be common, while those of 200
would be considered large. In each of these samples, the number of bidders N could take on four
different values: 3, 6,9, and 12. This implies that the number of opponents M could take on the
values 2, 5, 8, and 11. These values reflect the amount of competition that is often encountered in
field data. Thus, in this model k=4 >2=r.

We investigated three different patterns for the design matrix of the Ms, the probability
distribution of the Ms, the {m(M)}4f—s. In the first, each M was equally likely (Design A), while
in the second, large Ms were more likely than small ones (Design B), and in the third, small Ms
were more likely than large ones (Design C). In Table 0, we present the Tjs and their corresponding
7(M)s for the three different designs.

For the piecewise pseudo-maximum likelihood estimator, we partitioned the parameter vector
o = (@, az) in two different ways, concentrating out first a; and then ;. Below, we refer to these

partitions as Partition 1 and Partition 2, respectively.
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For Partition 1, the piecewise pseudo-maximum likelihood estimator of a3 is
T
2
S (M + 1)1og (g#y)

but an estimator of a; can be defined in at least four different ways. First, consider any of

appl
~M " @, M-1
Q =wM — M_—l,...,M.
= )( &M )

aPP! —

Alternative estimators are

~mi s fal a2 N
&M = min[a],é3,...,aM),
.a T x (M +1)
ay = N 1
M=1 T
and
M TM
sb _ M
& =)
M=1

where Np = ZL, N,. For Partition 2, the piecewise pseudo-maximum likelihood estimator of oy
is defined implicitly (see Donald and Paarsch [1993]), and an estimator of a; can also be defined
in at least four different ways. First, consider any of

aM = — ﬂl(ﬁ{)})pl M=1,.,M.
(@(M) - a*) M

Alternative estimators are

~min

e ral a2 ~ M
&"™ = min[éy, 43,...,857),

M
. TMx(M+1),
= 5 I,

and
M
Z _M.
=T
The random numbers for the experiments were generated using the multiplicative congruential
method with modulus (23! — 1), multiplier 397204094, and initial seed 2420375. This method
generates uniform pseudo-random numbers on the interval (0, 1). (For more details, see Hall et al.

1988, pp. 232-235.) Using the property that the distribution function is distributed uniformly on

the interval (0, 1), we applied the inverse distribution function to obtain the pseudo-random ws.

35



We maximized the logarithm of the likelihood function subject to the T constraints using a
slight modification of Schittkowski’s (1981a,b) implementation of the (recursive) quadratic approx-
imation method of Wilson (1963), Han (1976, 1977), and Powell (1978), see Vaesson (1984, pp.
57-66).

For Partition 2, we maximized the logarithm of the concentrated likelihood functions using the
Newton-Raphson algorithm. We minimized the sum of squared residuals using the Gauss-Newton
method. The true parameter values were used as starting values.

The results of the nine experiments are presented in Tables 1 to 9. The abbreviations St.Dev.,
L.Q., and U.Q. denote respectively the standard deviation, lower quartile, and upper quartile of
the estimator’s distribution. Also, in these tables the superscript upon an estimator denotes its
type. For example, the 5 on &3 implies that this is an estimator based upon Partition 1, for the
case when M = 5. The “min” superscript denotes the minimum of all estimators with numeric
superscripts and the same subscript. The superscripts “a” and “b” denote the type of averaging
of the &¥s, where the “a” denotes the weights (T X (M + 1)/NT) and where the “b” denotes
the weights (Ta/T). An estimator with the superscript “ppl” is the piecewise pseudo-maximum
likelihood estimator (e.g., &ll’pl is the piecewise pseudo-maximum likelihood estimator based upon
Partition 2), while one with the superscript “ml” is the maximum likelihood estimator, and one
with the superscript “nls” is the non-linear least squares estimator.

As one can see, the rates of bias (when measured using either the mean or the median) for the
maximum likelihood estimator are typically less that those of the other estimation methods. What
is most stark about the performance of the maximum likelihood estimator is its quick convergence,
which is suggested by the rate T convergence since 4 = k > r = 2. Notice in Table 1 that for a
sample size of 50 the standard deviation of d‘l‘l" is 0.0236, while that of &‘l“l is 0.0042. In Table 3,
where the sample size is 200, the standard deviation of &‘1‘1” is 0.0113, while that of d‘l“] is 0.0005.

These results are common across the the nine tables.
9. Summary and Conclusions

Under the assumption of self-interested, non-codperative behaviour by potential bidders at auctions,
game theory imposes a host of restrictions upon the data generating processes of either experimental
or field data. Previous empirical research has examined only a few reduced-form predictions

concerning these data generating processes. We have presented an integrated study of structural
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econometric methods for four different auction mechanisms within the IPVP, discussing issues of
identification, estimation, and testing. This research provides a useful framework for deeper studies

of strategic behaviour in markets.
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A. Appendix

In this appendix, we present the proofs of the corollary, lemmata, and theorems contained in the
paper.

Proof of Theorem 1.

Note that
Pr(W < k| F,n%) = F(o™' (k)"

and

Pr{W < k| G,nl = G(S (k)"

where o~ depends upon the pair (F,7°) and S~! depends upon the pair (G, 7). The result proceeds
by showing that if (F,7°) # (G,7), then there exists a k for which these differ.
Introducing 3° = 3(6%,7°, M, Z), first note that if (F,7°) # (G,n), and if

=5~ [ P deaév—/aa(e)’"" &,
vo vo

then it is obvious that one can find a k such that Pr[W < k | F,n°] # PrW < k| G, n]. Suppose
that ‘

0
#>0- [ GlEM e,
vo
then let k = 3° and by Assumption 1,
Pr(W < k| G,n] > Pr[W < k| F,n° =0,
while if
17
P < a-/ G(eYM d¢
vo
then, letting k = f:; G(€)Mn dg, we have by Assumption 1,
0=PiW < k|G, < Pr{W < k| F,1°].
If, on the other hand, (F,7°) # (G,n) and
1] o 1))
p=o- [ ReM de=o- [ e d (A1)
% vo
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then there are two cases to consider. First, if 7 # 7, then the densities at the upper bounds (3°)
under (F,7°) and (G, n) are such that

N N
M0 — 39) # Mny(o—-3°) ~

hs(3°|F,n°%) = hs(3°|G, n). (A.2)

Since the density functions in both cases are continuous, there must exist an £ > 0 such that over
the interval [3° — £,3°) one density is larger than the other (depending upon whether 7° > % or

7% < 7). This implies that
Pr{W < 3° — ¢|F,7%) # Pr[W < 3° — €|G, 7). (A.3)

The second possibility assuming that (A.1) holds is for 7° = 5 and F # G. Under these
conditions there exist disjoint intervals A; and A2 such that for v € A;, F < G and

F()M7° > G(v)Mn (A4)
and forve€ A, F > G
F()M™ < G(v)Mn. (A.5)

Without loss of generality, suppose that A; occurs before A; as v increases. Let
v = inf{v : F(v) < G(v)}.

Note that there exists a & such that on (v, v + 8) F(v) < G(v). This implies that F(v)M"° >
G(v)Mn. Also, define
v, = inf{v:v > v + 4, F(v) = G(v)}

where v, exists because of (A.1). By construction F(v,) = G(vy). By construction, for all
v € (w,v,), F(v) < G(v). Thus,
Fo)M" > G(v)Mn.

Let
k=k,=o0(v,)

so that 0~1(k,) = v,. Note, however, that

S7(ky) > vy.
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To see why this is, note that by construction

[ Fere de < [ e a
so that N N
ky = a(vy) > S(vu)
since we also have that F(v,) = G(v4). Hence, we have that
Pr{W < ku|F,1%) = F(v,)"
= G(v)N < G(S7V(ku))" = Pr[W < k|G, 1]
and the result follows.
Proof of Theorem 2.
Pick an a € A such that a ¢ A*. Since A* is a closed set, it must be that for some Z € X,

3(a, 7) = 5(c%,Z) — v (A.6)
for some v > 0. Pick some € < %'y. By Assumption 4, there exists §; > 0 and &2 > 0 such that for
all 2, 2% € X with |z! — 22| < 6, we have |3(a, z') — 3(a, 22)| < € and when |z! —2?| < 6, we have
|5(a®,z") — 5(a®, 22)| < €. Let & = min{é;,65}. Let B(Z,6) be the open ball (in Euclidean space)
around the point Z of radius 6 and let N(Z) = B(%,8) N X be a neighbourhood of the point Z in
X. By Assumption 2, Pr{z € N(Z)] > 0. Let,

f = arg max{w, — 5(a®,z¢)|z: € N(2)}
and denote p = wz — 3(a®, z7). Notice that j is negative. By Lemma A.1, p 22 0, so that there
exists some finite T such that for T > T with probability one, 5 > —e. We can now show that (also

with probability 1) a ¢ A% and since A} C A7 for T > T the result will follow. To show this,

suppose to the contrary, that a € A%. Then for f corresponding to T we have
5(0(,2:{) > wy.

But by construction (and using (A.6)), with probability 1,
€ > 5(a® 27) — wy

> 5(a%,z7) — 3(a, z7)
=7 + (8(a°, z7) - 3(®, 7)) + (5(e, 2) — 3(r, z7))

> - 2¢
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which implies that 3¢ > 7, a contradiction. Therefore (with probability 1) a ¢ A% for T > T and

the result follows.
Lemma A.1.
Given Assumptions 2 to 4, p == 0.
Proof of Lemma A.1:
Note that by Assumptions 2-4,

Pr{p < —¢lz: € N(Z)] < (1 - 5(6))T

where T is the number of z, € N(Z) so that by Assumption 2

=35 Pr{N(z)] > 0,

N[~

so that
Prfp < —¢|z; € N(z)] = 0.

Since Pr[p > —¢|z; € N(%)] is dominated by the integrable (with respect to the density function of

z; € N(Z)) function 1, then we have by the dominated convergence theorem that,
Pr[p < —¢] = E[Pr[p < —¢|z; € N(F)]] = 0,

so that 5 — 0 since ¢ is arbitrary. But since 5 is a monotonically increasing function we have by

Proposition 1.2.1 of Rao (1986) that 5 = 0.
Proof of Theorem 3.

This proof is similar to that of Gallant and Nychka (1987). Since & € A for all T, a subsequence
must converge to some point in 4; i.e., & — a” € A. But it must be that a* € A" by condition b).
All we need to show then is that a* = a°, which follows from c) and d) using the proof of Gallant

and Nychka (1987).
Proof of Corollary 2.

Using Lemma 2 we can show that for all 2 > 0

. 1=F(5(a®z(s)) - L)
t—oo 1 — F(3(a®,z(3)) - })

=1
—Z
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using L’Hépital’s rule, and 3(z(),a®) < co by Assumption 4, so the result follows by Lemma 1. It
is also easy to show by L’Hépital’s rule that dr is such that

bt S |

dr

almost surely where d7 is given in Lemma 1.
Proof of Lemma 1.

Note that M
NF(o™'(w))" f(o~(w))
o'(o-1(w))

where we have written this density in terms of in terms of U = 0™} (W) = V1:n)- The result follows

hs(w) =

by noting that
o'(v) = My f(v) / F(EYM deF(w)M+1,
vo
and that w — 5 as v — 7.

Proof of Theorem 4.

Note that for the corresponding population problem the Kuhn-Tucker conditions are satisfied at

(e, 7(2(1))A2, 7(2(2)A3, ..., 7(2(k))AR)

and by Assumptions 7 and 8 each of the Lagrange multipliers are positive, so each of the k& con-
straints binds. Also, note that by Assumption 4, the matrix formed by the k vectors V4, 3(a, (7))
has full rank in a neighbourhood of a°, which implies that the Kuhn-Tucker conditions are suf-
ficient over this neighbourhood for a solution. Since & is consistent, and since we have uniform
convergence of the gradient vector, then the solution to the sample problem must also be such that

all k£ constraints bind with Lagrange multipliers converging almost surely to the population values.
Proof of Theorem 5.

The proof is very similar to that in Donald and Paarsch (1993), Propositions 2 and 3. The result

follows from standard mean value expansions, noting that since k constraints bind
& = P(2, B, 7).
One can then expand the first-order condition

\/’I-‘Vt.2 Ly(¢(b2,i, z,03)) = 0
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about a3, and ignore the pre-estimation error in 1 since by Corollary 2 this is Op(T~"). The result
for & follows from the § method applied to the function ¥(az,,z), which is twice continuously

differentiable in a neighbourhood of the true values.
Proof of Lemma 4.

Due to the uniform convergence of the gradient V, L over a neighbourhood of a® and the fact that
& — a® almost surely the result follows by Assumption 9 using a similar argument to that used in

the proof of Theorem 4.
Proof of Lemma 5.

Given the uniform convergence of the gradient V,L over a neighbourhood of a® and consistency

of & it must be the case that the solution to
VaLl(G) = {Vad(@)}reXt =0

that exists for large T by Assumption 4, is such that A¢ — A§ almost surely. For those combinations
that have an element of A} that is negative, this implies that for large enough T the corresponding
element of A’ must be negative and hence the Kuhn-Tucker conditions cannot be satisfied at such

a solution for large enough T'. Hence, for large enough T for such combinations Pr[E(£)] = 0.
Proof of Lemma 6.

For large enough T, all of the &(£) are within a neighbourhcod of a® using the result in Theorem
5, which applies to any of the &(€). The uniform convergence and continuity of the derivatives
over this neighbourhood and the fact that the constraint set is convex by Assumption 3 imply that
if more than one &(¢) satisfy all of the Kuhn-Tucker conditions, and these two values differ, then
there will be a violation of Assumption 9. The event that the two &(£) solutions are identical occurs

with probability 0, so the result holds.
Proof of Theorem 6.

By Theorem 3, the solution is such that all £ constraints bind, so that & can be determined by

for some twice continuously differentiable function 1. Note that a® = 9(3%, ), so an expansion of

¥(1b, ) about 3° yields



where J3 = V,3(a*) for some a* lying between & and a®. Since & — a°, then a* — a® and J} is

almost surely invertible by Assumption 3. Therefore,
-D7lJp(a - o) = D7 (3° - i)

which is distributed jointly asymptotically as a vector of independent £(1) random variables by
Corollary 1. The result then follows by showing that Jr — J3 = 0,(1), which follows since both J7

- . P
and J3 converge to V3(a?,z) because & — a° and a* = a®.

Proof of Theorem 7.

It is easy to see that

Br(a-a®) - Bi(a-a®) 20

where

By = - ) I[E(8))DgyJ7,
LeZR

with D}} being the true normalization given in Corollary 1, and J7, being given in the mean value
expansions in Theorem 5. Thus, it suffices to find the asymptotic distribution of Bf(&—a®). Using
the mean value expansions as in Theorem 5,
Bi(a—-a®) = Y I[E(6))Dg;(3°(¢) - (¢))
teEZR
where %)(€) and 3°(¢) are the vectors formed using the ¢ combination of smallest order statistics

and true lower bounds. Using similar expansions the event E(¢) occurs when
k%' Dy (3°(8) - ©(8)) < —d7' (8)(3) — &)
for each i ¢ =, where
Ky = d7l(i)Vad(e*,2(i)) I Dre
for some a* between & and a° . Note that kj; = ky; since & = a®. The vector consisting of
dz! (i)(30i)

is distributed as a k vector of independent £(1) random variables. Thus, the asymptotic distribution
reduces to finding the asymptotic distribution of
Z= E Z(O)I[E(L))
LeEZR
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where 2(€) is the £} combination of the £(1) random variables and the event E(£) occurs when
620 < %
for all 7 ¢ =;. The probability that Z < z then can be computed as

> Pr{E(0)] Pr{z(¢) < 2| E(£)]

LeER

= Z/ozl.../oz'(]'[/km )Ik]f(:?,-)f[dfj

eEp ig=, Tkt = j=1
z 2r
=% [ [ 11 4 [T - preklszent I 2
te=R Y0 0 ez, €S, €2,

where the notation .

] ¢z = dzdz, ...dz

i=1
is used. This result implies that the density is as given in the Theorem. Note that the function
Pr arises since kj;Z(€) may be negative and the density for the £(1) variable is only defined over

positive values.
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Table 0
Design Matrices of the Tms

f

Sample Hize 50 100 200
M 2 5 g 11 2 5 8 11 2 5 8§ 11
Design A Tnm 13 12 12 13 25 25 25 25 &0 50 50 50
(M) 026 024 024 0.26 025 025 025 025 025 025 025 0.25
Design B Tn 5 10 15 20 10 20 30 40 20 40 60 80
m(M) 0.10 0.20 0.30 0.40 0.10 020 0.30 0.40 0.10 0.20 0.30 0.40
Design C Tm 20 15 10 5 40 30 20 10 8 60 40 20

w(M) 040 030 0.20 0.10 0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10
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Table 1
Experiment 1: Design A, Sample Size = 50

Estimator Mean  StDev. = LQ.  Median  U.Q.
a2 1.0394 0.0469 1.0098 1.0390 1.0733
al 1.0156 0.0165 1.0054 1.0160 1.0267
a$ 1.0098 0.0100 1.0034 1.0098 1.0164
&l 1.0070 0.0072 1.0024 1.0069 1.0118
G/min 1.0012 0.0191 1.0009 1.0060 1.0109
a3 1.0181 0.0195 1.0059 1.0187 1.0318
ab 1.0128 0.0131 1.0045 1.0132 1.0219
kel ‘ 1.0083 0.0098 1.0017 1.0086 1.0155
Gyt 1.0008 0.0236 0.9854 1.0007 1.0172
aml 1.0009 0.0042 0.9991 1.0004 1.0018
3 1.9764 0.0897 1.9215 1.9849 2.0395
a3 2.0474 0.2114 1.8980 2.0397 2.1917
a3 2.1752 0.3646 1.9165 2.1338 2.3973
&l 2.3552 0.5608 1.9497 2.2648 2.6537
Gin 1.8941 0.1669 1.8033 1.9305 2.0160
a3 2.1397 0.2796 1.9332 2.1113 2.3122
éd 2.2049 0.3636 1.9348 2.1590 2.4215
et 2.2141 0.3256 1.9875 2.1806 2.4124
s 2.0477 0.2738 1.8591 2.0362 2.2169
&l 1.9815 0.0925 1.9461 1.9817 2.0063
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Table 2

Experiment 2: Design A, Sample Size = 100

_—_:.—_—___—____—————_—__—'___———_———_—-—__———-——_—_———____

Estimator Mean St.Dev. L.Q. Median U.Q.
63 1.0189 0.0343 0.9969 1.0196 1.0413
&3 1.0076 0.0113 1.0002 1.0074 1.0150
it 1.0047 0.0068 1.0003 1.0045 1.0093
al 1.0034 0.0050 1.0002 1.0033 1.0069
pin 0.9975 0.0165 0.9960 1.0030 1.0064
63 1.0086 0.0140 0.9998 1.0088 1.0181
Ab 1.0062 0.0095 1.0001 1.0063 1.0124
4PP! 1.0042 0.0072 0.9997 1.0045 1.0091
anls 1.0015 0.0172 0.9902 1.0024 1.0130
gl 1.0003 0.0013 0.9997 1.0001 1.0008
62 1.9866 0.0560 1.9535 1.9908 2.0232
3 2.0219 0.1427 1.9237 2.0209 2.1063
a8 2.0861 0.2431 1.9245 2.0640 2.2284
a1t 2.1634 0.3587 1.9163 2.1151 2.3584
in 1.9247 0.1311 - 1.8692 1.9602 2.0190
a3 2.0645 0.1899 1.9352 2.0449 2.1790
a2 2.0943 0.2421 1.9313 2.0680 2.2321
st 2.0969 0.2163 1.9470 2.0772 2.2299
Gl 2.0342 0.2017 1.9011 2.0312 2.1689
ap 1.9908 0.0294 1.9774 1.9926 2.0008
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Table 3
Experiment 3: Design A, Sample Size = 200

Estimator Mean St.Dev. L.Q.  Median U.Q.

a2 1.0109 0.0226 0.9956 1.0110 1.0274
i+ 1.0042 0.0076 0.9988 1.0040 1.0096
a8 1.0026 0.0045 0.9994 1.0029 1.0056
alt 1.0019 0.0033 0.9998 1.0020 1.0041
Ginin 0.9976 0.0111 0.9956 1.0016 1.0040
a3 1.0049 0.0094 0.9987 1.0051 1.0117
ab 1.0035 0.0064 0.9992 1.0036 1.0080
5Pt 1.0024 0.0047 0.9991 1.0027 1.0056
&l 1.0001 0.0113 0.9927 1.0004 1.0077
am 1.0001 0.0005 1.0000 1.0001 1.0003
i3 1.9955 0.0349 1.9710 1.9983 2.0206
&3 2.0177 0.0892 1.9555 2.0179 2.0794
5 2.0521 0.1517 1.9429 2.0466 2.1503
alt 2.0910 0.2165 1.9356 2.0780 2.2286
Gin 1.9538 0.0908 1.9134 1.9829 2.0187
a3 2.0391 0.1193 1.9531 2.0335 2.1158
ak 2.0551 0.1505 1.9451 2.0467 2.1512
B! 2.0563 0.1422 1.9545 2.0434 2.1513
Gols 2.0137 0.1381 1.9239 2.0162 2.1062
oml 1.9946 0.0107 1.9927 1.9949 1.9998
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Table 4
Experiment 4: Design B, Sample Size = 50

Estimator _______ Mean  St.Dev. L.Q.  Median U.Q.
a2 1.0616 0.0601 1.0215 1.0596 1.0982
a3 1.0172 0.0173 1.0059 1.0168 1.0285
a8 1.0088 0.0098 1.0026 1.0090 1.0152
éf! 1.0058 0.0067 1.0016 1.0059 1.0104
ain 1.0019 0.0167 1.0008 1.0055 1.0101
é3 1.0146 0.0138 1.0060 1.0146 1.0245
ab 1.0101 0.0100 1.0038 1.0104 1.0173
bl 1.0060 0.0085 1.0007 1.0063 1.0118
s 1.0021 0.0263 0.9857 1.0047 1.0203
aml 0.9996 0.0044 0.9978 0.9999 1.0014
a2 1.8644 0.1497 1.7817 1.8951 1.9749
a3 1.9779 0.1995 1.8441 1.9775 2.1178
&3 2.1130 0.2934 1.9100 2.0869 2.2881
é3! 2.2613 0.4595 1.9453 2.1970 2.5141
Gipin 1.8038 0.1676 1.6971 1.8148 1.9309
é3 2.1205 0.2983 1.9154 2.0911 2.2969
ab 2.1658 0.3456 1.9283 2.1256 2.3668
aZPl 2.2148 0.3264 1.9993 2.1841 2.4113
én1 2.1013 0.3812 1.8265 2.0774 2.3681
a 1.9575 0.1354 1.9028 1.9682 2.0038
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Table 5
Experiment 5: Design B, Sample Size = 100

Estimator _ Mean __ StDev.  LQ. Median _____ U.Q.
& 1.0284 0.0368 1.0048 1.0274 1.0533
& 1.0082 0.0118 1.0005 1.0082 1.0161
a3 1.0043 0.0067 1.0000 1.0042 1.0086
alt 1.0028 0.0048 0.9998 1.0028 1.0061
alpin 0.9985 0.0142 0.9983 1.0026 1.0060
& 1.0069 0.0095 1.6009 1.0069 1.0135
ab 1.0048 0.0071 1.0003 1.0049 1.0096
abP! 1.0030 0.0061 0.9991 1.0031 1.0072
ape 1.0006 0.0200 0.9885 1.0020 1.0156
apl 0.9997 0.0020 0.9989 0.9998 1.0006
a 1.9296 0.0870 1.8836 1.9466 1.9905
&5 1.9850 0.1237 1.9015 1.9878 2.0651
a3 2.0521 0.2007 1.9191 2.0354 2.1708
aj! 2.1210 0.2915 1.9291 2.0881 2.2858
apin 1.8834 0.1158 1.8187 1.9002 1.9702
& 2.0540 0.1984 1.9188 2.0371 2.1704
&% 2.0758 0.2277 1.9234 2.0563 2.2063
i 2.0953 0.2149 1.9479 2.0756 2.2277
agls 2.0470 0.2836 1.8565 2.0343 2.2359
! 1.9769 0.0596 1.9473 1.9834 2.0027
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Table 6

——

Experiment 6: Design B, Sample Size = 200

e ———————————————————————————————— e

Estimator Mean " St.Dev. L.Q. Median U.Q.
&2 1.0161 0.0246 1.0005 1.0160 1.0315
6} 1.0046 0.0077 0.9993 1.0047 1.0102
63 1.0025 0.0046 0.9994 1.0025 1.0056
&t 1.0016 0.0032 0.9995 1.0017 1.0038
afpin 0.9982 0.0102 0.9977 1.0015 1.0038
63 1.0039 0.0065 0.9996 1.0038 1.0084
&b 1.0027 0.0048 0.9996 1.0027 1.0061
a8 1.0018 0.0040 0.9991 1.0019 1.0046
agls 1.0005 0.0135 0.9921 1.0021 1.0102
o 0.9998 0.0008 0.9997 1.0000 1.0001
a3 1.9634 0.0530 1.9377 1.9718 2.0003
é3 1.9982 0.0810 1.9386 1.9964 2.0558
43 2.0327 0.1262 1.9423 2.0313 2.1188
a4t 2.0700 0.1840 1.9386 2.0595 2.1859
apin 1.9322 0.0793 1.8855 1.9487 1.9938
3 2.0338 0.1274 1.9430 2.0302 2.1176
A% 2.0457 0.1454 1.9401 2.0412 2.1395
age! 2.0566 0.1430 1.9561 2.0437 2.1509
GRls 2.0301 0.1955 1.9002 2.0326 2.1579
oml 1.9871 0.0247 1.9785 1.9932 1.9970
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Table 7
Experiment 7: Design C, Sample Size = 50

Estimator  Mean  St.Dev. = L.Q.  Median ___ U.Q.
a3 1.0343 0.0456 1.0060 1.0357 1.0648
al 1.0140 0.0159 1.0041 1.0141 1.0248
68 1.0106 0.0104 1.0036 1.0105 1.0174
ép 1.0122 0.0107 1.0052 1.0109 1.0172
apin 1.0017 0.0207 1.0010 1.0075 1.0125
a3 1.0213 0.0252 1.0057 1.0222 1.0381
&t 1.0167 0.0177 1.0057 1.0174 1.0286
ao®! 1.0127 0.0127 1.0046 1.0134 1.0220
Gl 1.0018 0.0264 0.9846 0.9999 1.0183
i 0.9997 0.0050 0.9983 1.0002 1.0016
63 2.0300 0.0914 1.9698 2.0312 2.0938
é3 2.1743 0.2733 1.9719 2.1631 2.3652
a3 2.3539 0.5242 1.9655 2.2761 2.6606
a3 2.4680 0.9338 1.8133 2.2506 2.8571
Gin 1.9032 0.2472 1.7656 1.9929 2.0781
a3 | 2.1819 0.2846 1.9674 2.1511 2.3521
éd 2.2580 0.4019 1.9551 2.2088 2.4817
a2r! 2.2126 0.3285 1.9901 2.1799 2.3982
aals 2.0457 0.2430 1.8817 2.0291 2.1965
ol 1.9618 0.0773 1.9419 1.9761 2.0003
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Table 8

Experiment 8: Design C, Sample Size = 100

;

Mean St.Dev. L.Q. Median U.Q.
1.0161 0.0333 0.9949 1.0162 1.0384
1.0067 0.0111 0.9996 1.0064 1.0141
1.0052 0.0072 1.0005 1.0050 1.0102
1.0058 0.0063 1.0017 1.0055 1.0094
0.9976 0.0175 0.9948 1.0034 1.0076
1.0101 0.0183 0.9981 1.0101 1.0223
1.0079 0.0129 0.9996 1.0078 1.0167
1.0068 0.0094 1.0004 1.0071 1.0131
1.0012 0.0187 0.9885 1.0011 1.0137
0.9999 0.0014 0.9991 0.9999 1.0006
a3 2.0170 0.0608 1.9788 2.0163 2.0566
a3 2.0919 0.1896 1.9603 2.0810 2.2167
33 2.1733 0.3346 1.9343 2.1193 2.3882
43! 2.2257 0.5366 1.8691 2.1311 2.4596
Gin 1.9296 0.1816 1.8512 1.9957 2.0524
3 2.0916 0.1920 1.9586 2.0697 2.2059
35 2.1281 0.2640 1.9401 2.0925 2.2746
AEP! 2.0948 0.2146 1.9474 2.0716 2.2321
a5t 2.0225 0.1747 1.8981 2.0142 2.1431
il 1.9842 0.0204 1.9736 1.9906 1.9979
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Table 9
Experiment 9: Design C, Sample Size = 200

Estimator _______ Mean St.Dev. LQ. Median U.Q.
a2 1.0096 0.0225 0.9940 1.0091 1.0253
a3 1.0039 0.0076 0.9985 1.0040 1.0093
a3 1.0029 ~0.0046 0.9998 1.0030 1.0060
all 1.0031 0.0038 1.0004 1.0032 1.0056
Gmin 0.9976 0.0116 0.9940 1.0021 1.0046
a3 1.0059 0.0124 0.9971 1.0059 1.0147
a 1.0046 0.0087 0.9986 1.0047 1.0106
PP 1.0038 0.0062 0.9997 1.0040 1.0080
aple : 1.0000 0.0122 0.9915 1.0007 1.0081
il 1.0000 0.0005 0.9997 1.0000 1.0002
a3 2.0117 0.0398 1.9831 2.0129 2.0380
i3 2.0513 0.1190 1.9638 2.0454 2.1299
A3 2.0961 0.2090 1.9441 2.0855 2.2285
alt 2.1184 0.3012 1.9034 2.0803 2.3001
Gpin 1.9526 0.1237 1.8900 2.0070 2.0374
é3 2.0511 0.1201 1.9610 2.0440 2.1273
ak 2.0703 0.1624 1.9499 2.0585 2.1733
aBP! 2.0560 0.1425 1.9549 2.0450 2.1501
Ghls 2.0101 0.1160 1.9312 2.0133 2.0919
a 1.9926 0.0080 1.9893 1.9949 1.9970
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